
The Role of Bounded Rationality and Imperfect
Information in Subgame Perfect Implementation - An

Empirical Investigation

Philippe Aghion, Ernst Fehr, Richard Holden, Tom Wilkening∗

July 27, 2015

Abstract

In this paper we conduct a laboratory experiment to test the extent to which Moore and
Repullo’s subgame perfect implementation mechanism induces truth-telling in practice,
both in a setting with perfect information and in a setting where buyers and sellers face
a small amount of uncertainty regarding the good’s value. We find that Moore-Repullo
mechanisms fail to implement truth-telling in a substantial number of cases even under
perfect information about the valuation of the good. This failure to implement truth-
telling is due to beliefs about the irrationality of one’s trading partner. Therefore,
although the mechanism should — in theory — provide incentives for truth-telling,
many buyers in fact believe that they can increase their expected monetary payoff by
lying. The deviations from truth-telling become significantly more frequent and more
persistent when agents face small amounts of uncertainty regarding the good’s value.
Our results thus suggest that both beliefs about irrational play and small amounts
of uncertainty about valuations may constitute important reasons for the absence of
Moore-Repullo mechanisms in practice.
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1 Introduction

Subgame Perfect Implementation has attracted much attention since it was introduced by

Moore & Repullo (1988). A main reason for this success is the remarkable property that

almost any social choice function can be implemented as the unique subgame perfect equi-

librium of a suitably designed dynamic mechanism.1 This was perceived as a substantial

improvement over Nash implementation, which suffered from two main limitations: first, it

would allow only a certain class of social choice rules to be implemented, those which are

“Maskin Monotonic” (Maskin, 1977; Maskin, 1999); roughly speaking, Nash implementation

does not permit the implementation of social choice rules that involve distributional concerns

between the agents. Second, Nash implementation typically involves multiple equilibria, so

that even if a desirable equilibrium exists, an undesirable one may too.2

A common objection to subgame perfect implementation mechanisms, however, is that

they are hardly observed in practice. This in turn raises the question as to why one does

not observe them. A first type of answer, discussed by Selton (1975), van Damme (1984),

and Fudenberg, Kreps & Levine (1988), is that the behavioral assumptions embedded in

subgame perfection may not be a good approximation of actual behavior. Another type of

answer3, is that subgame perfect implementation is not robust to arbitrarily small deviations

from common knowledge.

In this paper we use a laboratory experiment to test the extent to which the Moore-

Repullo mechanism implements truth-telling in practice, both in a setting with perfect in-

formation and in a setting where buyers and sellers do not share common knowledge about

the good’s valuations. We implement three treatments: one with perfect information about

the value of the good (we refer to it as the no-noise treatment); one with 5% imperfect in-

formation (i.e., traders receive information about the good’s valuation that is 95% correct);

and one with 10% imperfect information (traders have information that is 90% correct). We

also conducted a robustness check with only 1% imperfect information to examine whether

even very small deviations from complete information can cause serious failures in inducing

truth-telling.

Our environment is taken from Hart & Moore (2003) where a seller is about to receive a

buyer-specific good of either high or low quality. Before learning the value of the good, the

1Subgame perfect implementation also assumes that individuals are sequentially rational and that transfers
of any size are allowed.

2Uniqueness can be obtained through the use of so-called “integer games” whereby parties simultaneously
announce an integer and the player with the largest announcement has her preferred option implemented.
These have been widely criticized, particularly since the infinite strategy means that best responses are not
well-defined (Jackson 1992), and for being unimportant in practice.

3See Aghion, Fudenberg, Holden, Kunimoto & Tercieux (2012), henceforth AFHKT.
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buyer and seller would like to write a contract where the buyer pays a high price if the good

is of high quality and a low price if the good is of low quality. However, the quality of the

good is not verifiable by a third-party court and thus a state-dependent contract cannot be

directly enforced.

While the state is not verifiable, public announcements can be recorded and used in legal

proceedings. Thus the two parties can in principle write a contract that specifies trade prices

as a function of announcements made by the buyer. If the buyer always tells the truth, then

his announcement can be used to set state-dependent prices. One way of doing this is to

implement a mechanism that allows announcements to be challenged by the seller and to

punish the buyer any time he is challenged. If the seller challenges only when the buyer has

told a lie, then the threat of punishment will ensure truth-telling.

The key challenge of developing the implementation mechanism is to construct a set of

rules such that the seller has an incentive to challenge lies but to prevent the seller from

challenging the buyer when he has in fact told the truth. The SPI mechanism we consider

accomplishes this by having a seller’s challenge trigger two actions: a punishment, in the

form of a fine, and a counter-offer. This counter-offer is structured so that if the buyer was

lying he will accept the counter-offer and if he was telling the truth he will reject it. By

conditioning additional award and punishments to the seller based on whether the counter-

offer was accepted or rejected, the mechanism can prevent sellers from abusing their power

by challenging when the buyer had indeed told the truth.

Thus, overall the mechanism has three stages: the announcement stage at which the buyer

announces the value of the good, the challenge stage at which the seller has the option to

challenge the buyer’s announcement, and a counter-offer stage at which the buyer can accept

or reject the counter-offer in case the seller has made a challenge. For the SPI mechanism to

induce truth-telling at the announcement stage, the later stages must be structured so that

(i) buyers have an incentive to accept counter-offers after a lie and to reject counter-offers

after the truth and (ii) sellers have an incentive to challenge lies and not challenge truthful

announcements. When experimenting with the SPI mechanism outlined above under full

information, we find that the mechanism is very successful in inducing these behaviors. In

line with what the theory would predict, buyers always reject counter-offers after a truthful

announcement and accept counter-offers over 90% of the time after a lie; sellers challenge

lies over 90% of time and challenge truthful announcements in less than 5% of cases.

Surprisingly, however, the mechanism in our full information treatment fails to induce

truth-telling in a substantial number of cases. Despite correct pecuniary incentives, buyers

who observe a high quality good lie over 30% of the time and about 10% of buyers lie in

every period. Based on beliefs data, these lies appear to be due to buyers who are pessimistic
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about the rationality of the sellers and fear that truthful announcements will be challenged.

To better understand the extent to which beliefs are playing a role, we ran an additional

treatment where we elicit incentive compatible beliefs using an elicitation mechanism similar

to the BDM mechanism (Becker, DeGroot & Marschak, 1964), which was first developed in

Savage (1971).4 We find that not only do the majority of individuals who lie believe that they

have a higher expected pecuniary payoff for lying than for telling the truth, but the majority

of individuals who tell the truth also hold these beliefs. This finding is due primarily to a large

majority of buyers who believe that truth-telling may be challenged. Thus paradoxically,

while the mechanism is designed to induce truth-telling based on pecuniary incentives, the

mechanism is in fact associated with beliefs that render lying profitable for the buyers —

even for the majority of buyers who tell the truth. Thus, it appears that a substantial

amount of the observed truth-telling is not due to the mechanism but to the buyers’ intrinsic

preferences for honesty.

Note that our results indicate that the mechanism does not simply fail to induce truth-

telling because the subjects generally fail to understand backward induction. In fact, sub-

jects’ behavior at the challenge stage and at the counter-offer stage is very close to the

backward induction prediction. Rather, the mechanism fails because it generates a specific

fear in buyers that they will be challenged in case of truth-telling.5

Next, we analyze how the SPI mechanism performs in the presence of imperfect informa-

tion. More specifically, we introduce two noise treatments where we give buyers and sellers

imperfect signals about the underlying quality of the good which are correct either 90% or

95% of the time. We find that the introduction of noise increases the proportion of buyers

who announce a low value with a high signal by 15 to 25 percentage points relative to the

no-noise treatment. These buyer lies are persistent in the noise treatment and do not dimin-

ish with experience. Further, the introduction of noise causes a significant change in buyers’

beliefs; they are now much more likely to believe that lying will not be challenged. Finally,

we find that the introduction of noise also exacerbates a pattern that we already observed

4Variations of this elicitation method have been used by DuCharme and Donnell (1974), Grether (1981),
Allen (1987), and Holt (2006). It is shown by Karni (2009) that the mechanism induces truthful reporting
of beliefs for rational agents with any von Neumann-Morgenstern utility function.

5In two-stage and three-stage games subjects often behave in line with backward induction. A good example
of this is that the modal offer in two-stage ultimatum games is often the money-maximizing offer (Roth 1995,
survey in handbook of experimental economics). Likewise, if the bargaining power of the responder varies
the proposers in the ultimatum game often adjust their offers to the changes in responders’ bargaining.
Another example is the three-stage gift-exchange experiment in Fehr, Gächter and Kirchsteiger (1997) in
which a change in the cost of rewarding or punishing workers at stage three induces behavioral changes at
the first and the second stage that are in line with backward induction. These examples, and the evidence
in the current paper, suggest that it is wrong to assume a general inability to perform backward induction.
Rather, it seems that, depending on the nature of the game, subjects sometimes understand backward
induction quite well while at other times the game induces very specific failures of backward induction.
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in the perfect information treatment: the buyers have even more pessimistic beliefs about

being challenged after truth-telling.

In a further experiment, we study how the introduction of even small amounts of noise

impacts the mechanism. In a treatment where individuals are given the correct signal 99%

of the time, we find that the introduction of noise increases buyer lies to the levels observed

in the 95% noise treatment. Thus, even very small deviations from common knowledge can

have a big effect on the outcome of the mechanism.

The buyers’ beliefs that even truthful announcements will be challenged by the sellers

seems to play an important role for the mechanism’s failure to induce truth-telling both

under complete and incomplete information. But does this belief indeed cause buyers’ lies?

To examine this question, we also study what Moore (1992) refers to as a simple mechanism

where we prevent buyers from being challenged if they announce a high valuation for the

good. This simple mechanism can implement the first best in our setting but would not

function in more complicated environments where both parties must announce truthfully.

In a treatment of this mechanism with no noise, the new mechanism dramatically reduces

the proportion of buyer lies, providing direct evidence that strategic uncertainty is driving

most of the lies in the no-noise treatments. With noise, however, buyer lies continue to be

common. Overall, our findings suggest that small amounts of private information do indeed

lead to large deviations from truth-telling and significantly more lies than under perfect

information.

This paper relates to several strands of literature. It first contributes to the literature on

mechanism design and more specifically on subgame perfect implementation (Maskin, 1999;

Moore & Repullo, 1988; Maskin & Tirole, 1999a; Chung & Ely, 2003) by pointing to two

main sources for the failure of SPI mechanisms: namely, players’ beliefs about the possibility

of irrational challenges by other players, and (small) deviations from common knowledge. In

particular we show that beliefs about the irrationality of the trading partner undermine the

SPI mechanism even in the case of perfect information about the good’s value. This in turn

suggests that future work should concentrate on the design and examination of mechanisms

that are robust to deviations from perfect information and perfect rationality.6 Our results

also point to a preference for truth-telling that causes some individuals to go against their

belief-based pecuniary payoffs and make truthful announcements. This result suggests that

it may be possible to design more efficient implementation mechanisms that utilize these

preferences for honesty.7

6The systematic under estimation of the rationality of others is similar to results in Huck & Weizsäcker
(2002) who find that beliefs about the play of others are distorted towards the uniform prior.

7Our result that many individuals tell the truth when their monetary gain from truth-telling is negative is
related to the literature on lying aversion (Gneezy, 2005; Sanchez-Pages & Vorsatz, 2007; Ederer & Fehr,
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Second, our paper contributes to the debate on the foundations of incomplete contracts.

In their influential 1986 paper, Grossman and Hart argued that in contracting situations

where states of nature are observable but not verifiable, asset ownership (or vertical in-

tegration) can help limit ex post hold-up and thereby encourage ex-ante investments (see

Grossman & Hart (1986)). However, in subsequent work, Maskin & Tirole (1999a, 1999b)

used subgame perfect implementation to show that the non-verifiability of states of nature

can be overcome using a 3-stage subgame perfect implementation mechanism which induces

truth-telling by all parties as the unique equilibrium outcome. Our paper sheds light on

why such mechanisms are not observed in practice, which in turn helps explain why vertical

integration or control allocation matter.

Finally, our paper also contributes to the experimental literature on implementation.

Sefton & Yavas (1996) study extensive-form Abreu-Matsushima mechanisms that vary in

the number of stages used and find that incentive-compatible mechanisms with 8 and 12

stages perform worse than a mechanism with 4 stages that is not incentive compatible.

Katok, Sefton & Yavas (2002) study both simultaneous and sequential versions of the Abreu-

Matsushima mechanism and conclude that individuals use only a limited number of iterations

of dominance and steps of backward induction.8 Our paper concentrates on mechanisms that

require only two steps of backward based on the findings in these papers.

Most closely related to our paper is Fehr, Powell, & Wilkening (2014) who show that

reciprocity considerations may cause the SPI mechanism to fail. By contrast, in this paper

we intentionally designed our mechanism and environment so that reciprocity is unlikely to

play a role9, and concentrate instead on how imperfect information and other forces such as

irrational beliefs and strategic uncertainty may affect SPI.

The remaining part of the paper is organized as follows. Section 2 presents the sim-

ple model which guides our experimental design. Section 3 describes the experiment and

hypotheses. Section 4 presents the experimental results under perfect and imperfect infor-

2009).
8An extensive experimental literature also exists looking at efficiency of implementation mechanisms in
the public goods provision problem (e.g. Chen & Plott, 1996), King Solomon Problems (Ponti, Gantener,
Lopez-Pintado, & Montgomery, 2003; Giannatalke & Elbittar, 2010) and problems involving the selection of
arbitrators (de Clippel, Eliaz, & Knight, 2014). Chen & Plott (1996), Chen & Tang (1998), and Healy (2006)
study learning dynamics in public good provision mechanisms. Andreoni & Varian (1999), Falkinger, Fehr,
Gachter, Winter-Ebmer (2000), and Chen & Gazzale (2004) study two-stage compensation mechanisms that
build on work from Moore-Repullo (1988), while Harstad & Marese (1981, 1982), Attiyeh, Franciosi, & Isaac
(2000), Arifovic & Ledyard (2004), and Bracht, Figuieres, & Ratto (2008) study the voluntary contribution
game, Groves–Ledyard, and Falkinger mechanisms respectively. Masuda, Okano & Saijo (2014) study
approval mechanisms and emphasize the need for implementation mechanisms to be robust to multiple
reasoning processes and behavioral assumptions.

9We deliberately chose parameters in our experiment that made reciprocal behavior very costly and thus
very unlikely to occur. We show this more explicitly in Section 3.3.1.
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mation. Section 5 concludes by suggesting broader implications from our experiment and

avenues for future research.

2 Theoretical Motivation

In this section we present a simple example which will guide our experimental design.

2.1 Common Knowledge

The following example is based on Hart & Moore (2003).10 There are two parties, a B(uyer)

and a S(eller) of a single unit of an indivisible good. If trade occurs then B’s payoff is

VB = θ − p, where θ is the value of the good and p is the price. S’s payoff is just VS = p.

The good can be of either high (the state is θ = θH) or low quality (θ = θL). If it is

high quality then B values it at 70, and if it is low quality then B values it at 20. Before θ

is realized both parties would prefer to trade at a price p(θ) = θ
2
. This price always ensures

that trade occurs when it is efficient and splits the surplus evenly between the buyer and

the seller in all states of the world so that inequity aversion does not influence the desire for

trade.

The value θ is observable and common knowledge to both parties but non-verifiable by

a court. The assumption that the value θ is non-verifiable implies that no contract can be

written that is credibly contingent on θ. However, truthful revelation of θ can be achieved

through the following Moore-Repullo (MR) mechanism which can indirectly generate the

desired price schedule:

1. B announces either “high” or “low”. If “high” and S does not “challenge” B’s an-

nouncement, then B pays S a price equal to 35 and the game then ends.

2. If B announces “low” and S does not “challenge” B’s announcement, then B pays a

price equal to 10 and the game ends.

3. If S challenges B’s announcement then:

(a) B pays a fine of F = 25 to T (a third party).

(b) B is made a counter-offer for the good at a price of 75 if his announcement was

“high” and a price of 25 if his announcement was “low.”

(c) If B accepts the counter-offer then S receives the fine F = 25 from T (and also

the counter-offer price from B) and the game ends.

10This original example is also reported in Aghion & Holden (2011).
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Figure 1: Extensive Form Representation of the Moore-Repullo Mechanism

(d) If B rejects the counter-offer then S pays F = 25 to T . S also gives the good to

T who destroys it and the game ends.

When the true value of the good is common knowledge between B and S, individuals

are rational, and there is common strong belief in rationality, this mechanism yields truth-

telling as the unique subgame-perfect equilibrium. The logic of this equilibrium is that the

initial-prices, counter-offer prices, and fines are constructed so that if B and S are commonly

known to be sequentially rational, B only has an incentive to announce “high” if θ = θH

and “low” if θ = θL. As can be seen in the extensive form representation of the mechanism

shown in Figure 1, for this to be true, the mechanism must satisfy three conditions.

(i) Counter-Offer Condition. B must prefer to accept any counter-offer for which he

has announced “low” when θ = θH . B must prefer to reject any counter-offer for which

he has announced “low” when θ = θL or for which he announced “high”.

(ii) Appropriate-Challenge Condition. S must prefer to challenge an announcement

of “low” when θ = θH and must prefer not to challenge an announcement of “low”

when θ = θL. S must prefer to never challenge “high”.

(iii) Truth-Telling Condition. B must prefer to announce “low” if θ = θL and “high” if

θ = θH .

We refer to challenging “low” when θ = θH as an appropriate challenge. The Counter-

Offer Condition requires that after an appropriate challenge, the counter-offer price is below

the value of the good so that B has a pecuniary incentive to accept the counter-offer. Since the

counter-offer price after “low” is 25, this requirement is met. The Counter-Offer Condition
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also requires that after any other challenge, the counter-offer price is above the value of the

good so that B has a pecuniary interest to reject the counter-offer. Since the counter-offer

prices for “low” is 25 and the counter-offer price for “high” is 75, this second requirement is

met.

As prices and counter-offers are constructed to satisfy the Counter-Offer Condition, B

will reject counter-offers following inappropriate challenges and will accept counter-offers fol-

lowing appropriate challenges. This implies the Appropriate-Challenge Condition is satisfied

if S has an incentive to challenge only in cases when B will accept such a challenge (i.e.,

when B announces “low” when θ = θH). This condition is satisfied since the counter-offer

price of challenging a “low” announcement (25) plus the fine (25) exceeds the price that

occurs if the announcement is not challenged (10).

Finally, for the Truth-Telling Condition to be satisfied, B must prefer to announce “low”

if θ = θL and “high” if θ = θH . Since the price paid by announcing “high” is higher than the

price paid by announcing “low” and an appropriate challenge never occurs when θ = θL, B

never has an incentive to overreport his value by announcing “high” when θ = θL. Further,

B will always be challenged for announcing “low” when θ = θH . Adding the counter-offer

price and the fine, a buyer’s total payment if he lies by announcing “low” when θ = θH is

50. As the price paid for announcing “high” is 35 and lower than the total payments from

lying, B has no incentive to underreport and announces truthfully when θ = θH as well.

Thus the above mechanism yields unique implementation in subgame perfect equilibrium.

That is, for any realization of θ, there is a unique subgame perfect equilibrium which yields

different prices for different valuations of the good. Moreover, in each state, the unique

subgame perfect equilibrium is appealing from a behavioral point of view since it consists of

telling the truth and it splits the surplus equally among B and S. Both of these properties

fail once we introduce small common p-belief perturbations.

2.2 The Failure of Truth-Telling Under (Small) Informational Per-

turbations

We now introduce a small common p-belief perturbation from common knowledge about the

valuation θ. We assume (i) the players have a common prior µ, (ii) µ(θ = θH = 70) = .5,

and (iii) µ(θ = θL = 20) = .5.11 Each player receives an independent draw from a signal

structure with two possible signals: sH or sL, where sH is a high signal where θ equals 70

with probability 1− ε, and sL is a low signal where θ is equal to 20 with probability 1− ε.
11AFHTK consider a more general setting with an arbitrary prior. However, to map closest to the experiment,

we develop the theoretical part with the same values, priors, and error distributions as those used in the
actual experiment in the next section.
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We use the notation sHB (resp. sLB) to indicate that B received the high signal sH (resp. the

low signal sL).

First, we can show that there is no equilibrium in pure strategies in which the buyer and

seller always report truthfully. To see this, suppose instead that such an equilibrium exists,

and further suppose that B gets signal sLB, announces “low,” and is challenged. Under

a truth-telling equilibrium, the buyer’s belief is that his signal and the seller’s signal are

incorrect with equal probability, and thus the expected value of the good is 45. As this is

above the counter-offer price of 25, the buyer has an incentive to purchase regardless of his

signal.

Anticipating the acceptance of challenges with a low signal and “low” announcement, the

seller now has an incentive to challenge even if his signal is sLS . It follows that there does not

exist an equilibrium where all parties are truth-telling in pure strategies. For slight changes

in the environment, a similar pattern can hold in the case of a buyer who receives signal sHB
and is considering whether to make the “high” or “low” announcement. In this case, under

the truth-telling equilibrium, the seller will be unsure as to the value of the good and may

not challenge the announcement if she believes the buyer will reject the counter-offer.12

3 The Experiment

3.1 The Subgame-Perfect Implementation Game

At the center of our experimental design is a computerized version of the Subgame-Perfect

Implementation game we discussed in the previous section. In each of twenty periods, a

buyer is matched with a seller and randomly assigned one of two sealed containers.13 One

container is worth 70 Experimental Currency Units (ECU) to the buyer while the other

container is worth 20 ECU.14 Containers are selected with equal probability and both the

buyer and seller do not initially know which container has been chosen while trading.

Each of the two containers is filled with red and blue balls whose composition changes

by treatment:

1. No-Noise Treatment: In the no-noise treatment, the container worth 70 ECU is

12AFHKT further show that when introducing even a small level of noise, the set of consistent beliefs
expands markedly, which gives rise to equilibria that involve a positive amount of lies by buyers and/or
false challenges by sellers. We consider particular deviations from perfect information and derive the
corresponding mixed strategy Perfect Bayesian Equilibria (PBEs) in the experimental design section.

13Subjects are randomly assigned the role of a buyer or of a seller and remain in this role throughout the
experiment.

14The exchange rate of ECU to Australian dollars was at a rate of 10 ECU = 1 AUD.
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filled with 20 red balls and 0 blue balls. The container worth 20 ECU is filled with 20

blue balls and 0 red balls.

2. 5% Noise Treatment: In the 5% noise treatment, the container worth 70 ECU is

filled with 19 red balls and 1 blue ball. The container worth 20 ECU is filled with 19

blue balls and 1 red ball.

3. 10% Noise Treatment: In the 10% noise treatment, the container worth 70 ECU is

filled with 18 red balls and 2 blue balls. The container worth 20 ECU is filled with 18

blue balls and 2 red balls.

At the beginning of each period, one of the balls in the container assigned to the buyer is

randomly drawn and secretly shown to the seller. This ball is put back into the container and

a second ball is randomly drawn for the buyer but held privately to one side. These signals

provide perfect information regarding the container being traded in the no-noise treatment

and almost perfect information in the 5% and 10% noise treatments.15

Before the buyer knows the color of his ball he is asked to make an announcement

concerning the value of the container for the case in which the ball drawn for him is red

or blue. He may announce a value of either 70 ECU or 20 ECU in each of the two cases.

After making choices for both possible signals, the color of the ball drawn is revealed to him

and his declared strategy is implemented by the computer. This strategy method gives us a

complete set of announcement data in each period which precludes changes in the frequency

of lies over time due to random assignment of signals to different subsets of buyers. The

strategy method also allows for a complete panel of choices which improves our ability to

control for heterogeneity across individuals.16

The announcement of the buyer is next seen by the seller as well as a computerized

arbitrator who acts as the implementation mechanism. After observing the announcement,

the seller has the option of accepting the announcement or calling the arbitrator. If the seller

accepts the announcement, trade occurs at a price equal to 1/2 of the announcement. If,

however, the seller elects to call the arbitrator, the buyer is immediately charged a fine of 25

ECU and the game continues on to the arbitration response stage.

15In the control quiz, subjects are asked to calculate the likelihood of the other party having the same color
ball as them in each treatment. For the no-noise treatment we announce in the verbal summary that “if
you see a red ball, you know with 100% certainty that your matched partner has also seen a red ball.
Likewise, if you see a blue ball, you know with 100% certainty that your matched partner has also seen
a blue ball.” For the noise treatments we announce the probability that both parties observe the same
signal.

16We ran four pilot sessions without the strategy method. The lying rates in these pilot sessions were slightly
higher than those reported in the results section, but the treatment effect is similar.
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In the arbitration response stage, the buyer is given a counter-offer by the computerized

arbitrator which is based on his initial announcement. If he announced a value of 70 ECU,

the arbitrator gives a counter-offer of 75 ECU. If he announced a value of 20 ECU, the

arbitrator gives a counter-offer of 25 ECU.

If the buyer accepts the counter-offer, trade occurs at the counter-offer price. In this

case the seller is given the 25 ECU which was previously charged as a fine to the buyer. If,

however, the buyer rejects the counter-offer, no trade occurs and the seller is also charged a

fine of 25 ECU yielding a loss of 25 ECU for both parties. Note that the structure of fines

ensures that under full information the subgame-perfect equilibrium is unique.

In the event that trade occurs, the actual value of the container is revealed and the profits

of the buyer and seller are realized based on the value of the container, the price, and any

fines. The profits of each individual are calculated after each period.

In addition to action profiles of the implementation mechanism, we also elicited beliefs

about the likelihood of actions of the other party. Likelihoods were recorded using a 4-point

likert scale (Never/Unlikely/Likely/Always). The belief elicitation was done in each period

directly after the buyer or seller took their action. For a buyer, we elicited the likelihood that

the seller would challenge an announcement of 20 ECU and 70 ECU in each period given his

observed signal, and we did so right after the buyer made her announcement decision but

before discovering the seller’s action. For a seller, we asked about his beliefs right after the

seller made his challenge decision. We asked each seller the likelihood that their challenge

would be rejected given their signal and the announcement of the buyer.

We did not pay subjects for their beliefs because in the main sessions we were primarily

interested in the behavioral data. If we had compensated subjects for both their beliefs

and their actions, risk averse subject could have found it optimal to hedge risk by stating

beliefs which differ from their true estimates - a possibility that is discussed in more detail

in Blanco, Engelmann, Koch & Normann (2010). Moreover, we ran four additional sessions

to check whether belief elicitation affects behavior. In these sessions subjects faced 5% noise

for 10 periods and then no noise for 10 periods. We find no behavioral differences between

these control sessions and the main sessions with the same treatment ordering and with

belief elicitation. In particular, the distribution of buyer announcements after a high signal

neither differs in the 5% noise treatments (Mann-Whitney-Wilcoxen test, p-value = .3930)

nor in the no-noise treatments (Mann-Whitney-Wilcoxen test, p-value = .3303).
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3.2 Experimental Design and Protocols

Our experimental design utilizes a within-subjects design in which each subject is exposed

to 10 periods of the no-noise treatment and 10 periods of one of the two noise treatments.

A total of 16 sessions were run: eight with a 5% noise level and eight with a 10% noise

level. We conducted half the sessions starting with the no-noise treatment and switching

to the noise treatment in period 11. We reversed the order of the two treatments in the

remaining sessions. Each session contained between 20 and 24 subjects who were evenly

divided between buyers and sellers at the beginning of the experiment. Buyers and sellers

were matched with each other at most once in each of the two treatments.

Treatment 1 Treatment 2 Number of Subjects
Session 1-4 No Noise 5% Noise 88
Session 5-8 5% Noise No Noise 84
Session 9-12 No Noise 10% Noise 90
Session 13-16 10% Noise No Noise 86

Table 1: Treatments and Observations - 10 Periods per Treatment

All of the experiments were run in the Experimental Economics Laboratory at the Uni-

versity of Melbourne in September and October of 2009. The experiments were conducted

using the programming language z-Tree (Fischbacher 2007). All of the 348 participants were

undergraduate students at the University, who were randomly invited from a pool of more

than 3000 volunteers using ORSEE (Greiner 2004). An additional 340 participants were

recruited in follow-up sessions conducted in 2010 and 2013.

Upon arrival to the laboratory, participants were divided into buyers and sellers and asked

to read the instructions. To be as fair as possible to the mechanism, the instructions described

the game in detail, explaining each possible signal, announcement, and arbitration action

profiles in order to make the payoff consequences of a challenge and the rejection/acceptance

of a challenge transparent. The instructions also included a summary table which showed

the payoff consequences of each combination of container value, announcements, challenges,

and responses to challenges for both the buyer and the seller. The instructions then ended

with a set of practice questions which tested subjects’ understanding of the signal valuations

and the payoff consequences of accepting or rejecting counter-offers after a lie and after a

truthful announcement. Once the answers of all participants were checked, the experimenter

read aloud a summary of the instructions. The purpose of the summary was to ensure that

the main features of the experiment were common knowledge amongst the participants.

Subjects then participated in the main experiment which was conducted in two parts.

Subjects first played 10 periods of their assigned treatment, being matched with a different
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partner on the other side of the market in each period. At the start of period 11, new instruc-

tions were distributed concerning the change in information structure between treatments,

which were read aloud. Subjects then played 10 additional periods, again matching with the

same partner at most once.

Following a short questionnaire in which gender and other demographic information were

recorded, payments to the subjects were made in cash based on the earnings they accumu-

lated throughout the experiment with an exchange rate of 10 ECU to $1 AUD. In addition,

each subject received a show-up fee of $10. Since payoffs during the experiment could be

negative, the subjects could use the show-up fee to prevent bankruptcy during the experi-

ment.17 The average salient payment at the end of the experiment was $51.10 AUD.18 At

the time of the 2009 experiments $1 AUD = $0.80 USD.

3.3 Hypotheses

3.3.1 The No-Noise Treatment

The Moore-Repullo mechanism used in our experiment is designed to implement truthful

announcements and efficient trade. Our predictions in the no-noise treatment are as follows:

Hypothesis 1 In the no-noise treatment buyers truthfully announce their signals and sellers

do not challenge these announcements.

As discussed in the theoretical section, Hypothesis 1 is based on three conditions that

must be satisfied in order for the mechanism to function: the counter-offer condition, the

appropriate-challenge condition and the truth-telling condition. Each of these conditions

has implicit assumptions about how individuals behave and require at least some consistency

between an individual’s beliefs and the actions of other individuals at later stages of the game.

We briefly discuss some of the potential issues that might cause the conditions underlying

the mechanism to be violated.

The counter-offer condition requires that a buyer who is appropriately challenged is

willing to accept the counter-offer instead of rejecting it. If individuals care only about their

17While we had no bankruptcies in the experiment, there is a potential that the description of bankruptcy
rules could prime individuals to be more loss averse in the experiment. To check for this, the eight
additional control treatments without beliefs paid only for a single period and increased the show-up fee
to $35 to cover the worst outcome. We find no significant difference in our results. The sample size of the
additional experiments was selected for an effect size of .15 with an alpha level of .05 and a power of .9.
Clusters were accounted for using an intraclass correlation of .7, which was estimated from the no-noise
treatments of the original experiment with the same treatment order.

18The experiment took roughly 1.5 hours resulting in an hourly pay rate of $34.07 AUD. The Australian
minimum wage is $21.08 for casual employment.
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own payoffs in the mechanism, as is assumed by theory, this condition is satisfied for any

counter-offer price that is below the value of the good in the high state and above the value

of the good in the low state. Given our two-state design, any counter-offer price between 20

and 70 would thus suffice in creating a pecuniary incentive to accept appropriate challenges.

As discussed in detail in Fehr, Powell & Wilkening (2014), there is strong evidence of

non-pecuniary benefits for rejecting an appropriate challenge when individuals are negatively

reciprocal. A buyer who lies and is challenged suffers a pecuniary reduction in his income

that unambiguously reduces his utility relative to what he would receive if he had not been

challenged. If buyers view this reduction in their payment as an unkind act they may retaliate

against sellers by rejecting appropriate counter-offers. This implies that for the mechanism

to function properly, the monetary gain from accepting the counter-offer must exceed the

combined pecuniary and non-pecuniary values of rejecting.

As we wanted to concentrate in this paper on the impact of imperfect information, ir-

rational beliefs and strategic uncertainty on the functioning of SPI mechanisms, we chose

experimental parameters that were likely to rule out negative reciprocity. In this context,

we were particularly concerned with the counter-offer condition and used parameters that

both maximized the net pecuniary value from accepting the counter-offer and minimized the

non-pecuniary value for rejecting. To maximize the pecuniary value, we set the counter-offer

price at 25 so that the buyer’s return for accepting the challenge (45 ECU) is very large. We

also chose a relatively low fine as the desire to retaliate is likely to be influenced by (1) the

amount of money lost by being challenged and (2) the amount of the seller’s payoffs that can

be destroyed by rejecting. On net, a buyer who retaliates after a low announcement must

prefer the payoffs of {−25,−25} for the Buyer and Seller over payoffs of {20, 50}. Equiva-

lently, he must be willing to destroy $.60 of his own money to destroy $1.00 of the seller’s

money after a low announcement and a challenge. This is much larger than what is seen

in standard ultimatum games. For example, in a $10 ultimatum game such a high level of

required reciprocity implies that an offer of $3.75 is rejected - an event that almost never

occurs in subject pools such as ours. Moreover, structural estimates of reciprocity using

data from Fehr, Powell & Wilkening (2014) indicate that subjects are willing to sacrifice

only between $.25 and $.4 to destroy $1 of wealth of the seller after a legitimate challenge in

a related subgame perfect implementation mechanism. Thus, if subjects in our experiment

display a similar amount of reciprocity, the counter-offer condition is met.19

Moving up to the next stage of the game, the appropriate-challenge condition requires

that sellers make appropriate challenges but not inappropriate challenges. For this condition

to hold it must be that individuals have beliefs about the actions of the buyer that lead to

19Our empirical results (see Section 4.1 and 4.2 and Fig. 2c and 3c) strongly support this claim.
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the desired challenge decisions.

While subgame perfection assumes that the beliefs of individuals are consistent with

the actions other individuals make in later stages of the game, there are reasons to believe

that forming consistent beliefs is particularly difficult in the acceptance and rejection stage.

When the counter-offer condition and the appropriate-challenge condition are met, a buyer

who announces “low” in the high state is deviating in a way that reduces his material payoffs

relative to a truthful announcement. For beliefs to be fully consistent with the subgame-

perfect Nash equilibrium, the seller must believe that such a buyer will come back to his

senses and accept the counter-offer at the next stage. Such a strong belief in rationality may

be unwarranted if B’s lies are correlated with B’s choices at a later stage as would be the

case if (for instance) lies were generated by confusion.20

In order to maximize the incentive of sellers to make challenges across a large range of

potential beliefs, we chose to pass the fine F to the seller in the case that the counter-offer is

accepted. Given a belief ρ
L|H
s that a buyer will reject a counter-offer after a low announcement

in the high state, a seller’s expected value for challenging is 50(1−ρL|Hs )−25ρ
L|H
s . Comparing

this to the return of 10 that the seller could guarantee by not challenging, the seller has a

pecuniary incentive to challenge if:

50(1− ρL|Hs )− 25ρL|Hs > 10 (1)

which is satisfied when ρ
L|H
s < .533. Under risk neutrality, this implies that the seller has

an incentive to challenge even if she believes a buyer who lies will randomly accept or reject

counter-offers after a lie.

Finally, for the truth-telling condition to hold, it must be that a buyer, given his beliefs

about the actions of the seller, has an incentive to make a truthful announcement rather

than a lie. For the truth-telling condition to hold, both the buyer’s belief about the likeli-

hood of being challenged after a lie and the likelihood of being challenged after a truthful

announcement guide his decision. Given belief ρ
L|H
b that the buyer will be challenged after

a low announcement in the high state, a buyer who will accept the counter-offer receives

a pecuniary utility of lying of 60(1 − ρL|Hb ) + 20(ρ
L|H
b ). Likewise, given belief ρ

H|H
b that a

truthful announcement will be challenged in the high state, the pecuniary utility of a truthful

announcement is 35(1 − ρH|H
b ) − 25(ρ

H|H
b ). For the buyer to have a pecuniary incentive for

truthful announcement in the high state, it must be the case that:

35(1− ρH|H
b )− 25(ρ

H|H
b ) > 60(1− ρL|Hb ) + 20(ρ

L|H
b ) (2)

20See Bolton & Dewatripont (2005) for a general discussion of this issue in subgame-perfect implementation.
See Reny (1992) for a discussion of rationality in extensive-form games.
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or
2

3
ρ
L|H
b >

5

12
+ ρ

H|H
b . (3)

Note that if ρ
H|H
b = 0, this requirement would be satisfied for ρ

L|H
b > 5

8
.

Informed by the discussion above, we parameterized the experiment with an eye toward

making each of the intermediate conditions as slack as possible. In places where parameters

affected multiple constraints simultaneously (such as the fine size or counter-offer price), we

erred toward ensuring that the counter-offer condition was satisfied as this condition feeds

into the other two conditions. We also set the price in the absence of a challenge equal to half

of the buyer’s announcement in order to minimize the importance of fairness considerations

and make the subgame perfect equilibrium salient.

3.3.2 The Noise Treatments

As soon as one introduces noise in agents’ information about the state of nature (i.e about

the valuation of the good to be traded), the truth-telling equilibrium vanishes and pure and

mixed strategy equilibria arise in which either: (i) the buyer makes announcements which

are different to his signal; and/or (ii) the seller challenges announcements which are the same

as her signal. This section discusses these equilibria and shows that the introduction of noise

is likely to lead to:

(i) an increase in buyers lies,

(ii) a decrease in the probability that sellers challenge a lie by the buyer,

(iii) an increase in the probability of false challenges, i.e., that sellers challenge low an-

nouncement although they received a low signal themselves, and

(iv) a decrease in the probability that buyers reject a false challenge

We begin by discussing a pure strategy sequential equilibrium that exists in the model.

For any amount of noise, one can sustain the following “bad” (sequential) equilibrium with

the appropriate sequence of beliefs: B announces low (i.e a value of 20 ECU) in stage 1

regardless of his signal, S never challenges in stage 2, and (off-equilibrium) B always rejects

a counter-offer made in stage 3 if that stage were to be reached. Note that if some subjects

play this equilibrium we should observe an increase in buyers lies because they announce

a low value after a high signal. We should also observe a decrease in the probability that

sellers challenge these lies.

More specifically, this equilibrium can be sustained as a sequential equilibrium with the

buyer’s (off-equilibrium) belief that the true state is low (θ = θL) when he is challenged
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and the arbitrator’s counter-offer is made. To establish sequential rationality, we proceed

by backward induction. It stage 3, regardless of his signal, B believes with probability one

that the state is θL. Accepting S’s offer at a price of 25 (resp. 75) leads to a payoff of

20− 25− 25 = −30 (resp. 20− 25− 75 = −80) whereas rejecting it leads to a payoff of −25.

Thus, it is optimal for B to reject the offer. Moving back to stage 2, if S chooses “Challenge,”

S anticipates that her offer will be rejected by B in stage 3, and thus anticipates that, as

ε goes to zero, the payoff is approximately equal to −25 if her signal is high and to −25 if

the signal is low. On the contrary, if S chooses “No Challenge,” S guarantees a payoff of 10.

Thus, regardless of her signal, it is optimal for S not to challenge. Moving back to stage 1,

suppose first that B receives the high signal sHB . Then, as ε becomes small, B believes with

high probability that the true state is θH so that his expected payoff from announcing “low”

is close to 70− 10 = 60, greater than 35, which B obtains when announcing “high.” Thus,

it is optimal for B to announce “low.” A similar reasoning applies if B receives the low

signal sLB. Finally, consistency of beliefs follows by identical arguments to those in AFHKT

(footnote 13). Thus, the above is indeed a sequential equilibrium.

A second pure strategy (sequential) equilibrium can be sustained where the buyer always

announces high regardless of his signal. In this equilibrium, the buyer’s (off-equilibrium)

belief is that the true state is high with probability .1 in stage 2 when he receives the low

signal, announces a low valuation, and is challenged. The expected value for accepting the

challenge is .9×−5+ .1×45 = 0. Thus, he is indifferent between accepting and rejecting the

challenge. If in stage 1 the buyer believes that the seller will always challenge, the expected

value of this sequence of play is -25. The buyer can do strictly better by announcing a high

value with the low signal and thereby guarantee himself a return of .9×−15+ .1×35 = −10.

Note that if buyers play this equilibrium we should see an increase in the proportion of

buyers making high announcements with the low signal. Buyers taking this action should

believe that they will be challenged if they make a low announcement.

In addition to the “bad” pure strategy equilibria described above, the noise treatments

also generate a mixed strategy equilibrium which is described in more detail in the appendix

to this paper. In this equilibrium, the buyer announces his signal truthfully and the seller

who has a low signal and observes a low announcement mixes between challenging and not

challenging, which implies that we observe false challenges (i.e., challenging a low announce-

ment after observing a low signal) by the sellers. A buyer in this equilibrium who has followed

his signal and announced low in stage 1, and then has been challenged in stage 2, mixes in

stage 3 between accepting the challenge and rejecting it. Thus, if some subjects play this

equilibrium we should observe that the introduction of noise decreases the probability of

rejecting a false challenge.
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While different equilibria lead to slightly different point predictions regarding the impact

of noise, a property of these equilibria is that total lies by buyers and false challenges by

sellers increases when noise is introduced. In addition, the challenges of buyers’ lies and

the rejection of false challenges decreases. We summarize these prediction in the following

hypotheses.

Hypothesis 2 The likelihood that a buyer announces a low valuation with a high signal is

higher in the treatments with imperfect information. The likelihood that a seller challenges a

low announcement with a high signal is lower in the treatments with imperfect information.

Hypothesis 3 The likelihood that a seller with a low signal challenges a low announcement

is higher in the treatments with imperfect information. The likelihood that a buyer accepts

such a challenge although he received a low signal is also higher in the imperfect information

treatments.

4 Experimental Results

We describe the results of the experiment in this section. Section 4.1 uses the data from

the no-noise treatments to study Hypothesis 1. Section 4.2 uses data on beliefs and from a

number of additional experiments to interpret some of the results from Section 4.1. Section

4.3 uses data from both the no-noise and noise treatments to study Hypotheses 2 and 3.

We call a draw of a red ball the high signal, a draw of a blue ball the low signal,

an announcement of 70 a high announcement and an announcement of 20 a low an-

nouncement. As before, we define a lie as an announcement by B of a low value after

observing a high signal. We define an appropriate challenge as a challenge by S of a low

announcement with the high signal, an inappropriate challenge as a challenge by S of a

high announcement with the high signal, and a false challenge as a challenge by S of a low

announcement with the low signal.

4.1 The Mechanism Under Perfect Information

Under Hypothesis 1, our experimental design predicts that in the no-noise treatment, the

counter-offer condition, appropriate-challenge condition, and truth-telling condition will

hold. These conditions imply that B will always tell the truth, S will make only appropriate

challenges, and B will accept counter-offers if and only if they result from an appropriate

challenge. The data from the no-noise treatment provides support for only two of these

conditions.
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Result 1 The mechanism fails to induce truth-telling in a substantial number of cases. This

occurs despite the fact that sellers appropriately challenge buyers’ lies most of the time and

buyers accept these (appropriate) challenges and reject false challenges most of the time.

An interesting feature of Result 1 is that although the trading parties play according to

the theoretical predictions after a lie in the vast majority of the cases, the buyers nevertheless

lie in a substantial number of cases. Thus, contrary to the predictions of the theory, the

buyers are not deterred by the subgame perfect behavior of the trading parties after a lie.

Figure 2 displays the patterns of play we observed in the no-noise treatment of the ex-

periment. The left column examines play when an individual receives a low signal while the

right side examines play when an individual receives a high signal. Panel (a) summarizes

B’s announcement decision, Panel (b) summarizes S’s challenge decision, and Panel (c) sum-

marizes B’s decision to accept or reject counter-offers. The error bars show 95% confidence

intervals of each proportion with standard errors clustered at the individual level.

Panel (a) shows that after a low signal, 97.2% of individuals announce that the value

is low. By contrast, after a high signal, 30.8% deviate from the theoretical prediction of

Hypothesis 1 and lie. We discuss this deviation from truth-telling in greater detail below

after detailing play in the other stages of the game.

Panel (b) shows the proportion of announcements that are challenged after each combi-

nation of announcement and signal. As can be seen, a low announcement with a low signal is

challenged only 4.1% of the time while a high announcement with a high signal is challenged

only 4.8% of the time. This implies that inappropriate challenges rarely occur in the data.

By contrast, S’s challenge a low announcement with a high signal 93.4% of the time implying

that S’s almost always make appropriate challenges.

Finally, Panel (c) shows the proportion of counter-offers that are accepted for each com-

bination of announcement and signal. In the case of a high signal, B’s always reject counter-

offers after truthful announcements and almost always accept counter-offers after a lie. In

the case of a low signal, B’s always reject challenges after a low announcement.

While there are small deviations from the theoretical predictions of the model in the

challenge stage and counter-offer stage, these deviations tend to vanish over time. Panel

(a) of Figure 3 tracks the proportion of truthful announcements that are challenged in each

period. This data is overlayed with the predictions and 95% confidence intervals from a

simple linear random effects regression that regresses the challenge decision on the period.

As can be seen, challenges of truthful announcements are diminishing and the proportion of

truthful announcements that are challenged is not significantly different from the theoretical

prediction of 0% by period 10. Similarly, as seen on the right side of Panel (b), challenges

of lies are increasing over time and the proportion of lies is not significantly different from

20



0%

25%

50%

75%

100%

Proportion Announcing Low
(Lie)

(N=1740)

Proportion Announcing High
(N=1740)

0%

25%

50%

75%

100%

Proportion Announcing Low
(N=1740)

Proportion Announcing High
(Generous Offer)

(N=1740)

Announcement of  Buyers after Low Signal Announcement of  Buyers after High Signal

0%

25%

50%

75%

100%

Low Announcement
(Lie)

(N=242)

High Announcement
(Truthful)
(N=24)

0%

25%

50%

75%

100%

Low Announcement
(Truthful)
(N=42)

High Announcement
(Generous)

(N=2)

Proportion of  Counter-Offers Accepted
with Low Signal, Given Announcement, and a Seller Challenge

Proportion of  Counter-Offers Accepted
with High Signal, Given Announcement, and a Seller Challenge

0%

25%

50%

75%

100%

Low Announcement
(Lie)

(N=259)

High Announcement
(Truthful)
(N=592)

0%

25%

50%

75%

100%

Low Announcement
(Truthful)
(N=867)

High Announcement
(Generous)
(N=22)

Proportion of  Sellers Challenging 
Given Announcement with a Low Signal

Proportion of  Sellers Challenging 
Given Announcement with a High Signal

(c) Acceptances of Counter-Offers by Buyers

(b) Challenges of Sellers

(a) Announcements of Buyers

Figure 2: Pattern of Play in No-Noise Treatment

21



the theoretical prediction of 100% by period 10. Taken together, the data strongly supports

the appropriate-challenge condition.

Panel (c) of Figure 3 tracks the proportion of counter-offers that are accepted after a lie

over time using the same construction of the prediction line and 95% confidence intervals

as in the previous panels. While some B’s initially reject counter-offers, the proportion of

counter-offers being accepted increases over time and is not significantly different to the

theoretical prediction by period 10. Thus, there is strong evidence that the counter-offer

condition is met in the data.

Given that the appropriate-challenge condition and the counter-offer condition hold, B’s

have pecuniary incentives to announce truthfully by construction of the mechanism. Thus,

we might expect that lies — defined as low announcements with the high signal — converge

to zero over time. Figure 4 shows that this is not the case. As can be seen in Panel (a),

the proportion of B’s who are lying is indeed slightly decreasing over time. However, this

proportion is above 20% and significantly different from the theoretical prediction of 0% even

in period 10. In fact, looking at the last four periods the rate of lying is constant at roughly

25%.

Panel (b) shows a histogram of B’s lie rates in the no-noise treatment using all periods.

As can be seen, 38% of B’s never lie in the no-noise treatment while 11% of individuals lie in

every period. This bimodal distribution becomes more pronounced over time: in a restricted

sample of the last five periods of the treatment, 61% of B’s never lie while 17% lie in each

period. Thus, while many individuals stop lying over time a significant subset of individuals

do not stop lying. We explore why these individuals may find it in their interest to lie in the

next section.

4.2 Understanding Deviations from Truth-Telling in the No-Noise

Treatment

One potential reason for the failure of subgame-perfect implementation is that individuals

must place a large amount of faith in the rationality of other players. B’s who announce

truthfully must have faith that S’s will not make an inappropriate challenge. However, if a

B’s fear of such an inappropriate challenge is high enough, it may be in his best interest to

adopt a strategy that minimizes his potential losses.

In practice, it is relatively rare for S’s to make an inappropriate challenge. As was

seen in the last section, high announcements were challenged in only 4.8% of observations.

Nonetheless, the belief that some S’s challenge a truthful high announcement may induce

B’s to lie. The implemented mechanism implies that a challenged high announcement will
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Figure 4: Evolution and Distribution of Lies in Announcement Stage of No-Noise Treatment

lead to relatively large losses for B regardless of whether B accepts or rejects the challenge.

If B accepts the challenge, he will earn 70 - 75 - 25 = -30; if he rejects the challenge, he will

earn -25. These losses contrast sharply with the payoff of 20 that B can guarantee himself

by lying, being challenged by S, and accepting the counter-offer.

Looking at the beliefs data of B, it appears that the fear of inappropriate challenges is

indeed an important determinant of lies. Table 2 reports the results of regression analysis

where the dependent variable is 1 if B lies after the high signal and 0 if B makes a truthful

announcement. This variable is regressed on the belief that a lie will be challenged and the

belief that a truthful announcement will be challenged. To allow for potential non-linearities

in the beliefs data we treat B’s beliefs as categorical data and split the 4-point Likert scale

into a series of dummy variables. We use the category “Never” as the omitted dummy

category. Column (1) reports the results of a simple linear probability model with errors

clustered at the individual level. Column (2) reports the results of a fixed effects regression

with both time and individual level fixed effects.

As can be seen in column (1), B’s belief about the likelihood that he will be challenged

after a truthful announcement is a good predictor of his likelihood of making a lie. B’s are

39.7 (59) percentage points more likely to lie if they believe that a truthful announcement

is “Likely” (“Always”) to be challenged relative to an individual who believes a truthful

announcement will “Never” be challenged. The probability of making a lie is increasing as

an individual’s beliefs becomes more pessimistic suggesting a monotonic relationship between

beliefs and lies. This conclusion also holds if we control for individual and time fixes effects
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(see column 2).

Table 2: Probit Regression of Lies by Buyers

Buyers Belief that  Seller will Challenge a High 

Announcement with High Signal
(1) (2)

 "Unlikely" 0.065 0.025

(0.051) (0.044)

"Likely" 0.397 *** 0.186 ***

(0.070) (0.055)

"Always" 0.590 *** 0.234 ***

(0.074) (0.063)

Buyers Belief that Seller Will Challenge a Low 

Announcement with High Signal

"Unlikely" ‐0.027 ‐0.170 ***

(0.089) (0.064)

"Likely" ‐0.040 ‐0.024

(0.071) (0.064)

"Always" ‐0.127 * ‐0.113 *

(0.066) (0.059)

Constant 0.249 *** 0.325 ***

(0.060) (0.049)

Individual Fixed Effects No Yes

Time Fixed Effects No Yes

R 2 0.203 0.156

Observations 851 851

Dependent varaible is 1 if the buyer lies by announcing low with a high signal and 0 otherwise.  The

omitted category is Seller "Never" Challenges.  Regression (1) is a linear probability model with errors

clustered by individual.  Regression (2) is a fixed effect regression with both time and individual fixed

 effects.  *,**,*** denote siginificance at the 10%, 5% and 1% respectively.

4.2.1 Precise quantification of beliefs to better understand buyer lies

To explore further the way in which beliefs may be guiding lies in the no-noise treatment we

ran an additional experiment in which we elicited probabilistic beliefs of being challenged

using an incentive-compatible elicitation mechanism developed in Savage (1971).21 In this

21Akin to a standard BDM mechanism (Becker, DeGroot & Marschak, 1964), the belief elicitation mechanism
gives B a dominant strategy to announce his true beliefs by using B’s reported belief to assign him to
one of two lotteries — one that is contingent on S’s challenge decision and one that is independent of this
decision — across a set of binary lottery pairs. We randomly select one of these lottery pairs to be played

25



follow-up treatment, we restricted attention to only the no-noise treatment and ran additional

periods to study convergence. We ran two sessions with 30 periods and two sessions with 40

periods with random matching across periods. A total of 90 individuals participated in the

experiment. The details of this elicitation mechanism can be found in the appendix.22

Result 2 The majority of B’s have pessimistic beliefs about being challenged after a truthful

announcement of 70. The majority of B’s have optimistic beliefs about being challenged after

a lie of 20.

Figure 5 compares the empirical challenge probability of S’s to B’s belief of being chal-

lenged. Both the means and 95 percent confidence intervals shown are calculated from

individual averages. As can be seen on the right hand side of the figure, buyers are strongly

pessimistic about the likelihood of being challenged after a truthful high announcement.

While the empirical probability of being challenged is 9.1%, the average belief is 30.4%.

This pessimism is prevalent across the population, with 80.1% of individuals having pes-

simistic beliefs about being challenged relative to the empirical distribution. The difference

of beliefs and the empirical distribution is significant in both a simple t-test (t = −5.379,

p-value < .01) and a Mann-Whitney-Wilcoxen test (z = −5.125, p-value < .01).23

Vice versa, buyers are optimistic about the likelihood of being challenged after a lie with a

high signal. While S’s challenge 85.0% of the time after a lie (a 15.0% deviation from the Nash

Equilibrium), the average belief is 58.7% (a 41.3% deviation from the Nash Equilibrium).

This optimism is again prevalent across the population, with 76.7% of individuals having

optimistic beliefs about being challenged relative to the empirical distribution. The difference

between beliefs and the empirical distribution is again significant (t-test: t = 4.703, p-value

< .01; Mann-Whitney-Wilcoxen test: z = 5.56, p-value < .01).

Given the optimistic beliefs about outcomes after a lie and pessimistic beliefs about

outcomes after truthful announcing, a natural hypothesis is that B’s may believe that they

are monetarily better off lying than telling the truth. To test this hypothesis, we use B’s

reported beliefs to compute the expected value of lying and telling the truth after a high

so that beliefs impact the assignment of B to a lottery but not the explicit characteristics of this lottery.
We use the strategy method in this follow up experiment for S’s challenge decisions as we want to elicit
incentive-compatible beliefs from B about the likelihood of being challenged after a truthful announcement
and after a lie. To do so we need to know S’s challenge decision for both announcements. See the appendix
for full details.

22As we were concerned with potential hedging, the follow-up experiment paid only for one period of the
experiment and only for the announcement game or the belief elicitation game. There was a 50% chance
that the announcement game would be paid and a 50% chance that one announcement-signal combination
of the belief elicitation game would be paid.

23Observations are an individual buyer’s average belief and an individual S’s average challenge rate over all
periods.
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Figure 5: Buyer Beliefs About the Probability of Challenge Relative to Empirical Challenge
Probabilities of Sellers

signal if B’s respond optimally to a subsequent challenge. We next take the difference

between these expected values to estimate the expected monetary gain from truth-telling.

Result 3 The majority of B’s believe they have a higher expected value from lying compared

to truth-telling after a high signal. B’s with more optimistic beliefs about being challenged

after a lie and more pessimistic beliefs about being challenged after a truthful announcement

are more likely to lie.

Figure 6 show the empirical cumulative distribution functions of the expected gain from

truth-telling split between observations where an individuals is lying (N = 543) and observa-

tions where an individual is telling the truth (N = 491).24 As can be seen, the empirical CDF

of the expected monetary gain from truth-telling for individuals who tell the truth first order

stochastically dominates the CDF for individuals who lie, suggesting that heterogeneity in

beliefs is an important factor in the decision to announce truthfully.25 For both distributions,

however, the proportion of individuals where the expected monetary gain from truth-telling

24We restrict attention to observations where (i) the buyer believed that announcing low with a high sig-
nal had a higher chance of being challenged than announcing high with a low signal and (ii) the buyer
announced low with a low signal. There is a very small fraction of individuals in our sample that do not
satisfy these plausibility conditions. If we include them, all the qualitative results remain the same and
significant.

25These distributions are significantly different in a bootstrapped version of the Mann-Whitney-Wilcoxen
test where we randomly sampled a single period from each buyer in each iteration. p-value < .01. See
Datta & Satten (2005) for a discussion.
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is negative is large, with 79.2% (72.7%) of observations where the buyer lies (tells the truth)

falling into this category.
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Figure 6: Cumulative Distribution Function of Expected Gain from Telling the Truth Rela-
tive to Lying Split between Observations where the Buyer is Lying (Dark Grey) and Telling
the Truth (Light Grey).

One potential reason for the high level of pessimism seen in B’s beliefs about being

inappropriately challenged is that at least a subset of individuals are choosing announcement

strategies that limit their ability to learn over time. 28.9% of individuals lie in each of the

last 10 periods of the session and in at least 90% of periods overall. These individuals account

for 60.7% of overall lies and 71.7% of lies that occur in the last 10 periods. As a B who

lies in each period gets no new information about the likelihood of being challenged after a

truthful announcement, the data suggests that alternative self-confirming equilibria may be

being selected in the game instead of the predicted subgame perfect equilibrium as a result

of B’s actions and initial beliefs.26

Overall, our data suggests something of a paradox in the functioning of the Moore-Repullo

mechanism. While the mechanism was designed to induce truth-telling using pecuniary

incentives, most individuals who are truthful are distrustful of their partner and believe

that such actions will lead to monetary loss. Truthful announcements are therefore being

supported not by pecuniary incentives, but instead by non-pecuniary ones.

26See Fudenberg, Kreps & Levine (1988), Fudenberg and Levine (1993) and Kalai and Lehrer (1993) for
a discussion of self-confirming equilibrium. Notice that in our context, the consistent self-confirming
equilibrium where B’s always lie is a Nash Equilibrium, just not the subgame-perfect equilibrium that we
are trying to implement.
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4.3 The Mechanism Under Almost-Perfect Information

In the no-noise treatment we observed a non-negligible lack of truth-telling although the

mechanism functioned well at the later stages and rarely ended with the buyer rejecting the

counter-offer. The theoretical discussion in Section 2 predicts that as we introduce imperfect

information about the value of the good, additional breakdowns in the mechanism will occur.

As described in Hypothesis 2, B’s with high signals are predicted to lie with greater frequency

and S’s are predicted to reject the buyers’ lies with lower frequency. Further, as described

in Hypothesis 3, S’s are predicted to challenge low announcements although they received

low signals (what we call a false challenge) and B’s are predicted to accept some of these

false challenges. We find support for most of these theoretical predictions:

Result 4 The introduction of noise leads to a significant increase in B’s lies and a small but

insignificant decrease in challenges of low announcements by S’s with a high signal. In addi-

tion, the introduction of noise also increases B’s belief that even truthful announcements of a

high signal will be challenged. Finally, noise also leads to an increase in both false challenges

by S’s and B’s acceptance of challenges with a low signal after a low announcement.

An interesting aspect of Result 4 is that it confirms theoretically predicted behavioral

tendencies that undermine the mechanism but, in addition, the evidence also shows that

noise tends to exacerbate problems with the mechanism that we have already observed in

the no-noise treatment: B’s have more pessimistic beliefs that truthful announcements of a

high signal will be challenged in the noise treatment compared to the no-noise treatments.

This finding is in contrast to the theoretical prediction that truthful announcements of high

signals should never be challenged in any of these treatments.

The left hand side of Figure 7 shows the proportion of B’s with a high signal who lie

across the three treatments. The error bars show 95% confidence intervals of each proportion

with standard errors clustered at the individual level. As can be seen, B’s lie in 45.9% of

cases in the 5% noise treatment and in 52.2% of cases in the 10% noise treatment. Both

of these lie rates are significantly higher than those in the no-noise treatment, where lies

occur in 30.8% of cases (p-value < .01 in both treatment comparisons). The right hand side

of Figure 7 shows that there is a small but insignificant decrease in the challenges of low

announcements with the high signal relative to the no-noise treatment, where 93.4% of cases

were challenged; in the 5% and 10% noise treatments the proportion of cases challenged were

85.2% and 88.6% respectively (5% noise treatment: p-value = .147; 10% noise treatments:

p-value = .351). All three challenge rates are high, however, indicating that it would not be

in B’s interest to lie if their beliefs were consistent with the empirical challenge distributions
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Figure 7: Buyer Lies and Seller’s Probability of Challenging with High Signal after a Low
Announcement

Our theoretical model predicts that the increase in lies in the noise treatment is driven

by B’s belief that S is less likely to challenge a lie. The left panel of Figure 8, which reports

B’s belief that a lie will be challenged given a high signal, supports the existence of this

channel. In the no-noise treatment 46.1% of individuals believe that a lie will always be

challenged, while in the noise treatment only 26.4% of individuals hold this belief. Thus,

in the noise treatment the buyers are much more optimistic that they can get away with

a lie. This difference in beliefs across the noise treatments and the no-noise treatment is

significant based on an ordered probit regression that regresses B’s beliefs on the noise

treatment dummy (z = −2.45, p-value = .014, standard errors clustered by individual).

The right panel of Figure 8 shows that the belief pattern observed in the no-noise treat-

ment, namely that B’s believe that even truthful announcements of a high value will be

challenged, is exacerbated by the existence of noise. While 48.2% of individuals believe that

a truthful announcement will never be challenged in the no-noise treatment, only 34.9%

of subjects in the noise treatments have this belief. This difference is significant in an or-

dered probit regression of buyers’ beliefs on the noise treatment dummy (z = −2.21, p-value

= .027, standard errors clustered by individual).

Taken together, the belief pattern observed in Figure 8 suggests that there are two reasons

why noise increases buyers’ lying behavior. First, noise induces B’s to believe that a lie is less

likely to be challenged and, second, it strengthens the belief that truthful announcements

will be challenged. Both reasons reduce the perceived pecuniary benefits from telling the

truth relative to telling a lie. We study the causal impact of the second channel on buyers’

announcement behavior in both the noise and the no-noise treatment in the next section.
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Figure 8: Buyer’s Beliefs after High Signal

Our results for the noise treatments also support the predictions of Hypothesis 3. Figure

9 shows the proportion of S’s who make a false challenge and the proportion of B’s who

accept a counter-offer after they received a low signal and announced a low value in each of

the three treatments. The error bars show 95% confidence intervals of each proportion with

standard errors clustered at the individual level. As can be seen on the left hand side, while

there are very few false challenges in the no-noise treatment, the proportion of false challenges

increases to 20.7% in the 5% noise treatment and 18.8% in the 10% noise treatment. Both

noise treatments have significantly more false challenges than in their respective no-noise

treatments based on a linear regression with errors clustered at the individual level (p-value

< .01 in both cases).

As can be seen on the right hand side, B’s are also much more likely to accept a counter-

offer with a low signal and a low announcement in the noise treatments than in the no-noise

treatment. While B’s accepted a challenge after a low announcement and a low signal in only

2.4% of observations in the no-noise treatment, they accepted 27.7% of such challenges in

the 5% noise treatment and 30.2% of such challenges in the 10% noise treatment. Both noise

treatments have significantly more acceptances of counter-offers after a low announcement

and a low signal than their respective no-noise treatment based on a linear regression with

errors clustered at the individual level (p-value < .01 in both cases).

As foreshadowed by the increase in lies and the increase in false challenges that were

subsequently rejected, the introduction of noise leads to a marked decrease in earnings.

However, this decrease in earnings is asymmetric. As shown in Table 3, B’s in the two

noise treatments have significant reductions in their earnings relative to that of the no-noise

31



0%

25%

50%

75%

100%

Perfect Information
(N = 867)

5% Noise
(N = 391)

10% Noise
(N = 356)

0%

25%

50%

75%

100%

Perfect Information
(N = 42)

5% Noise
(N = 112)

10% Noise
(N = 129)

False Challenges of  Seller 
(Challenge after Seller with Low Signal

Receives Low Announcement)

Acceptances of  Counter-Offer by Buyer 
with Low Signal after Low Announcement
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treatment. S’s, by contrast, have a very small decrease in earnings. This difference in the

outcomes of B’s and S’s is due to the fact that B’s who lie are frequently challenged and

accept the counter-offer in over 90% of these cases.

Buyer’s Average Earnings Seller Average Earnings
No-Noise Treatment 18.9 22.5
5% Noise Treatment 13.8 21
10% Noise Treatment 12.1 21.8

Table 3: Average earnings of the buyer and seller in the last 5 periods of each session.
Expected earnings under the truth-telling equilibrium are 22.5 respectively.

Table 3 also provides an indication about how much surplus is destroyed by the imperfect

functioning of the mechanism. As the good is either worth 20 or 70 with equal probability,

the expected surplus is 45 if the mechanism induces truth-telling and truth-telling is not

challenged. In the no-noise treatment subjects only reach an average surplus of 41.4 which

amounts to an efficiency loss of 8%.27 In the noise treatments the efficiency loss is much

higher and amounts to 22.67% in the 5% noise treatment and 24.67% in the 10% noise

treatment. Note that these efficiency losses mainly occur because of the imposition of fines

to the buyers and the sellers after disagreements, i.e. they represent the direct cost of

an imperfectly functioning mechanism. In our setup there are no indirect cost that would

27The relatively low efficiency costs under perfect information are likely to be due to the fact that we
parametrized the experiment such that negative reciprocity is unlikely to play a role. In Fehr, Powell &
Wilkening (2014) negative reciprocity induces buyers to reject counteroffers in the majority of the cases
which causes the mechanism to be highly inefficient even under perfect information.
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arise if the trading parties could invest and an imperfectly functioning mechanism induced

inefficiently low investments. Further, even in the absence of indirect costs, it is unclear why

trading parties would implement a mechanism involving direct costs if it frequently fails to

help them solve their contracting problem by inducing truth-telling.

4.4 Robustness checks

In this section we perform two robustness checks. We have seen in the previous sections

that the buyers’ frequently believed that their truthful announcements would be challenged

with some positive probability, suggesting that these beliefs may have induced the buyers

to lie more often. However, the previous evidence on this is correlational, i.e., we did not

show that the belief that truthful announcements will be challenged causes the buyers’ lying

behavior. In section 4.4.1 we tackle this issue of causality. In section 4.4.2 we ask the

question whether a further reduction of noise to only 1% imperfect information still causes

substantial malfunctioning of the mechanism. If that were the case, even very small amounts

of imperfect information would suffice to cause the mechanism to perform poorly.

4.4.1 Does the fear of inappropriate challenges induce buyers’ to lie?

If the belief that truthful announcements will be challenged is the main driver of lies in the

no-noise treatment and also drives a subset of lies in the noise treatment, then eliminating the

potential of such challenges should increase the likelihood of truth-telling in both treatments.

We test this hypothesis by running four additional sessions where we eliminated the ability

for S to challenge a B who makes a high announcement. Two of the sessions started in

the 10% noise treatment and ended in the no-noise treatment while in the other session,

individuals started in the no-noise treatment and ended in the 10% noise treatment. This

“no-inappropriate challenge” mechanism is expected to increase the expected gain from

truth-telling in both the noise and the no-noise treatments. We expect, therefore, that a

large proportion of lies will decrease in this treatment relative to the baseline but that a

significant portion of the gap between the no-noise and noise treatments will remain. A

total of 82 individuals participated in these additional experiments.

Result 5 Eliminating the ability of S to challenge high announcements substantially reduces

B’s lies in both the no-noise treatment and the noise treatment. The introduction of noise

leads to an increase in B’s lies in both the baseline mechanism and the new mechanism.

Figure 10 shows the proportion of lies in the original sessions with 10% noise and the

new sessions using the no-inappropriate challenge mechanism. The error bars show 95%
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confidence intervals with standard errors clustered at the individual level. As can be seen, lies

in both the noise treatment and the no-noise treatment decrease with the no-inappropriate

challenge mechanism as we would expect if pessimistic beliefs about being challenged after a

truthful announcement is a major contributor to lying.28 This decrease in lies is particularly

pronounced when comparing the second treatment in each session, where buyer lies fell to

only 7.1% in the no-noise treatment and 27.0% in the 10% noise treatment.
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Figure 10: Frequency of Buyer Lies with original mechanism and alternative simple mecha-
nism where high announcements cannot be challenged.

It is interesting to note that the type of sequential mechanism we tested in the above ad-

ditional sessions is not capable of implementing all social choice functions. Moore (1992) calls

mechanisms like this “simple sequential mechanisms” and provides conditions under which

they can implement a desired social choice function. Roughly speaking, this requires that

only one party has state dependent preferences, or that preferences are perfectly correlated.29

4.4.2 How small is small?

While we chose the levels of 5% and 10% noise in order to have enough power to differentiate

between treatments, AFHKT suggests that very small levels of noise can lead to a break-

down of the mechanism. To study whether deviations from perfect information impact the

28The difference in lie frequency between the original mechanism and the no false challenge mechanism is
significant at the 10% level based on a Mann-Whitney test where the lie frequency of each individual is
the variable of interest: z = 1.897, p-value = .0578. Similar results hold for a probit regression with data
clustered at the individual level (p = .015).

29See Nöldeke & Schmidt (1995) and Hoppe & Schmitz (2011) for work on simple “option contracts” that
have promising properties in a one-sided hold-up environment even when renegotiation is possible. We
deliberately explore the performance of a three-stage mechanism in our simple environment with one-sided
hold-up, because if such mechanisms fail to work well in a simple environment, they are even more likely
to fail in the more complex environments that necessitate their use.
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distribution of lies even for very small levels of noise, we ran four additional sessions where

we started with 10 periods of a 1% noise treatment and ended with a no-noise treatment.

A total of 82 individuals participated in these additional experiments. We compare this

treatment to the sessions where we started with 10 periods of the 5% noise treatment and

ended with a no-noise treatment.

Result 6 Even a very small perturbation in common knowledge leads to an increase in lies

relative to the no-noise treatment.

Figure 11 shows the proportion of buyer lies and seller false challenges in the 5% noise

treatment and 1% noise treatment with 95% confidence intervals clustered at the individual

level. The dotted lines in each figure show the proportion of buyer lies and seller false

challenges in the subsequent no-noise treatment.

As can be seen in the left hand panel, both the 5% noise sessions and 1% noise have

significantly more lies in the noise treatment than in their corresponding no-noise treatment.

The proportion of lies in the 5% and the 1% noise treatments is surprisingly similar; there is

no significant difference in the proportion of buyer in these two treatments based on a linear

regression where buyer lies are regressed on the treatment dummy for the 5% noise sessions

(t = .76, p-value = .449).

As can be seen in the right hand panel, sellers make false challenges 10.3% of the time in

the 1% noise treatment relative to 20.8% of the time in the 5% noise treatment — a difference

that is just significant (t = 2.00, p-value = .046) based on a linear regression where sellers’

false challenges are regressed on a dummy for the 5% noise treatment.
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Figure 11: Difference in Lies between Noise and No-Noise Treatments

Taken together, while there is a small reduction in seller false challenges when noise

rates decline, the large number of buyer lies in the 1% noise treatment illustrates that even
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small departures from common knowledge have a significant impact on the willingness of

individuals to report truthfully. Our results thus illustrate the non-robustness of the Moore-

Repullo mechanism to small amounts of noise.

5 Conclusion

In this paper we conducted a laboratory experiment to test the extent to which Moore

and Repullo’s subgame perfect implementation mechanism induces truth-telling in practice,

both in a setting with perfect information and in a setting where buyers and sellers do not

share common knowledge about the good’s value. Our first finding is that even in the no-

noise treatment, where no lies are predicted in equilibrium, buyers lie by announcing a low

value with a high signal roughly 25% of the time. Our data suggests that in all treatments

a substantial proportion of these lies are driven by pessimism about being inappropriately

challenged after a high announcement. This pessimism is strong enough that a large majority

of individuals who are telling the truth believe they would be better off lying, which suggests

that the mechanism is being supported in part by non-pecuniary incentives for telling the

truth.

Our second main finding is that the introduction of noise leads to an increase in buyers’

lies and sellers’ false challenges. The introduction of noise increases the proportion of buyers

who announce a low value with a high signal by 15 to 25 percentage points; these lies are

persistent and do not diminish with experience. Similarly, the proportion of sellers who

falsely challenge in the noise treatments increases by 15 percentage points relative to the

no-noise treatment. Lack of perfect information is behaviorally important even when the

level of noise is reduced to a very small 1% level.

If we adjust the Moore-Repullo mechanism by ruling out false challenges, buyers’ lying

rate in the no-noise treatment decreases by 15.6 percentage points. Likewise, the institutional

removal of such false challenges also decreases the lying rate in the noise treatments signifi-

cantly. However, in the noise treatments this deviation from the Moore-Repullo mechanism

does not solve the lying problem. Even if the fear of false challenges of high announcements

is ruled out, a lying rate of 27% prevails in the 10% noise treatment, which indicates the

pervasive influence of uncertainty regarding the good’s value on lying behavior.

One important potential objection to our findings is that when parties themselves design a

mechanism one should be less concerned about the fears of irrationality that play a prominent

role in our experiment. As Eric Maskin suggested to us, when the parties are designing a

contract they may engage in all sorts of discussion about how the game might be played.

This is an important point to which we have two responses. First, pre-play communication
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can naturally be modelled as a cheap-talk stage prior to the mechanisms studied in this

paper. To understand the benefits or otherwise of such communication one should, and

can, model this additional stage. Second, pre-play communication does not obviate the fact

that in our setting, players observe conditionally independent signals, and thus higher-order

beliefs are relevant to play in the game induced by the mechanism. The fact that the players

in the game designed the game itself does not alter the fact that common knowledge of the

underlying state — something that is not a design variable — is crucial to the success of

the mechanism. That said, understanding how pre-play communication intersects with the

issues studied in this paper is an enticing avenue for both theoretical and experimental work.

Our findings suggest several important avenues for future research, in addition to that

mentioned in the preceeding paragraph. First, the fact that individuals are willing to sacrifice

their material well-being to tell the truth suggests that preferences for honesty should help

implementation.30 Second, in view of the empirical relevance of common knowledge, it also

is important to design mechanisms that are robust to at least small amounts of imperfect

information about the good’s value. Third, it would be interesting to know (theoretically and

empirically) how the introduction of asset ownership affects the functioning of extensive form

mechanisms. In particular, asset ownership could be naturally modeled as an outside option

for the asset holder, which in turn would affect either party’s incentive to report the good’s

value truthfully or to challenge the other party. It would be interesting to see whether asset

ownership helps achieve better equilibrium outcomes that are also robust to introducing

small amounts of private information. Finally, similar experiments could be used to test

the robustness of other implementation mechanisms, starting with virtual implementation.

Overall, our analysis and findings in this paper raise a number of exciting issues to be tackled

by future research.
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Nöldeke, G. & Schmidt, K. (1995), ‘Option contracts and renegotiation: A solution to the

hold-up problem’, RAND Journal of Economics 26(2), 163–179.
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Appendix A: Point Predictions of the Mixed Strategy

Equilibrium

As in the main text, let the true valuation of the good be θ ∈ {θH = 70, θL = 20}, with

both states being equally likely. Let each player receive one of two possible signals, sH and

sL, where sH is a high signal correlated with θ being equal to 70, and where sL is a low

signal correlated with θ being equal to 20. Using the notation sHB (resp. sLB) to indicate that

B received the high signal sH (resp. the low signal sL), the following table shows the joint

probability distribution νε over θ, the buyer’s signal sB, and the seller’s signal sS :

For a given noise level ε, an action profile of a buyer consists of a probability of announcing

low after observing each signal and a probability of rejecting the challenge given a signal
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νε sHB , s
H
S sHB , s

L
S sLB, s

H
S sLB, s

L
S

θ = 70 1
2
(1− ε)2 1

2
ε(1− ε) 1

2
ε(1− ε) 1

2
ε2

θ = 20 1
2
ε2 1

2
ε(1− ε) 1

2
ε(1− ε) 1

2
(1− ε)2

and an announcement. Denote LH as the probability of making a low announcement after

observing a high signal and LL as the probability of making a low announcement after a low

signal. Further, let RaB |sB be the probability that the buyer rejects a challenge given his

own announcement aB ∈ {L,H}, his own signal sB = {L,H} and a challenge by the seller.

An action profile of the seller consists of a probability of challenging an announcement

of the buyer for each potential announcement and signal. Let CaB |sS be the probability that

the seller challenges given signal sS ∈ {L,H} and an observed announcement of the buyer

aB = {L,H}.
While there are 10 potential mixing probabilities to specify in an equilibrium, we can

use some of the structure of the mechanism to rule out mixing on some action sets. Let

P20 = 10 and P70 = 35 be the trade prices without arbitration and let PA = 25 and PB = 75

be the counter-offer prices after announcing 20 and 70. A buyer who announces high and is

challenged faces a price of PB = 75 which is above his actual value of the good regardless

of the state. Thus the buyer will always reject arbitration if he has announced high and

RH|L = RH|H = 1. This also implies that the seller will never call the arbitrator if the

buyer announces high, and thus CH|L = CH|H = 0. Further, a buyer who has a high signal

and announces low will update his belief about the quality of the good based on the act of

being challenged by the seller. However, for any equilibrium where the seller challenges with

positive probability, the most pessimistic posterior the buyer can have after being challenged

is that the state is low with probability 1/2 (The posterior in the unlikely case where the

seller challenges only with the low signal). As the counter-offer price is 25 and the buyer’s

expected value for the good with this belief is 45, the buyer will always accept the counter-

offer, and thus RL|H = 0. Finally, the best a buyer can do with a low signal if he always

announces high is to receive 35 with probability ε and −15 with probability 1 − ε. If in

equilibrium the buyer earns more than 35ε − 15(1 − ε) for a low announcement, it will be

the case that LL = 1.31

Taking as given the actions of buyers and sellers in the six states specified above, the

mixed strategy equilibrium is based on (i) the proportion of times a buyer announces low

given a high signal, LH , (ii) the challenge probabilities given a low announcement, CL|L and

CL|H , and (iii) the probability that the buyer rejects a challenge given a low signal, a low

31We argue in the main text that there is a pure strategy equilibrium where LL = 0 and challenges never
occur.
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announcement, and a challenge, RL|L. These four mixing probabilities form the basis of all

PBE where all stages of the subgame are reached and beliefs of both parties are consistent

with the action profiles of the other party.

Given that beliefs of all parties must be consistent with their actions, a necessary con-

dition for the mixed strategy equilibrium is that each individual is indifferent between each

of their actions given the mixing probabilities of the other parties. These indifference con-

ditions generate four linear constraints on the four mixing probabilities of the buyer and

seller and generate a four-by-four linear system which derives unique point predictions. The

construction of each linear constraint is as follows:

(1) Buyer’s indifference between announcing low and high with a high signal: For the

buyer to be indifferent between announcing high and low, the expected value of these an-

nouncements must be equal when aggregated over all potential states of nature.

Panel (a) of Figure 12 shows the four potential states of nature where the buyer can have

a high signal after nature draws the true value of the container and (conditional) signals

for the buyer and seller. For each state, the expected value of each potential announcement

is shown as a function of the challenge probabilities of the seller. For example, as seen on

the far left of the figure, with probability 1
2
ε(1 − ε), the buyer receives the high signal, the

seller receives the low signal, and the true state of nature is low. If in this state the buyer

announces low, he will not be challenged 1−CL|L percent of the time and be challenged CL|L

percent of the time. As he has the high signal, he will always accept the counter-offer and

thus these two outcomes yield values of 20− P20 = 10 and 20− F − PA = −30 respectively.

If, on the other hand, the buyer announces high, he will never be challenged (since CH|L = 0)

and receive 20− P70 = −15 for sure.

Taking into account the probability of each one of these potential states and the state’s

outcome, a buyer is indifferent between a high and low announcement if:

ψ(ε)CL|H + δ(ε)CL|L =
P70 − P20

F + PA − P20

, (4)

Where ψ(ε) = ε2 + (1− ε)2 is the probability that the signals are the same for a given ε and

δ(ε) = 2ε(1− ε) is the probability that they are different.

(2) Buyer’s indifference between accepting and rejecting a challenge with a low signal and

low announcement: In an equilibrium in which the seller is mixing between challenging and

not challenging a low announcement with a low signal, it must be the case that the buyer

is also indifferent between rejecting and accepting such a challenge. Panel (b) of Figure 12

shows the probability of reaching this acceptance and rejection as a function of the signals

and the challenge probabilities of the seller and under the assumption that LL = 1. Taking
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into account the probability of each of these potential states and the state’s outcome, a buyer

is indifferent between rejecting and accepting the challenge if:

CL|L − τ(ε)CL|H = 0, (5)

where

τ(ε) = −ε(1− ε)[70− PA] + (1− ε)ε[20− PA]

ε2[70− PA] + (1− ε)2[20− PA]
(6)

is the ratio of expected outcomes when the two parties have opposite signals relative to

when they have the same signal. Note that τ(ε) is positive for all ε we consider since the

denominator is negative.

(3) Seller’s indifference between challenging and not challenging after a low signal: As

with the buyer, the seller’s indifference for challenging after a low and high signal are based

on the two mixing probabilities of the buyer. Panel (a) of Figure 13 shows the expected value

for challenging and not challenging for states of the world where the seller has a high signal

and observes a low announcement. The likelihood of reaching each of these potential states

is based on the likelihoods that the buyer will make a low announcement with each signal

(LH and LL = 1) while the expected value of challenging is based on the likelihood that the

buyer will accept this challenge (RL|L and RL|H = 1). A seller is indifferent to challenging

and not challenging with the high signal if:

− LH +
δ(ε)

ψ(ε)

PA + 2F

PA + F − P20

RL|L =
δ(ε)

ψ(ε)
(7)

where, as before ψ(ε) = ε2 + (1 − ε)2 is the probability that the signals are the same for a

given ε and δ(ε) = 2ε(1− ε).
(4) Seller’s indifference between challenging and not challenging after a high signal: Panel

(b) of figure 13 shows the expected value for challenging and not challenging for states of the

world where the seller has a low signal and observes a high announcement. As before, the

seller’s likelihood of reaching each potential state depends on LL while the expected value

within these nodes depends on RL|L. A seller is indifferent to lying and not lying if:

− LH +
ψ(ε)

δ(ε)

PA + 2F

PA + F − P20

RL|L =
ψ(ε)

δ(ε)
. (8)

Note that this is identical to the seller’s indifference condition for challenging with the low

signal except that the ratio of states is inverted.

Given the four indifference conditions, the point predictions of the model come from

solving the four-by-four system of simultaneous equations. The solution to this system is as

44



Figure 12: States Contributing to the Decision of the Buyer to Lie and Reject a Potentially
False Challenge
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(a) The four potential states that contribute to the buyer’s decision to lie by announcing low with a high 
signal.   The outcomes of these states are shown for a low and a high announcement.  

(b) The four potential states which contribute to a buyer’s decision to accept or reject a potentially 
false challenge.  The outcomes of these states are shown for a rejected and an accepted 
counteroffer.

45



Figure 13: States Contributing to the Decision of the Seller to Challenge with a High and
Low Signal
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(a) The four states which contribute to a seller’s decision to challenge a low announcement when 
observing a high signal. The outcomes of these states are shown in the case of a challenge and no 
challenge

(b) The four states which contribute to a seller’s decision to challenge a low announcement when 
observing a low signal. The outcomes of these states are shown in the case of a challenge and no 
challenge
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follows:

Result 7 With selfish agents, the mixed strategy equilibrium with ε = .05 is LH = 0, RL|L =

.53333, CL|H = .66, and CL|L = .285. The mixed strategy equilibrium with ε = .1 is LH = 0,

RL|L = .53333, CL|H = .625, and CL|L = .625.

The surprising restriction that LH = 0 is due to the fact that the seller must be indifferent

to mixing in the case of a high and low signal.

Appendix B: Mechanism used to elicit incentive com-

patible beliefs

In the follow-up treatment with incentive compatible beliefs, we use the following belief

elicitation game based on a mechanism developed by Savage (1971). For each potential

combination of announcement and signal, buyers are asked to submit a belief, b, between 0

and 100 corresponding to the percentage chance that the seller will call in the arbitrator.

A random number c ∈ [0, 100] is then drawn by the computer which corresponds to the

“computer’s percentage chance of calling in the arbitrator.”

At the end of the experiment, one of the periods is randomly selected for payment.

Using an eight-sided dice, the main experiment is paid 50% of the time while each of the

four potential beliefs are paid 12.5% of the time. If a belief elicitation game is selected, the

belief elicitation game is resolved as follows. If b ≤ c the buyer is matched with the seller

and his outcome is based on the arbitration decision of the seller. If the seller does not

call the arbitrator, the buyer receives $20. If, however, the seller calls the arbitrator, the

buyer receives $0. If b > c, the buyer is matched to the computer. The computer calls the

arbitrator with probability c/100 and thus the buyer receives $20 with probability 1−(c/100)

and $0 otherwise.

The mechanism is similar to the Becker, DeGroot, Marshack (1964) mechanism and is

shown by Karni (2009) to induce truthful reporting of beliefs for rational agents with any

von Neumann-Morgenstern utility function. Further, as individuals are paid only for the

main experiment or the bonus game, there is no concerns about hedging. The mechanism

and payment scheme are thus robust to heterogeneity in risk aversion and are incentive

compatible.

As the belief elicitation mechanism is relatively complex, we provide extensive training

with the mechanism before the start of the experiment. Buyers receive both written and oral

instructions about the mechanism, which include a series of examples that make clear that
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under reporting or over reporting beliefs can lead to worse outcomes. Subjects are also told

explicitly that it is best to write down their true belief. Following the instructions, subjects

are also given a series of quiz questions about the elicitation mechanism where they must

calculate various potential outcomes for truthfully reported and misreported beliefs.
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