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Abstract 

Normally, the temperature decreases with altitude, allowing air pollutants to rise and disperse. 

During inversion episodes, warmer air at higher altitude traps air pollutants at the ground. By 

merging vertical temperature profile data from NASA to pollution monitors, and health care 

records we show that inversions increase PM10 levels by 30% and children’s respiratory health 

problems by 5%. Low-income children are particularly affected, and poor air quality contribute 

to the steepening income-health gradient over the child’s life-cycle. Differences in baseline 

health seem to be a key mediating factor behind the SES-gap. Inversions reduce parents labor 

supply by 2.9%. 
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1 Introduction 

It is well documented that adults with low socioeconomic status (SES) have worse health than 

those with high SES. Case, Lubotsky and Paxson (2002) trace the origins of the SES-health 

gradient back to childhood, show that the gap is present at birth, and that it becomes more 

pronounced during the child’s life cycle. The gradient steepen primarily due to that children in 

low-SES households experience health shocks more frequently, and respiratory diseases account 

for much of the SES gap in the arrival rate of chronic health conditions (Currie and Stabile, 

2003). Childhood health affects adult health, but may also affect later wellbeing and productivity 

indirectly via cross-productivity in the accumulation of cognitive and non-cognitive skills 

(Currie and Stabile, 2003; Heckman, 2007). Yet, despite the key importance for the design of 

policies intending to reduce inequality in opportunities, the causes of the SES-gradient in child 

health are still poorly understood. 

We examine whether, to what extent, and why poor air quality affects children’s 

respiratory diseases differentially across socioeconomic groups. Extensive evidence has been 

presented indicating that air pollution affect children’s respiratory health. There are also several 

reasons why air pollution could have a particularly strong impact on health among children in 

low SES households. For example, children in low-income households have on average worse 

health to begin with, which may make them more susceptible to damage from air pollution. 

However, surprisingly little direct evidence exists on differences in the effects of air pollution 

across SES groups (see review in Table A1), and even less is known about the underlying 

mechanisms. 

We link daily data on health care visits for all Swedish children’s during six years to 

information on parental income and education and local ambient air pollution monitors. Using 

this uniquely detailed data, we show that temporary changes in air pollution significantly affect 

children’s respiratory health. Specifically, we exploit variation in air quality induced by 

inversion episodes. On normal days, the temperature decreases with altitude, allowing air 

pollutants to rise and disperse. During an inversion episode a warmer air layer at higher altitude 

traps air pollutants close to the ground. In our sample inversions occur on 25 percent of the days, 

leads to substantially higher pollution levels (e.g. +36 percent PM10 , +27 percent NO2) and to an 

increase in the health care visits due to respiratory illness (+5 percent). Consistent with air 

pollution contributing to the income-child health gradient, the impact of inversions on children 
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from high-income households is about 40 percent lower than on children in low-income 

households. The gradient also seems to widen with child age. 

Our study contributes to the literature on the SES-child health gradient by providing 

direct evidence on the mediating role of air pollution. But we also add to the literature on the 

effects of air quality on health in several important ways. First, most previous studies assess the 

health effects of air pollution using overnight hospital admissions and emergency room visits 

(Moretti and Neidell, 2011; Schenkler and Walker, 2011). These two measures capture the most 

severe health problems. We also use outpatient data, which allows us to measure health problems 

that may not be severe enough to warrant overnight hospital admissions. In addition, by using 

daily information on parental work absence due to care of sick children we are able to assess the 

impact of poor air quality on health conditions that may not even result in a health care visit. 

Combined, relative to previous studies, this constitutes a substantial expansion of the coverage of 

the health outcomes potentially affected. 

Second, the possibility to examine effects of air pollution with respect to parental 

economic conditions has been limited due to the inability to link health records to family income 

data. US birth records contain information on maternal education which previously have been 

used to examine SES differences in effects on neonatal health outcomes. However, assessments 

of differences across family income groups have relied on crude proxies for parental income, 

which potentially explains the inconsistent results in previous studies (see Appendix Table A1 

for a review). Our individual data allow us examine SES difference in the effects of air pollution 

with respect to both parental income and educational attainments. 

A third innovation of the paper is that we exploit a new data source to measure inversion 

episodes. Inversions are associated with some of the worst and most well-known pollution 

disasters of the 20th century, including Donora smog 1948 and the London Fog 1952 and the 

Union Carbide disaster in Bhopal 1984. However, inversions occur frequently (25 percent of 

days in our sample), and do lead to poorer air quality but rarely to disastrous conditions. We 

show how data on vertical temperature profiles derived from NASA’s AQUA satellite can be 

used to measure inversion episodes. The AQUA data allows us to measure inversion frequency 

and strength on a daily basis with high spatial resolution. Previous work have used various 

ingenious approaches to assess the effects of exogenous changes in pollution levels on health 

(e.g. Chay and Greenstone, 2003a;2003b; Currie and Niedell, 2005, Lleras-Muney, 2011; 
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Moretti and Neidell 2011; Schenkler and Walker 2011; Currie and Walker, 2011; Arceo-Gomez, 

Hannah, Olivia 2012). We contribute by providing an easily implementable method that has the 

potential to isolate the short-term effects of poor air quality in principle anywhere globally. The 

vertical temperature profile data is free of charge and is easy to download for specific countries, 

regions, and cities. This opens up the possibility for comparative studies in widely differing 

settings using the same empirical strategy (e.g. developed vs. developing countries). 

Fourth, the uniquely detailed individual data allow us to examine several of the 

potentially important mediating mechanisms that could lead to differential effects of temporary 

changes in air quality across SES-groups. First, as noted above, lower baseline health could 

make children from poorer backgrounds more vulnerable to damage from poor air quality (SES 

differences in vulnerability). Second, parents of children in poorer families may be less informed 

about factors affecting child respiratory health. This could lead to that actions that minimize 

exposure during high pollution days differs between high and low income families (SES 

differences in avoidance behavior). Third, if pollution levels influence housing prices, residential 

sorting may lead to that children in poor families live closer to pollution sources, leading to 

higher baseline pollution exposure. In the presence of nonlinearities in the effects of air pollution 

on respiratory health, residential sorting could lead to stronger health effect among children in 

low-income households for a given increase in air pollution. 

Our analysis provides no clear support for nonlinearities being an important mechanism 

behind the SES differences in the impact of inversions in our setting. Nonparametric estimations 

suggest a linear relationship between inversion strength and both pollution and respiratory 

illnesses. Moreover, despite the strong predictive power of inversion on pollution, we show that 

inversions have no predictive power on pollution forecast. Similarly, using data on externally 

caused injuries we find no support for that children’s activity patterns (indoor/outdoor activities) 

are affected by inversions in general, or differentially across SES groups. Hence, avoidance 

behavior does not seem to play a key role behind the SES-gap in our setting. However, when 

comparing the impact of inversions on children with poor baseline health, we find no differences 

in the effects across children in high- and low-income households. These results suggest that a 

substantial part of the difference in the effects of temporary changes in air quality may be due to 

that children in poor households on average have worse baseline health and thereby on average 
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are more affected by poor air quality. Conditional on having poor baseline health, high parental 

income does not cushion the effect of poor air quality on respiratory illnesses. 

Finally, we broaden the picture of the direct costs of air quality on health by using daily 

data on parental work absence due to care of sick children. Recent studies have documented that 

contemporaneous air quality affects labor supply among agricultural workers on the intensive 

margin (Graff Zivin and Neidell, 2012) and in a high pollution settings on the extensive margin 

(Hanna and Olivia, 2014). We quantifying the contemporaneous effects of poor air quality on all 

parents labor supply on the extensive margin via the impact on their children’s health. Each year 

around 5 million workdays in Sweden are lost due to care of sick children, and the direct costs of 

child sickness from parental leave compensations (80 percent replacement rate) amounts to 

around SEK 4 billion yearly. Following inversions the incidence of work absence for care of sick 

children increases by 2.9 percent.  

The rest of the paper is structured as follows. Section 2 reviews the literature on effects of 

air quality on health,. Section 3 provides an conceptual framework, section 4 describes the data,  

and section 5 the empirical approach. Section 6 present the results and section 7 summarizes and 

concludes. 

 

2 Background Regarding the Relationship between Air Quality and Health 
 

There is a vast literature documenting the relationship between air pollution and health. Below 

we summarize the literature and our contributions. 

 

Epidemiology 

Epidemiological studies on the health effects of air pollution have to a large extent relied on 

cross sectional data and compared the prevalence of hospitalizations due to respiratory illness at 

different levels of aggregation (e.g. cities) with differing pollution levels at a single point in time, 

or used aggregated time-series data for e.g. PM10 levels and asthma for a particular city or 

region over time. Using these approaches, it is difficult to draw causal conclusions about the 

magnitude of the effects on health. 

Cross-sectional studies using individual or aggregated data are likely to confound effects 

of pollution with effects of unobserved factors that are correlated with pollution levels and 
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respiratory illnesses in the cross section. It is not even clear in which direction omitted variables 

will tend to bias such estimates; a higher pollution level could capture better employment 

opportunities and income which, in turn, may mitigate the risk of experiencing respiratory health 

problems. Alternatively, higher air pollution levels could simply capture effects of unobserved 

factors such as a generally worse environment, housing standard, parental or child smoking 

patterns, etc. which, in turn, may result in overstated estimates of the effects of ambient air 

pollution. Pure time series studies may, on the other hand, not only capture the effect of 

variations in pollution but also other unobserved factors that co-vary with pollution patterns, for 

example, weather conditions, seasonal variations in activity patterns etc. As discussed further 

below, temporal fluctuations in air quality are also, to the extent that they are captured in 

pollution forecasts, potentially related to defensive investments or avoidance behavior among 

sensitive populations, such as asthmatics. Such behavioral changes are likely to lead to that the 

effect of poor air quality is understated. 

There are a few exceptions in the epidemiological literature on the effects of air pollution 

on health that employ a design based approach for inference. Pope, Schwartz and Ransom (1992) 

examine the effects of variations in PM levels following a temporary shutdown of production in 

a steel mill. By comparing respiratory related emergency room visits in the valley where the mill 

was located to the neighboring valley, they find that when PM levels dropped following the plant 

shut down so did respiratory illnesses. 

 

Economics 

Economists have contributed to the literature on effects of air quality on health in several ways 

during the last decade. Primarily by highlighting potential identification problems and by using 

increasingly sophisticated empirical strategies designed to address these endogeneity problems. 

First, air pollution is not randomly assigned across locations. Chay and Greenstone 

(2003a) note that air quality is capitalized in house prices. Individuals with a higher income 

and/or individuals with preferences for clean air may sort into better air quality areas. Thus, 

exposure to pollution levels is typically endogenous. Failing to account for residential sorting, 

unobserved determinants of health may bias the estimation of the effect of pollution on health. In 

the absence of a randomized experiment, this has led to a rise in estimation techniques to isolate 

the effects on health using exogenous changes in air quality.  
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For example, Chay and Greenstone (2003a,b) use the implementation of the US Clean 

Air Act of 1970 and the recession of the early 1980s to exploit the induced temporal and spatial 

variation in Total Suspended Particulate (TSP) levels. Lleras-Muney (2010) use the allocation of 

military families across military bases in the US to estimate the effects of air pollution on 

children's hospitalizations. Other studies exploit seasonal variations in pollution levels within 

residential areas to address endogenous sorting (e.g. Currie and Neidell (2005); Currie, 

Hanushek, Kahn, Neidell and Rivkin, 2009). One potential problem with using seasonal variation 

is the risk of confounding by weather conditions, since weather directly affects health 

(Deschenes and Moretti, 2009) and pollution levels. Accounting for all possible weather factors 

influencing both pollution and health is a challenging task. Knittel, Miller and Sanders (2011) 

show that including higher order terms for temperature and precipitation as well as second-order 

polynomials for some weather conditions, such as wind speed, humidity, and cloud cover, have a 

substantial impact on estimates of pollution on infant mortality.  

A final problem is that the effect of pollution on health might be highly dependent on 

behavioral responses. For example, individuals might undertake defensive investments by 

purchasing preventive pharmaceuticals (Deschenes et al., 2012) or engage in avoidance behavior 

and reduce their time spent outdoors (Neidell, 2009). Ignoring behavioral responses could 

generate downward biased estimates. 

To account for avoidance behavior, Moretti and Neidell (2011) estimate the health effects 

of ozone by employing data on daily shipping traffic in the port of Los Angeles as an 

instrumental variable for ozone levels. The OLS estimates are significant but small, while IV 

estimates, accounting for behavioral responses, measurement errors and potential confounders 

are around 4 times higher; indicating an annual cost of $44 million from respiratory related 

hospitalizations. Schlenker and Walker (2011) instrument air pollution using air traffic 

congestion in remote major airports to estimate the health impact of air pollution on populations 

living in the vicinity of 12 airports in California. They find that carbon monoxide (CO) leads to 

significant increases in hospitalization rates for asthma, respiratory, and heart related emergency 

room admissions that are an order of magnitude larger than conventional estimates. They do not 

examine whether the effects of pollution differ across socioeconomic groups. 
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Studies on the Effects of Inversion Episodes 

Many studies have also related inversion episodes to poor air quality. For example, a study by 

Kukkonen et al. (2005) finds that inversion periods in European cities coincide with levels of 

particulate matter far above average. Likewise, in January 2004, Utah’s Cache Valley 

experienced an inversion episode that drove particulate concentrations to two times the 24-hour 

standard used by the US EPA (Malek et al., 2006).  

A handful of previous studies have examined the effects of inversion episodes on health. 

Abdul-Wahab, Bakheit, and Siddiqui (2005) documented an association between the monthly 

number of inversion days and emergency room visits in Oman. Using weather balloon data, 

Beard et al. (2012) find that inversion episodes increase emergency room visits in Salt-Lake 

County. Combining AIRS data and cross-sectional data on 674 asthmatics (on average 55 years 

old) in Hamilton, Ontario, Canada, Wallace, Nair and Kanaroglou (2010) finds an association 

between inversion episodes and sputum cell counts (an indicator of airway inflammation). 

Methodologically, the closest related previous work is a recent study by Arceo-Gomez, 

Hanna and Olivia (2013) that examine effects on infant mortality using information on 

inversions from weather balloon data in one (1) location over Mexico City.1 Arceo-Gomez et al. 

exploit the number of inversions over the city per week as an instrument for weekly pollution 

levels in the municipalities within the city. Their find that a 1 percent increase in PM10 over a 

year leads to a 0.42 percent increase in infant mortality, while a 1 percent increase in CO results 

in a 0.23 percent increase in infant mortality.  

Our study extends and complement Arceo-Gomez et al., in several ways besides looking 

at a different outcome. The two most important additions is that we examine effects across 

socioeconomic groups, and that the NASA data and the empirical approach we develop easily 

allows for comparative studies in areas with high (such as Mexico City with a PM10 24-h mean 

of 67 μg/m3), medium (e.g. the United States), or relatively low levels of pollution (e.g. the 

Swedish cities in our sample, PM10 24-h mean of 20 μg/m3) using the same empirical strategy.2 

                                                            
1 This paper was developed independently and without knowledge of the Arceo-Gomez et al.  paper. The first-stage results were presented at the 
ASSA Meetings in Chicago in 2010, Uppsala University (2010), and at SIEPR, Stanford University (2010). 
2 Besides using multiple city measures of inversions which allows us to exploit variation within municipalities, our approach also differ from 
Arceo-Gomez et al (2013) by focusing on the inversion close to the ground (below 600m) while Arceo-Gomez et al. exploit the occurrence of 
inversion anywhere in the atmosphere. Our approach increases the power of inversion in predicting ground level pollution levels. Finally, Arceo-
Gomez et al. exploits inversions to instrument PM10 and SO2. We do not exploit inversions as an instrument for particular pollution measures 
since the exclusion restriction is not likely fulfilled as inversions affect all pollutants we can measure (see Table 3). 
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More generally, the best empirical work on the effects on air quality on health exploit 

well-defined events that unexpectedly changes air pollution levels. However, since many of the 

studies make use of setting specific events or factors that change air quality levels, it is not 

straightforward to compare estimates of the effects of pollution across studies. Our approach 

opens up for comparative studies across e.g. developing and developed countries using the same 

empirical approach. A second important contribution is related to the highly detailed outcome 

data. Previous studies are typically restricted to examining effects on emergency room visits and 

inpatient records (overnight stay at hospital). Hence, they mainly capture severe health problems. 

As described further below, our data allows us to also examine effects on much less severe 

health problems captured in outpatient records, but also health problems that may not even 

require a health care visit at all, but still may be costly on a societal level. 

 Moreover, the studies listed above lack data on individual household income, which 

makes assessments of the contribution of air quality to child health inequality problematic. The 

data we use allows us to examine the effects across income and education groups, and to assess 

potential underlying mechanisms behind the SES-gap. We next describe three mechanisms 

suggested in previous work that could lead to differential effects of across SES-groups. 

 

3 Conceptual Framework 

As already noted an important contribution of this study is the possibility to examine the effects 

across socioeconomic groups in detail. Before we go into the details of the empirical strategy, we 

start with as simple description of the theoretical pathways that could be important in generating 

differential effects of poor air quality across socioeconomic groups. Suppose that respiratory 

illnesses induced by changes in air pollution are capture by the three key factors in:  

 
ܴ ൌ ݂ሺܲ, ,ܣ  ሻ     (1)ܪ

 
where respiratory illnesses (R) are a function of ambient air pollution, (P), parental 

awareness/avoidance behavior (A), and baseline child health (H). P, A, and H can be viewed as 

functions of parents' income and/or education. In this paper, our three primary objectives are 

(i) to provide causal estimates of the impact of poor air quality on respiratory health, dR/dP, (ii) 

to document to what extent the effects of pollution on child health differ between children in 

different socioeconomic groups. Recent studies find suggestive evidence that the reduced form 
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effects of air pollution on children's health tend to be larger on children in low socioeconomic 

status (SES) households. i.e., 

 ቚ
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ௗ
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However, conclusive evidence on the mechanisms behind the SES-gap in the effects is still 

missing. So our third objective is to (iii) provide insights on the key underlying mechanisms.  To 

emphasize the different channels highlighted in previous work, assume that Equation (1) can be 

represented by the linear approximation that allows for interaction effects between P and A, and 

P and H: 

ܴ ൌ ܽଵ  ܽଶܲܽଷܣ  ܽସܪܽହܲଶ  ܽܲܣ  ܽܲ(2)  ܪ 

 

In Equation (2), respiratory illnesses are portrayed as a function of the three key factors 

displayed in Equation (1), and capture three mechanisms that could contribute to differences in 

the marginal effects of air pollution on children across socio-economic groups. First, ambient air 

pollution affects child respiratory illnesses negatively through an increase in P via ܽଶܽହ, where 

ܽହ captures potentially nonlinear effects of ambient air pollution levels on child health. Second, 

A can mitigate the effect of an increase in P through the negative ܽ. Finally, the influences of 

marginal changes in pollution can also be affected by the child's health stock. Children with a 

higher level of H are assumed to be more resilient to effects of changes in P and hence,	ܽ < 0.  

Equation (2) suggests that children from low SES households can be more affected by 

changes in ambient air pollution than children from high SES households for three reasons. First, 

children in low-income households have on average worse health than children in high-income 

households. Second, parents with high education may be more aware of effects of air quality on 

child health. Alternatively, parents in high-income households may be more willing to reduce the 

risk of children's respiratory illnesses since the parental costs of child illness could be higher in 

terms of lost parental labor earnings. Hence avoidance behavior may be more prevalent in high 

SES households. Third, residential ambient air pollution levels may affect housing prices. Hence, 

children from poorer households more often may tend to reside closer to pollution sources, and 

therefore be exposed to higher levels of pollution (Currie, 2011). Empirically, if we do not 

observe individual exposure, only ambient pollution levels, children in poorer households may 
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be observed to be more affected by a given increase in pollution if the relationship between air 

pollution and child health is nonlinear. 

Below we provide evidence on the general effect, effects on children from differing 

socioeconomic backgrounds and also try to shed some light on the importance of the three 

mechanisms; (i) nonlinearities in effects of air pollution, differences in (ii) avoidance behavior 

and/or differences in (iii) baseline health across children in high- and low-income households.3 

 

4. Data 

4.1 Inversion and Pollution data 

To measure inversion episodes, we exploit vertical temperature profile data from NASA’s 

Atmospheric Infrared Sounder (AIRS).4 In 2002, the AIRS instrument was launched onboard the 

NASA satellite AQUA. The primary mission of AIRS is to improve weather forecasts, and 

collect a wide range of weather related data twice per day (2 am and 2pm local time). AIRS 

produce a 3-D map of temperature and water vapors in the atmosphere.  

The AIRS data is provided in three different forms. Level 1 data provides the highest 

resolution (1.5km*1.5km) and is not yet available to researchers outside NASA. Level 2 data 

(L2) has a spatial resolution of approx. 45km*45km. Level 3 data (L3), which we use, has a 

spatial resolution of 1°×1° which corresponds to approximately 100km*100km at the relevant 

latitude. The L3 data is the primary public product and contains only well-validated fields, and 

reported temperature and water vapor profiles globally. We use L3 data due to the easy access 

and its readiness for use by researchers. Downloading the L3 data for a selected region is 

straightforward and NASA have checked it for and corrected data irregularities. 

The L3 temperature profile data provide temperatures in 22 layers, defined by average air 

pressure in the layer. We use the temperatures for the two pressure levels closest to the ground 

(1000hPa and 925hPa) to identify inversion episodes. 5  The 1000hPa layer temperature 

corresponds to the surface conditions and 925hPa layer measure conditions at approximately 

600m above sea level. We use the temperature differences between these two layers to identify 

                                                            
3 It is also possible that the extent of parental avoidance behavior depends on the level of P, i.e. that parents in high pollution areas (such as Los 
Angeles) are more likely to be willing to engage in (potentially costly) avoidance behavior than parents in low pollution areas (such as in our 
setting). Similarly, parents of children with a lower health stock may also be more willing to engage in avoidance behavior if their child is more 
likely to be affected by changes in pollution levels. 
4 As part of the activities of NASA’s Science Mission Directorate and it is archived and distributed by the Goddard 
Earth Sciences (GES) Data and Information Services Centre (DISC). 
5AIRS Level 3 version 5 with spatial box: 55S, 10W, 70N, 24E. 
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inversion episodes and inversion strength. During normal conditions (inversions), the 

temperature decreases (increases) with altitude and hence, the temperature difference between 

the 925hPa and 1000hPa air layer is negative (positive). In our analysis we focus on the 

night-time inversions since these are more frequent (25 percent of the observations) and stronger 

predictors of pollution concentrations. The inversion strength is defined as the temperature 

difference between the two layers with higher positive values corresponding to stronger 

inversions (see Figure A1 for an illustration). 

We also use information on cloud coverage and humidity data from AIRS. Cloud 

coverage data is a potentially important control variable since the AIRS instruments cannot 

retrieve temperature profiles if the grid cell is under complete cloud coverage.6 Humidity has 

been linked to both air pollution levels and health. Weather data from 119 weather stations 

provide information on wind and precipitation.7 

The Swedish Environmental Research Institute, IVL, provides the pollution data. The 

pollution monitors collect data on either an hourly or a daily basis, and are typically located in 

the center of the main town of the municipality. 90 out of Sweden’s 290 municipalities measured 

PM10 daily during the sampling period. We use the 24-h municipality average PM10 level as our 

main air quality indicator. 8  Other pollutants are measured with much lower frequency, 

consistency, and spatial coverage (68 stations measured NO2, 24 SO2, 3 NOx and 3 CO). PM10 is 

moreover highly focused on in policy circles due to the health effects associated with particulate 

matter exposure.9 We assigned the temperature profiles of the nearest temperature grid centroid 

to each pollution monitor (see Figure A2). We then link the inversion data to the pollution 

monitor data by assigning each pollution monitor to its closest AIRS grid centroid point located 

over land. 

  

                                                            
6 In our sample, on average 13.5 percent  (i.e. around 4 days per month) of the AIRS observations are missing due to full cloud coverage. The 
share of missing temperature profile days per month: Jan (.196) Feb ( .160)  March (.111) April (.093) May (.095) June (.113) July (.132) Aug 
(.107) Sept( .119) Oct (.149) Nov (.171) Dec (.178).  
7 For each monitor we first calculated daily means and then assigned the inverse distance weighted mean of the six nearest weather stations to 
each vertical temperature profile grid point, replacing missing values with the monthly mean. 
8 For the minority of municipalities having more than one monitor we calculated an average daily municipality pollution level. 
9 PM is a general term used for particles where the major components are sulfate, nitrates, ammonia, sodium chloride, carbon, mineral dust and 
water. The particles are identified according to their aerodynamic diameter, as either PM10 (with a diameter of 10 micrometers or less) or PM2.5 
(with a diameter smaller than 2.5 µm). By definition, PM10 thereby includes both ‘coarse particles’ and the finer PM2.5 particles. Sweden follows 
the air quality standards set by the EU-directive 2008/50/EG. For PM10 there are limit values for short-term (24 hours) and long-term (annually) 
exposure. However, the consequent inability to identify a threshold below which adverse health effects are not observed implies that any limit 
value may leave some residual risk when exposed to PM. This has led the World Health Organization (WHO) to recommend more stringent air 
quality guidelines (WHO, 2006). 



13 
 

4.2 Child Data 

From Statistics Sweden (SCB) we acquired data on all children living in Sweden during the 

observation period. The individual data include information on background characteristics, such 

as year and month of birth, place of residence (250m by 250m grid), parents’ income and 

education. 

The individual identifiers allow us to merge the SCB data to the health care records from 

the Swedish National Board of Health and Welfare (Socialstyrelsen). We acquired inpatient and 

outpatient data covering all children living in Sweden in the age span of 0-18 years.10 The 

inpatient data contains information on all visits to the health care providers that result in an 

overnight stay at hospitals. The outpatient data cover health care visits when the patient does not 

stay overnight. Both data sources include information on the exact date of admission, type of 

diagnosis and municipality of residence. Socialstyrelsen provided aggregated diagnoses codes 

(based on ICD codes) using the Clinical Classification Software (CCS) developed by the Agency 

for Healthcare Research and Quality (AHRQ). We calculated a daily incidence rate of health 

care visits with respiratory illness as the main diagnosis. The rate is constructed by dividing the 

total daily number of health care visits in each municipality by the total number of children who 

resides in the municipality, multiplied by 10,000. This rate is our main outcome variable, and is 

referred to as respiratory illness rate henceforth. In the analysis we also consider the impact on 

respiratory sub-diagnoses (e.g. asthma, bronchitis), constructed in a similar fashion. Using the 

municipality of residence we link the health data to the inversion and pollution data. 

  

4.3 Summary statistics: Health, Weather and Pollution  

Table A2 provides summary statistics on the municipality level of the inversion, weather, health 

and pollution variables. Panel A shows information on the rate of health care visits broken down 

by age and cause of visit. Respiratory illness admissions decreases with age, and asthma related 

admissions are the most common sub-diagnosis. Around 10 percent of children in Sweden are 

ever diagnosed with asthma. Panel B provide descriptive statistics for the key covariates used in 

our analysis. The average PM10 level is 21 μg/m3 in our sample and inversion episodes occur on 
                                                            
10 Young children are among the most susceptible to effects of air pollution (ALA, 2001; Kim et al., 2004). Compared to adults, children have 
higher breathing rates and therefore a higher intake of air pollutants per unit of body weight. Since children’s lungs and immune system are not 
fully developed, exposure to air pollution opens up for the possibility of different responses than seen in adults. Furthermore, they also spend 
more time outdoors than adults when concentrations from air pollution are generally higher, thereby adding to their potential exposure. Since as 
much as 80 percent of alveoli are formed postnatally and the lung continues to develop throughout adolescence, exposure to air pollutants poses a 
serious risk to this population group (Schwartz, 2004). 
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25 percent of the days. The average temperature differences between the two air layers 

is -1.35°C (i.e. temperature decrease with altitude). For the 90 municipalities measuring PM10 

during our observation period (September 2002 to September 2007), there are 34,175 valid 

vertical temperature profiles (non-missing temperature readings in both layers). Out of these, 

8,608 night-time inversions were identified. 

Descriptive statistics for the key variables conditional on inversion status are provided in 

Table 1. On average, the PM10 level is around 60 percent higher and the respiratory illness rate 

is about 5 percent higher during inversions. However, inversions are most frequent during the 

first (55 percent) and second (24 percent) quarter of the year. For the third and fourth quarter, the 

corresponding frequencies are 6 percent and 15 percent, respectively. Hence, the raw averages do 

not solely reflect the influence of inversions on pollution and respiratory illness, but also the 

seasonality in inversions, pollution and respiratory health. 

Figure A3 provides average PM10 levels by calendar month and inversion status. PM10 

levels are highest in the spring. The seasonal pattern is partly caused by residential and 

commercial heating, but road wear caused by the use of studded tires during March and April 

(typically snow free months) also contribute. Following inversions PM10 levels are substantially 

higher during nearly all months of the year. Figure A4 show the correlation between inversions 

and PM10 across the days of the week. 

Since not only pollution but also unobserved factors that affect respiratory health 

problems (e.g. time spent outdoors) may vary with the day of the week/season of the year, the 

descriptive above highlight the importance of flexibly accounting for season of the year, day of 

week, and weather conditions in the empirical analysis. 

 

5 Empirical specification 

We assess the impact of inversions on air quality using the following baseline specification 

estimated on municipality-day level data:  

Pollution୫ୢ ൌ γ  γଵINVERSION୫ୢ  δ′w୫ୢ  μୢ  θ୫  ϑ୫ୢ  (3) 

Where pollution is one of the measured pollutants (PM10, NO2, NOX, CO, SO2) in municipality 

m, on day d. INVERSION୫ୢ is a binary dummy variables taking the value 1 if the temperature 

differences between the air layers is positive (i.e. temperature increases with altitude). 
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Our baseline specification for the health outcomes is, 

Respiratory	Illness	Rate୫ୢ ൌ β  βଵINVERSION୫ୢ  δ′w୫ୢ  μୢ  θ୫  ε୫ୢ  (4) 

where the Respiratory	Illness	Rate୫ୢ ,as specified above, is our primary outcome variable. In 

equation (2) and equation (3), w୫ୢ is a vector of weather controls, including precipitation, wind, 

humidity, cloud cover, and their squared counterparts, together with daily and nightly 

temperature polynomials to account for a potential nonlinear relationship between temperature, 

pollution levels, and the respiratory illnesses rate, and δ	 is the corresponding parameter vector. 

μୢ is year-by-month specific effects and day-of-week effects that non-parametrically take year-

by-calendar month and weekday variations in pollution/respiratory health into account. θm are 

municipality-specific effects, which are accounts for time-invariant differences between 

municipalities that affect pollution concentrations and respiratory illnesses (e.g. demographic 

characteristics, industry composition, geographic conditions, etc.). We also include time-varying 

variables such as the average age of the children in the municipality and the share of mothers 

with college degrees as additional controls. In all estimations we cluster the standard errors at the 

municipality level, to account for arbitrary correlated errors within the municipality across time. 

We also provide estimates using a generalized additive model (Hastie and Tibshirani, 

1986): 

Y୫ୢ ൌ β  fଵሺInversion	Strength୫ୢሻ  fଶሺܟ୫ୢሻ  ε୫ୢ .   (5) 

Where Y୫ୢ is the PM10 level or the Respiratory illness rate, and ܟ୫ୢ	is a vector of weather and  

calendar month controls. 	fሺ. ሻ  is estimated (by backfitting) using local linear regression 

smoother with a narrow bandwidth. The estimates from this parsimonious but highly flexible 

specification, that non-parametrically takes daily weather conditions and seasonal patterns into 

account, provides evidence on whether the baseline linear specification of equation (3) and (4) 

provides a reasonable approximation of the relationship between inversions, pollution and health. 

  

6. Results 

6.1 Main Results 

We first present results from the nonparametric specification of Equation 5. Figure 1 provides 

separate GAM estimates of how inversion affect the PM10 level (grey line) and respiratory 

illness rate (black line) using a narrow bandwidth local linear regression smoother. The abscissa 
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displays the inversion strength, i.e. the temperature difference between the two air layers. A 

negative inversion strength value corresponds to non-inversion days and positive values 

inversion days. The kernel density estimate (dashed) shows the distribution of observations with 

respect to inversion strength. Around 25 percent of the days in the sample are inversion days. 

The left(right)-hand side y-axis measures the PM10 level (the respiratory illness rate).  

Figure 1 shows that, conditional on weather conditions and season of the year, neither 

PM10 or respiratory illness are strongly related to the differences between the two air layers 

during non-inversion days (i.e. when inversion strength is negative). However, during inversions 

(i.e. inversion strength is positive) both PM10 levels and respiratory illness increases almost 

linearly with the strength of the inversion. This first set of results summarizes the main results of 

the paper. As shown below, even after adding a large set of additional controls, the estimated 

effects never deviate substantially from that which can be inferred from this parsimonious, but 

highly flexible specification. 

Table 2 provides the estimates of the effects of inversion on pollution using our baseline 

specification. Clearly, conditional on wide range of weather conditions, municipality and time 

effects, inversion are strongly linked to worse air quality. On average, inversions leads to 36 

percent higher PM10, 27 percent higher NO2, 16 percent higher NOx, 23 percent higher SO2, and 

12 percent higher CO levels.  

 Table 3 provides the effects on respiratory illness in the full sample using equation (4). 

Column (1) shows that inversion increases the respiratory illness rate among children aged 0-18 

by 4.9 percent. Columns (2) and (3) add child age and maternal education controls, respectively. 

Adding these controls do not change the estimated effect. Column (4) drops the local weather 

station control variables (wind and precipitation). This does not change the results, highlighting 

that a similar analysis could be conducted even when local weather station data is not available. 

Finally, column (5) restricts the sample to children residing within 2 km of a pollution monitor. 

This effectively limits the sample to children living in urban areas close to the main city center of 

the municipality, since this is where the pollution monitors are located. This restriction 

homogenizes the sample, but hardly change the estimated impact at all. 
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6.2 Some Additional Specification Checks 

The baseline model provide estimates of the contemporaneous effects of changes in air quality 

on respiratory illnesses. A potential concern with this daily specification is that inversion 

episodes simply may displace the timing of respiratory illnesses forward. Such a short-term 

forward shift in the timing of health effects would imply that while we may see an increase in 

health effects on inversion days, while the respiratory illness rate may fall and be fully 

compensated for over the following days. To assess this concern, we follow Schlenker and 

Walker (2011) and provide estimates from a distributed lag model that check how current and 

lagged inversion episodes over the past five days affect the current respiratory illnesses rate. If 

inversions simply displace the timing of a health care visit then we would expect to find that the 

cumulative effect is smaller than the effect of current inversions only (i.e. 

∑ ௧ିߚ
௨ ൏ହ

ୀ ߚ
௦). 

Table A3 in Appendix A report the estimates from the distributed lag model. Column (1) 

reiterate the baseline model estimates for comparison, column (2) report the lagged effects and 

the total cumulative effect of inversion over the last five days and today. Column (3) report the 

estimate when regressing the respiratory illness rate on day t on the share of days with inversion 

over the past five days. Both the cumulative impact and the average impact from inversions over 

the past five days are larger than the baseline effects. These results highlights first of all that 

displacement effects are not likely a major concern in our setting. Second, both day t and t-1 

inversions significantly affect day t respiratory illness rates; while the other lagged coefficients 

are smaller and insignificant. This suggests that inversions today and yesterday affect current 

respiratory illness rates. For simplicity, in the remainder of the analysis we stick to the more 

parsimonious baseline (contemporaneous effect) specification. 

Our estimates may also be compromised if emissions are an important determinant of air 

temperature and thereby inversions. However, first, it seems unlikely that local anthropogenic 

emissions have a strongly differential impact on temperature in the two layers. Second even if so, 

our estimates would likely be downward biased since local emissions likely primarily heat the 

ground level air layer, reducing the occurrence of inversion. Third, we provide a test of the 

severity of this concern by exploiting the well-known variation pollution levels over the 

weekdays. In the final two columns of Table A3 we exploit the sharp decreases in pollution 

levels on weekends (column 4), and show that inversions are not more or less frequent during 
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weekends (column 5) despite the sharp drop in pollution levels during weekends. This exercise 

provides evidence that pollution levels do not cause inversions. 

 
6.3 Heterogeneity: by respiratory diagnosis and child age 

So far, all respiratory illnesses have been lumped together, but it is possible that the effect of air 

pollution varies across type of illness. In Table A4, columns (2) to (5), we split the respiratory 

illness diagnosis data into Asthma, Pneumonia, Bronchitis, and Other respiratory conditions. The 

first three conditions are likely to be exacerbated from current exposure as opposed to conditions 

such as Emphysema where the effect of exposure is mainly cumulative over a longer time. 

Therefore, we expect to find the largest effects for the first three conditions. This pattern is also 

largely confirmed, with the largest effect for Asthma, Bronchitis and Pneumonia, (6 percent), 

and substantially lower but still significant for the other respiratory conditions (3 percent). 

Columns (6) and (7) provide separate estimates for pre-school children (0-6) and school 

age children (7-18). Note that the mean respiratory illness rate is higher for children in the age 

span 0-6 years. The estimates are positive and significant for both age groups, but relative to the 

mean respiratory illness, the largest increase of respiratory related hospital admissions occur for 

the older age group. 

 

6.4 Examining the Effects across Socioeconomic Groups 

Table 4 report estimates by socio-economic status. The table presents separate estimates for 

children in high-, medium-, and low-income households. We also report separate estimates for 

the children who have/do not have a mother with at least some post-high school education. 

Before turning to the impact of inversion, note that the mean respiratory illness rate is marginally 

higher in the high education group compared to the low education group, but substantially higher 

in the low-income group compared to the high income group. These mean differences highlights 

that SES differences in respiratory health are present in Sweden, at least with respect to parental 

income. 

Column (1) reports the baseline model estimates in the sample of children for whom we 

observer maternal education. Interestingly, we do not find any differences in the effects between 

children in low and high education households (columns 2 and 3). However, the estimated 

impact monotonically decreases with parental income. Relative to the respective mean 
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respiratory illness rate in the groups, the effects of inversion on children in low income 

households are about 50 percent larger than in medium income households and around 70 

percent larger than on children in high income households. These results clearly suggest that 

parental income play an important role in mediating the effects of air quality on children’s 

health. Figure 2 summarizes the results in Table 4. 

Figure 3 summarizes the results of appendix Table A5, and shows the point estimates for 

the low-, medium-, and high-income group by child age. The difference in the effects of 

inversions across income groups seems to widen with child age. Relative to the mean respiratory 

illness rate, the effects increases from around 5.6 (4.0) to 8.3 (8.9) percent in low (medium) 

income households for preschool and school age children respectively. For high-income 

households the point estimates hardly change at all with child’s age (3.47 to 3.56 percent). 

However, note that the estimates are not statistically distinguishable from each other.  

In summary, the impact of inversions on respiratory illness decreases with parental 

income and poor air quality also seem to contribute to the widening of income-child health 

gradient with child age. The absence of differential effects with respect to maternal education 

contrasts with Currie and Stabile (2002) who find an increasing gradient for both income and 

education in Canada. However, it is consistent with Case et al. (2002) who find an increasing 

gradient over the child’s life cycle with respect to households income, but not parental education. 

 

6.5 The underlying mechanisms behind the SES-differences 

The clear differences in the effects with respect to education and income provides some clues 

about the likely potential reasons behind the gap in effects across income groups. In particular, to 

the extent that highly educated parents are more informed about risk factors or are better at 

processing such information, the absence of differential effects with respect to maternal 

education suggests that information differences across households is not a key factor. Below we 

discuss and provide further evidence for the potentially important underlying mechanisms 

highlighted above. 
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(i) Differential Effects of Inversions in High and Low Income Neighborhoods 

An important difference between rich and poor households could be that residential segregation 

leads to differences in average levels of pollution exposure. Hence, a potentially important 

mechanism behind the SES-gap could be that children from poorer households are exposed to 

higher pollution levels than children from wealthier households.  

Such residential sorting could imply that the observed SES differences stems from 

nonlinearities. If a higher share of the poor children lives in neighborhoods where the pollution 

level is close to a threshold after which the relationship between pollution and respiratory 

illnesses steepens, then the reduced form effects of inversions could have a stronger effect on 

poor than rich kids. However, this explanation squares poorly with the results from the 

non-parametric estimates in Figure 1 that give no indication of strong nonlinearities. 

Alternatively, it is possible that inversions have differential impact on pollution levels in 

rich and poor neighborhoods. If so, even in the absence of nonlinearities, inversions could yield 

larger effects on poor than rich kids. To assess this mechanism directly one would ideally like to 

have access to residential location specific pollution monitors. With such data we could test 

whether inversions generates similar or differential increases in pollution levels across rich and 

poor neighborhoods. We do not have access to such data, however we do get some insights about 

the potential role of differential changes in pollution levels experienced by low and high income 

children by comparing the column (3) and (5) in Table 3 above. The pollution monitors are 

located in the center of the municipalities, while the children in the estimation sample used in 

column (3) lives anywhere in the municipality. Hence, if inversions have dramatically different 

effects on pollution levels in the center of the urban areas (where the monitors are located and 

pollution levels can be expected to be highest) than in other areas we would also expect to see 

sharp differences in the estimated impact in the full sample (col. 3) and estimate on the children 

living within 2km of the pollution monitor. However, the estimates are virtually identical. We 

also estimated separate models for children living less/more than 500m from a freeway. If 

children living close to this major sources of pollution where sharply differentially affected by 

inversions than children living further from freeways, it could suggest that inversions influences 
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pollution more in areas with high levels of pollution. However, again the estimated impacts of 

inversions on children in these two groups were almost identical.11  

We interpret these results as unsupportive of the hypotheses that the SES-differences are 

driven by nonlinearities or by strongly differential effects of inversions on pollution levels in rich 

and poor neighborhoods. 

 

(ii) Avoidance Behavior 
However, SES differences in exposure could emerge for other reasons than residential sorting.  

Previous studies from high pollution settings have suggested that so called avoidance behavior 

may affect estimates of air pollution on health (Neidell, 2003; Moretti and Neidell, 2011). If 

individuals observe inversions and change their behavior in order to minimize exposure, our 

baseline estimates will likely understate the effects of poor air quality. Moreover, information 

differences about inversions across high and low SES households could potentially explain the 

observed differences in the impact of inversions across SES-groups. 

Our prior is that the general public is not perfectly informed about inversions, and is not 

able to predict inversions or how inversions affect pollution levels. Neither information on 

inversion, nor inversion strength, are published in Swedish media or by local authorities. Vertical 

temperature profiles are not available on a large scale, nor is the data from the four Swedish 

ground level sounders.12  

Ideally, we would like to test avoidance behavior using individual child pollution 

monitors. Since we do not have access to such data, to assess the potential role of avoidance 

behavior, we first test whether inversions influence pollution predictions. Daily pollution 

predictions are only available in the Stockholm region. SLB, which produce the pollution 

predictions, provided us with their PM10 predictions during the observation period. The 

predictions for day (d) are produced in the afternoon the day before (d-1), and are distributed to 

local media, and published on SLBs webpage. The predictions are mainly based on current (day 

d-1) pollution levels, but also weather predictions and other observable factors (including e.g. 

road surface conditions etc.). However, no direct measure or prediction of inversion episodes is 

                                                            
11 Results are not reported here but are available upon request. 
12 Access to SMHI’s and the Swedish military’s in weather balloon stations that measure vertical temperature profiles on a daily basis is under 
way according to SMHI  but is not available at present (2013-11-04) . 
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used in the analysis.13 SLB report the expected PM10 level for the following day as Low, 

Moderate, Pretty High, and High. 

Table A6 show that conditional on previous day pollution levels, which is the main 

predictor of pollution levels for the following day, and other weather conditions, inversions have 

no significant effect on the pollution prediction. This suggests that publicly provided pollution 

forecasts is not likely to generate differences in avoidance behavior across SES-groups.  

Yet, even though professional forecasters do not seem take inversions into account, likely 

due to lack of data, it is possible that sensitive populations may have strong enough incentives to 

gather private information on inversion episodes since it is a strong predictor of air quality. In 

some heavily polluted areas around the world, inversions can sometimes be observed with the 

naked eye. In Sweden, this is generally not the case due to relatively low pollution levels and low 

humidity. Moreover, recall that we examine the effects of nighttime inversion. Even if 

individuals do understand the meteorological relationship in general, it seems unlikely that they 

are able to correctly identify inversion episodes and inversion strength at 2 am. We therefore 

believe that the risk of (SES-differences) in inversion observance is minimized.  

However, we also try to test this assumption indirectly. Any test of the extent and 

prevalence of avoidance behavior relies on proxies (Graff-Zevin and Neidell, 2013). Previous 

studies have used visits to outdoor facilities (e.g the zoo or sport event) (Neidell, 2009; Moretti 

and Neidell, 2011) to proxy for avoidance behavior. We make use of child injury data. The idea 

is that if inversions are associated with substantial changes not only in pollution levels but also in 

e.g. children’s (outdoor/indoor) activity patterns, we may detect that the share of injuries 

occurring indoors also change. To test this we first use the Injury Database, that include detailed 

information on all health care visits related to externally caused injuries over the observation 

period in nine regional hospitals.14 The National Board of Health and Welfare provided us with 

counts of injuries due to external causes by location at the time of injury (indoors/outdoors) and 

the date of injury. Using these data we created a hospital-day of injury dataset to which we 

linked the weather and inversion data by geocoding the locations of the hospitals. 

Table A7 provide estimates of the baseline model using the share of indoor injuries as the 

outcome variable, replacing the municipality fixed effects with hospital fixed effects. The table 

                                                            
13 Personal communication with Michael Norman at SLB-analys, who provides the pollution prognosis for Stockholm, September 6 2013. 
14 Arvika sjukhus, Bollnäs sjukhus, Hudiksvalls sjukhus, Karlstads sjukhus, Ljusdals sjukhus, Norrlands (Umeå) Universitetssjukhus, Skaraborgs 
sjukhus, Söderhamns sjukhus, and Torsby sjukhus.  
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shows that the share of injuries occurring indoors are not significantly influenced by inversions 

in the full sample (children aged 0-18), the preschool, or school kids sample. However, note that 

rain and wind that are strong predictors of the share of injuries occurring indoors. Since we 

expect that these weather conditions should increase time spent indoors, this supports the validity 

of the share of injuries occurring indoors as a measure of indoor activities. 

With our full sample health care data we can also construct health care visit rate for 

injuries due to external causes. With this much larger but less detailed data on injuries we can 

assess whether externally caused injuries changes with inversion episodes, and whether the 

effects differ by family income. Table A8 provides the results from the main specification 

(Equation 4) for the full sample, and the low, medium, and high parental income groups 

respectively. There are no significant effects of inversions on the rate of injuries due to external 

causes. For the highest income group the point estimate is slightly larger than for the other 

groups, but none of the estimated coefficients are statistically distinguishable from each other or 

from zero. 

In summary, pollution forecasters do not take inversion into account, and inversions do 

not seem to affect children’s time spent indoors. Jointly these findings suggest that inversions 

shift pollution levels, but parental responses are held fixed. Hence, avoidance behavior is not 

likely to be a major contributor to the observed differences in the impact of inversions on 

respiratory health in our setting. These results also provide support for the validity of our 

research design, since health conditions (injuries with external causes) that we do not expect to 

be directly affected by poor air quality are shown not to be significantly affected by inversions. 

 

(iii) Differences in Health 
A final potentially important mechanism that we are able to assess using the data at hand is the 

role of differences in baseline health. Children from poorer backgrounds have worse health in 

general (Currie et al., 2010). If children with poorer health are more susceptible to pollution 

shocks, the SES gap in the effects of pollution could in part be explained by differences in 

children's baseline health across rich and poor households. 

To assess the relevance of the hypothesis we make use of data on health at birth. 

Neonatal health data is useful since it is a strong predictor of subsequent health in childhood and 

beyond, but also because this measure has been collected in a similar manner for all cohorts and 
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is available for virtually all children in our sample. Specifically, we construct an index of initial 

health using the first principal component of gestational week at birth and birth weight. The 

children are then split into a good and poor health status group if they are above or below the 

median of the initial health index.  

Table A9 provide the baseline specification results for the full sample of children for 

whom we observe health at birth (column 1), and after splitting the sample into children with 

“good” and “poor” health in columns (2) and (3). Relative to the mean respiratory illness rate, 

which is much higher in the low income group than in the high income group, the estimates 

impact of inversions are around 30 percent larger on children in poor health than on those in 

good health. Columns 4 through 9 show estimates after splitting the sample further by income of 

the parents. Columns 3 through 6 show that for children with good health, the impact of 

inversions on respiratory health are much larger for those with low (6.4 percent) and medium 

(5.5 percent) income than for those with high income parents (1.3 percent). The final columns in 

Table A9 show that this huge income gap in the effects decreases substantially if comparing 

children with poor health, for whom the estimated impact across income groups are virtually 

identical (6.4, 5.8, and 6.0 percent respectively). Figure 4 provides the results of Table A9 

graphically. 

Two things stand out from this analysis. First, children in poor health are similarly 

affected by inversions irrespective of their parents’ income. Poor children are much more likely 

to be born low-birth weight and prematurely than children in high income households, and the 

mean respiratory illness is around 40 percent lower among high income compared to the low 

income children. Hence, differences in baseline health conditions across the income groups may 

play an important role in explaining the average SES-differences of inversion on respiratory 

health. A second interesting pattern, as also reflected in Figure 3, is that the main differences in 

our setting seems to be between high income groups and the two other income groups. These 

results suggest that environmental policies may benefit not only health among the poorest but 

also significantly improve respiratory health in the middle class and among children in high 

income households with poor baseline health. Children in good health in high-income 

households are not significantly affected by air quality changes following inversions. 
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Summary of the results for the underlying mechanisms 
In summary, out of the mechanisms suggested to explain differential effects of ambient air 

quality on children's health, differences in initial health across households with differing 

economic conditions seems to be key in explaining the differential impact of air quality on 

respiratory illnesses. Our results have little to say about the mechanism leading to worse baseline 

health. It is possible that high levels of pollution cause lower birth weight and shorter gestation, 

which we use to build our health index. Our results do suggest that the poor air quality during the 

child’s life cycle seems to exacerbate health differences associated with worse neonatal health. 

Moreover, it is important to keep in mind the low pollution setting. In high pollution settings 

with strong information differences across SES groups, avoidance behavior likely plays a more 

important role in generating differences in the effects of air pollution across SES groups. 

Finally, an additional mechanism could be that parents with more resources may have 

greater opportunities for, or receive higher returns (e.g. by reducing the lost income due to work 

absence during children's illness spells) from, medical defensive investments. A higher level of 

defensive investments may reduce the need for visits to health care facilities in connection with 

high pollution days. If so, this could also contribute to parts of the SES-gap in the effect on 

health care visits. There is little evidence of the importance of defensive investments with respect 

to air quality, but Deschenes et al. (2012) document that when ozone levels decrease, so does 

medication expenditure in the US. To our knowledge, there are no studies examining whether 

defensive investments related to respiratory illnesses differ (for children) across SES-groups. 

Difference in defensive medical investments is difficult to completely rule out as an 

additional explanatory factor, given the lack of data on daily medical consumption. However, in 

Sweden all children have health insurance, and during the observation period medical expenses 

of children (under age 18) are all fully subsidized if the sum of expenses of all children in the 

same family exceeds SEK 2200 (USD 320) for 12 months after the date when the threshold is 

exceeded. Health care visits are free of charge for children under age 19. Hence in our setting, 

while possible, it seems less likely that differences in defensive investments constitute a major 

contributing factor to the SES gap in the effects of air quality on health. Future studies with 

access to data on daily medical consumption and parental income, may be able to assess this 

additional mechanism directly. 
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6.6 Additional results: The Effects on Parents Labor Supply  

This section provides evidence on the impact on parental labor supply using data from the 

Swedish National Insurance Board on benefit compensation for labor income lost due to care of 

sick children. With this data we constructed indicators for whether a child was home due to 

illness and in the care of a parent. Parents are eligible for benefits for taking care of a sick child 

aged less than 12 years, and may claim benefit compensation for up to 120 days per year. The 

replacement rate is 80 percent of lost earnings, up to monthly wage celling of SEK 37,000 (~ 

USD 5,000 during the sample period). The benefit compensation data contain information in the 

start and end date of a parental work absence spell for each specific child and the benefits the 

parent received for that spell. Most parental work absence spells due to care of a sick child are 

short (1-2 days).  

Using this data we constructed a child sick spells. Since mothers (fathers) on average take 

out regular parental leave for 13.5 (3.5) months during the first two years, we restrict the sample 

to children aged between 2 and 11 years old. Spells that end on a Friday and continue on the 

following Monday are treated as a single spell, since parents only are eligible to compensation 

for lost work time. Since many parents alternate staying home (mothers take out approx. 64 

percent of the days), the average child spell length is 2.9 days, and 95 percent are shorter than 

eight days.  

We construct three municipality-day outcome variables using the child sick spell data. 

The number of child sick spells that started on a specific date divided by the number of children 

in the municipality (comparable to the respiratory illness rate), the average duration of the spells 

that started on a specific date, and the total benefits the parents received for a spell starting on a 

specific date. 

Table 5 provides the estimated impact of inversion on these outcomes. Column (1) show 

that the sick-child incidence rate increases by 2.9 percent following inversions. Column (2) that 

the total municipality spell length increased by 2.4 percent. Inversions also increase the total 

benefit compensation by 2.5 percent. Each year around 5 million workdays are lost due to care of 

sick children, and the direct costs of child sickness from parental leave compensations amounts 

to around SEK 4 billion yearly (~USD 550 million). Moreover, women take care of the sick 

child for nearly two out of three days. To the extent that parental leave due to care of sick 

children influences career opportunities and/or wage-earnings profiles, poor air quality may 
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affect labor supply of parents via its impact on children’s health, and potentially also inequality 

in the labor market. Of course, the care of sick child data is also interesting as a complement to 

the health care records, since it is captures health conditions that not necessarily lead to health 

care visits.  

 

7 Conclusions 

Few studies have been able to directly assess the impact of air pollution across income groups. 

We examine the effects of air quality across SES groups in a low pollution setting with universal 

health insurance, heavily subsidized health care and medicine expenses for children. Yet, we find 

stark differences in the impact of poor air quality. We find that inversions sharply decreases air 

quality and increases health care visits due to respiratory illnesses. The impact of inversions is 

around 40 percent lower on children in high-income families than on low income families, and 

we also find suggestive evidence that the income-child gap in the effects increases with child 

age. 

Importantly we also examine potential mediating mechanisms behind the SES gap. We 

show that among children with poor baseline health, higher parental income does not seem to be 

able to cushion the impact of poor air quality. Hence, since children in lower income households 

have higher baseline level of health problems, one important mechanism behind the differences 

in the effects of poor air quality across income groups seem to be that children in low income 

households are more vulnerable due to an on average already lower health stock. Since pollution 

exposure early in life has also been shown to influence long-term outcomes (cognitive ability, 

educational attainments, earnings, crime) (Nilsson, 2009; Sanders, 2012; Grönqvist, Nilsson, and 

Robling, 2014; Isen et al, 2014), it seems that environmental policies could also play an 

important role in reducing inequalities in economic outcomes. More research on long term 

effects of early life air pollution exposure and the interaction with parental income is of clear 

policy interest.  

 NASA provides the inversion data on a daily and global scale, and is easy to access and 

download. The empirical approach we develop opens up the opportunity for comparative studies 

across e.g. developed and developing countries using the same empirical strategy. Moreover, 

despite the strong predictive power of inversion on pollution, we show that inversions have no 

predictive power on pollution forecast. This suggests that the forecasters in our setting do not 
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take inversion into account when predicting pollution levels for the following day, potentially 

due to the lack of reliable inversion data. Hence, forecasters may potentially be able to produced 

more precise pollution forecasts by exploiting the NASA inversion data, and which if effectively 

disseminated may decrease the health costs associated with poor air quality at a low cost by 

allowing sensitive population to more efficiently engage in defensive medical investments.   
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Figure 1: The Effects of Inversions on Pollution and the Respiratory Illness Rate 
Note: Generalized additive model estimates (equation (5)) of respiratory health care visits per 10,000 children 
(black) and PM10 level (gray) on inversion strength using a local linear smoother (bandwidth 0.07 for PM10 and 0.1 
for respiratory illness rate), controlling for calendar month and an extensive set of weather variables (see the text for 
details). Kernel density estimate of distribution of observation wrt inversion strength (dashed), and current WHO 
24-h PM10 μg/m3 guideline for reference (dotted). 
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Figure 2: The Estimated Impact of Inversions by Parental Income and Education 
Note: the figure shows the estimated impact relative to the mean respiratory Illness by parental income group and 
maternal education. See text and table 6 for details and full results.  
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Figure 3: Effects of Inversions by Parental Income and Child Age 
Note: The Figure shows the point estimated effects by child age groups and parental income. See Appendix Table 
A3 for full results 
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Figure 4: The Estimated Impact of Inversions by Income and Health  
Note: the figure shows the estimated impact relative to the mean respiratory Illness by parental income group and 
child health status. See text and table 9 for details and full results.  
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Table 1: Descriptive statistics for key variables by inversion status 
Normal Days 
N=25,567 Mean 

Standard 
Deviation 

    
Rate of health care visits per 10,000 children: 
Any respiratory illness 2.14 2.51 
    
PM10 (μm/m3) 18.06 13.09 
Temperature ( ̊Kelvin) 
Daytime (ground level) 

277.80 8.90 

Temperature ( ̊Kelvin) 
Nighttime (ground level) 

276.06 7.48 

Precipitation (mm) 
(N=24,862) 

0.63 1.24 

Wind speed (m/s) 
(N=24,862) 

3.48 1.79 

Daily Cloud cover ratio 0.47 0.27 
Nightly Cloud cover ratio 0.49 0.26 
Inversion Days  
N=8,608   
   
Rate  of health care visits per 10,000 children: 
Any respiratory illness 2.24 2.68 
    
PM10 (μm/m3) 28.82 25.08 
Temperature ( ̊Kelvin) 
Daytime (ground level) 

276.87 10.40 

Temperature ( ̊Kelvin) 
Nighttime (ground level) 

272.01 8.68 

Precipitation (mm) 
(N=8,217) 

0.15 0.59 

Windspeed (m/s) 
(N=8,217) 

2.61 1.46 

Daily Cloud cover ratio 0.33 0.27 
Nightly Cloud cover ratio 0.32 0.26 
Notes: 
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Table 2: The Effects of Inversions on Air Quality 
 (1) (2) (3) (4) (5) 

Air Quality Measure: PM10 NO2 NOx SO2 CO 
Inversion  8.129*** 

(0.881) 
4.351*** 
(0.577) 

11.63** 
(1.533) 

0.528*** 
(0.158) 

0.0607** 
(0.0116) 

Muncipality Fixed Effects Yes Yes Yes Yes Yes 
Year by Month Fixed Effects Yes Yes Yes Yes Yes 
Day of Week Fixed Effects Yes Yes Yes Yes Yes 
Daily Weather Controls Yes Yes Yes Yes Yes 
Observations 39,781 40,234 12,514 15,749 7,930 
R-squared 0.308 0.379 0.148 0.239 0.176 
Number of Municipalities 90 68 3 24 3 
Mean Pollution Level 22.38 22.57 72.17 2.580 0.499 
% Effect 36%  27%  16%  23%  12%  
Notes: The table show estimates of inversion episodes on 24-h pollution levels using equation 
(3). ***/** denotes statistical significance at the 1%/5% level respectively. Standard errors are 
clustered at the municipality level.  
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Table 3: Effects of Inversions on the Respiratory Illnesses Rate 
 (1) (2) (3) (4) (5) 
Specification: Baseline 

specification: 
Baseline  

specification: 
+ age 

Full Baseline 
Specification:

+ age 
+ maternal 
education 

Full Baseline 
specification: 

without  
weather 

station data 

Full Baseline 
Specification:

Residence 
within 2km  

of a pollution 
monitor 

Inversion 0.106*** 
(0.0276) 

0.107*** 
(0.0275) 

0.107*** 
(0.0274) 

0.107*** 
(0.0254) 

0.104*** 
(0.0281) 

Other Controls No Yes Yes Yes Yes 

SMHI weather Yes Yes Yes No Yes 

NASA weather Yes Yes Yes Yes Yes 

Municipality FE Yes Yes Yes Yes Yes 

Year by Month FE Yes Yes Yes Yes Yes 

Day of Week FE Yes Yes Yes Yes Yes 
Mean dep. var. 2.164 2.164 2.164 2.164 2.215 
Observations 34,156 34,156 34,156 34,156 34,156 
# of cluster 90 90 90 90 90 
% Effect 4.9%  4.9%  4.9%  4.9%  4.7%  
Notes: The table show the effects of inversion on the respiratory illness rate using equation (4). Column (1) 
controls for weather conditions (from SMHI), year-by-month, day of week, and municipality fixed effects. Column 
(2) adds the average age of children in the municipality-year as a control. Column (3) adds average maternal 
education in the municipality as a control variable. Column (4) drops the local weather station data from SMHI, 
showing that this is not crucial and the analysis can be implemented using only the NASA weather data. 
Column (5) drop all children residing more than 2km from the pollution monitors. This effectively restricts the 
sample to children living in urban areas close to the major city in the municipality. The percent effect is (Inversion 
coefficient)/(mean of dependent variable) ***/** denotes statistical significance at the 1%/5% level respectively. 
Standard errors are clustered at the municipality level 

 

 



39 
 

 

 

Table 4: Effects across SES-groups 
Outcome Variable: Respiratory related health care admissions per 10,000 children 
 (1) (2) (3) (4) (5) (6) 
 Baseline 

specification 
for the sample 

where mothers’ 
education data 
are observed  

Mother’s 
Education 

≤ High School 

Mother’s 
Education 

> High School  

Low income 
families 

Medium 
income families

High income 
families 

Inversion 0.108*** 
(0.0287) 

0.108*** 
(0.0326) 

0.107*** 
(0.0293) 

0.185*** 
(0.0230) 

0.133** 
(0.0539) 

0.0596 
(0.0436) 

Weather Controls Yes Yes Yes Yes Yes Yes
Other controls Yes Yes Yes Yes Yes Yes
Year by Month Effects Yes Yes Yes Yes Yes Yes
Day of Week Effects Yes Yes Yes Yes Yes Yes
Municipality FE Yes Yes Yes Yes Yes Yes 
Observations 34,156 34,156 34,156 34,156 34,156 34,156 
# of cluster 90 90 90 90 90 90 
Mean resp. illness 2.235 2.266 2.186 2.895 2.358 1.621 
% Effect 4.8 4.8 4.9 6.4 5.6 3.7 
Notes:) ***/** denotes statistical significance at the 1% /5% level respectively. Standard errors are clustered at the municipality level. Column 
(1) reiterate the baseline specification results for the sample for whom we observed parental income and maternal education. Column (2) reports 
estimates after splitting the sample into those with mothers with less than or equal to high school education. Column (3) report estimates for 
those with mothers with more than high school education. Column (3 to 5) split the data by total parental yearly income divided into tertiles. The 
percent effect is (Inversion coefficient)/(mean of dependent variable 
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Table 5: Effects on Parents Labor Supply  
  (1) (2) (3) 
Dependent Variable: 

Child 
Sick Spell 

Incidence Rate
(per 10,000 
Children) 

Summed 
duration of  

Spells starting 
on Day t 

 

Average 
Compensation 

for Taking Care 
for Sick 
Children 

(SEK x 10000) 
Inversion 1.549** 

(0.638) 
3.089* 
(1.583) 

1,963* 
(1,048) 

Weather controls Yes Yes Yes 
Other Controls Yes Yes Yes 
Time & Municipality FE Yes Yes Yes 
Number of clusters 90 90 90 
# observations 34,156 34,156 34,156 
Mean Dependent var. 53.46 129.2 77248 
%Effect 2.9%  2.4%  2.5%  
Notes: The percent effect is (inversion coefficient)/(mean of the dependent variable). “Sick spell 
Incidence rate” is the number of new spells starting on day t divided by the total number of 
children age 2-11 in the municipality multiplied by 10,000. “Summed duration” is the summed 
length of the spells in days for spells that start on day t , divided by  the total number of children 
age 2-11, times 10,000. “Care for Sick Child Benefits” is the total amount in SEK that the 
parents received from the social insurance to compensate for lost labor income for taking care 
of their sick child for spells that started on day t divided by the total number of children in the 
municipality, multiplied by 10000 for readability. Each column represent a separate estimation 
***/**/* denotes statistical significance at the 1% /5% /10% level respectively. Standard errors 
clustered at the municipality level. 
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For Online Publication 

APPENDIX A 

 

Figure A1: Illustration of Effect of an Inversion Episode 

Notes: Figure X provides an illustration of the identification strategy. The left hand side of the figure show normal 
conditions, and the right hand side shows the inversion days. We measures health in children in the urban areas 
using health care records, pollution levels in 90 municipalities, and measures vertical temperature profiles using the 
NASA AQUA satellite data.  
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Figure A2: Municipalities, Temperature Grid Centroids (⋄) and Air Quality Monitors (∆). 
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Figure A3: Seasonal comparison of 24h-mean PM10 levels during normal and inversion episodes 

 

Figure A4: Comparison of 24h-mean PM10 levels during normal and inversion episodes 
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Table A1 Effects of Air Pollution Across SES groups.  
 Outcomes SES Measure: Assessing SES 

differences? 
Any SES differences? 

Schlenker and Walker (2011) Respiratory disease 
Heart disease 

none No - 

Arceo-Gomez, Hanna, & Oliva (2014) Infant mortality none No - 
Bharadwaj et al. (2014) Grade 4 GPA none No  
Isen, Rossin-Slater, Walker (2014) Labor market outcomes County averages No - 
Currie and Neidell (2005) Infant Mortality Zip code 

average 
No - 

Currie and Walker (2011) Infant health Maternal education No (but larger effects for 
African Americans) 

- 

Sanders and Stoeckers (2011) Sex-ratio  
(indicator of spontaneous 

abortions) 

Maternal Education 
(High school) 

Yes Yes 

Currie, Neidell, & Schmieder (2009) 
 

Infant health Individual mom 
education, census tract 
income (split sample) 

Yes No 

Knittel, Miller, and Sanders (2011) Infant Mortality Public insurance was 
used at delivery, 

maternal education 

Yes Mixed Results: 
Medicaid eligible 

=> slightly smaller 
effects 

Mom high school 
 drop out 

=> larger effect) 
Nilsson (2009) Labor market outcomes, 

Cognitive ability, 
 Grade 9 GPA 

Direct measure of 
parental income, 

education 

Yes Yes, larger effects for 
low SES groups 

Grönqvist, Nilsson, Robling (2014) Crime convictions  
(age 15-23) 

Direct measure of 
parental income, 

education 

Yes Yes, larger effects for 
low SES groups 
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Table A2: Summary statistics 
 Mean Standard 

deviation 
   
A. Dependent variables   
Rate of respiratory related hospital visits per 10,000 children 
Any respiratory illness 2.16 2.55 
Age 0-5 4.45 5.77 
Age 6-10 1.47 3.40 
Age 13-18 1.03 2.19 
Asthma 1.68 2.55 
Pneumonia 0.56 1.52 
Bronchitis 0.78 1.88 
Other respiratory illness 1.82 2.51 
External causes 2.44 2.33 
   
B. Independent variables   
PM10 (μm/m3) 20.77 17.57 
Temperature ( ̊Kelvin) 
Daytime (ground level) 

277.57 9.31 

Temperature ( ̊Kelvin) 
Nighttime (ground level) 

275.04 7.99 

Precipitation (mm) 
(N=33,079) 

0.51 1.14 

Windspeed (m/s) 
(N=33,079) 

3.26 1.75 

Daily Cloud cover ratio 0.43 0.28 
Nightly Cloud cover ratio 0.45 0.27 
   
Share of Inversion days 0.25 0.43 
Inversion strength  -1.35 2.80 
Number of Observations 34,156  
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Table A3 Specification Checks 
Specification (1) (2) (3) (4) (5) 
Outcome variable: Respiratory Illness Rate PM10 Inversion 
Inversion (d) .1154*** 

(.0232) 
.0781*** 
(.0249) 

   

Inversion (d-1)  .0927*** 
(.0286) 

   

Inversion (d-2)  .0389 
(.0270) 

   

Inversion (d-3)  -.0126 
(.0293) 

   

Inversion (d-4)  .0090 
(.0366) 

   

Inversion (d-5)  .0399 
(.0343) 

   

Share inversion days (d to d-5)    .2501*** 
(.0641) 

  

Weekend Dummy    -4.754*** 
(0.993) 

0.0042 
(0.003) 

Cumulative Effect (∑ ௗିߚ
ହ
ୀ ሻ  .2462*** 

(.066) 
   

Observations 10979 10979 10979 34,156 34,156 
Mean of Outcome Variable: 2.1 2.1 2.1 20.8 0.25 
Notes: Column (1) report estimates for the estimation sample used in the cumulative effect analysis (column 2). In the 
distributed lag model we control for the lagged weather variables for each day. Column (3) report the estimated impact on 
current respiratory illness rate from the average number of days with inversion over the current and past 5 days. Column  (4) 
show the drop in PM10 levels on weekends, while column (5) show that the sharp drop in pollution levels on weekends do 
not influence inversions. ***/**/* denotes statistical significance at the 1% /5% /10% level respectively 
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Table A4: Effects on Sub-diagnosis and by Child age 
 (1) (2) (3) (4) (5) (6) (7) 
Dependent Variable: Respiratory 

Illnesses  
Asthma Bronchitis Pneumonia Other 

respiratory 
Pre-School 

Kids 
School-age 

Kids 
Inversion 0.107*** 

(0.0274) 
0.0588*** 
(0.0170) 

0.0121** 
(0.00591) 

0.00704** 
(0.00286) 

0.0293** 
(0.0125) 

0.166*** 
(0.0519) 

0.0736*** 
(0.0172) 

Weather Controls Yes Yes Yes Yes Yes Yes Yes 
Other controls Yes Yes Yes Yes Yes Yes Yes 
Year by Month Effects Yes Yes Yes Yes Yes Yes Yes 
Day of Week Effects Yes Yes Yes Yes Yes Yes Yes 
Municipality FE Yes Yes Yes Yes Yes Yes Yes 
Observations 34,156 34,156 34,156 34,156 34,156 34,156 34,156 
# of cluster 90 90 90 90 90 90 90 
Mean outcome 2.181 0.914 0.189 0.114 0.964 4.053 1.154 
% Effect 4.9%  6.4%  6.4%  6.1%  3.0%  4.1%  6.4%  

Notes: The percent effect is (Inversion coefficient)/(mean of dependent variable) ***/** denotes statistical significance at the 1% /5% level 
respectively. Standard errors are clustered at the municipality level. The pre-school age group covers children aged 0-6 and school kids are 
children 7-18. Column (1) reports estimates for the baseline outcome, and column (2-5) report estimates for sub-diagnoses of the respiratory 
illness category.   
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Table A5:  Effects of Inversions by Child Age and Parental Income 
Sample: All families Low income families Med income families High income families 
 0-6 years 7-18 years 0-6 years 7-18 years 0-6 years 7-18 years 0-6 years 7-18 years 
 (1) (2) (3) (4) (5) (6) (7) (8) 
Inversions 0.179*** 

(0.0551) 
0.0745*** 
(0.0180) 

0.277*** 
(0.0487) 

0.106*** 
(0.0229) 

0.159 
(0.102) 

0.113*** 
(0.0306) 

0.104 
(0.0775) 

0.0417 
(0.0361) 

Observations 34,156 34,156 34,156 34,156 34,156 34,156 34,156 34,156 
Number of cluster 90 90 90 90 90 90 90 90 
Mean resp. illness 3.977 1.142 4.920 1.280 3.992 1.273 3.000 1.170 

% Effect 4.5%  6.5%  5.6%  8.3%  3.9%  8.9%  3.5%  3.6%  
Notes: The table report separate estimates by income group and child age used to construct Figure 5. 
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Table A6: Does Inversions Affect Pollution Forecasts in Stockholm? 
 (1) (2) (3) (4) 

Outcome variable: PM10 
predicted to 
be High on 

day t 

PM10 
predicted to 
be High on 

day t 

PM10 
predicted to 
be pretty 

High 
 or High on 

day t 

PM10 
predicted to 
be pretty 

High 
 or High on 

day t 
Inversion  .0127 

(.0270) 
.0197 

(.0246) 
.0319 

(.0299) 
.0255 

(.0282) 
Lagged (d-1) PM10 level  .0063*** 

(.0006) 
.0048*** 
(.0006) 

.0074*** 
(.0007) 

.0061*** 
(.0008) 

Daily Weather controls Yes Yes Yes Yes 
Year by Month Effects No Yes No Yes 
Day of Week Effects No Yes No Yes 
Muncipality Fixed Effects No No No No 
Observations 1401 1401 1401 1401 
R-squared 0.35 0.46 0.38 0.47 
Mean of dep. variable 0.11 0.11 0.16 0.16 
Notes: The table show estimates on if inversion affect pollution level forecasts in Stockholm. 
The IVL produce forecasts in the afternoon for the following day, and report the expected 
PM10 level in the following way: 1=”Low”,2=”Moderate”, 3= “Pretty High”, 4= “High”. The 
outcome variable in columns 1 & 2 is equal to 1 if IVL predicted that pollution would be 
“High”. In Columns 3-4 the outcome variable is equal to 1 if  pollution would be Pretty High 
or High IVL  ***/**/* denotes statistical significance at the 1% /5% /10% level respectively.  
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Table A7: Does inversions affect children’s indoor/outdoor activities? 
 (1) (2) (3) (4) (5) (6) 
Dependent Variable Share of 

Injuries 
Occurring 

Indoors 

Share of 
Injuries 

Occurring 
Indoors 

Share of 
Injuries 

Occurring 
Indoors 

Share of 
Injuries 

Occurring 
Indoors 

Share of 
Injuries 

Occurring 
Indoors 

Share of 
Injuries 

Occurring 
Indoors 

Age Groups: All 
Kids 

All 
Kids 

Pre-school 
Kids 

Pre-school 
Kids 

School-Age 
Kids 

School-Age 
Kids 

Inversion 0.0080 
(0.0065) 

-0.0049 
(0.0094) 

0.0142 
(0.0077) 

0.0074 
(0.0087) 

0.0004 
(0.0078) 

-0.0138 
(0.0100) 

Wind speed (m/s) 0.0161*** 
(0.0035) 

0.0033 
(0.0034) 

0.0163*** 
(0.0042) 

0.0127*** 
(0.0021) 

0.0127** 
(0.0041) 

0.0003 
(0.0036) 

Precipitation (mm) 0.0115*** 
(0.0021) 

0.0143*** 
(0.0026) 

0.0101*** 
(0.0018) 

0.0147*** 
(0.0026) 

0.0113*** 
(0.0024) 

0.0126*** 
(0.0032) 

Year by Month Effects No Yes No Yes No Yes 
Day of Week Effects No Yes No Yes No Yes 
Hospital FE No Yes No Yes No Yes 
Daily Weather controls Yes Yes Yes Yes Yes Yes 
Observations 5,560 5,560 3,876 3,876 5,333 5,333 
R-squared 0.192 0.266 0.158 0.193 0.190 0.270 
Mean of Dependent var. 0.419 0.419 0.609 0.609 0.359 0.359 
Notes: The table presents estimates of the effects of inversion on the share of indoor injuries that require health care 
visits as a proxy for avoidance behavior as described in the text. Each column represent a separate estimation. For 
comparison, the estimated effects of precipitation (mm) and wind speed (m/s) are also reported. ***/**/* denotes 
statistical significance at the 1%/5%/10% level respectively. Standard errors are clustered at the hospital level and 
are reported in parenthesis. 
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Table A8: Does inversions affect children’s activities? 
Dependent Variable: Injuries with External Causes per 10,000 children 
 (1) (2) (3) (4) 
 Full sample Low income 

families 
Medium income 

families 
High income 

families 
Inversion 0.0173 

(0.0327) 
0.000804 
(0.0415) 

0.00009 
(0.0383) 

0.0452 
(0.0431) 

Weather Controls Yes Yes Yes Yes
Other controls Yes Yes Yes Yes
Year by Month Effects Yes Yes Yes Yes
Day of Week Effects Yes Yes Yes Yes
Municipality FE Yes Yes Yes Yes 
Observations 34,156 34,156 34,156 34,156 
# of cluster 90 90 90 90 
Mean resp. illness 2.342 2.301 2.254 2.495 
% Effect 0.7%  0.04%  0.004%  1.8%  
Notes: ***/**/* denotes statistical significance at the 1% /5% /10% level respectively. Each 
column represent a separate estimation 
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Table A9: Effects by Health Status and Parental Income 
 Full Health Index Sample Good Initial Health Poor Initial Health 

Dependent Variable Respiratory 
Illness Rate 

Respiratory 
Illness Rate 

Respiratory 
Illness Rate 

Respiratory 
Illness Rate 

Respiratory 
Illness Rate 

Respiratory 
Illness Rate 

Respiratory 
Illness Rate 

Respiratory 
Illness Rate 

Respiratory 
Illness Rate 

Sub-sample: All Good 
Health 

Poor 
Health 

Low  
income 
families 

Medium 
income 
families 

High  
income 
families 

Low  
income 
families 

Medium 
income 
families 

High  
income 
families 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 
Inversion 0.122*** 

(0.0334) 
0.0974*** 
(0.0285) 

0.147*** 
(0.0465) 

0.173*** 
(0.0493) 

0.122*** 
(0.0442) 

0.0197 
(0.0284) 

0.196*** 
(0.0400) 

0.145* 
(0.0837) 

0.104 
(0.0759) 

Weather Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Other controls Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Year by Month Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Day of Week Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Municipality FE Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 34,156 34,156 34,156 34,156 34,156 34,156 34,156 34,156 34,156 
# of cluster 90 90 90 90 90 90 90 90 90 
Mean outcome 2.322 2.169 2.480 2.716 2.231 1.526 3.061 2.492 1.729 
Effect RF 5.3%  4.5%  5.9%  6.4%  5.5%  1.3%  6.4%  5.8%  6.0%  

Notes: ***/**/* denotes statistical significance at the 1% /5% /10% level respectively. Each column represent a separate estimation 
 

 


