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Abstract

Most theoretical identification results for dynamic games with discrete choice focus on the

entire payoff functions while taking other primitives as known. In practice, however, empirical

researchers are often concerned about numerical costs. When possible, in the spirit of structural

estimation, economic theory can be used to reduce the dimensionality of the payoff functions

to be estimated by dynamic game methods that are considered computationally expensive.

Switching costs such as entry, exit, or other generic adjustment costs, are recurring components

of the payoffs seen in numerous empirical games modeled in practice. We show how natural

exclusion restrictions that define switching costs can be exploited to obtain new identification

results. Our identification strategy can be used to construct estimators that are simpler to

compute and more robust than previously. As an illustration we use the data from Ryan (2012)

to estimate a version of dynamic game played by firms that produce Portland cement over the

period that spans the implementation of the 1990 Clean Air Amendments Act (1990 CAAA).

Our finding supports his result that the entry barrier following the 1990 CAAA has increased.
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1 Introduction

A structural study involves modeling the economic problem of interest base on some primitives that

govern an economic model. The empirical goal is to estimate them for counterfactual analysis.

The structural model of interest in this paper is a class of dynamic discrete choice games that

generalizes the single agent Markov decision models (Rust (1994)). These games have been used

to study several interesting counterfactual experiments involving multiple economic agents making

decisions over time.1 A key aspect to the modeling decision that precedes estimation involves the

issue of identification. Nonparametric identification of a structural model informs us whether or not

the parameter of interest can be consistently estimated from an ideal data set without introducing

additional parametric or other restrictions. Recent reviews of the identification and estimation of

these games, as well as related issues such as computational aspects, can be found in Aguirregabiria

and Mira (2010) and Bajari, Hong and Nekipelov (2012). The primitives of the games we consider

consist of players’payoff functions, discount factor, and Markov transition law of the variables in the

model.

Most nonparametric identification results in this literature, following Magnac and Thesmar

(2002), focus on identifying the payoff functions while taking other primitives of the model as known

(Bajari, Chernozhukov, Hong and Nekipelov (2009), Pesendorfer and Schmidt-Dengler (2008)); also

see Section 6 in Bajari, Hong and Nekipelov (2012).2 These authors show that payoffs are generally

not identified nonparametrically. They are underidentified. Positive identification results are typi-

cally obtained by imposing generic linear restrictions on the payoffs (such as equality and exclusion

restrictions). The identification strategy along the line of Magnac and Thesmar is constructive, and

is related to the development of several general estimation methodologies.3

A common feature of the aforementioned works on identification aims to identify the entire

payoff function. However, the estimation strategies often employed in empirical work do not treat all

components of the payoff function in the same way. In particular the estimation of dynamic games is

considered a numerically demanding task, and the computational cost generally increases nontrivially

with the cardinality of the state space as well as number of parameters to be estimated. Therefore, in

1Examples of empirical applications include: Aguirregabiria and Mira (2007), Beresteanu, Ellickson and Misra

(2010), Collard-Wexler (2013), Dunne, Klimek, Roberts and Xu (2013), Fan and Xiao (2012), Gowrisankaran, Lucarelli,

Schmidt-Dengler and Town (2010), Lin (2012), Pesendorfer and Schmidt-Dengler (2003), Sanches, Silva Jr and Srisuma

(2014), and Suzuki (2013).
2A notable exception is Norets and Tang (2012), who show in a single agent setting that without the distribution

of the private values, generally payoff functions can only be partially identified.
3Examples of estimators in the literature include Aguirregabiria and Mira (2007), Bajari, Benkard and Levin (2007),

Bajari et al. (2009), Pakes, Ostrovsky and Berry (2007), Pesendorfer and Schmidt-Dengler (2008), and Sanches, Silva

and Srisuma (2013).
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the spirit of structural modeling, when possible empirical researchers use economic theory to estimate

components of the payoff function directly without appealing to estimators developed specifically for

dynamic games. In other words, some components of the payoff functions are treated as reduced

forms as they are identified by the data.4

A recurring feature of many empirical games employed in practice involves costs that arise from

players choosing different actions from the past. Prominent examples include entry costs and scrap

values in models with entry, as well as generic adjustment costs in capacity and pricing games and

decision problems. We refer to these as switching costs. Switching costs are usually parts of what are

often called dynamic parameters of the model. They generally cannot be treated as reduced forms

since economic theory rarely provides guidance on how they are determined. Dynamic parameters

have to be estimated using dynamic game methods. Crucially, by definition, switching costs impose

natural exclusion restrictions on the payoff functions. This paper explores how natural economic

restrictions from switching costs can be exploited to improve the inference of dynamic games.

We show that, subject to a testable conditional independence assumption, switching costs can

generally be nonparametrically identified independently of the discount factor and other components

of the payoffs. Our identification strategy is constructive and it leads to a more robust and simpler

to construct estimator than previously. In order to be more explicit about our contribution it will be

helpful to introduce two main assumptions from the onset. More specifically let πi (ait, a−it, xt, wt)

denote the per period payoff for player i at time t, where ait, a−it, xt and wt denote her own ac-

tion choice, actions of other players, observed state variables and actions from the previous period

respectively. We shall consider a payoff function that admits the following decomposition:

πi (ait, a−it, xt, wt) = µi (ait, a−it, xt) + φi (ait, xt, wt; ηi) · ηi (ait, xt, wt) . (1)

The payoffstructure above is in fact prevalent and it encompasses numerous payoff functions specified

in practice. We offer one economic interpretation for the above equation as follows. µi captures the

static payoff from each period’s competition or participation from the game. φi represents player’s

specific switching cost function. ηi is a known function that indicates whether a switch occurs;

its sole purpose is to determine the domain of φi, hence the notation φi (; ηi). The key exclusion

restrictions are: (i) past actions do not directly affect static payoff (wt does not enter µi); and, (ii)

only player i’s own action determines whether a switching cost is incurred (a−it does not enter φi and

4For example, in an empirical model of an oligopolistic competition, firms’data on prices and quantities can be

used to construct the variable profits by building a demand system and solving a particular model of competition; see

Berry and Haile (2010,2012). Another example is the context of an auction. When bids data are available and the

auction format is known, the expected revenue can be estimated nonparametrically; see Athey and Haile (2002), and

Guerre, Perrigne and Vuong (2000).
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ηi). In addition, we require that xt+1 is independent of wt conditional on xt and at. This conditional

independence assumption is made only on the observables and hence is testable. Furthermore, such

assumption is assumed in any empirical model that treats all observed state variables apart from

past actions exogenously; e.g. see Pesendorfer and Schmidt-Dengler (2003) and Ryan (2012).

We provide conditions so that φi can be identified independently of µi and the discount factor,

denoted by β. Furthermore, φi can be written in closed-form in terms of the transition and conditional

choice probabilities that are observed from the data. The extent of the implication of our results

depends on the empirical problem at hand and data availability.

1. The best case scenario is when µi can be identified directly from the observed data. Our

identification result of φi then implies that πi can be identified independently of the discount

factor. In this case we also give a condition to identify the discount factor.

2. Otherwise the identification of µi will rely on existing methods in the literature, particularly

also assuming β, where the knowledge of φi can be used to reduce the dimensionality of the

nonparametric components in πi.

Our identification strategy is constructive. The closed-form expression of the probabilities sug-

gests switching costs can be estimated directly without any optimization. The numerical aspect of

estimating dynamic games can present a non-trivial challenge in practice; e.g. see Egesdal, Lai and

Su (2014) and Sanches, Silva and Srisuma (2014) for recent discussions. We propose a simple estima-

tor for φi that is invariant to the value of the discount factor and any specification of µi that can be

computed using a closed-form expression. Furthermore, if µi is also identified and estimable directly

from the data then we can estimate πi independently of β. In any case the closed-form estimation

of the switching costs offer a practical way to reduce the dimensionality of the estimation problem.

Particularly, without any restrictions, the number of switching cost parameters for each player grows

at the rate of the number of actions squared.

The discount factor is a primitive of the model that is traditionally assumed to be known in

the study of identification in dynamic games. Consequently empirical work often simply assigns

various numbers for this when it comes to estimation. One reason for this can perhaps be traced

to the generic non-identification result of the discount factor for a single agent dynamic decision

model described in Manski (1993). However, in the presence of additional structures on the payoff

functions the discount factor can be identified; as Magnac and Thesmar (2002) illustrate for a two-

period model. The caveat is that additional structures should be carefully motivated.5 We build on
5One recent example can be found in Fang and Wang (2014), who use a particular exclusion restriction combined

with a conditional independence assumption to identify the discount factor for a dynamic decision problem where

economic agents use hyperbolic discounting.
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our positive identification results of the switching costs, and provide a suffi cient condition to identify

β when µi can be identified independently of β. Our identification result is again constructive and

we suggest a class of natural estimators for the discount factor.

The innovation of our work lies in the identification strategy of the switching costs. The seminal

work of Magnac and Thesmar (2002) show in a single agent decision model that the identification of

the model primitives can be analyzed from the normalized expected payoffs that are identified from

the data (Hotz and Miller (1993)). Pesendorfer and Schmidt-Dengler (2008) and Bajari et al. (2009)

extend this idea to a dynamic game setting. Particularly, when all primitives apart from πi are known,

the expected payoffs can be written as a linear transform of πi so the condition for identification is

equivalent to whether some linear equation in πi has a unique solution. However, if β is also part of

the unknown terms, then the expected payoffs are no longer linear in these primitives. We show that

the interpretable and prevalent decomposition of the payoffs, coupled with conditional independence,

can restore the linear structure for the switching costs that can then be used for identification. The

combination of exclusion and independence restrictions is a classic tool used to identify structural

econometric models (see Matzkin (2007) for others).6 Particularly when the parameter of interest

enters the identifying equation linearly, it can typically be identified by some form of differencing.

We show the switching costs can be identified from a particular linear combination of equations,

which can be characterized by a linear transformation in the form of a projection matrix.

The decomposition of payoffs and exploiting other nonparametric structures base on economic

reasoning is a constructive way to identify structural models. Some recent explorations in this

direction for other models can be found for example in Berry and Haile (2010,2012) and Lewbel

and Tang (2013). The paper that is closest to ours in this regard is the recently published work by

Aguirregabiria and Suzuki (2014) on single agent decision problems with entry. However, the content

and motivation of our work and theirs are substantially different. They motivate their studies base on

the notion that switching costs generally cannot all be jointly identified without making normalization

assumptions. Their main concern is the identifiability and interpretation of certain counterfactual

objects for the purpose of policy analysis under different normalization choice made on parts of

the payoff functions. Our work on the other hand focuses on identification and estimation of the

switching costs that can be identified, where normalization is taken as part of modeling decision,

and the discount factor. Interestingly, despite their paper explicitly assuming the knowledge of the

discount factor throughout, a careful inspection of their non-identification result (Proposition 2) will

also suggest that the switching costs in their model can be identified independently of the discount

6Blevins (2013) and Chen (2014) also show how exclusion and independence restrictions can be used to identify

the distribution of unobserved state variables in a closely related single agent decision problem.
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value under some normalization (albeit by a different method).7 This particular implication can be

seen as a special case of our more general result.8

Some form of normalization (or restriction) is in general necessary to employ our identification

strategy. We characterize the degree of underidentification of the switching costs when no other

structure on φi is imposed beyond the definition of a switching cost. Our need to normalize may not

be surprising since some form of normalization is prevalent in the empirical literature. In practice

normalizations are often made on informal arguments that certain components of the payoff function

cannot be identified. The only formal identification result in a related model that we are aware of is

given by Aguirregabiria and Suzuki (2014, Proposition 2) that suggests entry costs and scrap values

cannot be jointly identified when nothing else is known about the payoff function for a single agent’s

decision problem with entry. A common normalization choice in practice is to assign zero payoffs

when a player chooses an “outside option”. An analogous normalization in our framework would

then be to impose that a switching cost associated with a player choosing the outside option is zero

regardless of her previous action. Such normalization will be suffi cient but not necessary. However,

importantly, we wish to emphasize here that we are not advocating ad hoc normalizations for a

computational gain, or a chance to estimate the discount factor that would otherwise likely have to

be calibrated/normalized. As always the case with structural modeling, an ideal approach is to use

economic reasoning and data (when available) to impose additional structures that are specific to

each empirical application. For instance, certain switching costs may naturally be argued to be zero

(such as manufacturers in a pricing game who bear the cost of introducing promotions but there is

no cost reverting to the original price, see Mýsliwski et al. (2015)). Alternatively other restrictions

on switching costs will also suffi ce. E.g. equality of switching costs from one option to another and

vice versa may be reasonable in some applications such as those with a traditional adjustment menu

costs (see Slade (1998)).

We provide a small Monte Carlo study to show that our estimator is consistent and robust against

the misspecification of the discount factor unlike some other existing estimators. We then use the

dataset from Ryan (2012) to estimate a dynamic game played between firms in the Portland cement

industry. In our version of the discrete game, firms choose whether to enter the market as well as

decide on the capacity level of operation. Our model contains 25 switching cost parameters that

we estimate without using any numerical optimization procedure. We assume firms compete in a

7We thank an anonymous referee for pointing this out.
8Beside the different focus, Aguirregabiria and Suzuki (2014) concentrate on single agent models with entry decisions

that is a special case of a game with a general switching cost structure. Their results are also derived under an

assumption that {xt} is a strictly exogenous (first order Markov) process. Specifically this implies xt+1 is independent
of at conditional on xt in addition to the conditional independence assumption that we impose.
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capacity constrained Cournot competition that accounts for the remaining part of the payoffs. The

Cournot profit is based on the demand and cost functions estimated in a static setting without

assuming the knowledge of the discount factor. This enables us to estimate the discount factor. We

estimate the switching costs and the discount factor of the model twice, once each using the data

from before and after 1990 that coincides with the date of the 1990 Clean Air Act Amendments

(1990 CAAA). Our switching costs estimates generally make economic sense in terms of the sign

and relative magnitude. They show that firms entering the market that can operate at a higher

capacity level incurs larger cost, and suggest that increasing capacity level is generally costly while a

reduction can return some revenue. We also find that entry costs are generally much higher after the

1990 CAAA, which supports Ryan’s key finding. Our estimate of the discount value is 0.64 in both

periods, although lower than traditionally assumed values, suggesting that the firms do not change

their discounting rule following the 1990 CAAA.

Throughout this work we assume the most basic setup of a game with independent private values

under the usual conditional independence, and we anticipate the data to have been generated from a

single equilibrium.9 Our results can be extended to games with unobserved heterogeneity, which has

been used to accommodate a simple form of multiple equilibria, as long as nonparametric choice and

transition probabilities can be identified (see Aguirregabiria and Mira (2007), Kasahara and Shimotsu

(2009), Hu and Shum (2012)). The research on how to perform inference on a more general data

structure is an important area of future research, which is outside the scope of our work.

The remainder of the paper is organized as follows. Section 2 illustrates the idea behind our

identification strategy of the switching costs and highlights key aspects of subsequent sections using

a simple two-player entry game in Pesendorfer and Schmidt-Dengler (2008). We define the theoretical

model and state the modeling assumptions in Section 3. Section 4 contains the identification results.

Section 5 provides a discussion on how our identification strategy can be used for estimation. Section

6 is the numerical part of the paper that illustrates the use of our estimator with simulated and real

data. Section 7 concludes.

2 Preview of Identification Strategy

Consider a two-player repeated entry game in Pesendorfer and Schmidt-Dengler (2008). At time

t, each player i makes a decision, ait, to play 1 (enter the market) or 0 (not enter) based on the

status of market entrants from the previous period, wt = (ait−1, a−it−1), and a private i.i.d. shock

εit = (εit (0) , εit (1)) that are independent across the players. In this model wt serves as public

information and is observed by the econometricians while εit is only observed by player i. Under

9The test of Otsu, Pesendorfer and Takahashi (2014) can be used to detect multiple equilibria in the data.
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some standard conditions, the expected payoff from choosing action ai is vi (ai, wt) + εit (ai), where

vi (ai, wt) = E [πi (ait, a−it, wt) |wt, ait = ai] + βE [mi (wt+1)|wt, ait = ai] , and (2)

mi (wt) =
∞∑
τ=0

βτE

[
πi (ait+τ , a−it+τ , wt+τ )

+εit+τ (1) · 1 [ait+τ = 1] + εit+τ (0) · 1 [ait+τ = 0]

∣∣∣∣∣wt
]
.

In equilibrium ait = αi (wt, εit) for all i, t, where αi denotes the player’s optimal strategy, so that for

any wt, εit:

αi (wt, εit) = 1 [∆vi (wt) ≥ εit (0)− εit (1)] ,

where ∆vi (wt) = vi (1, wt)− vi (0, wt). Given the distribution of εit, ∆vi can be recovered from the

choice probabilities observable from the data. We can also relate ∆vi directly to the primitives from

(2) as mi can be written as some linear combination of πi, where the linear scalar coeffi cients depend

on the discount factor, conditional choice and transition probabilities; in particular, E[εit+τ (1) ·
1 [ait+τ = 1] + εit+τ (0) · 1 [ait+τ = 0] |wt] can be written in terms of choice probabilities (Hotz and
Miller (1993)). Since the action space is finite, the relation between ∆vi and πi can be summarized

by a matrix equation:

ri = Tiπi, (3)

where πi is a vector of {πi (ai, a−i, w)}ai,a−i,w, and both ri and Ti are known functions of β, and the

conditional choice and transition probabilities. The study of identification of games in Bajari et al.

(2009) and Pesendorfer and Schmidt-Dengler (2008) then comes down to whether equation (3) has

unique solution or not.

Next we impose some specific structure on the payoffs. The entry game of Pesendorfer and

Schmidt-Dengler (2008) has switching costs components, in particular:

πi (ait, a−it, wt) = µi (ait, a−it) + ECi · ait (1− ait−1) + SVi · (1− ait) ait−1,

so that µi denotes the profit determines only by present period’s actions (e.g. takes value zero if

player i does not enter, otherwise it represents either a monopoly or duopoly profit depending on the

number of players in the market), and θi = (ECi, SVi) consists of the switching costs parameters.

From (2), it follows that

∆vi (wt) = E [µi (1, a−it) + βmi (1, a−it) |wt] + ECi · (1− ait−1)

− (E [µi (0, a−it) + βmi (0, a−it) |wt] + SVi · ait−1)

Let ∆µi (a−it) = µi (1, a−it) − µi (0, a−it), and define ∆mi (a−it) similarly. Since mi denotes the

expected discounted payoffs, it depends on β as well as πi. Therefore ∆vi cannot be written as a
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linear function of both β and πi. However, we can make the equation linear in the switching costs

through an aid of a nuisance function defined as λi (a−it) = ∆µi (a−it)+β∆mi (a−it), so we can write:

∆vi (wt) = E [λi (a−it) |wt] + ECi · (1− ait−1)− SVi · ait−1. (4)

By construction λi is a composite function consisting of all primitives in the model. However, the

contribution of the entry cost and scrap value from the present period are now additively separable

from the other flow profits. Since the support of wt is {(0, 0) , (0, 1) , (1, 0) , (1, 1)}, {∆vi (w)}w can
be represented using a matrix equation:

∆vi = Ziλi +Diθi, such that (5)
∆vi ((0, 0))

∆vi ((0, 1))

∆vi ((1, 0))

∆vi ((1, 1))

 =


P−i (0|0, 0) P−i (1|0, 0)

P−i (0|0, 1) P−i (1|0, 1)

P−i (0|1, 0) P−i (1|1, 0)

P−i (0|1, 1) P−i (1|1, 1)


[
λi (0)

λi (1)

]
+


1

1

0

0

0

0

−1

−1


[
ECi

SVi

]
,

where we use Pi (ai|w) to denote Pr [ait = ai|wt = w].

Let MZi be a projection matrix whose null space is CS (Zi), and Di = [d1
i : d2

i ]. Note that the

direction of projection does not matter. If dki /∈ CS (Zi) then

ECi =
(
d1>
i MZid

1
i

)−1
d1>
i MZi

(
∆vi − d2

iSVi
)
, (6)

SVi =
(
d2>
i MZid

2
i

)−1
d2>
i MZi

(
∆vi − d1

iECi
)
.

I.e., we can identify either the entry cost or scrap in terms of observables subject to a normalization

in closed-form. The need to normalize in this context is familiar in empirical work. For instance

Pesendorfer and Schmidt-Dengler (2003,2008) normalize SVi to be zero. We delay a fuller discussion

regarding normalization and other intuition in subsequent sections.

The sample counterpart of (6) provides a simple estimator for each θki that has a closed-form.

However, such estimator is ineffi cient. In Section 5 we show such closed-form estimator is a member

of a class of asymptotic least squares estimators in the sense described in Gourieroux and Monfort

(1995). We also identify and describe how to estimate the effi cient estimator of this class. The

constructive identification strategy above can be generalized considerably. Our results are applicable

to non-entry games, for instance to games with multinomial actions (allocation or pricing problems,

e.g. Marshall (2013)), or sequential decision problems (dynamic auction or investment games, e.g.

Groeger (2013) and Ryan (2012)), as well as games with absorbing states (e.g. permanent market

exit, see the Appendix).
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3 Model and Assumptions

We consider a game with I players, indexed by i ∈ I = {1, . . . , I}, who compete over an infinite time
horizon. The variables of the game in each period are action and state variables. The action set of each

player is A = {0, 1, . . . , K}. Let at = (a1t, . . . , aIt) ∈ AI . We will also occasionally abuse the notation
and write at = (ait, a−it) where a−it = (a1t, . . . , ai−1t, ai+1t . . . , aIt) ∈ AI . Player i’s information set
is represented by the state variables sit ∈ S, where sit = (xt, wt, εit) such that (xt, wt) ∈ X ×AI , for
some compact set X ⊆ RdX and we define wt ≡ at−1. (xt, wt) are public information that are common

knowledge to all players and observed by the econometrician, while εit = (εit (0) , . . . , εit (K)) ∈ RK+1

is private information only observed by player i. We define st ≡ (xt, wt) and εt ≡ (ε1t, . . . , εIt).

Future states are uncertain. Players’actions and states today affect future states. The evolution

of the states is summarized by a Markov transition law P (st+1|st, at). Each player has a payoff
function, ui : AI × S → R, which is time separable. Future period’s payoffs are discounted at the
rate β ∈ [0, 1).

The setup described above, and the following assumptions, which we shall assume throughout the

paper, are standard in the modeling of dynamic discrete games. For examples, see Aguirregabiria

and Mira (2007), Bajari, Benkard and Levin (2007), Pakes, Ostrovsky and Berry (2007), Pesendorfer

and Schmidt-Dengler (2008).

Assumption M1 (Additive Separability): For all i, ai, a−i, x, w, εi:

ui (ai, a−i, x, w, εi) = πi (ai, a−i, x, w) +
∑
a′i∈A

εi (a
′
i) · 1 [ai = a′i] .

Assumption M2 (Conditional Independence I): The transition distribution of the states

has the following factorization for all x′, w′, ε′, x, w, ε, a:

P (x′, w′, ε′|x,w, ε, a) = Q (ε′)G (x′|x,w, a) ,

where Q is the cumulative distribution function of εt and G denotes the transition law of xt+1

conditioning on xt, wt, at.

Assumption M3 (Independent Private Values): The private information is independently

distributed across players, and each is absolutely continuous with respect to the Lebesgue measure

whose density is bounded on RK+1 with unbounded support.

Assumption M4 (Discrete Public Values): The support of xt is finite so that X ={
x1, . . . , xJ

}
for some J <∞.
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The game procedes as follows. At time t, each player observes sit and then chooses ait simultane-

ously. Action and state variables at time t affects sit+1. Upon observing their new states the players

choose their actions again and so on. We consider a Markovian framework where players’behaviors

are stationary across time and players are assumed to play pure strategies. More specifically, for some

αi : S → A, ait = αi (sit) for all i, t, so that whenever sit = siτ then αi (sit) = αi (siτ ) for any τ . The

beliefs are also time invariant. Player i′s beliefs, σi, is a distribution of at = (α1 (s1t) , . . . , αI (sIt))

conditional on xt for some pure Markov strategy profile (α1, . . . , αI). The decision problem for each

player is to solve, for any si,

max
ai∈{0,1}

{E[ui (ait, a−it, si) |sit = si, ait = ai] + βE [Vi (sit+1) |sit = si, ait = ai]}, (7)

where Vi (si) =
∞∑
τ=0

βτE [ui (ait+τ , a−it+τ , wt+τ ) |sit = si] .

The expectation operators in the display above integrate out variables with respect to the probability

distribution induced by the equilibrium beliefs and Markov transition law. Vi denotes the value

function. Note that the transition law for future states is completely determined by the primitives

and the beliefs. Any strategy profile that solves the decision problems for all i and is consistent with

the beliefs satisfies is an equilibrium strategy. Pure strategies Markov perfect equilibria have been

shown to exist for such games (see Aguirregabiria and Mira (2007), Pesendorfer and Schmidt-Dengler

(2008)).

We consider identification based on the joint distribution of the observables, namely (at, xt, wt, xt+1),

which is consistent with a single equilibrium play. The primitives of the game under this setting con-

sists of ({πi}Ii=1 , β,Q,G). Throughout the paper we shall also assume G and Q to be known (the

former can be identified from the data). Next, we formally introduce the specific structures of the

payoffs and a conditional independence assumption alluded in the Introduction. In addition to M1 -

M4, we assume N1 - N2 hold for the remainder of this section.

Assumption N1 (Decomposition of Profits): For all i, ai, a−i, x, w:

πi (ai, a−i, x, w) = µi (ai, a−i, x) + φi (ai, x, w; ηi) · ηi (ai, x, w) ,

for some known function ηi : A ×X × AI → {0, 1} such that for any ai, φi (ai, x, w; ηi) = 0 for all

x when w ∈ W 0
ηi

(ai, x), where W d
ηi

(ai, x) ≡
{
w ∈ AI : ηi (ai, x, w) = d

}
for d = 0, 1.

Assumption N2 (Conditional Independence II): The distribution of xt+1 conditional on

at and xt is independent of wt.

Assumption N1 assumes the period payoff function can be decomposed into two components with

distinct exclusion restrictions. First is µi that does not depend on wt. ηi is a known function, chosen
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by the researcher, that indicates a switching cost. When switching cost is present, by definition,

minimally for some ai, W 0
ηi

(ai, ·) will be non-empty since it contains w ∈ AI such that the action of
player’s i coincides with ai, so it is possible to consider distinguishing µi from ηi. We define φi to

be zero whenever ηi takes value zero. When ηi takes value one, indicating a presence of a switching

cost, an exclusion restriction is imposed so that a−it does not enter φi. Intuitively, N1 restricts us to

consider payoffs that, for each player in any single time period, come from two separate sources: one

from the interaction with the other players at the stage game, and the other is determined by her

action relative to the previous period. This does not mean, however, that variables from the past

cannot affect µi since xt can contain lagged actions and other state variables.

N2 imposes that knowing actions from the past does not help predict future state variables when

the present action and (observable) state variables are known. Note that N2 is not implied by M2.

Therefore when xt contains lagged actions N2 can be weakened to allow for dependence of other state

variables with past actions. In addition, unlike M2, N2 is a restriction made on the observables so it

can be tested directly from the data.

Both N1 and N2 are quite general and are implicitly assumed in many empirical studies in the

literature. Here we provide some examples of φi · ηi and W d
ηi
.

Example 1 (Entry Cost): Suppose K = 1, then the switching cost at time t is

φi (ait, xt, wt; ηi) · ηi(ait, xt, wt) = ECi (xt, a−it−1) · ait (1− ait−1) .

So for all x, W 1
ηi

(1, x) =
{
w = (0, a−i) : a−i ∈ AI−1

}
and W 0

ηi
(1, x) =

{
w = (1, a−i) : a−i ∈ AI−1

}
,

and W d
ηi

(0, x) = ∅.

Example 2 (Scrap Value): Suppose K = 1, then the switching cost at time t is

φi (ait, xt, wt; ηi) · ηi(ait, xt, wt) = SVi (xt, a−it−1) · (1− ait) ait−1.

So for all x,W d
ηi

(1, x) = ∅ and,W 1
ηi

(0, x) =
{
w = (1, a−i) : a−i ∈ AI−1

}
andW 0

ηi
(0, x) =

{
w = (0, a−i) : a−i ∈ AI−1

}
.

Example 3 (General Switching Costs): Suppose K ≥ 1, then the switching cost at time

t is

φi (ait, xt, wt; ηi) · ηi(ait, xt, wt) =
∑

a′i,a
′′
i ∈A

SCi (a
′
i, a
′′
i , xt, a−it−1) · 1 [ait = a′i, ait−1 = a′′i , a

′
i 6= a′′i ] .

Here SCi (a′i, a
′′
i , xt, a−it−1) denotes a switching cost incurs to player i from choosing ait = a′i when

ait−1 = a′′i when other states are xt, a−it−1. So for all x, using just the definition of a switching cost we

can set SCi (a′i, a
′
i, x, a−i) = 0 for all a′i by definition,W

1
ηi

(ai, x) =
{
w = (a′i, a−i) : a′i ∈ A\ {ai} , a−i ∈ AI−1

}
and W 0

ηi
(ai, x) =

{
w = (ai, a−i) : a−i ∈ AI−1

}
for all x.

12



Note that Examples 1 and 2 are just special cases of Example 3 when K = 1, with an additional

normalization of zero scrap value and entry cost respectively.

We end this section by providing an intuition as to why N1 and N2 are helpful for identifying

the switching costs. The essence of our identification strategy is most transparent in a single agent

decision problem. For the moment suppose I = 1. Omitting the i subscript, the expected payoff for

choosing action a > 0 under M1 to M4 is, cf. (9),

v (a, x, w) = π (a, x, w) + βE [m (xt+1, wt+1) |at = a, xt = x,wt = w] ,

where m (x,w) denotes the integrated value function, E [V (st) |xt = x,wt = w]. N1 imposes separa-

bility and exclusion restrictions of the following type:

π (a, x, w) = µ (a, x) + φ (a, x, w; η) · η(a, x, w),

where φ is a known indicator such that φ (a, x, w; η) = 0 whenever a 6= w. Therefore the contribution

from past action can be separated from the present one within a single time period. The direct effect of

past action is also excluded from the future expected payoff under N2, as E [m (xt+1, wt+1) |at, xt, wt]
becomes E [m (xt+1, at) |at, xt]. Therefore we can write

v (a, x, w) = λ (a, x) + φ (a, x, w; η) · η (a, x, w) ,

where λ (a, x) is a nuisance function that equals to µ (a, x) + βE [mi (xt+1, wt+1) |ait = ai, xt = x].

Any variation in v (a, x, w) induced by changes in w while holding (a, x) fixed can be traced only

to changes in η (a, x, w). Since λ is a free parameter, the switching costs can be identified upto a

location normalization by differencing over the support of w; e.g. through (v (a, x, w)− v (0, x, w))−
(v (a, x, w0)− v (0, x, w0)) for some reference point w0. Our insight is this intuition can be generalized

and applied to identify switching costs in dynamic games. However, the way to difference out the

nuisance function becomes more complicated. Particularly the nuisance function will also vary for

different past action profile since we have to integrate out other players’actions using the equilibrium

beliefs that depends on past actions. Relatedly there are more degree of freedoms to be dealt

with as the nuisance function contains more arguments. The precise form of differencing required

can be formalized by a projection that enables the identification of the switching costs upto some

normalizations.10 We provide precise conditions for what can be identified from φi in the next section.

10Mathematically, for fixed a, x, our identification problem under N1 and N2 in a single agent case is equivalent to

identifying g2 that satisfies a linear relation:

g1 (w) = c+ g2 (w) ,
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4 Main Results

We first present our identification results of the switching costs that do not assume the knowledge

of the discount factor. Then we provide the identification of the discount factor.

4.1 Identifying the Switching Costs

We begin by introducing some additional notations and representation lemmas. For any x,w, we

denote the ex-ante expected payoffs by mi (x,w) = E [Vi (xt, wt, εit) |xt = x,wt = w], where Vi is the

value function defined in (7) that can also be defined recursively through

mi (x,w) = E [πi (at, xt, wt) |xt = x,wt = w] + E[
∑
a′i∈A

εit (a′i) · 1 [ait = a′i] |xt = x,wt = w] (8)

+βE [mi (xt+1, wt+1) |xt = x,wt = w] ,

and the choice specific expected payoffs for choosing action ai prior to adding the period unobserved

state variable is

vi (ai, x, w) = E [πi (ait, a−it, xt, wt) |ait = ai, xt = x,wt = w] (9)

+βE [mi (xt+1, wt+1) |ait = ai, xt = x,wt = w] .

Bothmi and vi are familiar quantities in this literature. Under Assumption N2, E[mi (xt+1, wt+1) |ait, xt, wt]
can be simplified further to E[m̃i (ait, a−it, xt) |ait, xt, wt], where for all i, ai, a−i, x, using the law of
iterated expectation, m̃i (ai, a−i, x) ≡ E [mi (xt+1, ait, a−it) |ait = ai, a−it = a−i, xt = x]. Then, for

ai > 0, let ∆vi (ai, x, w) ≡ vi (ai, x, w) − vi (0, x, w) , ∆µi (ai, a−i, x) ≡ µi (ai, a−i, x) − µi (0, a−i, x),

and ∆m̃i (ai, a−i, x) ≡ m̃i (ai, a−i, x) − m̃i (0, a−i, x) for all i, a−i, x. Furthermore, since the action

space is finite, the conditions imposed on φi · ηi by N1 ensures for each ai > 0 we can always write

the differences of switching costs as

φi (ai, x, w; ηi) · ηi (ai, x, w)−φi (0, x, w; ηi) · ηi (0, x, w) =
∑

w′∈W∆
ηi

(ai,x)

φi,ηi (ai, x, w
′) ·1 [w = w′] , (10)

where φi,ηi (ai, x, w) ≡ φi (ai, x, w; ηi)−φi (0, x, w; ηi) is only defined on the setW
∆
ηi

(ai, x) ≡ W 1
ηi

(ai, x)∪
W 1
ηi

(0, x). To illustrate, we briefly return to Examples 1 - 3.

for a known g1 and an unknown constant c. In the case of a game, the equation above generalizes to

g1 (w) =

∫
c (x)h (dx|w) + g2 (w) ,

where the unknown constant is replaced by a generic linear transform (an expectaion) of some unknown function c.
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Example 1 (Entry Cost, Cont.): Here the only ai > 0 is ai = 1. Since W 1
ηi

(0, x) is empty

W∆
ηi

(1, x) = W 1
ηi

(1, x), and for any w = (0, a−i), φi,ηi (1, x, w) = ECi (x, a−i) for all i, a−i, x.

Example 2 (Scrap Value, Cont.): Similarly to the above, W∆
ηi

(1, x) = W 1
ηi

(0, x), and for

any w = (1, a−i), φi,ηi (1, x, w) = −SVi (x, a−i) for all i, a−i, x.

Example 3 (General Switching Costs, Cont.): For any ai > 0, based on the definition

of a switching cost alone, both W 1
ηi

(ai, x) and W 1
ηi

(0, x) can be non-empty. So for all i, a−i, x such

that a′i 6= ai:

φi,ηi (ai, x, w) = SCi (ai, 0, x, a−i) when w = (0, a−i) , (11)

φi,ηi (ai, x, w) = −SCi (0, ai, x, a−i) when w = (ai, a−i) ,

φi,ηi (ai, x, w) = SCi (ai, a
′
i, x, a−i)− SCi (0, a′i, x, a−i) when w = (a′i, a−i) for a

′
i 6= ai or 0.

Note that SCi (a′i, a
′′
i , x, a−i) can be recovered for any ai 6= a′i by taking some linear combination from{

φi,ηi (ai, x, a
′
i, a−i)

}
ai,a′i∈A×A

.

The following lemmas generalize respectively equations (4) and (5) in Section 2.

Lemma 1: Under M1 - M4 and N1 - N2, we have for all i, ai > 0 and a−i, x, w:

∆vi (ai, x, w) = E [λi (ai, a−it, xt) |xt = x,wt = w] +
∑

w′∈W∆
ηi

(ai,x)

φi,ηi (ai, x, w
′) · 1 [w = w′] , (12)

where

λi (ai, a−i, x) ≡ ∆µi (ai, a−i, x) + β∆m̃i (ai, a−i, x) . (13)

Proof of Lemma 1: Using the law of iterated expectation, under M3E [Vi (sit+1) |ait = ai, xt, wt] =

E [mi (xt+1, wt+1) |ait = ai, xt, wt], which simplifies further, after another application of the law of it-

erated expectation and N2, to E [m̃i (ai, a−it, xt) |xt, wt]. The remainder of the proof of Lemma 1
then follows from the definitions of the terms defined in the text.�

Lemma 1 says that the (differenced) choice specific expected payoffs can be decomposed into a

sum of the fixed profits at time t and a conditional expectation of a nuisance function of λi consisting

of composite terms of the primitives. In particular the conditional law for the expectation in (12),

which is that of a−it given (xt, wt), is identifiable from the data. Since a conditional expectation

operator is a linear operator, and the support of wt is a finite set with (K + 1)I elements, we can

then represent (12) by a matrix equation.
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Lemma 2: Under M1 - M4 and N1 - N2, we have for all i, ai > 0 and x:

∆vi (ai, x) = Zi (x)λi (ai, x) +Di (ai, x)φi,ηi (ai, x) , (14)

where ∆vi (ai, x) denotes a (K + 1)I −dimensional vector of normalized expected discounted pay-
offs, {∆vi (ai, x, w)}w∈AI , Zi (xt) is a (K + 1)I by (K + 1)I−1 matrix of conditional probabilities,

{Pr [a−it = a−i|xt = x,wt = w]}(a−i,w)∈AI−1×AI , λi (ai, x) denotes a (K + 1)I−1 by 1 vector of {λi (ai, a−i, x)}a−i∈AI−1,

Di (ai, x) is a (K + 1)I by
∣∣∣W∆

ηi
(ai, x)

∣∣∣ matrix of ones and zeros, and φi,ηi (ai, x) is a
∣∣∣W 1

ηi
(ai, x)

∣∣∣
by 1 vector of

{
φi,ηi (ai, x, w)

}
w∈W∆

ηi
(ai,x)

.

Proof of Lemma 2: Immediate.�

Let ρ (Z) denote the rank of matrix Z, andMZ denotes a projection matrix whose null space is

the column space of Z. We now state our first result.

Theorem 1: Under M1 - M4 and N1 - N2, for each i, ai > 0 and x, if (i) Di (ai, x) has full

column rank; (ii) ρ (Zi (x)) + ρ (Di (ai, x)) = ρ([Zi (x) : Di (ai, x)]), then Di (ai, x)>MZi(x)Di (ai, x)

is non-singular, and

φi,ηi (ai, x) = (Di (ai, x)> MZi(x)Di (ai, x))−1Di (ai, x)> MZi(x)∆vi (ai, x) . (15)

Proof: The full column rank condition of Di (ai, x) is a trivial assumption. The no perfect

collinearity condition makes sure there is no redundancy in the modeling of the switching costs.

The rank condition (ii) then ensures MZi(x)Di (ai, x) preserves the rank of Di (ai, x). Therefore

Di (ai, x)>MZi(x)Di (ai, x)must be non-singular. Otherwise the columns ofMZi (x)Di (ai) is linearly

dependent, and some linear combination of the columns in Di (ai) must lie in the column space of

Zi (x), thus violating the assumed rank condition. The proof is then completed by projecting the

vectors on both sides of equation (14) byMZi(x)and solve for φi,ηi (ai, x).�

Equation (15) directly generalizes equation (6) in Section 2. In order for condition (ii) in Theorem

1 to hold, it is necessary for researchers to impose some a priori structures on the switching costs.

Before commenting further, it will be informative to again revisit Examples 1 - 3. For notational

simplicity we shall assume I = 2, so that wt ∈ {(0, 0) , (0, 1) , (1, 0) , (1, 1)}. And since A = {0, 1}
in Examples 1 and 2, we shall also drop ai from ∆vi (ai, x) = {∆vi (ai, x, w)}w∈AI and λi (ai, x) =

{λi (ai, a−i, x)}a−i∈AI−1 .
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Example 1 (Entry Cost, Cont.): Equation (14) can be written as
∆vi (x, (0, 0))

∆vi (x, (0, 1))

∆vi (x, (1, 0))

∆vi (x, (1, 1))

 =


P−i (0|x, (0, 0))

P−i (0|x, (0, 1))

P−i (0|x, (1, 0))

P−i (0|x, (1, 1))

P−i (1|x, (0, 0))

P−i (1|x, (0, 1))

P−i (1|x, (1, 0))

P−i (1|x, (1, 1))


[
λi (0, x)

λi (1, x)

]

+


1

0

0

0

0

1

0

0


[
ECi (x, 0)

ECi (x, 1)

]
,

where P−i (a−i|x,w) ≡ Pr [a−it = a−i|xt = x,wt = w]. A simple suffi cient condition that ensures

condition (ii) in Theorem 1 to hold is when the lower half of Zi (x) has full rank, i.e. when

P−i (0|x, (1, 0)) 6= P−i (0|x, (1, 1)).

Example 2 (Scrap Value, Cont.): Equation (14) can be written as
∆vi (x, (0, 0))

∆vi (x, (0, 1))

∆vi (x, (1, 0))

∆vi (x, (1, 1))

 =


P−i (0|x, (0, 0))

P−i (0|x, (0, 1))

P−i (0|x, (1, 0))

P−i (0|x, (1, 1))

P−i (1|x, (0, 0))

P−i (1|x, (0, 1))

P−i (1|x, (1, 0))

P−i (1|x, (1, 1))


[
λi (0, x)

λi (1, x)

]

+


0

0

1

0

0

0

0

1


[
−SVi (x, 0)

−SVi (x, 1)

]
.

An analogous suffi cient condition that ensures condition (ii) in Theorem 1 to hold in this case is

P−i (0|x, (0, 0)) 6= P−i (0|x, (0, 1)).

Example 3 (General Switching Costs, Cont.): Suppose K = 2, we consider ∆vi (2, x) =
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{∆vi (2, x, w)}w∈AI ,

∆vi (2, x, (0, 0))

∆vi (2, x, (0, 1))

∆vi (2, x, (0, 2))

∆vi (2, x, (1, 0))

∆vi (2, x, (1, 1))

∆vi (2, x, (1, 2))

∆vi (2, x, (2, 0))

∆vi (2, x, (2, 1))

∆vi (2, x, (2, 2))



=



P−i (0|x, (0, 0)) P−i (1|x, (0, 0)) P−i (2|x, (0, 0))

P−i (0|x, (0, 1)) P−i (1|x, (0, 1)) P−i (2|x, (0, 1))

P−i (0|x, (0, 2)) P−i (1|x, (0, 2)) P−i (2|x, (0, 2))

P−i (0|x, (1, 0)) P−i (1|x, (1, 0)) P−i (2|x, (1, 0))

P−i (0|x, (1, 1)) P−i (1|x, (1, 1)) P−i (2|x, (1, 1))

P−i (0|x, (1, 2)) P−i (1|x, (1, 2)) P−i (2|x, (1, 2))

P−i (0|x, (2, 0)) P−i (1|x, (2, 0)) P−i (2|x, (2, 0))

P−i (0|x, (2, 1)) P−i (1|x, (2, 1)) P−i (2|x, (2, 1))

P−i (0|x, (2, 2)) P−i (1|x, (2, 2)) P−i (2|x, (2, 2))




λi (2, 0, x)

λi (2, 1, x)

λi (2, 2, x)

(16)

+



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1





SCi (2, 0, x, 0)

SCi (2, 0, x, 1)

SCi (2, 0, x, 2)

SCi (2, 1, x, 0)− SCi (0, 1, x, 0)

SCi (2, 1, x, 1)− SCi (0, 1, x, 1)

SCi (2, 1, x, 2)− SCi (0, 1, x, 2)

−SCi (0, 2, x, 0)

−SCi (0, 2, x, 1)

−SCi (0, 2, x, 2)



.

Clearly the required rank condition of Theorem 1 cannot hold in this case. If ρ (Zi (x)) = 3, then

the maximum number of elements in φi,ηi (2, x) that can be identified using Lemma 2 is 6 given that

we have 9 equations. Therefore we need at least three restrictions. For example by normalizing one

type of switching costs to be zero. More specifically suppose SCi (0, ai, x, a−i) = 0 for all ai > 0,

then Di (2, x)φi,ηi (2, x) becomes

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0





SCi (2, 0, x, 0)

SCi (2, 0, x, 1)

SCi (2, 0, x, 2)

SCi (2, 1, x, 0)− SCi (0, 1, x, 0)

SCi (2, 1, x, 1)− SCi (0, 1, x, 1)

SCi (2, 1, x, 2)− SCi (0, 1, x, 2)


,
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and similar to the two previous examples, a suffi cient condition for condition (ii) in Theorem 1 to hold

can be given in the form that ensures the lower third of Zi (x) to have full rank, which is equivalent

to the determinant of


P−i (0|x, (2, 0)) P−i (1|x, (2, 0)) P−i (2|x, (2, 0))

P−i (0|x, (2, 1)) P−i (1|x, (2, 1)) P−i (2|x, (2, 1))

P−i (0|x, (2, 2)) P−i (1|x, (2, 2)) P−i (2|x, (2, 2))

 is non-zero. Such nor-

malization is an example of an exclusion restriction. A preferred scenario would be to use economic

or other prior knowledge to assign values so known switching costs can be removed from the right

hand side (RHS) of equation (16); as done in Section 2 (see equation (6)). Other restrictions, such as

equality of switch costs so that the costs from switching to and from actions that may be reasonable

in capacity or pricing games can be used instead of a direct normalization. For instance suppose that

SCi (ai, a
′
i, x, a−i) = SCi (a

′
i, ai, x, a−i) whenever ai 6= a′i, then Di (2, x)φi,ηi (2, x) becomes

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

-1 0 0 0 0 0

0 -1 0 0 0 0

0 0 -1 0 0 0





SCi (2, 0, x, 0)

SCi (2, 0, x, 1)

SCi (2, 0, x, 2)

SCi (2, 1, x, 0)− SCi (0, 1, x, 0)

SCi (2, 1, x, 1)− SCi (0, 1, x, 1)

SCi (2, 1, x, 2)− SCi (0, 1, x, 2)


,

and we expect the rank condition to generally be satisfied. Analogous conditions and comments

apply for ∆vi (1, x).

Comments on Theorem 1:

(i) Pointwise Identification. Our result is obtained pointwise for each i, ai > 0 and x. Therefore

the finite support assumption in M4 is not necessary. However, the theoretical and practical aspects of

estimating models where the observable state has a continuous component becomes a semiparametric

one and is more diffi cult. See Bajari et al. (2009) and Srisuma and Linton (2012).

(ii) Underidentification. In order to apply Theorem 1 a necessary order condition must be met.

Firstly, ρ (Zi (x)) always takes value between 1 and (K + 1)I−1; the latter is the number of columns

in Zi (x) that equals the cardinality of the action space of all other players other than i. A necessary

order condition based on the number of rows of the matrix equation in equation (14) can be obtained

from: ρ (Zi (x)) + ρ (Di (ai, x)) ≤ (K + 1)I , so that (the number of switching cost parameters one

wish to identify is the cardinality of W∆
ηi

(ai, x) equals) ρ (Di (ai, x)) ≤ (K + 1)I − 1. In the least

favorable case, in terms of applying Theorem 1, the previous inequality can be strengthened by
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using the maximal rank of Zi (x), which is (K + 1)I−1. Then ρ (Di (ai, x)) is bounded above by

K (K + 1)I−1. The order condition indicates the degree of underidentification if one aims to identify

all switching costs without any other structure beyond the definition of a switching cost.

(iii) Normalization and Other Restrictions. The maximum number of parameters one can write

down in equation (14) using the full generality of the definition of a switching cost is (K + 1)I ;

see (11). Therefore the previous comment suggests that (K + 1)I−1 restrictions will be required

for a positive identification result if no further structure on the switching costs is known. One

solution to this is normalization. Since (K + 1)I−1 equals also the cardinality of AI−1, one convenient

normalization restriction that will suffi ce here is to set values of switching cost associated with a single

action. For instance the assumption that costs of switching to action 0 from any other action is zero

will suffi ce. Note that such assumption is a weaker condition than a familiar normalization of the

outside option for the entire payoff function (e.g. Proposition 2 of Magnac and Thesmar (2002) as

well as Assumption 2 of Bajari et al. (2009)). Nevertheless an ad hoc normalization is not an ideal

solution. A more optimal solution is to appeal to prior economic knowledge to impose additional

structure on the switching costs such as equality restrictions as illustrated above with Example 3.

In practice researchers can impose prior knowledge restrictions directly on φi,ηi. This can be

seen as part of the modeling decision. Next we show restrictions across all choice set can be used

simultaneously.

Assumption R1 (Equality Restrictions): For all i, x, there exists a K (K + 1)I by κ ma-

trix D̃i (x) with full column rank and a κ by 1 vector of functions φ̃i,ηi (x) so that D̃i (x) φ̃i,ηi (x) rep-

resents a vector of functions that satisfy some equality constraints imposed on {Di (ai, x)φi,ηi (ai, x)}ai∈A.

The matrix D̃i (x) can be constructed from diag{Di (1, x) , . . . ,Di (K, x)}, and merging the
columns of the latter matrix, by simply adding columns that satisfy the equality restriction together.

Redundant components of {φi,ηi (ai, x)}ai∈A are then removed to define φ̃i,ηi (x). One example for

D̃i (x) can be found in Section 2, where we consider a fixed cost function that does not depend

on other players’past actions, also see Example 4 below. The following lemma gives the matrix

representation of the expected payoffs in this case (cf. Lemma 2).

Lemma 3: Under M1 - M4, N1 - N2 and R1, we have for all i, x:

∆vi (x) = (IK ⊗ Zi (x))λi (x) + D̃i (x) φ̃i,ηi (x) , (17)

where ∆vi (x) denotes a K (K + 1)I −dimensional vector of normalized expected discounted pay-
offs, {∆vi (ai, x)}ai∈A\{0}, Zi (x) is a (K + 1)I by (K + 1)I−1 matrix of conditional probabilities,
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{Pr [a−it = a−i|x,wt = w]}(a−i,w)∈AI−1×AI , IK is an identity matrix of size K, ⊗ denotes the Kro-

necker product, λi (x) denotes a K (K + 1)I−1 by 1 vector of {λi (ai, x)}ai∈A\{0}, D̃i (x) and φ̃i,ηi (x)

are described in Assumption R1.

Proof of Lemma 3: Immediate.�

Using Lemma 3, our next result generalizes Theorem 1 by allowing for the equality restrictions

across all actions.

Theorem 2: Under M1 - M4, N1 - N2 and R1, for each i, x, if (i) D̃i (x) has full column

rank and, (ii) ρ (IK ⊗ Zi (x)) + ρ(D̃i (x)) = ρ([IK ⊗Zi (x) : D̃i (x)]), then D̃>i (x)MIK⊗Zi(x)D̃i (x) is

non-singular, and

φ̃i,ηi (x) = (D̃>i (x)MIK⊗Zi(x)D̃i (x))−1D̃>i (x)MIK⊗Zi(x)∆vi (x) .

Proof of Theorem 2: Same as the proof of Theorem 1.�

Our previous comments on Theorem 1 are also relevant for Theorem 2. However, we caution that

the ability to relax the necessary order condition may not always be suffi cient for identification. In

particular, consider the following special case of Example 3 when K = 1 in the context of an entry

game.

Example 4 (Entry Game with Entry Cost and Scrap Value): The period payoff at

time t is

πi (ait, a−it, xt, wt) = µi (ait, a−it, xt) + ECi (xt) · ait (1− ait−1)

+SVi (xt) · (1− ait) ait−1.

I.e. we have imposed the equality restrictions on the entry costs and scrap values for each player

only depend on each her own actions. Then, for all i, x, the content of equation (17) (in Lemma 3) is
∆vi (x, (0, 0))

∆vi (x, (0, 1))

∆vi (x, (1, 0))

∆vi (x, (1, 1))

 =


P−i (0|x, (0, 0))

P−i (0|x, (0, 1))

P−i (0|x, (1, 0))

P−i (0|x, (1, 1))

P−i (1|x, (0, 0))

P−i (1|x, (0, 1))

P−i (1|x, (1, 0))

P−i (1|x, (1, 1))


[
λi (0, x)

λi (1, x)

]
(18)

+


1

1

0

0

0

0

1

1


[
ECi (x)

−SVi (x)

]
.
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Note that the order condition is now satisfied. However, condition (ii) in Theorem 1 does not hold

since a vector of ones is contained in both CS (Zi (x)) and CS(Di (x)). Even if we go further and

assume the entry cost and scrap value have the same magnitude (i.e. ECi (x) = −SVi (x)), the rank

condition will still not be satisfied. In this case Di (1, x)φi,ηi (1, x) becomes
1

1

1

1

 · ECi (x) .

Mathematically, the failure to apply our result in the example above can be traced to the fact

that Zi (x) is a stochastic matrix whose rows each sums to one. The inability to identify both

entry cost and scrap value is not specific to our identification strategy. This issue is a familiar one

in the empirical literature. We refer the readers to Aguirregabiria and Suzuki (2014) for a result

relating to this as well as a list of references they provide of empirical works that make normalization

assumptions on either one of these switching costs.11

We also wish to emphasize that our Theorems 1 and 2 only provide suffi cient conditions for

identification of φi without the knowledge of either β or µi. The failure to apply our theorems

does not mean φi cannot be identified in the presence of additional information. In particular if one

assumes the knowledge of β as well as µi, then existing results in Bajari et al. (2009) and Pesendorfer

and Schmidt-Dengler (2008) may be used to identify the switching costs without the potential need

to rely on normalzation or other restrictions.

We end this subsection by commenting that our results can be adapted to allow for effects from

past actions beyond one period with little modification. Specifically, all results above hold if we re-

define wt to be at−ς for any finite ς ≥ 1, and then replace xt by x̃t = (xt, at−1, . . . , at−ς+1) everywhere.

The inclusion of such state variable does not violate any of our assumptions, particularly assumption

N2, and thus still allows us to define analogous nuisance function that can be projected away as

shown in Theorems 1 and 2. In this case the interpretation of φi has to change accordingly and the

switching cost parameters will be characterized according to x̃t; in such situation we naturally have

W d
ηi

(ai, x̃) 6= W d
ηi

(ai, x̃
′) for x̃ 6= x̃′ since the principal interpretation of switching costs generally will

depend on at−1.

11We commented in the introduction that a careful inspection of Proposition 2 in Aguirregabiria and Suzuki (2014)

will suggest that either the entry cost or scrap value in their model can be identified independently of the discount

value under some normalization. Further inspection (of their equation (21)) also reveals that assuming the entry cost

and scrap value having the same magnitude will not help identification either.
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4.2 Identifying the Discount Factor

If µi is assumed to be known then, using Theorems 1 or 2, πi can be identified without the knowledge

of β. We now consider the identification of β and take all other primitives of the model as known (i.e.

assume ({πi}Ii=1 , Q,G)). The result in this subsection is not specific to games involving switching

costs. Therefore we do not impose Assumptions N1 and N2 here, and henceforth we omit wt.

The parameter space for the model is now B ⊆ [0, 1) and we are interested in the discount

factor that is consistent with the data generating process, which we denote by β0. We begin with an

updated expression for the choice specific expected payoffs for choosing action ai prior to adding the

period unobserved state variable, where we now explicitly denote the dependence on the parameter

β, so that for any i, ai and x (cf. equation (9)):

vi (ai, x; β) = E [πi (ai, a−it, xt) |xt = x] + βgi (ai, x; β) , (19)

where gi (ai, x; β) ≡ E [Vi (sit+1; β) |ait = ai, xt = x] with Vi (si; β) ≡
∑∞

τ=0 β
τE [ui (ait+τ , a−it+τ , wt+τ ) |sit = si].

Note that the expectations are taken with respect to the observed choice and transition probabilities

that are consistent with β0. We consider the relative payoffs in (19) with action 0 as the base, so

that for all i, ai > 0 and x:

∆vi (ai, x; β) = E [∆πi (ai, a−it, xt) |xt = x] + β∆gi (ai, x; β) , (20)

where ∆vi (ai, x; β) ≡ vi (ai, x; β) − vi (0, x; β) ,∆πi (ai, a−i, x) ≡ πi (ai, a−i, x) − πi (0, a−i, x) for all

ai, and ∆gi (ai, x; β) ≡ gi (ai, x; β) − gi (0, x; β). Using Hotz-Miller’s inversion, it follows that both

∆vi (ai, x; β0) is identified from the data for all ai, x. We take each β to be a structure of the

(pseudo-)model and its implied expected payoffs, denoted by Vβ ≡ {∆vi (ai, x; β)}i,ai,x∈I×A×X , to be
a corresponding reduced form.12,13 We can then define identification using the notion of observational

equivalence in terms of the expected payoffs (cf. Magnac and Thesmar (2002)).

Definition I1 (Observational Equivalence): Any distinct β and β′ inB are observationally

equivalent if and only if Vβ = Vβ′ .

Definition I2 (Identification): An element in B, say β, is identified if and only if β′ and β

are not observationally equivalent for all β′ 6= β in B.

By inspecting equation (20), since the first term does not depend on β, identification is determined

by β∆gi (·, ·; β). The following lemma expresses {∆gi (ai, x; β)}ai,x∈A\{0}×X in terms of β and other
12This is a pseudo-model in the sense that we do not use different equilibria of the dynamic game for each β. We

only consider the implied expected payoffs computed using the equilibrium beliefs that generate the data.
13It is equivalent to define the reduced forms in terms of expected payoffs is equivalent to defining them in terms of

conditional choice probabilities (Hotz and Miller (1993), Matzkin (1991), Norets and Takahashi (2013)).
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components that can be identified from the choice and transition probabilities. In what follows, for

any i, ai > 0 and x, we let: ∆Hai
i (x) denote a J by 1 vector of {Pr [xt+1 = x′|xt = x, ait = ai]− Pr [xt+1 = x′|xt = x, ait = 0]}x′∈X ,

L be a J by J stochastic matrix of transition probabilities of xt+1 conditioning on xt, and R is

a J by J matrix of conditional choice probabilities such that Rui represents a J by 1 vector of

{E [ui (at, sit) |xt = x′]}x′∈X .

Lemma 4: Under M1 - M4, we have for all i, ai > 0 and x:

∆gi (ai, x; β) = ∆Hai
i (x) (I − βL)−1Rui. (21)

Proof of Lemma 4: First note that I − βL is invertible for any β ∈ B by the dominant diagonal
theorem (Taussky (1949)). Furthermore (I − βL)−1 admits a Neumann series representation so

that (I − βL)−1Rui is precisely a vector of {[Vi (sit; β) |xt = x′]}x′∈X . The proof then follows since
∆Hai

i (x) is defined to be a vector that computes differences in conditional expectations of any

functions of xt+1 given xt = x and ait = ai and ait = 0.�

It will be useful to collect ∆gi (ai, x; β) in a vector form. Let ∆Hai
i denote a J by J matrix[

∆Hai
i (x1)>, . . . ,∆Hai

i (xJ)>
]>
, and ∆gaii (β) denote a J by 1 vector {∆gi (ai, x; β)}x∈X .

Lemma 5: Under M1 - M4, we have for all i, ai > 0:

∆gaii (β) = ∆Hai
i (I − βL)−1Rui. (22)

Proof of Lemma 5: Immediate.�

Our next result gives one suffi cient condition for β0 to be identified.

Theorem 3 (Identification of Discount Factor): Under M1 - M4, if Rui 6= 0 and

∆Hai
i is invertible for some i, ai, then β0 is identified.

Proof of Theorem 3: Take any β, β′ ∈ B such that β 6= β′. From equation (20), ∆vi (ai, x; β)

can differ from ∆vi (ai, x; β′) if and only if β∆gi (ai, x; β) differs from β′∆gi (ai, x; β′). Focusing on

the latter, using Lemma 5, we have

β∆gaii (β)− β′∆gaii (β′) =
(
β∆Hai

i (I − βL)−1 − β′∆Hai
i (I − β′L)

−1
)
Rui.

Consider the terms in the parenthesis on the RHS of the equation above:

β∆Hai
i (I − βL)−1 − β′∆Hai

i (I − β′L)
−1

= (β − β′) ∆Hai
i (I − βL)−1 + β′∆Hai

i

(
(I − βL)−1 − (I − β′L)

−1
)

= (β − β′) ∆Hai
i (I − βL)−1 + β′ (β − β′) ∆Hai

i (I − β′L)
−1
L (I − βL)−1

= (β − β′) ∆Hai
i

(
I + β′ (I − β′L)

−1
L
)

(I − βL)−1

= (β − β′) ∆Hai
i (I − β′L)

−1
(I − βL)−1 ,
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so that

β∆gi (β)− β′∆gi (β′) = (β − β′) ∆Hai
i (I − β′L)

−1
(I − βL)−1Rui.

If Rui 6= 0, then (I − β′L)
−1

(I − βL)−1Rui 6= 0 since both (I − β′L)
−1 and (I − βL)−1 are non-

singular. Therefore if ∆Hai
i has full column rank ∆Hai

i (I − β′L)
−1

(I − βL)−1Rui cannot be a zero

vector. Hence β∆gi (ai, x; β) must differ from β′∆gi (ai, x; β′) for some x in X. This in turns implies

that β and β′ that differ are not observationally equivalent. Thus β0 is identified.�

The conditions in Theorem 3 are stated in terms of objects that are identified from the data

therefore they are easy to check. Note that it is also evident that our argument to identify the

discount factor allows for individual specific discount rate by simply replacing β by βi everywhere,

so that βi0 can be identified if Rui 6= 0 and ∆Hai
i is invertible for some ai > 0.

5 Asymptotic Least Squares Estimation

Our identification results are constructive. For example, Theorems 1 and 2 provide closed-form

expressions for φi that can be used for estimation by simply plugging in the sample counterparts of

choice probabilities without any numerical optimization. However, such estimator is generally not

effi cient. In this section we provide a discussion for constructing a class of asymptotic least squares

estimators for φi and β. We shall consider the two cases separately since it is generally possible to

construct a closed-form estimator for the former but not the latter. Our exposition in this section

shall we brief. We refer the reader to Sanches, Silva and Srisuma (2014) for further details regarding

the estimation methodology and related asymptotic theorems.

Estimation of the Switching Cost

From Lemmas 2 and 3, we have:

∆vi (ai, x) = Zi (x)λi (ai, x) +Di (ai, x)φi,ηi (ai, x) ,

∆vi (x) = (IK ⊗ Zi (x))λi (x) + D̃i (x) φ̃i,ηi (x) .

Since A and X are finite, we have a finite number of identifying restrictions of the switching costs

that can be vectorized across all players in the form of

Ysc = X sc
1 θ1 + X sc

2 θ2 when (θ1, θ2) = (θ10, θ20) .

Let X sc = [X sc
1 : X sc

2 ] and θ0 = (θ10, θ20) such that θ10 consists of the nuisance functions and θ20

contains the switching costs. Note that X sc
2 is a deterministic matrix. X sc

1 and Ysc are smooth
functions of the choice and transition probabilities that we will denote by γ0. Specifically it can
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be shown that X sc
1 = T scX1

(γ0) and Ysc = T scY (γ0) for some known functions T scX1
and T scY . Given a

preliminary consistent estimator of γ0, denoted by γ̂, we can define an estimation criterion where

X sc
1 and Ysc are replaced by X̂ sc

1 = T scX1
(γ̂) and Ŷsc = T scY (γ̂) respectively, so that for θ = (θ1, θ2):

Ŝsc(θ; Ŵsc) = (Ŷsc − X̂ sc
1 θ1 −X sc

2 θ2)>Ŵsc(Ŷsc − X̂ sc
1 θ1 −X sc

2 θ2),

where Ŵsc is a positive definite matrix. We define θ̂(Ŵsc) to be the minimizer of Ŝsc(θ; Ŵsc), which

has a closed-form of a weighted least squares estimator (subject to a rank condition),

θ̂(Ŵsc) = arg min
θ∈Θ
Ŝsc(θ; Ŵsc) (23)

= (X̂ sc>ŴscX̂ sc)−1X̂ sc>ŴscŶsc,

where X̂ sc = [X̂ sc
1 : X sc

2 ]. However, we are primarily interested in θ20. Its estimator can also

be written in closed-form that takes an analogous expression to a (weighted) partition regression

estimator:

θ̂2(Ŵsc) = (X̂ sc>M̂scX̂ sc)−1X̂ sc>M̂scŶsc,

where M̂sc = I − X̂ sc
1

(
X̂ sc>

1 ŴscX̂ sc
1

)−1

X̂ sc
1
>Ŵsc is an oblique projection matrix (e.g. see Davidson

and MacKinnon (1993)). The choice of the weighting matrix will determine the relative effi ciency

of θ̂(Ŵsc) within the class of asymptotic least squares estimators indexed by the set of all positive

definite matrices Wsc. The effi cient weighting matrix in this class is the one that converges in

probability to the inverse of the asymptotic variance of
√
N(Ŷsc − X̂ sc

1 θ10 − X sc
2 θ20). The effi cient

estimator can then be constructed by using any preliminary consistent estimator of θ0 (we need to

both estimates for θ10 and θ20). One such is the identity weighted estimator, which resembles an

ordinary least squares estimator:

(X̂ sc>X̂ sc)−1X̂ sc>Ŷsc. (24)

In this case M̂sc simplifies to I−X̂ sc
1

(
X̂ sc>

1 X̂ sc
1
>
)−1

X̂ sc
1
>, and the corresponding estimator of θ20 can

equivalently be obtained by using the (plug-in) empirical counterparts of the expressions in Theorems

1 and 2.

Estimation of the Discount Factor

Rearranging equation (22) in Lemma 5 yields

∆vi (β0) = ∆gaii (β)−∆Hai
i (I − βL)−1Rui.

These quantities across players can be vectorized in the form of

Ydf = X df (β) when β = β0,
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where X df (β) and Ydf are smooth functions of the choice and transition probabilities as well as the
payoff parameters. Let us denote the latter by δ0. Similar to the previous case, for any β, it can

be shown that X df (β) = T dfX1
(γ0, δ0; β) and Ydf = T dfY (γ0) for some known functions T dfX and T dfY

respectively. Given preliminary consistent estimators of γ0 and δ0, say γ̂ and δ̂, we can define an

estimation criterion where X df (β) and Ydf are replaced by X̂ df (β) = T dfX
(
γ̂, δ̂; β

)
and Ŷdf = T dfY (γ̂)

respectively, so that

Ŝdf (β; Ŵdf ) = (Ŷdf − X̂ df (β))>Ŵdf (Ŷdf − X̂ df (β)). (25)

where Ŵdf is a positive definite matrix. An asymptotic least square estimator can then be defined to

minimize Ŝdf (β; Ŵdf ). However, no closed-form estimator generally exists in this case. For effi cient

estimation, the weighting matrix needs to converge in probability to the inverse of the asymptotic

variance of
√
N(Ŷdf − X̂ df (β0)), which can be constructed from any consistent estimator of β0.

6 Numerical Section

We illustrate the use of our proposed estimators for the switching cost and discount factor as described

in the previous section.

6.1 Monte Carlo Study

Our simulation design is taken from Pesendorfer and Schmidt-Dengler (2008, Section 7; also see

Section 2 earlier in this paper). Consider a two-firm dynamic entry game. In each period t, each firm

i has two possible choices, ait ∈ {0, 1}. The observed state variables are previous period’s actions,
wt = (a1t−1, a2t−1). Using their notation, firm 1′s period payoffs are described as follows:

π1,θ (a1t, a2t, xt) = a1t (µ1 + µ2a2t) + a1t (1− a1t−1)F + (1− a1t) a1t−1W, (26)

where θ = (µ1, µ2, F,W ) containing respectively the monopoly profit, duopoly profit, entry cost and

scrap value. The latter two components are switching costs. Each firm also receives additive private

shocks that are i.i.d. N (0, 1). The game is symmetric and Firm’s 2 payoffs are defined analogously.

We set the payoff parameters to be (µ10, µ20, F0,W0) = (1.2,−1.2,−0.2, 0.1) and β0 = 0.9. There

are three distinct equilibria for this game, one of which is symmetric. As an illustration, we only

generate the data using the symmetric equilibrium and report the results using the identity weighted

estimates. We take W0 to be known since it cannot be identified jointly with F0; see Pesendorfer

and Schmidt-Dengler (2008). We estimate F0 using the closed-form expression in (24). In order to

estimate β0 we need estimators for µ10 and µ20 that do not depend on the discount factor. For this we
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use µ10 +B1N/
√
N and µ20 +B2N/

√
N respectively, where N denotes the sample size and (B1N , B2N)

are bivariate independent standard normal variables. The
√
N−scaling ensures the sampling errors

converge to zero at the parametric rate as one would typically assumed in empirical applications.

We also estimate F0 using the estimator in Sanches, Silva and Srisuma (2014, hereafter SSS) that

requires an assumption on the discount factor to illustrate the effect from assuming an incorrect

discount factor and also to compare it to our closed-form estimator when the discount factor is

correctly assumed to be known. For each sample size N = 1000, 10000, 100000, we perform 1000

simulations. We report the bias and standard deviation (in italics) for our estimators of F0 and β0

in Table 1, and analogous statistics for the estimator of F0 using SSS in Table 2.

F0 β0

N = 1000 0.004 0.002

0.176 0.753

N = 10000 0.003 0.005

0.054 0.223

N = 100000 0.002 0.001

0.018 0.081

Table 1: Bias and standard deviation, the latter in italics, for the asymptotic least squares

estimators of F and β using the estimator proposed in Section 5.

β

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

N = 1000 0.549 0.507 0.457 0.396 0.325 0.247 0.167 0.083 0.022 0.002 0.039

0.086 0.078 0.083 0.079 0.080 0.085 0.084 0.087 0.092 0.097 0.104

N = 10000 0.542 0.499 0.448 0.388 0.321 0.242 0.159 0.080 0.019 -0.002 0.039

0.027 0.028 0.027 0.026 0.027 0.025 0.025 0.027 0.027 0.028 0.029

N = 100000 0.540 0.497 0.447 0.387 0.318 0.240 0.158 0.079 0.019 -0.001 0.041

0.009 0.008 0.008 0.009 0.008 0.009 0.008 0.009 0.008 0.009 0.009

Table 2: Bias and standard deviation, the latter in italics, for the asymptotic least squares

estimator of F0 using the estimator of Sanches, Silva and Srisuma (2014) for different values of β.

Our estimators appear to be consistent as expected, while the estimators of SSS are not when the

assumed value of β differs from β0. However, our robust estimator of F0 is less precise than SSS’s.

This is not surprising since the estimator in SSS explicitly makes use of other structure of model,

particularly the remaining components of the profit function as well as the discount factor.
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6.2 Empirical Illustration

We estimate a simplified version of an entry-investment game base on the model studied in Ryan

(2012) using his data.14 In what follows we provide a brief description of the data, highlight the main

differences between the game we model and estimate with that of Ryan (2012). Then we present and

discuss our estimates of the primitives.

Data (Ryan (2012))

The dataset contains aggregate data on quantities and outputs for the Portland cement industry

in the United States from 1980 to 1998 as well as plant-level capacities and production quantities

for all the plants. Data on plants includes the name of the firm that owns the plant, the location

of the plant, the number of kilns in the plant and kiln characteristics (fuel type, process type and

year of installation). Following Ryan (2012) we assume that the plant capacity equals the sum of

the capacity of all kilns in the plant and that different plants are owned by different firms. We

observe that plants’names and ownerships change frequently. This can be due to either mergers and

acquisitions or to simple changes in the company name. We do not treat these changes as entry/exit

movements. We check each observation in the sample using the kiln information (fuel type, process

type, year of installation and plant location) installed in the plant. If a plant changes its name

but keeps the same kiln characteristics, we assume that the name change is not associated to any

entry/exit movement. This way of preparing the data enables us to replicate the summary statistics

of plant-level data in Ryan; also see Section 5.2 in Otsu, Pesendorfer and Takahashi (2015).

Dynamic Game

Ryan (2012) models a dynamic game played between firms that own cement plants in order to

measure the welfare costs of the 1990 Clean Air Act Amendments (1990 CAAA) on the US Portland

cement industry. The decision for each firm is first whether to enter (or remain) in the market

or exit, and if it is active in the market then how much to invest or divest. Firm’s investment

decisions is governed by its capacity level. The firm’s profit is determined by variable payoffs from

the competition in the product market with other firms, as well as switching costs from the entry

and investment decisions. In Ryan’s model, there are two action variables, one is a binary choice

for entry and the other is a continuous level of investment. The only observed state variables that

are endogenous in his game are past entry decisions and capacity levels. Other determinants of

14The dataset can be downloaded from the Econometrica webpage at https://www.econometricsociety.org/content/supplement-

costs-environmental-regulation-concentrated-industry-0.
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the variable profits, namely aggregate prices and quantities that are used to construct the demand

function, come from a different data source and are treated as exogenous.15

We consider a discrete game that fits the general model described in earlier Sections. The main

departure from Ryan (2012) is we combine the entry decision along with the capacity level into

a single discrete variable. We set the action space to be an ordinal set {0, 1, 2, 3, 4, 5}, where 0

represents exit/inactive, and the positive integers are ordered to denote entry/active with different

capacity levels. The payoff for each firm has two additive separable components. One depends on

the observables while the other is an unobserved shock. The observable component has two parts.

One represents the variable profit, where firms compete in a capacity constrained Cournot game.

The other consists of the switching costs that captures the essence of firms’entry and investment

decisions. Lastly each firm receives unobserved profit shocks for each action with (standard) i.i.d.

type-1 extreme value distributions with mean zero and variance π2/6.

Estimation

We estimate the component of the payoff function that are functions of the observables. The

Cournot profit is constructed from the same demand and cost functions estimated in Ryan’s paper.16

In particular this profit is zero when a firm chooses action 0 (as assumed in Ryan). For an active firm

with ai > 0, the profit is calculated using the (ai × 20)−th percentile of the capacity level observed
in the data. Therefore we estimate the Cournot profit function without appealing to the dynamic

feature of the game. We assume switching costs for each firm is independently of what other firms do.

We normalize switching cost of choosing action 0 to be zero, which is akin to normalizing the scrap

value. We treat all firms to be symmetric. Therefore there are a total of 25 switching cost parameters

to be estimated.17 The 25 switching cost parameters are estimated using the closed-form expression

in Section 5, see (24). In particular we only need the choice probabilities, which we estimate using

a multinomial logit specification analogous to Ryan (2012).

The estimation of the discount factor takes the estimated payoff function as known. One practical

issue when combining different parts of the payoff function that are estimated separately is the

compatibility of scale. In our case the Cournot profit is estimated directly from the data (interpretable

in a monetary unit), while the scale of the switching costs is determined by the distribution of the

15The data on entry and capacity are constructed using plant-level data that Ryan collected. The demand data

come from the US Geological Survey’s Mineral Yearbook.
16We use the specifications of demand and cost functions written in equations (1) and (2) of Ryan (2012) respectively.

The estimated demand follows specification 1 in his Table 3, and the cost parameters are taken from his Table 4.
17Ryan (2012) models the switching costs differently. The fixed operating cost is normalized to be zero. Non-zero

investment and divestment costs are drawn from two distinct independent normal distributions, whose means and

variances are estimated using the methodology in Bajari, Benkard and Levin (2007).
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private shocks; imposed in the application of Hotz-Miller’s inversion. A standard solution in a

dynamic game estimation is to include a scale parameter, such as the variance, for the private values

to be estimated jointly with the switching costs. Since we can estimate the switching cost parameters

without any optimization for any given distribution, such scale parameter can also be introduced in

a least squares criterion and estimated along with the discount factor. However, repeatedly inverting

probability distribution with many action choices is a very cumbersome task even with an addition

of only a single unknown variance parameter. We instead use a computationally simpler alternative

to correct the scale by inserting a multiplicative factor on the Cournot profit function, which we then

estimate jointly with the discount factor.

We provide two sets of estimates of the switching costs and discount factors using the data from

before and after the implementation of the 1990 CAAA.18 Tables 3 and 4 contain the results for the

switching costs using the data from the years 1980 to 1990 and 1991 to 1998 respectively. Tables 5

provides estimates for the discount factor from the two time periods. All of our estimates are based

on the identity weighting and standard errors are computed using random resampling bootstrap with

replacements.

ait−1 = 0 ait−1 = 1 ait−1 = 2 ait−1 = 3 ait−1 = 4 ait−1 = 5

ait = 1 -2.84 - 2.56 5.37 8.09 3.82

0.43 - 0.55 0.92 1.05 1.20

ait = 2 -10.56 -5.18 - 5.29 10.60 7.89

1.47 0.84 - 0.83 1.22 0.98

ait = 3 -17.26 -15.45 -7.78 - 7.86 8.07

0.84 1.95 1.25 - 0.89 0.99

ait = 4 -23.76 -23.52 -20.89 -10.48 - 2.68

1.31 1.35 2.32 1.33 - 1.32

ait = 5 -25.71 -25.47 -25.01 -19.07 -7.16 -

0.53 0.50 0.64 1.27 1.43 -

Table 3: Estimate and standard error, the latter in italics, for the switching cost parameters from

ait−1 to ait using data from the years 1980 to 1990. Standard errors are obtained from 50 bootstrap

samples.

18Otsu, Pesendorfer and Takahashi (2015) recently suggest the data from Ryan (2012) between 1980 - 1990 should

not be pooled across markets, while the data from 1991 - 1998 pass their poolability test.
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ait−1 = 0 ait−1 = 1 ait−1 = 2 ait−1 = 3 ait−1 = 4 ait−1 = 5

ait = 1 -4.78 - 6.09 10.85 9.83 3.74

1.41 - 1.32 2.08 1.19 1.44

ait = 2 -14.73 -9.98 - 8.22 10.62 4.98

2.18 2.62 - 1.66 1.66 2.02

ait = 3 -21.73 -22.19 -11.84 - 5.64 3.19

2.72 2.74 1.68 - 2.10 2.23

ait = 4 -24.20 -24.77 -21.80 -10.43 - 2.91

0.98 1.11 1.07 2.09 - 1.16

ait = 5 -22.77 -22.68 -20.44 -12.75 -8.48 -

2.07 2.27 2.04 2.61 1.84 -

Table 4: Estimate and standard error, the latter in italics, for the switching cost parameters from

ait−1 to ait using data from the years 1991 to 1998. Standard errors are obtained from 50 bootstrap

samples.

Before 1990 After 1990

Discount factor 0.64 0.64

0.03 0.06

Table 5: Estimate and standard error, the latter in italics, for the discount factor. Standard errors

are obtained from 50 bootstrap samples.

The sign and relative magnitude of the estimated switching costs generally make plausible eco-

nomic sense. Particularly, entry at higher capacity level should incur higher cost (negative payoff),

and increasing the capacity level should be costly while divestment can return revenue for firms.

We find the signs are uniformly correct, with positive estimates on the upper (right) triangular part

of the tables and negative estimates for the lower triangular part. The relative magnitudes of the

estimates also mostly conform to the economic intuition we expect. For instance, we should expect

the estimates should be monotonically decreasing when reading down each column in Tables 3 and

4. One notable observation is that entry and investment costs are in general higher for the period

after the 1990 CAAA has been implemented especially when entering at or switching into low to

moderately high capacity level. Particularly the increase in entry costs is consistent with the finding

in Ryan (2012) that is consistent with the tougher rules following the 1990 CAAA; such as new plants

are required to undergo an additional certification procedure etc. Our estimates of the discount rate
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are lower than the usual range of assumed rate of discounting (e.g. Ryan takes β to be 0.9). The

difference between the estimates using data from different time periods is negligible, suggesting the

1990 CAAA does not affect firms’costs of borrowing.

7 Conclusion

Many empirical dynamic games and decision problems naturally involve adjustment or switching costs

from choosing different actions. We show components of the payoff functions that can be interpreted

as switching costs can be identified in closed-form in terms of the observed choice and transition

probabilities alone. Hence, when other components of the payoff function can also be identified

independently elsewhere, the entire payoff function can be recovered without the knowledge of the

discount factor. We show the discount factor can then be identified. Our identification strategy also

suggests a new way to estimate games, nonparametrically or otherwise, with attractive computational

features. We illustrate the scope of its applications in a Monte Carlo study and an empirical game

using real data.
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