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Abstract

In a recent series of papers [7, 8, [6] a surprisingly strong connection was discovered
between standard models of evolution in mathematical biology and Multiplicative Weights
Updates Algorithm, a ubiquitous model of online learning and optimization. These pa-
pers establish that mathematical models of biological evolution are tantamount to applying
discrete replicator dynamics [I9][13], a close variant of MWUA, on coordination games. This
connection allows for introducing insights from the study of game theoretic dynamics into
the field of mathematical biology.

Using these results as a stepping stone, we show that mathematical models of haploid
evolution imply the extinction of genetic diversity in the long term limit, a widely believed
conjecture in genetics [4]. In game theoretic terms we show that in the case of coordination
games, under minimal genericity assumptions, discrete replicator dynamics converge to pure
Nash equilibria for all but a zero measure of initial conditions. This result holds despite the
fact that mixed Nash equilibria can be exponentially (or even uncountably) many, completely
dominating in number the set of pure Nash equilibria. Thus, in haploid organisms the
long term preservation of genetic diversity needs to be safeguarded by other evolutionary
mechanisms such as mutations and speciation.



1 Introduction

Decoding the mechanisms of biological evolution has been one of the most inspiring contests
for the human mind. The modern theory of population genetics has been derived by combining
the Darwinian concept of natural selection and Mendelian genetics. Detailed experimental
studies of a species of fruit fly, Drosophila, allowed for a unified understanding of evolution
that encompasses both the Darwinian view of continuous evolutionary improvements and the
discrete nature of Mendelian genetics. The key insight is that evolution relies on the progressive
selection of organisms with advantageous mutations. This understanding has lead to precise
mathematical formulations of such evolutionary mechanisms, dating back to the work of Fisher,
Haldane, and Wright [5] in the beginning of the twentieth century.

The existence of dynamical models of genotypic evolution, however, does not offer by it-
self clear, concise insights about the future states of the phenotypic landscapeE Which allele
combinations, and as a result, which attributes will take over? Prediction of the evolution of
the phenotypic landscape is a key, alas not well understood, question in the study of biological
systems [36].

Despite the advent of detailed mathematical models, still at the forefront of our understand-
ing lie experimental studies and simulations. Of course, this is to some extent inevitable since
the involved dynamical systems are nonlinear and hence a complete theoretical understanding
of all related questions seems intractable [29, [I1]. Nevertheless, some rather useful qualitative
statements have been established.

Nagylaki [20] showed that, when mutations do not affect reproduction success by a lotﬂ
the system state converges quickly to the so-called Wright manifold, where the distribution of
genotypes is a product distribution of the allele frequencies in the population. In this case, in
order to keep track of the distribution of genotypes in the population it suffices to record the
distribution of the different alleles for each gene. The overall distribution of genotypes can be
recovered by simply taking products of the allele frequencies. Nagylaki et al. [2I] have also
shown that under hyperbolicity assumptions (e.g., isolated equilibria) such systems converge.

Recently, Chastain et al. has built on Nagylaki’s work by establishing an informative connec-
tion between these mathematical models of population genetics and the multiplicative update
algorithm (MWUA). MWUA is a ubiquitous online learning dynamic [2], which is known to
enjoy numerous connections to biologically relevant mathematical models. Specifically, its con-
tinuous time limit is equivalent to the replicator dynamics (in its standard continuous form) [15]
and its equivalent up to a smooth change of variables to the Lotka-Volterra equations [13]. In
[7,[8] another strong such connection was established. Specifically, under the assumption of weak
selection standard models of population genetics are shown to be closely related to applying
discrete replicator dynamics E| on a coordination game.

The resulting coordination game is as follows: Each gene is an agent and its available strate-
gies are its alleles. Any combination of strategies/alleles (one for each gene/agent) gives rise to a
specific genotype/individual. The common utility of each gene/agent at that genotype/outcome
is equal to the fitness of that phenotypeﬁ If we interpret the frequency of the allele in the popu-
lation as mixed (randomized) strategies in this game then the population genetics model reduces
to each agent/gene updating their distribution according to discrete replicator dynamics.

This connection allows for the translation of results between the areas of genetics and game
theory. We begin with a brief overview of some key insights that have emerged thus far.

!See Section for (non-technical) definition of biological terms.

2This is referred to as the weak selection regime and it corresponds to a well supported principle known as
Kimura’s neutral theory.

3This MWUA variant, which Chastain et al. refer to as discrete MWUA, is already a well established dynamic
in the literature of mathematical biology and evolutionary game theory [19, [13] under the name discrete (time,
version of) replicator dynamics and to avoid confusion we will refer to it by its standard name.

“In the weak selection regime this is a number in [1-s,14s] for some small s > 0.



In discrete replicator dynamics the rate of increase of the probability of a given strategy is
directly proportional to its current expected utility. In population genetic terms, this expected
utility reflects the average fitness of a specific allele when matched with the current mixture of
alleles of the other genes. Livnat et al. [17] coined the term mixability to refer to this beneficial
attribute. In other words, an allele with high mixability achieves high fitness when paired
against the current allele distribution. Naturally, this trait is not a standalone characteristic of
an allele but depends on the current state of the system, i.e., the other allele frequencies. An
allele that enjoys a high mixability in one distribution of alleles, might exhibit a low mixability
in another. So, although mixability offers a palpable interpretation of how evolutionary models
behaves in a single time step, it does not offer insights about the long term behavior.

Game theory, however, can provide us with clues about the long term behavior as well.
Specifically, discrete replicator dynamics converges to sets of fixed points in variants of coordi-
nation games [19, 25]. This allows for a concise characterization of the possible limit points of
the population genetics model, since they coincide with the set of equilibria (fixed-points). E In
[7, [8] it was observed that random two agent coordination games (in the weak selection payoff
regime) exhibit (in expectation) exponentially many such mixed strategies. The abundance of
such mixed Nash equilibria seems like a strong indicator that (i) the long term system behavior
will result in a state of high genetic variance (highly mixed population), (ii) we cannot even ef-
ficiently enumerate the set of all biologically relevant limiting behaviors, let alone predict them.
We show that this intuition does not reflect accurately the dynamical system behavior.

Our game theoretic results. We show that given a generic two agent coordination games,
starting from all but a zero measure of initial conditions, discrete MWUA converges to pure,
strict Nash equilibria. The genericity assumption is minimal and merely requires that any
row/column of the payoff matrix have distinct entriesﬂ Our results carry over even if the game
has uncountably many Nash equilibria.

Conceptually, our paper is based on one key idea. FEquilibria (fized-points) of a dynamical
system may be unstable. An example of an unstable equilibrium is an ideal coin that lies on
its edge. This is a fixed point/equilibrium of the dynamical system (on paper), but it has no
predictive value in terms of actual system behavior. It corresponds to a probability zero event
in the sense that for the coin to land on its edge the set of allowable starting conditions is
negligible. Even if we try to place an idea coin on its edge, the inherent instability of the state
will amplify even the most minute of disturbances fast and cause it to topple and land on one
of its two stable equilibria, either heads or tails. If we think of this knife edge equilibrium as
encoding a mixed state (symmetric 50% heads 50% tails), in the resulting stable states this
symmetry has collapsed and we end up with a pure state. This high level intuition captures the
essence behind our theorem. This mixability /symmetry breaking argument is universal in the
sense that it holds for all mixed states.

Technically, our paper is based mostly on two prior works. In [I5] the generic instability
of mixed Nash was established for other variants of MWUA, including the replicator equation.
Our instability analysis follows along similar lines. Any linearly stable equilibrium is shown
to be a weakly stable Nash equilibriumﬂ This is a strong refinement of the Nash equilibrium

5A mixed strategy profile is an equilibrium of our system if and only if, for each agent, all strategies which
are played with positive probability have equal expected utility. This set encompasses the set of Nash equilibria
of the underlying game, since they furthermore require that any strategy that is not played by any agent must
result in expected utility that is no greater than his current expected payoff. This requirement is not present in
discrete replicator dynamics, since it does not explore new strategies.

5This genericity assumption, for example, is trivially satisfied with probability one, if the entries of the matrix
are iid from a distribution that is continuous and symmetric around zero, say uniform in [—1, 1] as in [7, [§]. This

1 4
class of games contains instances with uncountably many Nash equilibria, i.e., A= | 4 1
2 3

"This Nash equilibrium refinement was introduced in [I5]. A weakly stable Nash is a Nash equilibrium that



property and in two agent coordination games under our genericity assumption it coincides with
the notion of pure Nash. Since mixed equilibria are linearly unstable by applying the center
stable manifold theorem we establish that locally the set of initial conditions that converge to
such an equilibrium is of measure zero. To translate this to a global statement about the size of
the region of attraction technical smoothness conditions must be established about the discrete
time map. For continuous time systems, such as the replicator [I5], these are standard. [15]
also studies other discrete versions of replicator, in fact MWUA in its standard form, but there
noise is injected into the system to simplify the stability analysis. Our analysis does not require
any additive noise. Also, our system is deterministic, implying a stronger convergence result.

In the case of coordination games with isolated equilibria our theorem follows by combining
the zero measure regions of attraction of all unstable equilibria via union bound arguments. The
case of uncountably infinite equilibria is tricky and requires specialized arguments. Intuitively
the problem lies on the fact that a) black box union bound arguments do not suffice, b) the
standard convergence results in potential games merely imply convergence to equilibrium sets,
i.e., the distance of the state from the set of equilibria goes to zero, instead of the stronger
point-wise convergence, i.e., every trajectory has a unique (equilibrium) limit point. Set-wise
convergence allows for complicated non-local trajectories that weave infinitely often in and out
of the neighborhood of an equilibrium making topological arguments hard. Once point-wise
convergence has been established, the continuum of equilibria can be chopped down into count-
able many pieces via Lindel6f’s lemma and once again standard union bound arguments suffice.
Nagylaki et al. pointwise convergence result [2I] does not apply here, because their hyperbol-
icity assumption is not satisfied. Further, assuming s — 0, they analyze a continuous time
dynamical system governed by a differential equation. Unlike Nagylaki the system we analyze
is discrete MWUA, and establish point-wise convergence to pure Nash equilibria almost always
following the work of Losert and Akin [19], even if hyperbolicity is not satisfied (uncountably
many equilibria).

We close our paper with some technical observations about the speed of divergence from the
set of unstable equilibria as well as discussing an average case analysis approach for predicting
the probabilities that we converge to any of the pure equilibria given a random initial condition.
We believe that these observations could stimulate future work in the area.

Biological Interpretation. Our work sheds new light on the role of natural selection in hap-
loid genetics. We show that natural selection acts as an antagonistic process to the preservation
of genetic diversity. The long term preservation of genetic diversity needs to be safeguarded by
evolutionary mechanisms which are orthogonal to natural selection such as mutations and speci-
ation. This view, although may appear linguistically puzzling at first, is completely compatible
with the mixability interpretation of [I7) 6]. Mixability implies that good “mixer” alleles (i.e.,
alleles that enjoy high fitness in the current genotypic landscape) gain an evolutionary advantage
over their competition. On the other hand, the preservation of mixed populations relies on this
evolutionary race between alleles having no clear long term winner with the average-over-time
mixability of two, or more, alleles being roughly equa]lﬂ As with actual races, ties are rare and
hence mixability leads to non-mixed populations in the long run.

According to recent PNAS commentary [4] some of the points in [0] raised questions when
compared against commonly held beliefs in mathematical biology.

“Chastain et al. (1) suggest that the representation of selection as (partially) maxi-
mizing entropy may help us understand how selection maintains diversity. However,

satisfies the extra property that if you force any single randomizing agent to play any strategy in his current
support with probability one, all other agents remain indifferent between the strategies in their support.

8In game theoretic terms, in order for two strategies to be played with positive probability by the same agent
in the long run, it must be the case that the time-average expected utilities of these two strategies are roughly
equal. The time average here is over the history of play so far.



it is widely believed that selection on haploids (the relevant case here) cannot main-
tain a stable polymorphic equilibrium. There seems to be no formal proof of this in
the population genetic literature...”

Our argument above helps bridge this gap between belief and theory.

2 Related work

MWUA, Genetics, Ecology and Biology. The earliest connection, to our knowledge, be-
tween MWUA and genetics lies in [15], where such a connection is established between MWUA
(in its usual exponential form) and replicator dynamics [31, 28], one of the most basic tools in
mathematical ecology, genetics, and mathematical theory of selection and evolution. Specifi-
cally, MWUA is up to first order approximation equivalent to replicator dynamics. Since the
MWUA variant examined in [6] is an approximation of its standard exponential form, these
results follow a unified theme. MWUA in its classic form is up to first order approximation
equivalent to models of evolution. The MWUA variant examined in [6] was introduced by Losert
and Akin in [19] in a paper that also brings biology and game theory together. Specifically, they
use game theoretic analysis to prove the first point-wise convergence to equilibria for a class of
evolutionary dynamics resolving an open question at the time. We build on the techniques of
this paper, while also exploiting the (in)stability analysis of mixed equilibria along the lines of
[15]. The connection between MWUA and replicator dynamics by [I5] also immediately implies
connections between MWUA and mathematical ecology. This is because replicator dynamics
is known to be equivalent (up to a diffeomorphism) to the classic prey/predator population
models of Lotka-Voltera [13].

MWUA (and variants) in game theory. As a result of the discrete nature of MWUA,
its game theoretic analysis tends to be trickier than that of its continuous time variant, the
replicator. Analyzed settings of this family of dynamics include zero-sum games [1I, 27], potential
(congestion) games [15], games with non-converging behavior [14], 9] 12 B [16] and as well as
families of network games [25] 26]. New techniques can predict analytically the limit point of
replicator systems starting from randomly chosen initial condition. This approach is referred
to as average case analysis of game dynamics [23].

Genetics and Computer Science. In the last couple of years we have witnessed an accu-
mulation of papers and problem proposals in the intersection of computer science and genetics
[18, 33, 32, B34}, [10]. In the closing sections of our paper, we add to this exciting discussion by
pointing out some new challenges along these lines.

3 Preliminaries

In this section we formally describe the two player coordination games, the dynamics under
consideration, and its equivalence with MWUA in evolution. First we start with some notations.

Notations: All vectors are in bold-face letters, and are considered as column vectors. To
denote a row vector we use . The i*" coordinate of x is denoted by x;, and for I < k, (I : k)
denote subvector (z;,x;41,...,x). For two vectors @,y let (x;y) denote the concatenation of
two vectors. For k € R, k,x, represents n X n matrix with all entries set to k. We denote set
{1,...,n} by [1: n]. int A is the interior of set A.



3.1 Two-player Games and Nash equilibrium

In this paper we consider two-player games, where each player has finitely many pure strate-

gies (moves). Let S;, i = 1,2 be the set of strategies for player 4, and let m &t |S1] and n e |Sal.

Then such a game can be represented by two payoff matrices A and B of dimension m X n,
where payoff to the players are A;; and B;; respectively if the first-player plays ¢ and the second
plays j.

Players may randomize among their strategies. The set of mixed strategies for the first
player is Ay = {& = (21,...,2m) | £ > 0,>.7", ; = 1}, and for the second player is Ay = {y =
(Y1,--yyn) | y >0, Z?Zl y; = 1}. The expected payoffs of the first-player and second-player
from a mixed-strategy (x,y) € Ay x Ay are, respectively

Z Ay = ' Ay and Z Bijziy; = +T By
" 0]
Lemma 1. (Nash Equilibrium [35]) A strategy profile is said to be a Nash equilibrium strategy

profile (NESP) if no player achieves a better payoff by a unilateral deviation [22]. Formally,
(x,y) € Ay x A, is a NESP iff Vo' € Ay, 2 Ay > 2T Ay and Vy' € A,,, *" By > 2" By'.

Given strategy y for the second-player, the first-player gets (Ay)y from her k" strategy.
Clearly, her best strategies are arg max;(Ay)r, and a mixed strategy fetches the maximum
payoff only if she randomizes among her best strategies. Similarly, given x for the first-player,
the second-player gets (€7 B); from k" strategy, and same conclusion applies. These can be
equivalently stated as the following complementarity type conditions,

Vie S, z;, >0 = (Ay), = maXgecs, (Ay)k (1)
Vj € Sa, Y; > 0 = (ZCTB)j = maneg2(a}TB)k

Symmetric Game. Game (A, B) is said to be symmetric if B = A7, In a symmetric game
the strategy sets of both the players are identical, i.e., m = n, and S; = So. We will use n, S
and A, to denote number of strategies, the strategy set and the mixed strategy set respectively
of the players in such a game. A Nash equilibrium profile (z,y) € A,, x A,, is called symmetric
if x = y. Note that at a symmetric strategy profile (z, ) both the players get payoff 7 Az.
Using it follows that € X is a symmetric NE of game (A4, AT), with payoff 7 to both
players, if and only if,

Vie S,z >0= (Ax); = m]?X(Aaz)k. (2)

Coordination Game. In a coordination game B = A, i.e., both the players get the same
payoff regardless of who is playing what. Note that such a game always has a pure equilibrium,
namely arg max; ;) Aij.

3.2 Discrete Dynamical Systems

A dynamical system is a smooth action of the reals or the integers on another object (usually
a manifold). When the integers are acting, the system is called discrete and is given by the
following update rule:

x(n+1) = f(x(n))

with n € N or Z where f is called the rule/map of the dynamic. A point z, is called fized
point or equilibrium if f(x.) = x4. A trajectory of the dynamical system is a (infinite) sequence
of vectors x(0), f(x(0)), f2(x(0)), ... where f™ is the composition of f for n times. Dynamical
system theory is the branch of mathematics that tries to understand the behavior of dynamical
systems. To understand their behavior, there are plenty of questions one needs to answer. Does
the system converge? What is the rate of convergence? Which are the stable fixed points?



Games and discrete MWUA of [6]. Chastain et. al. [6] observed that the update rule
derived by Nagylaki [20] for allele frequencies, during evolutionary process under weak-selection,
is exactly multiplicative weight update algorithm (MWUA) applied on coordination game, where
genes are players and alleles are their strategies. Formally, if fitness values of a genome defined
by a combination of alleles (strategy profile) is from [1 — s, 1 4 s] for a small s > 0 (weak
selection), then for the two-gene (two-player) case such a fitness matrix can be written as
B = 1,,xn + €C, where each C;; € Z and € << 1. This, defines a coordination game (B, B).
Further, the change in allele frequencies in each new generation is as per the following rule:

yi(t)(1+e(CTx(t));)
1+ ex(t)TCy(t)

zi(t)(1+ e(Cy(t))i)
t

Vi€ Sy, mi(t+1) = 1+ ex(t)TCy(t)

Vj S SQ, yj(t—i— 1) = (3)

Using the fact that B = 1,,x, + €C, this can be reformulated as,

) BYO): - w®+eCT)) ) (BT2();
By 1+ex@)Toy®t)  PeT@)By()

zi(t) (1 + e(Cy(t))i)
1+ ex(t)TCy(t)

Thus, in this paper we study convergence of discrete MWUA through this reformulation.This
reformulation is also known as discrete replicator dynamics. In general, given a game (A, B)
consider the update rule (map) f: A, X A, = Ay, X Ay,

Vie S, zi=ux (Y
For (z,y) € A, x A, if (2/,y') = f(z,y), then . , :(B;:rﬁBy) (4)
Vj € S, Y5 =Y CCTB’y]

Clearly, ' € A, y' € A, and therefore f is well-defined. Starting with («(0),y(0)), the
strategy profile at time ¢t > 1is (z(t),y(t)) = f(z(t — 1),y(t — 1)) = f4(x(0),y(0)).

Losert and Akin [19]. Losert and Akin showed a very interesting result on the convergence
of discrete replicator dynamics when applied on evolutionary games [5] with positive matrix.
These games are symmetric games, where pure strategies are species and the player is playing
against itself, i.e., symmetric strategy (z = y). Consider a symmetric game (A, AT) where A is
an n X n positive matrix, and the following dynamics starting with z(0) € A,,.

1) = (0 s o)

Clearly, z(t + 1) € A, Vt > 1. Thus, there is a map fs : A, — A, corresponding to the

above dynamics, where if 2’ = fs(z) then 2z, = z; ;‘3’?;, implying

2(t+1) = fo(2(t) = £ (2(0)) (6)

If z(t) is a fixed-point of f, then z(t') = z(t), Vt' > t. Losert and Akin [19] proved that the
above dynamical system converges pointwise to fixed-point, and that map f is a diffeomorphism
in an open set that contains A,,. Formally:

Theorem 2. [19] Let {z(t)} be an orbit for the dynamic of (54). Ast approaches oo, z(t)
converges to a unique fixed-point q. Additionally, the map fs corresponding to @ is a diffeo-
morphism, i.e. it is a one-to-one, onto, and smooth function whose inverse function is also
smooth.



3.3 Terms used in biology

We provide brief non-technical definitions of a few biological terms that we use in this paper.
Gene. A unit that determines some characteristic of the organism, and passes traits to off-
springs. All organisms have genes corresponding to various biological traits, some of which are
instantly visible, such as eye color or number of limbs, and some of which are not, such as blood

type.

Allele. Allele is one of a number of alternative forms of the same gene, found at the same place
on a chromosome, Different alleles can result in different observable traits, such as different
pigmentation.

Genotype. The genetic constitution of an individual organism.

Phenotype. The set of observable characteristics of an individual resulting from the interaction
of its genotype with the environment.

Diploid. Diploid means having two copies of each chromosome. Almost all of the cells in the
human body are diploid.

Haploid. A cell or nucleus having a single set of unpaired chromosomes. Our sex cells (sperm
and eggs) are haploid cells that are produced by meiosis. When sex cells unite during fertiliza-
tion, the haploid cells become a diploid cell.

4 Pointwise Convergence and Diffeomorphism

In this section we show that the discrete replicator dynamics of , when applied to a
two-player coordination game (B, B), converges pointwise to a fixed-point of f under weak
selection. Further, map f is diffeomorphism. Essentially we will reduce the problem to applying
discrete replicator dynamics on symmetric game with positive matrix and then use the result
of Losert and Akin [19] (Theorem [2)).

Under weak selection regime we have B;; € [1 —s,1 + s], V(4,7), for some s < 1. Let
€ < 1—s, and consider the following matrix

A €mxm B —¢€ (7)

= T
B' — € €pxn

We will show that applying dynamics of (4)) on game (B, BT) starting at (x(0), y(0)) is same
as applying (5) on game (A, AT) starting at z(0) = (@; #)

Lemma 3. Given (x(0),y(0)) € A1, Ag, let z(0) = (%0);%), then ¥t > 0, (z(t);y(t)) =
2% z(t), where (t) and y(t) are as per and z(t) is

Proof We will show the result by induction. By hypothesis the base case of ¢ = 0 holds.
Suppose, it holds up to time ¢, then let € = x(t+1), y = y(t +1) and (2’;9y') = 2(t +1). Now,

Vi <mn, zi(t+1) = z(t) goandl

ZOTAZ () together with z(t) = %(w(t), y(t)) gives us

€) i xi(t B i GZ‘y'(t)
=TT Ty TOTEYE | YOETZ(Q 1 zt)TBy(t) 2

Similarly, we can show that Vj < n, y§ = %, and the lemma follows. [

7



Lemmas [3| establishes equivalence between games (B, B) and (A, AT) in terms of dynamics,
and thus the next theorem follows using Theorem

Theorem 4. Let {x(t), y(t)} be an orbit for the dynamic of {4]). Ast approaches oo, (z(t), y(t))
converges to a unique fived-point (p,q). Additionally, the map F corresponding to S a
diffeomorphism, i.e. it is a one-to-ome, onto, smooth function whose inverse function is also
smooth.

5 Convergence to Pure NE Almost Always

In Section (4| we saw that dynamics of converges to a fixed point regardless of where we
start in coordination games with weak-selection. However, which equilibrium it converges to
depends on the starting point. In this section we show that it almost always converge to a pure
Nash equilibrium under mild genericity assumptions on the game matrix. In the light of the
known fact that a coordination game (B, B), where B;js are chosen uniformly at random from
[1 — 5,1+ s], may have exponentially many mixed NE [7, [§], this result comes as a surprise.

To show the result, we use the concept of weakly stable Nash equilibrium [1I5]. This is
a refinement of the classic notion of equilibrium and we show that for coordination games it
coincides with pure NE under some mild assumptions. Further, we connect them to stable fixed-
points of f by showing that all stable fixed points of f are weakly stable Nash equilibria.
Finally, using the Center Stable Manifold Theorem [30] we show that dynamics defined by f
converges to stable fixed-points except for a zero-measure set of starting points.

Definition 5. [IJ]/A Nash equilibrium (x,y) is called weakly stable if fixing one of the players
to choosing a pure strategy in the support of her strategy with probability one, leaves the other
player indifferent between the strategies in his support, e.g., let T1 and Ty are supports of x and
y respectively, then for any i € T if the first player plays © with probability one then the second
player is indifferent between all the strategies of T, and vice-versa.

Note that pure NE are always weakly stable, and coordination games always have pure NE.
Further, for a mixed-equilibrium to be weakly stable, for any ¢ € T all the Bijs corresponding
to j € Ty are the same. Thus, the next lemma follows.

Lemma 6. If coordinates of a row or a column of B are all distinct, then every weakly stable
equilibrium s a pure Nash equilibrium.

Proof To the contrary suppose (x,vy) is a mixed weakly stable NE, then for T} = {i | x; > 0}
and Th = {j | y; > 0} we have Vi € T}, B;; = Bij’, ¥j # j' € T, a contradiction. m

Remark 7. We note that the games analyzed in [7, [8], where entries of matriz B are chosen
uniformly at random from the interval [1 — s,1 + s], will have distinct entries in each of its
rows/columns with probability one, and thereby due to Lemma @ all its weakly stable NE are
pure NE.

Stability of a fixed-point is defined based on eigenvalues of Jacobian matrix evaluated at the
fixed-point. So let us first describe the Jacobian matrix of function f. We denote this matrix
by J which is m +n x m 4+ n, and let fi, denote the function that outputs k*" coordinate of f.
Then, Vi #4i <m and Vj # 7' <n

2 2
dfi _ (By)s By)i _ dfmts _ (BT2); BTz);
Jii = d£¢ - iTZgy — T (;T%L) ) J(m+])(m+3) - dyj'—] - (xTBxg)J — Y (ngg); )
df; By)i-(By)s Afimtj (BT);(BTx);
R Timsi)mt3) = "yt = Y @ BT
T — i g By @ By)—(By)(BTw); g dfme _, Bij(a" By)—(BT2);(By)i
i(m+j) = dy; i (T By)? y  J(mAg)i dz; Yj T By)?



Now in order to use Center Stable Manifold Theorem (see Theorem, we need a map whose
domain is full-dimensional around the fixed-point. However, an n-dimensional simplex (A,,) in
R™ has dimension n—1, and therefore the domain of f, namely A,,, x A, is of dimension m+n—2
in space R™*", Therefore, we need to take a projection of the domain space and accordingly
redefine the map f. We note that the projection we take will be fixed-point dependent; this is
to keep of the proof of Lemma [10| relatively less involved later.

Let r = (p, q) be a fixed-point of map f in A,, x A,,. Define i(r) and j(r) to be coordinates
of p and q respectively that are non-zero, i.e. p;) > 0 and g;(;) > 0. Consider the mapping z :
R™M*™ — R™F"2 50 that we exclude from each player 1,2 the variables (), y;(r) respectively.
We substitute the variables ;) with 1 — 37, ;@i and y;o) with 1 — 37,y y;. Consider
map f under the projection zy, and let J* denote the projected Jacobian at r. Then, Vi, i’ € [1 :
m] \ {i(r)} and Vj, 7' € [1 : n]\ {j()},

r_ Byi _ . (B \* . BYi(BYiw
Jii = - (75) TR
r _ (BTa); (BTx); (BT2);-(BTx) (x)
J(m+j)(m+j) o CCTBy] Y ﬂUTByJ T Yj (:L‘JTBy)Q ’
r _ (By)i-(By)y (By)i (By)i(r)
Ji = i (T By)? + (T By)? (8)
Jr B '(BTx)j-(BTx)j/ '(BTQZ)J"(BT$)]-(I.)
(mti)(mti) = YT @TByz T YT @TBy)e
Jr. = x.Bij'(chBy)—(By)i(Bch)j _ x.Bz‘ﬂr)'(wTBy)*(By)i(BTx)m)
£ ‘ (z* By)? ! o (2T By)?
Jr _ y‘Bij'(xTBy)*(BTI)j(By)i 7y'Bi(r)j'(m By)—(B" 2);(BY)i(r)
(m+j)i J (zT By)? J (zT By)2

The characteristic polynomial of J* at r is

I1 <)\ - 1(5?3);) yo <)\ - (fTTg()lj ) % det(A\ — I¥)

2:p;=0

where J* corresponds to J* at r by deleting rows i ,columns j such that p; = 0 and ¢; = 0.

Definition 8. A fized point ris called linearly stable, if the eigenvalues of J" at v have absolute
value less than or equal to 1. Otherwise it is called linear unstable.

The definition above is a slight modification of the classic definition of a stable fixed point,
and has been tailored so that use of Theorem [14] becomes easier. The intuition here is that
linearly unstable fixed points are going to be discarded by the dynamics in a robust manner, so
it suffices to characterize the set of linearly stable fixed points. Throughout the paper when we
refer to (un)stable fixed points, we refer to this definition of stability.

Lemma 9. FEvery linearly stable fixed point is a Nash Equilibrium.

Proof Assume that a linearly stable fixed point r is not a Nash equilibrium. Without loss
of generality suppose player ¢ = 1 can deviate and gain. Since r is a fixed-point of map f,

Vp; > 0 = (Bq); = p'Bq. Hence, there exists a strategy i < m such that p; = 0 and
(BQ)s

pTBEq > 1 as a root, a contradiction. m

(Bq); > pT Bq. Then the characteristic polynomial has

We are going to show that the dynamics of converge to linearly stable fixed-point except
for measure zero starting conditions. However, what we want is that it almost always converge
to weakly stable NE. So, let us first establish relation between stable fixed-points and weakly
stable NE.

Lemma 10. FEvery linearly stable fized point is a weakly stable Nash equilibrium.



Proof Let k x k be the size of matrix J*. If k = 0 then the equilibrium is pure and therefore
is stable. For the case when k > 0, let Tp and Tq be the support of p and q respectively, i.e.,
Tp = {i | p; > 0} and similarly Tgq. If we show that Vi,i" € Tp and Vj,j" € Ty, M3 =
(Bij — Birj) — (Bijo — Byj/) = 0, then using argument similar to Theorem 3.8 in [I5], the lemma
follows. We show this using the expression of tr((J*)?).

Claim 11. tr((J")?) =

4 G D pigspirqy (MH99)? 4 > i @ (M)

TBq
i<i 14,4 #i(r) B:i#£4(r)
3<g":5,5"#3(r) ] 3273 (r)
1 i,i(1),5,5'\2 } ) i 5,5 (r)\2
T TBg? Z PiPi(r) 445" (M (133 )"+ W Z PiPi 4 4j(r) (M 70 ))
3<3":3,3' #3(r) J:3#3(r)
irii(r) i<l i, il #i(r)

Proof Since [}, =
get that

=0fori#i and j # j, and J§, = 1

=1 we

=0, Iy magn = » Tt gy metd)

tr((@)?) =k + Y T )T s
i7j
We consider the following cases:
e Let i < ¢ with 4,4/ # i(r) and j < j with j,5/ # j(r) and we examine the term
Wpiqui/qj/ in the sum and we get that it appears with
[[Mivilvjvj(r)] [Mivi(r)vjvj/] —+ [Mi,i/,j,j(l‘)] X I:Mi(r)vilvjvj,]
F[MBIETT s (M 4 MBI s [0
:(MZ7Z 7]7] )
e Let i # i(r) and j # j(r). The term Wpiqui(r)qj(r) in the sum appears in multipli-
cation with (M%(r):7:3(x))2,

o Let i < ¢ with 7,7 # i(r) and j # j(r). The term mpiqui@j(r) in the sum appears

with
(MBI s (M3 o (g3 s [ArH)53:3(0)]
e Similarly to the previous case, for j < j' with 7,5 # j(r) and i # i(r). The term
mpiqui(r)qj/ in the sum appears with (Mi’i(r)’j’j/)Q. [

Trace of (JF)? can not be larger than k, otherwise there exists an eigenvalue with absolute
value greater than one contradicting r being a stable fixed-point. From the above claim, it is
clear that t((J9)2) > k and it is exactly k if and only if M%7 =0, Vi, i’ € Ty and j,5' € Ty,
and the lemma follows. [

In Appendix [A| we show that except for zero measure starting points (x(0),y(0)) the dy-
namics of converges to stable fixed-points using the Center Stable Manifold Theorem, which
proves the next theorem.

Theorem 12. The set of initial conditions in A, X A, so that the dynamical system converges
to unstable fized points has measure zero.
Theorem [12] together with Lemmas [6] and [I0] gives the following main result.

Theorem 13. For all but measure zero initial conditions in A, X Ay, the dynamical system
when applied to a coordination game (B, B) with Bij € [1 —s,1+ s], V(i,j) for s < 1,
converges to weakly stable Nash equilibria. Furthermore, assuming that entries in each row and
column of B are distinct, it converges to pure Nash equilibria.

10



6 Conclusion

We show that standard mathematical models of haploid evolution imply the extinction of
genetic diversity in the long term limit. This reflects a widely believed conjecture in population
genetics [4]. We prove this via recent established connections between game theory, learning
theory and genetics [7, 8, [6]. Specifically, in game theoretic terms we show that in the case of
coordination games, under minimal genericity assumptions, discrete MWUA converges to pure
Nash equilibria for all but a zero measure of initial conditions. This result holds despite the
fact that mixed Nash equilibria can be exponentially (or even uncountably) many, completely
dominating in number the set of pure Nash equilibria. Thus, in haploid organisms the long term
preservation of genetic diversity needs to be safeguarded by other evolutionary mechanisms such
as mutations and speciation.

The intersection between computer science, genetics and game theory has already provided
some unexpected results and interesting novel connections. As these connections become clearer,
new questions emerge alongside the possibility of transferring knowledge between these areas.
In appendix [C] we raise some novel questions that have to do with speed of dynamics as well
as the possibility of understanding the evolution of biological systems given random initial
conditions. Such an approach can be thought of as a middle ground between Price of Anarchy
(worst case scenario) and Price of Stability (best case scenario) in game theory. We believe that
this approach can also be useful from the standard game theoretic lens [23].
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A Proof of Theorem [12|

To prove Theorem we will make use of the following important theorem in dynamical
systems.

Theorem 14. (Center and Stable Manifolds, p. 65 of [30]) Let p be a fixed point for the C"
local diffeomorphism h : U — R™ where U C R™ is an open (full-dimensional) neighborhood of p
m R™ andr > 1. Let E°® E°® E" be the invariant splitting of R™ into generalized eigenspaces
of Dh(p)ﬂ corresponding to eigenvalues of absolute value less than one, equal to one, and greater
than one. To the Dh(p) invariant subspace E° @ E° there is an associated local h invariant C”
embedded disc W, of dimension dim(E® @ E°), and ball B around p such that:
h(Wie)NB C Wi, If h"(x) € B for alln > 0, then x € Wi, 9)
To use the theorem above we need to project the vector field to a lower dimensional space.
We consider the (diffeomorphism) function g that is a projection of the points (x,y) € R™*" to
R™+7=2 by excluding a specific (the "first”) variable for each player (we know that the proba-
bilities must sum up to one for each player). Let N = m + n, then we denote this projection of
Apn by g(An), ie., (x,y) =4 (',y') where @’ = (z2,...,2,) and ¥y’ = (y2,...,yn). Further,
recall the fixed-point dependent projection function z, defined in Section |5, where we remove
Tir) and Yjr).

Map f is one corresponding to dynamical system . For an unstable fixed point r we consider
the function ¢,.(v) = zyo foz; ! (v) which is C'! local diffeomorphism (due to theoremwe know
that the rule of the dynamical system is a diffeomorphism), (v) € RV~2. Let B, be the (open)
ball that is derived from Theorem (14| and we consider the union of these balls (transformed in
RN_2)

A=UA;

where A, = g(z;'(By)) (277! "returns” the set By back to RY). Set A, is an open subset of
RN=2 (by continuity of z.). Taking advantage of separability of RN=2 we have the following
theorem.

Theorem 15. (Lindeldf’s lemma) For every open cover there is a countable subcover.

Therefore due to the above theorem, we can find a countable subcover for A, i.e., there
exists fixed-points ry,ry,... such that A =U®_; Ay, .
For a t € N let 9 ,(v) the point after ¢ iteration of dynamics , starting with v, under
projection zy, i.e., Y1, (v) = 2z o fl 0 271 (v). If point (v) € int g(Ayn) (which corresponds to
g~ !(v) in our original Ay) has as unstable fixed point as a limit, there must exist a tq and m
so that ¥y, © 2p,, 0 g~ 1 (v) € By, for all t >ty (we have point-wise convergence from theorem
and therefore again from Theorem [14] we get that ¥, r,, © zr,, © g (v) € WSS (ry,), hence
vegontovph (W (rm)).

Hence the set of points in int g(Ax) whose w-limit has an unstable equilibrium is a subset
of

O =Un_ UZ1 g0 2, 0¥y, (Wise(tm)) (10)

oc
Since ry, is unstable corresponding dim(E") > 1, and therefore dimension of W (r,) is at

most N — 3. Thus, the manifold W (r,,) has Lebesgue measure zero in RV=2. Finally since
go z;ﬂi 0 1y, rlm : RV=2 5 RN=2 ig continuously differentiable, Vi r, 1S C' and locally Lipschitz

9Jacobian of h evaluated at p
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(see [24] p.71). Therefore using Lemma [16| below it preserves the null-sets, and thereby we get
that C' is a countable union of measure zero sets, i.e., is measure zero as well, and Theorem
follows.

Lemma 16. Let g : R™ — R™ be a locally Lipschitz function, then g is null-set preserving,
i.e., for E C R™ if E has measure zero then g(E) has also measure zero.

Proof Let B, be an open ball such that ||g(y) — 9(x)|| < K,|ly — x]| for all x,y € B,. We
consider the union U, B, which cover R™ by the assumption that g is locally Lipschitz. By
Lindel6f’s lemma we have a countable subcover, i.e., U2 B;. Let E; = E N B;. We will prove
that g(E;) has measure zero. Fix an € > 0. Since F; C E, we have that E; has measure zero,
hence we can find a countable cover of open balls C, Cy, ... for E;, namely E; C U72,Cj so that
Cj C B;forall jand also 372, u(Cj) < K%m Since E; C U2, C; we get that g(E;) C U2, 9(C5),
namely g(C1),g(C2), ... cover g(E;) and also g(C;) C g(B;) for all j. Assuming that ball C; =
B(x,r) (center x and radius r) then it is clear that ¢g(C;) C B(g(x), K;r) (g9 maps the center
x to g(x) and the radius r to K;r because of Lipschitz assumption). But u(B(g(x), K;r)) =
K"u(B(x,r)) = K"u(Cj), therefore u(g(Cj)) < K"u(Cj) and so we conclude that

w(g(E) < ulg(Cy) < K™Y pu(Cy) <e
= i=1

Since € was arbitrary, it follows that p(g(F;)) = 0. To finish the proof, observe that g(E) =
U2, 9(E;) therefore pu(g(E)) <2, n(g(E;)) = 0. ]

B Figure of stable/unstable manifolds in simple example
The figure [1] corresponds to a two agent coordination game with payoff structure B =

0 3

state space of game it suffices to describe one number for each agent, namely the probability
with which he will play his first strategy. This game has three Nash equilibria, two pure ones
(0,0),(1,1) and a mixed one (3,3). We depict them using small circles in the figure. The
mixed equilibrium has a stable manifold of zero measure that we depict with a black line. In
contrast, each pure Nash equilibrium has region of attraction of positive measure. The stable
manifold of the mixed NE separates the regions of attraction of the two pure equilibria. The
(0,0) equilibrium has larger region of attraction, represented by darker region in the figure. It
is the risk dominant equilibrium of the game. Recently, in [23] techniques have been developed
to compute such objects (stable manifolds, volumes of region of attraction) analytically.

10 . . . . .
[ ] Since this game has two agents with two strategies each, in order to capture the

C Discussion

Building on the observation of [6] that the process of natural selection under weak-selection
regime can be modeled as discrete Multiplicative weight update dynamics on coordination
games, we showed that it converges to pure NE almost always in the case of two-player games.
As a consequence natural selection alone seem to lead to extinction of genetic diversity in the
long term limit, a widely believed conjecture of haploid genetics [4]. Thus, the long term
preservation of genetic diversity must be safeguarded by evolutionary mechanisms which are
orthogonal to natural selection such as mutations and speciation. This calls for modeling and
study of these latter phenomenon in game theoretic terms under discrete replicator dynamics.

Additionally below we observe that in some special cases, (i) the rate of convergence of
discrete replicator dynamics is doubly exponentially fast in some special cases, and (ii) the
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Figure 1: Regions of attraction for B = [1 0;0 3], where o correspond to NE points.

expected fitness of the resulting population, starting with a random distribution, under such
dynamics is constant factor away from the optimum fitness. It will be interesting to get similar
results for the general case of two-player coordination games.

Rate of Convergence. Let’s consider a special case where B is a square diagonal matrix.
In that case, starting from any point (x(0),y(0)) observe that after one time step, we get that
x(1) = y(1) (i.e f(x(0)) = f(y(0))). Therefore without loss of generality let us assume that
z(0) = y(0). Then both the players get the same payoff from each of their pure strategies in
the first play as B = B”. And thus it follows that f"(x(0)) = f"(y(0)) for all n > 1. Let U;(t)
be the payoff that both gets from their i strategy at time ¢ (both will get the same payoff).
Suppose for i # j we have U;(0) = cU;(0), then

Ui(t) <Bii:ci(t — 1) >2 B (Ui(t — 1))2 B (Ui(0)>2t _
Uj(t)  \ Bjjzj(t —1) Uj(t —1) U;(0)
Thus the ratio between payoffs from each pure strategy increases doubly exponentially, and
the next lemma follows.

Lemma 17. If z = min; ({}f((oo)) where i* € argmaxy, Ui (0), we get that after O(loglog i) we
J

are e-close to a Nash equilibrium with support arg max, U (0) (in terms of the total variation
distance).

Average Price of Anarchy (APoA)

Following the work of [23] we can compute the average price of anarchy (APoA) for the
following case, where w > 1
1 0
510 0]

Average Price of Anarchy (APoA) is defined w.r.t. a dynamics when the starting point
is picked uniformly at random from A,, x A,. Dynamics under different starting points may
converge to different NE. Let expected NE social welfare be the expected social welfare (SW) at

Optimal SW
Expected NE SW*

Since both the players have only two strategies, probability of the first strategy is enough to
describe a profile. So let (z,y) denote the probabilities with which both plays first strategy, i.e.,
(z1,91). Our game has three NE: (1,1),(0,0) and (37, 15;)- Since the set of starting point
converging to the mixed NE has measure zero (Theorem [13)), we can ignore it. If (x(0),y(0)) =

the Nash equilibrium to which dynamics may converge, then APoA =
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(7,y) is picked at random from [0,1]? then let A denote the area starting from where the
dynamics 1} converges to (0,0) where the SW is 2w. Then, APoA = (Qw*A)2f2(1—A) = A=A
Next we compute A.

As discussed above after first step strategies of both the players are same, and there after if

Us(1) > Uy (1) then dynamics will converge to (0,0).

w?(1 — )
z(1 — w?) + w?

Us(1) >Ui() e w?(l—2)(1—y) >ayey<

2(1_
Thus A is the area under the curve y = %, which is

(1-2) w?z w! 9y 1 2 29111
A= /wzl—a: xdw:[w2—1+(1—w2+w)1_w2ln(w +z(1 —w?))]p
~ w' —w? —w?Inw?
=1

Replacing A in APoA = M‘J‘F’W, and setting its differentiation w.r.t. w to zero gives,

w? Inw? (2w + w? +1) = (w? — 1)(4w® + 3w® — 2w — 1)
Solving the above gives the value of w where APoA is maximum, and it turns out to be

around w = 2.02. APoA for w = 2.02 is 1.1647, and thus the next lemma follows.

Lemma 18. For the class of coordination games (B, B) where B = [ (1) S) ] and w > 1, the

APoA is at most 1.2 under discrete replicator dynamics.
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