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Abstract

Consider a dynamic market where heterogeneous buyers and sellers are random-

ly paired in each period. Within each match, seller types become observable while

buyer types remain private information, and sellers make take-it-or-leave-it offers. We

first establish the existence of steady state equilibrium and then characterize properties

of sorting given two extreme search frictions. When agents completely disregard for

future payoffs, a stronger condition of log-supermodularity (log-submodularity) of the

production function is necessary and sufficient for positive (negative) assortative match-

ing. When search frictions vanish, the condition for positive (negative) sorting returns

to supermodularity (submodularity). In this setting with supermodular or submodular

valuations, we demonstrate that as search frictions diminish to zero, search equilibria

converge to perfect competition.
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1. Introduction

The value of a traded good often depends on both buyer and seller types. When there

is complementarity between the two sides, investigating the sorting pattern is crucial for

studying the decentralized trading outcomes. To this end, this paper focuses on large markets

with information and search frictions and looks into the underlying environment factors that

influence the agents’ sorting decisions, the speed of trade and the division of the surplus.

Moreover, we would like to ask if the trading outcomes become socially efficient as search

frictions diminish. To our best knowledge, this is the first attempt in the literature to show

the convergence in a setting with supermodular (or submodular) interdependent valuations

and private information.

Becker (1973) serves as a benchmark characterization of sorting—in a ”frictionless” world,

Positive Assortative Matching (henceforth PAM) arises when output is supermodular in

types, while Negative Assortative Matching (NAM) occurs with submodular output. We

depart from Becker’s setting by restricting the interactions of agents in two ways. First, it

is difficult to meet potential trading partners, as each buyer encounters only a random seller

in each period (and vice versa). Second, in each meeting of potential trading partners, the

seller cannot observe the buyer’s type.

More precisely, our environment is a repeated, bilateral matching market with exogenous

entry. Buyers and sellers are heterogeneous and have persistent types. They are randomly

matched pairwise in each period. In each match, the seller’s type can be jointly observed, but

only the buyer knows her own type (and thus knows the joint output). In turn, the seller has

all of the bargaining power and can make a take-it-or-leave-it offer. If the pair agree to trade,

the buyer receives the joint output, which is an increasing function of both agents’ types,

and both of them leave the market permanently. Otherwise, the pair is dissolved and they

are randomly matched with some other agents in the next period if they survive a exogenous

exit shock. The exit shock is used to capture the search frictions in this model.

This setting reflects a broad set of applications—it is straightforward to imagine a market

for vertically-differentiated products, where consumers differ in preferences across goods. In

the housing market, for instance, homes for sale vary in kitchen appliances, and houses

(sellers) are visited by buyers with different marginal returns to better appliances. Our

model can be seen as the case in which the buyer’s preference is her private information.

Similarly, this might represent the hiring process in a labor market where heterogeneous

workers and firms produce joint output. For consistency, we describe the model’s agents
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as buyers and sellers throughout the analysis to follow, but where appropriate, it will be

insightful to draw motivation from other such applications.

Characterizing sorting seems very difficult initially, due to the fact that valuations are

interdependent and that an agent’s expected payoff depends on all of the other agents’ strate-

gies as well as the endogenous type distributions. But we are able to characterize properties

of sorting by focusing on two extreme cases: when agents completely disregard for future

payoffs and when search frictions approach zero. We demonstrate that under this bargaining

protocol, as search frictions vanish, search equilibria converge to the competitive limit if the

output function is supermodular (or submodular).

In the model, a seller chooses an optimal price. Equivalently, she is picking the type of

the lowest marginal buyer who is indifferent between buying and not buying.1 If the seller

chooses a higher marginal type who values the product more, she obtains a higher price but

the per-period trading probability is lower. In other words, information friction generates a

trade-off for the seller between the terms of trade and probability of trade. Both the terms

of trade and probability of trade and hence the trade-off depend on the type of the seller.

If the output function is supermodular, a seller of a higher type enjoys a larger increase in

price by raising the marginal type, which leads to PAM, but also has more to lose from a

delay in trade, which leads to NAM. As a result, supermodularity is generally not sufficient

to ensure PAM. In addition, this suggests an interplay of information friction and search

frictions: sellers care more about the probability of trade, which results from the information

friction, when search frictions are large.

Unfortunately, the simplicity of this intuition masks the underlying complexity of equi-

librium decisions and interactions. In contrast to related models using Nash bargaining (e.g.,

Shimer and Smith (2000), Smith (2006) and Atakan (2006)), both prices and matching sets

arise endogenously in our model. While we prove the existence of search equilibria for any

arbitrary search friction, we focus on two cases with the maximum and almost zero search

frictions. We can neatly characterize the equilibrium in these two cases and the comparison

between the two cases well illustrates the interplay between information and search frictions.

In the static case in which all agents experience exit shock after one period, our analysis

1When trade is hindered by search friction, a seller in general could trade with buyers whose types lie in

several disconnected intervals, as shown in Shimer and Smith (2000). Therefore, a seller can have multiple

marginal buyer types. However, once one marginal type is fixed, all the others are uniquely determined in

equilibrium, as the seller only has one degree of freedom, which is the price. As a result, for the intuition

presented here, we assume that the seller chooses the lowest marginal type without loss of generality.
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is simplified because the discounted continuation value is zero. We find that the direction of

sorting depends on the log-supermodularity of output—log-supermodular production func-

tions give rise to PAM, while log-submodularity leads to NAM. This is a stronger condition

than the supermodularity that governs sorting in a frictionless market. The preceding dis-

cussions reveal that the incentive to secure trade pushes equilibrium sorting towards negative

assortative even if the production function is supermodular. Therefore, an output function

with stronger complementarity is required.

The tendency of NAM identified in the static case helps us understand why PAM is pos-

sible with a supermodular output function in the other extreme where the search frictions

vanish. The diminishing search friction is modelled as the time between two successive pe-

riods shrinking to zero. Given that the rate of exit shock in one unit of time is constant,

the expected number of periods before forced exit grows to infinity. As a result, the incen-

tive to secure trade in any given period becomes inconsequential and hence supermodularity

(submodularity) reemerges as the condition for the convergence to one-to-one PAM (NAM).

This frictionless limit is particularly informative regarding sorting and how it depends on the

interplay between private information and search frictions. Our analysis suggests generally

that, when buyers have private information, sellers are less likely to capitalize on produc-

tive complementarities by sorting positively. This resistance to sorting disappears, however,

when we reduce search frictions. In this sense, reducing search friction can help agents sort

efficiently even in the presence of private information.

Another key result of this paper is the convergence to perfect competition, which requires

the time to trade for any agent to converge to zero and the sorting pattern to converge to

Becker’s result. As the length of each period shrinks to zero, agents become more picky and

hence the per-period trading probability also diminishes to zero. The expected time that it

takes to trade therefore does not necessarily reduces to zero even if the trading opportunities

appear arbitrarily quickly. In equilibrium, however, we can show that the per-period trading

probability converges to zero at a smaller rate and hence any agent indeed expects to trade

immediately after entry. This also implies that the limiting sorting pattern coincides with

Becker’s result, as we have already shown that it is one-to-one positive (negative) assortative

with a supermodular (submodular) output function.

By removing the time preference of agents, we weaken the monopolistic aspect of bilateral

trade, which allows agents to appropriate their marginal contributions. This property is

neatly established by characterizing the equilibrium prices analytically.

The paper proceeds as follows: Section 2 frames our findings in the context of related
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literature. Section 3 introduces the model and section 4 lays out the equilibrium conditions,

establishes the existence of a search equilibrium and formally defines sorting. Section 5

characterizes the sorting and price formation when the model is effectively static. Section 6

offers results for the other extreme case as search frictions vanish and shows that the search

equilibria converge to perfect competition. Finally, section 7 draws connections between

these limiting cases and concludes.

2. Related Literature

Our analysis builds upon previous theoretical works related to assortative matching. S-

tudies in this area often attempt to answer two primary questions: (1) What types of agents

will match with each other? (2) What types of agents would match with each other to

optimize overall welfare, and if these matching patterns differ, why?

A standard benchmark used for comparison is the frictionless, ”Walrasian” setting studied

by Becker (1973) and Rosen (1974). In this environment, there is full information regarding

prices and types, and meeting trading partners is fully costless for buyers and sellers. Becker

famously demonstrated that supermodular production functions give rise to PAM in this

environment.

Beyond this, though, recent studies have taken a renewed interest in sorting, trying to

understand how it is impacted by departures from the frictionless benchmark. Among these

frictional extensions, the setting we study is especially well-suited for comparison to those

involving two particular classes of frictions—the bilateral monopoly which arises in random

search and the coordination frictions in directed search. We elaborate upon these connections

below.

There are obvious connections between our study and a series of papers on sorting with

random search and transferable utility (e.g., Shimer and Smith (2000) and Atakan (2006)).

Our study differs from these primarily in its incorporation of buyer private information—in

the studies mentioned above, there is full information and an exogenously given sharing rule in

each meeting of potential partners. In terms of the main focuses, Shimer and Smith (2000)

demonstrates why PAM requires more stringent conditions comparing to the frictionless

benchmark. It provides sufficient conditions for sorting given some arbitrary search friction

level. In this paper, we focus on how the conditions for sorting vary for different magnitudes of

search frictions. We identify the information frictions as the source for resistance to sorting in
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the static case, and extends the intuition to explain why the condition for sorting is weakened

as search frictions diminish. In addition, compared to Shimer and Smith (2000), we are also

particularly interested in investigating if and when the search equilibria converge to perfect

competition.

There are also papers establishing relationships between coordination frictions and sorting

patterns. Eeckhout and Kircher (2010) studies a one-shot setting with buyer private infor-

mation and directed search. They investigate the impact on sorting of coordination frictions,

governed by the search technology, i.e., a function which maps the buyer-seller composition

at each location to a realized number/measure of bilateral matches. They show that stronger

complementarity is required when it is harder for a seller to successfully meet a buyer given

a buyer-seller ratio. Note that, when viewed through the lens of timing, the two settings

appear to be much more closely related. Eeckhout and Kircher’s sellers use posted prices

to sort agents prior to meeting, while our sellers sort only after the buyer has arrived. This

is why we find the mapping between the two settings in terms of the sorting results and

underlining intuitions.

Our convergence result is also related to the literature on dynamic matching and bargain-

ing. A large number of papers have used the framework and investigated whether market

equilibria converge to the competitive limit as search frictions vanish. The convergence result

holds in settings with perfect information (e.g., Rubinstein and Wolinsky (1985) (1990), Gale

(1986) (1987), Mortensen and Wright (2002)) and the ones with two-sided private informa-

tion (e.g., Satterthwaite and Shenyerov (2007) (2008), Atakan (2009), Shneyerov and Wong

(2010), Lauermann (2013)). The main difference between this model and the previous works

is the interdependence of the valuations. In previous works, the utility from consuming the

product solely hinges on the buyer’s type and hence a buyer’s purchasing decision only de-

pends on the price. In this model, a buyer also care about the seller’s type directly. This is

why the previous convergence results are not applicable to the current setting. To our best

knowledge, this is the first paper that shows the convergence to perfect competition with

supermodular (submodular) interdependent valuations and private information.

3. The Model

We consider a discrete-time, dynamic model with heterogeneous buyers and sellers. There

are equal measures of buyers and sellers each period in the equilibrium of the steady state

economy, where buyer types x are distributed according to cdf FB (x), and seller types y are
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distributed according to cdf FS (y).2 Let fB (x) and fS (y) denote the corresponding steady

state pdfs for buyer and seller types, respectively.

Each buyer is randomly matched with one seller (and vice versa) in each period. In each

pair, seller types become observable, while buyer types remain private information. Sellers,

however, have the power to make take-it-or-leave-it offers P (y) to buyers. Therefore, the

strategy of a type y seller is the price offer P (y) and the strategy of a type x buyer is the set

of sellers with whom he is willing to trade.

If trade occurs, output z(x, y) is produced and both parties leave the market permanently

with utility z(x, y) − P (y) for the buyer and P (y) for the seller. Those who do not trade

experience an exogenous exit shock with probability 1 − β, in which case they leave the

market. Otherwise, remaining buyers and sellers play the same game in the following period,

along with a continuum of newly entering buyers and sellers with measure 1. These new

entrants are drawn from fixed distributions with pdfs γB(x) and γS(y) over the bounded

intervals X = [x, x] and Y =
[
y, y
]
, assuming x > 0 and y > 0.

For convenience throughout the analysis, let µ denote a probability measure on the ranges

of buyer and seller types X ·∪ Y , where ·∪ is the disjoint union of X and Y (i.e., for a given

set α ∈ X, we can write µ (α) = Pr (x̃ ∈ α | x̃ ∈ X) =
∫
x̃∈α dFB (x̃)). Conceptually, we can

think of µ as nesting two probability measures—one for buyers (µB) and one for sellers (µS).

For notational simplicity, we omit these subscripts throughout, as the relevant population is

generally obvious in each case.

Agents discount future payoffs only due to the possibility of leaving the market without

trading, so the relevant discount factor for all players is β.

For subsequent analysis, we impose the following assumptions on z(x, y), γB(x) and γS(y):

Assumption 1: Over the domain X × Y , the output function z(x, y) is

(i) nonnegative and bounded above;

(ii) twice continuously differentiable;

(iii) strictly increasing in both arguments with uniformly bounded first partial derivatives; and

(iv) log-concave in x.

Assumption 2: γB(x) is continuous over the domain of X and γS(y) is continuous over the

domain of Y . γB(x) and γS(y) are strictly positive and bounded above for any x and y.

2As will soon be obvious, these distributions have bounded supports in equilibrium.

7



4. Equilibrium

Buyer’s Problem

Given {P (y)}y∈Y , a buyer with type x needs to decide a set of sellers with whom he is

willing to trade. As shown in later sections, unlike in a frictionless market, equilibria do

not entail a deterministic, one-to-one matching. Rather, the buyer trades probabilistically

with a seller whose type is randomly drawn from a range of “acceptable” types. If he trades

with a type y seller, the payoff is z(x, y) − P (y). Otherwise, he expects to get some payoff

in the next period, denoted as VB(x), which is discounted with factor β because of the

exogenous exit shock. As a result, a type x buyer is willing to trade with a type y seller if

z(x, y)− P (y) ≥ βVB(x).

We therefore denote a type x buyer’s surplus from trading with a type y seller as s(x, y) =

z(x, y)− βVB(x)−P (y). If a seller’s price P (y) is acceptable by a type x buyer, then we say

that y is in buyer x’s matching set. Denote the equilibrium matching set as MB(x), which is

defined as

MB(x) = {y : s(x, y) ≥ 0}

A buyer of type x trades if he meets a seller from his matching set. Her value function

can therefore be expressed as

VB(x) =

∫
MB(x)

(z(x, y)− P (y))dFS(y) +

(
1−

∫
MB(x)

dFS(y)

)
βVB(x)

Rearrange and we obtain

VB(x) =

∫
MB(x)

(z(x, y)− P (y))dFS(y)

1− β + β
∫
MB(x)

dFS(y)

Seller’s Problem

In turn, MS(y) corresponds to the matching set of a type y seller, which is defined as

MS(y) = {x : s(x, y) ≥ 0}

Obviously, y ∈MB(x) if and only if x ∈MS(y).

By choosing different prices, a type y seller changes the matching set. To see why, note

that the surplus s(x, y) = z(x, y) − βVB(x) − P strictly decreases in P . Therefore, given

VB(x), a type y seller’s matching set with a higher price is a subset of that with a lower
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price. A smaller matching set implies a lower probability of trade in one period, because the

trading probability equals the probability of meeting a buyer from her matching set. In other

words, a seller faces a trade-off between the term of trade and the probability of trade.

Denote the value function of a seller of type y as Π(y). Given FB(x) and VB(x), Π(y) can

be expressed as

Π(y) = max
P
{P
∫
MS(y;P,VB(x))

dFB(x) + (1−
∫
MS(y;P,VB(x))

dFB(x))βΠ(y)}

Steady state Condition

The last equilibrium condition is the steady state condition: the measure of outflow of

any type must equal the measure of inflow of the same type. The inflow is governed by the

entrant type distribution γ. The outflow of buyers of type x consists of two groups. A buyer

would exit if he is paired with a seller in his matching set. Otherwise, a buyer would leave

the market because of the exit shock. The same accounting condition applies to the seller

side.

The pdfs of the type distributions (fB, fs) and pdfs of the entrant type distributions (γB,

γS) therefore must satisfy the two inflow-outflow equations below:

f̂B(x) =
γB(x)

(1− β) + β

∫
MB(x) f̂S(y)dy∫

f̂S(y)dy

f̂S(y) =
γS(y)

(1− β) + β

∫
MS(y) f̂B(x)dx∫

f̂B(x)dx

where fB(x) =
f̂B(x)∫
f̂B(x̃)dx̃

and fS(y) =
f̂S(y)∫
f̂S(ỹ)dỹ

Here f̂B(x) stands for the measure of buyers who has the type x in the steady state. The

same applies to f̂S(y).

We devote the remainder of this section to some technical preliminaries for the sorting

analysis. First, we offer a fairly general existence proof for an equilibrium in which prices

are continuous in seller type. Then we formally define PAM and NAM with non-degenerate

matching set, following Shimer and Smith (2000).

4.1 Existence

We focus on equilibra where the price is continuous in seller type. For this reason, our ex-

istence proof initially assumes the continuity of P (y, VB (·))—the mapping which determines
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the optimal price given a particular seller type and a function specifying the outside option

for each buyer type. We then verify at the end of the proof that the equilibrium price is

indeed continuous.

We use the Schauder fixed point theorem in proving existence. More precisely, we show

that the mapping from the continuation payoff VB(x) to itself determined by the equilibrium

conditions is well defined and continuous. Toward this aim, we proceed first by providing

several preliminary results—Lemmas 1, 2 and 3—which we subsequently use to establish the

existence in Theorem 1.

Throughout the paper, we assume that the output function is either supermodular or

submodular.

Assumption 3: (SUP ) The output function z (x, y) is supermodular.

(SUB) The output function z (x, y) is submodular.

For any price function that is continuous in seller types, the following lemma establishes

that buyer’s value function VB(x) is Lipschitz continuous and differentiable.

Lemma 1: Given A1, A3-Sup or A3-Sub, a type x buyer′s value function VB(x) satisfies

VB(x) ≥ 1

1− β

∫
M

(z(x, y)− P (y)− βVB(x))fS(y)dy

for any M ⊆ [y, ȳ]. In addition, VB(x) is non-negative, increasing in x and Lipschitz contin-

uous in equilibrium. Moreover, if price is continuous in seller types, VB(x) is a.e. differen-

tiable. When differentiable, its derivative is

V ′B(x) =

∫
M(x)

z1(x, y)fS(y)dy

1− β + β
∫
M(x)

fS(y)dy

Unless otherwise mentioned, all proofs are provided in the appendix. To conveniently

identify whether a pair of agents belong to each other’s matching set, we define the indicator

function d(x, y): d(x, y) = 1 if and only if s(x, y) ≥ 0 and d(x, y) = 0 otherwise.

Lemma 2: Given A1, A3-Sup or A3-Sub, for any price function P (y, VB) that is continuous

in VB, any Borel measurable mapping from the buyer’s value functions VB(x) to the match

indicator functions d(x, y) is continuous.

For the existence proof, we also need to show that the endogenous distribution is contin-

uous in the indicator function d(x, y).
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Lemma 3: The mapping d(x, y)→ (fB(x), fS(y)) is well defined and continuous.

With the above preliminary results, we are now ready to establish the existence of the

equilibrium.

Theorem 1. A search equilibrium exists in which prices are continuous in seller types.

4.2 Definition of Sorting

The matching sets in an environment with search frictions are normally non-degenerate.

It takes time for a buyer to meet a seller. Therefore, he is willing to accept a range of price

offered by sellers whose types are randomly drawn from his matching set. Otherwise, the

probability of trade within one period is zero and the buyer would almost surely experience

the exit shock before any trade taking place.

As a result, we can no longer use the definition of PAM (NAM) in Becker (1973). Instead,

we follow the definition in Shimer and Smith (2000)—for PAM, they require that the set of

mutually agreeable matches form a lattice. More explicitly:

Definition 1: Take x1 < x2 and y1 < y2.

PAM: There is PAM if y1 ∈MB (x1) and y2 ∈MB (x2) whenever y1 ∈MB (x2)

and y2 ∈MB (x1) .

NAM: There is NAM if y1 ∈MB (x2) and y2 ∈MB (x1) whenever y1 ∈MB (x1)

and y2 ∈MB (x2) .

5. One-Shot Bilateral Monopoly:β = 0

In this section, we consider the case in which all of the agents face the terminal shock after

one period, which is essentially a one-shot bilateral monopoly. In other words, the search

frictions are at the maximal level and agents do not value the future at all (β = 0).

In this case, the surplus function s(x, y) equals z(x, y)−P (y), which is strictly increasing

in x. If a seller of type y sets price P (y) = z(x, y), then any buyer with a type above x

is willing to accept the price. Therefore, choosing the optimal price P (y) is equivalent to

selecting the marginal type x∗(y) to maximize the expected profit. That is,

Π(y) = max
x̃
{z(x̃, y)(1− FB(x̃))}
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Here FB(x) = ΓB(x), since all buyers exit the market after one period. To make sure that

the solution for x∗(y) is unique, we impose the following increasing hazard rate assumption

on ΓB(x), which is standard in the literature.3

Assumption 4: γB(x)
1−ΓB(x)

is strictly increasing in x for any x ∈ [x, x̄].

Theorem 2. When β = 0, the marginal buyer type x∗(y) is uniquely determined by

z1(x∗(y), y)(1− FB(x∗(y))) = z(x∗(y), y)fB(x∗(y)), if x∗(y) ∈ (x, x̄)

x∗(y) = x, if z1(x, y)(1− FB(x)) ≤ z(x, y)fB(x) (1)

The optimal price P (y) = z(x∗(y), y). In addition, both P (y) and x∗(y) are continuous in y.

Proof: Condition (1) is obtained by taking the first order condition of the seller’s objective

function.

To show the uniqueness, for any given y, consider the following two functions in x,

L(x; y) =
z1(x, y)

z(x, y)

R(x) =
fB(x)

1− FB(x)

The function L(x; y) weakly decreases in x, as the assumption of log-concavity implies
∂L(x;y)
∂x

= z11z−(z1)2

z2
≤ 0. The function R(x) strictly increases in x, following the assumption

of strictly increasing hazard rate. Both L(x; y) and R(x) are continuous in x. Therefore,

they can intersect at most once.

First note that R(x̄) is always larger than L(x̄; y). Therefore, x̄ can never be a marginal

buyer type for any y. If R(x) < L(x; y), then the equation L(x; y) = R(x) has a unique

interior solution. We can rearrange the equation and obtain the first case in condition (1).

If R(x) ≥ L(x; y), then R(x) > L(x; y) for any x ∈ (x, x̄]. This corresponds to the second

case in condition (1).

The optimal price has been shown to equal to z(x∗(y), y) in the preceding discussion. The

continuity of x∗(y) and P (y) follows from the fact that L(x; y) is continuous in y.

As usual, an (interior) x∗ is chosen so that the marginal revenue of increasing the marginal

buyer type equals the marginal cost. The left-hand side of equation (1) represents the

3The assumption can be weakened. If z(x, y) is strictly log-concave, then γB(x)
1−ΓB(x) only need to be weakly

increasing in x.
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marginal revenue. The resulting price increment is z1(x∗(y), y) and the seller can collect

this increment when trade happens with the probability of 1 − FB(x∗(y)). The right-hand

side is the marginal cost of increasing the marginal buyer type. The seller can no longer

sell to the buyers of type x∗(y). The resulting loss equals the price, z(x∗(y), y), times the

probability of meeting a buyer of type x∗(y), fB(x∗(y)).

Let us now characterize sorting. Under the threshold rule and the assumptions that ensure

differentiability, the definition of PAM (NAM) reduces to the condition that the derivative of

the marginal type is positive (negative). That is, sorting is positive if and only if ∂x∗(y)
∂y
≥ 0

and is negative if and only if ∂x∗(y)
∂y

≤ 0. Therefore, we need to do a comparative static

exercise to identify conditions under which this derivative is positive (or negative).

To exclude the trivial cases where x∗(y) = x for any y, we assume that maxy{ z1(x,y)
z(x,y)

} >
fB(x).

Theorem 3. When β = 0, sorting is positive (PAM) if and only if the output function z(x, y)

is log-supermodular and sorting is negative (NAM) if and only if z(x, y) is log-submodular.

Proof: If x∗(y) is on the boundary for some y, then ∂x∗(y)
∂y

= 0. The matching is assortative.

If x∗(y) is an interior solution, then from (1), it is easy to see that

∂x∗(y)

∂y
=

z12[1− FB(x∗)]− z2fB(x∗)

2z1fB(x∗) + zf ′B(x∗)− z11[1− FB(x∗)]

=
z12z − z1z2

(z1)2
× 1

2 + z
z1

f ′B
fB
− z11z

(z1)2

(2)

The second equality follows after plugging in the first order condition and rearranging terms.

We also know that 1−FB

fB
strictly decreases in x

∂

∂x

(
1− FB
fB

)
=
−f 2

B − (1− FB)f ′B
f 2
B

< 0

⇒ 1 +
1− FB
fB

f ′B
fB

> 0⇒ z

z1

f ′B
fB

> −1

Therefore,

2 +
z

z1

f ′

f
− z11z

(z1)2
> 2− 1− 1 ≥ 0

The sorting is positive if and only if z12z − z1z2 ≥ 0, i.e., z(x, y) is log-supermodular; It

is negative if and only if z12z − z1z2 ≤ 0 i.e., z(x, y) is log-submodular.
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The above Theorem establishes that with the maximum search frictions and information

frictions, we need complementarity, which is much stronger than supermodularity, to ensure

positive sorting.4 The intuition behind this result is one of the main messages of the paper,

and it also helps us understand the sufficiency of supermodularity when search frictions

vanish. To avoid repetition, we will only focus on the PAM case in the following discussion,

as the intuition for NAM is symmetric.

To see the intuition, consider two sellers with types y1 and y2 (y2 < y1). Imagine that

the two sellers are currently setting the same marginal buyer type x, which is seller 2’s

optimal marginal type, and consider the trade-offs for each—in terms of price and trade

probability—associated with increasing the marginal type slightly.

The marginal benefit of increasing the marginal type equals the price increment times

the trading probability, i.e., z1(x, y)[1 − FB(x)]. Because of the supermodularity, the price

increment is greater for the high type seller 1. The two sellers are currently choosing the same

marginal buyer type. So their trading probabilities are the same. Overall, a high type seller

has a higher marginal benefit due to supermodularity and hence faces stronger incentives to

increase her marginal type buyer. We also know that the marginal cost equals the reduction

in trading probability times the price, i.e., z(x, y)fB(x). The two sellers experience the same

level of reduction in trading probabilities. But the high type seller loses more from the same

reduction in trading probability, because the price he charges is higher. Hence, a high type

seller also has a higher marginal cost and so has a stronger incentive to secure trade through

lowering her marginal buyer type.

Recall that PAM requires a higher type seller to choose a higher marginal buyer type.

Therefore, the increment in marginal benefit (z12(x, y)[1 − FB(x)]), must outweight the in-

crement in marginal cost (z2(x, y)fB(x)). Supermodularity is clearly insufficient. Plugging

in the equilibrium condition z1(x, y)[1 − FB(x)] = z(x, y)fB(x), we can see that positive

sorting in this case requires an output function with stronger complementarity—specifically,

log-supermodularity.

In Figure 1, we plot the marginal buyer type function x∗(y) with parameter specifications

as shown beneath the figure. From this example, we can easily verify two conclusions we had.

First, the log-supermodular condition is stronger than supermodular: the output function

z(x, y) is always supermodular, but it is log-supermodular if and only if κ > η2. Secondly,

the sorting is positive if and only if z(x, y) is log-supermodular.

4Notice that log-supermodularity is a stronger condition than supermodularity, as it requires z12 to be

not only positive, but also larger than z1z2
z , which itself must be strictly positive.
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Figure 1: Seller reservation types

ΓB(x) ∼ U(0, 1); z(x, y) = η (x+ y) + xy + κ, η ∈ (0, 1), κ ∈ (0, η)

To further illustrate the role of private informations, let us compare the current sorting

result with the one in Shimer and Smith (2000). In their setting, agents’ types become

observable after they are paired. In the static case, an agent is willing to trade with any

type, regardless of the allocation of the bargaining power. Based on the definition of PAM

(NAM), the matching is always PAM and NAM with any output function. Their sellers

do not face the trade-off mentioned earlier. When they increase the marginal buyer type,

there is no marginal benefit, as the prices charged to other buyers remain the same, but only

marginal cost, which is caused by the reduction in trading probability.

Besides the matching sets, we can also characterize how prices move with seller type. We

find that prices increase in seller types if the output function exhibits a sufficiently strong

combination of supermodularity and log-concavity in buyer type.

Lemma 4: P (y) increases in y if z(x, y) is concave in x and supermodular, or if z(x, y) is

log-concave and log-supermodular.

Proof: We know from the preceding analysis

∂P (y)

∂y
= z1

∂x∗

∂y
+ z2

∝ z12z − z1z2
z11z

(z1)2
+ z1z2

(
1 +

z

z1

f ′B
fB

)
> z12z − z1z2

z11z

(z1)2

Therefore, ∂P (y)
∂y

> 0 if z12 ≥ 0 and z11 ≤ 0, or if z11z
(z1)2
≤ 1 and z12z − z1z2 ≥ 0.
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6. Frictionless Limit: β → 1

In this section, we consider the equilibrium outcomes when the time between two consec-

utive periods shrinks to zero—that is, as the actual discount factor β approaches 1. We will

conceptualize vanishing search frictions in this way throughout this section.

6.A. Sorting Pattern

As search frictions diminish, we find that Becker’s sorting result can be restored even if

information frictions remain, that is, supermodularity (submodularity) is sufficient to ensure

one-to-one positive (negative) sorting in the limit. To distinguish the definition of PAM

(NAM) in Becker (1973) from the one in the current paper, we call the soring defined in the

former as perfectly positive (negative) sorting.

Theorem 4. Given A3-SUP or A3-SUB, for any ξ > 0, there exists an ε > 0 such that for

any β > 1− ε,

1. d(x, y) = 1 if and only if s(x, y) ∈ [0, ξ);

2. µ(MB(x)) ∈ [0, ξ) and µ(MS(y)) ∈ [0, ξ);

3. the matching sets converge to perfectly positive sorting if z(x, y) is supermodular, i.e.,

there exists a strictly increasing function m(x) defined on [x, x̄] such that (i) m(x) = y,

m(x̄) = ȳ, and (ii) for any (x, y) with d(x, y) = 1, | x−m−1(y) |< ξ and | y−m(x) |< ξ.

4. the matching sets converge to perfectly negative sorting if z(x, y) is submodular, i.e.,

there exists a strictly decreasing function m(x) defined on [x, x̄] such that (i) m(x) = ȳ,

m(x̄) = y, and (ii) for any (x, y) with d(x, y) = 1, | x−m−1(y) |< ξ and | y−m(x) |< ξ.

To understand this result, note that although the sellers still face the trade-off between

the price and trading probability in each period, they care less and less about the latter as

they meet buyers more and more frequently. This is because, even with a small matching

set, a seller can sell almost surely before experiencing the terminal shock. Thus, a seller has

incentive to raise her price so that they are only trading with buyers whose types belong to

a small neighbourhood of her most preferred and feasible type.

Now suppose the limiting sorting pattern is not positive, i.e., there exist a buyer of type

x matched with a seller of type y′ and a buyer of type x′ matched with a seller of type y,
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x′ > x and y′ > y. Given that the output function is supermodular and strictly increasing in

both arguments, the match surplus between x′ and y′ must be strictly positive. As a result,

the type y′ seller can match with an interval of buyers with types around x′. Then the seller

can profit from asking for a higher price. The same argument can be applied to show that

when the output function is submodular, the limiting sorting pattern must be negatively

assortative.

The perfectly positive assortative matching also requires all buyers to trade with some

sellers. It is indeed the case in the limit. Suppose some lower type buyers are not in

any seller’s matching set in the limit. Then these buyers exit the market only when they

experience death shock, while higher type buyers exit also when they trade. In other words,

these lower type buyers exit at a slower rate. Therefore, almost all incumbent buyers in the

market are these low type buyers. A seller would find it profitable to lower his price slightly,

as his trading probability would increase significantly.

This convergence to perfectly assortative matching may seem to be the only possible

result. But it does depend on the structure of the model, as shown by the following two

examples.

Example 1: Perfect Information. In the static case, we have established that it is

the information friction that impede sorting. As search frictions diminish, this effect also

vanishes as the next meeting is immediate. In this section, we show that in fact some private

information is necessary for the convergence if buyers have no bargaining power.

Consider the same environment as specified before except for one departure: a buyer’s

type is observable to the paired seller. Based on the logic of Diamond paradox, all buyers

have zero continuation payoff. The matching set then must be characterized by a cut-off rule.

That is, a seller trades with any buyer whose type is above certain threshold. Therefore, the

matching is never perfectly sorted and the search equilibrium fails to converge to perfect

competition.

This example suggests that convergence requires some underlying factors that ensure

positive payoff of buyers. It could be the private information as in the current model, or it

might be some right allocation of bargaining power. We will leave the general characterization

of the sufficient conditions for convergence (in terms of information set, bargaining protocols,

etc.) as future works.

Example 2: Exits are Replaced with Replicas. Instead of having fixed measure of

entrants with exogenously given type distributions, suppose agents who exit are replaced by

their replicas so that the exogenously given type distributions of incumbents are preserved
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over time. Then there are some low type buyers who never trade and the sorting pattern in

the limit does not become perfectly assortative in general. The reason is that even if there

exist some lower type buyers who never trade, their population is still only an exogenously

given fraction of the market size. Then indeed sellers do not have incentive to trade with

these low type buyers in equilibrium.

6.B. Convergence to Perfect Competition

We have already established in the previous section that—as in the Walrasian benchmark—

the condition for (perfect) sorting approaches supermodularity as frictions vanish. we show

in this section that the equilibrium price function and the sorting pattern governed by m(x)

also converge to their competitive limits.

Theorem 5. Given A3-Sup or A3-Sub, equilibrium prices converge pointwise to the price

function P ∗(y), where

P ∗(y) = z(x, y) +

∫ y

y

z2(m−1(ỹ), ỹ)dỹ, if z(x, y) is supermodular,

P ∗(y) = z(x, ȳ)−
∫ ȳ

y

z2(m−1(ỹ), ỹ)dỹ, if z(x, y) is submodular,

The above theorem shows that the equilibrium price approaches to its Walrasian coun-

terpart, and each player gets her marginal contribution in the limit. Because the buyer in

a match can meet another seller almost immediately, the seller in the match faces almost

perfect competition from other sellers. Thus, in the limit, the marginal price increment

associated with each seller type approaches that type’s marginal contribution to the output.

With the preceding results regarding the perfect sorting and equilibrium price, we still

cannot conclude that the equilibrium converges to the perfect competitive equilibrium. What

still needs to be shown is that the m(x) function which governs the sorting pattern converges

to the competitive limit. In addition, the convergence requires no delay in trade. The

time to trade depends on both the probability of trade per-period and the time between

two consecutive periods. We know from Theorem 4 that the trading probability per-period

converges to zero as the time between two periods shrinks to zero. Therefore, the expected

duration before trade depends on which one of them converges to zero at a faster rate. The

following lemma shows that the search frictions diminish at a faster speed.
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Lemma 5: As β converges to one, the expected time that it takes to trade for all the buyers

and sellers approaches zero.

To understand why the time to trade converges to zero, let us consider the decision

problem of a seller. When the search friction is very small, we know that the seller has

already chosen a price such that the matching surplus is close to zero. Suppose the time

to trade is still positive and there is a further reduction in the search friction. The seller

can benefit from a lower search friction in two ways. He can either keep the same price

and reduces the time to trade, or raise the price and keep the same time to trade. Notice

that T=the price increment is close to zero while the reduction in time to trade is strictly

positive. Therefore, the seller will respond by reducing the time to trade. In other words,

search frictions must diminish at a faster speed than the per-period trading probabilities do.

The result also applies to buyers due the nature of bilateral trade.

In addition, the convergence requires that the limiting matching set becomes efficient.

In a perfectly competitive market with no information friction, buyers and sellers with the

same percentile types match with each other if the output function is supermodular. If it is

submodular, then buyers and sellers match if their percentiles add up to one. The following

lemma shows that the limiting matching set has the same property.

Lemma 6: As β converges to one, ΓB(x) − ΓS(m(x)) converges to zero if z(x, y) is super-

modular and ΓB(x) + ΓS(m(x)) converges to one if z(x, y) is submodular.

This result is obtained based on two preliminary conclusions. First, after taking into

account the change in the market size, the measure of forced exit per-period still shrinks to

zero. Second, the sorting converges to perfect sorting. Then the total measure of buyer exits

with types below x is arbitrarily close to the total measure of seller exits with types below

m(x) under supermodularity. We can then use the steady state condition to obtain the result

in the lemma.

We are now ready to establish the convergence result.

Theorem 6. As β converges to one, a search equilibrium converges to perfect competition.

To further understand this convergence result, we utilize the framework and insights of

Gretsky, Ostroy, and Zame (1999), i.e. interpreting ”perfect competition” as the inability

of individuals to (favorably) influence prices. More precisely, this will entail sellers facing

perfectly elastic demand and buyers facing perfectly elastic supply. Toward formalizing these
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concepts, let us introduce the notion of a ”price elasticity of demand” faced by a type y seller

setting price p:

Ey (p) =

(
∂(µ(MS(y,p)))
µ(MS(y,p))

)
(
∂p
p

)
Naturally, this reflects the responsiveness of a seller’s trading probability (per period) to her

chosen price.

Accordingly, the term ”value elasticity of supply” will pertain to the corresponding notion

for a type x buyer with outside option value v:

Ex (v) =

(
∂(µ(MB(x,v)))
µ(MB(x,v))

)
(
∂v
v

)
In this case, let us imagine that each buyer is choosing an optimal matching set, which is

determined implicitly by her choice of an option value (taking prices as given). Following

this logic, the above object reflects how a buyer’s per-period trading probability responds to

this option value. 5

For agents to be unable to influence prices, the two objects above should be arbitrarily

large. The following lemma shows that it is indeed the case.

Lemma 7: Given A3-SUP or A3-SUB, the price elasticity of demand faced by any seller

Ey (p) and the value elasticity of supply faced by any buyer Ex (v) are perfectly elastic.

7. Conclusion

The presence of buyer private information does impede sorting, and we have highlighted

the relationship between the strength of this effect and the degree of competition in the

market. At one extreme, when there is bilateral monopoly power in each buyer-seller meeting,

PAM requires a log-supermodular production function, which is of course a stronger condition

than standard supermodularity. Higher types also have higher opportunity costs of failing to

trade, so the added incentives to ensure trade takes place are in conflict with sorting.

5If the product is homogeneous, the standard definition of elasticity of supply can be redefined as the

percentage change in quantity supplied divided by the percentage change in consumer surplus, i.e., the

difference between willingness to pay and price. In this model, it is easier to use this alternative definition,

as sellers are heterogeneous, which leads to infinite number of willingness to pay and price for each buyer,

while a buyer only needs to choose one option value, which correspond to the consumer surplus in the world

with homogeneous product.
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These incentives remain relevant in a dynamic frictional setting, but they grow inconse-

quential as we approach the frictionless limit. Thus, as search frictions vanish, the sorting

consequences of private information do as well, and the standard supermodularity condition

is sufficient to generate positive sorting.

Moreover, given the sorting pattern, the increasing competition results a division of the

surplus that approaches to its competitive counterpart: agents from both sides of the market

obtains their marginal contributions. The limiting sorting pattern itself also coincides with

that of perfect competition and no agents expects delay in trade in the limit. We show that

with information frictions and the bargaining protocol that sellers make take-it-or-leave-it

offers, the search equilibria converge to perfect competition.
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Appendix

Proof of Lemma 1

Proof:

Step 1: Inequality for VB(x) and non-negativity of VB(x)

First, VB(x) can be rearranged and expressed as

VB(x) =
1

1− β

∫
MB(x)

(z(x, y)− P (y)− βVB(x))fS(y)dy

Any M 6= MB(x) either excludes y ∈ MB(x), in which case z(x, y)− P (y)− βVB(x) > 0, or

includes y /∈ MB(x), in which case z(x, y) − P (y) − βVB(x) < 0. The inequality therefore

follows.

VB(x) is non-negative given that any y ∈MB(x) satisfies s(x, y) ≥ 0.

Step 2: VB(x) increasing in x

Consider any x2 ≥ x1,

(1− β)[VB(x2)− VB(x1)]

=

∫
MB(x2)

(z(x2, y)− P (y)− βVB(x2))fS(y)dy −
∫
MB(x1)

(z(x1, y)− P (y)− βVB(x1))fS(y)dy

≥
∫
MB(x1)

[z(x2, y)− z(x1, y)− β(VB(x2)− VB(x1))]fS(y)dy

⇒ VB(x2)− VB(x1) ≥

∫
MB(x1)

[z(x2, y)− z(x1, y)]fS(y)dy

1− β + β
∫
MB(x1)

fS(y)dy
≥ 0

Step 3: VB(x) Lipschitz continuous

Following the same steps, we obtain the following inequality

VB(x2)− VB(x1) ≤

∫
MB(x2)

[z(x2, y)− z(x1, y)]fS(y)dy

1− β + β
∫
MB(x2)

fS(y)dy

By the assumption that z(x, y) is Lipschitz continuous, there exists a real constant κ such

that | z(x2, y)− z(x1, y) |≤ κ(x2 − x1). Combined with the above two inequalities

−κ(x2 − x1)
∫
MB(x1)

fS(y)dy

1− β + β
∫
MB(x1)

fS(y)dy
≤ VB(x2)− VB(x1) ≤

κ(x2 − x1)
∫
MB(x2)

fS(y)dy

1− β + β
∫
MB(x2)

fS(y)dy
.
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Therefore, | VB(x2)− VB(x1) |≤ κ(x2− x1), which implies that VB(x) is Lipschitz contin-

uous.

Step 4: a.e. differentiability of VB(x)

Step 4.1: MB(x) is u.h.c. and a.e. l.h.c.

Step 4.1.1: MB(x) is u.h.c..

Take any sequence (xn, yn)→ (x, y) with yn ∈MB(xn) for any n, i.e., z(xn, yn)−βVB(xn)−
P (yn) ≥ 0 for all n. In the limit, z(x, y) − βVB(x) − P (y) ≥ 0 because z(x, y), VB(x) and

P (y) are continuous. This implies y ∈M(x).

Step 4.1.2: the surplus function s(x, y) is rarely constant in one variable.

Define Ns(x) = {y : s(x, y) = 0}, Ns(y) = {x : s(x, y) = 0} and Ns = {(x, y) : s(x, y) =

0}. Pick x 6= x′ and y 6= y′, such that s(x, y) = s(x′, y) = s(x, y′) = 0. If A2-Sup or A2-Sub

is satisfied, it must be true that s(x′, y′) 6= 0. To see this, notice

s(x, y)− s(x′, y) = z(x, y)− z(x′, y)− β(VB(x)− VB(x′))

s(x, y′)− s(x′, y′) = z(x, y′)− z(x′, y′)− β(VB(x)− VB(x′))

Because z(x, y) − z(x′, y) 6= z(x, y′) − z(x′, y′), 0 = s(x, y) − s(x′, y) 6= s(x, y′) − s(x′, y′),

which implies s(x′, y′) 6= 0.

Then by the proof in Appendix B of Shimer and Smith (2000), µ(Ns(x)) = 0 for a.e. x,

µ(Ns(y)) = 0 for a.e. y and µ(Ns) = 0 a.e..

Step 4.1.3: MB(x) is a.e. l.h.c..

Take any sequence xn → x and any y ∈MB(x). First consider the scenario in which there

exists a subsequence xm of xn, such that for any xm,

sup
ŷ
{z(xm, ŷ)−βVB(xm)−P (ŷ)} ≥ z(x, y)−βVB(x)−P (y) ≥ inf

ŷ
{z(xm, ŷ)−βVB(xm)−P (ŷ)}

By the continuity of z(x, y) and P (y), there exists at least one ym that satisfies,

z(xm, ym)− βVB(xm)− P (ym) = z(x, y)− βVB(x)− P (y)

If there are multiple solutions, pick the one that is the closest to y. This defines a sequence

{ym}. Clearly, ym ∈ MB(xm). We need to show that for almost all x, there exists a subse-

quence yk of ym, such that yk → y.
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We know a convergent subsequence always exists because {ym} is bounded.

Case 1. We first consider the case where there exist ε > 0 and K > 0 such that for any

k > K and any ŷ ∈ [y − ε, y + ε], either ŷ /∈ MB(xk) or s(x, ŷ) = 0. In this scenario, it is

possible that non of the subsequences converges to y. However, the measure of {x, y} that

satisfies this condition is 0.

Case 2. Next, we consider all of the complementary scenarios, that is, for any ε > 0 and

K > 0, there exist k > K and ŷ ∈ [y − ε, y + ε], such that ŷ ∈MB(xk).

Suppose non of the subsequences converge to y. Since we have excluded the two situations

in case 1, the non-convergence implies that there exists η > 0 and K1 > 0, such that for any

k > K1

| z(xk, y)− z(x, y)− β(VB(xk)− VB(x)) |> 2η

On the other hand, by the continuity of z and VB, there exist K2, such that for all k > K2

| z(xk, y)− z(x, y)− β(VB(xk)− VB(x)) |

≤| z(xk, y)− z(x, y) | +β | VB(xk)− VB(x) |< 2η

Pick K = max{K1, K2}. The above two inequalities cannot hold at the same time. This

is a contradiction.

Finally, consider the case where such subsequence xm does not exist. That is, for any

subsequence xm, either supŷ{z(xm, ŷ) − βVB(xm) − P (ŷ)} < z(x, y) − βVB(x) − P (y) or

inf ŷ{z(xm, ŷ)−βVB(xm)−P (ŷ)} > z(x, y)−βVB(x)−P (y). Here we show the proof for the

first case. The proof for the second case is similar and is skipped.

Define ym ∈ argmax{z(xm, ŷ) − βVB(xm) − P (ŷ)}. If there are more than one argmax,

pick the one that is the closest to y. Based on this construction, we can then follow the proof

in case 2 to show that any convergent subsequence of ym must converge to y.

Step 4.2: Decomposition for the slope of VB(x)

Take any sequence xn → x, for each n,

(1− β)
VB(xn)− VB(x)

xn − x
=

∫
MB(xn)−MB(x)

z(xn, y)− P (y)− βVB(xn)

xn − x
fS(y)dy

+

∫
MB(x)

[
z(xn, y)− z(x, y)

xn − x
− βVB(xn)− VB(x)

xn − x
]fS(y)dy

Take the limit as n→∞. The first integral vanishes because 1) MB(x) is continuous a.e.,

and 2) the surplus vanishes at changes in MB(x). Rearranging terms, we get the proposed

derivative.
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Proof of Lemma 2

Proof: We have proved that the surplus function is rarely constant in one variable in step

4.1.2 of the proof for lemma 1. Define the set
∑

s(η) = {(x, y) : |s(x, y)| ∈ [0, η]}. This set

shrinks monotonically to ∩∞k=1

∑
s(1/k) = Ns.

lim
η→0

(µ× µ)(
∑
s

(η)) = (µ× µ)(∩∞k=1

∑
s

(1/k)) = (µ× µ)(Ns) = 0

Let V 1
B and V 2

B be two value functions, and d1 and d2 be the corresponding match indicator

functions.

Since P (y, VB) is continuous in VB, for any ε > 0, there exist a η′ > 0, such that

β ‖ V 1
B(x)− V 2

B(x) ‖< η′ ⇒| P (y, V 1
B)− P (y, V 2

B) |< ε, for any y

In words, we can always pick close enough value functions such that the price functions

are close. Let η = 2 max{η′, ε}.
If s1(x, y) = z(x, y)−βV 1

B(x)−P (y, V 1
B) > η, then s2(x, y) = z(x, y)−βV 2

B(x)−P (y, V 2
B) >

0. So d1(x, y) = d2(x, y) = 1. By the same logic, If s1(x, y) < −η, then s1(x, y) < 0. So

d1(x, y) = d2(x, y) = 0. As a result, {(x, y) : d1(x, y) 6= d2(x, y)} ⊆
∑

s1(η). The Lebesgue

measure of
∑

s1(η) vanishes as η → 0. The continuity is thus established

lim
‖V 1

B(x)−V 2
B(x)‖→0

‖ d1(x, y)− d2(x, y) ‖L1= 0.

Proof of Lemma 3

Proof:

Step 1: The mapping is well defined.

Given entrant densities γB(x) and γS(y), the mapping is well defined if there exist unique

functions f̂B and f̂S that solve the following system of equations,

f̂B(x) =
γB(x)

1− β + β
∫
d(x,y)f̂S(y)dy∫

f̂S(y)dy

f̂S(y) =
γS(y)

1− β + β
∫
d(x,y)f̂B(x)dx∫

f̂B(x)dx
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From those conditions, we know that f̂B(x) ∈ [γB(x), γB(x)/(1−β)] and f̂S(y) ∈ [γS(y), γS(y)/(1−
β)].

One can apply a log transformation method similar to that used in Shimer and Smith

(2000) and reformulate the problem as a fixed-point problem.

ΦB(h) = log
γB(x)

1− β + β
∫
d(x,y)ehS(y)dy∫

ehS(y)dy

ΦS(h) = log
γS(y)

1− β + β
∫
d(x,y)ehB(x)dx∫

ehB(x)dx

where hB(x) = log f̂B(x), hS(y) = log f̂S(y), h = (hB, hS)′. The mapping is well defined if

Φ(h) = h has a unique fixed point. We prove this using the Contraction Mapping Theorem.

Consider h1 and h2,

ΦB(h2)− ΦB(h1) = log
1− β + β

∫
d(x,y)eh

1
S(y)dy∫

e
h1
S
(y)
dy

1− β + β
∫
d(x,y)e

h2
S
(y)
dy∫

e
h2
S
(y)
dy

≤ log
1− β + βe‖h

1
S−h

2
S‖

∫
d(x,y)eh

2
S(y)dy∫

e
h2
S
(y)
dy

1− β + β
∫
d(x,y)e

h2
S
(y)
dy∫

e
h2
S
(y)
dy

≤ log
1− β + βe‖h

1
S−h

2
S‖

1− β + β

= log[1− β + βe‖h
1
S−h

2
S‖]

The first inequality follows because e‖h
1
S−h

2
S‖ > eh

1
S(y)−h2S(y) for any y. We thus have

ΦB(h2)− ΦB(h1)

‖ h1
S − h2

S ‖
≤ log[1− β + βe‖h

1
S−h

2
S‖]

‖ h1
S − h2

S ‖

In addition, we know that hS(y) ∈ [log(γS(y)), log(γS(y)) − log(1 − β)], which implies

‖ h1
S − h2

S ‖∈ [0,− log(1− β)]. Since the right hand side of the above inequality increases in

‖ h1
S − h2

S ‖,

ΦB(h2)− ΦB(h1)

‖ h1
S − h2

S ‖
≤

log[1− β + β
1−β ]

log 1
1−β

= χ ∈ (0, 1)

The same argument applies in the other direction and we thus obtain

‖ ΦB(h1)− ΦB(h2) ‖
‖ h1

S − h2
S ‖

≤ χ
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We have the symmetric inequality for y. Denote Φ(h) = (ΦB(h),ΦS(h))′, combining the

two inequalities,

‖ Φ(h1)− Φ(h2) ‖≤ A ‖ h1 − h2 ‖

where A is a matrix with | A |= −χ2 ∈ (−1, 1). We have thus proven that it is a contraction

mapping.

Step 2: Continuity

Define GB(d, f̂)(x) = f̂B(x)[1 − β + β
∫
d(x, y) f̂S(y)∫

f̂S(y)dy
dy] − γB(x) and GS(d, f̂)(y) =

f̂S(y)[1− β + β
∫
d(x, y) f̂B(x)∫

f̂B(x)dx
dx]− γS(y), G(d, f̂) = (GB(d, f̂), GS(d, f̂)). In equilibrium,

G(d, f̂) = 0

Suppose that there exist d1 and d2 with ‖ d1 − d2 ‖L1→ 0, such that ‖ f̂ 1 − f̂ 2 ‖L19 0.

Then there exists ε̂ > 0 such that ‖ G(d1, f 2) ‖L1> ε̂. WOLG, assume ‖ GB(d1, f 2) ‖L1> ε.

On the other hand,

‖ GB(d1, f 2) ‖L1= ‖ GB(d1, f 2)−GB(d2, f 2) ‖L1

= ‖ f 2
B(x)β

∫
(d1(x, y)− d2(x, y))

f 2
S(y)∫
f 2
S(y)dy

dy ‖L1< ε

The last line follows since
f̂2S(y)∫
f̂2S(y)dy

and f̂ 2
B(x) are bounded for any x and y. This leads to

a contradiction.

Proof of Theorem 1

Proof:

Equilibrium exists if T (VB) = VB has a unique fixed point, where,

T (VB) =

∫
max{z(x, y)− P (y, VB), βVB(x)}fVBS (y)dy

Following the Schauder Fixed Point Theorem, we need a nonempty, closed, bounded and

convex domain ψ such that,

1. T : ψ → ψ.

2. T (ψ) is an equicontinuous family.

3. T is a continuous operator.
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Let ψ be the space of Lipschitz continuous functions VB on [x, x̄], with lower bound 0 and

upper bound supx,y z(x, y). Clearly, ψ is nonempty, closed, bounded and convex. Next, we

check that the above three points hold.

Step 1: T : ψ → ψ and T (ψ) is an equicontinuous family.

Take any x1 and x2 with x1 6= x2

| TVB(x2)− TVB(x1) |

≤
∫
| max{z(x2, y)− P (y, VB), βVB(x2)} −max{z(x1, y)− P (y, VB), βVB(x1)} | fVBS (y)dy

≤
∫
| max{z(x2, y)− z(x1, y), β(VB(x2)− VB(x1))} | fVBS (y)dy

Since both z(x, y) and VB(x) are Lipschitz-continuous, T (ψ) is Lipschitz-continuous, which

implies equicontinuous. This also establishes that T is a mapping from ψ to ψ.

Step 2: T is continuous.

Take any V 1
B and V 2

B with V 2
B 6= V 1

B in ψ. For any x,

| TV 2
B(x)− TV 1

B(x) |

= |
∫

max{z(x, y)− P (y, V 2
B), βV 2

B(x)}fV
2
B

S (y)dy −
∫

max{z(x, y)− P (y, V 1
B), βV 1

B(x)}fV
1
B

S (y)dy |

≤ |
∫

max{z(x, y)− P (y, V 2
B), βV 2

B(x)}fV
2
B

S (y)dy −
∫

max{z(x, y)− P (y, V 2
B), βV 2

B(x)}fV
1
B

S (y)dy |

+ |
∫

(max{z(x, y)− P (y, V 2
B), βV 2

B(x)} −max{z(x, y)− P (y, V 1
B), βV 1

B(x)})fV
1
B

S (y)dy |

=D1(x) +D2(x)

For D1(x)

D1(x) ≤
∫

max{z(x, y)− P (y, V 2
B), βV 2

B(x)} | fV
2
B

S (y)− fV
1
B

S (y) | dy

≤ sup
x,y

[max{z(x, y)− P (y, V 2
B), βV 2

B(x)}]
∫
| fV

2
B

S (y)− fV
1
B

S (y) | dy

Since fS(y) is continuous in VB, as ‖ V 2
B − V 1

B ‖→ 0, D1(x)→ 0.

For D2(x)

D2(x) ≤
∫
| max{z(x, y)− P (y, V 2

B), βV 2
B(x)} −max{z(x, y)− P (y, V 1

B), βV 1
B(x)} | fV

1
B

S (y)dy

≤
∫
| max{P (y, V 1

B)− P (y, V 2
B), βV 2

B(x)− βV 1
B(x)} | fV

1
B

S (y)dy
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Since P (y, VB) is continuous in VB, as ‖ V 2
B − V 1

B ‖→ 0, D2(x)→ 0.

Step 3: Verify that there exists at least one price function that is continuous in y and VB in

equilibrium.

Seller′s problem is maxp Ω(y, p, VB), where

Ω(y, p, VB) = p

∫
MS(y;p,VB)

fB(x)dx

1− β + β
∫
MS(y;p,VB)

fB(x)dx

Given that VB(x) and z(x, y) are continuous, the matching set MS(y; p, VB) is continuous

in y, p and VB. As a result, Ω(y, p, VB) is continuous in those three arguments. In addition,

p ∈ [0, supx,y{z(x, y)}], which is compact valued. By the Maximum Theorem, P (y, VB) is

u.h.c. in y and VB.

Next, we show that the function Ω(y, p, VB) is strictly concave in p and hence P (y, VB)

is single valued. Combined with the u.h.c. property shown in the last paragraph, P (y, VB)

must be continuous.

To simplify the notations, use Q(p; y, VB) to denote the trading probability given price

p, i.e., Q(p; y, VB) =
∫
MS(y;p,VB)

fB(x)dx. It is easy to verify that Q(p; y, VB) is twice differ-

entiable in p, with Q′(p; y, VB) < 0 and Q′′(p; y, VB) = 0. Therefore, Ω(y, p, VB) is also twice

differentiable and

∂2Ω(y, p, VB)

∂p2
=

2Q′(p; y, VB)[1− β]

(1− β + βQ)2
(1− pβQ′(p; y, VB)

1− β + βQ
) < 0

This shows that the function Ω(y, p, VB) is strictly concave in p.

Proof of Theorem 4

Proof:

Step 1: d(x, y) = 1 ⇐⇒ s(x, y) ∈ [0, ξ) for any ξ > 0.

The direction ”⇐” follows from the construction of function d(x, y).

To see the other direction, notice that d(x, y) = 1 implies s(x, y) ≥ 0. Suppose that there

exists a ξ̃ > 0, an x̃ ∈ [x, x̄] and a ỹ ∈ [y, ȳ] such that s(x̃, ỹ) = z(x̃, ỹ)− P (ỹ)− βV0(x̃) > ξ̃

for any β ∈ [0, 1). Since the function s(x, y) is Lipschitz continuous, s(x̃, ỹ) > ξ̃ implies that

MS(ỹ) is non-empty.

We can divide this seller’s matching set into two parts, M1
S(ỹ) = {x : s(x, ỹ) ≥ ξ̃1} and

M2
S(ỹ) = {x : s(x, ỹ) ∈ [0, ξ̃1]} with some ξ̃1 < ξ̃, such that the two matching sets have the

same probability measure. Denote the probability measure of Mi
S(ỹ) as Q (i = 1, 2).
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Seller ỹ’s expected profit can then be written as

Π(ỹ) =
2QP (ỹ)

1− β + 2βQ
=

P (ỹ)

1 + 1−2Q
2Q

(1− β)

If the seller raises the price by ξ̃1, then the new matching set becomes M1
S(ỹ). It is

profitable for the seller to raise the price if the change in profit is positive, i.e.,

ξ̃1[1 +
1− 2Q

2Q
(1− β)]− 1

2Q
(1− β)P (ỹ) > 0

This inequality holds in the limit if 1−β
Q

converges to zero. Denote the market size as

M and the average trading probability of buyer as µ̄(MB).6 The stationary condition 1 =

M [1−β+βµ̄(MB)] implies that M [1−β+βµ(MB(x))] is finite or zero for a.e. x. In addition,

we know

fB(x)

1− β
=
γB(x)

1− β
1

M [1− β + βµ(MB(x))]

The right-hand side of the above equation diverges to infinity. Therefore, fB(x)
1−β also

diverges to infinity. As a result, 1−β
Q

converges to zero. We have proved the claim.

The proof of perfect negative assortative matching under submodularity is essentially the

same and thus is skipped.

Step 2: µ(MB(x)) ∈ [0, ξ) and µ(MS(y)) ∈ [0, ξ)

We show that the statement holds in the following two cases: 1) the surplus function

s(x, y) is not always zero over the matching set and 2) s(x, y) is zero over the matching set.

Step 2.1: when s(x, y) is not always zero over the matching set.

Suppose there exist a ξ̃ > 0 and a ỹ ∈ [y, ȳ] such that for any ε ∈ (0, 1), µ(MS(ỹ)) > ξ̃

for some β ∈ [1− ε, 1).

Since µ(MS(ỹ)) > ξ̃ and the surplus function s(x, y) is continuous and not always zero,

the seller can always raise the price and obtain a new matching set with a strictly positive

trading probability. Following the same argument in the first step, the seller would find it

profitable to raise the price when β is large enough. Contradiction.

Following the same reasoning, µ(MB(x)) ∈ [0, ξ) for any ξ > 0.

6Both variables depend on β. Here we abuse the notation and simply write them as M and µ̄(MB).
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Step 2.2: when s(x, y) is zero over the matching set.

Suppose that there exist an x̃ and a ξ1 > 0, such that for any ε ∈ (0, 1), the matching set

MB(x̃) has a subset [ỹ1, ỹ2] with ỹ2 − ỹ1 ≥ ξ1 for some β ∈ [1− ε, 1).

Denote ym as the middle point of the interval, ym = ỹ1+ỹ2
2

. We first show that there exist

an ε̂ ∈ (0, 1) such that for any β ∈ [1− ε̂, 1), x̃ is the unique element of MS(ym). The following

proof is based on the assumption that z(x, y) is supermodular. The same argument applies

to submodular output functions and is hence skipped.

Consider any xl < x̃. Suppose xl ∈MS(ym), i.e., s(xl, ym) ≥ 0. Define y′ = ym− ξ1
2

. This

y′ is in the interval [ỹ1, ỹ2] because the length of the interval is greater than ξ1. Therefore

s(x̃, y′) = 0. By supermodularity, any y ∈ [y′, ym] must be an element in MB(xl). We know

from lemma 1 that the surplus function is rarely constant. Therefore, the result in step 2.1

applies to MB(xl). However, we know [y′, ym] ⊂ MB(xl). Pick ξ = µ([y′, ym]). This leads to

a contradiction.

Following the same argument, for large enough β’s, any xh > x̃ is not in MS(ym).

Therefore, when β is large enough, x̃ is the unique element in MS(ym). Since the prob-

ability of meeting a buyer of type x̃ is zero, the profit of the seller of type ym is zero.

Contradiction.

The same proof can be used to show that µ(MS(y)) ∈ [0, ξ) for any ξ > 0.

Step 3: converge to perfect positive (negative) sorting.

Step 3.1: the distance between any two elements in a matching set is arbitrarily small.

First, the monotonicity of value functions implies that the matching set of any buyer or

seller is non-empty if there exist at least one lower type with non-empty matching set. In

other words, there exists a buyer type xL, such that any buyer with a type above xL has a

non-empty matching set, while any buyer with a type below xL has an empty matching set.

Step 2 implies that for any y and η > 0, there exists an ε > 0, such that for any β > 1− ε,
it must be true that x1−x2 < η for any x1 > x2 ∈MS(y). Suppose otherwise, i.e., there exist

an η, a y and x1, x2 ∈ MS(y) (x1 > x2), such that x1 − x2 ≥ η and that (x2, x1) ( MS(y).

We show that the following claim must be true: there is measure zero of sellers who have

any x ∈ (x2, x1) in their matching sets. This contradicts the result of the last paragraph.

We prove the claim by contradiction. First consider a seller of type y′ > y. If her matching

set includes some x ∈ (x2, x1), then based on supermodularity, a neighborhood of y′ must

be a subset of MB(x1). Suppose that there are a non-empty interval (or several non-empty
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intervals) of sellers whose matching sets include any buyers in the range, then the measure

of MB(x1) must be strictly bounded above zero. This contradicts the result in step 2. We

can use the same approach to prove the claim for sellers with types y′ < y.

Step 3.2: the existence of m(x) function.

Pick any x, y, y′ such that d(x, y) = 1 and y′ > y. We show that under the assumption

of supermodularity, there must exist an x′ ∈ MS(y′) such that x′ ≥ x. Suppose this is

not the case. Define x̃′ as sup{MS(y′)}. Then x̃′ < x. Use supermodularity, this implies

s(x̃′, y)+s(x, y′) > 0. On the other hand, because y′ > y, there exists a δ, such that y′−y > δ.

Then from the result of step 3.1, s(x̃′, y) < 0 and s(x, y′) < 0. This a contradiction.

We have established the existence of m(x) function, except for the lower bound of the

domain.

Step 3.3: the lower bound of the domain of m(x) converges to x.

In this step, we show that the lower bound of the domain, denoted as xL, converges to x.

We have shown in step 1 that fB(x)
1−β diverges to ∞ for a.e. x. Therefore, µ̄(MS)

1−β diverges

to ∞, where µ̄(MS) denotes the average trading probability of sellers. Then the stationary

condition 1 = M [1− β + βµ̄(MS)] implies that M(1− β) converges to 0.

Because the matching sets of buyers of type x < xL are empty, we have

FB(xL)M(1− β) = ΓB(xL)

If xL is strictly larger than x so that ΓB(xL) is strictly positive, FB(xL) goes to infinity

in the limit. This contradicts the fact that FB(xL) ∈ [0, 1].

Proof of Theorem 5

Proof: We only the show the proof with supermodular output function z(x, y). The proof

when z(x, y) is submodular is essentially the same.

Similar to the proof in step 1 of the proof for Theorem 4, the stationary condition 1 =

M [1 − β + βµ̄(MS)] implies that fS(y)
1−β diverges to ∞ for a.e. y. We have also shown that

the matching set of any buyer is non-empty in the limit. Therefore, 1−β
µ(MB(x))

→ 0 as β → 1

for any x. Based on this result, we can show that V ′B(x) → z1(x,m(x)) whenever VB(x) is

differentiable.
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To see why, notice that there exist a ỹ ∈MB(x) such that

V ′B(x) = z1(x, ỹ)
µ(MB(x))

1− β + βµ(MB(x))
→ z1(x, ỹ)→ z1(x,m(x))

This implies

VB(x)→VB(x) +

∫ x

x

z1(x̃,m(x̃))dx̃

=VB(x) +

∫ x

x

dz(x̃,m(x̃))−
∫ m(x)

y

z2(m−1(ỹ), ỹ)dỹ

Since s(x,m(x))→ 0, the price charged by a seller of type y = m(x) can be computed as

P (y)→z(m−1(y), y)− VB(m−1(y))

→z(x, y) +

∫ x

x

dz(x̃,m(x̃))− [(VB(x) +

∫ x

x

dz(x̃,m(x̃))−
∫ m(x)

y

z2(m−1(ỹ), ỹ)dỹ]

=z(x, y)− VB(x) +

∫ y

y

z2(m−1(ỹ), ỹ)dỹ

Here, VB(x) = 0 because sellers have all the bargaining power.

Proof of Lemma 5

Proof: The expected time to trade for a buyer of type x (seller of type y) is proportional

to 1−β
µ(MB(x))

( 1−β
µ(MS(y))

). We know from the proof of Theorem 5 that 1−β
µ(MB(x))

converges to 0 for

any x. By the same argument, 1−β
µ(MS(y))

→ 0 follows from the fact that fB(x)
1−β diverges to ∞

for a.e. x.

Proof of Lemma 6

Proof: From the steady-state distribution, we know that for any x > xL,

ΓB(x) = ΓB(xL) +

∫ x

xL

[1− β + βµ(MB(x))]MfB(x)dx

Because M(1 − β) converges to zero, [1− β + βµ(MB(x))]M converges to µ(MB(x))M .

In addition, we know that ΓB(xL) converges to zero. Therefore,

ΓB(x)→
∫ x

x

µ(MB(x))MfB(x)dx
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Similarly,

ΓS(y)→
∫ y

y

µ(MS(y))MfS(y)dy

Note that the right-hand sides of the above two equations are the total measure of trade

for buyers with types lower than x and that for sellers with types lower than y.

If z(x, y) is supermodular, then the total measure of trade for buyers with types lower

than x and that for sellers with types lower than m(x) must be the same in the limit. This

implies

ΓB(x)− ΓS(m(x))→ 0

The case with submodular is similar and the proof is skipped.

Proof of Lemma 7

Proof:

A seller has no incentive to change its price if

dµ(MS(y))

µ(MS(y))
≤ −1− β + βµ(MS(y))

1− β
−dP (y)

P (y)

Or equivalently,

Ey(p) < −
1− β + βµ(MS(y))

1− β
Using the previous results, it is easy to show that the right-hand-side converges to −∞.

Following the same approach, we can show that a buyer has no incentive to change its

matching set by varying V (x) if

Ex(v) < −1− β + βµ(MB(x))

1− β

The right-hand-side again converges to −∞ as β converges to one.
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