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Abstract

We present an oligopoly model that captures some salient features of online market-

places. Consumers engage in non-stationary sequential search based on partial product

information and advertised prices. We characterize consumers’ optimal shopping be-

havior and study its implications for price competition among the sellers. Under some

regularity assumptions, we establish the existence and uniqueness of market equilib-

rium. We then study how equilibrium prices are influenced by the market environment.

Among others, we show that a reduction in search costs increases market prices, whereas

providing better product information before consumer search may or may not increase

market prices.

JEL Classification Numbers: D43, D83, L13.

Keywords : Online marketplaces; online shopping; consumersearch; Bertrand com-

petition; product differentiation.

1 Introduction

Shopping on online marketplaces, which is already in our everyday lives, typically takes

place in the following sequence. A consumer either searcheswith a specific query or chooses
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an appropriate category. The website displays a list of suitable products, with a brief descrip-

tion of each product, such as its image, manufacturer, modelname, and price. The consumer

clicks an item and obtains more detailed information about the product. There are more im-

ages and a more complete product description. Customer reviews are also often available.

The consumer either purchases the product or checks other products. This process contin-

ues until the consumer either purchases a particular product or leaves the website. Most

consumers check multiple products but rarely examine all offered products,1 which suggests

thatsearch costsare significant even on online marketplaces.

We present a market model that captures these salient features of online shopping. In

other words, we develop a market structure which particularly well represents market in-

teractions on online platforms. There are a finite number of sellers and a large number of

consumers. Each seller posts his price.2 Consumers have different tastes for the products

(horizontal product differentiation) but do not possess full information about their values for

the products. A consumer needs to visit a seller (i.e., clicks an item and reads its full de-

scription) in order to fully gauge her value for the product.Each consumer purchases the

best product among the ones she has examined or leaves the market at any point in the pro-

cess. Note that, although the model describes consumer experiences on online marketplaces

particularly well, it is also applicable to traditional markets with active price advertisements.

Our model is closely related to two strands of the literatureon oligopoly market struc-

tures. The first strand studies Bertrand competition under product differentiation. In par-

ticular, our model adopts a taste-based framework by Perloff and Salop (1985) and extends

it to accommodate search aspects of online shopping. Indeed, our model reduces to that of

Perloff and Salop (1985) if consumers face either no search costs (in which case they visit all

the sellers) or prohibitively high search costs (in which case they visit at most one seller).3

1For some concrete evidence, see, e.g., Kim, Albuquerque andBronnenberg (2010) and
Dinerstein, Einav, Levin and Sundaresan (2014).

2We restrict attention to the posted price selling mechanism. This is not only for analytical tractabil-
ity, but also because it is the dominant selling mechanism ononline marketplaces. Even on eBay, which
is a leading platform for retail auctions in the U.S., most sales occur through posted prices (see, e.g.,
Einav, Farronato, Levin and Sundaresan, 2013).

3We contribute to the literature itself by answering some open questions in Perloff and Salop (1985). In
particular, we incorporate consumers’ outside options (which were assumed away in Perloff and Salop (1985)
for the sake of tractability), provide a technique to establish the existence and uniqueness of equilibrium (which
have been partially completed in Perloff and Salop (1985)),and show that dispersive order is an appropriate
measure for preference diversity (Perloff and Salop (1985)only showed that mean-preserving spreads have
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The second strand introduces consumer search problems intooligopoly settings. Our main

departure from this large literature is our assumption thatprices are observable to consumers

before search. In other words, in most existing studies, consumers have imperfect informa-

tion about prices and, therefore, mainly search for a betterprice, while in our model, they

search only to collect more precise information about product values, knowing all offered

prices.4 As demonstrated in what follows, this difference not only requires a distinct equi-

librium analysis, but also leads to quite different comparative statics results.

We first solve for consumers’ optimal shopping strategies. Aconsumer’s shopping prob-

lem can be interpreted as a non-stationary sequential search problem. Based on her prior

information about the products and advertised prices, she decides in which order to visit the

sellers. In addition, after each visit, she decides whetherto continue to search or stop and

purchase from any visited seller. We employ an elegant solution by Weitzman (1979), who

considered a more general class of non-stationary search problems, and provide a complete

description of consumers’ optimal shopping behavior.5

We then consider the pricing problem of the sellers. Prices affect demands through their

influence on consumers’ search behavior. The dynamic and non-stationary nature of con-

sumers’ search behavior complicates the derivation of demand functions. Nevertheless, we

show that the structure of our model allows us to precisely predict each consumer’s eventual

purchase decision and, therefore, summarize consumers’ shopping outcomes in a simple

fashion. This enables us to interpret the pricing game as a familiar discrete choice model

and, therefore, apply canonical techniques to establish the existence and uniqueness of equi-

librium and characterize equilibrium market prices.

We also study how equilibrium market prices are influenced byvarious market factors.

We begin by examining some familiar ideas in the literature.We demonstrate that the con-

ventional wisdom that prices are lower in more competitive environments holds in our en-

ambiguous effects on market prices).
4We provide a detailed discussion on one exception regardingthe price-observability assumption,

Armstrong and Zhou (2011), at the end of the introduction. A few papers consider the case in which con-
sumers search for both prices and match values (that is, if a consumer visits a seller, then she observes both the
seller’s price and her idiosyncratic value for the product). See, e.g., Wolinsky (1986), Anderson and Renault
(1999), Armstrong, Vickers and Zhou (2009), and Chen and He (2011).

5Choi and Smith (2015) considered a more restricted class of optimal search problems, which still encom-
passes the optimal shopping problem in our model. Both Weitzman (1979) and Choi and Smith (2015) focused
on optimal search behavior, which our main focus is its implications for price competition among the sellers.
In other words, our model can be interpreted as an equilibrium model of those two studies.
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vironment. Specifically, we show that market prices decrease as the number of sellers in-

creases (inside competition) or consumers’ outside optionimproves (outside competition).6

In addition, we show that market prices increase as consumers’ preferences become more

dispersive. Importantly, our analysis reveals thatdispersive orderis an appropriate measure

in the Perloff-Salop framework, thereby unifying several dispersed studies in the literature.7

We provide two particularly intriguing results. It was recognized early on that the Internet

can dramatically reduce market frictions and, therefore, should deliver more efficient market

outcomes, by transforming traditional businesses as well as creating many new markets. This

promise has been fulfilled in various ways by now, but severalphenomena that are at odds

with it still persist. In particular, it has been repeatedlyreported that the Internet has not

significantly lowered markups and reduced price dispersion(see, e.g., Ellison and Ellison,

2005; Baye, Morgan and Scholten, 2006) These suggest that search frictions are significant

even in online markets and cast doubt on the conventional wisdom that a reduction in search

frictions is necessarily beneficial to consumers. The following two results of ours provide

new insights on these fundamental issues.

We find that market prices increase as search costs decrease in our model. This is exactly

opposite to the standard result in the literature. As searchcosts increase, a consumer is less

likely to leave for another seller and, therefore, more likely to purchase from the first seller.

The sellers then have an incentive to extract more from visiting consumers and, therefore,

charge higher prices. This is the main mechanism behind the opposite result in the liter-

ature. However, it crucially depends on the assumption of noprice advertisement, which

implies that the sellers cannot influence consumers’ searchstrategies (i.e., consumer search

is effectively random). In our model, the sellers compete inprices to attract consumers (i.e.,

6We note that our regularity assumptions about the distributions are crucial for the competition results. It is
well-known that in the Perloff-Salop framework, market prices may increase as the number of sellers increases
(see, e.g., Perloff and Salop, 1985; Chen and Riordan, 2008). It occurs when each firm has significant mass of
loyal customers (who value the firm’s product a lot more than the other products). In such a case, when the
environment becomes more competitive, each firm attempts toextract more from its loyal customers, rather
than trying to steal away others’ customers. Although our regularity assumptions exclude this possibility, it is
easy to show that the same phenomenon can arise in our model. See Section 5 for a more detailed discussion.

7Perloff and Salop (1985) found that a natural stochastic ordering, mean-preserving spread, has ambiguous
effects on market prices, that is, market prices may increase or decrease as consumers’ value distributions for
the products become more spread. Based on the observation, subsequent studies have restricted attention to
rather simple measures of preference diversity (product differentiation), such as constant scaling and variances
in Gaussian environments.
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consumer search is price-directed). When search costs increase, this competition becomes

more important, given that more consumers would purchase from the first seller. This in-

duces the sellers to lower their price.

In contrast, providing better product information for consumers before search may or

may not increase market prices. Specifically, we show that market prices tend to increase

under severe (inside or outside) competition, while the opposite is true under mild compe-

tition. From a consumer’s perspective, obtaining better product information is similar to a

reduction in search costs, in that both mitigate her search burden and, therefore, make her

less price-sensitive (more value-sensitive). However, their effects on consumer search behav-

ior are opposite to each other: the former induces consumersto search less, while the latter

increases their incentive to search more. For the same logicas in the previous paragraph,

this intensifies price competition among the sellers and, therefore, has an effect of lowering

market prices. The ambiguous result of better product information is driven by the presence

of these two opposing forces.

These results allow us to reinterpret various empirical findings in the literature, which,

conversely, justifies the empirical relevance of our model.For instance, Lynch and Ariely

(2000) ran a field experiment with online wine sales and foundthat providing more product

information lowers consumers’ price sensitivity. This suggests that sellers have an incentive

to raise prices as consumer preferences become more diverseor the value of search increases

and, therefore, is consistent with our results. Bailey (1998) and Ellison and Ellison (2014)

reported that online prices are often higher than off-line prices.8 This naturally arises in

our model, given that search costs are significantly lower inonline markets than in off-line

markets. Ellison and Ellison (2009) reported that markups are relatively higher for high-

quality products than for low-quality products. Within ourmodel, this can be understood

as consumer preferences being more diverse, or the relativecost of search being lower, for

high-quality products.

Our paper belongs to the fast-growing literature on electronic commerce. It is partic-

ularly related to two subsets of the literature. First, there are several theoretical studies

that develop an equilibrium online shopping model. For example, Baye and Morgan (2001)

analyzed a model in which both the sellers and consumers decide whether to participate

8We note that this is not a universal finding in the literature.For example, Brynjolfsson and Smith (2000),
Brown and Goolsbee (2002) and Baye, Morgan and Scholten (2004) reported the opposite pattern.
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in an online marketplace, while Chen and He (2011) and Athey and Ellison (2011) pre-

sented an equilibrium model that combines position auctions with consumer search. Our

paper is unique in that the focus is on consumer search withinan online marketplace. Sec-

ond, a growing number of papers bring search theory to study online markets. For exam-

ple, Kim, Albuquerque and Bronnenberg (2010) developed a non-stationary search model

to study the online market for camcoders. De los Santos, Hortaçsu and Wildenbeest (2012)

tested some classical search theories with online book saledata and argued that fixed sample

size (i.e., simultaneous) search theory explains the data better than sequential search the-

ory. Dinerstein, Einav, Levin and Sundaresan (2014) estimated online search costs and retail

margins with a consumer search model based on the “consideration set” approach,9 and ap-

ply them to evaluate the effect of search redesign by eBay in 2011. Although empirical

analysis is beyond the scope of this paper, we think that our equilibrium model is tractable

and structured enough to be taken to data.

In terms of modelling, our paper is particularly close to Armstrong and Zhou (2011).10

They presented three models in which firms can influence consumers’ search orders. Their

second model is based on observable prices and, therefore, particularly close to our model.

The specific model is very different from ours. In particular, they adopted a spatial duopoly

(i.e., Hotelling) model and assumed perfect negative correlation for consumers’ values for

the products. Nevertheless, they also obtained one of our key results, namely that a reduction

in search costs leads to higher market prices. This suggeststhat the result is likely to hold in

an even more general environment.

The rest of the paper is organized as follows. We introduce the formal model in Sec-

tion 2. We analyze consumers’ optimal shopping problems in Section 3 and characterize the

9This approach is similar to simultaneous search, in that a consumer is assumed to consider only and all the
options presented to her. It is simpler and, therefore, moresuitable for empirical analysis than simultaneous
search, because the set of options for each consumer is exogenously determined, for example, by firm adver-
tisements, rather than optimally selected by herself. See,for example, Goeree (2008) for an application and an
empirical implementation strategy of this approach.

10A precursor to this paper is Bakos (1997). He analyzed several versions of a (circular) location model.
The main model is similar to Wolinsky (1986) and Anderson andRenault (1999): a consumer randomly selects
a seller and observes both his price and her value for the product. One of his extensions considers the case
where quality (value) information is significantly costlier than price information. The limit version where price
information can be obtained at zero cost is equivalent to thecase where prices are publicly observable and,
therefore, correspond to Armstrong and Zhou (2011) and our paper. He did not provide a full characterization
for the limit model.
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market equilibrium in Section 4. In Sections 5, 6, 7, and 8, westudy the effects of competi-

tion, preference diversity, search costs, and informationquality, respectively, on equilibrium

market prices. We conclude in Section 9. All omitted proofs are in the appendix.

2 The Model

The market consists ofn sellers and a unit mass of consumers. The sellers supply differen-

tiated products, each with no fixed cost and constant marginal costc ≥ 0. At the beginning

of the market, each seller announces a price. We denote bypi selleri’s price.11 In addition,

we letp denote the price vector for all sellers (i.e.,p = (p1, ..., pn)) andp−i denote the price

vector except for selleri’s price (i.e.,p−i = (p1, ..., pi−1, pi+1, ..., pn)). Denote byDi(p) the

measure of consumers who eventually purchase from selleri. Selleri’s profit is then defined

asπi(p) ≡ Di(p)(pi − c). Each seller maximizes his profitπi(p).

Each consumer has unit demand. A consumer’s value for selleri’s product is given by

vi = xi + yi, wherexi is known to the consumer before search, whileyi is revealed through

her visit to selleri. The known componentxi represents a consumer’s prior estimate on the

value of the product, based on easily observable characteristics, such as its brand and basic

design. The hidden componentyi captures more precise information about the product,

which is available once a consumer inspects the product morecarefully. As above, we let

x = (x1, ..., xn) andy = (y1, ..., yn) to denote a (representative) consumer’s value profile

for each component. We assume that for each consumer,xi’s are independently and identical

drawn according to the distribution functionF andyi’s are independently and identical drawn

according to the distribution functionG. In addition,xi andyj are independent of each other

for any i andj. Finally, bothF andG have full support over the real line and continuously

differentiable densityf andg, respectively.

Search is costly and with perfect recall. Specifically, eachconsumer needs to incur con-

stant costs(> 0) to visit each seller. This mainly captures the opportunity cost of time spent

for each visit but may also come from “obfuscation” (see, e.g., Ellison and Ellison, 2009;

11We assume that the sellers do not have the capacity, or are notallowed, to do any sort of price discrim-
ination. In the current search context, a particularly intriguing possibility is to discriminate consumers based
on whether they are first visitors or returning ones. See Zhu (2012) and Armstrong and Zhou (2014) for some
developments along this line.
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Ellison and Wolitzky, 2012). A consumer can purchase from any visited seller without addi-

tional costs.

A consumer’s ex post utility depends on her value for the purchased productvi, its price

pi, and the number of visits she has made before purchase. Specifically, if a consumer has

visitedk sellers and eventually purchases producti, then her ex post utility is equal to

U(xi, yi, pi, k) = xi + yi − pi − sk.

Each consumer can leave the market, without buying from any seller, at any point. A leaving

consumer takes an outside option and receives utilityu. This outside option summarizes

the opportunity cost of shopping on the current marketplace(i.e., the value of shopping on

another marketplace or visiting a local store). Each consumer is risk neutral and maximizes

her expected utility.

We maintain the following regularity assumption about the distribution functionsF and

G through the paper.

Assumption 1 Both density functionsf andg are log-concave.

It is well-known that log-concavity is satisfied with various well-behaved distributions (see,

e.g., Bagnoli and Bergstrom, 2005) and an appropriate distributional assumption in various

contexts. For example, it plays a crucial role in ensuring the existence of equilibrium in

certain models (see, e.g., Caplin and Nalebuff, 1991; Burdett and Coles, 1997), and yields

intuitive comparative statics results in various situations (see, e.g., Burdett, 1996). This also

holds in our model. We fully utilize Assumption 1 to ensure the existence and uniqueness of

equilibrium and obtain several unambiguous comparative statics results.

The market proceeds as follows. First, the sellers simultaneously announce pricesp.

Then, each consumer shops (searches) based on available information (p,x). We study

subgame Nash equilibrium of this market game.

3 Consumer Behavior

We first analyze consumers’ optimal shopping (search) problems, given pricesp ∈ Rn
+. The

characterization is used in the next section to study the sellers’ optimal pricing problems and
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characterize market equilibrium.

3.1 Optimal Shopping

Given pricesp, each consumer faces an optimal search problem. Specifically, each consumer

decides in which order to visit the sellers. In addition, after completion of each visit, she

decides whether to stop, in which case she chooses from whichseller, if any, to purchase

among those she has visited so far, or visit another seller. We implement an elegant solution

by Weitzman (1979), who considered a broader class of optimal search problems. The linear

and symmetric structure of our model permits a sharper characterization, as reported in the

following proposition.12

Proposition 1 Given the sellers’ price announcementsp = (p1, ..., pn), the optimal shop-

ping strategy for a consumer withx = (x1, ..., xn) is given as follows:

(i) Optimal search order: The consumer visits the sellers inthe decreasing order ofxi−pi

(i.e., she visits selleri before sellerj if xi − pi > xj − pj).

(ii) Optimal stopping: The consumer visits selleri if and only ifxi − pi + y∗ exceeds the

best available option by the point, that is,

xi + y∗ − pi > max{u, xj + yj − pj}, for all j such thatxj − pj > xi − pi,

wherey∗ is the value that satisfies

s =

∫ ∞

y∗
(1−G(y))dy. (1)

The general solution in Weitzman (1979) is based on a single (Gittins) index for each

option (seller). Specifically, letri be the value such that a consumer is indifferent between

obtaining utilityri immediately (which saves additional search costss) and visiting selleri

12The event that a consumer is indifferent between two choicesoccurs with probability0. For notational
convenience, we ignore such independence (equality) casesthrough the paper.

9



S1 S2 S3 S4

x1 − p1 + y∗

x2 − p2 + y∗

x3 − p3 + y∗

x4 − p4 + y∗

u
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*

Figure 1: A non-stationary shopping problem when there are 4sellers. It is optimal for the
consumer to visit seller 2 first and decide whether to visit seller 3 or not, depending on the
realization ofy2 (specifically, she visits seller 3 if and only ifx2 − p2 + y2 < x3 − p3 + y∗).
She never visits sellers 1 and 4.

(which gives her an option to choose betweenri andxi − pi + yi): formally,

ri = −s+

∫

max{ri, xi − pi + yi}dG(yi).

Weitzman (1979) showed that the optimal search strategy is to visit the sellers in the decreas-

ing order ofri and stop as soon as a realized valuexi − pi + yi is greater than all remaining

ri’s. The solution is simpler in our model, because, due to the linear utility specification and

symmetry among the sellers, eachri reduces toxi − pi + y∗.

To see consumer shopping behavior more concretely, consider an example depicted in

Figure 1. Given the consumer’s information before search(x,p), the four sellers are ranked

in the following order:S2, S3, S1, S4. If the consumer would visit all the sellers, she would

follow the same order. However, a consumer visits selleri only whenxi − pi + y∗ exceeds

the outside optionu. Therefore, in Figure 1, she visits at most two sellers, sellers 2 and

3. She first visits seller 2. If the realized value ofy2 is sufficiently high (square dot), she

immediately purchases from seller 2. If not (triangle or asterisk dot), she visits seller 3 and
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decides whether to purchase from seller 2 (ifx2+y2−p2 > max{x3+y3−p3, u}), purchase

from seller 3 (ifmax{x3 + y3 − p3 > x2 + y2 − p2, u}), or take the outside option.

Despite complexity, consumers’ optimal shopping strategies exhibit various intuitive

properties. In particular, given pricesp, consumers tend to visit more sellers as the unit

search costs decreases: ifs decreases, theny∗ increases, and thus a consumer is less likely

to stop. In the limit ass tends to0 (∞), almost all consumers never stop (never continue),

becausey∗ tends to∞ (−∞).

3.2 Shopping Outcomes

In order to characterize market equilibrium, it is necessary to derive demand functions. This

task is rather straightforward if consumers’ purchase decisions depend only on prices and

their observable preferences (e.g., Perloff and Salop, 1985) or consumers do random search

(e.g., Wolinsky, 1986; Anderson and Renault, 1999). In our model, consumers engage in

non-stationary sequential search, which significantly complicates the derivation of demand

functions.

Consider the simplest case where there are two sellers and nooutside option (so that each

consumer must purchase from one of the sellers). Even in thiscase, there are three different

paths through which a consumer eventually purchases from seller i. First, a consumer may

visit selleri first and purchases immediately (the solid region in the leftpanel of Figure 2).

Second, a consumer may visit sellerj first but eventually purchases from selleri (the solid

region in the right panel of Figure 2). Third, a consumer may visit selleri first, tries seller

j as well, but comes back and purchases from selleri (the shaded region in the left panel of

Figure 2). Total demand for selleri is the sum of all these demands. Therefore, in order to

evaluate price effects on total demand, it is necessary to aggregate the effects on all possible

paths. Notice that the number of paths grows exponentially fast as the number of sellersn

increases, and the outside option introduces additional complication.

We overcome this difficulty by focusing on eventual purchasedecisions, not on different

purchase paths. To see this concretely, consider the same duopoly case as above (without the

outside option). The precise conditions for the three purchase paths are given as follows:

• xi + y∗ − pi > xj + y∗ − pj andxi + yi − pi > xj + y∗ − pj : visit selleri first (first

inequality) and purchase producti without visiting selleri (second inequality).
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xj − pj + yj

xi − pi + yixj − pj + y∗ xi − pi + y∗

xj − pj

+y∗

xj − pj + yj

xi − pi + yixi − pi + y∗

xj − pj

+y∗

Figure 2: The condition for a consumer to eventually choose seller i over sellerj. The left
panel depicts the case when the consumer visits selleri before sellerj (xi − pi > xj − pj),
while the right panel is for the opposite case (xi − pi < xj − pj).

• xi+y∗−pi > xj+y∗−pj , xi+yi−pi < xj+y∗−pj , andxi+yi−pi > xj+yj−pj : visit

selleri first (first inequality), also visit sellerj (second inequality), but recall product

i (third inequality).

• xi+y∗−pi < xj+y∗−pj , xi+y∗−pi < xj+yj−pj, andxi+yi−pi > xj+yj−pj:

visit sellerj first (first inequality), but come to selleri (second inequality) and purchase

producti (third inequality).

Notice that the first condition can be simplified toxi +min{yi, y∗} − pi > xj + y∗ − pj,

and the second and the third conditions together can be reduced toxi +min{yi, y∗} − pi >

xj +yj−pj . Intuitively, a consumer purchases producti if she either does not visit selleri or

finds a sufficiently low realized value ofyj. Combining the last two inequalities, we arrive

at the following simple condition:

xi +min{yi, y∗} − pi > xj +min{yj, y∗} − pj.

This is a necessary and sufficient condition for a consumer toeventually purchase from seller
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i. This significantly simplifies the subsequent analysis, because it suffices to evaluate how

this inequality responds as each seller’s price changes, instead of calculating marginal effects

on each purchase path.

Furthermore, the condition can be readily extended into thegeneral case. It is easy to see

that with more than two sellers, the condition applies to anypair of sellers and, therefore, a

consumer purchases producti if and only if the inequality holds for anyj 6= i (provided that

she purchases at all). For the outside option, it suffices to add xi + min{yi, y∗} − pi > u,

because it implies that the consumer will visit at least one seller (xi + y∗ − pi > u) and not

leave without a purchase (xi+yi−pi > u). We summarize the results so far in the following

lemma.

Lemma 1 (Eventual Purchase)Let zi ≡ xi + min{yi, y∗} for eachi. Givenp, x, andy,

the consumer eventually purchases from selleri if and only ifzi − pi > max{u, zj − pj} for

all j 6= i.

Lemma 1 suggests that the random variablezi summarizes all necessary consumer value

information regarding eventual purchase decisions: in what follows, we often refer tozi as

effective consumer value. The hidden componentyi affects a consumer’s purchase decision

only partially. In particular, conditional onyi > y∗, a consumer’s purchase decision is

independent ofyi. This is a consequence of Proposition 1: if a consumer visitsselleri and

drawsyi abovey∗, then she purchases from selleri with probability1, independent of the

exact value ofyi. Even ifyi < y∗, the consumer may eventually purchase from selleri, but

with probability less than1, because she may visit other sellers or simply prefer a previous

seller to selleri.

Two remarks are in order. First, it is straightforward to accommodate seller heterogeneity

into this lemma. It suffices to apply equation (1) and identify individual-specificy∗i . Then, a

consumer purchases from selleri if and only if xi − pi + min{yi, y∗i } > max{u, xj − pj +

min{yj, y∗}} for eachj 6= i. Second, it still depends on the specifics of our model. For

example, this result does not hold if prices are not observable before search. In that case, a

consumer’s search decision is based on her expectations about the sellers’ prices, while her

final purchase decision depends on the actual prices charged. Therefore, if a seller deviates,

then a consumer’s eventual purchase decision cannot be summarized as in Lemma 1. In

addition, if a consumer can discriminate consumers based onwhether they are new visitors
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or returning ones, then the result obviously fails.

In order to utilize Lemma 1, we letH denote the distribution function for a random

variablez = x+min{y, y∗}, that is,

H(z) ≡
∫ y∗

−∞
F (z − y)dG(y) +

∫ ∞

y∗
F (z − y∗)dG(y). (2)

The distribution functionH effectively summarizes all relevant preference information re-

garding eventual purchase decisions. To see this more concretely, consider the case wheres

is sufficiently large that consumers visit at most one seller. This means that only the known

componentx affects consumers’ eventual purchase decisions. Observe that, indeed,H(z)

becomes independent ofy. Now consider the case wheres is sufficiently close to0. In

this case, most consumers visit all sellers (y∗ is arbitrarily large in this case) and make fi-

nal purchase decisions based on full information(x,y). This implies that both the known

componentx and the hidden componenty equally affect consumers’ purchase decisions.

Observe thatH(z) tends toPr{x+ y ≤ z} =
∫

F (z − y)dG(y) ass tends to0. In general,

the known componentx is fully reflected in consumers’ purchase decisions, while the hid-

den componenty affects consumers’ decisions only partially. The distribution functionH

incorporates this difference between two value componentsin a simple fashion.

Due to its particular form, the distribution functionH inherits certain properties from the

two underlying distributionsF andG, but not all. For example, its density, which we denote

byh in what follows, may not be single-peaked when bothf andg are single-peaked. For our

purpose, more important is the log-concavity of the induceddistribution, as it plays an impor-

tant role in establishing the existence and uniqueness of equilibrium. In general, the density

functionh does not inherit log-concavity, because of the mass point ony∗. The following

result shows that, nevertheless, log-concavity is inherited into the distribution functionH.

As shown later, this suffices for our purpose.

Lemma 2 The distribution functionH is log-concave.
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4 Market Equilibrium

This section analyzes the pricing game among the sellers, building upon the characterization

of consumer shopping behavior in Section 3. We first derive demand functions and derive

their basic properties. We then establish the existence anduniqueness of market equilibrium.

4.1 Demand Functions

Recall thatDi(p) denotes total demand for selleri. In a slight abuse of notation, we use

Di(pi, p
∗) to denote the demand for selleri when he postspi, while all other sellers post an

identical pricep∗. We further abuse notation and denote byDi(p
∗) the demand for selleri

when all sellers, including selleri, announce an identical pricep∗.

Lemma 1 implies that the demand function for selleri is given as follows:

Di(p) =

∫ ∞

u+pi

(

∏

j 6=i

H(zi − pi + pj)

)

dH(zi). (3)

Notice that this formulation is a familiar one in discrete choice models (except that the dis-

tribution functionH is not exogenously given here). As such, the demand functionDi(p)

exhibits various standard properties. Among others,Di(p) is decreasing inpi and increasing

in pj for anyj 6= i, which means that the products are imperfect substitutes one another.

The following lemma reports two crucial properties of the demand functionDi(p).

Lemma 3 The demand functionDi(p) is log-concave and log-supermodular inp.

Proof. Rewriting equation (3),

Di(p) =

∫ ∞

u−y∗+pi

∫ ∞

u−x+pi

(

∏

j 6=i

H(x+min{y, y∗} − pi + pj)

)

g(y)f(x)dydx.

Changing the variables withk = x− pi andl = x+ y − pi yields

Di(p) =

∫ ∞

u−y∗

∫ ∞

u

(

∏

j 6=i

H(min{l, k + y∗}+ pj)

)

g(l − k)f(k + pi)dldk.
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All the ingredients in the integrand are log-concave (because of Lemma 2 and the log-

concavity off andg), and thus the integrand as a whole is log-concave in(l, k,p). Then, by

Prékopa’s theorem,13 Di(p) is log-concave inp.

For the log-supermodularity, first observe that the log-concavity ofg implies thatg(l−k)

is log-supermodular in(−l,−k):

∂log(g(l − k))

∂(−l)
= −g′(l − k)

g(l − k)
.

Sinceg′(y)/g(y) is decreasing iny, −g′(l − k)/g(l − k) is increasing in−k. Similarly,

f(k + pi) is log-supermodular in(pi,−k) (by the log-concavity off ), andH(min{l, k +

y∗}+ pj) is log-supermodular in(−l,−k, pj) (by Lemma 2). Since the log-supermodularity

is perserved under multiplication as well as under partial integration (see Karlin and Rinott,

1980),Di(p) is log-supermodular inp.

The two properties in Lemma 3 are prevalent in various oligopoly models. The difference

is that they are driven by exogenous restrictions on the demand functionDi(p) (or, indirectly,

on the effective distribution functionH) in most existing models, whileDi(p) andH are

endogenously determined in our model.

4.2 Market Equilibrium

We now state and prove our main characterization result.

Theorem 1 There exists a unique equilibrium, in which all sellers announcep∗ such that

1

p∗ − c
=

∫

h(max{u+ p∗, z})dH(z)n−1

1
n
(1−H(u+ p∗)n)

. (4)

Proof. We establish this result with an elegant theory of supermodular games (see, e.g.,

Vives, 2005). Notice that the log-supermodularity of the demand functionDi(p) implies the

same property for the profit functionπi(p) = Di(p)(pi−c), becauselog πi(p) = logDi(p)+

log(pi − c). This implies that the pricing game among the sellers is a supermodular game,

from which the existence of equilibrium immediately follows.
13The theorem effectively suggests that log-concavity is preserved under partial integration. See, for exam-

ple, Caplin and Nalebuff (1991) and Choi and Smith (2015) fora formal statement of the theorem.
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For equilibrium uniqueness, letp∗ denote a symmetric equilibrium price. It is necessary

and sufficient (due to the log-concavity ofπi(p) = Di(p)(pi − c)) that the equilibrium price

p∗ satisfies an individual seller’s first-order condition, andthus

1

p∗ − c
= −∂Di(p

∗, p∗)/∂pi
Di(p∗)

. (5)

The left-hand side is strictly decreasing inp∗, while the right-hand side is increasing inp∗

(see the proof of Proposition 3 in the appendix for a formal proof). Therefore, there exists

a unique symmetric equilibrium. A standard result in supermodular games then implies that

there cannot exist any asymmetric equilibrium.

4.3 Alternative Equilibrium Pricing Formula

The following transformation of the equilibrium pricing function (4), which can be obtained

by applying the definition ofH and changing the variables, is useful for ensuing comparative

statics exercises.

Proposition 2 The unique equilibrium pricep∗ satisfies the following equation:

1

p∗ − c
= −

∫

f ′(xi)

f(xi)
dJ(xi), (6)

whereJ is a distribution function over[u+ p∗ − y∗,∞) such that

J(xi) ≡
∫ xi

u+p∗−y∗

(

∫∞
u+p∗−t

H(t+min{yi, y∗})n−1dG(yi)
)

dF (t)

∫∞
u+p∗−y∗

(

∫∞
u+p∗−t

H(t+min{yi, y∗})n−1dG(yi)
)

dF (t)
. (7)

To understand this result, first letΓ(xi, pi) denote the probability that a consumer withxi

eventually purchases producti, conditional on the event that selleri postspi (while all other

sellers post the equilibrium pricep∗). Applying Lemma 1,Γ(xi, pi) is given as follows:

Γ(xi, pi) =

{

0 if xi + y∗ − pi ≤ u,
∫∞
u+pi−xi

H(xi +min{yi, y∗} − pi + p∗)n−1dG(yi), if xi + y∗ − pi > u.
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Intuitively, a consumer purchases producti if and only if she has an incentive to visit the

seller (thus,xi + y∗ − pi > u), the seller’s product is acceptable even after the hidden

component is revealed (thus,xi + yi − pi > u), and she either does not visit other sellers or

does not find others’ products more desirable than selleri’s (thus,H(xi+min{yi, y∗}−pi+

p∗)n−1). Naturally,Γ(xi, pi) is increasing inxi and decreasing inpi. Importantly,Γ(xi, pi)

depends only onxi − pi, which implies that the purchase probability is invariant if xi andpi
change proportionally (that is,Γ(xi +∆, pi +∆) = Γ(xi, pi)).

IntegratingΓ(xi, pi) overxi produces total demand for selleri (equivalently, the uncon-

ditional probability that a consumer purchases producti). It follows thatJ(xi) gives the

equilibrium proportion of consumers whose observable components are belowxi among

those who eventually purchase producti (equivalently, the probability that a consumer’s ob-

servable component is less thanxi, conditional on her purchasing producti).

Suppose selleri decreases his price fromp∗ to p∗ − ε. This increases the purchase

probability fromΓ(xi, p
∗) toΓ(xi, p

∗−ε) at eachxi ∈ X. The invariance property mentioned

above, however, implies thatΓ(xi, p
∗) = Γ(xi − ε, p∗ − ε). This means that the effect of the

price change on the aggregate demand can be written as

Di(p
∗, p∗)−Di(p

∗ − ε, p∗) =

∫

Γ(xi, p
∗)(f(xi)− f(xi − ε))dxi =

∫

Γ(xi, p
∗)f ′(xi)εdxi.

Proposition 2 follows once this condition is combined with the familiar inverse elasticity

pricing rule.

5 Inside and Outside Competition

In this section, we address a classic question in industrialorganization, namely the effects of

competition on market prices. Specifically, we examine how the equilibrium price responds

to an increase in the number of sellers and to an increase in the outside option.

The following result reports that more intense competition, whether inside or outside,

lowers market prices in our model.

Proposition 3 The equilibrium pricep∗ decreases in the number of sellersn and the outside

optionu.
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In order to understand this intuitive result more deeply, first notice that consumers tend to

visit more sellers asn increases: a consumer is less likely to stop because the nextbest seller

becomes more attractive on average. This implies that consumers become more selective

and are more likely to have higher values ofxi, conditional on eventually purchasing from

selleri. Similarly, when the outside optionu improves, consumers tend to stop earlier. Since

consumers visit in the decreasing order ofxi−p∗, this also means that they are more likely to

purchase from sellers with relatively higher values ofxi. In both cases, the distribution func-

tion J in Proposition 2 increases in the sense of first-order stochastic dominance. Therefore,

for equation (6) to be preserved,p∗ must decrease.

The effects of inside competition on market prices have beenwidely investigated in the

Perloff-Salop framework. Our result complements existingfindings by incorporating con-

sumer search and proving the robustness of existing insights in such an environment. There

are two particularly intriguing results in the literature,one that equilibrium markups (p∗ − c)

do not necessarily vanish asn tends to infinity and the other that market prices increase in

n under some distributions. Both results continue to hold in our model. Inspecting equation

(6), it follows that the right-hand side converges tolimxi→∞−f ′(xi)/f(xi) asn tends to in-

finity. Therefore, equilibrium markups do not vanish if and only if f ′(xi)/f(xi) is bounded.14

The increasing-price result also depends on the behavior off ′(xi)/f(xi). We obtain Propo-

sition 3 under the assumption thatf is log-concave. Iff is log-convex (i.e.,f ′(x)/f(x) is

increasing), instead, then the opposite result holds. Assuming the existence and uniqueness

of equilibrium (which is not guaranteed without Assumption1), by the same reasoning as

above, market prices increase inn.

The outside competition result is, to our knowledge, new to the literature. The outside

option is known to significantly complicate the analysis, but also be crucial for some results

(see, e.g., Perloff and Salop, 1985; Chen and Riordan, 2008). Due to the emergence of vari-

ous online marketplaces, it has become a lot more relevant issue now. Contemporary sellers,

whether on- or off-line, compete not only within a market(place), but also across different

markets (platforms). Our simple reduced-form approach obviously has various limitations,

but it is clear that the question is an integral one in the current Internet age.

14For example, iff is a normal distribution, thenp∗ converges to0, while if f is a logistic distribution with
scale parameterσ, thenp∗ − c converges toσ asn tends to infinity.
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6 Preference Diversity

Product differentiation is a classic solution to the Betrand paradox (see Tirole, 1988): a

seller can retain the consumers who particularly value his product even if he charges a

higher price than the other sellers. It is plausible that themore differentiated consumers’

preferences are, the higher prices the sellers charge. Thisconjecture has been one of cen-

tral questions in oligopoly models of product differentiation (see, e.g., Perloff and Salop,

1985; Anderson et al., 1992; Anderson and Renault, 1999). Inthis section, we address this

question within our framework. In so doing, we also generalize some known results in the

literature.

The following measure of stochastic orders, so calleddispersive order, plays a crucial

role in what follows.

Definition 1 The distribution functionH2 is more dispersed than the distribution function

H1 if H−1
2 (b)−H−1

2 (a) ≥ H−1
1 (b)−H−1

1 (a) for any0 < a ≤ b < 1.

Intuitively, a more dispersed distribution function increases more slowly, as it density is more

spread. Note that this order is location-free (in the sense that it is independent of the absolute

values of the distribution function) and, therefore, neither is implied by nor implies first-order

or second-order stochastic dominance. Mean-preserving dispersive order, however, implies

mean-preserving spread: ifH2 is more dispersed thanH1 with the same mean, thenH2 is a

mean-preserving spread ofH1.15

We first provide a result concerning the relationship between the equilibrium pricep∗

and the (endogenous) distribution functionH.16 Our result complements the findings in

Perloff and Salop (1985). They studied the same problem for the case where there is no

outside option (i.e.,u = −∞). They found that constant scaling of consumers’ preferences

necessarily increases the equilibrium price, but failed tofurther generalize the result. In

particular, they showed that the effect of mean-preservingspreads on the equilibrium price is

ambiguous in general. Our result reveals that there is a goodsense in which dispersive order

is an appropriate measure of product differentiation (preference diversity).

15See Shaked and Shanthikumar (2007) for further details.
16A very close result was independently discovered by Zhou (2015), who studied the effects of bundling in

the Perloff-Salop framework. Precisely, his Lemma 2 is equivalent to our Proposition 4, provided that there is
no outside option (i.e.,u = −∞). Our result is more general than his, in that we allow for theoutside option.
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Proposition 4 The equilibrium pricep∗ increases as the distribution functionH becomes

more dispersive andH(u+ c) weakly decreases.

Proof. Equation (4) in Theorem 1 can be rewritten as

1

p∗ − c
=

∫

h(max{u+ p∗, z})dH(z)n−1

1
n
(1−H(u+ p∗)n)

=
h(H−1(φ))φn +

∫ 1

φ
h(H−1(a))dan−1

1
n
(1− φn)

,

whereφ ≡ H(u + p∗) and the second term in the numerator is obtained through changing

the variable witha = H(z). Observe that ifH becomes more dispersive,dH−1(a)/da =

1/h(H−1(a)) increases (i.e.,h(H−1(a) decreases) for eacha. If, in addition, H(u + c)

decreases, thenφ = H(u+p∗) also decreases for anyp∗ ≥ c, because a distribution function

crosses a less dispersive one only once from above. Notice that both of these lower the right-

hand side. Now recall that the left-hand side is strictly decreasing inp∗, while the right-hand

side is strictly increasing inp∗ (equivalently,φ). Therefore, for the equilibrium equation to

be restored,p∗ must increase.

Proposition 4 becomes more transparent if there is no outside option. In this case, the

second condition aboutH(u + c) is vacuous, and thus dispersive order alone dictates how

market prices vary. To see the necessity of the second condition, recall that dispersive order

and first-order stochastic dominance can go in the opposite direction, that is, a distribution

functionH1 can first-order stochastically dominates a more dispersed distribution function

H2. This means that an increase ofH in the sense of first-order stochastic dominance may

decreasep∗ if the change reduces the dispersion ofH. This counter-intuitive result arises

only when there is no outside option. With an outside option,other distributional changes

(in particular, first-order stochastic dominance) also influence market prices. The second

condition captures the effect. Notice that it is significantly weaker than, and is implied by,

first-order stochastic dominance.

We now return to our model and analyze the effects of varying our primitive distribution

functionsF andG. Proposition 6 suggests that it is most crucial to study their effects on

the distribution functionH. The following proposition provides three ways to increasethe

dispersion ofH, each of which then can be combined with Proposition 4.

Proposition 5 (i) Scaling: Supposexi andyi are drawn according to the distribution func-

21



tionsF θ(xi) andGθ(yi), respectively, whereF θ(xi) = F (xi/θ) andGθ(yi) = G(yi/θ). The

induced distribution functionH becomes more dispersive asθ increases.

(ii) Hidden component: The distribution functionH becomes more dispersive as the

distribution functionG becomes more dispersed.

(iii) Known component: If the density functionf is decreasing over its support, thenH

becomes more dispersive asF becomes more dispersed.

The results are fairly intuitive. The underlying random variable for the distribution func-

tion H is z = x + min{y, y∗}. Therefore, simultaneous scaling of bothx andy scales upz

proportionally, which naturally increases the dispersionof H. Intuitively, making each com-

ponent more dispersive should also increase the dispersionof the overall distribution. The

argument works in general for the hidden componenty, but not for the known component

x. This is, of course, because of the asymmetry between the two. In particular, the upper

truncation structure ofy generates a probability mass for eachx. This does not interfere

in the dispersion ofy being transferred to that ofz, but may betweenx andz. If the den-

sity functionf is decreasing, it is still possible to establish the desiredresult. However, it

does not hold in general. Indeed, we have a counterexample inwhich market prices strictly

decrease whenx becomes more dispersed.

7 Search Costs

In this section, we study the relationship between the equilibrium pricep∗ and search costs

s. Although this is a classic question in search models, it hasbecome an even more relevant

question, due to fast developments of communication technologies and online marketplaces,

which are believed to have dramatically reduced search costs. Intuitively, a reduction in

search costs induces more consumer search, intensifies price competition and, therefore,

lowers market prices. This intuition has been confirmed in existing search models (see, e.g.,

Wolinsky, 1986; Anderson and Renault, 1999). In stark contrast, we find that the opposite

result holds in our model.

Proposition 6 The equilibrium pricep∗ decreases as the unit search costs increases.

Interestingly, we prove this result by applying Proposition 4: we show that the distribu-

tion functionH increases in the sense of first-order stochastic dominance and becomes more
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dispersive ass decreases. Intuitively, consumers visit more sellers as search costs decrease.

This makes consumers’ effective values increase (as they find better match values) as well

as more dispersed (asyi’s get better reflected). Then, for the reasons given in the previous

section (i.e., more dispersed consumer preferences), the sellers charge a higher price.

In most existing search models, prices are not observable toconsumers before search. In

this case, an increase in search costs decreases the value ofadditional search and, therefore,

increases the probability that a consumer purchases from a given seller. This induces the

sellers to charge a higher price as search costs increase. Inour model, however, prices are

observable before search and influence consumers’ search behavior (see Proposition 3): the

lower price a seller offers, the more consumers visit him first. As search costs increase,

consumers search less and are more likely to purchase from their first visit. This intensifies

price competition among the sellers and leads to lower market prices.17

In models without price advertisements, the effect of increasing search costs on the sell-

ers’ profits is ambiguous. Ass increases, the sellers charge a higher price and extract more

from remaining consumers. However, less consumers shop in the first place, and thus the

sellers face overall lower demand. In our model, the effect is clearly negative, as shown in

the following proposition.

Proposition 7 Each seller’s profitπi(p
∗) decreases in search costss.

This result is particularly easy to see where there is no outside option. In that case, total

demand is constant and, in equilibrium, each seller serves1/n of consumers. Therefore,

equilibrium prices and profits always move in the same direction. The sellers’ profits in-

crease ins without price advertisements (in existing models) but decrease ins with price

advertisements (in our model). When there is an outside option, total demand depends both

on search costss and market pricesp∗. In our model,p∗ decreases ins, which offsets a direct

reduction in total demand due to an increase ins. However, in equilibrium, total demand

never increases sufficiently fast, and thus the seller’s profits always decrease ass increases.

In contrast, Proposition 6 raises an interesting possibility regarding consumer welfare,

17In a comparable monopoly setting, the same result holds, because the monopolist must compensate con-
sumers for their search costs. Intuitively, if search costsare sufficiently large, then consumers would not even
bother to search, unless the price is sufficiently low. Although this effect is present in our model, it is not the
driving force for Proposition 6. This is best reflected in thefact that Proposition 6 holds even if there is no
outside option, and thus all consumers must visit at least one seller.
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namely that it may increase when search costs increase. An increase in search costs has a

negative direct effect on consumer welfare. However, if thesellers lower their prices dra-

matically in response, overall consumer welfare may rise. Indeed, we have an example in

which an increase in search costs is beneficial to consumers.It arises when consumers’ out-

side option is sufficiently low and there are sufficiently fewsellers. In this case, the sellers

possess strong market power and, therefore, charge a high price. An increase in search costs

induces them to drop their prices quickly, up to the point where the indirect effect outweighs

the direct effect and, therefore, consumer welfare increases.

8 Information Quality

In this section, we analyze the effects of improving information quality on online market-

places. Specifically, we study how consumers and sellers respond when consumers receive

more accurate information about their values before search.

For tractability, we specialize our model into the Gaussianlearning environment through

this section.18 Specifically, we assume that bothF andG are given by normal distribu-

tions with mean0. In addition,F has varianceα2, while G has variance1 − α2, for some

α ∈ (0, 1). The variances are deliberately chosen so that a change inα does not affect the dis-

tribution for underlying ex post valuesx+y: notice thatx ∼ N (0, α2) andy ∼ N (0, 1−α2),

and thusx+ y ∼ N (0, 1), independent ofα.

We interpretα as the parameter that measures information quality. To see this clearly,

first consider the case whenα is close to1. In this case, consumers’ values for the products

are fully known before search. Then, the model shrinks to that in Perloff and Salop (1985),

and consumers visit at most one seller. Now consider the casewhereα is close to0. In this

case, consumers have little information about their valuesand, therefore, are likely to visit

multiple sellers. More generally, asα increases, consumers possess more prior information

about their values and, therefore, tend to search less.

In general, the effect of increasingα on the equilibrium market pricep∗ is ambiguous and

may take a complex structure, such as multiple peaks. This isbecause of the presence of two

opposing effects. On the one hand, effective consumer values (z) become more diverse: pre-

18See Choi and Smith (2015) for a thorough discussion on the advantages and foundation of this specifica-
tion.
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cisely, an increase ofα incurs a mean-preserving spread of the distribution functionH.19 As

shown in Section 6, this tends to make consumers less price-sensitive (more value-sensitive)

and, therefore, increase market prices. On the other hand, it decreases the value of visit-

ing an additional seller and obtaining further informationand, therefore, lowers consumers’

search incentives. Similarly to an increase in search costss in Section 7, this intensifies price

competition and, therefore, depresses market prices. Whetherp∗ increases or decreases inα

depends on the relative strength of these two effects.

We provide two results that help us understand what goes when. The first result highlights

the role of inside competition (n), while the second result illustrates the role of outside

competition (u). We provide an intuitive explanation for each result, while relegating formal

proofs to the appendix.

Proposition 8 Suppose there is no outside option (i.e.,u = −∞). There exists an integer

n∗(α) such that a marginal increase inα increases the equilibrium market pricep∗ if and

only if the number of sellersn exceedsn∗(α).

To understand this result, first notice that consumer demandfor each seller becomes

more elastic as the number of sellersn increases, because it becomes more likely that there

are close substitutes for each seller’s product. This implies that the first preference-diversity

effect has a larger marginal impact on the market price when there are more sellers. In con-

trast, the second search-incentive effect is less sensitive to the number of sellers. Therefore,

market prices tend to decrease inα when there are few sellers and increase inα when there

are many sellers.

Proposition 9 If the outside option exceedsy∗ (givenα ∈ (0, 1)), then a marginal increase

in α increases the equilibrium market pricep∗.

If the outside optionu is sufficiently lucrative, then consumers explore a productonly

when it looks sufficiently promising (i.e.,xi is sufficiently large). In other words, consumers

have little search incentives. This implies that the secondsearch-incentive effect has only a

small marginal impact. Since the first preference-diversity effect dominates, market prices

increase inα.
19See the proof of Proposition 8 in the appendix.
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9 Conclusion

We have developed a new market structure that captures some prominent features of on-

line shopping and examined many basic properties of the model. Consumers undergo non-

stationary sequential search based on partial product information and advertised prices. We

have explained how to accommodate such non-stationary search behavior in an equilibrium

framework and how to apply existing techniques to characterize the market equilibrium of

the model. In addition, we have studied various implications for price competition among

the sellers. Among others, our model predicts that market prices increase as search costs

decrease, which is opposite to a common result in existing consumer search models. In

contrast, providing better product information before search, which also eases off consumer

search, may or may not lead to higher market prices. These results are consistent with some

existing empirical findings and provide concrete guidance for future work.

Price dispersion is a pervasive phenomenon even in online markets.20 We have abstracted

away from it, in order to glean main insights from our model more efficiently. There are two

straightforward ways to generate price dispersion within our framework. First, if there is no

heterogeneity among consumers about the known componentx (i.e., the distribution function

F is degenerate), then the sellers’ demand functions are not continuous (as all consumers use

the same search order), and thus equilibrium necessarily involves price mixing. Although

this alternative specification generates price dispersion, it is well-known that it is analytically

intractable and, therefore, not suitable for further analyses. Second, more directly, it suffices

to introduce heterogeneity among the sellers. Various specifications are possible: the sellers

may have different search costs (si), marginal cost (ci), or different consumer values (Fi, Gi).

For either specification, our techniques in Sections 3 and 4 can be used to establish the

existence of equilibrium. Equilibrium uniqueness is much harder to establish, but some

comparative statics results would be feasible, due to the supermodular structure of the game.

We leave these and related extensions for future research.

Our framework can be used to evaluate the effects of various policies by platform providers.

To begin with, it is clear that ex ante price information is beneficial to consumers: notice that

if search costs are negligible (i.e.,s is close to0), then it does not matter whether prices

20See, e.g., Brynjolfsson, Hu and Smith (2003), Baye, Morgan and Scholten (2004), and Ellison and Ellison
(2005).
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are observable before search or not. However, market pricesincrease ins if prices are not

observable, while they decrease ins if prices are observable. Therefore, price advertise-

ments always lower market prices. It also follows that a platform provider would be willing

to restrict the use of hidden fees. We did not specify a platform provider’s preferences,

but her profit maximization problem is obviously interesting. Our model provides a micro-

foundation of interactions among market participants and,therefore, might help enrich our

understanding of optimal platform pricing.

Appendix

Proof of Lemma 1. Supposezi − pi > u andzi − pi > zj − pj for anyj 6= i. The former

implies that the consumer visits at least one seller (xi + y∗ − pi > u) and makes a purchase

(xi + yi − pi > u). The latter implies that, by the same reasoning as in the duopoly case, she

does not purchase any other product. Combining the two results, it follows that the consumer

purchases producti.

Now suppose eitherzi−pi < u or there existsj such thatzi−pi < zj−pj . In the former

case, the consumer does not visit selleri (xi + y∗ − pi < u) or does not purchase producti

even if she visits (xi + yi − pi < u). In the latter case, she either does not purchase at all or

purchase a different product, whether she visits selleri or not.

Proof of Lemma 2. Integrating equation (2) by parts and changing the variablewith

y = z − x leads to

H(z) = F (z − y∗) +

∫ ∞

z−y∗
G(z − x)dF (x) =

∫ ∞

−∞
G̃(y)f(z − y)dy, (8)

whereG̃(y) ≡ 1 for y > y∗ andG̃(y) ≡ G(y) for y ≤ y∗. Then

h(z)

H(z)
=

∫∞
−∞ G̃(y)f ′(z − y)dy
∫∞
−∞ G̃(y)f(z − y)dy

=

∫∞
−∞ G̃(z − s)f(s)f

′(s)
f(s)

ds
∫∞
−∞ G̃(z − s)f(s)ds

.

The second equality is through a change of variable withs = z − y. To show thatH(z) is

log-concave inz, it suffices to showh(z)/H(z) falls in z. To this end, note that the ratio
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f ′(s)/f(s) falls in s by the log-concavity off . Therefore, the RHS falls inz if the random

variable induced by the probability densitỹG(z−s)f(s) rises inz in the first order stochastic

dominance sense. We argue this is true by showing thatG̃(z−s2)f(s2)/[G̃(z−s1)f(s1)] rises

in z for all s2 > s1, or equivalently,G̃(z− s2)/G̃(z− s1) rises inz. If z− s1 > z− s2 ≥ y∗,

then G̃(z − s2)/G̃(z − s1) = 1 and it remains constant asz rises. If z − s1 ≥ y∗ >

z − s2, thenG̃(z − s2)/G̃(z − s1) = G(z − s2) rises inz. If y∗ > z − s1 > z − s2, then

G̃(z − s2)/G̃(z − s1) = G(z − s2)/G(z − s1) rises inz by the log-concavity ofG.

Proof of Proposition 3. Recall that the equilibrium pricep∗ solves equation (6) and

the ratiof ′(x)/f(x) falls in x by the log-concavity off . Hence it suffices to show that the

distribution functionJ in Proposition 2 increases inp∗, u, andn in the sense of first-order

stochastic dominance.

Let Ω(u, t, n) =
∫∞
u−t

H(t+min{yi, y∗})n−1dG(yi) so that (??) becomes

J(xi) =

∫ xi

u+p∗−y∗
Ω(u+ p∗, t, n)dF (t)

∫∞
u+p∗−y∗

Ω(u+ p∗, t, n)dF (t)
=

∫∞
u+p∗−y∗

1{t ≤ xi}Ω(u+ p∗, t, n)dF (t)
∫∞
u+p∗−y∗

Ω(u+ p∗, t, n)dF (t)

where1{t ≤ xi} is an indicator function and thus it falls int. This can be interpreted as an

expectationE[1{T ≤ xi}] where the random variableT has densityΩ(u+ p∗, t, n)f(t) and

support[u+p∗−y∗,∞). The random variableT rises in the first order stochastic dominance

sense inp∗ or u through two channels. First,Ω(u + p∗, t) is log-supermodular in(p∗, t) or

(u, t) by Lemma 4 below. Second, the lower supportu+ p∗− y∗ rises inp∗ or u. Altogether,

J(xi) falls in p∗ or u. Similarly,J(xi) falls in n becauseΩ(u+ p∗, t) is log-supermodular in

(t, n) by Lemma 4 below.

Lemma 4 AssumeΩ(u, t, n) =
∫∞
u−t

H(t + min{y, y∗})n−1dG(y). ThenΩ(u, t, n) is log-

supermodular in(u, t) and(t, n).

Proof. For (u, t), differentiate wrtu and change variables = y − u+ t:

∂Ω(u, t, n)/∂u

Ω(u, t, n)
=

−H(min{u, t+ y∗})n−1g(u− t)
∫∞
0

H(min{s+ u, t+ y∗})n−1g(s+ u− t)ds
.
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The ratioH(min{u, t + y∗})/H(min{s + u, t + y∗}) falls in t becauseH is an increasing

function. The ratiog(u− t)/g(s+ u− t) falls in t by the log-concavity ofg. Therefore, the

RHS rises int. This proves the log-supermodularity in(u, t).

For (t, n), change variables = y − u+ t. Then

Ω(u, t, n) =

∫ ∞

0

H(min{s+ u, t+ y∗})n−1g(s+ u− t)ds.

The functionH(min{s+u, t+y∗}) andg(s+u−t) are log-supermodular in(s, t) by the log-

concavity ofH andg respectively. Therefore the integrandH(min{s+ u, t+ y∗})n−1g(s+

u− t) is log-supermodular in(s, t, n). Since log-supermodularity is preserved under partial

integration by Karlin and Rinott (1980),Ω(u, t, n) is log-supermodular in(t, n).

The following lemma is used in the proofs of Propositions 5 and 6.

Lemma 5 The effective consumer valuez = x+min{y, y∗} becomes more dispersive (i) as

the hidden componenty grows more dispersive or (ii) as search costss decrease.

Proof. By Theorem 3.B.8 in Shaked and Shanthikumar (2007) (SS, hereafter),z grows more

dispersive ifmin{y, y∗} grows more dispersive andx has log-concave density. Since we

assumef is log-concave, it suffices to show thatmin{y, y∗} becomes more dispersive asy

grows more dispersive or ass falls. To this end, let̃G be the cdf ofmin{y, y∗}. The slope of

the quantile function is∂G̃−1(a)/∂a = ∂G−1(a)/∂a for a < G(y∗) and0 for a > G(y∗).21

Proof of (i): Assumey2 ≥disp y1, namelyy2 is more dispersive thany1. For i = 1, 2, let

Gi be the cdf ofyi and lety∗i be the solution for equation (1) when the hidden component

is yi. Also, let G̃i be the cdf ofmin{yi, y∗i }. Since∂G−1
2 (a)/∂a ≥ ∂G−1

1 (a)/∂a by the

definition of the dispersive order andG2(y
∗
2) ≥ G1(y

∗
1) (see Choi and Smith (2015) for a

proof),G̃−1
2 (a) is weakly steeper thañG−1

1 (a) for all a ∈ (0, 1), or equivalentlymin{y2, y∗2}
is more dispersive thanmin{y1, y∗1}.

Proof of (ii): Assumes2 > s1 and lety∗i be the solution for equation (1) when the

search cost issi for i = 1, 2. Let G̃i be the cdf ofmin{yi, y∗i }. As s falls, y∗ increases by

equation (1). Thusy∗2 ≤ y∗1 andG(y∗2) ≤ G(y∗1). Since∂G̃−1
i (a)/∂a = ∂G−1(a)/∂a for

21The derivative ata = G(y∗) does not exist but this does not affect the dispersion ofG̃.
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a < G(y∗i ) and is0 otherwise,G̃−1
1 (a) is weakly steeper thañG−1

2 (a) and thusmin{y, y∗1} is

more dispersive thanmin{y, y∗2}.

Proof of Proposition 5. (i) Assume the cdf ofx andy areF (x/θ) andG(y/θ) respec-

tively. Definex̃ = x/θ, ỹ = y/θ and ỹ∗ = y∗/θ, and thusz = θ(x̃ + min{ỹ, ỹ∗}). The

random variablez grows more dispersive inθ through two channels. First, an increase inθ

scales upz and thus increases the dispersion ofz. Second,̃y∗ rises inθ andz grows more

dispersive as̃y∗ rises by Lemma 5 (ii). To see whỹy∗ rises inθ, recall that when the cdf of

y is G(y/θ), we haves =
∫∞
y∗
[1 − G(y/θ)]dy by equation (1). Substitutẽy andỹ∗ into this

equation to derives = θ
∫∞
ỹ∗
[1−G(ỹ)]dỹ. Then it is easy to seẽy∗ rises inθ.

(ii) See (i) in Lemma 5.

(iii) Consider two random variablesxi for i = 1, 2. Assume they have lower support

x > −∞ and decreasing densityfi(x). Also assumex2 ≥disp x1. Thenx2 is higher than

x1 in the first order stochastic dominance sense by Theorem 3.B.13 in SS. We will prove

x2 +min{y, y∗} ≥disp x1 +min{y, y∗}.

Define a random variablext with cdf F (x, t) and pdff(x, t) for t ∈ (0, 1). Assume

the quantile function ofxt is F−1(a, t) = (1 − t)F−1
1 (a) + tF−1

2 (a) for a, t ∈ (0, 1). It is

easy to check that (i)xt rises in the first order stochastic dominances sense int, namely that

F (x, t) falls in t, (ii) f(x, t) falls in x and (iii) xt grows more dispersed int, namely that

∂F−1(a, t)/∂a rises int.22

To prove the proposition, it is sufficient to showzt ≡ xt + min{y, y∗} grows more

dispersive int. This occurs if∂H−1(a, t)/∂a rises int for all a ∈ (0, 1), or equivalently

∂2H−1(a, t)/∂a∂t = −∂[Ht(z, t)/h(z, t)]/∂z ≥ 0 for all z. Therefore,zt grows more

dispersive ifHt(z, t)/h(z, t) falls in z. By (8),

Ht(z, t)

h(z, t)
=

∫∞
−∞ Ft(z −min(y, y∗), t)g(y)dy
∫∞
−∞ f(z −min(y, y∗), t)g(y)dy

=

∫ −x

−∞
Ft(max(−r,z−y∗),t)
f(max(−r,z−y∗),t)

f(max(−r, z − y∗), t)g(r + z)dr
∫ −x

−∞ f(max(−r, z − y∗), t)g(r + z)dr
.

The last line applies a change of variabler = y − z. The last line can be interpreted

22To see (iii), note that∂2F−1(a, t)/∂a∂t = ∂F−1

2
(a)/∂a− ∂F−1

1
(a)/∂a ≥ 0. The last inequality is true

becausex2 is more dispersed thanx1, and thusF−1

2
is steeper thanF−1

1
.
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asE[Ft(max(−R, z − y∗), t)/f(max(−R, z − y∗), t)] where the random variableR has

densityf(max(−r, z − y∗), t)g(r + z). The functionFt(x, t)/f(x, t) falls in x because

∂[Ft(x, t)/f(x, t)]/∂x = −∂2F−1(a, t)/∂a∂t ≤ 0. The last inequality is true because

∂F−1(a, t)/∂a rises int by the dispersive order. The expectation falls inz for two reasons.

First,Ft(max(−R, z−y∗), t)/f(max(−R, z−y∗), t) falls in z for any givenR. Second, the

random variableR falls stochastically inz if by the log-concavity ofg andf ′ ≤ 0.

Proof of Proposition 6. As mentioned in the main text, we prove that the distribution

functionH increases in the sense of first-order stochastic dominance and becomes more dis-

persive ass decreases. The result then follows from Proposition 5. For first-order stochastic

dominance, recall that

H(z) =

∫

F (max{x, z − y∗})g(z − x)dx.

As s decreases,y∗ increases, and thusF (max{x, z−y∗}) weakly decreases. Since this holds

for anyx, H(z) weakly decreases, which establishes the desired result. See Lemma 5 (ii) for

the claim about the dispersive order.

Proof of Proposition 7 . An increase ins affects each firm’s profitπi(p) = Di(pi, p−i)(pi−
c) through the following three channels:

∂πi(p)

∂s
=

∂pi
∂s

∂πi(p)

∂pi
+

∂p−i

∂s

∂πi(p)

∂p−i

+
∂y∗

∂s

∂πi(p)

∂y∗
.

Each term represents the marginal effect of own price, that of the other sellers’ prices, and

that of consumer shopping behavior, respectively. In equilibrium, the first effect vanishes (the

envelope theorem), while the other two effects are negative. The result for the second follows

from ∂p−i/∂s ≤ 0 (Proposition 6) and∂πi(p)/∂p−i ≥ 0 (as the products are imperfect

substitutes one another). The result for the last term is dueto the fact that∂y∗/∂s < 0

(see Proposition 1), while∂πi(p)/∂y
∗ ≥ 0. To see the last inequality, recall thatz =

x+min{y, y∗}, and thus an increase iny∗ increases the distribution functionH in the sense

of first-order stochastic dominance. This implies that consumers are less likely to exercise

the outside option and, therefore,Di(p
∗, p∗) increases iny∗.
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The following lemma is used in the proofs of Propositions 8 and 9.

Lemma 6 (i) The mean ofH is equal to−s, independent ofα.

(ii) H(z) decreases inα (i.e.,∂H(z)/∂α < 0) if and only ifz > y∗.

(iii) There existsa′(≤ H(y∗)) such thath(H−1(a)) decreases inα (i.e.,∂h(H−1(a))/∂α <

0) if and only ifa > a′.

Proof. (i) The mean ofH is equal to

E[z] = E[x+min{y, y∗}] = E[x] + E[min{y, y∗}] =
∫ y∗

−∞
ydG(y) + (1−G(y∗))y∗.

SinceE[y] = 0,

E[z] = −
∫ ∞

y∗
ydG(y) + (1−G(y∗))y∗.

Combining this with the fact that

s =

∫ ∞

y∗
(1−G(y))dy = −(1−G(y∗))y∗ +

∫ ∞

y∗
ydG(y),

it follows thatE[z] = −s, independent ofα.

(ii) Let Φ denote the distribution function for the standard normal distribution andφ

denote its density function. Sincex ∼ N (0, α2) andy ∼ N (0, 1 − α2), F (x) = Φ(x/α)

andG(y) = Φ(y/
√
1− α2). Differentiating equation (8) with respect toα yields

Hα(z) ≡
∂H(z)

∂α
= −

[

1− Φ

(

y∗√
1− α2

)](

z − y∗

α2

)

φ

(

z − y∗

α

)

,

where∂y∗/∂α can be obtained from equation (1) by applying the implicit function theorem.

The desired result is immediate from this equation.

(iii) From the equation above (or by differentiating the density of H with respect toz),

we get

hα(z) ≡
∂h(z)

∂α
= −

[

1− Φ

(

y∗√
1− α2

)]

[

1−
(

z − y∗

α

)2
]

1

α2
φ

(

z − y∗

α

)

.
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Now observe that

∂h(H−1(a))

∂α
= hα(H

−1(a))−Hα(H
−1(a))

h′(H−1(a))

h(H−1(a))
.

Let z = H−1(a) and applyHα(z) andhα(z) to the equation. Then,

∂h(H−1(a))

∂α
=

−1

α2

[

1− Φ

(

y∗√
1− α2

)]

φ

(

z − y∗

α

)[

1− (z − y∗)2

α2
− (z − y∗)

h′(z)

h(z)

]

.

Since

h(z) =
1√

1− α2

∫ ∞

−∞
φ

(

z − y∗

α
+max{r, 0}

)

φ

(

y∗ − αr√
1− α2

)

dr,

we have

h′(z)

h(z)
= −z − y∗

α2
−
∫∞
−∞max{r, 0}φ

(

z−y∗

α
+max{r, 0}

)

φ
(

y∗−αr√
1−α2

)

dr

α
∫∞
−∞ φ

(

z−y∗

α
+max{r, 0}

)

φ
(

y∗−αr√
1−α2

)

dr
.

Applying this to the above equation leads to

∂h(H−1(a))

∂α
∝ −1 +

(

z − y∗

α

)2

+ (z − y∗)
h′(z)

h(z)

= −1− (z − y∗)

α

∫∞
0

rφ
(

z−y∗

α
+max{r, 0}

)

φ
(

y∗−αr√
1−α2

)

dr

∫∞
−∞ φ

(

z−y∗

α
+max{r, 0}

)

φ
(

y∗−αr√
1−α2

)

dr
.

The last expression is clearly negative ifz > y∗. In addition, it converges to∞ asz tends

to −∞ and decreases inz wheneverz ≤ y∗. Therefore, there existsz′(< y∗) such that the

expression is positive if and only ifz < z′. The desired result follows from the fact that

z = H−1(a) is strictly increasing ina.

Proof of Proposition 8. If u = −∞, then equation (4) shrinks to

1

p∗ − c
= n

∫

h(z)dH(z)n−1 = n

∫ 1

0

h(H−1(a))dan−1.
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Differentiating this equation with respect toα leads to

∂p∗

∂α
= −(p∗ − c)2n

∫ 1

0

∂h(H−1(a))

∂α
dan−1.

The desired result follows from (iii) in Lemma 6 and the fact that for any real value function

γ : R → R, if
∫ 1

0
γ(a)dan = 0 and there existsa′ such thatγ(a) < 0 if and only if a > a′,

then
∫ 1

0

γ(a)dan+1 =
n+ 1

n

∫ 1

0

γ(a)adan ≤ 0.

The last inequality is due to the fact thata is positive and strictly increasing and, therefore,

assigns more weight to the negative portion ofγ(a) in the integral. The result follows by

lettingγ(a) = ∂h(H−1(a))/∂α.

Proof of Proposition 9. A necessary condition for a consumer to purchase from selleri

is zi − pi ≥ u. If u ≥ y∗, then only the right tail ofH(z) (abovey∗) affects the equilibrium

price. For this region,H(z) grows more dispersive (by (iii) in Lemma 6) and increases inα

in the sense of first-order stochastic dominance (by (ii) in Lemma 6). The result then follows

from Proposition 5.
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