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Abstract

Two probability distributions with common support are said to exhibit density
ratio ordering when they admit a nonincreasing density ratio. Existing statistical
tests of the null hypothesis of density ratio ordering are known to be conservative,
with null limiting rejection rates below the nominal significance level whenever the
two distributions are unequal. We show how a bootstrap procedure can be used to
shrink the critical values used in existing procedures such that the limiting rejection
rate is increased to the nominal significance level on the boundary of the null. This
improves power against nearby alternatives. Our procedure is based on preliminary
estimation of a contact set, the form of which is obtained from a novel representa-
tion of the Hadamard directional derivative of the least concave majorant operator.
Numerical simulations indicate that improvements to power can be very large in
moderately sized samples.
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1 Introduction

Let F and G be cumulative distribution functions (cdfs) on the real line R, with common

support. When F and G admit a nonincreasing density ratio dF/dG, we say that there is

density ratio ordering between F and G. Density ratio ordering implies, but is not implied

by, first order stochastic dominance. While first order stochastic dominance provides

a suitable ordering between distributions in many applications, there are times when

economic or financial models indicate that density ratio ordering is the more appropriate

property to consider. For instance, Beare (2011) shows that, in a simple one period pricing

model, a failure of density ratio ordering between the risk neutral and physical payoff

distributions associated with a market portfolio has perverse implications for the behavior

of contingent claims. See also Beare and Schmidt (2015) for related empirical analysis.

Other contexts in which density ratio ordering plays a key role, including mechanism

design and auction theory, are discussed by Roosen and Hennessy (2004).

Statistical methods for testing the null hypothesis of stochastic dominance between two

cdfs are already well established; see e.g. Anderson (1996), Davidson and Duclos (2000),

Barrett and Donald (2003), Linton et al. (2005, 2010), Donald and Hsu (2015) and the

survey article by Maasoumi (2001). Less work has been done on testing the null hypothesis

of density ratio ordering. Dykstra et al. (1995) and Roosen and Hennessy (2004) dealt

with the case where F and G are discrete distributions. The more delicate case where

F and G are continuous distributions was studied by Carolan and Tebbs (2005) and

Beare and Moon (2015). These authors exploit the fact that, in the continuous case,

density ratio ordering is equivalent to the concavity of the ordinal dominance curve (odc):

the composition of F with G−1, the quantile function for G. They consider a statistic

constructed from the difference between an empirical estimate of the odc and its least

concave majorant (lcm). It is compared to a critical value that delivers a limiting rejection

rate equal to nominal size when F = G, and below nominal size when F 6= G but density

ratio ordering is satisfied.

The contribution of this paper is a modification to the density ratio ordering test of

Carolan and Tebbs (2005) and Beare and Moon (2015) that improves power. We retain

the test statistic used by those authors, but compare it to a data dependent critical value

computed using the bootstrap. This has the effect of raising the limiting rejection rate of
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the test to the nominal significance level on the boundary of the null; more precisely, at

those points in the null where the limit distribution of the test statistic is nondegenerate.

Consequently, power is improved at nearby points in the alternative. Our bootstrap

procedure requires preliminary estimation of a contact set, and has a similar flavor to the

bootstrap procedures used by Linton et al. (2010) and Donald and Hsu (2015) to improve

the power of the test of stochastic dominance proposed by Barrett and Donald (2003).

The main technical hurdles we face when studying the asymptotic properties of our pro-

cedure relate to the differential properties of the lcm operator. Beare and Moon (2015)

showed that this operator fails to be Hadamard differentiable at all points in the null,

but instead satisfies a weaker smoothness condition dubbed Hadamard directional differ-

entiability by Shapiro (1990). Hadamard directional differentiability suffices for the ap-

plication of the functional delta method, which is the key device used by Beare and Moon

(2015) to determine the asymptotic behavior of their test statistic. However, as shown

by Dümbgen (1993) and discussed further in a recent working paper by Fang and Santos

(2014), standard bootstrap inference can be problematic when working with operators

that are Hadamard directionally differentiable but not Hadamard differentiable. We pro-

pose a modified bootstrap procedure with good asymptotic and finite sample properties.

Our primary technical innovation is a new representation of the Hadamard directional

derivative of the lcm operator that expresses the derivative at each point in the null in

terms of an estimable subset of the unit cube: our contact set.

The remainder of our paper is structured as follows. In Section 2 we introduce our sam-

pling framework and test statistic, including a discussion of the directional differentiability

of the lcm operator, and an explanation of how this property can be used to derive relevant

asymptotic results under the null. In Section 3 we present our main results, including

our new representation of the directional derivative of the lcm operator. We explain

how this representation can be used to develop a modified bootstrap procedure based on

preliminary estimation of the contact set, and establish conditions under which this pro-

cedure raises the limiting rejection rate of our test to the nominal significance level on the

boundary of the null. Section 4 provides a discussion of some practical issues that arise

in the implementation of our procedure, including the numerical computation of suprema

and integrals, and the selection of a tuning parameter used in the contact set estimation.

Section 5 reports numerical evidence on the finite sample performance of our procedure,
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and final remarks are given in Section 6. Mathematical proofs of the results stated in

Section 3 are collected in the Appendix.

2 Test statistic

Here we introduce the test of density ratio ordering studied by Carolan and Tebbs (2005)

and Beare and Moon (2015), including details sufficient to provide a basis for our dis-

cussion of bootstrap critical values in Section 3. In Section 2.1 we define the null and

alternative hypotheses, state the sampling framework, and explain the construction of the

test statistic. In Section 2.2 we review results given by Beare and Moon (2015) on the dif-

ferential properties of the lcm operator, including a discussion of the distinction between

Hadamard differentiability and Hadamard directional differentiability. These results are

used in Section 2.3 to give a brief derivation of the limit distribution of our test statistic

under the null hypothesis, again following Beare and Moon.

2.1 Statistical framework

Our data consist of two independent and identically distributed samples of real valued

random variables (X1, . . . , Xm) and (Y1, . . . , Yn), mutually independent of one another.

We let F denote the common cdf of the Xi’s and G denote the common cdf of the

Yj’s, and assume that F and G are continuous and strictly increasing on their common

support. Our goal is to test the hypothesis that the odc R = F ◦ G−1 is concave, where

G−1(u) = inf{y : G(y) ≥ u} is the quantile function corresponding to G. Let Θ denote

the collection of strictly increasing, continuously differentiable maps θ : [0, 1]→ [0, 1] with

θ(0) = 0 and θ(1) = 1, and let Θ0 = {θ ∈ Θ : θ is concave}. We maintain throughout

that R ∈ Θ, and write R′ for its first derivative. We seek to test the null hypothesis

H0 : R ∈ Θ0 against the alternative hypothesis H1 : R ∈ Θ \Θ0.

Let `∞ ([a, b]) denote the collection of uniformly bounded real valued functions on [a, b]

equipped with the uniform norm. The following definition is taken from Beare and Moon

(2015, Def. 2.1).
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Definition 2.1. Given a closed interval [a, b] ⊆ [0, 1], the lcm over [a, b] is the operator

M[a,b] : `∞ ([0, 1])→ `∞ ([a, b]) that maps each f ∈ `∞ ([0, 1]) to the function

M[a,b]f(u) = inf{g(u) : g ∈ `∞ ([a, b]) , g is concave, and f ≤ g on [a, b]}, u ∈ [a, b].

We write M as shorthand for M[0,1], and refer to M as the lcm operator.

Following Carolan and Tebbs (2005), we take as our estimator of R the empirical odc

Rm,n = Fm ◦G−1n , where

Fm(·) =
1

m

m∑

i=1

1(Xi ≤ ·), Gn(·) =
1

n

n∑

j=1

1(Yj ≤ ·)

are the empirical cdfs of (Xi) and (Yj) respectively. Our test statistic is

Mm,n = cm,n ‖MRm,n −Rm,n‖p ,

where cm,n = (mn/(m + n))1/2, ‖ · ‖p is the Lp-norm with respect to Lebesgue measure

on [0, 1], and p ∈ [1,∞]. This statistic was proposed by Carolan and Tebbs (2005) for

p = 1 and p = ∞, while Beare and Moon (2015) considered the more general family of

statistics indexed by p ∈ [1,∞]

The empirical odc Rm,n is unaffected with probability one if we replace our observations

Xi and Yj with ψ(Xi) and ψ(Yj) for any real valued ψ strictly increasing on the common

support of F and G. Taking ψ = G normalizes the cdf of the ψ(Xi)’s to be R and the cdf of

the ψ(Yj)’s to be uniform on [0, 1], and so we see that the distribution of Mm,n is uniquely

determined by R. Consequently, it makes sense to talk about the distribution of Mm,n at

different points in Θ; different pairs of cdfs (F,G) give rise to the same distribution for

Mm,n whenever they correspond to the same odc R ∈ Θ.

In the asymptotic theory to be developed shortly, we will let the two sample sizes m and

n tend to infinity simultaneously, with n/(m + n) → λ ∈ (0, 1). Formally, we can think

of m as being implicitly a function of n, with m(n)→∞ and n/(m(n) + n)→ λ ∈ (0, 1)

as n → ∞. We might therefore consider indexing all sample statistics only by n, and

never by m or m,n. However, for concreteness, we continue to index sample statistics by
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m and/or n where appropriate, consistent with Carolan and Tebbs (2005) and Beare and

Moon (2015).

2.2 Differential properties of the lcm operator

The arguments used by Beare and Moon (2015) to determine the null limiting behavior

of Mm,n rely critically on an understanding of the differential properties of the operator

M. The following definition is adapted from Dümbgen (1993).

Definition 2.2. Let X and Y be real Banach spaces. A map φ : X → Y is said to be

Hadamard directionally differentiable at x ∈ X tangentially to a linear space X0 ⊆ X

if there exists a map φ′x : X0 → Y such that

φ′x(z) = lim
n→∞

φ(x+ tnzn)− φ(x)

tn

for any sequences zn ∈ X and tn ∈ (0, 1) with zn → z ∈ X0 and tn ↓ 0. We refer to

φ′x(z) as the Hadamard directional derivative of φ at x in direction z. If φ′x is linear then

we say that φ is Hadamard differentiable at x tangentially to X0, and we refer to φ′x(z)

as the Hadamard derivative of φ at x in direction z.

A Hadamard directional derivative is automatically continuous and positive homogeneous

of degree one, but may be nonlinear. Linearity turns out to be unimportant for applica-

tions of the functional delta method (Shapiro, 1991), but is vitally important for estab-

lishing bootstrap consistency (Dümbgen, 1993; Fang and Santos, 2014). A closely related

version of differentiability called quasi-Hadamard differentiability has been studied by

Beutner et al. (2012) and Volgushev and Shao (2014). Beutner and Zähle (2010, 2012)

also study a version of differentiability that they call quasi-Hadamard differentiability, but

in their case the derivative is automatically linear because they consider general sequences

tn converging to zero, and not merely those converging to zero from above.

It turns out that, at points R ∈ Θ0, the lcm operator M is Hadamard directionally

differentiable but not in general Hadamard differentiable. The following result, in which

C([0, 1]) denotes the space of continuous real valued functions on [0, 1] equipped with the

uniform norm, was proved by Beare and Moon (2015, Lem. 3.2).
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Lemma 2.1. If R ∈ Θ0 thenM is Hadamard directionally differentiable at R tangentially

to C ([0, 1]). Given h ∈ C ([0, 1]), if R is affine in a neighborhood of u ∈ (0, 1), then we

have M′
Rh(u) =M[aR,u,bR,u]h(u), where

aR,u = sup{u′ ∈ (0, u] : R is not affine in a neighborhood of u′},
bR,u = inf{u′ ∈ [u, 1) : R is not affine in a neighborhood of u′},

and we define inf ∅ = 1 and sup∅ = 0. If R is not affine in a neighborhood of u ∈ (0, 1),

or if u ∈ {0, 1}, then M′
Rh(u) = h(u).

We illustrate the content of Lemma 2.1 with an example in Figure 2.1. In panel (a) we

display the odc R at which we wish to differentiateM. It is affine over the intervals [0, a]

and [b, 1], and strictly concave over the interval [a, b]. We also display the direction h in

which we wish to differentiate, a sinusoid. In panel (b) we display M′
Rh, the Hadamard

directional derivative of M at R in direction h. It has three distinct parts. Over the

intervals [0, a] and [b, 1], where R is affine, the directional derivative is given by the

restricted lcmsM[0,a]h andM[b,1]h respectively. Over the interval [a, b], where R is strictly

concave, the directional derivative is h. In panel (c) we display M′
R(−h), the Hadamard

directional derivative of M at R in direction −h. Comparing M′
Rh and M′

R(−h) in

panels (b) and (c), we observe that M′
Rh 6= −M′

R(−h), implying that M′
R cannot be

linear. Consequently, M is not Hadamard differentiable at R tangentially to C([0, 1])

in the example depicted. In fact, as noted by Beare and Moon (2015), M is Hadamard

differentiable at R ∈ Θ0 tangentially to C([0, 1]) if and only if R is strictly concave.

2.3 Limit distribution under concavity

Let A : `∞([0, 1])→ R be the operator

Af = ‖Mf − f‖p , f ∈ `∞([0, 1]).

When R is concave our test statistic Mm,n may be written as

Mm,n = cm,n (ARm,n −AR) .
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Figure 2.1: Panel (b) displays the Hadamard directional derivative M′
Rh for the par-

ticular choice of R and h shown in panel (a). Panel (c) displays M′
R(−h).

Two ingredients suffice for us to establish the limit distribution of Mm,n at each R ∈ Θ0.

First, we require weak convergence of the empirical odc process cm,n(Rm,n − R) to a

suitable limit, and second, we require the operator A to satisfy a smoothness condition

sufficient for the application of the functional delta method. The former ingredient has

been available at least since Hsieh and Turnbull (1996, Thm. 2.2); the following statement

is taken from Beare and Moon (2015, Lem. 3.1), with  denoting weak convergence in a

metric space in the sense of Hoffmann-Jørgensen.

Lemma 2.2. Suppose R ∈ Θ. Then as m ∧ n → ∞ with n/(m + n) → λ ∈ (0, 1), we

have cm,n(Rm,n −R) T , where T has the form

T (u) = λ1/2B1(R(u)) + (1− λ)1/2R′(u)B2(u), u ∈ [0, 1],

and B1 and B2 are independent standard Brownian bridges on [0, 1].

It remains to establish a smoothness condition on A sufficient for the application of the

functional delta method. With Lemma 2.1 in hand, a routine application of the chain rule

for Hadamard directionally differentiable operators (Shapiro, 1990, Prop. 3.6) establishes

that A is Hadamard directionally differentiable at R ∈ Θ0 tangentially to C([0, 1]), with

directional derivative

A′Rh = ‖M′
Rh− h‖p , h ∈ C([0, 1]).

Though textbook treatments of the functional delta method typically impose Hadamard
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differentiability upon the operator in question, it is sufficient to impose the weaker re-

quirement of Hadamard directional differentiability. This was proved by Shapiro (1991,

Thm. 2); for a more recent statement, see Fang and Santos (2014, Thm. 2.1). We thus

arrive at the following result.

Theorem 2.1. Suppose R ∈ Θ. Then as m ∧ n → ∞ with n/(m + n) → λ ∈ (0, 1), we

have Mm,n →d A′RT .

From Lemma 2.2 we see that the law of T is uniquely determined by R, and hence the

law of A′RT is also uniquely determined by R. Beare and Moon (2015, Thm. 4.1) proved

that, for p ∈ [1, 2], A′RT is stochastically dominated by A′IT = ‖MB − B‖p, where I is

the identity map on [0, 1] and B is a Brownian bridge. We therefore refer to R = I as the

least favorable case (lfc) and may construct a conservative test of concavity by using as

a critical value the relevant quantile of the law of A′IT . If we reject the null hypothesis

of concavity when Mn exceeds this critical value, then the limiting rejection rate of our

test is α at the lfc R = I, and is no greater than α at all other R ∈ Θ0. The idea of

using a fixed critical value to control size at the lfc is due to Carolan and Tebbs (2005),

and requires us to choose p ∈ [1, 2], as R = I is no longer least favorable when p ∈ (2,∞]

(Beare and Moon, 2015, Thm. 4.2).

The disadvantage of using a fixed critical value to set the limiting rejection rate equal

to α at the lfc R = I is that the limiting rejection rate may be well below α at other

R ∈ Θ0. Indeed, since A′RT = 0 when R is strictly concave, the limiting rejection rate at

all strictly concave R ∈ Θ0 is zero. Numerical results reported by Beare and Moon (2015)

also indicate that, with α = 0.05 and in sample sizes as large as 500, the rejection rate is

effectively zero at some members of Θ0 that are not strictly concave, and are in fact affine

over wide portions of their domain. This is problematic because any concave member of

Θ may be approximated arbitrarily well in the uniform metric by a nonconcave member

of Θ, suggesting that power against relevant nonconcave alternatives may be close to zero.
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3 Bootstrap critical values

Our main results are in this section. In Section 3.1 we give a novel representation of the

Hadamard directional derivative of the lcm operator and explain how it can be used to

express the null limit distribution of Mm,n in terms of a contact set and the weak limit

of the empirical odc process. In Section 3.2 we discuss the estimation of this contact set.

In Section 3.3 we show how the estimated contact set can be used to bootstrap critical

values in a way that yields a limiting rejection rate equal to the nominal significance level

at all points in the null where R is not strictly concave. Proofs of all results are collected

in the Appendix.

3.1 An alternative representation of M′
R

Begin by defining the set

A = {(u, v, w) ∈ [0, 1]3 : v ≤ u ≤ w}.

Let S : `∞([0, 1])→ `∞(A) be the operator

Sf(u, v, w) =
(w − u)f(v) + (u− v)f(w)

w − v , f ∈ `∞([0, 1]), (u, v, w) ∈ A,

where for v = w we define Sf(u, v, w) = f(u). We may view Sf(u, v, w) as the approxi-

mation to f(u) obtained by linearly interpolating between the values taken by f at v and

w. We note the following property of S for later use.

Lemma 3.1. S is a linear isometry.

With the operator S and odc R we define the set

B = {(u, v, w) ∈ A : SR(u, v, w) = R(u)} ,

and the family of cross-sections

B(u) = {(v, w) ∈ [0, 1]2 : (u, v, w) ∈ B}, u ∈ [0, 1].
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The set B always contains the main diagonal u = v = w of the unit cube, and that the

cross-section B(u) always includes the point (u, u).

Our alternative representation of the Hadamard directional derivative of the lcm

operator—compare to Lemma 2.1 above—is as follows.

Lemma 3.2. The Hadamard directional derivative of M at R ∈ Θ0 in direction h ∈
C([0, 1]) satisfies

M′
Rh(u) = sup

(v,w)∈B(u)

Sh(u, v, w), u ∈ [0, 1].

In view of Theorem 2.1 and Lemma 3.2, when R ∈ Θ0 the weak limit A′RT of our test

statistic Mm,n satisfies

A′RT =

∥∥∥∥∥ sup
(v,w)∈B(·)

S̃T (·, v, w)

∥∥∥∥∥
p

,

where S̃ : `∞([0, 1])→ `∞(A) is the operator

S̃f(u, v, w) = Sf(u, v, w)− f(u), f ∈ `∞([0, 1]), (u, v, w) ∈ A.

The weak limit A′RT is uniquely determined by the law of T and the set B. In this

sense, B plays a similar role to the so-called contact set used by Linton et al. (2010) to

characterize the null limit distribution of their statistic for testing stochastic dominance.

We shall borrow their terminology and refer to B as our contact set. Contact sets also play

a key role in the analyses of Lee and Whang (2009), Anderson et al. (2012) and Lee et al.

(2014), although in these papers there arise significant additional technical complications

owing to the lack of a weak convergence result analogous to Lemma 2.2.

3.2 Contact set estimation

To implement our bootstrap procedure we require a preliminary estimate of the unknown

contact set B. We now present three candidate estimators of B, denoted Bm,n, B′m,n and

B′′m,n. By construction, Bm,n ⊆ B′m,n ⊆ B′′m,n. Under the null hypothesis, the three esti-

mators closely approximate B with probability approaching one; see Lemma 3.3 below.

Under the alternative hypothesis, there can be large differences between the three esti-
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mators that persist asymptotically. We will see later that a smaller estimated contact set

delivers a smaller critical value, improving the probability of rejecting the null hypothesis.

Our preferred contact set estimator is therefore Bm,n, but we also discuss B′m,n and B′′m,n
for expository purposes.

Our three contact set estimators make use of a tuning parameter δm,n ∈ (0,∞). This

tuning parameter is required to converge to zero as the sample sizes m and n increase,

but not too quickly.

Assumption 3.1. As m ∧ n → ∞ with n/(m + n) → λ ∈ (0, 1), we have δm,n → 0 and

cm,nδm,n →∞.

The results given in this section are valid for any choice of δm,n that satisfies Assumption

3.1 with probability one. In Section 4.2 we suggest an approach to choosing δm,n in

practice.

The largest of our contact set estimators, B′′m,n, is also the most obvious: we simply set

B′′m,n =
{

(u, v, w) ∈ A : |S̃Rm,n(u, v, w)| ≤ δm,n

}
.

The estimated set B′′m,n contains those triples (u, v, w) ∈ A for which SRm,n(u, v, w) is

close to Rm,n(u), with closeness defined in terms of the tuning parameter value δm,n.

In large samples, B′′m,n can be expected to provide a good approximation to B regardless

of whether the null hypothesis is true. For our purposes, a better estimator of B is one

that provides a good approximation to B when the null hypothesis is satisfied, but is as

small as possible otherwise. Consider the possible contact sets B that may obtain when

the null hypothesis is satisfied. When R is concave, if B contains some triple (u, v, w) ∈ A,

then it must be the case that R(t) = MR(t) for t ∈ {u, v, w}. Our second contact set

estimator is constructed to exclude members of B′′m,n that appear very likely to violate

this condition:

B′m,n = B′′m,n ∩ {t ∈ [0, 1] :MRm,n(t) ≤ Rm,n(t) + δm,n}3 .

Yet more can be said about the form of B when the null hypothesis is satisfied. When R
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is concave, if B contains some triple (u, v, w) ∈ A, then it must also contain each triple

(u, v′, w′) ∈ A for which v′ ∈ [v, u] and w′ ∈ [u,w]. This motivates our smallest and

preferred contact set estimator Bm,n, defined as

Bm,n =
{

(u, v, w) ∈ B′m,n : (u, v′, w′) ∈ B′m,n for all (v′, w′) ∈ [v, u]× [u,w]
}
.

Our next result states that, with high probability, Bm,n, B′m,n and B′′m,n each provide a

good outer-approximation to our contact set B when the null hypothesis is satisfied.

Lemma 3.3. Suppose R ∈ Θ0 and Assumption 3.1 is satisfied. Then as m∧n→∞ with

n/(m + n)→ λ ∈ (0, 1), we have P (B ⊆ Bm,n ⊆ B′m,n ⊆ B′′m,n ⊆ Bε)→ 1 for any ε > 0,

where

Bε =

{
a ∈ A : inf

b∈B
‖b− a‖ ≤ ε

}
,

the ε-enlargement of B.

3.3 Bootstrap procedure

In short, our bootstrap approximation to the weak limit A′RT of Mm,n works by simulating

the distribution of M∗
m,n = Â′m,nT ∗m,n conditional on our data, where T ∗m,n is a bootstrap

version of T , and Â′m,n : `∞([0, 1])→ R is the data dependent operator

Â′m,nf =

∥∥∥∥∥ sup
(v,w)∈Bm,n(·)

S̃f(·, v, w)

∥∥∥∥∥
p

, f ∈ `∞([0, 1]).

The estimated operator Â′m,n is determined by the estimated contact set Bm,n; note that

Bm,n(u) is a cross-section of Bm,n, defined in the same way as B(u). Our approach

places us in the general framework used by Fang and Santos (2014) to explore the use of

bootstrap inference when standard differentiability conditions are violated.

To obtain T ∗m,n, we first construct bootstrap versions of Fm and Gn by setting

F ∗m(·) =
1

m

m∑

i=1

V ∗i,m1(Xi ≤ ·), G∗n(·) =
1

n

n∑

j=1

W ∗
j,n1(Yj ≤ ·),
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where the weights V ∗m = (V ∗1,m, . . . , V
∗
m,m) and W ∗

n = (W ∗
1,n, . . . ,W

∗
n,n) are drawn inde-

pendently of the data and of one another from the multinominal distribution with prob-

abilities spread evenly over the categories 1, . . . ,m and 1, . . . , n respectively. From F ∗m
and G∗n we construct R∗m,n = F ∗m ◦ G∗−1n , our bootstrap version of Rm,n. We then set

T ∗m,n = cm,n(R∗m,n −Rm,n).

The following result establishes that the law of T ∗m,n conditional on our data provides

an accurate approximation to the law of T with high probability. Weak convergence

conditional on the data in probability is meant in the sense of Kosorok (2008, pp. 19-20);

see also Volgushev and Shao (2014, p. 411).

Lemma 3.4. Suppose R ∈ Θ. Then as m ∧ n → ∞ with n/(m + n) → λ ∈ (0, 1), we

have T ∗m,n  T conditional on the data in probability.

The law of T ∗m,n conditional on the data can be simulated: we simply compute large num-

bers of realizations of T ∗m,n corresponding to repeated draws of the multinomial weights

V ∗m and W ∗
n . In order to obtain suitable critical values for our test statistic, we seek to

approximate the law of its weak limit A′RT when R ∈ Θ0. If A were Hadamard differ-

entiable at R ∈ Θ0 tangentially to C([0, 1]), we could deduce from the functional delta

method for the bootstrap that cm,n
(
AR∗m,n −ARm,n

)
 A′RT conditional on the data in

probability, which would justify the use of the law of cm,n(AR∗m,n − ARm,n) conditional

on the data as an approximation to the law of A′RT . Unfortunately we cannot apply the

delta method for the bootstrap in this fashion unless R is strictly concave, because it is

only at the strictly concave members of Θ0 that A is Hadamard differentiable. Though A
is Hadamard directionally differentiable at all R ∈ Θ0, it was shown by Dümbgen (1993)

that directional differentiability does not suffice for the application of the functional delta

method for the bootstrap, and that the näıve bootstrap typically fails when working with

operators that are not fully Hadamard differentiable.

In view of the failure of the näıve bootstrap we take an alternative route, and approximate

the law of A′RT using the law of M∗
m,n = Â′m,nT ∗m,n conditional on the data. For a test

with nominal size α ∈ (0, 1) we take as our critical value

µm,n(α) = inf{x : P (M∗
m,n ≤ x | X1, . . . , Xm, Y1, . . . , Yn) ≥ 1− α},
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the (1− α)-quantile of the distribution of M∗
m,n conditional on the data.

Theorem 3.1. Suppose R ∈ Θ0 and Assumption 1 is satisfied. Then as m∧n→∞ with

n/(m+ n)→ λ ∈ (0, 1), we have M∗
m,n  A′RT conditional on the data in probability. If

in addition R is not strictly concave, we have P (Mm,n > µm,n(α))→ α.

Theorem 3.1 establishes that our bootstrap procedure delivers a test with limiting rejec-

tion rate equal to nominal size whenever R is concave but not strictly concave. These R

are precisely those points in Θ0 at which the limit distribution of Mm,n is nondegenerate,

and form what Linton et al. (2010) refer to as the boundary of the null. Of course, this

notion of boundary differs from the usual topological one; in the uniform topology, every

member of Θ0 is the limit of a sequence in Θ1, and so Θ0 is its own boundary.

A shortcoming of Theorem 3.1 is that it says nothing about the limiting rejection rate

of our test when R is strictly concave. In this case, both Mm,n and µm,n(α) converge in

probability to zero, and we cannot say much of substance about their relative magnitudes

without investigating their higher order asymptotic behavior, which seems difficult. In

a related context, Andrews and Shi (2013, p. 625) have proposed a technical remedy

to this problem: instead of using µm,n(α) as our critical value, we can use µm,n(α) + ε

or µm,n(α) ∨ ε, where ε > 0 is some small fixed value. The presence of ε prevents our

critical value from converging in probability to zero alongside Mm,n when R is strictly

concave, ensuring a limiting rejection rate of zero. For further discussion, see Fang and

Santos (2014, Rem. 3.12) and Donald and Hsu (2015, p. 13). We have found in numerical

simulations with p = 1 and p = 2 that in practice it is unnecessary to modify the critical

value in this fashion. Our test appears to be very conservative at strictly concave choices

of R, and also at many concave choices of R that are not strictly concave.

We have not discussed power properties of our test. In fact, it is simple to show that,

under mild regularity conditions, our test has power approaching one against any sequence

of nonconcave odcs that approach the null at a rate slower than n−1/2, and nonvanishing

power against some sequences of nonconcave odcs that approach the null at the rate n−1/2.

We omit the formal statement and proof of these claims, which can be given in virtually

identical fashion to those of Theorems 5.1 and 5.2 of Beare and Moon (2015).
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4 Practical implementation

Here we provide some pragmatic guidelines for implementing our testing procedure. In

Section 4.1 we provide a step-by-step guide to the computation of our test statistic and

bootstrap critical value, avoiding abstract operations such as suprema over infinite sets

and integration, and instead using only operations that are easily implementable using

standard numerical software packages. A method for choosing the tuning parameter δm,n

is suggested in Section 4.2.

4.1 Numerical computation

What follows is a step-by-step recipe for computing our test statistic and critical value.

All steps provide an exact calculation, with the exception of step 3(v), which uses a

summation to numerically approximate an integral. The approximation error should be

negligible unless n is very small.

1. Compute the test statistic.

(i) Order the two samples as X(1) ≤ · · · ≤ X(m) and Y(1) ≤ · · · ≤ Y(n).

(ii) Set Rm,n(0) = 0 and for i = 1, . . . , n compute

Rm,n

(
i

n

)
=

1

m
max{j = 1, . . . ,m : X(j) ≤ Y(i)},

with the maximum over the empty set defined to be zero.

(iii) For j = 0, . . . , n− 1 and i = j + 1, . . . , n and k = i, . . . , n compute

SRm,n

(
i

n
,
j

n
,
k

n

)
=

(k − i)Rm,n(j/n) + (i− j)Rm,n(k/n)

k − j ,

and for i = 0, . . . , n set SRm,n(i/n, i/n, i/n) = Rm,n(i/n).

(iv) Set MRm,n(1) = Rm,n(1) and for i = 1, . . . , n compute

MRm,n

(
i− 1

n

)
= max

j=1,...,i
max
k=i,...,n

SRm,n

(
i

n
,
j

n
,
k

n

)
.
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(v) Compute Mm,n. For p = 1 we have

Mm,n =
cm,n
n

n∑

i=1

[
1

2
MRm,n

(
i− 1

n

)
+

1

2
MRm,n

(
i

n

)
−Rm,n

(
i

n

)]
.

For p = 2 we have

Mm,n =
cm,n
n1/2

(
n∑

i=1

{
1

3

[
MRm,n

(
i

n

)
−MRm,n

(
i− 1

n

)]2

+

[
MRm,n

(
i− 1

n

)
−Rm,n

(
i

n

)][
MRm,n

(
i

n

)
−Rm,n

(
i

n

)]})1/2

.

2. Determine which of the relevant points in the unit cube belong to the estimated

contact set.

(i) For i = 0, . . . , n and j = 0, . . . , i and k = i, . . . , n set b′i,j,k = 1 if both

MRm,n

(
l

n

)
≤ Rm,n

(
l

n

)
+ δm,n for l = i, j, k

and ∣∣∣∣SRm,n

(
i

n
,
j

n
,
k

n

)
−Rm,n

(
i

n

)∣∣∣∣ ≤ δm,n

are satisfied, and set b′i,j,k = 0 otherwise.

(ii) For i = 0, . . . , n and j = 0, . . . , i and k = i, . . . , n, set bi,j,k = 1 if b′i,j′,k′ = 1 for

all j′ = j, . . . , i and all k′ = i, . . . , k, and set bi,j,k = 0 otherwise.

3. Generate the bootstrap critical value.

(i) Generate bootstrap samples X∗1 , . . . , X
∗
m and Y ∗1 , . . . , Y

∗
n by drawing with re-

placement from the original samples X1, . . . , Xm and Y1, . . . , Yn.

(ii) For i = 0, . . . , n and j = 0, . . . , i and k = i, . . . , n compute R∗m,n(i/n) and

SR∗m,n(i/n, j/n, k/n) by following the procedure in steps 1(i)-1(iii).
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(iii) For i = 0, . . . , n and j = 0, . . . , i and k = i, . . . , n compute

S̃T ∗m,n

(
i

n
,
j

n
,
k

n

)
= cm,n

[
SR∗m,n

(
i

n
,
j

n
,
k

n

)
−R∗m,n

(
i

n

)

−SRm,n

(
i

n
,
j

n
,
k

n

)
+Rm,n

(
i

n

)]
.

(iv) For i = 0, . . . , n compute

H∗m,n

(
i

n

)
= max

j=0,...,i
max
k=i,...,n

bi,j,kS̃T
∗
m,n

(
i

n
,
j

n
,
k

n

)
.

(v) Exact computation of M∗
m,n is complicated. We suggest using the numerical

approximation

M∗
m,n ≈

[
1

n

n∑

i=1

H∗m,n

(
i

n

)p]1/p
.

(vi) Repeat steps 3(i)-3(v) N times, for some large N , to obtain a large number of

realizations of M∗
m,n. Our bootstrap critical value µm,n(α) is set equal to the

[αN ]-th largest of these realizations. We reject the null if Mm,n > µm,n(α). As

a p-value we may take the smallest q such that Mm,n > µm,n(q).

4.2 Tuning parameter selection

Under Assumption 3.1 we are free to choose any tuning parameter δm,n that satisfies

δm,n → 0 and cm,nδm,n → ∞ as our sample sizes m and n increase. That is all well and

good for the purposes of asymptotic thought experiments, but not a lot of help when it

comes to choosing δm,n in practice. Some degree of ad hocery is difficult to avoid.

The following procedure for choosing δm,n has worked well for us in numerical simulations

when p = 1 and p = 2. For a grid of candidate tuning parameters, use Monte Carlo

simulation to compute the rejection rate of the test when R = I, the least favorable case

for p = 1 and p = 2. Then, choose the smallest tuning parameter that yields a rejection

rate acceptably close to the nominal size α. We have found in numerical simulations that

the rejection rate of our test is below α at R = I when δm,n is chosen very large, and
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rises above α at R = I when δm,n becomes sufficiently small, so this should typically be

possible. The selected tuning parameter will control the finite sample rejection rate at

R = I by construction, and we have found in numerical simulations that it delivers a

finite sample rejection rate below nominal size at other points in the null.

5 Finite sample performance

To investigate the finite sample performance of our proposed testing procedure we used

Monte Carlo simulation to compute rejection rates at a range of ordinal dominance curves

satisfying the null or alternative hypothesis. Here we report results obtained for equally

sized samples with m = n = 200. Results for other sample sizes we investigated were

qualitatively similar. For each ordinal dominance curve considered, we used 10000 Monte

Carlo replications to compute rejection rates. We used the method of Giacomini et al.

(2013) to reduce computation time, so bootstrap critical values were based on 10000

bootstrap samples drawn over the full set of Monte Carlo replications. Rejection rates

were computed using p = 1 and p = 2. A tuning parameter value of δm,n = 0.08 was used;

at this value, preliminary simulations of the kind described in Section 4.2 indicated that

the rejection rates at R = I were close to but below 0.05.

The ordinal dominance curves used in our simulations were drawn from two parametric

families. To investigate the behavior of our test when R is concave, we considered the

parametrization

R0
γ(u) =

{
1+γ
1−γu if 0 ≤ u ≤ 1−γ

2
1−γ
1+γ

u+ 2γ
1+γ

if 1−γ
2
≤ u ≤ 1,

with γ ∈ [0, 1). In panel (a) of Figure 5.1 we graph R0
γ for several values of γ. At γ = 0

the graph of R0
γ is the 45◦ line, while for γ > 0 the graph is piecewise affine with a single

kink located at a point that moves toward the upper-left corner of the unit square as

γ → 1. This is the same family of curves considered in numerical simulations reported by

Beare and Moon (2015, Figure 1), except that we have not bothered to smooth away the

single kink appearing when γ > 0. This means that our kinked ordinal dominance curves

violate the continuous differentiability condition imposed on members of Θ; however,
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Figure 5.1: Odcs used to evaluate finite sample size and power.

p =∞ were used; at these values, preliminary simulations of the kind described in Section

4.2 indicated that the rejection rates at R(u) = u were close to but below the nominal

size 0.05.

The odcs used in our simulations were drawn from two parametric families. To investigate

the behavior of our test when R is concave, we considered the parametrization

R0
γ(u) =

{
1+γ
1−γu if 0 ≤ u ≤ 1−γ

2
1−γ
1+γ

u+ 2γ
1+γ

if 1−γ
2
≤ u ≤ 1,

with γ ∈ [0, 1). R0
γ is graphed in Figure 5.1(a) for γ ∈ {0, 0.2, 0.4, 0.6, 0.8}. At γ = 0 the

graph of R0
γ is the 45◦ line, while for γ > 0 the graph is piecewise affine with a single

kink located at a point that moves toward the upper-left corner of the unit square as

γ → 1. This is the same family of odcs considered in numerical simulations reported by

Beare and Moon (2015, Eq. 4.1 & Fig. 1), except that we have not bothered to smooth

away the single kink appearing when γ > 0. This means that our kinked odcs violate the

continuous differentiability condition imposed on members of Θ; however, we have found

that applying a small degree of smoothing to R0
γ to restore continuous differentiability

makes essentially no difference to the rejection rates computed for our test.

To investigate the behavior of our test when R is not concave, we considered the
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Figure 5.1: Ordinal dominance curves used to evaluate finite sample size and power.

we have found that applying a small degree of smoothing to R0
γ to restore continuous

differentiability makes essentially no difference to the rejection rates computed.

To investigate the power of our test, we considered the parametrization

R1
γ(u) =





7u if 0 ≤ u ≤ 7−3γ
56

1
7
u+ 42−18γ

49
if 7−3γ

56
≤ u ≤ 7+18γ

56

7u− 18γ
7

if 7+18γ
56

≤ u ≤ 1+3γ
8

1
7
u+ 6

7
if 1+3γ

8
≤ u ≤ 1,

with γ ∈ [0, 7/3]. In panel (b) of Figure 5.1 we graph R1
γ for several values of γ. When

γ = 0 we see that R1
γ is a piecewise affine concave function with a single kink, and in fact

we have R1
0 = R0

0.75. When γ > 0, R1
γ is a piecewise affine nonconcave function with three

kinks. As γ increases, R1
γ moves further away from the concave function R1

0; intuitively,

we can think of R1
γ as moving deeper into the alternative region as γ increases. Strictly

speaking R1
γ does not belong to Θ due to the violation of continuous differentiability, but

as with R0
γ this is a purely technical issue that can be overcome by applying a negligible

degree of smoothing at kink points.

Figure 5.2 displays the rejection rates we computed for the concave ordinal dominance

curves R0
γ. We report rejection rates using a fixed critical value as in Carolan and Tebbs

(2005) and Beare and Moon (2015) and using the bootstrap critical values proposed here.

Nominal size was 0.05. In two panels corresponding to p = 1 and p = 2 we plot the
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Figure 5.2: Null rejection rates for the CTBM test (dashed) and bootstrap test (solid).

parametrization

R1
γ(u) =





7u if 0 ≤ u ≤ 7−3γ
56

1
7
u+ 42−18γ

49
if 7−3γ

56
≤ u ≤ 7+18γ

56

7u− 18γ
7

if 7+18γ
56

≤ u ≤ 1+3γ
8

1
7
u+ 6

7
if 1+3γ

8
≤ u ≤ 1,

with γ ∈ [0, 7/3]. R1
γ is graphed in Figure 5.1(b) for γ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}. When

γ = 0 we see that R1
γ is a piecewise affine concave function with a single kink, and in fact

we have R1
0 = R0

0.75. When γ > 0, R1
γ is a piecewise affine nonconcave function with three

kinks. As γ increases, R1
γ moves further away from the concave function R1

0; intuitively,

we can think of R1
γ as moving deeper into the alternative region as γ increases. Strictly

speaking R1
γ does not belong to Θ due to the violation of continuous differentiability, but

as with R0
γ this is a purely technical issue that can be overcome by applying a negligible

degree of smoothing at kink points.

Figure 5.2 displays the rejection rates we computed for the concave odcs R0
γ. We report

rejection rates for the ordinary CTBM test using a fixed critical value (dashed lines) and

for the new test using our bootstrap critical value (solid lines). Nominal size was 0.05. In

three panels corresponding to p = 1, p = 2 and p =∞ we plot the rejection rates against

the parameter γ. Note that the scale of the axes in the third panel differs from the scale

in the former two.
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Figure 5.2: Null rejection rates with fixed critical values (dashed) and bootstrap critical
values (solid).

rejection rates against the parameter γ.

The results for p = 1 and p = 2 are similar. In both cases the rejection rates using the

fixed and bootstrap critical values are a little below the nominal size at γ = 0, the least

favorable case. They drop very rapidly to zero as γ increases, becoming indistinguishable

from zero at around γ = 0.05, and staying at that level as γ rises to one; we do not bother

to plot the rejection rates for γ > 0.05. This is puzzling, because our theoretical results

indicate that the limiting rejection rate using the bootstrap critical value should be 0.05

at all γ ∈ [0, 1). We will say more about this shortly.

Figure 5.3 displays power curves for the family of ordinal dominance curves R1
γ. The

results for p = 1 and p = 2 are similar: power curves for both tests rise from zero to

one as γ increases, with the test using bootstrap critical values easily outperforming the

test using fixed critical values. With p = 1 and γ = 0.8, or with p = 2 and γ = 0.6,

the improvement in power brought about by our bootstrap procedure is close to one.

Comparing the power curves for p = 1 and p = 2, we see better performance with p = 2.

Why are the null rejection rates for the bootstrap test plotted in Figure 5.2 not approxi-

mately flat at 0.05, as suggested by Theorem 3.1? The most obvious answer would be that

our sample sizes of m = n = 200 are too small, but in fact we have found in unreported

simulations that the problem persists with much larger sample sizes. It is possible that the
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Figure 5.3: Power curves for the CTBM test (dashed) and bootstrap test (solid).

The results for p = 1 and p = 2 are similar. In both cases the rejection rates of the CTBM

and bootstrap tests are a little below the nominal size at γ = 0, the lfc. They drop very

rapidly to zero as γ increases, becoming indistinguishable from zero at around γ = 0.05,

and staying at that level as γ rises to one; we do not bother to plot the rejection rates

for γ > 0.05. This is puzzling, because our theoretical results indicate that the limiting

rejection rate using the bootstrap critical value should be 0.05 at all γ ∈ [0, 1). When

p = ∞, we see a very different pattern: the rejection rates rise well above nominal size

as γ increases to one. This too is puzzling, because while the results of Beare and Moon

(2015) indicate that the limiting rejection rate of the CTBM test increases to one as γ

increases to one, the results of this paper once again indicate that the limiting rejection

rate using the bootstrap critical value should be 0.05 at all γ ∈ [0, 1). We will say more

about these issues shortly.

Figure 5.3 displays power curves for the family of odcs R1
γ. The results for p = 1 and

p = 2 are similar: power curves for both tests rise from zero to one as γ increases, with

the bootstrap test easily outperforming the CTBM test. With p = 1 and γ = 0.8, or

with p = 2 and γ = 0.6, the improvement in power brought about by our bootstrap

procedure is close to one. Comparing the power curves for p = 1 and p = 2, we see better

performance with p = 2. When p = ∞, the power curve for the CTBM test lies above

the power curve for the bootstrap test. This reflects the fact that the bootstrap test does

a much better job at controlling the Type I error rate when γ = 0: the rejection rate in

this case is around 0.44 with the CTBM test and around 0.11 with the bootstrap test.
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Figure 5.3: Power curves with fixed critical values (dashed) and bootstrap critical values
(solid).

limited finite sample relevance of Theorem 3.1 is a reflection of the fact that it establishes

pointwise size control only at those points in the null where the ordinal dominance curve

is not strictly concave. If the limiting rejection rates at nearby strictly concave ordinal

dominance curves are zero or close to zero, that may go some way toward explaining the

extremely low finite sample null rejection rates we observe when p = 1 and p = 2.

6 Final remarks

We have been concerned in this paper with the problem of testing whether a ratio of pdfs

is nonincreasing. We proposed a bootstrap procedure based on preliminary estimation of

a contact set that can deliver substantially greater power than existing tests based on fixed

critical values. Numerical simulations indicate that our procedure remains conservative

when p = 1 or p = 2.

It may be possible to adapt the methods developed here to more general hypothesis testing

problems that can be formulated in terms of the concavity of some estimable function R,

not necessarily an odc. If we have an estimator Rn of R such that n1/2(Rn−R) converges

weakly to a continuous limit then, following the approach taken in this paper, it should

be possible to use the functional delta method to determine the limit distribution of a

test statistic Mn := n1/2‖MRn − Rn‖p, and to use Lemma 3.2 to motivate a bootstrap
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procedure based on preliminary estimation of a suitable contact set. A recent working

paper by Seo (2014) takes this approach to construct a more powerful bootstrap version of

a test of stochastic monotonicity proposed by Delgado and Escanciano (2012). There is an

additional level of dimensionality to her problem, so the relevant contact set turns out to be

a subset of the four dimensional unit hypercube. Similar improvements can presumably

be made to a test of conditional stochastic dominance also proposed by Delgado and

Escanciano (2013). More broadly, our results may be relevant in any situation where the

lcm operator is used to construct a statistical test of concavity.

A Proofs

Here we provide proofs of all results stated in Section 3.

Proof of Lemma 3.1. Linearity is obvious, so we have sup |Sf1 − Sf2| = sup |S(f1 − f2)|
for f1, f2 ∈ `∞([0, 1]). Let g = f1 − f2. Since Sg(u, v, w) is a convex combination of g(v)

and g(w), it is bounded in absolute value by max{|g(v)|, |g(w)|} ≤ sup |g|. And since

Sg(u, u, u) = g(u), we have g(u) ≤ sup |Sg|. Consequently, sup |Sg| = sup |g|, and our

claim is proved.

Proof of Lemma 3.2. Suppose first that R is affine in a neighborhood of u. In this case

Lemma 2.1 implies that M′
Rh(u) =M[aR,u,bR,u]h(u). Applying a result of Carolan (2002,

Lemma 1) expressing the lcm as a supremum of secant segments, we may write

M[aR,u,bR,u]h(u) = sup
aR,u≤v≤u

sup
u≤w≤bR,u

Sh(u, v, w).

Since R is concave, the rectangle [aR,u, u] × [u, bR,u] is precisely the cross-section B(u),

and our claim is proved. Next suppose that R is not affine in a neighborhood of u. Since

R is concave, for all (v, w) ∈ B(u) we must have either v = u or w = u, or both, and

so sup(v,w)∈B(u) Sh(u, v, w) = h(u). But Lemma 2.1 implies that M′
Rh(u) = h(u), and so

our claim is proved in this case also.

Proof of Lemma 3.3. Since Bm,n ⊆ B′m,n ⊆ B′′m,n by construction, it suffices to show that
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P (B′′m,n ⊆ Bε) → 1 and that P (B ⊆ Bm,n) → 1. We first show that P (B′′m,n ⊆ Bε) → 1.

Since S̃R is continuous and is equal to zero precisely on the contact set B, we have

infa∈A\Bε |S̃R(a)| > 0. Lemma 2.2 and the continuity of S̃ imply the weak convergence

S̃Rm,n  S̃R, so we also have

sup
a∈B′′

m,n

|S̃R(a)| = sup
a∈B′′

m,n

|S̃Rm,n(a)|+ op(1) ≤ δm,n + op(1) = op(1),

the last equality following from Assumption 3.1. It follows that

P

{
sup

a∈B′′
m,n

|S̃R(a)| < inf
a∈A\Bε

|S̃R(a)|
}
→ 1.

Consequently, P (B′′m,n ∩ (A \Bε) = ∅)→ 1, and so P (B′′m,n ⊆ Bε)→ 1.

We next show that P (B ⊆ Bm,n) → 1. Using the linearity of S̃ and the fact that

S̃R(a) = 0 for all a ∈ B, we find that

sup
a∈B
|S̃Rm,n(a)| = c−1m,n sup

a∈B
|S̃ (cm,n(Rm,n −R)) (a)|.

Therefore, since S̃(cm,n(Rm,n − R))  S̃T by Lemma 2.2 and the continuous mapping

theorem, we conclude in view of Assumption 3.1 that supa∈B |S̃Rm,n(a)| = op(δm,n). This

shows that P (B ⊆ B′′m,n) → 1. Further, since R is concave, we may use the triangle

inequality to write

sup
u∈[0,1]

|MRm,n(u)−Rm,n(u)| ≤ sup
u∈[0,1]

|MRm,n(u)−MR(u)|+ sup
u∈[0,1]

|Rm,n(u)−R(u)|.

Both terms on the right-hand side of this inequality are op(δm,n) under Assumption 3.1,

and so P (MRm,n(u) ≤ Rm,n(u) + δm,n) → 1 for every u ∈ [0, 1]. Combined with the

fact that P (B ⊆ B′′m,n) → 1, this shows that P (B ⊆ B′m,n) → 1. Finally, we observe

that when R is concave the cross-sections B(u) are closed intervals, and so for each triple

(u, v, w) ∈ B we also have (u, v′, w′) ∈ B for all pairs (v′, w′) ∈ [v, u] × [u,w]. Since

P (B ⊆ B′m,n)→ 1, this shows that P (B ⊆ Bm,n)→ 1.

Proof of Lemma 3.4. This follows from Lemma 2.2 by applying the functional delta
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method for the bootstrap (see e.g. Kosorok, 2008, Theorem 2.9), provided that the map-

ping from pairs of distributions to the corresponding ordinal dominance curve satisfies

a suitable Hadamard differentiability condition. This may be verified using well-known

results on the Hadamard differentiability of the inverse and composition operators (see

e.g. Kosorok, 2008, Lemmas 12.2 & 12.8(ii)) and the chain rule (see e.g. Kosorok, 2008,

Lemma 6.19) provided that the density of G is bounded away from zero on its support.

But in fact we may assume without loss of generality that G is the uniform distribu-

tion on [0, 1], since Rm,n and R∗m,n are unaffected with probability one if we replace our

observations Xi and Yj with G(Xi) and G(Yj).

Proof of Theorem 3.1. By Lemma 3.3 there exists a sequence εn ↓ 0 such that

P (B ⊆ Bm,n ⊆ B′m,n ⊆ B′′m,n ⊆ Bεn)→ 1.

Let gn : `∞([0, 1])→ R be the map gn(f) = ‖ sup(v,w)∈Bεn (·) S̃f(·, v, w)‖p, and let g = A′R,

so that in view of Lemma 3.2 we have

P (g(T ∗m,n) ≤M∗
m,n ≤ gn(T ∗m,n))→ 1. (A.1)

We will show that, for any sequence fn in `∞([0, 1]) with fn → f∞ ∈ C([0, 1]), we have

gn(fn)→ g(f∞). (A.2)

The convergence (A.2) is the result of the following argument:

|gn(fn)− g(f∞)| ≤ |gn(fn)− gn(f∞)|+ |gn(f∞)− g(f∞)|
≤ sup

a∈Bεn
|S̃fn(a)− S̃f∞(a)|+ |gn(f∞)− g(f∞)|

≤ 2‖fn − f∞‖∞ + |gn(f∞)− g(f∞)|
≤ 2‖fn − f∞‖∞ + sup

(an,a′n)∈B×Bεn :‖an−a′n‖≤εn
|S̃f∞(an)− S̃f∞(a′n)| → 0.

Here, the first and second inequalities follow from the triangle inequality, the third in-

equality holds by Lemma 3.1, the fourth inequality holds by the definition of gn and g,

and the convergence to zero holds because fn → f∞, εn ↓ 0 and S̃f∞ is uniformly continu-
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ous. Lemma 3.4 together with (A.2) allows us to apply the extended continuous mapping

theorem (see e.g. Dümbgen, 1993, p. 136) to obtain gn(T ∗m,n) g(T ) and g(T ∗m,n) g(T )

conditional on the data in probability. In view of (A.1) and the definition of g, we conclude

that M∗
m,n  A′RT conditional on the data in probability.

It is clear from Theorem 3.1 of Beare and Moon (2015) that when R is not strictly

concave the distribution function of A′RT is continuous everywhere and strictly increasing

on [0,∞). Continuity everywhere combined with the weak convergence M∗
m,n  A′RT

conditional on the data in probability implies (Kosorok, 2008, Lemma 10.11(i)) that

sup
x∈R

∣∣P (M∗
m,n ≤ x | X1, . . . , Xm, Y1, . . . , Yn)− P (A′RT ≤ x)

∣∣ = op(1). (A.3)

Let µ(α) = inf{x : P (A′RT ≤ x) ≥ 1 − α}, the (1 − α)-quantile of A′RT . Since the dis-

tribution function of A′RT is strictly increasing at µ(α), the continuous mapping theorem

applied to (A.3) yields µm,n(α) = µ(α) + op(1). It now follows from the weak convergence

Mm,n  A′RT ensured by Theorem 2.1, and the continuity of the distribution function of

A′RT at µ(α), that P (Mm,n > µm,n(α))→ α as claimed.
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