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Abstract

We present the first revealed-preference characterizations of the most common models of

intertemporal choice: the model of exponentially discounted concave utility, and some of its

generalizations. Ours is the first axiomatization of these models taking consumption data

as primitives. Our characterizations provide non-parametric revealed-preference tests. We

apply our test to data from a recent experiment, and find that our axiomatization delivers

new insights and perspectives on a dataset that had been analyzed by traditional parametric

methods.



1. Introduction

Exponentially discounted utility is the standard model of intertemporal choice in economics.

It is a ubiquitous model; used in all areas of economics. Our paper is the first revealed pref-

erence investigation of exponential discounting: We give a necessary and sufficient “revealed

preference axiom” that a dataset must satisfy in order to be consistent with exponential

discounting. The revealed preference axiom sheds light on the behavioral assumptions un-

derlying the standard model of discounting. It also yields a non-parametric test of the theory,

applicable in different empirical investigations of exponential discounting.

Consider an agent who chooses among intertemporal consumptions of a single good. One

general theory is that the agent has a utility function U(x0, . . . , xT ) for the consumption of

xt on each date t. The Generalized Axiom of Revealed Preference (GARP) tells us whether

the choices are consistent with some general utility function U .

The empirical content of general utility maximization is well understood, but it is too

broad (and GARP is too weak) to capture exponential discounting. The exponentially dis-

counted utility (EDU) model assumes a specific form of U , namely

U(x0, . . . , xT ) =

T∑

t=0

δtu(xt).

In this paper, we focus on concave EDU, in which u is a concave function. Concavity of

u is widely used to capture a motive for consumption smoothing over time. The empirical

content of concave EDU maximization is different from that of general utility maximization,

and not well understood in the literature.

The first and most important question addressed in our paper is: What is the version of

GARP that allows us to decide whether data are consistent with concave EDU? The revealed

preference axiom that characterizes concave EDU is obviously going to be stronger than

GARP. Despite the ubiquity of EDU in economics, the literature on revealed preference has

not (until now) provided an answer. Our main result is that a certain revealed preference

axiom, termed the “Strong Axiom of Revealed Exponentially Discounted Utility” (SAR-

EDU), describes the choice data that are consistent with concave EDU preferences.

SAR-EDU is a weak imposition on the data, in the sense that it constrains prices and

quantities in those situations in which unobservables do not matter. The constraint on prices

and quantities is simply that they be inversely related, or that “demand slopes down.”

Essentially, SAR-EDU requires one to consider situations in which unobservables “cancel

out,” and to check that prices and quantities are inversely related. This inverse relation is a

basic implication of concave utility (that is, of the consumption smoothing motive).

1



In the paper, we study the empirical content of more general models of time discount-

ing as well, including the quasi-hyperbolic discounting model (QHD; Phelps and Pollak,

1968; Laibson, 1997): U(x0, . . . , xT ) = u(x0) + β
∑T

t=1 δ
tu(xt), general time discounting

(GTD): U(x0, . . . , xT ) =
∑T

t=0 D(t)u(xt), and time separable utility (TSU): U(x0, . . . , xT ) =∑T

t=0 ut(xt); where u and ut are concave. In the following, we do not explicitly use the con-

cave modifier when there is no risk of confusion. For example, we say EDU to mean concave

EDU.

The contribution of this paper is to characterize the empirical content of EDU and its

generalizations. We provide the first revealed-preference axioms (axioms like GARP but

stronger) characterizing EDU, QHD, GTD, and TSU. Our axioms shed new insights into

the behavioral assumptions behind each of these models, and also constitute non-parametric

tests. There are, of course, other axiomatizations of these models but they start from different

primitives. The well know axiomatization of EDU by Koopmans (1960), for example, starts

from complete preferences over infinite consumption streams.

To illustrate the usefulness of our results for empirical work, we carry out an application

to data from a recent experiment conducted by Andreoni and Sprenger (2012) (hereafter

AS). AS propose the Convex Time Budget (CTB) method, in which subjects are asked to

choose from an intertemporal budget set. 1 They find moderate support for the theory that

agents are EDU maximizers.

The application of our methods to AS’s data is, we believe, fruitful. We uncover fea-

tures of individual subjects’ behavior that are masked by traditional parametric econometric

techniques. Our tests give a seemingly different conclusion from that obtained by AS. At

first glance, we find scant evidence for EDU (or indeed QHD) whereas AS are cautiously

supportive of EDU. Section 5 has more details, and reveals that the methodology of AS and

our methodology are more concordant than what initially emerges.

It should be said that our methods rest on nonparametric revealed preference tests. As

such, the tests are independent of functional form assumptions. The tests are also simple, and

tightly connected to economic theory. The methodology used currently by experimentalists

(such as AS) rests instead on parametrically estimating a given utility function by statistical

methods. Our setup fits the experimental design of AS, and other CTB experiments, very

well, but our results are also applicable more broadly, including to non-experimental field

1Several recent experimental studies use the CTB design, both in the laboratory and in the field setting,

including Andreoni et al. (2013b), Ashton (2014), Augenblick et al. (forthcoming), Barcellos and Carvalho

(2014), Brocas et al. (2015), Carvalho et al. (2013), Carvalho et al. (2014), Giné et al. (2013), Janssens et al.

(2013), Kuhn et al. (2014), Liu et al. (2014), Lührmann et al. (2014), Sawada and Kuroishi (2015), and Shaw

et al. (2014). Our methods are largely applicable to data from these experiments.
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data.

Related literature. There are different behavioral axiomatizations of EDU in the litera-

ture, starting with Koopmans (1960), and followed by Fishburn and Rubinstein (1982) and

Fishburn and Edwards (1997). All of them take preferences as primitive, or in some cases

they take utility over consumption streams as the primitive. The idea is that the relevant

behavior consists of all pairwise comparisons of consumption streams. From an empirical

perspective, this assumes a infinite “dataset” of pairwise comparisons. Indeed the stationar-

ity axiom introduced by Koopmans (1960), and used by many other authors, requires infinite

time. Our axiomatization of EDU is the first in an environment where agents choose from

budget sets.

Other axiomatizations of EDU impose stationarity in different environments. In Fish-

burn and Rubinstein (1982) preferences are defined on one-time consumptions in continuous

time. In Fishburn and Edwards (1997), preferences are defined on infinite consumption

streams that differ in at most finitely many periods. The recent work of Dziewulski (2014)

gives a characterization for binary comparisons of one-time consumptions, a similar setup to

Fishburn and Rubinstein, but assuming finitely many data.

In continuous time setup, Weibull (1985) gives a general characterization of EDU, also

taking preferences as primitives. He characterizes the general time discounting models and

the monotone time discounting models as well. A more recent paper by Kopylov (2010) also

provides a simple axiomatization of EDU model in a continuous time setup.

The QHD model was first proposed by Phelps and Pollak (1968), who did not propose an

axiomatization. There are several more recent studies that present a behavioral character-

ization of QHD, but all take preferences and infinite time horizons as their primitives, and

therefore differ from our results. See Hayashi (2003), Montiel Olea and Strzalecki (2014),

and Galperti and Strulovici (2014) for axiomatizations.

Time separable utility (TSU) model is the most general model we axiomatize. In our

application of our test to AS’s data, however, we found that significant number of subjects

are not TSU rational. This would suggest the importance of non time separable model.

Gilboa (1989) has provided an elegant axiomatization of a non time separable utility model.

In the paper, by using Anscombe and Aumann’s framework and studying preferences over

finite sequences of lotteries, Gilboa (1989) axiomatizes a utility function that can capture a

preference for (or an aversion to) variation of utility levels across periods.

In terms of data from (field) consumption surveys, Browning (1989) provides a revealed-

preference axiom for EDU with no discounting (i.e., δ = 1). Other papers on survey data
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do not provide an axiomatic characterization; they, instead, obtain Afriat inequalities for

several models. Crawford (2010) investigates intertemporal consumption and discusses a

particular violation of TSU, namely habit formation. Crawford presents Afriat inequalities

for the model of habit formation, and uses Spanish consumption data to carry out the test

(see also Crawford and Polisson, 2014). Adams et al. (2014) work with the Spanish dataset

and test EDU within a model of collective decision making at the household level.

It is important to emphasize that the papers on survey data allow for the existence of

many goods in each period; but they do not allow for more than one (intertemporal) purchase

for each agent. This assumption makes sense because in consumption surveys one typically

has a single observation per household. We have instead assumed that there is only one

good (money) in each period; but we allow for more than one intertemporal purchase per

agent. Allowing for multiple purchases is crucial in order to apply our tests to experimental

data. This is because in experiments, a subject is usually required to make many decisions

and one choice is chosen randomly for the payment to the subject.

2. Exponentially Discounted Utility

Notational conventions. For vectors x, y ∈ Rn, x ≤ y means that xi ≤ yi for all

i = 1, . . . , n; x < y means that x ≤ y and x 6= y; and x ≪ y means that xi < yi for all

i = 1, . . . , n. The set of all x ∈ Rn with 0 ≤ x is denoted by Rn
+ and the set of all x ∈ Rn

with 0 ≪ x is denoted by Rn
++.

Let T be a strictly positive integer; T will be the (finite) duration of time, or time horizon.

We abuse notation and use T to denote the set {0, 1, . . . , T}. A sequence (x0, . . . , xT ) =

(xt)t∈T ∈ RT
+ will be called a consumption stream. There is a single good in each period; the

good can be thought of as money. Note that the cardinality of the set T is T + 1, but this

never leads to confusion.

Remark 1. We can assume a more general time setup: {0, τ1, . . . , τT}, where τi < τi+1 for

all i < T − 1. Even with this general time setup, our results hold without changes. The

only requirement on the set of time periods is that it contains 0. Such flexibility in how one

specifies time is necessary in the application of our results to experimental data of Andreoni

and Sprenger (2012). See Section 5.1 for detail.

The model. The objects of choice in our model are consumption streams. We assume that

an agent has a budget I > 0, faces prices p ∈ RT
++, and chooses an affordable consumption

stream (xt)t∈T ∈ RT
+. Prices can be thought of as interest rates.
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An exponentially discounted utility (EDU) is specified by a discount factor δ ∈ (0, 1] and

a utility function over money u : R+ → R. An EDU maximizing agent solves the problem

max
x∈B(p,I)

∑

t∈T

δtu(xt) (1)

when faced with prices p ∈ RT
++ and budget I > 0. The set B(p, I) = {y ∈ RT

+ : p · y ≤ I}

is the budget set defined by p and I.

The meaning of EDU as an assumption about an agent is that the agent’s observed

behavior is as if it were generated by the maximization of an EDU. To formalize this idea,

we need to state what can be observed.

Definition 1. A dataset is a finite collection of pairs (x, p) ∈ RT
+ ×RT

++.

A dataset is our notion of observable behavior. The interpretation of a dataset (xk, pk)Kk=1

is that it describesK observations of a consumption stream xk = (xk
t )t∈T at some given vector

of prices pk = (pkt )t∈T , and budget pk · xk =
∑

t∈T pkt x
k
t . We sometimes use K to denote the

set {1, . . . , K}.

Let us clarify the meaning of a dataset by considering two examples. If we have field

consumption data, collected through a consumption survey, then K is 1. There is one dataset

for each agent, or household. This is the setup of Browning (1989), for example. On the

other hand, if, in an experiment, one subject is asked to make a choice from 45 different

budget sets, as in Andreoni and Sprenger (2012), then K is 45. The experimenter would

typically implement the choice from one budget set selected at random. It is important to

note that our model allows, but does not require, that K > 1. Even if K = 1, our axiom for

EDU is not satisfied trivially, and has testable implications.

Definition 2. A dataset (xk, pk)Kk=1 is exponential discounted utility rational (EDU rational)

if there is δ ∈ (0, 1] and a concave and strictly increasing function u : R+ → R such that,

for all k,

y ∈ B(pk, pk · xk) =⇒
∑

t∈T

δtu(yt) ≤
∑

t∈T

δtu(xk
t ).

As mentioned in the introduction, we restrict attention to concave utility. Our results

will be silent about the non-concave case. So we are focusing on agents who seek to smooth

out their consumption over time.

3. A characterization of EDU rational data

EDU rational data will be characterized by a single “revealed preference axiom.” We shall

introduce the axiom by deriving the implications of EDU in specific instances. Here we
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assume, for ease of exposition, that u is differentiable, but our results do not depend on

differentiability, and the statement of the theorem will not require the differentiability of u.

The first-order condition for maximization of EDU is: for each k ∈ K and t ∈ T ,

δtu′(xk
t ) = λkpkt . (2)

The first-order conditions involve three unobservables: discount factor δ, marginal util-

ities u′(xk
t ) and Lagrange multipliers λk. Quantities xk

t and prices pkt are observable. Our

approach proceeds by finding that certain implications of the model for the observables xk

and pk must hold, regardless of the values of the unobservables.

We derive the axiom by considering increasingly general cases. First we consider the case

of no discounting and one observation (δ = 1 and K = 1). Then, we study the case of no

discounting (δ = 1 and K ≥ 1). Finally, in Section 3.3 we discuss the general case (δ is

unknown and K ≥ 1) and present the axiom for EDU, SAR-EDU.

3.1. No discounting and one observation: δ = 1 and K = 1

Suppose that δ = 1 and K = 1. That is, we seek to impose EDU rationality in the special

case when δ is known, equals 1, and our dataset has a single observation. Under these

assumptions (omitting the k superindex, as K = 1) the first-order condition (2) becomes

u′(xt) = λpt for each t ∈ T . For each pair t, t′ ∈ T , we obtain

u′(xt)

u′(xt′)
=

pt
pt′

.

By concavity of u, for each pair t, t′ ∈ T , we have

xt > xt′ =⇒
pt
pt′

≤ 1. (3)

Thus we obtain a simple implication of EDU rationality in this special case: (3) means that

demand must slope down. This “downward sloping demand axiom” coincides with the axiom

obtained by Browning (1989) for the δ = K = 1 case.2

Property (3) can be written in a different way. It is more complicated than (3), and

redundant for now, but will prove useful in the sequel:

Definition 3. A sequence of pairs (xki
ti
, x

k′
i

t′
i

)ni=1 has the downward sloping demand property

if

xki
ti
> x

k′
i

t′
i

for all i implies that
n∏

i=1

pkiti

p
k′
i

t′
i

≤ 1.

2Browning is interested in the case of K = 1 because he uses survey consumption data.
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The downward-sloping demand property is not only a necessary condition, but also a

sufficient condition for EDU rationality in the case of δ = 1 and K = 1.

3.2. No discounting: δ = 1

We now take one step towards our general result. Continue to assume that δ = 1, but now

allow that K ≥ 1. The decision maker does not discount future consumptions, but the

dataset may contain multiple observations. The first-order condition (2) becomes u′(xk
t ) =

λkpkt for each t ∈ T , and each k.

If we try to proceed as in the previous section, we might consider pairs of observations

with xk
t > xk′

t′ :
u′(xk

t )

u′(xk′

t′ )
=

λk

λk′

pkt
pk

′

t′

.

By the concavity of u, we know that

xk
t > xk′

t′ =⇒
λk

λk′

pkt
pk

′

t′

≤ 1.

However, the ratio λk/λk′ does not allow us to conclude anything about the ratio of prices.

We would like to conclude, along the lines of downward sloping demand, that pkt /p
k′

t′ ≤ 1.

But the presence of λk/λk′ does not allow us to do that. Of course if we consider xk
t > xk′

t′ for

the same observation: k = k′ then the conclusion of downward sloping demand continues to

hold. When K > 1, downward sloping demand is still a restriction within each observation k.

This suggest that we can obtain an implication of EDU (with δ = 1) across observations

as well. Consider a collection of pairs (xk
t , x

k′

t′ ), chosen such that the λ variables will cancel

out. For example consider:

u′(xk
t1
)

u′(xk′
t2
)

u′(xk′

t3
)

u′(xk
t4
)
=

λk

λk′

λk′

λk

pkt1
pk

′

t2

pk
′

t3

pkt4
.

Then the λ variables cancel out and we obtain that:

xk
t1
> xk′

t2
and xk′

t3
> xk

t4
=⇒

pkt1
pk

′

t2

pk
′

t3

pkt4
≤ 1;

that is, downward sloping demand.

The idea of canceling out the unknown λks suggests the following definition.

Definition 4. A sequence of pairs (xki
ti
, x

k′
i

t′
i

)ni=1 is balanced if each k appears as ki (on the

left of the pair) the same number of times it appears as k′
i (on the right).
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When K = 1 we know that a sequence must have the downward sloping demand property.

Now with K ≥ 1 this is only true of balanced sequences: any balanced sequence has the

downward sloping demand property. This property is not only necessary, but also a sufficient

condition for EDU rationality in the case when δ is known and δ = 1.

3.3. General K and δ

We now turn to the case whenK can be arbitrary and δ is unknown. Before, whenK = δ = 1,

then λ was constant and δ fixed. EDU rationality is characterized by downward sloping

demand. When K ≥ 1 we saw that we needed to impose downward sloping demand for

balanced sequences. When δ is unknown we need to further restrict the sequences that are

required to satisfy downward sloping demand. In fact, the relevant axiom turns out to be:

Strong Axiom of Revealed Exponentially Discounted Utility (SAR-EDU): For

any balanced sequence of pairs (xki
ti
, x

k′
i

t′
i

)ni=1, if
∑n

i=1 ti ≥
∑n

i=1 t
′
i, then the sequence has the

downward sloping demand property.

As in Sections 3.1 and 3.2, the key idea is to control the effects of the unknowns u, δ and

λ, by focusing on particular configurations of the data. It is easy to see how such restrictions

are necessary. For example, consider two pairs

(xk1
t1
, xk2

t2
) and (xk2

t3
, xk1

t4
)

such that

t1 + t3 ≥ t2 + t4.

By manipulating first-order conditions we obtain that:

u′(xk1
t1
)

u′(xk2
t2
)
·
u′(xk2

t3
)

u′(xk1
t4
)
=

(
δt2

δt1
λk1pk1t1
λk2pk2t2

)
·

(
δt4

δt3
λk2pk2t3
λk1pk1t4

)
= δ(t2+t4)−(t1+t3)

pk1t1
pk2t2

pk2t3
pk1t4

.

Notice that the pairs (xk1
t1
, xk2

t2
) and (xk2

t3
, xk1

t4
) constitute a balanced sequence of pairs, so that

the Lagrange multipliers cancel out as in 3.2. Furthermore, the discount factors unambigu-

ously increase the value on the left hand side, δ(t2+t4)−(t1+t3) ≥ 1 for any δ ∈ (0, 1].

Now the concavity of u implies that when xk1
t1

> xk2
t2

and xk2
t3

> xk1
t4

then the product

δ(t2+t4)−(t1+t3)(pk1t1 /p
k2
t2
)(pk2t3 /p

k1
t4
) cannot exceed 1. Since δ(t2+t4)−(t1+t3) ≥ 1 for any δ ∈ (0, 1],

then (pk1t1 /p
k2
t2
)(pk2t3 /p

k1
t4
) cannot exceed 1. Thus, we obtain an implication of EDU for prices,

an observable entity. No matter what the values of the unobservable δ and u, we find that

the ratio of prices cannot be more than 1.

8



The argument just made extends to arbitrary balanced sequences, and essentially gives

the proof of necessity of SAR-EDU.3 The argument simply amounts to verifying a rather

basic consequence of EDU: the consequence of EDU for those situations in which unobserv-

ables either do not matter or have a known effect (the effect either resulting from u′ being

decreasing or from δ ∈ (0, 1]). What is surprising is that such a basic consequence of the

theory is sufficient as well as necessary.

Theorem 1. A dataset is EDU rational if and only if it satisfies SAR-EDU.

The proof is in Section 6. The proof that SAR-EDU is necessary is, as we have re-

marked, simple. The proof of sufficiency is more complicated, and follows ideas introduced

in Echenique and Saito (forthcoming).

Remark 2. It is not obvious from the syntax of SAR-EDU that one can verify whether a

particular dataset satisfies SAR-EDU in finitely many steps. We can show that, not only is

SAR-EDU decidable in finitely many steps, but there is in fact an efficient algorithm that

decides whether a dataset satisfies SAR-EDU. The proof is very similar to Proposition 2

in Echenique and Saito (forthcoming). So we omit the proof. SAR-EDU is on the same

computational standing as GARP or the strong axiom of revealed preference. Another way

to test SAR-EDU is based on linearized “Afriat inequalities,” see Lemma 1 of Section 6.3.

In fact, this is how we proceed in Section 5; see in particular the discussion at the end of

that section.

4. More general models

The ideas behind Theorem 1 can be used to analyze other models of intertemporal choice,

including quasi-hyperbolic discounting (QHD), and more general models.

4.1. Quasi-Hyperbolic Discounted Utility

First we investigate QHD. The objective is the same as for EDU: we want to know when

a dataset (xk, pk)Kk=1 is consistent with QHD utility maximization, but the interpretation

of a dataset is now more complicated. In the case of QHD, we assume that each xk is a

consumption stream that the agent commits to at date 0. The reason is that a QHD agent

may be dynamically inconsistent, and revise their planned consumption. The commitment

assumption happens to perfectly fit the application in Section 5 to the CTB experiment in

3We have assumed differentiability of u in our informal derivation, but since u is concave, we can easily

generalize the argument.
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Andreoni and Sprenger (2012). The commitment assumption will, however, be violated by

field data taken from consumption surveys. It is important to note that the assumption of

commitment is not necessary to test the EDU model, which is dynamically consistent.

Definition 5. A dataset (xk, pk)Kk=1 is quasi-hyperbolic discounted utility rational (QHD

rational) if there is δ ∈ (0, 1], index for time-bias β > 0, and a concave and strictly increasing

function u : R+ → R such that, for all k,

y ∈ B(pk, pk · xk) =⇒
∑

t∈T

D(t)u(yt) ≤
∑

t∈T

D(t)u(xk
t ),

where D(t) = 1 if t = 0 and D(t) = βδt if t > 0. More specifically, if β ≤ 1 in the above

definition then the dataset (xk, pk)Kk=1 is present biased quasi-hyperbolic discounted utility

rational (PQHD-rational).

Strong Axiom of Revealed Quasi-Hyperbolic Discounted Utility (SAR-QHD):

For any balanced sequence of pairs (xki
ti
, x

k′
i

t′
i

)ni=1, if

1.
∑n

i=1 ti ≥
∑n

i=1 t
′
i and

2. #{i : ti > 0} = #{i : t′i > 0},

then the sequence has the downward sloping demand property.

The condition that
∑n

i=1 ti ≥
∑n

i=1 t
′
i plays the same role as it did in SAR-EDU, to

control the effect of δ. In addition, we must now have #{i : ti > 0} = #{i : t′i > 0} so

as to cancel out β. If we instead focus on PQHD, then we know that β ≤ 1 so the weaker

requirement #{i : ti > 0} ≥ #{i : t′i > 0} controls the effect of β.4 Formally, the axiom to

characterize PQHD is as follows:

Strong Axiom of Revealed Quasi-Hyperbolic Present-Biased Utility (SAR-PQHD):

For any balanced sequence of pairs (xki
ti
, x

k′
i

t′
i

)ni=1, if

1.
∑n

i=1 ti ≥
∑n

i=1 t
′
i and

2. #{i : ti > 0} ≥ #{i : t′i > 0},

then the sequence has the downward sloping demand property.

4It is easy to axiomatize future biased quasi-hyperbolic discounted utility (FQHD), which is a special model

of QHD with β ≥ 1. For FQHD, in turn, we need #{i : ti > 0} ≤ #{i : t′
i
> 0}.
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To show the necessity of SAR-QHD, we proceed as in Section 3.3. The first order condi-

tions for maximization of a QHD utility are:

D(t)u′(xk
t ) = λkpkt . (4)

For example consider a balanced sequence of pairs (xk1
t1
, xk2

t2
), (xk2

t3
, xk1

t4
) with the property

that t1 + t3 ≥ t2 + t4, and #{i ∈ {1, 3} : ti > 0} = #{i ∈ {2, 4} : ti > 0}; where #{i ∈

{1, 3} : ti > 0} and #{i ∈ {2, 4} : ti > 0} are the numbers of non-time-zero consumption in

{xk1
t1
, xk3

t3
} and {xk2

t2
, xk4

t4
}, respectively. By manipulating the first-order conditions we obtain

that:

u′(xk1
t1
)

u′(xk2
t2
)
·
u′(xk2

t3
)

u′(xk1
t4
)

=

(
β1{t2>0}

β1{t1>0}

δt2

δt1
λk1pk1t1
λk2pk2t2

)
·

(
β1{t4>0}

β1{t3>0}

δt4

δt3
λk2pk2t3
λk1pk1t4

)

= β#{i∈{2,4}:ti>0}−#{i∈{1,3}:ti>0}δ(t2+t4)−(t1+t3)
pk1t1
pk2t2

pk2t3
pk1t4

= δ(t2+t4)−(t1+t3)
pk1t1
pk2t2

pk2t3
pk1t4

.

The balancedness of the sequence of pairs (xk1
t1
, xk2

t2
) and (xk2

t3
, xk1

t4
) implies that Lagrange

multipliers cancel out. The assumption of #{i ∈ {1, 3} : ti > 0} = #{i ∈ {2, 4} : ti > 0}

implies that β cancels out. As in SAR-EDU, the discount factor unambiguously increases

the value of the right hand side.

Finally, concavity of u implies that, when xk1
t1

> xk2
t2

and xk2
t3

> xk1
s4
, we have that

(pk1t1 /p
k2
t2
)(pk2t3 /p

k1
t4
) cannot exceed 1. That is, the downward sloping demand property.

The next theorem summarizes our results on QHD.

Theorem 2. A dataset is QHD-rational if and only if it satisfies SAR-QHD. Moreover, the

dataset is PQHD-rational if and only if it satisfies SAR-PQHD.

The proof of Theorem 2 is in Section 7.

One consequence of Theorems 1 and 2 is that, under certain circumstances, EDU and

PQHD are observationally equivalent. These circumstances are very relevant for the discus-

sion in Section 5 of AS’s experiment: Our next result, Proposition 1, shows that if an agent

does not consume at the soonest date (i.e., xk
0 = 0 for all k ∈ K), then EDU and PQHD

are observationally equivalent. In AS’s experiment, 82.8% of the subjects (i.e., 24 out of 29

subjects) who satisfy SAR-EDU do not consume at the soonest date. This explains why, in

AS’s data, QHD has very limited scope beyond what can be explained by EDU.

Proposition 1. Suppose that a dataset (xk, pk)Kk=1 satisfies that xk
0 = 0 for all k ∈ K. Then

(xk, pk)Kk=1 is PQHD rational if and only if it is EDU rational.
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Proof. Of course, if the data is EDU rational then it is PQHD rational. Let us prove the

converse. Choose a sequence (xki
ti
, x

k′
i

t′
i

)ni=1 such that (1) xki
ti

> x
k′
i

t′
i

for all i ∈ {1, . . . , n}, (2)
∑n

i=1 ti ≥
∑n

i=1 t
′
i, and (3) each k appears as ki the same number of times as k′

i.

By (1), xki
ti

> 0 for all i ∈ {1, . . . , n}. Since xk
0 = 0 for all k ∈ K, we obtain ti > 0

for all i ∈ {1, . . . , n}. Therefore, #{i ∈ {1, . . . , n} : ti > 0} = #{i ∈ {1, . . . , n}} ≥ #{i ∈

{1, . . . , n} : t′i > 0}. Therefore, the sequence satisfies all of the conditions in the strong

axiom of present biased QHD. Since the dataset is PQHD rational, Theorem 2 shows that

n∏

i=1

pkiti
pki
t′
i

≤ 1. (5)

Therefore, Conditions (1), (2), and (3) imply (5), which is SAR-EDU. Hence, by Theorem 1,

the dataset must be EDU rational.

4.2. More General Models of Time Discounting

Building on the ideas in the previous two theorems, we can characterize more general models

of intertemporal choice. These models end up being useful in Section 5.2 when we classify

subjects in AS’s experiment.

Of course the most general model is utility maximization, without constraints on the

form of the utility.

max U(x0, . . . , xT ) s.t. p · x ≤ I. (6)

The relevant revealed preference axiom is GARP. In the following, we provide three special

cases of (6), which are obtained by restricting U . We list the three models in order of

generality. Let C be the set of all continuous, concave, and strictly increasing function

u : R+ → R.

1. Time-separable utility (TSU): The class TSU of all U that can be written as

U(x0, . . . , xT ) =
∑

t∈T

ut(xt),

where ut ∈ C for all t ∈ T .

2. General time discounting (GTD): The class GTD of all U that can be written as

U(x0, . . . , xT ) =
∑

t∈T

D(t)u(xt),

for some u ∈ C, and a function D : T → R++.

12



3. Monotone time discounting (MTD): The class MTD of all U that can be written as

U(x0, . . . , xT ) =
∑

t∈T

D(t)u(xt),

for some u ∈ C, and a function D : T → R++ that is monotonically decreasing.

In the following definition, the set M of utility functions can be any of the classes defined

above (i.e., TSU, GTD, MTD)

Definition 6. For M ∈ {TSU, GTD, MTD}, a dataset (xk, pk)Kk=1 is M rational if there is

a utility function U in the class M of utilities such that for all k,

pk · y ≤ pk · xk =⇒ U(y) ≤ U(xk).

It is easy to derive each axiom from first order conditions as we did for EDU and QHD.

The idea is to choose a sequence of pairs of observations so that we can cancel out the

Lagrange multipliers and control or cancel out the effects of other unobservables. We omit

the derivations.

Strong Axiom of Revealed Time Separable Utility (SAR-TSU): For any balanced

sequence of pairs (xki
ti
, x

k′
i

t′
i

)ni=1, if each ti = t′i for all i, then the sequence has the downward

sloping demand property.

Strong Axiom of Revealed General Time Discounted Utility (SAR-GTD): For

any balanced sequence of pairs (xki
ti
, x

k′
i

t′
i

)ni=1, if each t appears as ti (on the left of the pair) the

same number of times it appears as t′i (on the right), then the sequence has the downward

sloping demand property.

Strong Axiom of Revealed Monotone Time Discounted Utility (SAR-MTD): For

any balanced sequence of pairs (xki
ti
, x

k′
i

t′
i

)ni=1, if there is a permutation π of {1, 2, . . . , n} such

that ti ≥ t′π(i), then the sequence has the downward sloping demand property.

Each of these axioms imposes the downward-sloping demand property of a balanced

sequence under increasingly demanding conditions. For example, SAR-TSU imposes the

downward sloping demand property of a subset of the sequences that are constrained by SAR-

MTD; and SAR-MTD in turn constrains fewer sequences than SAR-EDU. How demanding

an axiom is, in terms of imposing the downward-sloping property, mirrors how demanding

the theory is: EDU is a special case of MTD, which is a special case of TSU.

Theorem 3. Let M ∈ {TSU, GTD, MTD}. A dataset is M-rational if and only if it satisfies

SAR-M.

The proof of Theorem 3 follows similar ideas to those used in the proofs of the other two

results, and is relegated to the Online Appendix.
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5. Empirical Application

5.1. Description of the Data

AS introduce an experimental method called the Convex Time Budget (CTB) design. In

contrast with the “multiple price list method” (e.g., Andersen et al., 2008), subjects in AS

are asked to allocate 100 experimental tokens between “sooner” (time τ) and “later” (time

τ + d) accounts. Tokens allocated to each account have a value of aτ and aτ+d, converting

experimental currency unit into real monetary value for final payments. The gross interest

rate over d days is thus given by aτ+d/aτ . There are three possible sooner dates τ ∈ {0, 7, 35};

three possible delays d ∈ {35, 70, 98} (the unit of period is one day.); and five different pairs

of conversion rates (aτ , aτ+d). Each subject thus complete 45 decisions.5

Each subject’s decision in a trial is characterized by a tuple (τ, d, aτ , aτ+d, cτ ): the first

four elements (τ, d, aτ , aτ+d) characterize the budget set she faces in this trial; and cτ is the

number of tokens she decides to allocate to the sooner payment.

In the experiment, subjects make a two-period choice. They choose (xτ , xτ+d) subject

to pτxτ + xτ+d = I. We need to formulate the problem as choosing (x0, . . . xT ) subject to
∑

t∈T ptxt = I. We set prices to be pτ = aτ+d/aτ and pτ+d = 1 (a normalization); and we

define consumptions (monetary amounts) xτ = cτ · aτ and xτ+d = (100− cτ ) · aτ+d.

We shall implicitly set the prices of periods that are not offered to be very high, so

that agents choose zero consumption in those periods. For example, when subjects face a

convex budget with (τ, d) = (35, 70), we treat prices pt for t 6= 35, 105 as high. In any

of the rationalizations we consider, marginal utilities at zero are finite. So by setting such

prices high enough, the choices in such time periods do not affect whether a dataset is

rationalizable. In this way, for each of 97 subjects, we obtained a dataset with K = 45 and

T = {t : t = τ or t = τ + d for some τ ∈ {0, 7, 35} and d ∈ {35, 70, 98}}.

Three features of the AS design make their experiment ideal for our exercise. First and

most importantly, the experimental setup is precisely the situation our model tries to capture:

subjects choose an intertemporal consumption from a budget set. As we briefly mention

above, most previous experimental studies on intertemporal decision utilize an environment

with discrete (in many cases, binary) choice sets. Strictly speaking, budgets in AS experiment

are discrete as well, but we understand them to be a reasonable approximation to continuous

5See Figure B.1 in the Online Appendix for an illustration. For each pair of starting date and delay length

(τ, d), the 5 budgets are nested. Looking at all 45 budget sets, except for 8 cases in which (aτ , aτ+d) =

(0.2, 0.25), aτ+d is fixed at 0.2 and aτ ranges between 0.1 and 0.2. Participants’ choices therefore always

satisfy GARP by design.
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choice (tokens are worth $0.1 to $0.25).

Secondly, the AS experiment has subjects committing to a consumption stream. Recall

that to test for QHD and more general models (although not for EDU) we need to assume

that agents commit to a consumption stream. In the AS design, the commitment assumption

is satisfied.

Thirdly, AS put significant effort into equalizing the transaction costs of sooner and later

payments, and minimizing the unwanted effects of uncertainty regarding future payments.

Before discussing our results, we summarize AS’s main findings. AS estimate the per-

period discount factor, present bias, and utility curvature assuming a QHD model with

CRRA utility over money:

U(x0, . . . , xT ) =
1

α
xα
0 + β

∑

t∈T\{0}

δt
1

α
xα
t . (7)

Their estimation uses pooled data from all subjects, fitting a common specification (7). AS

find no evidence of present bias (β̂ = 1.007, SE = 0.006; the hypothesis of no present bias,

β = 1, is not rejected; F1,96 = 1.51, p = 0.22).6 AS also estimate (7) at the level of individual

subjects and find that the estimated β̂’s are narrowly distributed around 1, with the median

estimate being 1.0011.

5.2. Results

We test our axioms for each individual subject in AS’s experiment. Note that we do not pool

the choice data of different subjects. The tests are based on the linearized Afriat inequalities

presented in Lemma 1. The models we examine are EDU, QHD, MTD, GTD, and TSU.

In the sequel, we shall label a subject as “M rational” if her dataset passes the revealed

preference test for model M and “M non-rational” otherwise. The models can be ordered by

the tightness of the associated axioms. Essentially, we have that EDU ⊂ PQHD ⊂ MTD ⊂

GTD ⊂ TSU, and that EDU ⊂ QHD ⊂ GTD ⊂ TSU, as QHD is not comparable to MTD

(QHD allows β > 1). For this reason, when we find that a subject is EDU rational, she is

of course also M rational for all other models M ∈ {PQHD,QHD,MTD,GTD,TSU}. We

sometimes label a subject as “strictly M rational” for the most restrictive model M such

6AS estimate several model specifications (e.g., assuming CARA instead of CRRA, or incorporating

additional parameters to capture background consumptions), and they also use different estimation methods

(e.g., two-limit Tobit model to handle corner choices). In our comparison, we use their results from a nonlinear

least squares estimation of quasi-hyperbolic discounting and CRRA utility function without background

consumption.
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Sample: 97 subjects

EDU: 29.9%
QHD: 29.9%

MTD: 39.2%
GTD: 42.3%

TSU: 51.6%Not TSU: 48.4%

Figure 1: Classification of subjects in AS’s experiment.

that the agent is M rational. For example, a subject is strictly QHD rational if her dataset

passes the QHD test but not the EDU test.

Figure 1 summarizes the results. We find that 29 subjects are EDU rational. QHD also

rationalizes the same 29 subjects: There are no subjects who are strictly QHD rational.

As we mentioned before Proposition 1, this is related to agents’ peculiar pattern of choices.

Proposition 1 shows that if an agent does not consume at the soonest date (i.e., xk
0 = 0 for

all k ∈ K), then EDU and PQHD are observationally equivalent. In AS’s experiment, more

than 82.8% of the subjects who satisfy SAR-EDU (i.e., 25% of the total subjects) do not

consume at the soonest date.

EDU and QHD are arguably the most important models of intertemporal choice used

in economics, but it is interesting to go beyond these models and look at the more general

utility functions described in Section 4.2. We find that 9 additional subjects (9.3%) have

utility functions in MTD, 3 additional subjects (3.1%) have utility functions in GTD, and 9

more subjects (9.3%) become rational by allowing a general TSU. In all, 51.6% of subjects

can be rationalized by one of the time-separable models.

In summary, while AS find moderate support for EDU, our conclusion is closer to a

rejection of EDU. In fact, close to half of the subjects in the experiment do not even exhibit

time separable preferences. In the next section, we look at why our methods and AS’s give

seemingly contradictory conclusions from the same data.

Similarities and differences with AS’s findings. Our analysis is for individual sub-

jects. But the main results in AS use pooled data from all subjects. If we instead focus on

individual level estimates of the same parametric model as AS, the source of the differences

becomes quite clear. We focus on the individual estimates from AS (see Table A6-7 in the
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Figure 2: Estimated present-bias parameter for each category of subjects.

Online Appendix of Andreoni and Sprenger, 2012). 7

Figure 2 summarizes the comparison. Each bar graph in the figure corresponds to one

subject. The horizontal value of the bar is AS’s estimated value β̂ for that subject. We

categorized the subjects depending on their strict M-rationality. For example, the subjects

who belong to the blue area pass our EDU test and the subjects who belong to the brown

area do not pass any tests; they are not TSU rational.

There are two important facts one can glean from the figure. First, our test is consistent

with AS’s methodology and their estimates: the subjects who pass the EDU test have

estimated β̂ very close to 1. So Figure 2 shows that our methodology and AS’s methodology

are, in fact, in agreement.

Secondly, those subjects who fail the EDU test but pass MTD, GTD, or TSU test tend to

have β̂ 6= 1. Moreover, those who do not pass any of the tests (i.e., non TSU subjects) have

estimated β̂ which are far from 1 in magnitude compared to the other groups of subjects,

and are distributed symmetrically around 1.8 Roughly speaking, for half of the non-TSU

subjects, β̂ > 1; for the other half, β̂ < 1. Hence, the “average” subject looks, in some sense,

7We obtain parameters for 86 of the 97 subjects. The remaining 11 subjects were excluded from AS’s

analysis, since preference parameters were not estimable. We can run our tests on the 11 excluded subjects:

7 of them pass the EDU and QHD tests.
8See the Online Appendix D for further comparisons between AS’s parametric model estimation and our

nonparametric revealed preference tests.
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as an EDU agent, even though the majority of subjects are inconsistent with EDU according

to our test. It is therefore possible that AS’s finding in favor of EDU in their aggregate

preference estimation reflects the choice behavior of such an average subject.

Choice pattern of EDU and non TSU subjects Next we look into subjects’ choice

patterns, focusing on the two main groups that the subjects fall into: those that are EDU

rational and those that fail the TSU test. We investigate three aspects. First, we study

the fraction of choices at the corner of the budget set. Second, we checked for violations of

wealth monotonicity. Finally, we checked for violations of WARP.

Corner vs. interior choice: For each subject, we calculate the proportion (out of 45

choices) of (i) interior allocations, (ii) corner allocations in which subjects spend all their

budget on a later reward (called “all tokens later”), and (iii) corner allocations in which

subjects spend all their budget on the earlier reward (called “all tokens sooner”).

We observe that all but two subjects who pass our EDU test never made interior al-

locations during the experiment, and frequently chose to allocate all tokens to the later

payments. 9 This point is made clear in Figure 3, which presents each subject’s choice pat-

tern, sorted by the results of our EDU and TSU tests. The fraction of interior allocations

increases by moving from EDU rational subjects (only 6.9% of them, 2 subjects, made at

least one interior allocation) to subjects who pass the TSU test but not the EDU test (66.7%

of them made at least one interior allocation); and it increases further when we look at sub-

jects who fail the TSU test (in fact, 48.9% of them chose interior allocations in at least half

of the trials).

The high incidence of corner solutions for EDU rational agents should be considered in

light of Proposition 1. EDU and QHD are observationally equivalent when a subject never

chooses date 0 consumption, and this happens for 82.8% (24 out of 29) of EDU rational

subjects. So, for the vast majority of the subjects that pass SAR-EDU, the theory would

have no power to distinguish between QHD and EDU.

Wealth Monotonicity: In AS’s experiments, eight out of the nine time frames contain

a wealth shift. We check wealth monotonicity, or normality of demand, using choices in those

time frames. Monotonicity requires that cτ and cτ+d should be weakly increasing in wealth,

holding the price rate constant in the eight time frames. Obviously, all of the EDU rational

subjects satisfy monotonicity. On the other hand, most of non TSU subjects (43 out of 47

subjects) violate monotonicity.10 So there is a simple explanation for why so many subject

9AS already remark on the incidence of of corner choices, and comment on how this phenomenon may

suggest that the curvature of utility is small and close to that of a linear function.
10See Chakraborty et al. (2014) for a similar argument.
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Figure 3: Individual choice patterns and class of rationality.

in AS’s experiment are classified as non-TSU. They exhibit violations of normal demand.

Eliminating the wealth-shift observations from the data does not, however, suffice to

make most subjects TSU rational. The choices of the non-TSU agents are inconsistent with

TSU for more complicated reasons than simply a violation of normal demand.

WARP: In AS’s experimental design, budget lines never cross at an interior point of the

budget. However, there are budgets that cross at the corner of consuming all later (when

“all later” corresponds to the same date; see Figure in the appendix) In particular, eight

out of the nine time frames contain 4 budgets that share the same “all later” allocation at

$20. In the remaining time frame (τ, d) = (7, 70), all 5 budgets share the same “all later”

allocation at $20. So we can test WARP by using such choices. We found that 7 out of 97

subjects violated WARP. None of these 7 pass the TSU test (of course).

Distance measure. We find that many subjects’ choices in the AS experiment are in-

consistent with EDU, QHD, and even TSU. A natural question is then “how far” are these

choices from EDU, QHD, or TSU rationality. Is a subject inconsistent with these models

because she made a few mistakes, or is her behavior severely inconsistent with the model?

The answer to these questions is that the violations we have detected are severe, and not

due to small mistakes.

More precisely, to answer these questions we quantify the distance of the dataset from

rationality by finding the largest subset of the dataset that passes the test under considera-
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tion. 11 In particular, we take the following steps. For each EDU non-rational (similarly for

QHD and TSU) subject’s dataset: (i) We randomly drop one observation from the dataset;

(ii) We implement the EDU test. If the dataset is EDU rational, we stop here. Otherwise, we

drop another observation randomly and test for EDU rationality again; and (iii) We repeat

this procedure until the subset becomes EDU rational.

Ideally, one would check all possible subsets of data, but such a calculation is obvi-

ously computationally infeasible. Our approach of sequentially choosing (at random) one

observation to drop is a rough approximation to the ideal measure. In particular, the con-

clusion can depend on the particular sequence chosen. To address this problem we iterate

the process 30, 000 times for each EDU non-rational subject. 12 Let nm be the number of

observations required to be dropped from the original dataset to make the subdata EDU

rational, in the m-th iteration. We define the distance of the dataset from EDU rationality

by d′EDU = min{n1, . . . , n30000}/45. By definition, the measure is between 0 and 1, and the

smaller d′EDU is the closer the dataset to be EDU rational. We also note that the mea-

sure is an upper bound on the distance we want to capture, due to the random nature and

path-dependence of our approach. 13

The left panel of Figure 4 shows the empirical CDFs of d′EDU along with d′QHD and d′TSU.

Note that the sample size is different for each line: d′EDU and d′QHD are calculated for the 68

EDU and QHD non-rational subjects, while d′TSU is calculated for the 47 TSU non-rational

subjects. We find that the median d′TSU is 0.111, implying that half of the 47 TSU non-

rational subjects become TSU rational by dropping at most 11% of the observations. For

EDU and QHD, on the other hand, more observations need to be dropped to rationalize the

data: median d′EDU and d′QHD are 0.378 and 0.356, respectively. This shows that subjects’

violation of EDU and QHD are not due to small mistakes. 14

In the right panel of Figure 4, we see a significant positive correlation (Pearson’s corre-

11This approach is motivated by Houtman and Maks (1985), who measure the distance to rationality by

finding the largest subset of observations that is consistent with GARP.
12We first performed 10,000 iterations and then prepared two additional sets, of 10,000 iterations each, as

a way to check robustness of our approach. One might worry that this sampling approach may be far from

the optimal exhaustive search over all subsets, but we increased the sample size very significantly without

detecting important changes. We refer Section E of the Online Appendix for more details.
13We should observe d′EDU ≥ d′QHD ≥ d′TSU as a logical consequence (if the subset of data, after dropping

n observations, is EDU rational, then the same subset is QHD rational, and so on). In reality, however, due

to sample variations in the stochastic algorithm we use to compute distances, we observe several instances

in which d′EDU ≥ d′QHD is violated. We correct for this by simply replacing d′QHD with d′EDU whenever such

a violation is observed.
14We also find that the distributions of d′EDU and d′QHD are almost indistinguishable (the null hypothesis

of equal distribution is not rejected by the two-sample Kolmogorov-Smirnov test).
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Figure 4: (Left) Empirical CDFs of distance measures of dataset from EDU, QHD, and TSU

rationality. (Right) Distance to EDU rationality and proportion of interior allocations in the

original dataset. The dotted line represents the slope of the least-squares fit.

lation coefficient ρ = 0.7239, p < 10−11) between the proportion of interior allocations and

the distance to EDU rationality. This correlation is in line with our speculation that the

affluence of corner allocations make our revealed preference tests less demanding.

Jittering analysis. Aside from distance, we considered the robustness of our results in

a different sense. We studied how “knife edge” the satisfaction of an axiom can be. Is it

possible that subjects have preferences in model M, but that they have slightly unstable

tastes? Could the violations of QHD be due to small instabilities in tastes? We employ a

“jittering” method akin to the one discussed in Andreoni et al. (2013a). 15

We perturb utility to produce data from a synthetic consumer with slightly unstable

tastes: more precisely, we assume a CRRA instantaneous utility with QHD of the form (7),

as in AS. Given a set of estimated parameters (α̂, δ̂, β̂), we added normal noise on one of the

parameters while fixing the other two, e.g., (α̂ + ε, δ̂, β̂) where ε ∼ N(0, σ2). We set σ, the

standard deviation of jittering, to equal the standard error of the corresponding parameter

estimate. We simulate choices with such “jittered” parameters, and then apply our test.

First, we take parameters and standard errors from the aggregate estimation in AS:

(α, δ, β) = (0.897, 0.999, 1.007), (se(α), se(δ), se(β)) = (0.0085, 1.8×10−4, 0.0058).16 For each

parameter, we simulate 1,000 jittered versions of parameters, predict choices, and perform

the QHD test. We observe 100% pass rate no matter which parameter is jittered, suggesting

15We appreciate insightful comments from Jim Andreoni and Ben Gillen on this subject.
16Table 3, Column (3) in Andreoni and Sprenger (2012).
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that our QHD test is robust to small perturbations to the underlying preference parameters.

Secondly, we perform the same exercise using AS’s individual parameter estimates and

standard errors, restricting our attention to those subjects who pass our QHD test (and

whose parameters are estimable by AS). For each subject and each parameter, we draw

100 jittered versions of the parameter using estimated standard errors, predict choices, and

perform the QHD test. This procedure gives us pass rates for QHD for each subject. We

observe 100% pass rate for 20 out of 22 subjects when α is jittered, all 22 subjects when δ is

jittered, and (iii) all 22 subjects when β is jittered. As in the case of the aggregate parameter

estimates, the QHD test is robust to perturbation of the underlying preference parameters.

We have performed a similar exercise while perturbing choices instead of utility parame-

ters. We prefer the method of perturbing utility because the story of slightly unstable tastes

is more appealing than the idea that agents “tremble” when making a choice. The conclusion

of this analysis is not as clearly in favor of the robustness of our tests, and it depends on

what one takes to be the relevant jittering standard deviations. The results are in Section F

of the Online Appendix.

Power of the tests. Finally, we discuss the power of our tests. It is well known that

tests in revealed preference theory can have low power when used on certain configurations

of budget sets. The low power of GARP is well documented. As a result, it is common

to assess the power of a test by comparing the pass rates (the fraction of choices that pass

the relevant revealed preference axiom) from purely random choices. 17 Here we report the

results from such an assessment using our tests and the experimental design of AS. We find

no evidence of low power.

We generate 10,000 datasets in which choices are made at random and uniformly dis-

tributed on the frontier of the budget set (Method 1 of Bronars, 1987). Datasets generated

in this way always fail our tests (Table 1 shows pass rates). Next, we apply the simple

bootstrap method to look at the power from an ex post perspective, as originally introduced

in Andreoni and Miller (2002). For each of 45 budget sets, we randomly pick one choice from

the set of choices observed in the entire experiment (i.e., 97 observations for each budget).

We generate 10,000 such datasets and apply our revealed preference tests. We again observe

high percentages of violation.

17The idea of using random choices as a benchmark is first applied to revealed preference theory by Bronars

(1987). This approach is the most popular in empirical application: see, among other studies, Adams et al.

(2014), Andreoni and Miller (2002), Beatty and Crawford (2011), Choi et al. (2007), Crawford (2010),

Dean and Martin (forthcoming), Fisman et al. (2007). For overview of power calculation, see discussions in

Andreoni et al. (2013a) and Crawford and De Rock (2014).
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Table 1: Power measures.

Sampling EDU PQHD QHD MTD GTD TSU

Uniform random 0.00 0.00 0.00 0.00 0.00 0.00

Simple Bootstrap 0.00 0.00 0.00 0.00 0.00 0.00

The conclusion is that our tests seem to have good power against the (admittedly crude)

alternative of random choices. This is a credit to the design of AS.

Afriat inequalities. It should be said that the empirical implementation of our test rests

on a set of Afriat inequalities, and not on explicitly checking the axioms. The Afriat in-

equalities are new to our paper, though (see Lemma 1), and different from the standard

approach to developing Afriat inequalities in the revealed preference literature. The new

form of Afriat inequalities may seem ex-post (now that we know them) like a minor idea,

but they were not ex-ante obvious. There are several papers (Crawford, 2010; Demuynck

and Verriest, 2013; Adams et al., 2014) in the revealed preference literature that formulate

the inequalities in the traditional fashion. The system of inequalities is then not linear (and

cannot be linearized like our system can). As a result, these authors resort to a grid search

over a finite set of values of the discount factor. The grid search can be a real limitation:

We have examples in which our test gives higher pass rates for EDU than what the authors’

methods give. Presumably the reason is that the grid does not allow one to conclude with

certainty that an agent is not EDU rational, as it does not take full advantage of δ having

arbitrary values in (0, 1]. So, in a sense, one of the key innovations of our paper are the

new Afriat inequalities. These are crucial for both the theoretical results and the empirical

implementation.18

6. Proof of Theorem 1

We present the proof of the equivalence between EDU rationality and SAR-EDU.

The proof is based on using the first-order conditions for maximizing a utility with the

EDU over a budget set. Our first lemma ensures that we can without loss of generality

restrict attention to first order conditions. The proof of the lemma is the same as that of

Lemma 3 in Echenique and Saito (forthcoming) with the changes of T to S and {δt}t∈T to

{µs}s∈S, where µs is the subjective probability that state s realizes.

18The other key theoretical insight is the approximation result in Lemma 6.
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We use the following notation in the proofs:

X = {xk
t : k ∈ K, t ∈ T}.

Lemma 1. Let (xk, pk)Kk=1 be a dataset. The following statements are equivalent:

1. (xk, pk)Kk=1 is EDU rational.

2. There are strictly positive numbers vkt , λ
k, and δ ∈ (0, 1], for t = 1, . . . , T and k =

1, . . . , K, such that

δtvkt = λkpkt , xk
t > xk′

t′ =⇒ vkt ≤ vk
′

t′ .

Proof. We shall prove that (1) implies (2). Let (xk, pk)Kk=1 be EDU rational. Let δ ∈ (0, 1]

and u : R+ → R be as in the definition of EDU rational data. Then (see, for example,

Theorem 28.3 of Rockafellar, 1997), there are numbers λk ≥ 0, k = 1, . . . , K such that if we

let

vkt =
λkpkt
δt

then vkt ∈ ∂u(xk
t ) if x

k
t > 0, and there is w ∈ ∂u(xk

t ) with vkt ≥ w if xk
t = 0. In fact, it is easy

to see that λk > 0, and therefore vkt > 0.

By the concavity of u, and the consequent monotonicity of ∂u(xk
t ) (see Theorem 24.8

of Rockafellar, 1997), if xk
t > xk′

t′ > 0, vkt ∈ ∂u(xk
t ), and vk

′

t′ ∈ ∂u(xk′

t′ ), then vkt ≤ vk
′

t′ . If

xk
t > xk′

t′ = 0, then w ∈ ∂u(xk′

t′ ) with vk
′

t′ ≥ w. So vkt ≤ w ≤ vk
′

t′ .

In second place, we show that (2) implies (1). Suppose that the numbers vkt , λ
k, δ, for

t ∈ T and k ∈ K, are as in (2).

Enumerate the elements in X in increasing order:

y1 < y2 < . . . < yn.

Let

y
i
= min{vkt : xk

t = yi} and ȳi = max{vkt : xk
t = yi}.

Let zi = (yi + yi+1)/2, i = 1, . . . , n− 1; z0 = 0, and zn = yn + 1. Let f be a correspondence

defined as follows:

f(z) =





[y
i
, ȳi] if z = yi,

max{ȳi : z < yi} if yn > z and ∀i(z 6= yi),

y
n
/2 if yn < z.

24



By assumption of the numbers vkt , we have that, when y < y′, v ∈ f(y) and v′ ∈ f(y′), then

v ≤ v′. Then the correspondence f is monotone and there is a concave function u for which

∂u = f (Theorem 24.8 of Rockafellar, 1997). Given that vkt > 0 all the elements in the range

of f are positive, and therefore u is strictly increasing.

Finally, for all (k, t), λkpkt /δ
t = vkt ∈ ∂u(vkt ) and therefore the first-order conditions to a

maximum choice of x hold at xk
t . Since u is concave the first-order conditions are sufficient.

The dataset is therefore EDU rational.

6.1. Necessity

Lemma 2. If a dataset (xk, pk)Kk=1 is EDU rational, then it satisfies SAR-EDU.

Proof. Let (xk, pk)Kk=1 be EDU rational, and let δ ∈ (0, 1] and u : R+ → R be as in the

definition of EDU rational. By Lemma 1, there exists a strictly positive solution vkt , λ
k, δ to

the system in Statement (2) of Lemma 1 with vkt ∈ ∂u(xk
t ) when xk

t > 0, and vkt ≥ w ∈ ∂u(xk
t )

when xk
t = 0.

Let (xki
ti
, x

k′
i

t′
i

)ni=1 be a sequence satisfying the three conditions in SAR-EDU. Then xki
ti
>

x
k′
i

t′
i

. Suppose that x
k′
i

t′
i

> 0. Then, vkiti ∈ ∂u(xki
ti
) and v

k′
i

t′
i

∈ ∂u(x
k′
i

t′
i

). By the concavity of

u, it follows that λkiδt
′
ipkiti ≤ λk′

iδtip
k′
i

t′
i

(see Theorem 24.8 of Rockafellar, 1997). Similarly, if

x
k′
i

t′
i

= 0, then vkiti ∈ ∂u(xki
ti
) and v

k′
i

t′
i

≥ w ∈ ∂u(x
k′
i

t′
i

). So λkiδt
′
ipkiti ≤ λk′

iδtip
k′
i

t′
i

Therefore,

1 ≥

n∏

i=1

λkiδt
′
ipkiti

λk′
iδtip

k′
i

t′
i

=
1

δ(
∑

ti−
∑

t′
i
)

n∏

i=1

pkiti

p
k′
i

t′
i

≥

n∏

i=1

pkiti

p
k′
i

t′
i

,

as the sequence satisfies (2) and (3) of SAR-EDU; and hence
∑

ti ≥
∑

t′i and the numbers λk

appear the same number of times in the denominator as in the numerator of this product.

6.2. Theorem of the Alternative

To prove sufficiency, we shall use the following lemma, which is a version of the Theorem of

the Alternative. This is Theorem 1.6.1 in Stoer and Witzgall (1970). We shall use it here in

the cases where F is either the real or the rational numbers.

Lemma 3. Let A be an m × n matrix, B be an l × n matrix, and E be an r × n matrix.

Suppose that the entries of the matrices A, B, and E belong the a commutative ordered field

F. Exactly one of the following alternatives is true.

1. There is u ∈ Fn such that A · u = 0, B · u ≥ 0, E · u ≫ 0.
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2. There is θ ∈ Fr, η ∈ Fl, and π ∈ Fm such that θ · A + η · B + π · E = 0; π > 0 and

η ≥ 0.

We also use the following lemma, which follows from Lemma 3 (See Border (2013) or

Chambers and Echenique (2014)):

Lemma 4. Let A be an m × n matrix, B be an l × n matrix, and E be an r × n matrix.

Suppose that the entries of the matrices A, B, and E are rational numbers. Exactly one of

the following alternatives is true.

1. There is u ∈ Rn such that A · u = 0, B · u ≥ 0, and E · u ≫ 0.

2. There is θ ∈ Qr, η ∈ Ql, and π ∈ Qm such that θ · A + η · B + π · E = 0; π > 0 and

η ≥ 0.

6.3. Sufficiency

We proceed to prove the sufficiency direction. An outline of the argument is as follows. We

know from Lemma 1 that it suffices to find a solution to the Afriat inequalities (actually first

order conditions), written as statement (2) in the lemma. So we set up the problem to find

a solution to a system of linear inequalities obtained from using logarithms to linearize the

Afriat inequalities in Lemma 1.

Lemma 5 establishes that SAR-EDU is sufficient for SEU rationality when the logarithms

of the prices are rational numbers. The role of rational logarithms comes from our use of a

version the theorem of the alternative (see Lemma 4).

The next step in the proof (Lemma 6) establishes that we can approximate any dataset

satisfying SAR-EDU with a dataset for which the logarithms of prices are rational, and for

which SAR-EDU is satisfied. This step is crucial, and somewhat delicate.19

Finally, Lemma 7 establishes the result by using another version of the theorem of the

alternative, stated as Lemma 3 above.

The statement of the lemmas follow. The rest of the paper is devoted to the proof of

these lemmas.

Lemma 5. Let data (xk, pk)kk=1 satisfy SAR-EDU. Suppose that log(pkt ) ∈ Q for all k and

t. Then there are numbers vkt , λ
k, δ, for t ∈ T and k = 1, . . . , K satisfying (2) in Lemma 1.

19One might have tried to obtain a solution to the Afriat inequalities for “perturbed” systems (with prices

that are rational after taking logs), and then considered the limit. This does not work because the solutions

to our systems of inequalities are in a non-compact space. It is not clear how to establish that the limits

exist and are well-behaved. Lemma 6 avoids the problem.
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Lemma 6. Let data (xk, pk)kk=1 satisfy SAR-EDU. Then for all positive numbers ε, there

exists qkt ∈ [pkt −ε, pkt ] for all t ∈ T and k ∈ K such that log qkt ∈ Q and the dataset (xk, qk)kk=1

satisfy SAR-EDU.

Lemma 7. Let data (xk, pk)kk=1 satisfy SAR-EDU. Then there are numbers vkt , λ
k, δ, for

t ∈ T and k = 1, . . . , K satisfying (2) in Lemma 1.

6.4. Proof of Lemma 5

We linearize the equation in System (2) of Lemma 1. The result is:

log v(xk
t ) + t log δ − log λk − log pkt = 0, (8)

x > x′ =⇒ log v(x′) ≥ log v(x), (9)

log δ ≤ 0. (10)

In the system comprised by (8), (9), and (10), the unknowns are the real numbers log vkt ,

log δ, k ∈ K and t ∈ T .

First, we are going to write the system of inequalities (8) and (9) in matrix form. We

shall define a matrix A such that there are positive numbers vkt , λ
k, δ the logs of which

satisfy Equation (8) if and only if there is a solution u ∈ RK×(T+1)+1+K+1 to the system of

equations

A · u = 0,

and for which the last component of u is strictly positive.

Let A be a matrix with K × (T + 1) + 1 +K + 1 columns, defined as follows: We have

one row for every pair (k, t); one column for every pair (k, t); one column for each k; and two

additional columns. Organize the columns so that we first have the K× (T +1) columns for

the pairs (k, t); then one of the single columns mentioned in last place, which we shall refer

to as the δ-column; then K columns (one for each k); and finally one last column. In the

row corresponding to (k, t) the matrix has zeroes everywhere with the following exceptions:

it has a 1 in the column for (k, t); it has a t in the δ column; it has a −1 in the column for

k; and − log pkt in the very last column.

Thus, matrix A looks as follows:




(1,0) ··· (k,t) ··· (K,T ) δ 1 ··· k ··· K p

...
...

...
...

...
...

...
...

...

(k,t) 0 · · · 1 · · · 0 t 0 · · · −1 · · · 0 − log pkt
...

...
...

...
...

...
...

...
...



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Consider the system A · u = 0. If there are numbers solving Equation (8), then these

define a solution u ∈ RK×(T+1)+1+K+1 for which the last component is 1. If, on the other

hand, there is a solution u ∈ RK×(T+1)+1+K+1 to the system A · u = 0 in which the last

component is strictly positive, then by dividing through by the last component of u we

obtain numbers that solve Equation (8).

In second place, we write the system of inequalities (9) and (10) in matrix form. Let B

be a matrix with K × (T + 1) + 1+K + 1 columns. Define B as follows: One row for every

pair (k, t) and (k′, t′) with xk
t > xk′

t′ ; in the row corresponding to (k, t) and (k′, t′) we have

zeroes everywhere with the exception of a −1 in the column for (k, t) and a 1 in the column

for (k′, t′) . These rows captures the inequality (9). Finally, in the last row, we have zero

everywhere with the exception of a −1 at K × (T + 1) + 1th column. We shall refer to this

last row as the δ-row, which capturing the inequality (10).

In third place, we have a matrix E that captures the requirement that the last component

of a solution be strictly positive. The matrix E has a single row and K× (T +1)+1+K+1

columns. It has zeroes everywhere except for 1 in the last column.

To sum up, there is a solution to system (8), (9) and (10) if and only if there is a vector

u ∈ RK×(T+1)+1+K+1 that solves the system of equations and linear inequalities

(S1) : A · u = 0, B · u ≥ 0, E · u ≫ 0.

The entries of A, B, and E are integer numbers, with the exception of the last column of

A. Under the hypothesis of the lemma we are proving, the last column consists of rational

numbers.

By Lemma 4, then, there is such a solution u to S1 if and only if there is no rational

vector (θ, η, π) that solves the system of equations and linear inequalities

(S2) : θ ·A + η · B + π ·E = 0, η ≥ 0, π > 0.

In the following, we shall prove that the non-existence of a solution u implies that the

data must violate SAR-EDU. Suppose then that there is no solution u and let (θ, η, π) be a

rational vector as above, solving system S2.

By multiplying (θ, η, π) by any positive integer we obtain new vectors that solve S2, so

we can take (θ, η, π) to be integer vectors.

Henceforth, we use the following notational convention: For a matrix D with K × (T +

1) + 1 + K + 1 columns, write D1 for the submatrix of D corresponding to the first K ×

(T + 1) columns; let D2 be the submatrix corresponding to the following one column (i.e.,

δ-column); D3 correspond to the next K columns; and D4 to the last column. Thus, D =

[D1 D2 D3 D4 ].
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Claim 1. (i) θ·A1+η ·B1 = 0; (ii) θ·A2+η ·B2 = 0; (iii) θ·A3 = 0; and (iv) θ·A4+π ·E4 = 0.

Proof. Since θ · A + η · B + π · E = 0, then θ · Ai + η · Bi + π · Ei = 0 for all i = 1, . . . , 4.

Moreover, since B3, B4, E1, E2, and E3 are zero matrices, we obtain the claim. �

For convenience, we transform the matrices A and B using θ and η. We transform

the matrices A, and B as follows. Let us define a matrix A∗ from A by letting A∗ have

K × (T + 1)+ 1+K + 1 columns that consists of the rows as follows: for each row in r ∈ A

(i) have θr copies of the rth row when θr > 0; (ii) omit row r when θr = 0; and (iii) have θr

copies of the rth row multiplied by −1 when θr < 0.

We refer to rows that are copies of some r in A with θr > 0 as original rows. We refer to

rows that are copies of some r in A with θr < 0 as converted rows.

Similarly, we define the matrix B∗ from B by including the same columns as B and ηr

copies of each row (and thus omitting row r when ηr = 0; recall that ηr ≥ 0 for all r).

Claim 2. For any (k, t), all the entries in the column for (k, t) in A∗
1 are of the same sign.

Proof. By definition of A, the column for (k, t) will have zero in all its entries with the

exception of the row for (k, t). In A∗, for each (k, t), there are three mutually exclusive

possibilities: the row for (k, t) in A can (i) not appear in A∗, (ii) it can appear as original,

or (iii) it can appear as converted. This shows the claim.

Claim 3. There exists a sequence of pairs (xki
ti
, x

k′
i

t′
i

)n
∗

i=1 that satisfies Condition (1) in SAR-

EDU.

Proof. We define such a sequence by induction. Let B1 = B∗. Given Bi, define Bi+1 as

follows.

Denote by >i the binary relation on X defined by z >i z′ if z > z′ and there is at least

one pair (k, t) and (k′, t′) for which (i) xk
t > xk′

t′ ; (ii) z = xk
t and z′ = xk′

t′ ; and (iii) the row

corresponding xk
t > xk′

t′ in B has strictly positive weight in η.

The binary relation >i cannot exhibit cycles because >i⊆>. There is therefore at least

one sequence zi1, . . . z
i
Li

in X such that zij >i zij+1 for all j = 1, . . . , Li − 1 and with the

property that there is no z ∈ X with z >i zi1 or ziLi
>i z.

Observe that Bi has at least one row corresponding to zij >
i zij+1 for all j = 1, . . . , Li−1.

Let the matrix Bi+1 be defined as the matrix obtained from Bi by omitting one copy of the

row corresponding to zij > zij+1, for all j = 1, . . . Li − 1.

The matrix Bi+1 has strictly fewer rows than Bi. There is therefore n∗ for which Bn∗+1

either has no more rows, or Bn∗+1
1 has only zeroes in all its entries (its rows are copies of the

δ-row which has only zeroes in its first K × (T + 1) columns).
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Define a sequence of pairs (xki
ti
, x

k′
i

t′
i

)n
∗

i=1 by letting xki
ti
= zi1 and x

k′
i

t′
i

= ziLi
. Note that, as a

result, xki
ti
> x

k′
i

t′
i

for all i. Therefore the sequence of pairs (xki
ti
, x

k′
i

t′
i

)n
∗

i=1 satisfies Condition (1)

in SAR-EDU. �

We shall use the sequence of pairs (xki
ti
, x

k′
i

t′
i

)n
∗

i=1 as our candidate violation of SAR-EDU.

Consider a sequence of matrices Ai, i = 1, . . . , n∗ defined as follows. Let A1 = A∗,

B1 = B∗, and C1 =

[
A1

B1

]
. Observe that the rows of C1 add to the null vector by Claim 1.

We shall proceed by induction. Suppose that Ai has been defined, and that the rows of

C i =

[
Ai

Bi

]
add to the null vector.

Recall the definition of the sequence

xki
ti
= zi1 > . . . > ziLi

= x
k′
i

t′
i

.

There is no z ∈ X with z >i zi1 or ziLi
>i z, so in order for the rows of C i to add to zero

there must be a −1 in Ai
1 in the column corresponding to (k′

i, t
′
i) and a 1 in Ai

1 in the column

corresponding to (ki, ti). Let ri be a row in Ai corresponding to (ki, ti), and r′i be a row

corresponding to (k′
i, t

′
i). The existence of a −1 in Ai

1 in the column corresponding to (k′
i, t

′
i),

and a 1 in Ai
1 in the column corresponding to (ki, ti), ensures that ri and r′i exist. Note that

the row r′i is a converted row while ri is original. Let Ai+1 be defined from Ai by deleting

the two rows, ri and r′i.

Claim 4. The sum of ri, r′i, and the rows of Bi which are deleted when forming Bi+1

(corresponding to the pairs zij > zij+1, j = 1, . . . , Li − 1) add to the null vector.

Proof. Recall that zij >
i zij+1 for all j = 1, . . . , Li−1. So when we add the rows corresponding

to zij >
i zij+1 and zij+1 >

i zij+2, then the entries in the column for (k, t) with xk
t = zij+1 cancel

out and the sum is zero in that entry. Thus, when we add the rows of Bi that are not in

Bi+1 we obtain a vector that is 0 everywhere except the columns corresponding to zi1 and

ziLi
. This vector cancels out with ri + r′i, by definition of ri and r′i. �

Claim 5. The matrix A∗ can be partitioned into pairs (ri, r
′
i), in which the rows r′i are

converted and the rows ri are original.

Proof. For each i, Ai+1 differs from Ai in that the rows ri and r′i are removed from Ai to

form Ai+1. We shall prove that A∗ is composed of the 2n∗ rows ri, r
′
i.
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First note that since the rows of C i add up to the null vector, and Ai+1 and Bi+1 are

obtained from Ai and Bi by removing a collection of rows that add up to zero, then the rows

of C i+1 must add up to zero as well.

By way of contradiction, suppose that there exist rows left after removing rn∗ and r′n∗ .

Then, by the argument above, the rows of the matrix Cn∗+1 must add to the null vector. If

there are rows left, then the matrix Cn∗+1 is well defined.

By definition of the sequence Bi, however, Bn∗+1 has all its entries equal to zero, or has

no rows. Hence, the rows remaining in An∗+1
1 must add up to zero. By Claim 2, the entries

of a column (k, t) of A∗ are always of the same sign. Moreover, each row of A∗ has a non-zero

element in the first K × S columns. Therefore, no subset of the columns of A∗
1 can sum to

the null vector. �

Claim 6. (i) For any k and t, if (ki, ti) = (k, t) for some i, then the row ri corresponding

to (k, t) appears as original in A∗. Similarly, if (k′
i, t

′
i) = (k′, t′) for some i, then the row

corresponding to (k, t) appears converted in A∗.

(ii) If the row corresponding to (k, t) appears as original in A∗, then there is some i with

(ki, ti) = (k, t). Similarly, if the row corresponding to (k, t) appears converted in A∗, then

there is i with (k′
i, t

′
i) = (k, t).

Proof. (i) is true by definition of (xki
ti
, x

k′
i

t′
i

). (ii) is immediate from Claim 5 because if the row

corresponding to (k, t) appears original in A∗ then it equals ri for some i, and then xk
t = xki

ti
.

Similarly when the row appears converted. �

Claim 7. The sequence (xki
ti
, x

k′
i

t′
i

)n
∗

i=1 satisfies Condition (2) and (3) in SAR-EDU.

Proof. We first establish Condition (2). Note that A∗
2 is a vector, and in row r the entry

of A∗
2 is as follows. There must be a raw (k, t) in A of which the raw r is a copy. Hence,

the component at the row r of A∗
2 is t if r is original and −t if r is converted. Now, by the

construction of the sequence when r appears as original there is some i for which t = ti,

when r appears as converted there is some i for which t = t′i. So for each r there is i such

that (A∗
4)r is either ti or −t′i. By Claim 1 (ii), θ · A2 + η · B2 = 0. Recall that θ · A2 equals

the sum of the rows of A∗
2. Moreover, B2 is a vector that has zeroes everywhere except a

−1 in the δ row (i.e., K × (T + 1) + 1th row). Therefore, the sum of the rows of A∗
2 equals

ηK×(T+1)+1, where ηK×(T+1)+1 is the K × (T + 1) + 1th element of η. Since η ≥ 0, therefore,
∑n∗

i=1 ti ≥
∑n∗

i=1 t
′
i, and Condition (2) in the axiom is satisfied.
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Now we turn to (3). By Claim 1 (iii), the rows of A∗
3 add up to zero. Therefore, the

number of times that k appears in an original row equals the number of times that it appears

in a converted row. By Claim 6, then, the number of times k appears as ki equals the number

of times it appears as k′
i. Therefore, Condition (3) in the axiom is satisfied. �

Finally, in the following, we show that
∏n∗

i=1 p
ki
ti
/p

k′
i

t′
i

> 1, which finishes the proof of

Lemma 5 as the sequence (xki
ti
, x

k′
i

t′
i

)n
∗

i=1 would then exhibit a violation of SAR-EDU.

Claim 8.
∏n∗

i=1 p
ki
ti
/p

k′
i

t′
i

> 1.

Proof. By Claim 1 (iv) and the fact that the submatrix E4 equals the scalar 1, we obtain

0 = θ · A4 + πE4 =

(
n∗∑

i=1

(ri + r′i)

)

4

+ π,

where (
∑n∗

i=1(ri+r′i))4 is the (scalar) sum of the entries of A∗
4. Recall that − log pkiti is the last

entry of row ri and that log p
k′
i

t′
i

is the last entry of row r′i, as r
′
i is converted and ri original.

Therefore the sum of the rows of A∗
4 are

∑n∗

i=1 log(p
k′
i

t′
i

/pkiti ). Then,

n∗∑

i=1

log(p
k′
i

t′
i

/pkiti ) = −π < 0.

Thus
∏n∗

i=1 p
ki
ti
/p

k′
i

t′
i

> 1. �

6.5. Proof of Lemma 6

For each sequence σ = (xki
ti
, x

k′
i

t′
i

)ni=1 that satisfies conditions (1), (2), and (3) in SAR-EDU,

we define a vector tσ ∈ N(K×T )2 as follows. To make the notation easier, we identify the pair

(xki
ti
, x

k′
i

t′
i

) with ((ki, ti), (k
′
i, t

′
i)). Let tσ((k, t), (k

′, t′)) be the number of times that the pair

(xk
t , x

k′

t′ ) appears in the sequence σ. One can then describe the satisfaction of SAR-EDU by

means of the vectors tσ. Define

T =
{
tσ ∈ N(K×T )2 : σ satisfies Conditions (1), (2), (3) in SAR-EDU

}
.

Observe that the set T depends only on (xk)Kk=1 in the dataset (xk, pk)Kk=1. It does not depend

on prices.

For each ((k, t), (k′, t′)) ∈ (K × T )2 such that xk
t > xk′

t′ , define

γ̂((k, t), (k′, t′)) = log

(
pkt
pk

′

t′

)
,
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and define γ̂((k, t), (k′, t′)) = 0 when xk
t ≤ xk′

t′ . Then, γ̂ is a (KT )2-dimensional real-valued

vector. If σ = (xki
ti
, x

k′
i

t′
i

)ni=1, then

γ̂ · tσ =
∑

((k,t),(k′,t′))∈(K×T )2

γ̂((k, t), (k′, t′))tσ((k, t), (k
′, t′)) = log




n∏

i=1

pkiti

p
k′
i

t′
i


 .

So the data satisfy SAR-EDU if and only if γ̂ · t ≤ 0 for all t ∈ T .

Enumerate the elements in X in increasing order:

y1 < y2 < · · · < yN .

Fix an arbitrary ξ ∈ (0, 1).

We shall construct by induction a sequence (εkt (n)) for n = 1, . . . , N , where εkt (n) is

defined for all (k, t) with xk
t = yn.

By the denseness of the rational numbers, and the continuity of the exponential function,

for each (k, t) such that xk
t = y1, there exists a positive number εkt (1) such that log(pkt ε

k
t (1)) ∈

Q and ξ < εkt (1) < 1. Let ε(1) = min{εkt (1) : x
k
t = y1}.

In second place, for each (k, t) such that xk
t = y2, there exists a positive εkt (2) such that

log(pkt ε
k
t (2)) ∈ Q and ξ < εkt (2) < ε(1). Let ε(2) = min{εkt (2) : x

k
t = y2}.

In third place, and reasoning by induction, suppose that ε(n) has been defined and that

ξ < ε(n). For each (k, t) such that xk
t = yn+1, let ε

k
t (n+1) > 0 be such that log(pkt ε

k
t (n+1)) ∈

Q, and ξ < εkt (n + 1) < ε(n). Let ε(n+ 1) = min{εkt (n + 1) : xk
t = yn}.

This defines the sequence (εkt (n)) by induction. Note that εkt (n + 1)/ε(n) < 1 for all n.

Let ξ̄ < 1 be such that εkt (n+ 1)/ε(n) < ξ̄.

For each k ∈ K and t ∈ T , let qkt = pkt ε
k
t (n), where n is such that xk

t = yn. We claim that

the data (xk, qk)Kk=1 satisfy SAR-EDU. Let γ∗ be defined from (qk)Kk=1 in the same manner

as γ̂ was defined from (pk)Kk=1.

For each pair ((k, t), (k′, t′)) with xk
t > xk′

t′ , if n and m are such that xk
t = yn and xk′

t′ = ym,

then n > m. By the definition of ε,

εkt (n)

εk
′

t′ (m)
<

εkt (n)

ε(m)
< ξ̄ < 1.

Hence,

γ∗((k, t), (k′, t′)) = log
pkt ε

k
t (n)

pk
′

t′ ε
k′

t′ (m)
< log

pkt
pk

′

t′

+ log ξ̄ < log
pkt
pk

′

t′

= γ̂(xk
s , x

k′

t′ ).

Thus, for all t ∈ T , γ∗ · t ≤ γ̂ · t ≤ 0, as t ≥ 0 and the data (xk, pk)Kk=1 satisfy SAR-EDU.

Thus the data (xk, qk)Kk=1 satisfy SAR-EDU. Finally, note that ξ < εkt (n) < 1 for all n and

each k ∈ K, t ∈ T . So that by choosing ξ close enough to 1 we can take the prices (qk) to be

as close to (pk) as desired.
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6.6. Proof of Lemma 7

Consider the system comprised by (8), (9), and (10) in the proof of Lemma 5. Let A, B, and

E be constructed from the data as in the proof of Lemma 5. The difference with respect to

Lemma 5 is that now the entries of A4 may not be rational. Note that the entries of E, B,

and Ai, i = 1, 2, 3 are rational.

Suppose, towards a contradiction, that there is no solution to the system comprised

by (8), (9), and (10). Then, by the argument in the proof of Lemma 5 there is no solution

to System S1. Lemma 3 with F = R implies that there is a real vector (θ, η, π) such that

θ · A+ η · B + π · E = 0 and η ≥ 0, π > 0.

Recall that B4 = 0 and E4 = 1, so we obtain that θ · A4 + π = 0.

Let (qk)Kk=1 be vectors of prices such that the dataset (xk, qk)Kk=1 satisfies SAR-EDU and

log qkt ∈ Q for all k and s. (Such (qk)Kk=1 exists by Lemma 6.) Construct matrices A′, B′, and

E ′ from this dataset in the same way as A, B, and E is constructed in the proof of Lemma 5.

Note that only the prices are different in (xk, qk) compared to (xk, pk). So E ′ = E, B′ = B

and A′
i = Ai for i = 1, 2, 3. Since only prices qk are different in this dataset, only A′

4 may be

different from A4.

By Lemma 6, we can choose prices qk such that |θ · A′
4 − θ · A4| < π/2. We have shown

that θ ·A4 = −π, so the choice of prices qk guarantees that θ ·A′
4 < 0. Let π′ = −θ ·A′

4 > 0.

Note that θ ·A′
i+η ·B′

i+π′Ei = 0 for i = 1, 2, 3, as (θ, η, π) solves system S2 for matrices

A, B and E, and A′
i = Ai, B

′
i = Bi and Ei = 0 for i = 1, 2, 3. Finally, B4 = 0 so

θ ·A′
4 + η · B′

4 + π′E4 = θ · A′
4 + π′ = 0.

We also have that η ≥ 0 and π′ > 0. Therefore θ, η, and π′ constitute a solution S2 for

matrices A′, B′, and E ′.

Lemma 3 then implies that there is no solution to S1 for matrices A′, B′, and E ′.

So there is no solution to the system comprised by (8), (9), and (10) in the proof of

Lemma 5. However, this contradicts Lemma 5 because the data (xk, qk) satisfies SAR-EDU

and log qkt ∈ Q for all k = 1, . . .K and t = 1, . . . , T .

7. Proof of Theorem 2

The proofs for QHD and PQHD are similar, so we give a detailed proof for PQHD and then

explain how the proof for QHD is different.

Lemma 8. Let (xk, pk)Kk=1 be a dataset. The following statements are equivalent:
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1. (xk, pk)Kk=1 is PQHD rational.

2. There are strictly positive numbers vkt , λ
k, β ≤ 1, and δ ∈ (0, 1], for t = 0, . . . , T and

k = 1, . . . , K, such that

vkt = λkpkt if t = 0, βδtvkt = λkpkt if t > 0, and xk
t > xk′

t′ =⇒ vkt ≤ vk
′

t′ .

The proof of Lemma 8 is very similar to the proof of Lemma 1 and omitted.

7.1. Necessity

Lemma 9. If a dataset (xk, pk)Kk=1 is PQHD rational, then it satisfies SAR-PQHD.

Proof. Let (xk, pk)Kk=1 be PQHD rational, and let β ≤ 1, δ ∈ (0, 1], and u : R+ → R be as

in the definition of PQHD rational. By Lemma 8, there exists a strictly positive solution vkt ,

λk, β, δ to the system in Statement (2) of Lemma 8 with vkt ∈ ∂u(xk
t ) when xk

t > 0, and

vkt ≥ w ∈ ∂u(xk
t ) when xk

t = 0. Moreover, vkt = λkpkt /D(t), where D(t) = 1 if t = 0 and

D(t) = βδt if t > 0.

Let (xki
ti
, x

k′
i

t′
i

)ni=1 be a sequence satisfying the four conditions in SAR-PQHD. Then xki
ti
>

x
k′
i

t′
i

. Suppose that x
k′
i

t′
i

> 0. Then, vkiti ∈ ∂u(xki
ti
) and v

k′
i

t′
i

∈ ∂u(x
k′
i

t′
i

). By the concavity of u, it

follows that vkiti ≤ v
k′
i

t′
i

.Similarly, if x
k′
i

t′
i

= 0, then vkiti ∈ ∂u(xki
ti
) and v

k′
i

t′
i

≥ w ∈ ∂u(x
k′
i

t′
i

), so that

vkiti ≤ v
k′
i

t′
i

. Therefore,

1 ≥

n∏

i=1

λkiD(t′i)p
ki
ti

λk′
iD(ti)p

k′
i

t′
i

=

n∏

i=1

D(t′i)p
ki
ti

D(ti)p
k′
i

t′
i

=
β#{i:t′

i
>0}−#{i:ti>0}

δ(
∑

ti−
∑

t′
i
)

n∏

i=1

pkiti

p
k′
i

t′
i

≥

n∏

i=1

pkiti

p
k′
i

t′
i

,

where the first equality holds by (4) of SAR-PQHD; and the numbers λk appear the same

number of times in the denominator as in the numerator of this product. Moreover, the last

inequality holds by (2) and (3) of SAR-PQHD.

7.2. Sufficiency

Lemma 10. Let data (xk, pk)kk=1 satisfy SAR-PQHD. Suppose that log(pkt ) ∈ Q for all k

and t. Then there are numbers vkt , λ
k, β, δ, for t ∈ T and k ∈ K satisfying (2) in Lemma 8.

Lemma 11. Let data (xk, pk)kk=1 satisfy SAR-PQHD. Then for all positive numbers ε, there

exists qkt ∈ [pkt −ε, pkt ] for all t ∈ T and k ∈ K such that log qkt ∈ Q and the dataset (xk, qk)kk=1

satisfy SAR-PQHD.
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Lemma 12. Let data (xk, pk)kk=1 satisfy SAR-PQHD. Then there are numbers vkt , λ
k, β, δ,

for t ∈ T and k ∈ K satisfying (2) in Lemma 8.

Lemma 11 and 12 hold as in the proof for Theorem 1.

7.3. Proof of Lemma 10

We linearize the equation in System (2) of Lemma 8. The result is:

log v(xk
t )− log λk − log pkt = 0 if t = 0, (11)

log v(xk
t ) + log β + t log δ − log λk − log pkt = 0 if t > 0, (12)

x > x′ =⇒ log v(x′) ≥ log v(x), (13)

log β ≥ 0, (14)

log δ ≤ 0. (15)

In the system comprised by (11), (12) (13), (14) and (15), the unknowns are the real numbers

log β, log δ, log λk, and log vkt for all k = 1, . . . , K and t = 1, . . . , T .

First, we are going to write the system of inequalities from (11) to (15) in matrix form.

We shall define a matrix A such that there are positive numbers vkt , λ
k, β, δ the logs of

which satisfy Equations (11) and (12) if and only if there is a solution u ∈ RK×(T+1)+2+K+1

to the system of equations

A · u = 0,

and for which the last component of u is strictly positive.

Let A be a matrix with K× (T +1) rows and K× (T +1)+2+K+1 columns, defined as

follows: We have one row for every pair (k, t); one column for every pair (k, t); two columns

for each k; and two additional columns. Organize the columns so that we first have the

K × (T + 1) columns for the pairs (k, t); then two columns, which we shall refer to as the

β-column and δ-column, respectively; then K columns (one for each k); and finally one

last column. In the row corresponding to (k, t) the matrix has zeroes everywhere with the

following exceptions: it has a 1 in the column for (k, t); it has a 1 if t > 0 and it has a 0

if t = 0 in the β-column; it has a t in the δ-column; it has a −1 in the column for k; and

− log pkt in the very last column.
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Thus, matrix A looks as follows:




(1,1) ··· (k,t) (k,t′) ··· (K,T ) β δ 1 ··· k ··· K p

...
...

...
...

...
...

...
...

...
...

...

(k,t=0) 0 · · · 1 0 · · · 0 0 t 0 · · · −1 · · · 0 − log pkt

(k,t′>0) 0 · · · 0 1 · · · 0 1 t′ 0 · · · −1 · · · 0 − log pkt′
...

...
...

...
...

...
...

...
...

...
...




Consider the system A · u = 0. If there are numbers solving Equations (11) and (12),

then these define a solution u ∈ RK×(T+1)+2+K+1 for which the last component is 1. If, on

the other hand, there is a solution u ∈ RK×(T+1)+2+K+1 to the system A ·u = 0 in which the

last component is strictly positive, then by dividing through by the last component of u we

obtain numbers that solve Equation (11) and (12).

In second place, we write the system of inequalities (13), (14) and (15) in matrix form.

Let B be a matrix with K × (T + 1) + 2 +K + 1 columns. Define B as follows: One row

for every pair (k, t) and (k′, t′) with xk
t > xk′

t′ ; in the row corresponding to (k, t) and (k′, t′)

we have zeroes everywhere with the exception of a −1 in the column for (k, t) and a 1 in

the column for (k′, t′) . Finally, we have last two rows, where we have zero everywhere with

one exception. In the first row, we have a −1 at (K × (T +1)+ 1)-th column; in the second

row, we have a −1 at (K × (T + 1) + 2)-th column. We shall refer to the first last row as

the β-row, which captures (14). We also shall refer to the second row as the δ-row, which

captures (15). For (general) QHD, we do not have a β-row.

In third place, we have a matrix E that captures the requirement that the last component

of a solution be strictly positive. The matrix E has a single row and K× (T +1)+2+K+1

columns. It has zeroes everywhere except for 1 in the last column.

To sum up, there is a solution to system (11), (12), (13), (14), and (15) if and only if there

is a vector u ∈ RK×(T+1)+2+K+1 that solves the system of equations and linear inequalities

(S1) : A · u = 0, B · u ≥ 0, E · u ≫ 0. The argument now follow along the lines of the

proof of Theorem 1. Suppose that there is no solution u and let (θ, η, π) be an integer vector

solving system (S2) : θ ·A + η ·B + π · E = 0, η ≥ 0, π > 0.

The following has the same proof as Claim 1.

Claim 9. (i) θ ·A1+η ·B1 = 0; (ii) θ ·A2+η ·B2 = 0; (iii) θ ·A3+η ·B3 = 0; (iv) θ ·A4 = 0;

and (v) θ · A5 + π ·E5 = 0.

We transform the matrices A and B based on the values of θ and η, as we did in the

proof of Theorem 1. Lets define a matrix A∗ from A and B∗ from B, as we did in the proof
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of Theorem 1. We can prove the same claims (i.e., Claim 2,3,4,5, and 6) as in the proof of

Theorem 1. The proofs are the same and omitted. In particular, we can show that there

exists a sequence of pairs (xki
ti
, x

k′
i

t′
i

)n
∗

i=1 that satisfies (1) in SAR-PQHD. We shall use the

sequence of pairs (xki
ti
, x

k′
i

t′
i

)n
∗

i=1 as our candidate violation of SAR-PQHD.

Claim 10. The sequence (xki
ti
, x

k′
i

t′
i

)n
∗

i=1 satisfies (2), (3), and (4) in SAR-PQHD.

Proof. We first establish (2). Note that A∗
3 is a vector, and in row r the entry of A∗

3 is as

follows. There must be a (k, t) of which r is a copy. Then the component at row r of A∗
3 is

t if r is original and −t if r is converted. Now, when r appears as original there is some i

for which t = ti, when r appears as converted there is some i for which t = t′i. So for each r

there is i such that (A∗
3)r is either ti or −t′i.

By Claim 9 (iii), θ · A3 + η · B3 = 0. Recall that θ · A3 equals the sum of the rows of

A∗
3. Moreover, B3 is a vector that has zeroes everywhere except a −1 in the δ row (i.e.,

K × (T + 1) + 2th row). Therefore, the sum of the rows of A∗
3 equals ηK×(T+1)+2, where

ηK×(T+1)+2 is theK×(T+1)+2th element of η. Since η ≥ 0, therefore,
∑

i:ti>0 ti−
∑

i:t′
i
>0 t

′
i =

ηK×(T+1)+2 ≥ 0, and condition (2) in the axiom is satisfied.

Next, we show (3). By Claim 9 (ii), θ · A2 + η · B2 = 0. Recall that θ · A2 equals the

sum of the rows of A∗
2. Moreover, B2 is a vector that has zeroes everywhere except a −1

in the β row (i.e., K × (T + 1) + 1th row). Therefore, the sum of the rows of A∗
2 equals

ηK×(T+1)+1, where ηK×(T+1)+1 is the K × (T + 1) + 1th element of η. Since η ≥ 0, therefore,

#{i : ti > 0} −#{i : t′i > 0} = ηK×(T+1)+1 ≥ 0, and condition (3) in the axiom is satisfied.

(For (general) QHD, B2 is a zero vector in the β row (i.e., K × (T + 1) + 1th row). Hence,

#{i : ti > 0} −#{i : t′i > 0} = 0, and condition (3) in SAR-QHD is satisfied.)

Now we turn to (4). By Claim 9 (iv), the rows of A∗
4 add up to zero. Therefore, the

number of times that k appears in an original row equals the number of times that it appears

in a converted row. By Claim 6, then, the number of times k appears as ki equals the number

of times it appears as k′
i. Therefore condition (4) in the axiom is satisfied. �

Finally, we can show that
∏n∗

i=1 p
ki
ti
/p

k′
i

t′
i

> 1, which finishes the proof of Lemma 5 as the

sequence (xki
ti
, x

k′
i

t′
i

)n
∗

i=1 would then exhibit a violation of SAR-PQHD. The proof is the same

as that of the corresponding lemma in the proof of Theorem 1.
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Online Appendix (not for publication)

A. Proof of Theorem 3

The proof that GTD rational is equivalent to SAR-GTD is identical to the result in Echenique

and Saito (forthcoming) with the changes of T to S and {D(t)}t∈T to {µs}s∈S. In the

following, we show the proofs for MTD and TSU.

A.1. MTD

The proof that SAR-MTD is equivalent to MTD rationality requires the following modifica-

tion of the argument in Echenique and Saito (forthcoming).

To see that SAR-MTD is necessary, let (xki
ti
, x

k′
i

t′
i

)ni=1 be a sequence under the conditions

of the axiom. We present the proof under the assumption that u is differentiable, but it is

straightforward to use the concavity and the corresponding monotonicity of the superdifferen-

tial of u, as we did in the proof of Theorem 1. The first-order condition is D(t)u′(xk
t ) = λkpt.

Then

1 ≥
n∏

i=1

u′(xki
ti
)

u′(x
k′
i

t′
i

)
=

n∏

i=1

λkiD(t′i)p
ki
ti

λk′
iD(ti)p

k′
i

t′
i

=
n∏

i=1

D(t′i)p
ki
ti

D(ti)p
k′
i

t′
i

=
n∏

i=1

D(t′i)

D(ti)

n∏

i=1

pkiti

p
k′
i

t′
i

=
n∏

i=1

D(t′π(i))

D(ti)

n∏

i=1

pkiti

p
k′
i

t′
i

.

Since ti ≥ t′π(i) and D is decreasing it follows that D(t′π(i))/D(ti) ≥ 1. Therefore we must

have that
∏n

i=1 p
ki
ti
/p

k′
i

t′
i

≤ 1.

For the proof of sufficiency, consider the setup in the proof of Theorem 1 of Echenique

and Saito (forthcoming). Note that the GTD model is the same as the model of subjective

expected utility. Let A and B be the matrices as constructed in the proof of Theorem 1 of

Echenique and Saito. We need to add rows to B to reflect that D(t′) ≥ D(t) when t ≥ t′. To

put it precisely, we need an additional row for each pair t, t′ such that t ≥ t′. In the row, we

have −1 in the column of t and have 1 in the column of t′. (Remember in the matrix A, we

have a column for each t ∈ T , as we do for each s ∈ S in Echenique and Saito (forthcoming).)

In the solution to the dual, we follow the steps of the proof until we construct a balanced

sequence (xki
ti
, x

k′
i

t′
i

)ni=1. Such a sequence corresponds to a decomposition of A∗ into pairs of

rows (ri, r
′
i)
n
i=1 in which ri is original and r′i is converted.

Now consider the column corresponding to t. In the characterization of GTD (and of

SEU), the entries in that column are all zero. For MTD, the entries of B are no longer all

1



zero in that column. The sum of the rows of A∗ +B∗ equal zero. As usual we can eliminate

pairs of rows of B such that 1t′ − 1t+1t− 1t′′ = 1t′ − 1t′′ . So in the matrix B∗ all the entries

in the column for t will be of the same sign. Let us say that they are all −1.

Recall that each row of A is identified with a pair (k, t). If r is a row say that t appears in

row r if there is k such that r is the row associated with (k, t). In A∗ we may have multiple

copies of the same row.

Since the rows of A∗ +B∗ is zero, the number of times that t appears in an original row

minus the number of times that t appears in a converted row equals the number of rows

in B∗ in which t has a −1. Since we have assumed that there are −1s in the column for

t, then there are more original rows in which t appears than converted rows. Let π(i) be

an arbitrary original row, for each converted row in which t appears. This defines π for all

converted rows in which t appears.

There are then original rows in which t appears that are not the image through π of some

converted row. For each such row ρ of A∗ there is some −1 in B∗, as A∗ +B∗ = 0. Let σ(ρ)

be the the row of B∗ with −1.

The construction is the same for columns t′ in which B∗ only has 1. Let σ be defined in

the same way. This defines π for some rows. For the remaining rows, define π as follows. Let

ρ be original, such that t appears in ρ, and t is not in the image of π. There is t′ in row σ(ρ)

with t′ ≤ t (the row σ(ρ) is 1t′ − 1t). There is a unique converted row ρ′ with σ(ρ) = σ(ρ′),

a row in which t′ appears. So let π(ρ) = ρ′. This defines π for all rows.

A.2. TSU

The proof that SAR-TSU is equivalent to TSU rationality is similar to the proof of Theorem

1. In the following, we explain the differences.

Lemma 13. Let (xk, pk)Kk=1 be a dataset. The following statements are equivalent:

1. (xk, pk)Kk=1 is TSU rational.

2. There are strictly positive numbers vkt and λk for t = 0, . . . , T and k = 1, . . . , K, such

that

vkt = λkpkt and xk
t > xk′

t =⇒ vkt ≤ vk
′

t .

The proof of Lemma 13 is very similar to the proof of Lemma 1 and omitted.

To see that SAR-TSU is necessary, let (xki
ti
, x

k′
i

t′
i

)ni=1 be a sequence under the conditions

of the axiom. We present the proof under the assumption that ut is differentiable, but it is

2



straightforward to use the concavity and the corresponding monotonicity of the superdiffer-

ential of ut, as we did in the proof of Theorem 1. The first-order condition is u′
t(x

k
t ) = λkpt.

Since ti = t′i for each i, we obtain

1 ≥
n∏

i=1

u′
ti
(xki

ti
)

u′
ti
(x

k′
i

ti
)
=

n∏

i=1

λkipkiti

λk′
ip

k′
i

ti

=
n∏

i=1

λki

λk′
i

n∏

i=1

pkiti

p
k′
i

ti

=
n∏

i=1

pkiti

p
k′
i

ti

,

where the last equality holds because each k appears as k′
i the same number of times it

appears as ki.

In the following, we prove the sufficiency. The outline of the proof is the same as in the

proof of Theorem 1.

Lemma 14. Let data (xk, pk)kk=1 satisfy SAR-TSU. Suppose that log(pkt ) ∈ Q for all k and

t. Then there are numbers vkt , λ
k, β, δ, for t ∈ T and k ∈ K satisfying (2) in Lemma 13.

Lemma 15. Let data (xk, pk)kk=1 satisfy SAR-TSU. Then for all positive numbers ε, there

exists qkt ∈ [pkt −ε, pkt ] for all t ∈ T and k ∈ K such that log qkt ∈ Q and the dataset (xk, qk)kk=1

satisfy SAR-TSU.

Lemma 16. Let data (xk, pk)kk=1 satisfy SAR-TSU. Then there are numbers vkt and λk for

all t ∈ T and k ∈ K satisfying (2) in Lemma 13.

Lemma 15 and 16 hold as in the proof for Theorem 1.

A.3. Proof of Lemma 14

We linearize the equation in System (2) of Lemma 13. The result is:

log vt(x
k
t )− log λk − log pkt = 0, (16)

xk
t > xk′

t =⇒ log vt(x
k
t ) ≤ log vt(x

k′

t ). (17)

In the system comprised by (16) and (17), the unknowns are the real numbers λk and log vkt

for all k = 1, . . . , K and t = 1, . . . , T .

We shall define a matrix A such that there are positive numbers vkt and λk, the logs of

which satisfy Equation (16) if and only if there is a solution u ∈ RK×(T+1)+K+1 to the system

of equations

A · u = 0,

and for which the last component of u is strictly positive.
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Let A be a matrix with K × (T +1) rows and K× (T +1)+K+1 columns. The matrix

A is similar to the matrix A defined in the proof of Theorem 1. Only the difference here is

that we no longer have the δ-column. Thus, matrix A looks as follows:




(1,0) ··· (k,t) ··· (K,T ) 1 ··· k ··· K p

...
...

...
...

...
...

...
...

(k,t) 0 · · · 1 · · · 0 0 · · · −1 · · · 0 − log pkt
...

...
...

...
...

...
...

...




Consider the system A · u = 0. If there are numbers solving Equation (16), then these

define a solution u ∈ RK×(T+1)+K+1 for which the last component is 1. If, on the other hand,

there is a solution u ∈ RK×(T+1)+K+1 to the system A · u = 0 in which the last component

is strictly positive, then by dividing through by the last component of u we obtain numbers

that solve Equation (16).

In second place, we write the system of inequality (17) in matrix form. Let B be a matrix

with K × (T + 1) +K + 1 columns. Define B as follows: One row for every pair (k, t) and

(k′, t) with xk
t > xk′

t ; in the row corresponding to (k, t) and (k′, t) we have zeroes everywhere

with the exception of a −1 in the column for (k, t) and a 1 in the column for (k′, t).

In third place, we have a matrix E that captures the requirement that the last component

of a solution be strictly positive. The matrix E has a single row and K × (T + 1) +K + 1

columns. It has zeroes everywhere except for 1 in the last column.

To sum up, there is a solution to system (16) and (17) if and only if there is a vector

u ∈ RK×(T+1)+K+1 that solves the system of equations and linear inequalities

(S1) : A · u = 0, B · u ≥ 0, E · u ≫ 0.

The entries of A, B, and E are integer numbers, with the exception of the last column of

A. Under the hypothesis of the lemma we are proving, the last column consists of rational

numbers.

By Lemma 4, then, there is such a solution u to S1 if and only if there is no vector

(θ, η, π) that solves the system of equations and linear inequalities

(S2) : θ ·A + η · B + π ·E = 0, η ≥ 0, π > 0.

In the following, we shall prove that the non-existence of a solution u implies that the

data must violate SAR-TSU. Suppose then that there is no solution u and let (θ, η, π) be a

rational vector as above, solving system S2.

By multiplying (θ, η, π) by any positive integer we obtain new vectors that solve S2, so

we can take (θ, η, π) to be integer vectors.
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For convenience, we transform the matrices A and B using θ and η. We now transform

the matrices A and B based on the values of θ and η, as we did in the proof of Theorem 1.

Lets define a matrix A∗ from A and B∗ from B, as we did in the proof of Theorem 1. We

can prove the same claims (i.e., Claim 2,3,4,5, and 6) as in the proof of Theorem 1. The

proofs are the same and omitted. In particular, we can show that there exists a sequence

of pairs (xki
ti
, x

k′
i

t′
i

)n
∗

i=1 that satisfies (1) in SAR-TSU. Moreover, by the definition of B matrix,

we have ti = t′i because in matrix B we have z >i z′ if there exist t ∈ T and k, k′ ∈ T such

that there exist xk
t = z and xk′

t = z′. Moreover, as in Claim 10, we can show that in the

sequence (xki
ti
, x

k′
i

t′
i

)n
∗

i=1, each k appears ki the same number of times it appears as k′
i. Finally,

we can show that
∏n∗

i=1 p
ki
ti
/p

k′
i

t′
i

> 1, which finishes the proof of Lemma 14 as the sequence

(xki
ti
, x

k′
i

t′
i

)n
∗

i=1 would then exhibit a violation of SAR-TSU. The proof is the same as in the

proof of Theorem 1 and omitted.
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B. Implementing Revealed Preference Tests

This section presents a method to implement the revealed preference tests for time discount-

ing models using Matlab R2014b (MathWorks). We use Andreoni and Sprenger’s (2012)

experimental choice data as the model case, but our method is applicable to other empiri-

cal/experimental data sets.

Dataset. Subjects in the Andreoni and Sprenger’s (2012) experiment completed 45 in-

tertemporal decisions with varying starting dates τ , delay lengths d, and gross interest rates

aτ+d/aτ and, in particular, they complete 5 decision problems for each pair of (τ, d). See

Figure B.1 for an illustration of budgets. For each subject, decision in every trial is char-

acterized by a tuple (τ, d, aτ , aτ+d, cτ) where cτ is the number of tokens allocated to sooner

payment.

The following figure illustrates the budgets faced by the subjects in AS’s experiment,

fixing one time frame at (τ, d).

5 10 15 20

5

10

15

20

25

sooner $

later $

Figure B.1: An illustration of the CTB design in Andreoni and Sprenger (2012). Budget sets are

represented in blue lines, fixing one time frame at (τ, d) = (0, 35).

In order to rewrite our data in price-consumption format as in the theory, we set prices

pτ = 1 + r = aτ+d/aτ and pτ+d = 1 (normalization), and define consumptions xτ = cτ · aτ

and xτ+d = (100− cτ ) · aτ+d. This gives us a dataset (xk, pk)45k=1.

As we explained in the main body of the paper, we implicitly set prices of consumption in

periods that were not offered to a subject as very high in order to ensure that consumption

6



is zero. The idea is as follows. Think of EDU for concreteness. We use first order conditions,

so that we are looking for a rationalizing u and δ such that δtu′(xk
t ) = λkpkt if xk

t > 0 and

δtu′(xk
t ) ≤ λkpkt if xk

t = 0. In setting up such a system of equations we can ignore the t

that was not offered to the agents in trial k. Then whatever u we construct will have a

finite derivative u′(0) at zero. Hence we can set pkt to be high enough so that the agent finds

it optimal to consume xk
t = 0. By this argument is it clear that one can ignore the (zero)

consumption in the periods that were not offered in trial k, we think of consumption in those

periods as prohibitively expensive. This is of course consistent with the fact that AS did not

offer subjects any consumption in those periods; consumption in those periods is infeasible.

The set of time periods we are looking at is thus T = {0, 7, 35, 42, 70, 77, 98, 105, 133}.

We are able to check whether a given dataset is consistent with TSU, GTD, MTD,

QHD, PQHD, or EDU, by solving the corresponding linear programming problem. The

construction of linear programming problems closely follows the argument in the proofs of

Theorem 1, 2, and 3. In particular, the key to this procedure is to set up a system of linear

inequalities of the form:

S :





A · u = 0

B · u ≥ 0

E · u > 0

which, in the case of EDU for example, is a matrix form of the linearized system:

log v(xk
t ) + t log δ − log λk − log pkt = 0,

x > x′ =⇒ log v(x′) ≥ log v(x),

log δ ≤ 0.

A system of linear inequalities. We now construct three key ingredients of the system,

matrices A, B, and E, starting from those necessary for testing EDU. The first matrix A

looks as follows:

A =




(1,0) ··· (k,t) ··· (45,133) δ 1 ··· k ··· 45 p

...
...

...
...

...
...

...
...

...

(k,t) 0 · · · 1 · · · 0 t 0 · · · −1 · · · 0 − log pkt
...

...
...

...
...

...
...

...
...


.

Since we can ignore the t that was not offered to the agents in trial k, the matrix has

45× 2 = 90 rows and 45× 2 + 1 + 45 + 1 = 137 columns. In the row corresponding to (k, t)

7



the matrix has zeroes everywhere with the following exceptions: it has a 1 in the column for

(k, t); it has a t in the δ column; it has a −1 in the column for k; and − log pkt in the very

last column. This finalizes the construction of A.

Next, we construct matrix B that has 137 columns and there is one row for every pair

(k, t) and (k′, t′) with xk
t > xk′

t′ . In the row corresponding to (k, t) and (k′, t′) we have zeroes

everywhere with the exception of a −1 in the column for (k, t) and a 1 in the column for

(k′, t′). Finally, in the last row, we have zero everywhere with the exception of a −1 at 91st

column. We shall refer to this last row as the δ-row.

Finally, we prepare a matrix that captures the requirement that the last component of a

solution be strictly positive. The matrix E has a single row and 137 columns. It has zeroes

everywhere except for 1 in the last column.

Constructing matrices for other tests. In order to test models other than EDU, we

need to modify matrices A, B, and E appropriately.

For the QHD test, we insert another column capturing the present/future bias parameter

β, which we shall refer to the β-column. Hence, three matrices A, B, and E have 45×2+1+

1+ 45+ 1 = 138 columns. In the row corresponding to (k, t) of the matrix A, the β-column

has a 1 if t > 0 and a 0 if t = 0, indicating “now” or “future”.

A =




(1,1) ··· (k,t) (k,t′) ··· (45,133) β δ 1 ··· k ··· K p

...
...

...
...

...
...

...
...

...
...

...

(k,t=0) 0 · · · 1 0 · · · 0 0 t 0 · · · −1 · · · 0 − log pkt

(k,t′>0) 0 · · · 0 1 · · · 0 1 t′ 0 · · · −1 · · · 0 − log pkt′
...

...
...

...
...

...
...

...
...

...
...



.

The construction of matrix B for testing general QHD is the same as above (although the

size is now different). For the PQHD test, we add β-row which has 0 everywhere except −1

in the β-column to capture β ≤ 1.

For the MTD and GTD tests, we have 9 columns capturing time-varying discount factors

D(t)’s.

A =




(1,0) ··· x̃ℓ ··· (45,133) ··· D(t) ··· 1 ··· k ··· 45 p

...
...

. . .
...

. . .
...

. . .
...

. . .
...

. . .
...

. . .
...

...

(k,t) 0 · · · 1 · · · 0 · · · 1 · · · 0 · · · −1 · · · 0 − log pkt
...

...
. . .

...
. . .

...
. . .

...
. . .

...
. . .

...
. . .

...
...


.
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In the matrix B, we add rows




(1,0) ··· (k,t) ··· (45,133) ··· D(t) D(t+1) ··· 1 ··· k ··· 45 p

...
. . .

...
. . .

...
. . .

...
...

. . .
...

. . .
...

. . .
...

...

0 · · · 0 · · · 0 · · · 1 −1 · · · 0 · · · 0 · · · 0 0
...

. . .
...

. . .
...

. . .
...

...
. . .

...
. . .

...
. . .

...
...




in testing MTD to impose the monotonicity restriction on D(t)’s.

The matrix A for testing TSU is similar to that appears in testing EDU. The difference

is that we no longer have the δ-column.




(1,0) ··· (k,t) ··· (K,T ) 1 ··· k ··· K p

...
...

...
...

...
...

...
...

(k,t) 0 · · · 1 · · · 0 0 · · · −1 · · · 0 − log pkt
...

...
...

...
...

...
...

...




Next, we construct B as follows: One row for every pair (k, t) and (k′, t) with xk
t > xk′

t ; in

the row corresponding to (k, t) and (k′, t) we have zeroes everywhere with the exception of

a −1 in the column for (k, t) and a 1 in the column for (k′, t).

Solve the system. Our task is to check if there is a vector u that solves the following

system of linear inequalities corresponding to a model M

SM :





A · u = 0

B · u ≥ 0

E · u > 0

.

If there is a solution u to this system, we say that the dataset is M rational.

We use the function linprog in the Optimization Toolbox of Matlab to find a solution.

More precisely, we translate the systems of linear inequalities SM into constraints in a linear

programming problem and solve

LPM :





min z · u

s.t. A · u = 0

−B · u ≤ 0

−E · u < 0

where z is a zero vector.

9



It is not possible, however, to specify strict inequality constraints in linprog. As an

alternative, we find a solution u that has 1 in the last element, i.e., up = 1. In other words,

we solve a normalized version of the problem,

LP ′
M :





min z · u

s.t. A · u = 0

−B · u ≤ 0

up = 1

where z is a zero vector as above. Here, the constraint E · u > 0 is omitted since it is

automatically satisfied by our normalization up = 1.

If the given dataset is EDU rational, we can recover upper and lower bounds of the daily

discount factor consistent with the observed choice data. Remember that we include the

δ-row in B. The constraint B ·u ≥ 0 then implies that the 91st element of any solution u∗ of

LP ′
M , called u∗

δ, captures the daily discount factor. To be more precise, we can recover the

daily discount factor δ by exp(u∗
δ) since we normalize u∗

p to be 1. Hence, a solution (if any)

of LP ′
M in which the 91st element of z is 1 and 0 elsewhere suggests an lower bound of δ and

a solution (if any) of LP ′
M in which the 91st element of z is −1 and 0 elsewhere suggests an

upper bound of δ. In a similar manner, we can recover bounds of present/future biasedness

β.

10



C. Ground Truth Analysis: Test Performance and

Parameter Recovery

We assess the basic performance of our revealed preference tests using simulated choices. As

in Andreoni and Sprenger (2012), we assume a decision maker has a utility function (CRRA

with quasi-hyperbolic discounting) of the form:

U(x0, . . . , xT ) =
1

α
xα
0 + β

∑

t∈T\{0}

1

α
δtxα

t .

We simulate synthetic subjects’ choice data in Andreoni and Sprenger’s (2012) environment

(i.e., time frames and budgets are identical to those actual subjects faced in their experiment)

under all combinations of parameters α ∈ {0.8, 0.82, . . . , 1}, δ ∈ {0.95, 0.951, . . . , 1}, and

β ∈ {0.8, 0.82, . . . , 1.2}, resulting the total of 11,781 such synthetic subjects. We then

perform our revealed preference tests, in particular, tests for EDU and QHD rationality, and

ask following questions: (i) Do our tests correctly identify EDU or QHD rational datasets?;

and (ii) Can our tests recover “true” underlying model parameters?

A few remarks are in order. (1) For some parameter specifications, it is possible that

the slope of (linear) indifference curves coincide with those of budget lines. This happens

21 times when (α, δ) = (1, 1). 20 If the slope of indifference curve coincides with the budget

line (i.e., every point on the budget yields the same level of utility), we randomly pick one

point from the budget as the optimal choice as a tie-breaking rule. (2) In order to avoid

rounding issue in Matlab, we treat numbers less than 10−10 to be 0. In other words, if

the predicted allocation is sufficiently close to a corner, we treat it as a corner choice. (3)

Unlike Andreoni and Sprenger’s (2012) original experiment where subjects made choices

from “discrete” budget sets by allocating 100 tokens, we allow simulated choices to be at

any point on the continuous budget lines. We also prepare another set of simulated choices

(with the same set of parameters) which mimic behavior of the Andreoni and Sprenger’s

(2012) experimental subjects for the purpose of comparison.

Test results. The results are presented in Table C.1. We first look at our baseline sim-

ulation in which choices were made from continuous budget sets. Of the 11,781 synthetic

subjects, 3,950 (33.5%) passed the EDU test and 11,781 (100.0%) passed the QHD test.
20For example, consider the case when (α, δ, β) = (1, 1, 0.8) and (1, 1, 0.9). Since the utility function has

the form xτ + βxτ+d when τ = 0, indifference curve coincides with budget line when prices are 1.11 or 1.25.

Another possibility is in the time frame (τ, d) = (7, 70), where the price of 1 (tokens allocated to sooner

and later payments have the same exchange rate) is offered. In this case, indifference curve coincides with

budget line as long as (α, δ) = (1, 1).
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Table C.1: Test results using simulated choice data from continuous budgets (top panel) and

discrete budgets (bottom panel).

Parameters

α = 1 α < 1 α < 1

Continuous budget β = 1 β 6= 1 Total

No interior choice 1,050 38 700 1,788

Pass EDU 939 510 2,501 3950

Pass QHD 1,071 510 10,200 11,781

Sample size 1,071 510 10,200 11,781

Parameters

α = 1 α < 1 α < 1

Discrete budget β = 1 β 6= 1 Total

No interior choice 1,050 252 4,746 6,048

Pass EDU 939 510 6,913 8,362

Pass QHD 1,071 510 8,319 9,900

Sample size 1,071 510 10,200 11,781

We then split the sample into three groups. The first group of subjects have linear utility

function (α = 1). They made no interior choices (except for the knife edge case described

above), and 939 of them passed the EDU test. The second group of subjects have nonlinear

utility and no present/future bias (α < 1, β = 1). They all passed the EDU test (and

hence QHD test, too), as expected. The third group of subjects have nonlinear utility and

present/future bias (α < 1, β 6= 1). We find that 2,501 of them passed the EDU test, even

though their underlying preferences were strictly present/future biased.

The bottom panel of Table C.1 presents the results with simulated data when choices are

assumed to be on the discrete points on the budget lines. As one can imagine, the number

of synthetic subjects who make no interior choices increases and accordingly the pass rate

for the EDU test increases from 33.5% to 71.0%. We also find that “perturbations” induced

by discretization of budget sets is powerful enough for some of the subjects to become QHD

non rational.

Parameter recovery. Next we investigate how precise we can recover underlying prefer-

ence parameters using our revealed preference tests. Remember that the revealed preference

tests boil down to linear programming problems. As we describe in Section B of the Online

12



Appendix, we can find bounds of daily discount factor δ or present-biasedness β, which can

be used to rationalize the observed choice data.

In this exercise we restrict our attention to the case of choices from continuous budgets.

1. We look at subset of synthetic subjects who have non-linear instantaneous utility (α <

1), no present/future bias (β = 1), and pass the EDU test. We exclude synthetic

subjects who make no interior allocation from this sample. There are 510 subjects in

this category. Of those, 304 have (0, δ̄i] for some δ̄i < 1, 10 have [δi, 1] for some δi > 0,

and 196 have [δi, δ̄i] for some combination of δ̄i < 1 and δi > 0. Furthermore, within

the last category of subjects, the true underlying discount factors are always covered

by the ranges [δi, δ̄i]. See Figure C.1, left panel.

2. We focus on those who have non-linear instantaneous utility (α < 1), present/future

bias (β 6= 1), and pass the QHD test. We exclude synthetic subjects who make no

interior allocation from this sample. There are 10,200 subjects in this category. Of

those, 9,737 have (0, δ̄i] for some δ̄i < 1, 43 have [δi, 1] for some δi > 0, and 420 have

[δi, δ̄i] for some combination of δ̄i < 1 and δi > 0. Within the last category of subjects,

the true underlying discount factors are covered by the ranges [δi, δ̄i] in 362 cases

(86.2%). See Figure C.1, right panel. Next we turn to present bias. Of total 10,200

in this sample, 700 have (0,∞) (i.e., any value is possible), 76 have (0, β̄i] for some

β̄i > 0, 60 have [β
i
,∞) for some β

i
> 0, and 9,364 have [β

i
, β̄i] for some combination

of β̄i, βi
> 0. Within the last category of subjects, the true underlying present biases

are covered by the ranges [β
i
, β̄i] in 9,354 cases (99.9%). See Figure C.2.
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Figure C.1: Upper and lower bounds of daily discount factor implied by the revealed preference

test. Each synthetic subject has one pair of a blue circle (upper bound) and a red circle (lower

bound). (Left) The sample is 196 synthetic subjects who (i) have non-linear utility (α < 1) and

no present/future bias (β = 1), (ii) pass the EDU test, and (iii) have recovered range [δi, δ̄i] with

δi > 0 and δ̄i < 1. (Right) The sample is 420 synthetic subjects who (i) have non-linear utility

(α < 1) and present/future bias (β 6= 1) and (iii) have recovered range [δi, δ̄i] with δi > 0 and

δ̄i < 1. The dotted line represents the 45-degree line.
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Figure C.2: Upper and lower bounds of present/future biadnesss implied by the revealed pref-

erence test. Each synthetic subject has one pair of a blue circle (upper bound) and a red circle

(lower bound). The sample is 9,364 synthetic subjects who (i) have non-linear utility (α < 1) and

present/future bias (β 6= 1), (ii) pass the QHD test, and (iv) have recovered range [β
i
, β̄i] with

β
i
, β̄i > 0. The dotted line represents the 45-degree line.
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D. Additional Results from Empirical Application

In this section we provide additional results supporting the argument in Section 5.2 where

we compare AS’s parametric estimation of a QHD model and results from our nonparametric

revealed preference tests and present our measure of distance from M rationality.

D.1. Comparing EDU Rational and Non-Rational subjects

Remember that AS estimate the per-period discount factor, present bias, and utility curva-

ture assuming a QHD model with CRRA utility over money:

U(x0, . . . , xT ) =
1

α
xα
0 + β

∑

t∈T\{0}

δt
1

α
xα
t .

Here we focus on AS’s individual level nonlinear least squares (NLS) estimation.

We classify subjects in two groups, those who violate and those who satisfy EDU based

on the revealed preference tests. Panels (A)-(C) of Figure D.1 present empirical cumulative

distribution functions (CDFs) for the estimated preference parameters in the EDU rational

and EDU non-rational groups. Similarly, panels (D)-(F) compare properties of individual’s

choices (e.g., proportion of interior choices) for the same two groups of subjects.

The figure shows how our test is consistent with AS’s estimates. Consider panel (B). The

CDF for EDU rational subjects concentrates a large mass at β = 1. The non-EDU group has

no such jump in mass at β = 1, and instead exhibits a substantial fraction of subjects with

estimated β different from 1. The CDF for EDU-rational subjects is significantly different

from the CDF for EDU non-rational subjects: The null hypothesis of equality-of-distribution

is rejected by the two-sample Kolmogorov-Smirnov test (p < 0.01).

Figure D.1 panel (B) also shows that subjects who fail our EDU test have estimates of β

that differ clearly from 1. An OLS regression of the absolute difference between estimated

present bias and 1, |β̂−1|, on a dummy variable for EDU rationality (takes 1 if that subject

fails the EDU test) reveals that β̂ for EDU non-rational subjects is further away from 1

compared to EDU rational subjects (Table D.1, column 1). Similar result holds for subjects

who are not EDU rational but TSU rational and those who are not TSU rational (Table

D.1, column 2).

However, β 6= 1 is not immediately translated into evidence for present or future bias. As

we have shown above, most of the subjects who fail the EDU test also fail the QHD test (no

additional subject passes the test for PQHD, and most of the subjects who failed EDU even

fail MTD). In this sense, the interpretation of estimated β for EDU non-rational subjects
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Figure D.1: Empirical CDFs for preference parameters and properties of choices. Panels (A)-

(C) include 86 subjects whose preference parameters are estimable. Panels (D)-(F) include all 97

subjects.
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Table D.1: OLS regression of |β̂ − 1| on rationality dummies.

(1) (2)

nonEDU 0.046 ***

(0.007)

TSU\EDU 0.055 ***

(0.019)

nonTSU 0.043 ***

(0.007)

Constant 0.002 ** 0.002 **

(0.001) (0.001)

R2 0.139 0.147

# Obs. 86 86

Notes: nonEDU is a dummy for subjects who fail the EDU test, TSU\EDU is a dummy for those

who fail the EDU test but pass the TSU test, and nonTSU is a dummy for those who pass the

TSU test. Robust standard errors are reported in parentheses. Level of significance. ∗∗∗ : p < 0.01,

∗∗ : p < 0.05, ∗ : p < 0.10.

in Figure D.1 panel (B) requires some caution. The model is arguably misspecified for such

subjects.

One of the advantages of our revealed preference tests is that we can go beyond the class

of QHD utility function by weakening the restrictions in the relevant revealed preference

axioms.

Consider Figure 2 again. It is interesting to note that the estimated values of β̂ for

subjects who fail our EDU test are symmetrically distributed around 1.21 The “average”

subject looks, in some sense, as an EDU agent, even though the majority of subjects are not

consistent with that model according to our test. It is therefore possible that AS’s finding

in favor of EDU in their aggregate preference estimation reflects the choice behavior of such

an average subject.

21We test symmetry using the two-sample Kolmogorov-Smirnov (K-S) test. We first sort estimated β̂ in

an ascending order, calculate |β̂ − 1|, and split them into the first half (smaller β̂) and the last half (larger

β̂). We apply K-S test for equality of distribution for those two empirical distributions of |β̂ − 1|. The null

hypothesis of equal distribution is not rejected (p = 0.132).
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Figure D.2: Estimated daily discount factor for each category of subjects.

D.2. Estimated Daily Discount Factors

As in Figure 2 where we show AS’s estimated present-bias parameter β̂ for each class of

rationality, Figure D.2 demonstrates the similar comparison for the case of AS’s estimated

daily discount factor δ̂. The subjects who pass the EDU test have estimated δ̂ very close to

1 (many of them have δ̂ = 0.9997). The subjects who do not pass any of the tests (i.e., non

TSU subjects) have estimated δ̂ which are far from 1 in magnitude compared to the other

groups of subjects. Furthermore, those who have δ̂ > 1 are all in this category.

D.3. Parameter Recovery

As we describe in Section B of the Online Appendix, we can find bounds of daily discount

factor δ or present-biasedness β, which can rationalize the observed choice data.

Table D.2 lists bounds of discount factor (together with estimated values provided by

AS) for 29 EDU rational subjects, and Table D.3 lists bounds of present-biasedness for the

same 29 QHD rational subjects.
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Table D.2: Recovered bounds for daily discount factor (29 EDU rational subjects).

Upper bound Lower bound AS estimates

0.9899 0.0000 0.6951

0.9899 0.0000 N.A.

0.9985 0.9985 0.9985

0.9993 0.9993 0.9994

1.0000 0.9995 0.9997

1.0000 0.9995 0.9997

1.0000 0.9995 0.9997

1.0000 0.9995 0.9997

1.0000 0.9995 0.9997

1.0000 0.9995 0.9997

1.0000 0.9995 0.9997

1.0000 0.9995 0.9997

1.0000 0.9995 0.9997

1.0000 0.9995 0.9997

1.0000 0.9995 0.9997

1.0000 0.9995 0.9997

1.0000 0.9995 0.9997

1.0000 0.9995 0.9997

1.0000 0.9995 0.9997

1.0000 0.9995 0.9997

1.0000 0.9995 0.9997

1.0000 0.9995 0.9997

1.0000 0.9995 0.9997

1.0000 0.9997 1.0000

1.0000 1.0000 0.9981

1.0000 1.0000 0.9989

1.0000 1.0000 0.9997

1.0000 1.0000 1.0000

1.0000 1.0000 1.1118
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Table D.3: Recovered bounds for present-biasedness (29 QHD rational subjects).

Upper bound Lower bound AS estimates

1.0000 0.9676 0.9788

1.0000 0.9972 0.9986

1.3194 0.9500 1.0139

∞ 0.9500 0.9856

∞ 0.9500 1.0011

∞ 0.9500 1.0011

∞ 0.9500 1.0011

∞ 0.9500 1.0011

∞ 0.9500 1.0011

∞ 0.9500 1.0011

∞ 0.9500 1.0011

∞ 0.9500 1.0011

∞ 0.9500 1.0011

∞ 0.9500 1.0011

∞ 0.9500 1.0011

∞ 0.9500 1.0011

∞ 0.9500 1.0011

∞ 0.9500 1.0011

∞ 0.9500 1.0011

∞ 0.9500 1.0011

∞ 0.9500 1.0011

∞ 0.9500 1.0011

∞ 0.9500 1.0011

∞ 0.9500 1.0011

∞ 0.9500 1.0030

∞ 0.9500 1.0030

∞ 0.9500 1.0781

∞ 0 N.A.

∞ 0 N.A.
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E. Distance Measure: A Robustness Check

In Section 5.2, we introduce a measure to characterize the distance from a given dataset to

rationality, be it EDU, QHD, and so on. The ideal method for obtaining such a measure

is to check all the possible sequences of dropping observations, starting from dropping 1

observation, until we can find a largest subdata that pass the test. However, exhaustive

checking is computationally extremely challenging. Hence we take an alternative approach:

randomly drop observations and iterate this procedure. We demonstrate that the distance

measure obtained by our approach does not depend on the random procedure heavily.

We prepare 3 different sets of distance measures, each of which is obtained from 10,000

iterations, for each distance measure d′EDU, d
′
QHD, and d′TSU.As we see in Figure E.1, three sets

result in statistically indistinguishable distributions of distance measures: the null hypothesis

of equal distribution is not rejected at all conventional levels in the two-sample Kolmogorov-

Smirnov test. For the analyses in Section 5.2, we merge three sets and take the shortest path

from the total of 30,000 iterations.
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Figure E.1: Comparing the distance measures obtained from 3 sets of 10,000 iterations.
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F. Jittering: Perturbing Choices

We demonstrate robustness of revealed preference tests to small perturbation in underlying

preferences in Section 5.2. Here, instead of perturbing preference parameters, we add jitters

on choices predicted by a QHD model with fixed set of parameters.22

Assume a QHD model

U(x0, . . . , xT ) =
1

α
xα
0 + β

∑

t∈T\{0}

δt
1

α
xα
t

as in AS. For each budget in the AS experiment (there are 45 of those), the model predicts

demand for sooner payment, x(p, τ, d;α, δ, β). We then add “jitters” to these predicted

demands so that we observe x̂(p, τ, d;α, δ, β, σ) = x(p, τ, d;α, δ, β)+ε. Jitters are assumed to

be drawn from a normal distribution, but we ensure that the jittered demand x̂(p, τ, d)’s are

on the budget line. In other words, jitters are drawn from a truncated normal distribution.23

In this exercise, we take parameters from AS aggregate estimates: α = 0.897, δ =

0.999. For the present bias parameter, we take AS aggregate estimate β = 1.007 together

with other “reasonable” values such as 0.974 (aggregate estimate from Augenblick et al.,

forthcoming), 0.995, 1, and 1.05. As for standard deviation of the normal distribution, we

use σ ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1}.

For each set of parameters and standard deviation of white noise (α, δ, β, σ), we simulate

1,000 sets of observations {x̂(pb, τb, db;α, δ, β, σ)}
45
b=1. We then perform our EDU and QHD

tests.

Table F.1 reports pass rates for the QHD test for each set of parameters and standard

deviation. When the standard deviation is σ = 0.001, the simulated dataset always pass the

QHD test. As the standard deviation increases, pass rates decrease at the speed depending

on the parameter configuration.24

Table F.2 reports the same statistics for the EDU test. A notable feature in this simula-

tion is that the dataset generated by non-EDU preferences (i.e., β = 0.995 and 1.007) pass

the EDU test in many occasions. As in the case of the QHD test, pass rates decrease at the

speed depending on the parameter configuration.

22Andreoni et al. (2013a) introduce and discuss this way of assessing the goodness-of-fit in the context of

revealed preference tests, which they call the jittering measure.
23Andreoni et al. (2013a) note that “truncating is known to bias the frequency of corner solutions down-

ward”. An alternative approach is “censoring,” which would have a bias in the opposite direction.
24We also confirm that predicted choices indeed pass the QHD test in the absence of jittering (4-th column

in the table).
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Table F.1: QHD test pass rates.

Parameters Standard deviation (σ)

# α δ β 0 0.001 0.005 0.010 0.050 0.100 0.500 1.000

1 0.897 0.999 0.974 1.00 1.00 0.99 0.83 0.21 0.02 0.00 0.00

2 0.897 0.999 0.995 1.00 1.00 1.00 1.00 0.47 0.16 0.00 0.00

3 0.897 0.999 1.000 1.00 1.00 1.00 1.00 0.46 0.18 0.00 0.00

4 0.897 0.999 1.007 1.00 1.00 1.00 0.98 0.30 0.10 0.00 0.00

5 0.897 0.999 1.050 1.00 1.00 1.00 0.92 0.23 0.05 0.00 0.00

Table F.2: EDU test pass rates.

Parameters Standard deviation (σ)

# α δ β 0 0.001 0.005 0.010 0.050 0.100 0.500 1.000

1 0.897 0.999 0.974 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 0.897 0.999 0.995 1.00 1.00 1.00 1.00 0.47 0.16 0.00 0.00

3 0.897 0.999 1.000 1.00 1.00 1.00 1.00 0.46 0.18 0.00 0.00

4 0.897 0.999 1.007 1.00 1.00 1.00 0.96 0.25 0.09 0.00 0.00

5 0.897 0.999 1.050 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

This exercise has demonstrated that our revealed preference tests detect irregularities

induced by white noise, but we cannot provide a definitive answer to whether the degree of

irregularities necessary to violate EDU/QHD rationality is big or small (in other words, how

sensitive our tests are) because we do not have clear benchmark to compare with.

As provide standard deviation of NLS error in the aggregate estimate (corresponding to

parameter set #4), which is 6.13.

Alternatively, one can use variations observed in the actual experimental data to compare

with standard deviations used in this exercise. Let xi(pb, τb, db) denote subject i’s demand

for sooner payment in budget b. Then, we calculate the root mean squared error (RMSE)

vi =

√√√√ 1

45

45∑

b=1

(xi(pb, τb, db)− x(pb, τb, db;α, δ, β))
2

for each subject i. Table F.3 reports summary statistics for the distribution of vi’s. It is

clear that the variation of the observed data measured by RMSE is much higher than the

standard deviation of white noise at which we achieve 50% pass rate for the QHD test. This

may suggest that about 50% of the subjects are not rationalized by QHD model because
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Table F.3: Distributions of vi’s.

Parameters Percentile

# α δ β 5-th 10-th 25-th 50-th 75-th 90-th 95-th

1 0.897 0.999 0.974 3.00 3.76 4.68 5.93 6.33 7.83 10.50

2 0.897 0.999 0.995 2.91 3.66 4.60 5.93 6.17 7.94 10.61

3 0.897 0.999 1.000 2.93 3.68 4.63 5.94 6.15 7.97 10.64

4 0.897 0.999 1.007 2.95 3.71 4.62 5.91 6.18 8.02 10.67

5 0.897 0.999 1.050 3.10 3.58 4.48 5.61 6.13 8.28 10.92

of structural irregularities rather than trembling on their choices. However, we emphasize

again that we do not have clear guidance for the benchmark: we demonstrate the case of

vi’s but this may not be the right one to compare with.
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