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Abstract

We study a model of dynamic moral hazard with symmetric ex
ante uncertainty about the difficulty of the job. Over time, both the
principal and agent update their beliefs about the difficulty of the job
as they observe output. Effort is private and so incentives must be
provided for the agent to exert effort, and the principal can only make
within period commitments. In consequence, the agent may have an
additional incentive to shirk when the principal induces effort, because
by shirking, the agent causes the principal to have incorrect beliefs.
We show that this possibility can result in the contract that induces
effort in every period needing incentives that become increasingly high
powered as the length of the relationship increases. Thus it is never
optimal to always induce effort in very long relationships.
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1 Introduction

This paper analyzes the long-run implications of the ratchet effect, arising
from the introduction of new technology, in a context where both firm and
worker are learning about its efficacy. Milgrom and Roberts (1990) provide
a lucid statement of the problem;. when a firm installs new equipment,
firms and workers have to learn what is the appropriate work standard. It
is efficient to use future information to adjust the standard, but this reduces
work incentives today.1 Thus the ratchet effect arises from the combination
of learning, moral hazard and lack of long term commitment by the employer.

Theoretical work on the ratchet effect usually assumes ex ante differen-
tial information. The agent has private information on the nature of the
job, and the principal is unable to make long term commitments. Thus the
problem is formulated as one of dynamic mechanism design without commit-
ment, and the question is, how does the principal induce the agent to reveal
her private information. Lazear (1986) argues that high powered incentives
are able to overcome the ratchet effect, without any efficiency loss, assuming
that the worker is risk neutral. Gibbons (1987) shows that Lazear’s result
depends upon an implicit assumption of long term commitment; in its ab-
sence, one cannot induce efficient effort provision by the more productive
type.2 Laffont and Tirole (1988) prove a general result, that one cannot in-
duce full separation given a continuum of types.3 Laffont and Tirole (1993)
have a comprehensive discussion, and consider both the case of binary types
and of a continuum of types. Gerardi and Maestri (2015) analyze an infinite
horizon model with binary types.

The present paper differs from this literature since we formulate the
ratchet as arising from the learning problem in a context with moral hazard,
where the worker’s effort is unobserved by the principal. The principal and
the agent are symmetrically uncertain about the how difficult it is for the
worker to succeed on the job. We assume that the principal cannot commit
to long term contracts, but chooses short-term contracts optimally. Since
there is no limited liability and the principal has all the bargaining power,
the agent will not be paid any more than his outside option. Furthermore,

1In the sociological literature, Mathewson (1931), Roy (1952), and Edwards (1979) are
workplace studies that document the importance of output restriction in order to influence
the firm’s beliefs.

2See also Freixas, Guesnerie, and Tirole (1985) and Carmichael and MacLeod (2000).
3Malcomson (2014) shows that the no full-separation result also obtains in a relational

contracting setting, where the principal need not have all the bargaining power, as long
as continuation play following full separation is efficient.
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since uncertainty pertains to the nature of the job, the outside option does
not depend upon what is learnt.

The ratchet effect arises since the agent can manipulate the beliefs of
the principal by shirking. In a pure strategy equilibrium where high effort
is chosen, the principal correct anticipates the agent’s effort choices, and
the beliefs of the two parties about the nature of the job are identical.
However, when the agent deviates and shirks, the beliefs of the two parties
diverge, at least temporarily. We show that such a deviation increases the
expected continuation value of the agent. In consequence, any incentive
compatible contract that induces high effort must be high powered, in order
to offset this possible deviation gain. Thus the ratchet effect gives rise to
a dynamic incentive cost, since the agent must be exposed to additional
risk in order to overcome the incentive problem. Since the principal must
compensate the agent for increased risk, his wage costs increase. This finding
generalizes Milgrom and Roberts (1990), who show this in a model with a
linear technology and normal model signals, since we find that this applies
under a more general information structure and production technology.

We study the behavior of the dynamic incentive cost as the time hori-
zon T increases. Our focus is on dynamically sequentially incentive efficient
contracts, where the principal induces high effort in every period. Not sur-
prisingly, the cost of incentivizing effort in any period increases with the
time horizon. However, one might conjecture that this effect tapers off —
since the both principal and agent learn the state of the world, there is very
little uncertainty remaining towards the end of the game. Our main result
is that this conjecture is false – the cost of inducing effort in any period
increases at least linearly with T. Despite the fact that there is little un-
certainty at the end, an additional period does have a small effect in the
penultimate period of interaction. This has an effect on the period before,
and the cascading effect over periods offsets the learning effect.

This paper is related to a growing literature on dynamic moral hazard
with learning/experimentation. Holmström’s (1982) career concerns model
is a pioneering example.4 A crucial difference is that in the present paper,
learning relates to the nature of the job rather than the agent’s talent, and
does not affect the outside option of the agent. More recently, there has been
increased interest in agency models with learning, where the uncertainty also
pertains to the nature of the project. Bergemann and Hege (1998, 2005),
Manso (2011), Hörner and Samuelson (2015), and Kwon (2011) and analyze

4Extensions of the career concerns model include Gibbons and Murphy (1992) and
Dewatripont, Jewitt, and Tirole (1999).
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agency models with binary effort, binary signals and limited liability. There
is also recent work on learning in agency models with private actions in con-
tinuous time and continuum action spaces including DeMarzo and Sannikov
(2011), Cisternas (2014), and Pratt and Jovanovic (2014), that examines
the agent’s incentives for belief manipulation. Bhaskar (2014) studies a
two-period model that makes the same informational and contracting as-
sumptions as in the present paper, but allows for continuum effort choices
(rather than binary). The main finding is that the principal cannot imple-
ment interior effort choices in the first period. Since the agent can increase
his continuation value by shirking, this must be dissuaded by high powered
incentives. However, this implies that the agent can deviate upwards, and
increase his current payoff, without any loss in continuation value since he
can always quit the job tomorrow.

2 The model

We study a risk neutral principal (whom we treat as female) who repeatedly
hires a risk averse agent (whom we treat as male) to undertake some task.
In each period, the principal offers a spot contract to the agent, who decides
whether to accept or reject it. If the agent rejects the contract, the relation-
ship is dissolved and the game ends. If the agent accepts the contract, the
agent then decides whether to exert effort e (incurring a disutility of c > 0)
or shirk s (which is costless). As usual, there is moral hazard, with this
choice not observed by the principal. Moreover, there is uncertainty about
the “difficulty” of the task. Specifically, there are two states of the world
ω ∈ {B,G}, with the task being easy in G, and hard in B. The uncertainty
concerns how difficult it is to succeed on this job. Importantly, it does not
affect outside option of the agent, which we normalize to 0.

The choice a ∈ {e, s} by the agent determines, with the state of the
world, the probability distribution over signals y ∈ Y , where Y := {y1, y2,
. . . , yK} is a finite set of signals. The spot contract specifies the wage pay-
ment as a function of the realized signal.

The agent will update his beliefs about the state knowing his own effort
choice and the realized public signal. The principal updates her beliefs
knowing only the signal, since the agent’s effort is not public (i.e., it is not
observed by the principal).

The agent’s flow utility from a wage payment w ∈ R is u(w), where u is
strictly increasing and concave. We also assume unlimited liability, so that
there are no constraints on the size and sign of utility payments.
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We find it more convenient to work with utility schedules, so we write a
spot contract as a utility schedule u := (u1, . . . , uK), where uk is the utility
the agent will receive after signal yk. The wage cost of providing utility level
uk is written w(uk) := u−1(uk).

We do not specify the principal’s preferences. While solving for the
equilibrium of the game does require specifying the principal’s preferences,
that is not our focus. Our focus, rather, is on the important preliminary step
of characterizing the expected cost minimizing sequence of spot contracts
that induce effort in every period. This step is independent of the principal’s
preferences (other than time preference).

There are a finite number of signals with the probability of signal yk at
action a ∈ {s, e} and state ω ∈ {B,G} denoted by pk

aω. Our interest is in
settings where a a signal that the state is good is also a signal of high effort
(and conversely), so that it is impossible to disentangle the two. We capture
this by the following assumption.

Assumption 1.

1. There exists an informative signal, i.e., there exists yk ∈ Y such that∣
∣{pk

sB , pk
eB , pk

sG, pk
eG}
∣
∣ 6= 1.

2. For any informative signal yk ∈ Y ,

min
{

pk
sB , pk

eG

}
< pk

sG, pk
eB < max

{
pk

sB , pk
eG

}
.

3. Signals have full support: pk
aω > 0 for all k, a, ω.

We partition the set of signals into a set of “high” signals Y H , “low”
signals Y L, and neutral Y \ (Y H ∪ Y L) by setting

yk ∈ Y H if pk
eG > pk

sB

and
yk ∈ Y L if pk

eG < pk
sB .

A player with belief μ that the task is easy (ω = G) assigns a probability
to signal yk of pk

aμ := μpk
aG +(1−μ)pk

aB . Assumption 1 immediately implies

yk ∈ Y H ⇐⇒ pk
eG > pk

eB , pk
sG > pk

sB ⇐⇒ pk
eμ > pk

sμ

and
yk ∈ Y L ⇐⇒ pk

eG < pk
eB , pk

sG < pk
sB ⇐⇒ pk

eμ < pk
sμ.
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In other words, high signals arise with higher probability when either the
agent exerts effort or the state is good. An important implication of this
property is that if the principal believes that the agent is exerting effort,
but the agent is in fact shirking, then on average, the principal is more
pessimistic than the agent.

Lemma 1. Suppose the signals satisfy Assumption 1. Then,

μ =
∑

k
pk

sμ

μpk
sG

pk
sμ

>
∑

k
pk

sμ

μpk
eG

pk
eμ

.

Proof. Assumption 1 implies

yk ∈ Y H ⇐⇒ pk
eμ > pk

sμ ⇐⇒ pk
eG > pk

eμ

and
yk ∈ Y L ⇐⇒ pk

eμ < pk
sμ ⇐⇒ pk

eG < pk
eμ.

Thus,

μ −
∑

k
pk

sμ

μpk
eG

pk
eμ

= μ
∑

k
(pk

eμ − pk
sμ)

pk
eG

pk
eμ

> μ
∑

k
(pk

eμ − pk
sμ) = 0.

Suppose the principal and agent both assign probability μ to the task
being easy. The statically optimal spot contract offered by the principal is a
contract u ∈ RK minimizing its expected cost of provision

peμ ∙ w(u),

where paμ := (p1
aμ, . . . , pK

aμ), subject to incentive compatibility

peμ ∙ u − c ≥ psμ ∙ u (IC)

and individual rationality
peμ ∙ u − c = 0. (IR)

Since the principal is risk neutral and the agent is risk averse, the statically
optimal contract is unique, which we denote uμ.

Another useful implication of Assumption 1 is the following lemma.

Lemma 2. Suppose the signals satisfy Assumption 1. Then,

(peG − peB) ∙ uμ > 0.
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Proof. From (IC), we have

(peμ − psμ) ∙ uμ > 0.

Observe that uk
μ ≥ uk′

μ if pk
eμ > pk

sμ and pk′

eμ ≤ pk′

sμ. [If not, there exists k

and k′ such that uk
μ < uk′

μ with pk
eμ > pk

sμ and pk′

eμ ≤ pk′

sμ. The contract

that equals the old contract except at signals yk and yk′
, where the utility

promises are replaced by the constant value (pk
eμuk

μ + pk′

eμuk′

μ )/(pk
eμ + pk′

eμ),
satisfies (IC) and (IR), at lower cost.]

Assumption 1 then implies that uk
μ ≥ uk′

μ for yk ∈ Y H and yk′
∈ Y L,

proving the lemma.

We conclude this section with an implication of Lemma 2 and the prin-
cipal and agent having different beliefs. Suppose the principal assigns prob-
ability μ to G, and so offers a static contract u at which the (IR) binds
given peμ. If the agent has belief π and exerts effort, the agent’s payoff from
exerting effort is

V ∗(π, μ) : = peπ ∙ u − c

= peμ ∙ u − c + (π − μ)(peG − peB) ∙ u

= (π − μ)(peG − peB) ∙ u. (1)

Hence, from Lemma 2, when the principal is less optimistic than the agent,
the contract uμ gives the agent a strictly positive payoff.

3 Two time periods

To illustrate the issues we consider first two periods. The principal minimizes
the total wage costs. Neither the principal nor the agent can commit in
period 1 to wages or effort in period 2, so each period’s spot contract satisfies
incentive compatibility (IC) and individual rationality (IR) in that period.

We are interested in the most efficient sequence of spot contracts inducing
e in every period. Since there is incomplete information, we require that both
the principal and the agent’s behavior be sequentially rational after every
history, and that both actors update using Bayes’ rule whenever possible.
The common prior probability on G of the principal and agent is denoted μ†.
Let μk

a := ψk
a(μ

†) be the posterior probability on G after yk under action a.
While the principal does not observe effort, under the sequence of incentive
efficient contracts, she assigns probability one to the agent choosing e.
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Denote the first period spot contract by u(1) := (u1(1), . . . , uK(1)), and
the second period spot contract offered by the principal after signal yk by
u(yk) := (u1(yk), . . . , uK(yk)).

Definition 1. A two period sequence of contracts (u(1), (u(yk))yk∈Y ) is se-
quentially effort incentive efficient if

1. for every first period signal realization yk ∈ Y , u(yk) minimizes

peμk
e
∙ w(u) =

∑

k′

pk′

eμk
e

w(uk′
)

subject to the agent finding it optimal to participate and exert effort in
the second period after exerting effort in the first period, and

2. u(1) minimizes
∑

pk
eμ†w(uk) subject to the agent finding it optimal to

participate and exert effort in the first period.

Under a sequentially effort incentive efficient sequence of contracts, the
agent exerts effort in every period, and the second period beliefs of the agent
and principal agree. In particular, after yk, in the second period, the effort
incentive efficient contract solves the static problem with public beliefs μk

e .
The first period is more complicated, since a deviation by the agent to

shirking in the first period results in the principal and agent having different
beliefs. Given signal yk, the agent updates his belief on G to μk

s after the
signal yk, which differs from the principal’s update of μk

e . After the signal
yk, not only does the principal have the (incorrect) belief μk

e about G, she
is also mistaken in her conviction that the agent has the belief μk

e .
Since the agent and principal have different beliefs about the state of

nature, the incentive compatibility and participation constraints as viewed
by the principal are not, in general, valid for the agent. The difference in
beliefs can benefit the agent, and provide an additional incentive for the
agent to shirk. The principal designs the second period contract so that the
second period IR constraint binds at the beliefs μk

e , so that the agent earns
only his reservation utility from the static contract under beliefs μk

e .
Since the principal wants to induce e at t = 2, high signals have to be

rewarded in the second period. As a consequence, the agent’s second period
utility strictly increases from shirking:

1. Lemma 1 implies there is a signal yk such that μk
s > μk

e , with a resulting
second period gain from deviation.
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2. For any signal yk satisfying μk
s < μk

e , the IR constraint is violated, and
the agent walks away, obtaining his reservation utility.

Thus, the first period spot contract must satisfying the constraint

peμ† ∙ u(1) − ce ≥ psμ† ∙ u(1) − cs + W (μ†), (2)

where W (μ†) is the expected payoff in the second period from shirking rather
than exerting effort in the first period. We have just seen that

W (μ†) ≥
∑

yk
pk

sμ† max{V ∗(μk
s , μ

k
e), 0} > 0,

and so the statically optimal contract uμ† does not satisfy (2). The first pe-
riod spot contract must be more high powered than the statically optimally
contract in order to deter shirking.

4 Finite Horizon

We consider next the finite horizon setting, with T periods in the relation-
ship. We index periods backwards, so in period t, there are t − 1 periods
remaining after the current one. In period τ = T, . . . , 1, the principal has
observed the history hτ ∈ Y T−τ , and offers a spot contract u(hτ ). In the
following definition, note that ĥt is the common T − t initial segment of each
hτ .

Definition 2. A sequence of contracts ((u(hτ ))hτ∈Y T−τ )τ=1,...,T is sequen-
tially effort incentive efficient (SEIE) if for every t ∈ {T, . . . , 2, 1} and every
ĥt ∈ Y T−t, the sequence minimizes

t∑

τ=1

Ehτ ,yk{w(uk(hτ , yk)) | ĥt, aτ = e, aT = ∙ ∙ ∙ = aτ−1 = e]

subject to the agent finding it optimal to participate and exert effort in period
t and in every subsequent period after every public history, conditional on
the agent having exerted effort in every previous period.

Since the behavior of the principal in any period is completely determined
by her beliefs about the state updated from the public history, we can solve
for SEIE recursively, beginning in the last period (period 1; recall we index
periods backwards).
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We need to consider situations in which the agent and principal have
different beliefs. Let V (π, μ, 1) denote the agent’s value function in period
1 when his belief is π and the principal’s belief is μ (for our purposes, these
beliefs are the result of updating using h1 ∈ Y T−1, the period 1 public
history). The principal, given his updated beliefs μ, offers the contract
uμ(1). The agent’s value from this contract is

V (π, μ, 1) = max
{
peπ ∙ uμ(1) − c, psπ ∙ uμ(1), 0

}
.

If beliefs agree the value is zero, i.e., V (μ, μ, 1) = 1. Let V (π, μ, t) denote
the agent’s value function in period t when his belief is π and the principal’s
belief is μ. Denote the effort incentive efficient contract offered in period t
by the principal by uμ(t). Then,

V (π, μ, t) = max
{
peπ ∙ uμ(t) − c +

∑
k pk

eπV (ψk
e(π), ψk

e(μ), t − 1),

psπ ∙ uμ(t) +
∑

k pk
sπV (ψk

s(π), ψk
e(μ), t − 1), 0

}
,

where ψk
a(β) is the posterior probability on G after yk under action a, given

a prior β.
On the equilibrium path, the agent has always been exerting effort, so

that in period t, at belief μ, the contract uμ(t) satisfies the incentive con-
straint

peμ ∙ uμ(t) − c +
∑

k pk
eμV (ψk

e(μ), ψk
e(μ), t − 1)

≥ psμ ∙ uμ(t) +
∑

k pk
sμV (ψk

s(μ), ψk
e(μ), t − 1)

and the participation constraint

peμ ∙ uμ(t) − c +
∑

k pk
eμV (ψk

e(μ), ψk
e(μ), t − 1) = 0.

Since V (μ′, μ′, 1) = 1 for all μ′, induction immediately implies V (μ′, μ′, t) =
1 for all μ′.

Defining
W (μ, t) :=

∑
k pk

sμV (ψk
s(μ), ψk

e(μ), t − 1), (3)

as the future information rent from shirking (FIRS) in period t, the period-t
incentive constraint can then be written as

peμ ∙ uμ(t) − c ≥ psμ ∙ uμ(t) + W (μ, t).

Summarizing this discussion, we have:
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Proposition 1. A sequence of contracts ((u(hτ ))hτ∈Y T−τ )τ=1,...,T is sequen-
tially effort incentive efficient (SEIE) if and only if u = u(hτ ) minimizes

peμ ∙ w(u)

subject to

1. μ = Pr[G | hτ , aT = ∙ ∙ ∙ aτ−1 = e],

2. peμ ∙ u − c ≥ psμ ∙ u + W (μ, t), and

3. peμ ∙ u − c ≥ 0.

4. Furthermore, the constraints (2) and (3) bind.

From Section 3, we know W (μ, 2) > 0. Is W (μ, t) increasing in t, and if
it is increasing, does it increase without bound.

Intuitively, W (μ, 3) should be larger than W (μ, 2), because the latter
reflects the value of different beliefs induced by shirking under a statically
optimal contract for a less demanding incentive compatibility constraint.
This is essentially a question of comparative statics on static contracts with
respect to the opportunity cost of shirking, which turns out to be a lot
harder than comparative statics with respect to the disutility of effort. The
next section outlines the problem.

5 Comparative Statics of Optimal Contracts

The contract uμ(t) described in Proposition 1 solves a static incentive prob-
lem that is a case of the following. The principal solves (where w(uk) =
u−1(uk) is the wage necessary for the agent to receive utility uk)

min
{uk}

∑

k
pk

eμw(uk)

subject to
∑

k
pk

eμuk − c ≥
∑

k
pk

sμuk + W (IC)

and
∑

k
pk

eμuk − c = 0. (IR)

The first order conditions imply

w′(uk) = λ + ξ

(

1 −
pk

sμ

pk
eμ

)

, k = 1, . . . ,K, (4)
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where λ is the multiplier on the IR constraint and ξ is the multiplier on the
IC constraint.

Order the signals so that pk
sμ/pk

eμ is decreasing in k. The right side of
(4) is then increasing in k, and so w′(uk) is increasing in k, implying uk is
increasing in k.

Suppose W and W̃ are two distinct opportunity costs of shirking, with
W > W̃ . Let u and ũ denote the vectors of utilities in the corresponding
optimal contracts. Since IC holds with equality we have

(peμ − psμ) ∙ u = c + W

and
(peμ − psμ) ∙ ũ = c + W̃ .

We are interested in the properties of the vector ũ − u. In particular,
from (1), we would like to conclude

(peG − peB) ∙ (u − ũ) > 0. (5)

While we know
(peμ − psμ) ∙ (u − ũ)∙ = W − W̃ , (6)

without further assumptions, this does not imply (5).
There is one setting with general probabilities where we can deduce (5),

and so the monotonicity of W (μ, t) in t, and that is where the agent has a
particular form of CRRA preferences,

u(w) =
√

A + w,

where A > 0 is a positive constant sufficiently large that IR binds for the
following discussion. Then w′(uk) = 2uk, and (4) can be written as

uk =
λ

2
+

ξ

2

(

1 −
pk

sμ

pk
eμ

)

, k = 1, . . . ,K. (7)

The incentive constraint u ∙ (peμ − psμ) = c + W can then be rewritten as

c + W =
∑

k

[
λ

2
+

ξ

2

(

1 −
pk

sμ

pk
eμ

)]

(pk
eμ − pk

sμ)

=
∑

k

ξ

2

(

1 −
pk

sμ

pk
eμ

)

(pk
eμ − pk

sμ)
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=:
ξX(μ)

2
.

This implies

ξ =
2(c + W )

X(μ)
,

and so

(peG − peB) ∙ (u − ũ) =
∑

k
(pk

eG − pk
eB) ∙

(W − W̃ )
X(μ)

(

1 −
pk

sμ

pk
eμ

)

> 0,

where the inequality is an implication of Assumption 1.

6 A Restriction on Signals

We now pursue a direct path to link (5) and (6) by assuming the vectors
(peG − peB) and (peμ − psμ) are collinear. Our goal is to bound W (μ, t) as
a function of t, since larger information rents require more high powered
incentives. We bound W (μ, t) from below by bounding V (π, μ, t).

Obtaining tight bounds for the value function is in general difficult. How-
ever, in some cases, we are able to obtain useful bounds by considering a
particular specification of continuation play of the agent, namely, always ex-
ert effort. Denote by V ∗(π, μ, t) the agent’s value function in period t when
his belief is π and the principal’s belief is μ, and the agent always chooses
effort. Since

V (π, μ, t) ≥ V ∗(π, μ, t), (8)

it is enough to bound V ∗(π, μ, t). The value recursion for V ∗ is

V ∗(π, μ, t) = peπ ∙ uμ(t) − c +
∑

k

pk
eπV ∗(ψk

e(π), ψk
e(μ), t − 1). (9)

As we saw from Section 3, if π > μ, the first flow term is positive, with
subsequent flows reflecting additional rents from updated differences in be-
liefs. However, beliefs merge (Blackwell and Dubins, 1962): the difference
between the agent’s and the principal’s posteriors vanishes. Consequently,
in a long relationship, the impact of a difference in beliefs after a deviation
in the initial period on the expected information rent in the last period is
small.

Nonetheless, in the last period, any small information rent leads to an
increase (albeit small) in the power of the required incentives in the penulti-
mate period. This implies that the information rents in period 2 generated

13



from a difference in beliefs are greater than they would have been in the last
period.

Proposition 2. Suppose there exists a vector γ ∈ RK , γ ∙ 1 = 0, and
constants α > 0 and β satisfying β > max{α, 1} > 0 such that

psG = psB + αγ,

peB = psB + γ,

and peG = psB + βγ.

Let

K := min
μ

(β − 1)
[μ(β − α) + (1 − μ)]

> 0.

For any integer t,

V (π, μ, t) ≥ V ∗(π, μ, t) ≥ (π − μ)Kct. (10)

Remark 1. With binary signals, the collinearity assumption is automati-
cally satisfied, since the space of probabilities is one-dimensional.

We now prove the proposition. Assumption 1 holds without further
restrictions on the parameters, with yk ∈ Y H if γk > 0 and yk ∈ Y L if
γk < 0. Note that peG−peB = (β−1)γ and peμ−psμ = [μ(β−α)+(1−μ)]γ.

We first state two implications of the assumed structure on signals. The
optimal spot contract in period t satisfies

c + W (μ, t) = (peμ − psμ) ∙ uμ(t) = [μ(β − α) + (1 − μ)]γ ∙ uμ(t), (11)

(where W (μ, 1) = 0), and so (since (IR) binds on uμ(t) at belief μ, recalling
(1))

peπ ∙ uμ(t) − c = (π − μ)(β − 1)γ ∙ uμ(t),

= (π − μ)
(β − 1)

[μ(β − α) + (1 − μ)]
(c + W (μ, t)). (12)

The first inequality in (10) is simply (8).
From the value recursion for V ∗ given in (9), we have

V ∗(π, μ, t) = peπ ∙ uμ(t) − c +
∑

k
pk

eπV ∗(ψk
e(π), ψk

e(μ), t − 1)

= (π − μ)
(β − 1)

[μ(β − α) + (1 − μ)]
(c + W (μ, t))
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+
∑

k
pk

eπV ∗(ψk
e(π), ψk

e(μ), t − 1). (13)

A natural way to proceed is by induction. Suppose t = 1. Then,

V (π, μ, 1) ≥ V ∗(π, μ, 1)

= (π − μ)(peG − peB) ∙ uμ(1)

= (π − μ)(β − 1)γ ∙ uμ(1)

≥ (π − μ)Kc.

The inductive hypothesis is

V ∗(π, μ, t − 1) ≥ (π − μ)Kc(t − 1).

If this implied
∑

k
pk

eπV ∗(ψk
e(π), ψk

e(μ), t − 1) ≥ (π − μ)Kc(t − 1), (14)

then we would be done, since W (μ, t) ≥ 0 and so

(π − μ)K(c + W (μ, t)) ≥ (π − μ)Kc.

However, (14) fails because beliefs merge. From the inductive hypothesis
we have
∑

k
pk

eπV ∗(ψk
e(π), ψk

e(μ), t − 1) ≥ Kc(t − 1)
∑

k
pk

eπ(ψk
e(π) − ψk

e(μ)).

Using the equality pk
eπ = pk

eμ + (π − μ)(pk
eG − pk

eB), we have

∑

k
pk

eπ(ψk
e(π) − ψk

e(μ)) = π −
∑

k
pk

eπ

μpk
eG

pk
eμ

= π − μ − (π − μ)μ
∑

k
(pk

eG − pk
eB)

pk
eG

pk
eμ

= (π − μ)(1 − ξ(μ)), (15)

where

ξ(μ) := μ
∑

k
(pk

eG − pk
eB)

pk
eG

pk
eμ

> 0

is the merging deficit.5 Therefore, all we can conclude from the inductive
hypothesis with respect to the second term of (13) is

∑

k
pk

eπV ∗(ψk
e(π), ψk

e(μ), t − 1) ≥ (π − μ)Kc(t − 1)(1 − ξ(μ)). (16)

5The strict positivity of ξ(μ) is an immediate implication of Assumption 1. As one
would expect, ξ(μ) → 0 as μ → 0 or 1 (recall that

∑
k γk = 0).

15



For future reference, a straightforward calculation shows that under the
collinear parameterization,

ξ(μ) = μ(β − 1)
∑

k
γk pk

eG

pk
eμ

. (17)

But the inductive hypothesis also bounds the future information rents
from shirking,

W (μ, t) =
∑

k
pk

sμV (ψk
s(μ), ψk

e(μ), t − 1)

≥ K(t − 1)c
∑

k
pk

sμ(ψk
s(μ) − ψk

e(μ)).

Now,

∑

k
pk

sμ(ψk
s(μ) − ψk

e(μ)) = μ −
∑

k
pk

sμ

μpk
eG

pk
eμ

= μ
∑

k

{
pk

eμ − pk
sμ

} pk
eG

pk
eμ

= μ
∑

k
[μ(β − α) + (1 − μ)]γk pk

eG

pk
eμ

=
[μ(β − α) + (1 − μ)]

(β − 1)
ξ(μ). (18)

Hence,
(β − 1)

[μ(β − α) + (1 − μ)]
W (μ, t) ≥ K(t − 1)cξ(μ). (19)

Substituting (16) and (19) into (13) yields

V ∗(π, μ, t) ≥ (π − μ)Kc[1 + (t − 1)ξ(μ) + (t − 1)(1 − ξ(μ))] = (π − μ)Kct,

completing the proof.
These calculations also give via(3), a lower bound on W :

Corollary 1. The future information rent from shirking is bounded below
by a linear function of time:

W (μ, t) ≥ Kc
[μ(β − α) + 1 − μ]

(β − 1)
ξ(μ)(t − 1).

16



The assumption on the structure of signals plays two roles in the analysis.
The first is to provide a relationship between peπ ∙ uμ(t) − c and W (μ, t).
The second is connect the merging deficit with the bound on W (μ, t). While
it is possible to provide a relationship between peπ ∙ uμ(t) − c and W (μ, t)
under weaker assumptions, the connection of the merging deficit with the
bound on W (μ, t) is more subtle, and we have not found a nice more general
condition.

We can precisely characterize the future information rents from shirking
under one simple additional restriction.

Proposition 3. Suppose the probability distribution on signals satisfies the
conditions of Proposition 2, and that peG+psB = peB +psG (i.e., β = α+1).
Then,

1. for all informative signals, yk, ψk
s(μ) > ψk

e(μ), and so after shirking,
the agent is always more optimistic than the principal, and so never
takes the outside option.

2. if u satisfies IR with equality at peμ, then psπ ∙ u = peπ ∙ u − γ ∙ u, and

3. the agent is always indifferent between exerting effort and shirking,
and so an optimal continuation play for the agent after shirking at a
common belief μ is to accept every future contract and always exert
effort, so that

V (π, μ, t) = V ∗(π, μ, t) = (π − μ)αct

and
W (μ, t) = cξ(μ)(t − 1).

Proof. 1. A few lines of algebra shows that ψk
s(μ) − ψk

e(μ) has the same
sign as α(γk)2, which is strictly positive if and only if γk 6= 0, that is,
if yk is informative.

2. Consider a contract u that satisfies IR with equality at peμ. Then,

psπ ∙ u = (psπ − peμ) ∙ u + c + peμ ∙ u − c

= [π(psB + αγ) + (1 − π)psB

− μ(psB + βγ) − (1 − μ)(psB + γ)] ∙ u + c

= (παγ − μβγ − (1 − μ)γ) ∙ u + c

= (παγ − μαγ − μγ − (1 − μ)γ) ∙ u + c

17



= (π − μ)αγ ∙ u − γ ∙ u + c,

while

peπ ∙ u = (π − μ)(peG − peB) ∙ u + c

= (π − μ)(β − 1)γ ∙ u + c

= (π − μ)αγ ∙ u + c.

3. We prove by induction. The agent is clearly indifferent between effort
and shirt for t = 1, and V ∗(π, μ, 1) = (π − μ)αc. Suppose the agent is
indifferent between shirk and effort for τ = 1, . . . , t − 1. Then,

V (π, μ, τ ) = V ∗(π, μ, τ ) = (π − μ)αcτ, τ = 1, . . . , t − 1

and so
W (μ, t) = cξ(μ)(t − 1).

The difference between the value from effort and shirk in period t is

peπ ∙ uμ(t) − c +
∑

k pk
eπV (ψk

e(π), ψk
e(μ), t − 1)

−psπ ∙ uμ(t) −
∑

k pk
sπV (ψk

s(π), ψk
e(μ), t − 1)

= peπ ∙ uμ(t) − c − psπ ∙ uμ(t) + αc(t − 1)
∑

k(p
k
sπ − pk

eπ)ψk
e(μ)

= W (μ, t) + αc(t − 1)
∑

k(p
k
sπ − pk

eπ)ψk
e(μ)

= cξ(μ)(t − 1) − αc(t − 1)ξ(μ)/α = 0,

where the first equality comes from substituting for V = V ∗ evalu-
ated at t − 1 and simplifying, the second equality uses part 2 of the
proposition (and (11)), and the third equality applies the inductive
hypothesis again and (17)).

7 Merging with Binary Signals

We have already seen in the two period case that the initial period contract
must be more high powered than the one period contract in order to com-
pensate for the one period FIRS. But this means that in the three period
contract, the FIRS reflects the increased value of different beliefs in period
2 from the more high powered period 2 contract, in addition to the value of
different beliefs in period 1.

18



pH
aω a = e a = s

ω = G r q + (2r − 1)
ω = B 1 − r q

Figure 1: The probability of the high signal yH as a function of the state
ω and action a, with 0 < q < r < 1 and 2r − 1 > 0 and q + r < 1. Under
these assumptions Assumption 1 is satisfied. The conditions of Proposition
3 hold.

How much of the lower bound on future information rents from shirking
is due to the value from having different beliefs in all future periods, and
how much is due to the positive feedback from one period’s increase in the
required power of the incentives to the previous period?

To shed light on this issue, we consider a symmetric binary signal envi-
ronment in which we have an exact expression for the FIRS: There are two
signals yH and yL, with the probability of yH given in Figure 1 (note that
peG + psB = peB + psG as required in Proposition 3).

By construction, beginning from a common prior, if the principal expects
effort, but the agent shirks, then the agents is more optimistic than the
principal after both yH and yL. We are interested in the value to the agent of
shirking in the initial period (and so being optimistic in every future period),
when there are no expected information rents after the initial period.

So, suppose that in each period (after the initial period), the principal
offers the statically optimal contract u†

μ(t), where μ is the posterior update
assuming the agent has exerted effort previously. The principal has belief
ψe(μ, hτ ) =: μτ . This contract solves

uH − uL =
c

pH
eμτ − pH

sμτ

and
pH

eμτ uH + pL
eμτ uL = 0.

The flow benefit to the agent from exerting effort is then (from (1))

[ψe(π, hτ ) − μτ ](pH
eG − pH

eB)(uH − uL) = [ψe(π, hτ ) − μτ ]
(2r − 1)c

pH
eμτ − pH

sμτ

.

The value to the agent of having belief π > μ at the end of the initial period

19



with t periods remaining is then

V †(π, μ, t) = Eeπ

t∑

τ=1

[ψe(π, hτ ) − μτ ]
(2r − 1)c

pH
eμτ − pH

sμτ

,

where, as before, hτ ∈ Y t−τ . At the risk of emphasizing the obvious, observe
that because π > μ, for all hτ we have that ψe(π, hτ ) − μτ = ψe(π, hτ ) −
ψe(μ, hτ ) > 0.

The appendix proves the following:

Proposition 4. Suppose there are two signals with distributions given in
Figure 1 and 16r3(1 − r) < 1. There exists V̄ ∈ R such that for all t, and
π > μ,

V †(π, μ, t) < V̄.

While we have not been able to bound V † for other parameterizations,
we conjecture the result holds more generally. We interpret this result as
confirming our intuition that the incentive costs are unbounded in t due to
the positive feedback from the power of the incentives.

8 Infinite Horizon

In this section, we maintain the hypotheses on the probability distributions
of Proposition 2 and show that a similar phenomenon arises with an infinite
horizon. We assume both the principal and agent discount with possibly
different discount factors δA and δP < 1. We focus on stationary high effort
incentive efficient contracts, and prove that the following result.

Proposition 5. Suppose the probability distributions satisfy the conditions
in Proposition 2, and K is the constant defined in that proposition. Suppose
a stationary high effort incentive efficient contract exists and V is the agent’s
value when his belief is π and the principal’s belief is μ. Then, V satisfies

V (π, μ) ≥
Kc(π − μ)

1 − δA
. (20)

The denominator 1 − δA replaces the horizon, and analogously to the
finite horizon, as the agent becomes patient, future information rents from
shirking become arbitrarily large.
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Let Y be the set of all functions mapping [0, 1]2 to R equalling zero on
the diagonal (i.e., V (μ, μ) = 0 for all μ ∈ [0, 1] and all V ∈ Y),6 and let
Ψ : Y → Y be the mapping defined by V ′ = Ψ(V ) given by

V ′(π, μ) := max
{
peπ ∙ uV

μ − c + δA

∑

k
pk

eπV (ψk
e(π), ψk

e(μ)),

psπ ∙ uV
μ + δA

∑

k
pk

sπV (ψk
s(π), ψk

e(μ)), 0
}
, (21)

where uV
μ is the unique cost minimizing vector of utilities satisfying

peμ ∙ uV
μ − c = psμ ∙ uV

μ + δA

∑

k
pk

sπV (ψk
s(π), ψk

e(μ)) (22)

and peμ ∙ uV
μ − c = 0. (23)

For any stationary high effort incentive efficient contract, the value func-
tion V describing the agent’s value when his belief is π and the principal’s
belief is μ is a fixed point of Ψ.

We proceed as in the finite horizon case, bounding V by the value func-
tion when the agent exerts effort. Consequently, as for the finite horizon
case, we do not need to know the precise details of the spot contracts, here
μV . It is enough to know that

peπ ∙u
V
μ −c = (π−μ)

(β − 1)
[μ(β − α) + (1 − μ)]

(
c + δA

∑

k
pk

sπV (ψk
s(π), ψk

e(μ))
)

,

which follows from familiar arguments (see (11) and (12)).

Lemma 3. Denote by V the subset of Y satisfying the inequality in (20).
The mapping Ψe : Y → Y defined by V ∗ = Ψe(V ), where

V ∗(π, μ) := peπ ∙ uV
μ − c + δA

∑

k
pk

eπV (ψk
e(π), ψk

e(μ)) (24)

is a self-map on V, i.e.,
Ψe : V → V .

Proof. For V ∈ V ,

∑

k
pk

sμV (ψk
s(μ), ψk

e(μ)) ≥
∑

k
pk

sμ

Kc(ψk
s(μ) − ψk

e(μ))
1 − δA

6We have already seen in the finite horizon setting that this property holds, and it could
be deduced here as well. Assuming it directly is without loss of generality and simplifies
our analysis.
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≥
[μ(β − α) + (1 − μ)]

(β − 1)
Kcξ(μ)
(1 − δA)

(where the last inequality follows from (18)). This gives

V ∗(π, μ) ≥ (π − μ)K

{

c + δA
cξ(μ)

(1 − δA)

}

+ δA

∑

k
pk

eπV (ψk
e(π), ψk

e(μ)).

Turning to the second term and applying (15) to obtain the equality gives

∑

k
pk

eπV (ψk
e(π), ψk

e(μ)) ≥
Kc
∑

k pk
eπ(ψk

e(π) − ψk
e(μ))

1 − δA

= (π − μ)
Kc

(1 − δA)
(1 − ξ(μ)),

so that

V ∗(π, μ) ≥ (π − μ)
Kc

(1 − δA)
{1 − δA + δAξ(μ) + δA(1 − ξ(μ))}

= (π − μ)
Kc

(1 − δA)
,

and so V ∗ ∈ V .

Since
Ψ(V ) ≥ Ψe(V )

pointwise (i.e., for all (π, μ), Ψ(V )(π, μ) ≥ Ψe(V )(π, μ)) and Ψe : V → V ,
we have Ψ : V → V .

We now argue that any fixed point of Ψ must lie in V . Since Ψ need not
be a contraction, we argue indirectly.

Let Y0 := {V ∈ Y | V (π, μ) ≥ 0 ∀(π, μ)}. Clearly, Ψ : Y → Y0. For all
V ∈ Y0,

Ψ(V )(π, μ) ≥ Ψe(V )(π, μ) ≥ (π − μ)Kc.

Lemma 4. Defining

Yκ := {V ∈ Yκ−1 | V (π, μ) ≥ (π − μ)Kc(1 − δκ
A)/(1 − δA), ∀(π, μ)},

we have
Ψ : Yκ → Yκ+1, ∀κ ≥ 0.
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Proof. For V ∈ Yκ, applying (18),

∑

k
pk

sμV (ψk
s(μ), ψk

e(μ)) ≥
∑

k
pk

sμ

Kc(1 − δκ
A)(ψk

s(μ) − ψk
e(μ))

(1 − δA)

≥
c(1 − δκ

A)ξ(μ)
(1 − δA)

(pH
eμ − pH

sμ).

Then, as in the beginning of the proof of Lemma 3,

Ψe(V )(π, μ) ≥ (π − μ)K

{

c + δA
(1 − δκ

A)cξ(μ)
(1 − δA)

}

+ δA

∑

k
pk

eπV (ψk
e(π), ψk

e(μ)).

But
∑

k
pk

eπV (ψk
e(π), ψk

e(μ)) ≥
Kc(1 − δκ

A)
∑

k pk
eπ(ψk

e(π) − ψk
e(μ))

1 − δA

= (π − μ)
K(1 − δκ

A)c
(1 − δA)

(1 − ξ(μ)),

so that

Ψ(V )(π, μ) ≥ Ψe(V )(π, μ)

≥ (π − μ)
Kc

(1 − δA)
{1 − δA + δA(1 − δκ

A)ξ(μ) + δA(1 − δκ
A)(1 − ξ(μ))}

= (π − μ)
Kc(1 − δκ+1

A )
(1 − δA)

,

and so V ∗ ∈ Yκ+1.

Lemma 5. Every fixed point of Ψ is in V.

Proof. Each fixed point of Ψ must be in every Yκ, so that

V (π, μ) ≥
(π − μ)Kc(1 − δκ

A)
(1 − δA)

, ∀(π, μ),

for all κ, implying V ∈ V .

Lemma 5 implies a similar lower on the future information rent from
shirking to that in Corollary 1.

Corollary 2. The future information rent from shirking becomes unbounded
as the agent becomes arbitrarily patient:

W (μ) ≥
Kc

(1 − δA)
[μ(β − α) + 1 − μ]

(β − 1)
ξ(μ).
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8.1 Existence of stationary high effort incentive efficient con-
tracts

A natural approach to obtaining existence of a well-defined value function
is to find conditions under which Ψ is a contraction. Since Ψ is the point-
wise maximum of Ψe (defined in (24)), Ψs (the analogous operator in which
the agent shirks in the current period, corresponding to the second term in
(21)), and the zero function, Ψ will be a contraction (under the sup norm)
if Ψe and Ψs are (again, under the sup norm).

Suppose V, V̂ ∈ V . Then,

|Ψe(V )−Ψe(V̂ )|

≤ sup
π,μ

∣
∣
∣
∣

(π − μ)(β − 1)
μ(β − α) + (1 − μ)

∣
∣
∣
∣ δA

∣
∣
∣
∑

k
pk

sπV (ψk
s(π), ψk

e(μ)) − V̂ (ψk
s(π), ψk

e(μ))
∣
∣
∣

+ δA

∣
∣
∣
∑

k
pk

eπV (ψk
e(π), ψk

e(μ)) − V̂ (ψk
e(π), ψk

e(μ))
∣
∣
∣

≤ |V − V̂ | ×

{

sup
π,μ

∣
∣
∣
∣

(π − μ)(β − 1)
μ(β − α) + (1 − μ)

∣
∣
∣
∣+ 1

}

δA.

This simple calculation shows that if Ψe is not a contraction, the failure
arises from the future information rent from shirking (which contributes the
sup term in the last expression. We also see that Ψe is a contraction if that
sup term is sufficiently small (relative to (1− δA)/δA). A similar calculation
shows that Ψs is also a contraction if a similar sup term is sufficiently small
(also relative to (1 − δA)/δA).7

A second approach to obtaining existence is to impose the same param-
eter restriction as in Proposition 3. In this case, we again have an exact
expression for the value function (for essentially the same reason).

Lemma 6. Suppose β = α + 1 (as in Proposition 3). The mapping Ψ has
as a fixed point the function

V (π, μ) =
αc(π − μ)

1 − δA
, (25)

and the associated stationary high effort incentive efficient contract is the
unique cost minimizing vector of utilities satisfying (22) and (23).

Proof. We need only show that the function specified in (25) is a fixed
point of Ψ. It is straightforward to verify that (25)) is a fixed point of

7The sup in Ψe is being taken over |(pH
eπ − pH

eμ)/(pH
eπ − pH

sμ)|, while the sup in Ψs is
being taken over |(pH

sπ − pH
eμ)/(pH

eπ − pH
sμ)|.
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Ψe. Analogous calculations to those in Proposition 3 shows that Ψe(V ) −
Ψs(V ) = 0 for V given by (25), and so (25) does indeed describe a fixed
point of Ψ.

9 The Cost of Inducing Effort

We have shown that the incentive cost of inducing effort increases at least
linearly in the length of the relationship. If the principal is short-lived, this
enough to show that eventually the first period principal will not induce
effort in the first period. The case of a long-lived principal is more com-
plicated, since such a principal benefits directly from a longer horizon, and
may benefit from more informative signals.

We content ourselves with two simple observations: On one hand, if the
agent’s utility function is log, then the expected cost of inducing effort in the
initial period is exponential in the length of the relationship: The expected
wage cost from the spot contract uμ(t) can be bounded below as

peμ ∙ w(uμ(t)) =
∑

k
(pk

sB + μ(β − 1)γk) exp(uk
μ(t))

≥ μ(β − 1)
∑

k
γk exp(uk

μ(t))

≥ μ(β − 1) exp(γ ∙ uμ(t))

≥ μ(β − 1) exp(c + W (μ, t)).

On the other hand, there are utility functions for the agent for which the
expected cost of inducing effort in the initial period is linear in the cost of
length of the relationship. As an illustration, consider the utility function ũ
given by

ũ(w) =

{
aw, w ≥ 0,

bw, w < 0,

with 0 < a < b, and binary signals as in Figure 1. (Because of binary
signals, a < b is sufficient for our earlier analysis; for more signals, it should
be enough to consider utility functions “close” to ũ, in particular, which
converge to ũ as w → ±∞.) Under binary signals, uμ(t) = (uL

μ(t), uH
μ (t)),

and with our parametric assumption,

Δuμ(t) := uH
μ (t) − uL

μ(t) =
c + W (μ, t)
1 − r − q

.

The optimal contract is the pair (uL
μ(t), uH

μ (t)) solving

uH
μ (t) = uL

μ(t) + Δuμ(t) and
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Figure 2: The optimal contract uμ(t) is determined by Δuμ(t) and the
requirement that expected utility (under peμ) is zero. The expected cost of
the contract is then the corresponding value on the w-axis.

0 = pH
eμuH

μ (t) + (1 − pH
eμ)uL

μ(t).

It is straightforward to verify that the expected cost of this contract is of
the same order as W (μ, t), and so linear in t (see Figure 2; while peμ does
vary as beliefs are updated, it is bounded by peB and peG ).

A Appendix

Lemma A.1. Suppose μ, π > 1
2 . Then, there exists σ ∈ (0, 1) such that for

all μ, π ≥ 1
2 and for all yk ∈ Y H ,

∣
∣
∣ψk

e(π) − ψk
e(μ)

∣
∣
∣ ≤ σ |π − μ| .

Proof. From some straightforward calculations, we have

ψk
e(π) − ψk

e(μ) =
πpk

eG

pk
eπ

−
μpk

eG

pk
eμ
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=
(π − μ)pk

eGpk
eB

pk
eπpk

eμ

,

and so it remains to bound the ratio of probabilities.
Now, consider

fk(π, μ) := pk
eπpk

eμ − pk
eGpk

eB

= πμ(pk
eG)2 + (1 − π)(1 − μ)(pk

eB)2

− [πμ + (1 − π)(1 − μ)]pk
eGpk

eB .

This function is increasing in π and μ (since yk ∈ Y H), and so is minimized
at π = μ = 1

2 over π, μ ≥ 1
2 . That is,

fk(π, μ) ≥
1
4
(pk

eG − pk
eB)2 ∀π, μ ≥

1
2
.

Define

X := min
yk∈Y H

(pk
eG − pk

eB)2

4pk
eGpk

eB

and set

σ =
1

1 + X
∈ (0, 1). (A.1)

Then,

pk
eπpk

eμ − pk
eGpk

eB = fk(π, μ)

≥ Xpk
eGpk

eB

=

(
1
σ
− 1

)

pk
eGpk

eB ,

and so
pk

eGpk
eB

pk
eπpk

eμ

≤ σ.

Proof of Proposition 4. For the purposes of this proof, it is more con-
venient to index periods forward rather than backward, so that hτ is the τ
length history leading to period τ , with T − τ periods remaining.

Given hτ , let n(hτ ) denote the difference between the number of yH and
yL realizations in hτ . Then, since pH

eB = pL
eG, histories of different lengths

lead to the same posterior as long as they agree in n(hτ ), i.e., for all hτ and
hτ ′

, with τ possibly different from τ ′,

n(hτ ) = n(ĥτ ′
) ⇒ ψe(μ, hτ ) = ψe(μ, ĥτ ′

).
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We proceed by conditioning on G (the unconditional expectation is then
the average of the conditioning on G and the symmetric term from B).
Moreover, for large t, conditional on G, the probability that n(ht) is negative
goes to zero sufficiently fast, that it is enough to show that

Pr {n(hτ ) ≥ 0 for τ = 0, . . . , t − 1}×

E

{
t−1∑

τ=0

[ψe(π, hτ ) − ψe(μ, hτ )]

∣
∣
∣
∣
∣
G, aτ = e, n(hτ ) ≥ 0

}

(A.2)

is bounded. Moreover, we can also assume μ > 1/2, since conditional on G,
the probability that n(hτ ) is small becomes arbitrarily small as t becomes
large.

From Lemma A.1 (using the value of σ from (A.1)), we have that for
σ := 4r(1 − r) ∈ (0, 1), if π, μ > 1

2 , then

ψe(π, n(hτ )) − ψe(μ, n(hτ )) < σn(hτ )(π − μ).

Then the expression in (A.2) is bounded above by

t−1∑

τ=0

τ∑

n=0

Pr(n(hτ ) = n)σn(π − μ)

= (π − μ)
t−1∑

n=0

σn
t−1∑

τ=n

Pr(n(hτ ) = n)

≤ (π − μ)
∞∑

n=0

σn
∞∑

τ=n

Pr(n(hτ ) = n). (A.3)

We first bound

Pr(n(hτ ) = n) = b((τ + n)/2; τ , p) =

(
τ

(τ + n)/2

)

r(τ+n)/2(1 − r)(τ−n)/2.

Using Stirling’s formula8

√
2π mm+1/2e−m ≤ m! ≤ e mm+1/2e−m for all positive integers m,

we bound the binomial coefficients as follows
(

τ
(τ + n)/2

)

=
τ !

(τ+n)
2 ! (τ−n)

2 !

8See, for example, Abramowitz and Stegun (1972, 6.1.38).
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≤
e τ τ+ 1

2 e−τ

2π
[

(τ+n)
2

] (τ+n)
2

+ 1
2
e−

(τ+n)
2

[
(τ−n)

2

] (τ−n)
2

+ 1
2
e−

(τ−n)
2

≤
τ τ+ 1

2

√
2
[

(τ+n)
2

] (τ+n)
2

+ 1
2
[

(τ−n)
2

] (τ−n)
2

+ 1
2

=
(2τ)τ+ 1

2

(τ2 − n2)
τ
2
+ 1

2

×

(
τ − n

τ + n

)n/2

≤
(2τ)τ+ 1

2

(τ2 − n2)
τ
2
+ 1

2

≤ 2τ+ 1
2

(
τ2

τ2 − n2

) τ
2
+ 1

4

.

We also need the following calculation. Setting k :=
√

(1 + σ)/(1 − σ),
gives for all τ > kn,

τ2

τ2 − n2
σ <

k2n2

k2n2 − n2
σ

=
k2

k2 − 1
σ

=
1 + σ

2σ
σ =

1 + σ

2
=: y < 1,

where the final inequality holds because σ < 1.
We are now in a position to bound (A.3), since

∞∑

n=0

σn
∞∑

τ=n

Pr(n(hτ ) = n) =
∞∑

n=0

σn
kn∑

τ=n

Pr(n(hτ ) = n)

+
∞∑

n=0

(

σ2 r

1 − r

)n/2 ∞∑

τ=kn+1

(
τ

(τ + n)/2

)

[r(1 − r)]τ/2

≤
∞∑

n=0

σn(k − 1)n

+
√

2
∞∑

n=0

(

σ2 r

1 − r

)n/2 ∞∑

τ=kn+1

(
τ2

τ2 − n2

) τ
2
+ 1

4

[4r(1 − r)]τ/2

≤
∞∑

n=0

σn(k − 1)n
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+
√

2
∞∑

n=0

(

σ2 r

1 − r

)n/2 ∞∑

τ=kn+1

(
τ2

τ2 − n2

) 1
4

yτ/2.

Since σ < 1 and y < 1, this expression is bounded if

1 > σ2 r

1 − r
= 16r2(1 − r)2

r

1 − r
= 16r3(1 − r).
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