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Abstract

The Cobb Douglas marriage matching function (MMF) is an easy to

estimate MMF. It encompasses the Choo Siow (CS) MMF, CS with peer

effects, Dagsvik Menzel MMF and Chiappori, Salanié and Weiss MMF.

Given population supplies, the Cobb Douglas MMF exists and is unique.

This MMF is estimated on US marriage and cohabitation data by states

from 1990 to 2010. There are scale effects in US marriage markets.

CS with peer effect, which admits both peer and scale effects, is not

rejected. Positive assortative matching in marriage and cohabitation

by educational attainment are stable from 1990 to 2010.

Since the seventies, marital behavior in the United States have changed

significantly.1 First, for most adult groups, marriage rates have fallen. Second,

starting from a very low initial rate, cohabitation rates have risen significantly.

∗We thank Vincent Boucher, Marcin Peski, Robert McCann and seminar participants

for useful discussions, and Gemma Hagen-Stanton for research assistance. We also thank

SSHRC for financial support.
1Lundberg and Pollak (2013) has a longer and broader description of marital changes in

the US.

1



Because the initial cohabitation rates were so low, the rise in cohabitations

did not compensate for the fall in marriages. So third, the fraction of adults

who are unmatched, i.e. not married or cohabitating, have risen significantly.

Evidence for these trends for women and men between ages 26-30 and 28-32

respectively are shown in Figure 1 in Appendix A.

Researchers have investigated different causes for these changes including

changes in reproductive technologies as well as access to them, changes in

family laws, changes in household technologies, changes in earnings inequality

and changes in welfare regimes.2 Most of this research ignored changes in

population supplies over time. Often, they also ignore peer effects in marital

behavior.

There were significant changes in population supplies over the time period.

The sex ratio (ratio of male to female) of new college graduates have decreased

from above one in the seventies to below one currently. See Figure 2 in Ap-

pendix A for women and men between ages 26-30 and 28-32 respectively. This

change in the sex ratio may have exacerbated the decline in the marriage rate

and also potentially changed marriage matching patterns.

Researchers estimate marriage matching functions (MMF) to analyze how

changes in causes and population supplies affect marital behavior. Consider a

static marriage market. There are I, i = 1, .., I, types of men and J , j = 1, .., J ,

types of women. Let M be the population vector of men where a typical

element is mi, the supply of type i men. F is the population vector of women

where a typical element is fj, the supply of type j women. Each individual

can choose to enter a relationship, marriage or cohabitation, r = [M, C], and a

partner (by type) of the opposite sex for the relationship or not. An unmatched

individual chooses a partner of type 0.

Let θ be a vector of parameters. A marriage matching function (MMF)

2E.g. Burtless (1999); Choo Siow (2006a); Fernandez, Guner and Knowles (2005);

Fernandez-Villaverde, et. al. (2014); Goldin and Katz (2002); Greenwood, et. al. (2012,

2014); Lundberg and Pollak (2013); Moffitt, et. al. (1998); Stevenson and Wolderers (2007);

Waite and Bachrach (2004).
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is a R2IJ
+ vector valued function µ(M,F, θ) whose typical element is µrij, the

number of (r, i, j) relationships. µ0j and µi0 are the numbers of unmatched

women and men respectively. µrij have to satisfy the following I+J accounting

identities:

J∑
j=1

µMij +
J∑
j=1

µCij + µi0 = mi, 1 ≤ i ≤ I (1)

I∑
i=1

µMij +
I∑
i=1

µCij + µ0j = fj, 1 ≤ j ≤ J (2)

µ0j, µi0 ≥ 0, 1 ≤ j ≤ J, 1 ≤ i ≤ I.

There are two main difficulties with constructing MMFs. First, due to mul-

ticollinearity and the proliferation of parameters, without apriori restrictions,

it is usually intractable to estimate the dependence of µ on the population

vectors, M and F . Most empirical researchers impose a behaviorally implau-

sible no spillover rule which says that µrij depends only on the sex ratio, mi/fj,

and not other population supplies (E.g. Qian and Preston 1993; Schoen 1981).

This no spillover rule excludes general equilibrium effects. Second, it is difficult

to construct MMFs which satisfy the accounting identities above.

Recently, Choo and Siow (2006a, 2006b; hereafter CS) used McFadden’s

(1973) random utility model to model spousal demand in a transferable utility

model of the marriage market, in order to obtain an empirically tractable

MMF. General equilibrium and population supplies effects on µrij are fully

absorbed by the numbers of unmatched men and women of each type, µ0j and

µi0. The CS marriage matching function is:

ln
µrij√
µi0µ0j

= γrij ∀ (r, i, j)

CS interprets γrij as the expected gain in utility to a randomly chosen (i, j)

pair in relationship r relative to the alternative of them remaining unmatched.

The left hand side of the above equation can be motivated as follows. As
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the gain increases, the number of such pairs, µrij, will increase relative the

numbers of i and j individuals, µi0 and µ0j, remaining unmatched. Given

population supplies and parameters, Decker, et. al. (2013) showed that the

marriage distribution exists and is unique. The CS MMF satisfies constant

returns to scale in population supplies (CRS), meaning that, holding the type

distributions of men and women fixed, increasing market size has no effect on

the probability of forming a match (i,j) in a relationship r, and the effects of

µi0 and µ0j in the CS MMF is symmetric.

Ignoring cohabitation, retaining CRS, Chiappori, Salanié and Weiss (2012;

hereafter CSW) relaxed the symmetric effect of the unmatched in CS to obtain:

ln
µMij

µαi0µ
1−α
0j

= γMij ∀ (r, i, j)

Also ignoring cohabitation, Dagsvik (2000), Dagsvik et al. (2001), and

Menzel (2015) study non-transferable utility models of the marriage market

to obtain the DM MMF:

ln
µMij
µi0µ0j

= γMij ∀ (r, i, j)

Simulations show that DM has increasing returns to scale in population

supplies. The symmetric effect of the unmatched in the MMF is retained.

Building on the above, this paper proposes the Cobb Douglas MMF:

lnµrij = γrij + αrij lnµi0 + βrij lnµ0j; α
r
ij, β

r
ij > 0 ∀ (r, i, j) (3)

The Cobb Douglas MMF has some useful properties:

1. It nests a large class of behavioral MMFs.3

2. Scale effects show up in the parameters αrij and βrij.

3. The effects of µi0 and µ0j on µrij do not have to be gender neutral.

3Other related MMFs which are not in the Cobb Douglas class include Galichon and

Salanié (2013); Dupuy and Galichon (2012). Chiappori and Salanié (2015) has a survey.
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4. Following the above CS interpretation of γrij one can parametrize γrij to

study how a particular behavioral mechanism affects marital matching.4

5. Given population supplies and parameters, the equilibrium marriage

matching distribution µ(M,F, θ) exists and is unique. It is easy to sim-

ulate for policy evaluations. See section 1.

6. Without restrictions on γrij, the MMF fits any observed marital behavior

in a single marriage market. In fact, the model must be restricted to

obtain identification even with multimarket data. Luckily, identification

is transparent. Due to the log linear estimating equations (3), we do not

need to add any identifying restriction over and above what the empir-

ical literature, which uses state and time variation to estimate different

aspects of US marriage market behavior, imposes.5

7. Estimation is easy. The parameters of the MMF can be estimated us-

ing multi-market data by difference in differences and using population

supplies as instruments for the unmatched.

While the equations (3) are in the Cobb Douglas form, they are not stan-

dard production functions.6 Rather, they form a set of equilibrium relation-

ships which defines the Cobb Douglas MMF.

Compared with the other behavioral MMFs above, the Cobb Douglas MMF

relaxes CRS and symmetry of the unmatched on the MMF. But is there a be-

havioral MMF which has these properties? Building on Brock and Durlauf

4CS used it to study marital effects of the legalization of abortion. Brandt, Siow and

Vogel (2008) used CS to study the effects of the famine in China due to the Great Leap

Forward on the marriage market of the famine affected birth cohorts. Cornelson and Siow

(2015) used it to study the effect of increased earnings inequality on marital behavior.
5E.g. Bitler, et. al. (2004); Chiappori, Fortin and Lacroix (2002); Dahl (2010); Me-

choulan (2011), Stevenson and Wolfers (2006); Wolfers (2006).
6The standard Cobb Douglas model, lnµrst

ij = αr
ij lnmst

i + βr
ij ln fstj + γrstij , is not a well

behaved MMF. In general, it will not satisfy the accounting relationships (1) and (2). Nor

does it have spillover effects.
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(2001), Section 3 develops a CS MMF with peer effects (CSPE) with these

properties. Peer effects, as well as changes in cultural norms, affect cohabi-

tation and other marital behavior (E.g. Adamopoulou (2012); Waite, et. al.

2000; Fernandez-Villaverde, et. al. (2014)). Marriage and cohabitation are

costly individual investments and commitments. Individual who never mar-

ried or cohabitated are not likely to be very confident of their payoffs from

these relationships. Thus it is reasonable to expect that individuals will be

affected by the relationship choices of their peers. Moreover, cohabitation

is a relatively new form of socially accepted relationship in the US. The US

census first asked about cohabitating relationships in 1990. So peer effects

may be more salient for cohabitation compared with marriage (E.g. Thornton

and Young-DeMarco (2001)). Our peer effects model also incorporates scale

effects. We cannot separately identify the importance of direct peer effects

versus indirect (scale) effects.

CSPE is a special testable case of the Cobb Douglas MMF. When we ex-

tend the CS, and DM MMF to additional types of relationships, the log odds

of the numbers of different types of relationships, ln(µMij /µ
C
ij), is independent

of the sex ratio, ln(mi/fj). Independence is a very strong assumption. Ar-

ciadiacono, et. al. (2010) shows that independence does not hold for sexual

versus non-sexual boy girl relationships in high schools. This paper shows

that independence also does not hold for cohabitation versus marriage. A

suitable extension of CSW to additional types of relationships also does not

impose independence but still imposes CRS. However, CSPE simultaneously

relaxes CRS and independence albeit in a restricted manner, which allows us

to discriminate CSPE from other behavioral models. The Cobb Douglas MMF

relaxes independence more flexibly.

The Cobb Douglas MMF nests CS, CSW, DM and CSPE as special cases.

Since the special cases include frictionless transferable utility models and non-

transferable utility models as well as a CS model with frictional transfers (Mou-

rifié and Siow: in process), we should be modest in our ability to determine

the importance of transfers in equilibrating the marriage market. Although
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we are partial to CSPE and it is not rejected empirically, it should be clear

that we propose the Cobb Douglas MMF precisely because we do not want to

insist on a particular behavioral model of the marriage market.

Galichon, et. al. (2014) studied a model with an imperfect transfer tech-

nology and without peer effects. They proposed a MMF which is qualitatively

motivated by their behavioral model. Their MMF is related to our Cobb

Douglas MMF. They used a different proof from that in this paper to show

uniqueness and existence of their MMF. They did not focus on identification

of their MMF nor provide an empirical application. Our paper focuses on

deriving an empirically tractable MMF with peer effects and we provide an

empirical application. Thus our two papers are complementary.

Section 4 estimates the Cobb Douglas MMF with marriage and cohabi-

tation data across states for women and men between ages 26-30 and 28-32

respectively from the US Censuses in 1990 and 2000, and the American Com-

munity Surveys around 2010. Men and women are differentiated by their

educational attainment. This empirical analysis builds on Siow (2015) and

CSW. Our empirical results show that:

1. From a descriptive (goodness of fit) point of view, a simplified Cobb Dou-

glas MMF with relationship match (r, i, j), state and year fixed effects,

provides a reasonably complete and parsimonious description of the US

marriage market by state from 1990 to 2010.

2. There are scale effects in US marriage markets.

3. CS, CSW and DM are rejected by the data.

4. CSPE is not rejected by the data. Homogenous peer effects à la Manski

(2003) is rejected.

5. The value of cohabitation is less sensitive to peer effects than the value

for marriage.
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6. The value of remaining unmatched is less sensitive to peer effects for

women than for men.

7. Consistent with CSW and Siow (2015), to a first order, there is no general

increase in positive assortative matching (PAM) by educational attain-

ment from 1990 to 2010.

8. Consistent with CSW and many other observers, gains to marriage de-

clined from 1990 to 2010. We further show that gains to cohabitation

increased. Both findings are consistent with the observation that the

average age of first marriage has increased over this period.

The remainder of the paper is organized as follows. Section 1 presents the

Cobb Douglas MMF and discusses existence uniqueness of the equilibrium.

Section 2 presents our identification and estimation strategy. Section 3 intro-

duces a behavorial matching model with peer effects. Section 4 discussed the

empirical application. The last section concludes. Proofs of the main results

are collected in the appendix.

1 The Cobb Douglas MMF

Consider the Cobb Douglas MMF defined by:

ln
µrij

(µi0)α
r
ij(µ0j)

βr
ij

= γrij ∀ (r, i, j) (4)

αrij, β
r
ij ≥ 0

Consistent with the behavioral models, and the fact that γrij can be nega-

tive, we interpret γrij as proportional to the mean gross gains to relationship

r minus the sum of the mean gains to them remaining unmatched for two

randomly chosen (i, j) individuals.

The matching equilibrium in this model is characterized by the Cobb Dou-

glas MMF (4) and the population constraint equations. Since the equations
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are not derived from a behavioral model of the marriage market, to the best

of our knowledge, nothing was known about the existence and the uniqueness

of the equilibrium for the Cobb Douglas MMF7. We propose an approach that

proves the existence and uniqueness of this model. The details of the complete

development of our approach are derived in Appendix B.

Following CS, an important simplification in the proof is to first reduce the

2r× I × J system of non-linear equations to an I + J system of the numbers

of unmatched individuals by substituting the Cobb Douglas MMF in equation

(4) into the population constraints, (1) and (2), to get:

Lemma 1

mi = µi0 +
J∑
j=1

µ
αMij
i0 µ

βMij
0j e

γMij +
J∑
j=1

µ
αCij
i0 µ

βCij
0j e

γCij , for 1 ≤ i ≤ I, (5)

fj = µ0j +
I∑
i=1

µ
αMij
i0 µ

βMij
0j e

γMij +
I∑
i=1

µ
αCij
i0 µ

βCij
0j e

γCij , for 1 ≤ j ≤ J. (6)

Although there are 2 × I × J elements in µ, the analyst only has to first

solve a sub-system of I + J non-linear equations whose solution is unique (see

Theorem 1 below). The rest of the system is linear. Using this two steps

approach, the MMF is easy to simulate for policy evaluations.8

The following theorem summarizes our results:

Theorem 1 [Existence and Uniqueness of the Equilibrium matching] For ev-

ery fixed matrix of relationship gains and coefficients βrij;α
r
ij ≥ 0, the equilib-

rium matching of the Cobb Douglas MMF model exists and is unique.

7Separately, Galichon and al (2014) provide an existence and uniqueness proof of a

general related MMF. Although different, either proof can be easily adapted to show the

existence and uniqueness of both MMFs. We simultaneously became aware about our two

results during a conference on matching at the Fields Institute on September 15, 2014.
8Feedback from users of the CS MMF (a special case) suggest that a one step numerical

solution is difficult to achieve.
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Notice that using (4),

ln
µrij
µr
′
ij

= (αrij − αr
′

ij) ln(µi0) + (βrij − βr
′

ij ) ln(µ0j) + γrij − γr
′

ij ∀ (r, i, j)

So:

Lemma 2 When (αrij − αr
′
ij) = (βrij − βr

′
ij ) = 0 as in CS, CSW and DM, the

log odd of µrij to µr
′
ij is independent of the sex ratio mi/fj. Otherwise the log

odd is not independent of the sex ratio.

Arciadiacono, et. al. (2010) shows that independence does not hold for

sexual versus non-sexual boy girl relationships in high schools. We show here

that it does not hold for cohabitation versus marriage. CSPE provides a

behavioral model which relaxes independence. We can also relax independence

under CSW by letting α and (1− α) be dependent on r.

With multimarket data, βrij and αrij are identified under some usual re-

strictions, as shall be clearer soon. However βrij and αrij cannot be estimated

precisely with the data which we have9. So often, we will assume that the

exponents on the Cobb Douglas MMF are gender and relationship specific

but independent of the types of couples, (i, j): βrij = βr and αrij = αr. With

multimarket data, type independent exponents, βrij = βr and αrij = αr, is in

principle a testable relationship. From a practical point of view, the most

flexible model that we estimate in this paper imposes type independent expo-

nents.10

When i and j are unidimensional and ordered, and we impose type inde-

pendent exponents, the local log odds, l(r, i, j), of the Cobb Douglas MMF

become:

9In our application, we do not observe enough different markets to have precise estimate

of βr
ij and αr

ij , however this could be obtained using richer data set.
10We estimated the fully flexible Cobb Douglas MMF but the point estimates on the

unmatched interacted with the type of the match were too imprecisely estimated to be

useful.
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l(r, i, j) = ln
µrijµ

r
i+1,j+1

µri+1,jµ
r
i,j+1

= γrij + γri+1,j+1 − γri+1,j − γri,j+1

Following all the other behavioral MMFs considered in this paper, we in-

terpret l(r, i, j) as proportional to the degree of local complementarity of the

marital output function of the couple at (r, i, j).

Since different cases of the Cobb Douglas MMF imply the presence of scale

effects or otherwise, we provide a restriction for scale effects. Then:

Proposition 1 (Constant return to scale) The equilibrium matching dis-

tribution of the Cobb Douglas MMF model satisfies the Constant return to

scale property if βr + αr = 1 i.e.,

βr + αr = 1 for r ∈ {M, C} ⇒
I∑
i=1

∂µ

∂mi

mi +
J∑
j=1

∂µ

∂fj
fj = µ.

The result claims that the Cobb Douglas MMF model exhibits constant

results to scale if βr + αr = 1. The proposition generalizes to βrij + αrij = 1 for

all (r, i, j) implies constant returns to scale.

Comparative statics

Building on Graham (2013), we derive in Theorem 2 (relegated in Appendix

C.2 for sake of exposition) some comparative statics results for the Cobb Dou-

glas MMF model. We show that:

1. For any admissible k and l, the unmatched rate for type l individual is

increasing in the supply of type k individual of the same gender.

2. For any admissible k and l, the unmatched rate for type l of individual

is decreasing in the supply of type k of individual of the opposite gender.

3. Variation of the log ratio ln
µMij
µCij

:

If αM > αC and βC > βM we have
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(a) 1
∂mi

[ln
µMkj
µCkj

] ≥

> 0 if k 6= i

> αM − αC if k = i,
1 ≤ k ≤ I

(b) 1
∂fj

[ln
µMik
µCik

] ≤

< 0 if k 6= j

< −(αM − αC) if k = j,
1 ≤ k ≤ J

The above results generalize Theorem 2 of Decker et. al. (2012), and the

case i) of Theorem 1 of Graham (2013).

2 Identification and estimation

Consider the general Cobb Douglas MMF in presence of independent multi-

market data where an isolated marriage market is defined by the state s and

time t:

lnµrstij = αrij lnµsti0 + βrij lnµst0j + γrstij . (7)

This section provides flexible specifications which are identified and can

be estimated using a difference in differences instrumental variables method-

ology. Many studies use variations across state and time in marriage markets

to estimate models of marital behavior.11 A maintained assumption in these

studies is that the variation in population supplies is orthogonal to varia-

tion in the payoffs to marital behavior. Otherwise most of the estimates of

marital behavior using state time variation will be inconsistent. We and the

empirical research which relies on this assumption recognizes that there is

11First, there were often significant changes in the payoffs to marriage and cohabitation

across state and time. This variation has been exploited in previous research to study how

changes in divorce laws (E.g. Wolfers (2006)), changes in laws affecting reproductive choice

(E.g. CS; Galichon Salanie), changes in rules governing welfare receipts (E.g. Bitler, et.

al. (2004)), and minimum age of marriage laws (Dahl (2010)) affect marital outcomes.

Second, variations in sex ratio across state and time have also been used to study its effects

on marital behavior as well as intrahousehold allocations (E.g. Kerwin and Luoh (2010);

Mechoulan (2011); Chiappori, Fortin and Lacroix (2002)).
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migration across states. The large number of studies, on different marital out-

comes, which have obtained behaviorally plausible estimates, suggest that the

orthogonality assumption is empirically reasonable.

Even with multimarket data, the most general Cobb Douglas MMF is not

identified. There are 2 × I × J × S × T elements in the observed matching

distribution (i.e. µrstij ) and there are 2× I × J ×S× T + 4× I × J parameters

i.e. (γrstij , αrij, and βrij). Therefore, to obtain identification of the general Cobb

Douglas MMF we will impose additional standard restrictions on the structure

of the gains i.e. γrstij .

Assumption 1 1. (Additive separability of the gain). γrstij = πrij + ηrsij +

ζrtij + εrstij where πrij represents the type fixed effect, ηrsij the state fixed

effect, ζrtij the time fixed effect, and εrstij the residual terms.

2. (Instrumental Variable (IV)). E[εrstij |z11
ij , ..., z

ST
ij ] = 0, where zstij = (mst

i , f
st
j )′.

Assumption 1 (1) decomposes γrstij into match type fixed effect, state fixed

effect and time fixed effect, and the error term of the regression, εrstij . πrij,

ηrsij and ζrtij are identified. εrstij is not identified. Assumption 1 (1) allows us

to reduce the number of parameters. When εrstij increases, the gain to the

match increases which will increase µrstij and therefore likely reduces µsti0 and

µst0j. Thus µsti0 and µst0j and the error term εrstij are likely negatively correlated.

So in general, using ordinary least square (OLS) to estimate equation (7) is

inconsistent. Assumption 1 (2) allows us to use the population supplies, mst
i

and f stj , as instruments for µsti0 and µst0j. The assumption says that the pop-

ulation supplies must be orthogonal to εrstij . As discussed in the introduction

to this section, Assumption 1 does not impose any additional restriction over

and above what is standard in the empirical literature on US marriage markets

which uses state and time variation for estimation. And just like that litera-

ture, we cannot identify parameters which vary by s and t without additional
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restrictions.12 Under Assumption 1 (1), equation (7) becomes:

lnµrstij = αrij lnµsti0 + βrij lnµst0j + πrij + ηrsij + ζrtij + εrstij . (8)

Notice that for a fixed (i, j) type we have now 3 + S + T parameters and

ST observations. Therefore, the parameter of interests would be identified

whenever 2 + S + T < ST . The OLS estimator of λ̃rij ≡ (αrij, β
r
ij)
′ in equation

(7) is equivalent to the regression of ỹrstij ≡ lnµrstij − lnµrsij − lnµrtij + lnµrij on

x̃stij ≡ (lnµsti0− lnµsi0− lnµti0 +lnµi0, lnµ
st
0j− lnµs0j− lnµt0j +lnµ0j)

′ where lnµrsij =

T−1
∑T

t=1 lnµrstij , lnµrtij = S−1
∑S

S=1 lnµrstij , and lnµrij = (ST )−1
∑S

s=1

∑T
t=1 lnµrstij .

Since µsti0 and µst0j are potentially correlated with the residual terms εrstij

OLS will not be able to identify λ̃rij. Therefore, we will instrument µsti0 and µst0j

respectively with mst
i and f stj . Notice that to be a valid instrument µsti0 and µst0j

should be respectively correlated with µsti0 and µst0j and respect the exogeneity

condition summarizes in Assumption 1 (2).

As can be seen in Theorem 2, the comparative statics show the correlation

between mst
i and f stj and the unmatched. Therefore, λ̃rij can be identify using

the IV estimand if E[zstij x̃
st
ij

′
] is of full column rank. The identification result is

summarized in the following proposition.

Proposition 2 Under Assumption 1, the general Cobb Douglas MMF is iden-

tified if E[zstij x̃
st
ij

′
] is of full column rank. The identification equation is given

by λ̃rij = {E[zstij x̃
st
ij

′
]}−1E[zstij ỹ

rst
ij ].

We have a few comments. First, whenever λ̃rij is identified, we can identify

the gain matrix γrstij using equation (7). Second, this model can also be esti-

mated using the generalized method of moments (GMM). Third, whenever the

numbers of state S and period T are not high, we do not need to do the double

differentiation. We can use a sequence of state and time dummies fixed-effects.

12Cornelson and Siow (2015) provides an example in which the effect of covariates which

vary by (i, j, s, t) on γrstij can be estimated.
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3 Marriage matching with peer effects

In this model every individual can decide to cohabit, marry or remain un-

matched. For a type i man to match with a type j woman in relationship r,

he must transfer to her a part of his utility that he values as τ rij. The woman

values the transfer as τ rij. τ
r
ij may be positive or negative.

There are 2 × I × J matching sub-markets for every combination of rela-

tionship, and types of men and women. A matching market clears when, given

equilibrium transfers τ rij, the demand by men of type i for type j women in

the relationship r is equal to the supply of type j women for type i men in

the relationship r for all (r, i, j). To implement the above framework empiri-

cally, we adopt the extreme value random utility model of McFadden (1973)

to generate market demands for matching partners. Each individual considers

matching with a member of the opposite gender. Let the utility of male g of

type i who matches a female of type j in a relationship r be:

U r
ijg = ũrij + φri lnµrij − τ rij + ςrijg, where (9)

ũrij + φri lnµrij: Systematic gross return to a male of type i matching to a

female of type j in relationship r.

φri : Coefficient of peer effect for relationship r. 1 ≥ φri ≥ 0.

µrij: Equilibrium number of (r, i, j) relationships.

τ rij: Equilibrium transfer made by a male of type i to a female of type j in

relationship r.

ςrijg: denotes the errors terms (idiosyncratic payoffs) which are assumed to

be i.i.d. random variables distributed according to the extreme value Type-I

(Gumbel) distribution. It is worth noting that the errors are assumed to be

also independent across genders.

Due to the peer effects, the net systematic return is increased when more

type i men are in the same relationships. It is reduced when the equilibrium

transfer τ rij is increased.

And ũi0 + φ0
i lnµ0

i0 is the systematic payoff that type i men get from re-
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maining unmatched. We allow the peer effect to differ by relationship. For

example, unmarried individuals spend more time with their unmarried friends

than married individuals with their married friends. On the other hand, due to

their higher shadow cost of time, married individuals may not value interacting

with their peers as much.

Also, we estimate our MMFs with market level data. Each peer effect

coefficient consists of a direct effect and an indirect effect. The direct peer

effect is already discussed in the previous paragraph, i.e. how individual g′s

utility is affected when he observes how many others like him choose the

same action. The indirect effect is a market level effect. As there are more

(i, j, r) relationships in a community, local firms will provide services to them

(E.g. Compton and Pollak (2007); Costa and Kahn (2000)). This community

response will make it cheaper for g to choose (i, j, r) relationships. Marriage

market participants do not necessarily recognize the impact of their aggregate

actions on the prices of goods and services which they face. Thus the indirect

peer effect is a scale effect. The peer coefficients, φ0
i and φri , capture both the

direct and indirect effects. Either effect is not individually identified.

Our peer effects specification is chosen for analytic and empirical conve-

nience. We want CSPE to be nested in the Cobb Douglas MMF. We also

want CSPE to be testable. Proposition 3 below shows that Manski’s (1993)

justifiably famous peer effect specification is a special case of CSPE. Since this

paper is the first attempt of introducing peer effects in two sided matching

models, other specifications are left for future investigation.

Individual g will choose according to:

Uig = max
j,r
{Ui0g, UMi1g, ..., UMijg , ..., UMiJg, UCi0g, ..., UCijg, ..., UCiJg}

Let (µrij)
d be the number of (r, i, j) matches demanded by i type men and

(µi0)d be the number of unmatched i type men. Following the well known
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McFadden result, we have:

(µrij)
d

mi

= P(U r
ijg − U r′

ikg ≥ 0, k = 1, ..., J ; r′ = (M, C))

=
eũ

r
ij+φri lnµrij−τrij

eũi0+φ0i lnµi0 +
∑

r′∈{M,C}
∑J

k=1 e
ũr
′

ik+φr
′

i lnµr
′

ij−τr
′

ik

, (10)

where mi denotes the number of men of type i. Using (10) we can easily derive

the following relationship:

ln
(µrij)

d

(µi0)d
= ũrij − ũi0 + φri lnµrij − φ0

iµi0 − τ rij, (11)

The above equation is a quasi-demand equation by type i men for (r, i, j)

relationships.

The random utility function for women is similar to that for men except

that in matching with a type i men in an (r, i, j) relationship, a type j women

receives the transfer, τ rij. Let ṽrij + Φr
j lnµrij denotes the systematic gross

gain that type j women get from matching type i men in the relationship

r. Φr
j , 1 ≥ Φr

j ≥ 0, is her peer effect coefficient in relationship (r, i, j). And

ṽ0j + Φ0
j lnµ0

0j is the systematic payoff that type j women get from remaining

unmatched. Let (µrij)
s be the number of i, j matches offered by j type women

for the relationship r and (µ0j)
s the number of type j women who want to

remain unmatched. The quasi-supply equation of type j women for (r, i, j)

relationships is given by:

ln
(µrij)

s

(µ0j)s
= ṽrij − ṽ0j + Φr

j lnµrij − Φ0
j lnµ0j + τ rij. (12)

The matching market clears when, given equilibrium transfers τ rij, the de-

mand of type i men for (r, i, j) relationships is equal to the supply of type j

women for (r, i, j) relationships for all (r, i, j):

(µrij)
d = (µrij)

s = µrij. (13)
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Substituting (13) into equations (11) and (12) we get:

lnµrij =
1− φ0

i

2− φri − Φr
j

lnµi0 +
1− Φ0

j

2− φri − Φr
j

lnµ0j +
πrij

2− φri − Φr
j

(14)

πrij = ũrij − ũi0 + ṽrij − ṽ0j (15)

The above is the CS model with peer effects, the CSPE MMF.

Now, we will show how previous MMF can be recovered using the CSPE

MMF.

When there is no peer effect or all the peer effect coefficients are the same

(homogeneous peer effects),

φ0
i = Φ0

j = φri = Φr
j

we recover the CS MMF. That is,

Proposition 3 No peer effect, or homogenous peer effects, generates obser-

vationally equivalent MMFs.

Put another way, the above proposition says if we cannot reject CS using

marriage matching data alone, we also cannot reject homogenous peer effects.

This result is related to Manski (1993).

By imposing homogenous peer effects, we can rewrite the individual’s

spousal choice utilities, U r
ijg and V r

ijk using a specification which is in the

spirit of Manski and Brock Durlauf:

U r
ijg = ũrij + φ ln

µrij
mi

− τ rij + ςrijg, j = 0, 1.., J

V r
ijg = ṽrij + φ ln

µrij
fj

+ τ rij + %rijk, i = 0, 1.., I

Interestingly, non-homogenous peer effects are generically detectable:

Corollary 1 When
1−φ0i

2−φri−Φr
j
6= 1

2
and/or

1−Φ0
j

2−φri−Φr
j
6= 1

2
, non-homogenous peer

effects are present.

18



This corollary is related to identification of linear models with non-homogenous

peer effects.13 As pointed out in the introduction, relaxing homogenous peer

effects in the marriage matching context is behaviorally sound.

When
1− φ0

i

2− φri − Φr
j

=
1− Φ0

j

2− φri − Φr
j

= 1

we recover the DM MMF. Intuitively in this case, we want the peer effect

on relationships to be significantly more powerful than that for remaining

unmatched. E.g. φ0
i = Φ0

j = 0 and φri = Φr
j = 1

2
.

Also, when

φ0
i + Φ0

j = φri + Φr
j = φr

′

i + Φr′

j ,

CSW MMF is obtained.

From (14), you cannot distinguish φri from Φr
j . However, behaviorally in-

teresting peer effect responses can be learned. Please see Lemmata 3 and 4

below.

Again using Eq (14) we have:

ln
µMij
µCij

=
(φMi + ΦMj − φCi − ΦCj )

(2− φMi − ΦMj )(2− φCi − ΦCj )

[
(1− φ0

i ) lnµi0 + (1− Φ0
j) lnµ0j

]
(16)

+
πMij

2− φMi − ΦMj
−

πCij
2− φCi − ΦCj

Since µi0 and µ0j appears on the right hand side of (16), the log odds of

the number of r to r′ relationships will not be independent of the sex ratio.

It is easy to check that under CS and DM, the log odds of the number of r to

r′ relationships is independent of the sex ratio. Independence is a very strong

assumption and unlikely to hold every two types of relationships. CSPE relaxes

the independence assumption. However because the coefficients on unmatched

men and women have the same sign, this independence is restricted.

13Blume, et. al. (forthcoming) has a state of the art survey. Also see Djebbari, et. al.

(2009).

19



We will now study PAM patterns. Let the heterogeneity across males

(females) be one dimensional and ordered. Without loss of generality, let male

(female) ability be increasing in i (j).

Also let:

φ0
i = φ0; Φ0

j = Φ0;φri = φr; Φr
j = Φr (17)

that is, the peer effects depend on their gender and the relationship they

pick but not their type or their partner’s type. We call equation (17) type

independent peer effects. Type independence peer effects leads to type inde-

pendent exponents in the Cobb Douglas MMF, a testable restriction.

Then using (14), the local log odds for (r, i, j) is:

l(r, i, j) = ln
µrijµ

r
i+1,j+1

µri+1,jµ
r
i,j+1

=
πrij + πri+1,j+1 − πri+1,j − πri,j+1

2− φr − Φr
(18)

=
ũrij + ṽrij + ũri+1,j+1 + ṽri+1,j+1 − (ũri+1,j + ṽri+1,j)− (ũri,j+1 + ṽri,j+1)

2− φr − Φr

(19)

According to (18), if the marital output function, ũrij + ṽrij, is supermodular

in i and j, then the local log odds, l(r, i, j), are positive for all (i, j), or totally

positive of order 2 (TP2). Statisticians use TP2 as a measure of stochastic

positive assortative matching. Thus even when peer effects are present, we

can test for supermodularity of the marital output function, a cornerstone

of Becker’s theory of positive assortative matching in marriage. This result

generalizes Siow (2015), CSW and Graham (2011).

Now, it will be convenient to summarize different MMFs existing in the

literature and clarify their relations to the Cobb Douglas MMF.14

14Other behavioral MMFs can also be nested in the Cobb Douglas MMF. Dagsvik (2000,

Page 43) provides another example of MMF which allows correlation between idiosyncratic

payoffs. However, this extension still does not relax the independence assumption, and

imposes 1 < α+ β ≤ 2.
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Models and restrictions on αr and βr of Cobb Douglas MMF

Model αr βr γrij Restrictions

Cobb Douglas MMF αr βr γrij αr ≥ 0, βr ≥ 0

CS 1
2

1
2

πrij αr = βr = 1
2

DM 1 1 πrij αr = βr = 1

CSW σr

σr+Σr
Σr

σr+Σr

πr
ij

σr+Σr αr, βr > 0;αr + βr = 1

CSPE 1−φ0
2−φr−Φr

1−Φ0

2−φr−Φr

πr
ij

2−φr−Φr αr, βr ≥ 0, α
M

αC
= βM

βC

The CSPE MMF imposes the following restriction on the Cobb Douglas

MMF parameters:

αr

αr′
=
βr

βr′

which is a testable restriction. In other words, scale effects in the Cobb Douglas

are restricted under CSPE.

Although individual peer effect coefficients, i.e., Φ0, φ0, φr, and Φr are not

point identified, economically meaningful information can be learned through

the reduced form parameters αr, βr.

Lemma 3 Under CSPE, i.e., αr

βr = αr′

βr′ ,
αr

βr


= 1⇔ Φ0 = φ0

> 1⇔ Φ0 > φ0

< 1⇔ Φ0 < φ0.

With this result, we can know which gender’s value of being unmatched

is more sensitive to peer effects. For instance, if the coefficient on unmatched

males (αr) is smaller than that for unmatched females (βr) for both relation-

ships, then the value that women derive from being unmatched will be more

sensitive to peer effects than for men.

Lemma 4 Under CSPE, i.e., αr

αr′ = βr

βr′ ,
αr

αr′


= 1⇔ φr

′
+ Φr′ = φr + Φr

> 1⇔ φr + Φr > φr
′
+ Φr′

< 1⇔ φr + Φr < φr
′
+ Φr′ .
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This latter lemma says which type of relationship is more affected by the

peer effects. For instance, if the ratio of the coefficient of unmatched men

(women) in marriage is larger than the coefficient of unmatched men (women)

in cohabitation, then the value that a couple derives from cohabitation will be

more affected by peer effects than for marriage.

4 Empirical results

We study the marriage matching behavior of 26-30 years old women and 28-32

years old men with each other in the US for 1990, 2000 and 2010.

The 1990 and 2000 data is from the 5% US census. The 2010 data is from

aggregating three years of the 1% American Community Survey from 2008-

2010. A state year is considered as an isolated marriage market. There were 51

states which includes DC. Individuals are distinguished by their schooling level:

less than high school (L), high school graduate (M) and university graduate

(H).

A cohabitating couple is one where a respondent answered that they are

the “unmarried partner” of the head of the household.

An observation in the dataset is the number of (r, i, j) relationships in a

state year. Since there are three types of men and three types of women,

there are potentially 9 types of matches for each type of relationship, marriage

versus cohabitation.

Table 1 in Appendix A provides some summary statistics.

There are 1113 and 1283 non-zero number of cohabitations and marriages

respectively. There are close to an average of 50,000 males and females of

each type. The number of unmatched individuals exclude individuals whose

partners are not in the (r, i, j) matches considered here. For example, if a

woman has a husband older than 32, she will be counted in the number of

females with her educational level and excluded in the count of the unmatched.

There are close to an average of 20,000 unmatched individuals of each type.
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The educational distributions by types and year are in Figure 2.

Due the small numbers of cohabitations for some observations, we reduce

the effect of sampling error on our estimates by doing weighted regressions.15

Table 2 presents estimates of equation (3) by OLS. Although the OLS

estimates are inconsistent, the estimates anticipate what we will find by IV.

The smallest model, model 1, is in columns (1a) and (1b) where γsrtij = γrij.

The CS model, where αr = βr = 1
2
, cannot be rejected in column 1a at the

5% significance level. But there is already evidence against the CS model in

column 1b for the estimated coefficient on the unmatched females.16 We can

also reject the hypothesis of constant return to scale (CRS), α + β = 1, in

column 1b.

Model 2, in columns (2a) and (2b) add unrestricted year and match effects.

The estimated year effects show that compared with 1990, the gains to cohab-

itation increased in 2000 and again in 2010, whereas the gains to marriage fell

in 2000 and again in 2010.

Since the estimates of the match effects are difficult to interpret, we present

instead the local log odds, equation (18). With three types of individuals by

gender, there are four local log odds. In columns (2a) and (2b), all the local

log odds are significantly positive. Thus there is strong evidence for PAM by

educational attainment in both cohabitation and marriage. In fact PAM is

present in both cohabitation and marriage in all our empirical models. There

is mild evidence against CRS in columns (2a) and (2b).

Model 3, in columns (3a) and (3b) add state effects to the covariates. In

model 1, the R2s are in the 0.5 range. The R2s increase to 0.9 by adding match

and year effects in model 2. The R2s increase to 0.92 and 0.97 in columns (3a)

and (3b) respectively with the addition of state effects. As a descriptive model

of marital behavior by state and year, the Cobb Douglas MMF is a very good

15Each observation is weighted by the average of mst
i and fstj .

16In their empirical work which uses only time variations and aggregate data, CSW did

not reject αM = βM = 1
2 . We use both across state and time variations and so have a lot

more power to test the same hypothesis.
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summary of the data for these individuals.

The estimated coefficients on the unmatched increased significantly in

model 3 compared with the estimates in model 1 consistent with our hypothe-

sis that the error terms in model 1 are primarily gains to relationships effects.

Since the gain to a relationship is negatively correlated with the unmatched,

the estimates in model 1 are biased down relative to model 3. In model 3,

CRS is easily rejected.

The test of CSPE, that αM

βM
βC

αC
= 1, is in the second last row of the table.

CSPE cannot be rejected in all three models. And in model 3, the point

estimate of αM

βM
βC

αC
is essentially 1. As will also be the cases later, there will be

no evidence against CSPE in the model with match, state and year effects by

either OLS or IV.

Except for column (1a), the estimate of α
β

is smaller than one which means

that the peer effect coefficient for unmatched females, Φ0, is smaller than the

peer coefficient for unmatched males, φ0. Put another way, compared with

men, women’s utilities as unmatched are less affected by their peers choosing

to remain unmatched.

Finally in the last row of the Table 2, using lemma 2, we present the p-value

for testing independence of the log odds of cohabitation versus marriage with

respect to the sex ratio. Independence is not rejected at the 5% significance

level in models 1 and 3. It is rejected in model 2. As will be shown later, these

conclusions are not robust to IV estimation.

Table 3 presents IV estimates where the instruments for the unmatched,

µsti0 and µst0j, are the population supplies mst
i and f stj . Since the error terms in

the regressions represent the gains to a relationship and thus are negatively

correlated with the number of unmatched, we expect the IV estimates to be

larger than their OLS counterparts. Compared with their OLS counterparts,

the IV estimates of the coefficients of the unmatched are marginally larger.

They are significantly larger for model 3.

The IV estimates of the local log odds and year effects are similar to their

OLS counterparts. This should not be surprising. The R2s for the first stage
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regressions of the unmatched on population supplies exceed 0.95. Because the

IV estimates for the unmatched are larger than the OLS estimates, the IV

estimates of the constant term is smaller than their OLS counterparts.

Similar to the OLS estimates, the IV estimates for model 3 fits well. In-

terestingly, the estimates for α + β is close to 2 in column (3b), presenting

the most suggestive evidence for the DM MMF although we can reject α = 1

or β = 1. The estimates for cohabitation in column (3a) is less compelling

for DM. Still, there is significant evidence for both peer and scale effects in

marriage matching.

There is no evidence against CSPE. In particular in model 3, the point

estimate for αM

βM
βC

αC
is again essentially 1 and the standard error is small.

The one big difference in the IV estimates compared with the OLS es-

timates is the test of independence of the log odds of cohabitation versus

marriage with respect to the sex ratio. For all three models in Table 3, inde-

pendence is rejected at lower than the 1% significance level.

Table 4 presents IV estimates where we allow the marriage matching pat-

terns to change over time. Model 1, in columns 1a and 1b, includes time

varying match effects and year effects. Model 2, in columns 2a and 2b, add

state effects. Unsurprisingly, based on estimates of the local log odds in 1990,

PAM remains strong and significant. There is little evidence for systematic

changes in the local log odds in 2000, 10 years later. There is more evidence

for an increase in PAM along the main diagonal in cohabitation in 2010, 20

years later. There is also evidence of an increase in PAM in marriage between

high school graduates and less than high school graduates. In general, except

for a mild increase in PAM among cohabitants, there is little change in the

degree of complementarity of the relationship output functions between 1990

and 2010. The stability in marriage matching pattern was anticipated in CSW

and Siow (2015). This is in strong contrast to a loss of the gains to marriage

and an increase in the gains to cohabitation over the same period. Again,

there is little evidence against CSPE. Finally, independence is rejected around

the 5% significance level for model 2 and less than 1% for model 3.
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In summary, model 3 in Table 3, where gains to a relationship is captured

by match, state and year effects, provides a reasonable summary of marital

behavior for the individuals under study. Moreover, to a first order the match

effects have not changed significantly over the period of study. There is a

second order increase in PAM for cohabitants. Thus analysts can focus on

studying mechanisms which affected state and year effects to the gains in

relationships relative to remaining unmatched. Contrary to Botticini and Siow

(2008) but anticipated by Fernandez-Villaverde, et.al. (2014), Adamopoulou

(2012) and Drewianka (2003), peer and scale effects in the marriage market are

empirically important.17 Finally, independence of the log odds of the number

of marriages to cohabitation with respect to the sex ratio is rejected.

4.1 Behavioral interpretation of estimated peer effects

Here, we use CSPE to interpret our estimated model 3 in Table 3. First, the

condition for lemma 3 is satisfied and Φ0 < φ0. As discussed above, having

more unmatched women do not increase the utilities of unmatched women

as much as the same exercise for men. This result is apparently contrary to

Adamopolou. But Adamopolou’s estimates of peer effects only consist the

direct peer effects because she uses small peer groups to estimate her effects.

We use market level data which also include indirect (or scale) effects. Thus

our estimates and hers are not directly comparable.

We cannot identify whether women or men are more responsive to peer

effects in marriage or cohabitation due to our frictionless transferable utility

model where only the joint gain to marriage or cohabitation is identified.

Second, the condition for lemma 4 is satisfied and ΦC+φC < ΦM+φM. So

the mean value which an (i, j) couple derives from cohabitation is less sensitive

17Using across cities variation in the US, pre-reform China and medieval Tuscany, Botticini

and Siow’s (2008) could not reject constant returns to scale with an aggregate marriage rate.

This finding may be related to our inability to show that βr + αr > 1 implies increasing

returns with an aggregate unmatched rate.
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to peer effects than from marriage. Because cohabitation is a significantly

newer form of publicly accepted relationship, we expect the direct peer effect

of cohabitation to be stronger than marriage. Our estimates suggests that the

indirect (or scale) effects for marriage is stronger than that for cohabitation.

The above two conclusions on how peer effects affect marital behavior is

dependent on our estimates as well as our behavioral model, CSPE. We are

not aware of other estimates of these peer effects using aggregate data. Thus

we do not view our results as conclusive. Rather, we hope they will stimulate

more research on these effects.

5 Conclusion

This paper presented an easy to estimate and simulate MMF, the Cobb Dou-

glas MMF. Several behavioral MMFs are special cases including CSPE. Our

empirical results show that the Cobb Douglas MMF provides a reasonably

complete and parsimonous characterization of the recent evolution the US

marriage market. Scale effects are quantitatively important. Independence of

the log odds of the number of marriages to cohabitation with respect to the

sex ratio is rejected. We also show that changes in marital matching behavior

over this period are best explained by mechanisms which explain year and

state effects in the gains to relationships relative to remaining unmatched.

And as we discussed in the introduction, although we are partial to CSPE

and it is not rejected empirically, it should be clear that we propose the Cobb

Douglas MMF precisely because we do not want to insist on a particular

behavioral model of the marriage market. Rather, we view the evidence here

in support of CSPE as a proof of concept that it is a useful empirical model.

In order to keep the paper within a reasonable length, our empirical study

focused on a small subset of the marriageable population. Estimating the

model on a larger subset of the population is an important agenda for future

research. Also using the model to study particular mechanisms for marital
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change is another important topic for future research. For e.g., Cornelson

and Siow (2015) used a special case of the above framework to show that

increased earnings inequality cannot explain the decline the marriage rate of

young Americans from 1970 to 2010.

From an analytic perspective, we are working on sufficient conditions for

characterizing increasing and/or decreasing returns to scale. It will also be

useful to study other behavioral models which allow for more varied relation-

ships between the log odds of the number of marriages to cohabitation and

changes in the sex ratio. There is also room to investigate more general peer

effects specifications.
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Ismael Mourifié and Aloysius Siow (in process). “Marriage matching with fric-

tional transfers”.

Qian, Zhenchao, and Samuel H. Preston (1993). ”Changes in American mar-

riage, 1972 to 1987: Availability and forces of attraction by age and education.”

American Sociological Review : 482-495.

Ruzhansky, M., and M. Sugimoto (2013): “On Hadamard’s global inverse func-

tion theorem,” Working paper.

Sasaki, Hiroo, and Manabu Toda (1996): ”Two-sided matching problems with

32



externalities.” Journal of Economic Theory 70.1: 93–108.

Schoen, Robert (1981): ”The harmonic mean as the basis of a realistic two-sex

marriage model.” Demography 18.2: 201-216.

Shi, Xiaoxia, and Matthew Shum (2014): ”On Identification of a Beckerian

Marriage Matching Model.” California Institute of Technology manuscript.

Siow, Aloysius (2008) ”How does the marriage market clear? An empirical

framework.” Canadian Journal of Economics 41.4: 1121–1155.

Siow, Aloysius (2015). ”Testing Becker’s Theory of Positive Assortative Match-

ing.” Journal of Labor Economics.

Stevenson, Betsey and Justin Wolfers (2006) ”Bargaining in the Shadow of the

Law: Divorce Laws and Family Distress.” The Quarterly Journal of Economics:

267–288.

Stevenson, Betsey, and Justin Wolfers (2007) ”Marriage and Divorce: Changes

and Their Driving Forces.” Journal of Economic Perspectives: 27–52.

Thornton, Arland, and Linda Young-DeMarco (2001) ”Four decades of trends in

attitudes toward family issues in the United States: The 1960s through the 1990s.”

Journal of marriage and family 63.4: 1009–1037.

Waite, Linda J., and Christine Bachrach, (2004), eds. The ties that bind: Per-

spectives on marriage and cohabitation. Transaction Publishers, 2004.

Wolfers, Justin (2006) ”Did Unilateral Divorce Laws Raise Divorce Rates? A

Reconciliation and New Results.” American Economic Review 96 (5): 1802–1820.

33



A Figures and Tables

Figure 1: Marital Status by Gender and Year.
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Figure 2: Fraction of individual by gender, education and year.
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Table 1: Summary Statics∗.

 

Variable Obs Mean Std. Dev. Min Max 
N cohabitations 1113 710.7491 1367.211 3 15362 
N marriages 1283 5023.924 9981.822 6 118867 
N males 1377 49097.82 67662.33 174 568449 
N females 1377 48319.55 67411 143 580493 
N unmatched males 1377 20361.38 30701.33 165 262267 
N umatched females 1377 18757.32 28271.38 76 236391 
Year 1377 2000 8.167932 1990 2010 
 

*An observation is a state/year. There are 51 states which includes DC. Observations with 0 
cohabitation or marriages are excluded. 
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Table 2: Ordinary Least Square (OLS).

 

 1a 1b 2a 2b 3a 3b 

Dep. Var. LCOH LMAR LCOH LMAR LCOH LMAR 
LU_M (𝛼) 0.562 0.536 0.320 0.244 0.557 0.626 
 (0.041)** (0.048)** (0.075)** (0.061)** (0.084)** (0.056)** 
LU_F (β) 0.531 0.665 0.630 0.609 0.827 0.939 
 (0.040)** (0.047)** (0.076)** (0.058)** (0.078)** (0.051)** 

𝐿
𝐻𝐻 ∗𝑀𝑀
𝐻𝑀 ∗𝑀𝐻    2.31 

(0.078)** 
 

2.44 
(0.069)** 

2.290 
(0.071)** 

2.412 
(0.048)** 

𝐿
𝑀𝑀 ∗ 𝐿𝐿
𝐿𝑀 ∗𝑀𝐿    1.78 

(0.087)** 
 

2.52 
(0.082)** 

1.781 
(0.080)** 

2.464 
(0.063)** 

𝐿
𝐻𝑀 ∗𝑀𝐿
𝑀𝑀 ∗ 𝐻𝐿    0.784 

(0.147)** 
 

1.43 
(0.092)** 

0.796 
(0.145)** 

1.426 
(0.084)** 

𝐿
𝑀𝐻 ∗ 𝐿𝑀
𝑀𝑀 ∗ 𝐿𝐻    1.33 

(0.141)** 
1.37 

(0.101)** 
1.344 

(0.135)** 
1.379 

(0.083)** 
Y2000   0.289 -0.287 0.313 -0.277 
   (0.042)** (0.032)** (0.037)** (0.022)** 
Y2010   0.627 -0.604 0.615 -0.667 
   (0.041)** (0.037)** (0.040)** (0.030)** 
STATE     Y Y 
_cons -4.788 -3.981 -2.842 1.172 -7.359 -5.015 
 (0.383)** (0.441)** (0.196)** (0.158)** (0.772)** (0.543)** 
       
R2 0.51 0.45 0.90 0.95 0.92 0.97 
N 1,113 1,283 1,113 1,283 1,113 1,283 
       

𝛼
𝛽 1.058 

(0.137) 
0.806 

(0.115) 
0.508 

(0.178) 
0.400 

(0.138) 
0.673 

(0.146) 
0.667 

(0.082) 
𝛼 + 𝛽 1.093 

(0.039) 
1.202 

(0.045) 
0.950 

(0.018) 
0.853 

(0.016) 
1.384 

(0.079) 
1.57 

(0.057) 
𝛼ℳ

𝛽ℳ
𝛽𝒞

𝛼𝒞
 

 0.762 
(0.147) 

 0.788 
(0.387) 

 0.991 
(0.246) 

𝑝𝑟𝑜𝑏 𝛼ℳ = 𝛼𝒞

𝛽ℳ = 𝛽𝒞  

 

0.091  0.001  0.117 

       
* p<0.05; ** p<0.01 

37



Table 3: Instrumental Variable (IV).

 

 1a 1b 2a 2b 3a 3b 

Dep. Var. LCOH LMAR LCOH LMAR LCOH LMAR 
LU_M (𝛼) 0.574 0.599 0.267 0.164 0.556 0.728 
 (0.044)** (0.053)** (0.086)** (0.074)* (0.095)** (0.070)** 
LU_F (β) 0.527 0.717 0.682 0.731 0.915 1.186 
 (0.042)** (0.052)** (0.089)** (0.070)** (0.090)** (0.058)** 
       

𝐿
𝐻𝐻 ∗𝑀𝑀
𝐻𝑀 ∗𝑀𝐻    2.315 

(0.079)** 
2.436 
(0.073)** 

2.282 
(0.071)** 

2.393 
(0.051)** 

       

𝐿
𝑀𝑀 ∗ 𝐿𝐿
𝐿𝑀 ∗𝑀𝐿    1.783 

(0.087)** 
2.514 

(0.081)** 
1.773 

(0.080)** 
2.440 

(0.051)** 
       

𝐿
𝐻𝑀 ∗𝑀𝐿
𝑀𝑀 ∗ 𝐻𝐿    0.784 

(0.149) 
1.430 

(0.092)** 
0.802 

(0.147)** 
2.440 

(0.064)** 
       

𝐿
𝑀𝐻 ∗ 𝐿𝑀
𝑀𝑀 ∗ 𝐿𝐻    1.340 

(0.141) 
1.377 

(0.104)** 
1.350 

(0.135)** 
1.428 

(0.086)** 
       
Y2000   0.293 -0.277 0.320 -0.258 
   (0.042)** (0.035)** (0.038)** (0.025)** 
Y2010   0.624 -0.612 0.607 -0.694 
   (0.041)** (0.038)** (0.039)** (0.030)** 
STATE     Y Y 
_cons -4.806 -5.215 -2.806 0.775 -8.045 -8.216 
 (0.384)** (0.452)** (0.196)** (0.180)** (0.798)** (0.663)** 
       
R2 0.51 0.45 0.90 0.95 0.92 0.97 
N 1,113 1,283 1,113 1,283 1,113 1,283 
       

𝛼
𝛽 1.045 

(0.132) 
0.808 

(0.107) 
0.346 

(0.165) 
0.201 

(0.103) 
0.605 

(0.135) 
0.606 

(0.065) 
𝛼 + 𝛽 1.102 1.316 0.950 0.892 1.501 1.908 

 (0.038) (0.045) (0.018) (0.016) (0.082) (0.064) 
𝛼ℳ

𝛽ℳ
𝛽𝒞

𝛼𝒞
 

 0.771 
(0.140) 

 0.521 
(0.347) 

 1.00 
(0.249) 

𝑝𝑟𝑜𝑏 𝛼ℳ = 𝛼𝒞

𝛽ℳ = 𝛽𝒞  

	
  

 0.000  0.090  0.000 

       
* p<0.05; ** p<0.01 
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Table 4: IV with time varying match effects.

 

 1a 1b 2a 2b 

Dependent variable LCOH LMAR LCOH LMAR 
LU_M (𝛼) 0.415 0.357 0.576 0.754 
 (0.071)** (0.064)** (0.077)** (0.057)** 
LU_F (β) 0.528 0.524 0.688 0.885 
 (0.071)** (0.063)** (0.073)** (0.050)** 

𝐿
𝐻𝐻 ∗𝑀𝑀
𝐻𝑀 ∗𝑀𝐻

 
2.288 

(0.148)** 
2.458 

(0.087)** 
2.278 

(0.145)** 
2.440 

(0.045)** 

𝐿
𝑀𝑀 ∗ 𝐿𝐿
𝐿𝑀 ∗𝑀𝐿

 
1.504 

(0.116)** 
2.255 

(0. .121)** 
1.514 

(0.103)** 
2.198 

(0.067)** 

𝐿
𝐻𝑀 ∗𝑀𝐿
𝑀𝑀 ∗ 𝐻𝐿

 
1.169 

(0.283)** 
1.698 

(0.136)** 
0.787 

(0.211)** 
1.702 

(0.110)** 

𝐿
𝑀𝐻 ∗ 𝐿𝑀
𝑀𝑀 ∗ 𝐿𝐻

 
0.693 

(0.260)** 
1.305 

(0.134)** 
1.177 

(0.266)** 
1.313 

(0.119) 
     

𝐿
𝐻𝐻 ∗𝑀𝑀
𝐻𝑀 ∗𝑀𝐻

∗ 𝑌2000 
0.259 

(0.181) 
-0.011 
(0.191) 

0.663 
(0.230)** 

-0.097 
(0.119) 

𝐿
𝑀𝑀 ∗ 𝐿𝐿
𝐿𝑀 ∗𝑀𝐿

∗ 𝑌2000 
0.346 

(0.323)  
0.346 

(0.186) 
0.257 

(0.153) 
0.337 

(0.124)** 

𝐿
𝐻𝑀 ∗𝑀𝐿
𝑀𝑀 ∗ 𝐻𝐿

∗ 𝑌2000 
0.032 

(0.330) 
-0.279 
(0.187) 

0.332 
(0.317) 

-0.274 
(0.151) 

𝐿
𝑀𝐻 ∗ 𝐿𝑀
𝑀𝑀 ∗ 𝐿𝐻

∗ 𝑌2000 
1.133 

(0.252) 
-0.042 
(0.193) 

0.040 
(0.311) 

-0.052 
(0.152) 

     

𝐿
𝐻𝐻 ∗𝑀𝑀
𝐻𝑀 ∗𝑀𝐻

∗ 𝑌2010 
1.133 

(0.252)** 
-0.208 
(0.199) 

1.062 
(0.232)** 

-0.396 
(0.128) 

𝐿
𝑀𝑀 ∗ 𝐿𝐿
𝐿𝑀 ∗𝑀𝐿

∗ 𝑌2010 
0.692 

(0.190)** 
0.534 

(0.200)** 
0.679 

(0.181)** 
0.540 

(0.162)** 

𝐿
𝐻𝑀 ∗𝑀𝐿
𝑀𝑀 ∗ 𝐻𝐿

∗ 𝑌2010 
-0.384 
(0.261) 

-0.609 
(0.268)** 

-0.323 
(0.261) 

-0.655 
(0.246)** 

𝐿
𝑀𝐻 ∗ 𝐿𝑀
𝑀𝑀 ∗ 𝐿𝐻

∗ 𝑌2010 
0.394 

(0.392) 
0.264 

(0.234) 
0.391 

(0.376) 
0.237 

(0.203) 
Y2000 0.693 0.014 0.669 -0.071 
 (0.104)** (0.075) (0.091)** (0.054) 
Y2010 1.122 -0.097 1.061 -0.274 
 (0.102)** (0.079) (0.092)** (0.057)** 
STATE   Y Y 
_cons -3.075 0.618 -6.512 -5.900 
 (0.185)** (0.161)** (0.735)** (0.506)** 
R2 0.91 0.96 0.93 0.98 
N 1,113 1,283 1,113 1,283 
     

𝛼
𝛽

 0.786 
(0.239) 

0.681 
(0.203) 

0.836 
(0.174) 

0.852 
(0.096) 

𝛼 + 𝛽 0.943 0.881 1.264 1.640 
 (0.017) (0.016) (0.076) (0.055) 

𝛼ℳ

𝛽ℳ
𝛽𝒞

𝛼𝒞
 

 0.866 
(0.369) 

 1.019 
(0.241) 

𝑝𝑟𝑜𝑏 𝛼ℳ = 𝛼𝒞

𝛽ℳ = 𝛽𝒞  

	
  

 0.051  0.000 
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APPENDIX: FOR ONLINE PUBLICATION

B Existence and Uniqueness of the Matching

Equilibrium

To ease the notation, denote M ≡ a and C ≡ b in the rest of the paper.

The matching equilibrium in this model is characterized by the Cobb Douglas

MMF (4) and the population constraint equations

J∑
j=1

µaij +
J∑
j=1

µbij + µi0 = mi, 1 ≤ i ≤ I (20)

I∑
i=1

µaij +
I∑
i=1

µbij + µ0j = fj, 1 ≤ j ≤ J (21)

µ0j, µi0 ≥ 0, 1 ≤ j ≤ J, 1 ≤ i ≤ I.

Let m ≡ (m1, ...,mI)
′, f ≡ (f1, ..., fJ)′, µ ≡ (µ10, ..., µI0, µ01, ..., µ0J)′, γr ≡

(γr11, ..., γ
r
1I , ..., γ

r
I1, ..., γ

r
IJ)′ for r ∈ {a, b}, βr ≡ (βr11, ..., β

r
1I , ..., β

r
I1, ..., β

r
IJ)′,

αr ≡ (αr11, ..., α
r
1I , ..., α

r
I1, ..., α

r
IJ)′ β ≡ ((βa)′, (βb)′)′, α ≡ ((αa)′, (αb)′)′ and

θ ≡ ((γa)′, (γb)′, α′, β′)′. Let Γ be a closed and bounded subset of R2IJ such

that θ ∈ Γ× (0,∞)2. Equation (4) can be written as follows:

µrij = µ
αr
ij

i0 µ
βr
ij

0j e
γrij for r ∈ {a, b}. (22)

Now, let consider the following mapping g : (R∗+)I+J → (R∗+)I+J

gi(µ; θ) = µi0 +
J∑
j=1

µ
αa
ij

i0 µ
βa
ij

0j e
γaij +

J∑
j=1

µ
αb
ij

i0 µ
βb
ij

0j e
γbij , for 1 ≤ i ≤ I, (23)

gj+I(µ; θ) = µ0j +
I∑
i=1

µ
αa
ij

i0 µ
βa
ij

0j e
γaij +

I∑
i=1

µ
αb
ij

i0 µ
βb
ij

0j e
γbij , for 1 ≤ j ≤ J. (24)

This mapping is obtained by just rewriting the left side of the population

constraints with the Cobb Douglas MMF. We show later in Section B.1 that
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for every θ ∈ Γ × (0,∞)2 g is a proper mapping18 and that the Jacobian

of g(µ; θ) (i.e. Jg(µ; θ)) does not vanish for all µ in (R∗+)I+J . Thus, we can

invoke Hadamard’s theorem 19 (see Krantz and Park (2003, Theorem 6.2.8 p

126)), which tells us that g is an homeomorphism i.e. (one-to-one mapping)

whenever the latter two properties of g hold. Then, for every θ ∈ Γ× (0,∞)2

and for all m > 0 and f > 0 the system of equations

µi0 +
J∑
j=1

µ
αa
ij

i0 µ
βa
ij

0j e
γaij +

J∑
j=1

µ
αb
ij

i0 µ
βb
ij

0j e
γbij = mi, for 1 ≤ i ≤ I (25)

µ0j +
I∑
i=1

µ
αa
ij

i0 µ
βa
ij

0j e
γaij +

I∑
i=1

µ
αb
ij

i0 µ
βb
ij

0j e
γbij = fj, for 1 ≤ j ≤ J. (26)

admit a unique solution 0 < µ < (m′, f ′)′. Therefore the equilibrium matching

of the Cobb Douglas MMF model exists and is unique. The following theorem

summarizes our discussion:

B.1 Proof of Theorem 1

Proof. Consider the following continuously differentiable function g : (R∗+)I+J →
(R∗+)I+J

gi(µ) = µi0 +
J∑
j=1

µ
αa
ij

i0 µ
βa
ij

0j e
γaij +

J∑
j=1

µ
αb
ij

i0 µ
βb
ij

0j e
γbij , (27)

gj+I(µ) = µ0j +
I∑
i=1

µ
αa
ij

i0 µ
βa
ij

0j e
γaij +

I∑
i=1

µ
αb
ij

i0 µ
βb
ij

0j e
γbij . (28)

Notice that,

µ
αr
ij

i0 µ
βr
ij

0j e
γrij = eα

r
ij lnµi0+βr

ij lnµ0j+γrij ,

≡ eδ
r
ij .

18A continuous function between topological spaces is called proper if the inverse images

of compact subsets are compact.
19We thank Marcin Peski for pointing to us out this Hadamard’s result.
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Therefore, the mapping g(µ) can be written equivalently as follows:

gi(µ) = µi0 +
J∑
j=1

eδ
a
ij +

J∑
j=1

eδ
b
ij , (29)

gj+I(µ) = µ0j +
I∑
i=1

eδ
a
ij +

I∑
i=1

eδ
b
ij . (30)

Let Jg(µ) be the Jacobian of g. After a simple derivation we can show that

Jg(µ) takes the following form:

Jg(µ) =

(
(Jg)11(µ) (Jg)12(µ)

(Jg)21(µ) (Jg)22(µ)

)
with

(Jg)11(µ) =


1 +

∑J
j=1

[
αa
1j

µ10
eδ

a
1j +

αb
1j

µ10
eδ

b
1j

]
· · · 0

...
. . .

...

0 · · · 1 +
∑J

j=1

[
αa
Ij

µI0
eδ

a
Ij +

αb
Ij

µI0
eδ

b
Ij

]
,

(Jg)12(µ) =


βa
11

µ01
eδ

a
11 +

βb
11

µ01
eδ

b
11 · · · βa

1J

µ0J
eδ

a
1J +

βb
1J

µ0J
eδ

b
1J

...
. . .

...
βa
I1

µ01
eδ

a
I1 +

βb
I1

µ01
eδ

b
I1 · · · βa

IJ

µ0J
eδ

a
IJ +

βb
IJ

µ0J
eδ

b
IJ

,

(Jg)21(µ) =


αa
11

µ10
eδ

a
11 +

αb
11

µ10
eδ

b
11 · · · αa

I1

µI0
eδ

a
I1 +

αb
I1

µI0
eδ

b
I1

...
. . .

...
αa
1J

µ10
eδ

a
1J +

αb
1J

µ10
eδ

b
1J · · · αa

IJ

µI0
eδ

a
IJ +

αb
IJ

µI0
eδ

b
IJ

,

(Jg)22(µ) =


1 +

∑I
i=1

[
βa
i1

µ01
eδ

a
i1 +

βb
i1

µ01
eδ

b
i1

]
· · · 0

...
. . .

...

0 · · · 1 +
∑I

i=1

[
βa
iJ

µ0J
eδ

a
iJ +

βb
iJ

µ0J
eδ

b
iJ

]
.

.

Claim 1 The Jacobian Jg(µ) does not vanish for all µ in (R∗+)I+J .

Proof. Jg(µ) is a column diagonally dominant matrix or diagonally dominant

in the sense of McKenzie (1960) and therefore Jg(µ), for all µ > 0, is a non-

singular matrix. See McKenzie (1960, p 47-50) for more details on this result.

Indeed, let us denote every element of Jg(µ), bk,l with 1 ≤ k, l ≤ I + J . Jg(µ)

42



is diagonally dominant in the sense of McKenzie (1960) if there exist numbers

dl > 0 such that dl|bll| >
∑I+J

k 6=l dk|bkl| for l = 1, ..., I + J . Here, it is sufficient

to take dl = 1 for 1 ≤ l ≤ I+J . Indeed, if you take one element in the diagonal

of the matrix (Jg)11(µ), it can be seen that this element is greater than the

summation of all elements in the same column of the matrix (Jg)21(µ).

Claim 2 (R∗+)I+J is a smooth manifold and simply connected.

Claim 3 g is proper.

Proof.

Definition 1 Let X, Y be topological spaces and g: X→ Y be a mapping. g is

said to be proper if whenever K ⊆ Y is compact then g−1(K) ⊆ X is compact.

Krantz and Park (2003, p 125) pointed out the following lemma that gives

more operational criteria for checking if a mapping is proper.

Lemma 5 Let U and V be connected open sets in RI+J , g: U → V is a proper

mapping if and only if whenever {xj} ⊆ U satisfies xj → ∂U then g(xj)→ ∂V .

Notice that ∂V is used for the boundary of set V . Therefore, the following

result completes the proof; define µ = (0, ..., 0, 0, ..., 0)′ and

µ = (+∞, ...,+∞,+∞, ...,+∞)′. We can easily show that limµ→µg(µ) =

(0, ..., 0, 0, ..., 0)′ and limµ→µg(µ) = (+∞, ...,+∞,+∞, ...,+∞)′. Notice that

there are many different ways to show that our mapping g(.) is proper as

soon as we remark that gi(µ) > µi0. After presenting the previous claims,

we can now invoke Hadamard’s theorem as stated in Krantz and Park (2003,

Theroem 6.2.8 p 126). This theorem ensures that g is an homeomorphism.

Moreover, it is easy to see that the solution µeq of system of equations (25)

satisfies the restriction 0 < µeq < (m′, f ′)′. Notice that the existence of at

least an equilibrium can be shown by invoking Brouwer’s fixed point theorem.

It is also worth noting that the same proof can be used for a more general

MMF i.e., µij = g(µi0, µ0j) as used in Galichon and al (2014) and the latter

can be extended to multiple relationship as entertained here. This completes

our proof.
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C Comparative Statistics

C.1 Fixed point representation of the equilibrium of the

Cobb Douglas MMF

After rearranging equation (22) we have four equalities that holds for all (i, j)

pairs:

µrij
µi0

= exp
[
γrij + (αr − 1) lnµi0 + βr lnµ0j

]
≡ ηrij for r ∈ {a, b}, (31)

µrij
µ0j

= exp
[
γrij + αr lnµi0 + (βr − 1) lnµ0j

]
≡ ζrij for r ∈ {a, b}. (32)

Using equations (31) and (32) we have:

J∑
j=1

µaij +
J∑
j=1

µbij = µi0

J∑
j=1

[
ηaij + ηbij

]
, 1 ≤ i ≤ I,

I∑
i=1

µaij +
I∑
i=1

µbij = µ0j

I∑
i=1

[
ζaij + ζbij

]
, 1 ≤ j ≤ J.

Manipulating the population constraints (20), (21) we have the following:

µi0 =
mi

1 +
∑J

j=1

[
ηaij + ηbij

] ≡ Bi0, 1 ≤ i ≤ I (33)

µ0j =
fj

1 +
∑I

i=1

[
ζaij + ζbij

] ≡ B0j, 1 ≤ j ≤ J. (34)

Let B(µ;m, f, θ) ≡ (B10(.), ..., BI0(.), B01(.), ..., B0J(.))′. For a fixed θ we have

shown that the (I + J) vector µ of the number of agents of each type who

choose not to match is a solution to (I + J) vector of implicit functions

µ−B(µ;m, f, θ) = 0. (35)

Let Tε = {ε ≤ µ10 ≤ m1, ..., ε ≤ µI0 ≤ mI , ε ≤ µ01 ≤ f1, ..., ε ≤ µ0J ≤ fJ}
be a closed and bounded rectangular region in RI+J with ε some arbitrarily
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small positive constant. We know from Theorem 1 that the fixed point repre-

sentation has a unique solution µeq > 0. We can verify that µeq ∈ Tε. Now,

let J(µ) = II+J − 5µB(µ;m, f, θ) with 5µB(µ;m, f, θ) = ∂B(µ;m,f,θ)
∂µ′

be the

(I + J)× (I + J) Jacobian matrix associated with (36). For a fixed θ we have

shown that the (I + J) vector µ of the number of agents of each type who

choose not to match is a solution to (I + J) vector of implicit functions

µ−B(µ;m, f, θ) = 0. (36)

C.2 Comparative Statistics

Theorem 2 Let µ be the equilibrium matching distribution of the Cobb Dou-

glas MMF model. If the coefficients βr and αr respect the restrictions

1. 0 < βr;αr ≤ 1 for r ∈ {M, C};

2. max(βC − αC, βM − αM) < mini∈I

(
1−ρmi
ρmi

)
;

3. min(βC − αC, βM − αM) > −maxj∈J

(
1−ρfj
ρfj

)
;

where ρmi is the rate of matched men of type i and ρfj is the rate of matched

women of type j, then the following inequalities hold in the neighbourhood of

µeq:

1. Type-specific elasticities of unmatched.

(a) mi

µk0

∂µk0
∂mi
≥


1
m∗i

mk

m∗k

∑J
j=1

[αMµMkj +αCµCkj ][βMµMkj +βCµCkj ]

f∗j
> 0 if k 6= i

mi

m∗i
[1 + 1

m∗i

∑J
j=1

[αMµMij +αCµCij ][βMµMij +βCµCij ]

f∗j
] > 1 if k = i,

1 ≤ k ≤ I.

(b)
fj
µ0k

∂µ0k
∂fj
≥


1
f∗j

fk
f∗k

∑I
i=1

[αMµMik +αCµCik][βMµMik +βCµCik]

m∗i
> 0 if k 6= j

fj
f∗j

[1 + 1
f∗j

∑I
i=1

[αMµMij +αCµCij ][βMµMij +βCµCij ]

m∗i
] > 1 if k = j,

1 ≤ k ≤ J ,
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(c)

mi

µ0j

∂µ0j

∂mi

≤ −
[αMµMij + αCµCij]

m∗i f
∗
j

mi < 0, for 1 ≤ i ≤ I and 1 ≤ j ≤ J,

(d)

fj
µi0

∂µi0
∂fj
≤ −

[βMµMij + βCµCij]

m∗i f
∗
j

fj < 0, for 1 ≤ i ≤ I and 1 ≤ j ≤ J,

2. Variation of the log ratio ln
µMij
µCij

:

If αM > αC and βC > βM we have

(a) 1
∂mi

[ln
µMkj
µCkj

] ≥



αM−αC
m∗imi

mk

m∗k

∑J
j=1

[αMµMkj +αCµCkj ][βMµMkj +βCµCkj ]

f∗j

+(βM − βC) [αMµMij +αCµCij ]

m∗i f
∗
j

> 0 if k 6= i

αM−αC
m∗i

[
1 + 1

m∗i

∑J
j=1

[αMµMij +αCµCij ][βMµMij +βCµCij ]

f∗j

]
+(βM − βC) [αMµMij +αCµCij ]

m∗i f
∗
j

> αM − αC if k = i,

1 ≤ k ≤ I

(b) 1
∂fj

[ln
µMik
µCik

] ≤



βM−βC
f∗j fj

fk
f∗k

∑I
i=1

[αMµMik +αCµCik][βMµMik +βCµCik]

m∗i

−(αM − αC) [βMµMij +βCµCij ]

m∗i f
∗
j

< 0 if k 6= j

βM−βC
f∗j

[1 + 1
f∗j

∑I
i=1

[αMµMij +αCµCij ][βMµMij +βCµCij ]

m∗i
]

−(αM − αC) [βMµMij +βCµCij ]

m∗i f
∗
j

fj < −(αM − αC) if k = j,

1 ≤ k ≤ J

where

m∗i ≡ mi −
J∑
j=1

[(1− αM)µMij + (1− αC)µCij], for 1 ≤ i ≤ I,

f ∗j ≡ fj −
I∑
i=1

[(1− βM)µMij + (1− βC)µCij], for 1 ≤ j ≤ J.
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It is worth noting that the restriction imposed on βr and αr are only neces-

sary and would be very mild depending on the model. For instance, those

restrictions directly holds for the CS and DM model; Graham (2013) shows

that those restrictions are not necessary to derive the comparative statistics

in the CSW model.

C.3 Proof of Theorem 2

All derivation in this section will be done at the matching equilibrium µeq.

However, to ease notation we will use the notation µ.

Proof.

Step 0: Derivation of the J(µ) matrix.

To ease the notation, in the following we will use B(µ) to denote B(µ;m, f, θ)

whenever no confusion is possible.

J(µ) = II+J −5µB(µ). After tedious but simple manipulations we can show

that

5µB(µ) =

(
E11(µ) E12(µ)

E21(µ) E22(µ)

)
with

E11(µ) = diag
{∑J

j=1 ej|1(µ), ...,
∑J

j=1 ej|I(µ)
}

,

E22(µ) = diag
{∑I

i=1 gi|1(µ), ...,
∑I

i=1 gi|J(µ)
}

where

ej|i = mi

µi0

[
(1−αa)ηaij+(1−αb)ηbij(

1+
∑J

j=1[ηaij+ηbij ]

)2

]
, gi|j =

fj
µ0j

[
(1−βa)ζaij+(1−βb)ζbij(

1+
∑I

i=1[ζaij+ζbij ]

)2

]
.

E12(µ) = −


µ10
µ01
ê1|1 · · · µ10

µ0J
êJ |1

...
. . .

...
µI0
µ01
ê1|I · · · µI0

µ0J
êJ |I

, E21(µ) = −


µ01
µ10
ĝ1|1 · · · µ01

µI0
ĝI|1

...
. . .

...
µ0J
µ10
ĝ1|J · · · µ0J

µI0
ĝI|J


where

êj|i = mi

µ0j

[
βaηaij+βbηbij(

1+
∑J

j=1[ηaij+ηaij ]

)2

]
, ĝi|j =

fj
µi0

[
αaζaij+αbζbij(

1+
∑I

i=1[ζaij+ζbij ]

)2

]
.

Now, it is important to remark that at the equilibrium when (36) holds, we

get simplified versions of ej|i, gi|j, êj|i, and ĝi|j which are the following:

ej|i =
(1−αa)ηaij+(1−αb)ηbij

1+
∑J

j=1[ηaij+ηbij ]
= 1

mi
[(1− αa)µaij + (1− αb)µbij];
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gj|i =
(1−βa)ζaij+(1−βb)ζbij

1+
∑I

i=1[ζaij+ζbij ]
= 1

fj
[(1− βa)µaij + (1− βb)µbij];

êj|i =
βaηaij+βbηbij

1+
∑J

j=1[ηaij+ηbij ]
= 1

mi
[βaµaij + βbµbij];

ĝj|i =
αaζaij+αbζbij

1+
∑I

i=1[ζaij+ζbij ]
= 1

fj
[αaµaij + αbµbij];

An appropriate adaptation of the supplement calculation of Graham (2013)

(not published) would help the reader to understand some details of the cal-

culations, that we have done here. Note that 0 <
∑J

j=1 ej|i(µ) < 1, for all

1 ≤ i ≤ I, and 0 <
∑I

i=1 gi|j(µ) < 1 for all 1 ≤ j ≤ J whenever 0 < βr < 1

and 0 < αr < 1 for r ∈ {a, b}. Now, we can write J(µ) at the equilibrium. We

have the following: J(µ) =

(
J11(µ) J12(µ)

J21(µ) J22(µ)

)
where J11(µ) = I{I} − E11(µ), J22(µ) = I{J} − E22(µ), J12(µ) = −E12(µ),

J21(µ) = −E21(µ)

Step 1: Factorization of the J(µ) matrix

Recall J(µ) =

(
J11(µ) J12(µ)

J21(µ) J22(µ)

)
, where

J12(µ) = diag(m)−1

{
βa


µ10
µ01
µa11 · · ·

µ10
µ0J
µa1J

...
. . .

...
µI0
µ01
µaI1 · · ·

µI0
µ0J
µaIJ

+βb


µ10
µ01
µb11 · · ·

µ10
µ0J
µb1J

...
. . .

...
µI0
µ01
µbI1 · · ·

µI0
µ0J
µbIJ


}

Define diag(µ·0) = diag(µ10, ..., µI0), diag(µ0·) = diag(µ01, ..., µ0J) and Rr =
µr11 · · · µr1J
...

. . .
...

µrI1 · · · µrIJ

 Therefore,

J12(µ) = diag(µ.0)diag(m)−1[βaRa + βbRb]diag(µ0.)
−1

Similarly, we can show that J21(µ) can be factored as follows:

J21(µ) = diag(µ0.)diag(f)−1[αa(Ra)′ + αb(Rb)′]diag(µ.0)−1

We also factor also J11(µ) and J22(µ) as follows:

J11(µ) = II − diag(m)−1[(1− αa)Ra
ιJ + (1− αa)Rb

ιJ ],

J22(µ) = IJ − diag(f)−1[(1− βa)(Ra)′ιI + (1− βb)(Rb)′ιI ].
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where Rr
ιJ = (

∑J
j=1 µ

r
1j, ...,

∑J
j=1 µ

r
Ij)
′ and (Rr)ιI = (

∑I
i=1 µ

r
i1, ...,

∑I
i=1 µ

r
iJ).

After rearranging we can show that:

J(µ) = C(µ)−1[A(µ) + U(µ)B0(µ)U(µ)−1]

where

C(µ) =

(
diag(m) 0

0 diag(f)

)

A(µ) =

(
diag(m− (1− αa)Ra

ιJ − (1− αb)Rb
ιJ) 0

0 diag(f − (1− βa)(Ra)′ιI − (1− βb)(Rb)′ιI)

)

U(µ) =

(
diag(µ.0) 0

0 diag(µ0.)

)

B0(µ) =

(
0 βaRa + βbRb

αa(Ra)′ + αb(Rb)′ 0)

)
.

Therefore, J(µ) can be equivalently rewritten as:

J(µ) = U(µ)C(µ)−1[A(µ) +B0(µ)]U(µ)−1

= U(µ)H(µ)U(µ)−1

where

H(µ) = C(µ)−1[A(µ) +B0(µ)].

Let us write H(µ) in detail:

H(µ) =

(
H11(µ) H12(µ)

H21(µ) H22(µ)

)
with

H11(µ) =


1−

∑J
j=1[(1−αa)µa1j+(1−αb)µb1j ]

m1
· · · 0

...
. . .

...

0 · · · 1−
∑J

j=1[(1−αa)µaIj+(1−αb)µbIj ]

mI

, H12(µ) =


βaµa11+βbµb11

m1
· · · βaµa1J+βbµb1J

m1

...
. . .

...
βaµaI1+βbµbI1

mI
· · · βaµaIJ+βbµbIJ

mI

, H21(µ) =


αaµa11+αbµb11

f1
· · · αaµaI1+αbµbI1

f1
...

. . .
...

αaµa1J+αbµb1J
fJ

· · · αaµaIJ+αbµbIJ
fJ

,
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H22(µ) =


1−

∑I
i=1[(1−βa)µai1+(1−βb)µbi1]

f1
· · · 0

...
. . .

...

0 · · · 1−
∑I

i=1[(1−βa)µaiJ+(1−βb)µαbbiJ ]

fJ

.

Similar to Graham (2013, p 16), we observe that all elements of H(µ) are

non-negative whenever 0 < βr;αr ≤ 1.

Step 2: Derivation of M-matrix property

The main goal of this step is to show that the Schur complements of H(µ)

the upper I × I (H11) and lower J × J (H22) diagonal blocks, (i.e. SH11 =

H22 −H21H
−1
11 H12 and SH22 = H11 −H12H

−1
22 H21) are M-matrices which im-

plies SH−1
11 = 0 and SH−1

22 = 0. To show that, we first need to show that

H(µ) is row diagonally dominant. In other terms, if we denote the element

of H(µ), hij with 1 ≤ i, j ≤ I + J we need to show that there exist di > 0

such that di|hii| >
∑I+J

j 6=i dj|hij|. This will be difficult to show without further

restrictions on βr and αr. Graham (2013, p15) showed this result in the partic-

ular case where the two following restrictions hold simultaneously: βr + αr=1

and βa = βb. Here, we will impose some conditions on the coefficients βr and

αr that ensure H(µ) to be row diagonally dominant. Let first assume that

0 < βr;αr < 1, then hij ≥ 0 for 1 ≤ i, j ≤ I + J .

Case 1: 1 ≤ i ≤ I

|hii| >
I+J∑
j 6=i

|hij| ⇔
J∑
j=1

(
(1− αa + βa)µaij + (1− αb + βb)µbij

)
< mi.(37)

Notice that

max
(

(1− αa + βa), (1− αb + βb)
) J∑
j=1

(
µaij + µbij

)
< mi ⇒

J∑
j=1

(
(1− αa + βa)µaij + (1− αb + βb)µbij

)
< mi,
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and

max
(

(1− αa + βa), (1− αb + βb)
) J∑
j=1

(
µaij + µbij

)
< mi ⇔

max
(

(1− αa + βa), (1− αb + βb)
)
ρmi < 1,

where ρmi ≡
mi−µi0
mi

is the rate of matched men of type i. The latter inequality

is equivalent to max(βb−αb, βa−αa) < 1−ρmi
ρmi

. Therefore, if max(βb−αb, βa−
αa) <

1−ρmi
ρmi

for all i then |hii| >
∑I+J

j 6=i |hij|.
Case 2: I + 1 ≤ i ≤ I + J.

Similarly, we can show that if min(βb − αb, βa − αa) > −1−ρfj
ρfj

for all j where

ρfj ≡
fj−µ0j
fj

is the rate of matched women of type j, then we have |hii| >∑I+J
j 6=i |hij|.

Assume that the two latter restrictions on βr and αr hold in the rest of the

proof. The Schur complements of the H(µ) upper I×I and lower J×J diago-

nal blocks are SH11 = H22−H21(H11)−1H12 and SH22 = H11−H12(H22)−1H21.

Since H has been showed to be diagonally dominant, Theorem 1 of Carlson and

Markham (1979 p 249) implies that the two schur complements are also diago-

nally dominant. Therefore, SH11 and SH22 are also row diagonally dominant.

We can easily see that SH11 and SH22 are also Z-matrices (i.e., members of

the class of real matrices with nonpositive off-diagonal elements). By applying

Theorem 4.3 of Fiedler and Ptak (1962) it follows that they are M-matrices

and then SH−1
11 = 0 and SH−1

22 = 0. These results are sufficient to establish

the sign structure of H−1(µ). H−1(µ) =

(
W11 W12

W21 W22

)
=


+

... −
. . . . . .

− ... +

 where

Wij are exactly defined as defined in Graham (2013. p 16).

Step 3: Derivation of H−1(µ)
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Following Graham we can show the following inequalities:

W11 ≥ H−1
11 +H−1

11 H12H
−1
22 H21H

−1
11 = LW11

W22 ≥ H−1
22 +H−1

22 H21H
−1
11 H12H

−1
22 = LW22

W12 ≤ −H−1
11 H12H

−1
22 = UW12

W21 ≤ −H−1
22 H21H

−1
11 = UW21.

Using the expression of the matrix H(µ) and after some tedious calculations

we can show the following: LW11 = H−1
11 +

1
m∗1

m1

m∗1

∑J
j=1

[αaµa1j+αbµb1j ][βaµa1j+βbµb1j ]

f∗j
· · · 1

m∗1

mI

m∗I

∑J
j=1

[αaµaIj+αbµbIj ][βaµa1j+βbµb1j ]

f∗j
...

. . .
...

1
m∗I

m1

m∗1

∑J
j=1

[αaµa1j+αbµb1j ][βaµaIj+βbµbIj ]

f∗j
· · · 1

m∗I

mI

m∗I

∑J
j=1

[αaµaIj+αbµbIj ][βaµaIj+βbµbIj ]

f∗j


where

m∗i ≡ mi −
J∑
j=1

[(1− αa)µaij + (1− αb)µbij], for all 1 ≤ i ≤ I

and

f ∗j ≡ fj −
I∑
i=1

[(1− βa)µaij + (1− βb)µbij], for all 1 ≤ j ≤ J.

Moreover, we can show that:

(LW11)ii =
mi

m∗i

[
1 +

1

m∗i

J∑
j=1

[αaµaij + αbµbij][β
aµaij + βbµbij]

f ∗j

]
> 1,

for all 1 ≤ i ≤ I. Therefore we have LW11 > II . Similarly, we have also the

following:

LW22 = H−1
22 +

1
f∗1

f1
f∗1

∑I
i=1

[αaµai1+αbµbi1][βaµai1+βbµbi1]

m∗i
· · · 1

f∗1

fJ
f∗J

∑I
i=1

[αaµai1+αbµbi1][βaµaiJ+βbµbiJ ]

m∗i
...

. . .
...

1
f∗J

f1
f∗1

∑I
i=1

[αaµaiJ+αbµbiJ ][βaµai1+βbµbi1]

m∗i
· · · 1

f∗J

fJ
f∗J

∑I
i=1

[αaµaiJ+αbµbiJ ][βaµaiJ+βbµbiJ ]

m∗i


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Moreover, we can show that:

(LW22)jj =
fj
f ∗j

[
1 +

1

f ∗j

I∑
i=1

[αaµaij + αbµbij][β
aµaij + βbµbij]

m∗i

]
> 1,

for all 1 ≤ j ≤ J . Therefore, we have LW11 > IJ . Now, let us look at the

off-diagonal blocks of H(µ)−1.

UW12 = −


[βaµa11+βbµb11]

m∗1f
∗
1

f1 · · ·
[βaµa1J+βbµb1J ]

m∗1f
∗
J

fJ
...

. . .
...

[βaµaI1+βbµbI1]

m∗If
∗
1

f1 · · ·
[βaµaIJ+βbµbIJ ]

m∗If
∗
J

fJ



and UW21 = −


[αaµa11+αbµb11]

m∗1f
∗
1

m1 · · · [αaµaI1+αbµbI1]

m∗1f
∗
J

mI

...
. . .

...
[αaµa1J+αbµb1J ]

m∗If
∗
1

m1 · · ·
[αaµaIJ+αbµbIJ ]

m∗If
∗
J

mI


Step 4: Main results

Case 1: Type specific elasticities of single hood

By applying the implicit function theorem to the equation (36) we have: ∂µ
∂mi

=

J(µ)−1 ∂B
∂mi

for 1 ≤ i ≤ I and ∂µ
∂fj

= J(µ)−1 ∂B
∂fj

for all 1 ≤ j ≤ J , where
∂B
∂mi

= (0, ..., 0, µi0
mi
, 0, ..., 0)′ and ∂B

∂fj
= (0, ..., 0,

µ0j
fj
, 0, ..., 0)′ are (I + J) vectors

such that the non-zero entries are respectively at the ith row and the (I + j)th

row. Let hk = (0, ..., 0, 1, 0, ..., 0)′ be a (I + J) vector such that the non-zero

entry is at the kth row. We have the following:

U(µ)−1 ∂µ

∂mi

mi = U(µ)−1J(µ)−1 ∂B

∂mi

mi

= H(µ)−1U(µ)−1hiµi0

= H(µ)−1hi

= [H(µ)−1]·i (38)

for 1 ≤ i ≤ I, where [H(µ)−1]·i represents the ith column of the matrix H(µ)−1.

Similarly, we can show that U(µ)−1 ∂µ
∂fj
fj = [H(µ)−1]·(I+j) for 1 ≤ j ≤ J .

Putting these results together, we get the following inequalities:
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mi

µk0

∂µk0
∂mi
≥


1
m∗i

mk

m∗k

∑J
j=1

[αaµakj+αbµbkj ][βaµakj+βbµbkj ]

f∗j
> 0 if k 6= i

mi

m∗i
[1 + 1

m∗i

∑J
j=1

[αaµaij+αbµbij ][βaµaij+βbµbij ]

f∗j
] > 1 if k = i,

for 1 ≤ k ≤

I.

fj
µ0k

∂µ0k
∂fj
≥


1
f∗j

fk
f∗k

∑I
i=1

[αaµaik+αbµbik][βaµaik+βbµbik]

m∗i
> 0 if k 6= j

fj
f∗j

[1 + 1
f∗j

∑I
i=1

[αaµaij+αbµbij ][βaµaij+βbµbij ]

m∗i
] > 1 if k = j,

for 1 ≤ k ≤

J .

mi

µ0j

∂µ0j

∂mi

≤ −
[αaµaij + αbµbij]

m∗i f
∗
j

mi < 0

and
fj
µi0

∂µi0
∂fj
≤ −

[βaµaij + βbµbij]

m∗i f
∗
j

fj < 0

for 1 ≤ i ≤ I and 1 ≤ j ≤ J .

C.4 Proof of Proposition 1

Recall, from the result of Theorem 1 we know that the fixed point represen-

tation (36) admits a unique solution. Therefore, µ − B(µ;m, f, θ) must be

at least locally invertible at the equilibrium. This ensures that it jacobian

matrix J(µ) does not vanish at the equilibrium. Then, det(J(µ)) 6= 0 for

all βr, αr > 0. Since we shown within Step 1 of proof of Theorem 2 that

J(µ) = U(µ)H(µ)U(µ)−1 for all βr, αr > 0, we have then det(H(µ)) 6= 0.

Moreover, we have shown that

I∑
i=1

U(µ)−1 ∂µ

∂mi

mi +
J∑
j=1

U(µ)−1 ∂µ

∂fj
fj =

I∑
i=1

[H(µ)−1]·i +
J∑
j=1

[H(µ)−1]·(I+j).

If βr + αr = 1, we observe that all elements of H(µ) are non-negative and the

rows sum to one. Therefore, H(µ) is a row stochastic matrix, see Horn and

Johnson (2013, p.547), with an inverse whose rows also sum to one. Then,

[H(µ)−1]·i +
J∑
j=1

[H(µ)−1]·(I+j) = ιI+J .
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where ιI+J = (1, ..., 1)′. The last equality holds since the rows of [H(µ)−1] sum

to one.
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