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Abstract

This article develops bounds on the distribution of treatment effects under
testable assumptions on the joint distribution of potential outcomes, namely
weak stochastic increasingness, and rank exchangeability, and shows how to test
the empirical restrictions implied by those assumptions. The resulting bounds
sharpen the classical bounds based on Frechet-Hoeffiding limits. An empirical
application on the impacts of charter schools shows the bounds are informative.

1 Introduction

In experimental data, researchers can identify the effect of treatment on the distribu-

tion of outcomes. Consequently, researchers can identify the average treatment effect

or effects on quantiles of the outcome distribution. However, experimental data only

identifies the marginal distributions, not the joint distribution, of outcomes in the

treated and untreated state. As a consequence, the distribution of treatment effects

is not identified. This includes parameters such as the fraction of subjects harmed by

the treatment and the expected treatment effect conditional upon a subject’s outcome

in the control distribution.
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These characteristics of the distribution of treatment effects are of significant

policy and research interest. In particular, agents may have private information

regarding their likely outcome in the absence of treatment. In this case, providing

separate estimates of treatment effects for individuals likely to do well and do poorly

in the absence of treatment can improve the efficiency of treatment assignment and

minimize the probability that individuals are harmed by inappropriate treatment.

Also, it is only by exploring how treatment effects vary across the distribution of

control outcomes that we can estimate not only the average effect of treatment but

also the fraction of individuals that was benefited by the treatment. This is of great

importance in that the average benefit of treatment may not be robust to the scaling

of the outcome variable. Furthermore, subjects might be rightly wary of treatment if

it exposes them to a significant risk of harm, even if the average outcome is improved.

From an economic perspective, identifying the distribution of treatment effects sheds

insight into whether agents self-select into treatment on the basis of the benefit they

are likely to receive.

Prior researchers have developed methods to bound the distribution of treatment

effects. Williamson and Downs (1990) and Heckman et al. (1997) derive bounds on

features of the joint distribution. Fan and Park (2010) show how to perform inference

on thesse bounds. These papers rely on the fact that the marginal distributions of

control and treatment outcomes themselves restrict the joint distribution via the

well-known Frechet-Hoeffding bounds. Unfortunately, these bounds, which place no

additional restrictions on the joint distribution of outcomes, tend to be uninformative.

Often, one cannot rule out harm to a substantial majority of subjects, even in the

presence of a positive average effect size. Furthermore, bounds on individual level

treatment effects tend to be extremely wide since any outcome in the support of the

control distribution can correspond to any outcome in the support of the treated
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distribution. For these reasons, such bounds tend to preclude meaningful economic

inferences.

Additional restrictions are therefore required to meaningfully bound the distri-

bution of treatment effects. We propose partially identifying restrictions that are

plausible in many economic contexts, are testable, and lead to much sharper bounds

on the distribution of treatment effects than classical inequalities. The restriction

we propose is that potential outcomes are weakly stochastically increasing: the dis-

tribution of outcomes under treatment among individuals who would have realized

a higher outcome without treatment (weakly) stochastically dominates that among

individuals who would haver realized a lower outcome without treatment.

When researchers are willing to make this assumption, it is simple to derive bounds

on the distribution of treatment effects for each quantile of the control distribution.

The lower bound corresponds to the case in which rank invariance holds for all quan-

tiles higher than the reference quantile and rank independence holds for all lower

quantiles. The upper bounds corresponds to the opposite case. These bounds can

be substantially tightened with the use of covariates. Bounds on the aggregate frac-

tion of individuals harmed is obtained by integrating the pointwise bounds across the

distribution of control outcomes. These aggregate bounds can be further tightened

by imposing conditional rank exchangeability, which can be tested using the method

discussed by Frandsen and Lefgren (2015).

We propose a test of unconditional stochastic increasingness that relies on the

intuition that under this assumption we would expect observed covariates to move

outcomes in the same direction for both treated and control observations. We demon-

strate that when covariates have sufficient predictive power for outcomes, our test in-

dicates whether the covariance between treatment and control outcomes is positive-

a necessary condition for stochastic increasingness. When covariates lack sufficient
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power for this interpretation, our test remains informative in the context of models

with a single index of heterogeneity.

The next section develops our econometric framework, defines the restrictions we

propose, derives the implied bounds on the distribution of treatment effects, shows

how they are identified in the data, and shows how they may be tested. Section 3

illustrates the bounds and the finite-sample size and power of the test of the partially

identifying restrictions via Monte Carlo simulations. Section 4 applies the bounds

and the testing procedure to an example that examines the effect of charter school

enrollment on student outcomes. Section 5 concludes.

2 Econometric Framework

Consider a binary treatment, D, that possibly affects a continuously distributed out-

come Y . Let Y (1) and Y (0) be potential outcomes with and without treatment, with

cdfs F1 and F0. The observed outcome is Y = Y (D). In addition to outcomes and

treatment, we observe a vector of pre-treatment variables S and, in the case of an

endogenous treatment, an instrumental variable Z that is independent of potential

outcomes. The variables in S are taken to be in addition to any covariates X that

may be included in the analysis for identification. For exposition, we suppress X,

but all results below continue to hold conditional on X, if necessary. Denote the

conditional cdf of potential outcomes given S as F1|S and F0|S.

The parameters of interest in this paper are features of the distribution of treat-

ment effects ∆ := Y (1)−Y (0), including the cdf, F∆; the conditional cdf given Y (0),

F∆|Y (0); and the expectation conditional on Y (0), E [∆|Y (0)]. These parameters are

typically of policy and economic importance, but, unlike the marginal distributions of

potential outcomes, are not directly identified by experimental data. The parameters
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are not identified because they depend on the joint distribution of Y (0) and Y (1),

which are never jointly observed. The marginal distributions F1 and F0 themselves

impose some restrictions on the joint distribution via the Frechet-Hoeffding bounds,

but these are rarely tight enough to imply economically meaningful restrictions. As

discussed above, economically meaningful bounds in the current literature require

strong, untestable assumptions (Heckman et al., 1997). The bounds we construct

here sharpen the Frechet-Hoeffiding bounds and the related bounds on the distri-

bution of treatment effects derived by Williamson and Downs (1990) and discussed

by Fan and Park (2010) and Fan et al. (2014) by imposing natural—and testable—

restrictions on the joint distribution of potential outcomes.

2.1 Bounding the Distribution of Treatment Effects

The separate distributions of Y (0) and Y (1) (either marginal or conditional on S)

themselves imply bounds on the joint distribution of (Y (1) , Y (0)) and also the dis-

tribution of Y (1) − Y (0). The well-known Frechet-Hoeffding bounds provide upper

and lower bounds on the joint distribution of (Y (1) , Y (0)), while the following ex-

pressions due to Williamson and Downs (1990) provide upper and lower bounds on

the distribution of treatment effects:

FL
∆|S (t|S) = sup

y
max

{
F1|S (y)− F0|S (y − t) , 0

}
, (1)

FU
∆|S (t|S) = 1 + inf

y
min

{
F1|S (y)− F0|S (y − t) , 0

}
. (2)

These bounds, while attractive in that they impose no restrictions on the joint distri-

bution of (Y (1) , Y (0)), are often uninformative. They also provide no information

on the distribution of treatment effects conditional on Y (0). Further restrictions are

required to provide more informative bounds.
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The restriction we propose assumes that potential outcomes are mutually stochas-

tically increasing conditional on S:

Definition 1 Y (1) is weakly stochastically increasing in Y (0) conditional on

S if Pr (Y (1) ≤ t|Y (0) = y, S) is nonincreasing in y almost everywhere.

Lehmann (1966) described this property, referring to it as positive regression de-

pendence. It means that individuals with higher Y (0) have a conditional distribution

of Y (1) that weakly stochastically dominates the distribution of Y (1) among those

with lower Y (0). It is a generalization of constant treatment effects restrictions and

the rank invariance assumption discussed in Chernozhukov and Hansen (2005). The

condition is satisfied whenever Y (1) and Y (0) are postively likelihood ratio depen-

dent, and it implies that Y (1) and Y (0) are positively correlated.

Stochastically increasing potential outcomes should be a plausible assumption

in many economic settings. This condition rules out negative dependence between

potential outcomes conditional on S, a plausible restriction in many settings, and can

be tested, as we discuss below in Section 2.3.

Under the weak stochastically increasing property, the conditional distribution

of the individual level treatment effect can be sharply bounded by a function of the

separate conditional distributions of Y (0) and Y (1) given S, as the following theorem

establishes.

Theorem 2 Suppose Y (1) is weakly stochastically increasing in Y (0) conditional on

S. Then F∆|Y (0),S (t|Y (0) , S) := Pr (∆ ≤ t|Y (0) , S) is bounded from below by

FL
∆|Y (0),S (t|Y (0) , S) :=

 0 , Y (0) + t < Ỹ (1|S)

F1|S(Y (0)+t|S)−F0|S(Y (0)|S)

1−F0|S(Y (0)|S)
, Y (0) + t ≥ Ỹ (1|S)

(3)
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and from above by

FU
∆|Y (0),S (t|Y (0) , S) :=


F1|S(Y (0)+t|S)

F0|S(Y (0)|S)
, Y (0) + t ≤ Ỹ (1|S)

1 , Y (0) + t ≥ Ỹ (1|S)
, (4)

where Ỹ (1|S) := F−1
1|S
(
F0|S (Y (0) |S) |S

)
.

Proof. See the appendix.

Theorem 2 gives bounds on the conditional distribution of treatment effects—

which in general depends on the unidentified joint distribution of (Y (0) , Y (1))—as

a function of the separate conditional distributions of potential outcomes, which are

identified. The bounds themselves are proper probability distributions.

Bounds on the distribution of treatment effects conditional on Y (0) only can be

obtained by taking the conditional expectation given Y (0):

FL
∆|Y (0) (t|Y (0)) = E

[
FL

∆|Y (0),S (t|Y (0) , S) |Y (0)
]

(5)

FU
∆|Y (0) (t|Y (0)) = E

[
FU

∆|Y (0),S (t|Y (0) , s) |Y (0)
]
. (6)

Bounds on the overall distribution of treatment effects can be constructed by

taking the expectation of the conditional bounds (3) and (4):

FL
∆ (t) = E

[
FL

∆|Y (0),S (t|Y (0) , S)
]

(7)

FU
∆ (t) = E

[
FU

∆|Y (0),S (t|Y (0) , S)
]
. (8)

These results can be applied directly to bound quantities such as the fraction

of individuals who are harmed by treatment (i.e., the cdf of ∆ evaluated at zero),

but can also be used to construct sharp bounds on any feature of the distribution of
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treatment effects that is monotonic in the cdf in a stochastically dominant sense, such

as the expectation or any quantile of the treatment effect. For example, the bounds

on the treatment effect cdf given by (3) and (4) also imply bounds on the average

treatment effect conditional on Y (0), a quantity that is frequently of great interest

in applications, but not point identified. Let the average treatment effect conditional

on Y (0) and S be denoted ∆ (Y (0) , S) := E [Y (1)− Y (0) |Y (0) , S]. By definition,

bounds on the conditional expectation are given by integrating the derivative of the

cdf bounds:

∆L (Y (0)) =

∫
tdFU

∆|Y (0) (t|Y (0)) , (9)

∆U (Y (0)) =

∫
tdFL

∆|Y (0) (t|Y (0)) . (10)

The bounds (3) and (4) on the conditional distribution of treatment effects are by

construction sharp pointwise in Y (0) and S, but not uniformly. Thus integrating (3)

and (4) over Y (0) and S yields conservative bounds on the unconditional distribution

of treatment effects. The unconditional bounds can be further tightened by assuming

that potential ranks U (1) := F1 (Y (1)) and U (0) := F0 (Y (0)) are exchangeable

conditional on S:

Definition 3 U (0) and U (1) are exchangeable conditional on S if G01|S (u, v|s) =

G01|S (v, u|s) for all u, v in the support of U (0) and U (1) conditional on S, where

G01|S is the joint distribution function of U (0) and U (1) conditional on S.

Like stochastic increasingness, the exchangeability condition also includes constant

treatment effects and rank invariance as special cases. It implies rank similarity with

respect to S (Frandsen and Lefgren, 2015). Unlike stochastic increasingness, however,

it imposes a kind of symmetry on the joint distribution of potential outcomes whose
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economic meaning is less clear. Nevertheless, it, too has testable implications, and

can therefore be falsified, as discussed in Section (2.3).

Exchangeability potentially tightens the bounds on the distribution of treatment

effects dramatically, as the following result shows:

Theorem 4 Suppose U (0) and U (1) are exchangeable conditional on S. Then (1)

F1|S (y|s) ≤ F0|S (y − t|s) for all y implies Pr (∆ ≤ t|S = s) ≤ 1/2; and (2) F1|S (y|s) ≥

F0|S (y − t|s) for all y implies Pr (∆ ≤ t|S = s) ≥ 1/2.

Proof. See the appendix.

Case (1) of the result means that if the (observed) conditional distribution of

Y (1) is shifted in a stochastically dominant sense relative to Y (0) by at least some

distance t, then the upper bound of the distribution of treatment effects given by (4)

evaluated up through t can be tightened to 1/2. Case (2) means the reverse: if Y (0)

stochastically dominates Y (1) by at least some distance t then the lower bound given

by (3) evaluated at t and above can be tightened to 1/2.

As the simulations and application below show, these bounds can be dramatically

tighter than those based on classical inequalities in Williamson and Downs (1990)

and the bounds based on weak stochastic increasingness given by (3) and (4). These

bounds based on exchangeability are most useful when the treatment has a modest,

stochastically dominant shifting effect on outcomes.

2.2 Estimating the Bounds

The conditional cdf bounds (3) and (4) can be consistently estimated by plugging in

consistent estimators for the conditional cdfs F1|S and F0|S. For the case where Di is

exogenous, the bounds can be constructed via the following steps for each untreated

observation j:
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1. Nonparametrically regress an indicator 1 (Yi ≤ Yj) on Si in the untreated sub-

sample and construct predicted value F̂Y (0)|S (Yj|Sj)

2. Nonparametrically regress an indicator 1 (Yi ≤ Yj (0) + t) on Si in the treated

subsample and construct predicted value F̂Y (1)|S (Yj (0) + t|Sj)

3. Form estimates of the bounds

F̂L
∆|Y (0),S (t|Yj (0) , Sj) : = max

{
0,
F̂Y (1)|S (Yj (0) + t|Sj)− F̂Y (0)|S (Yj (0) |Sj)

1− F̂Y (0)|S (Yj (0) |Sj)

}
(11)

F̂U
∆|Y (0),S (t|Yj (0) , Sj) : = min

{
1,
F̂Y (1)|S (Yj (0) + t|Sj)

F̂Y (0)|S (Yj (0) |Sj)

}
. (12)

The bounds (5) and (6) on the conditional distribution of treatment effects given

Y (0) can be constructed by nonparametrically regressing the estimates (11) and (12).

Bounds on the overall cdf of treatment effects can be constructed by taking the sample

averages of (11) and (12). Finally, bounds (9) and (10) on the conditional expecta-

tion of treatment effects given Y (0) can be computed by numerically integrating the

estimates for (5) and (6) on a discrete grid.

When treatment status is exogenous, standard nonparametric regression methods

such as local polynomial regression or spline regression suffice in steps 1 and 2 and in

constructing the bounds (5) and (6). When treatment is endogenous, instrumental

variables methods will be required. The particular instrumental variables method to

be used depends on which assumptions are appropriate in the empirical setting, and

the interpretation of the bounds may depend on those assumptions. For example, in

settings where individuals’ treatment status can be assumed to respond monotoni-

cally to the instrument Zi, the nonparametric regressions above can be estimated via

Abadie’s (2003) semiparametric κ-weighted estimator. The resulting estimates (11)
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and (12) would then identify bounds on the distribution of treatment effects among

compliers, those individuals whose treatment status is affected by the instrument.

2.3 Testing the Restrictions

The restrictions proposed in the previous section, stochastic increasingness and ex-

changeability, have testable implications. This section derives those implications and

shows how they can be tested.

Stochastic increasingness implies that Y (1) and Y (0) are positively correlated.

This implication cannot be tested directly, since we do not observe the joint distribu-

tion of potential outcomes, but we can test it indirectly by examining how Y (1)

and Y (0) move with observed variables S. Specifically, the Cauchy-Schwarz in-

equality implies (see Theorem 6 in the appendix ) that a sufficient condition for

Cov (Y (1) , Y (0)) ≥ 0 is

Corr
(
Ŷ (0) , Ŷ (1)

)
≥

√
(1−R2

0) (1−R2
1)

R2
0R

2
1

, (13)

where Ŷ (0) and Ŷ (1) are linear projections of potential outcomes on S with cor-

responding coefficients of determination R2
0 and R2

1. Condition (13) can only be

satisfied when the covariates S strongly predict potential outcomes: the respective

R2s between S and each potential outcome must average at least .5 in order for the

right-hand side of (13) to be less than one. A practical procedure for verifying this

condition is to regress Yi on Si in the treated and untreated samples, calculate the

correlation coefficient between the predicted values, and compare it to the right hand

side of (13).

Verifying condition (13) requires covariates that sufficiently strongly predict out-

comes, a luxury not always available to researchers. When such covariates are not
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available, the plausibility of the stochastic increasingness assumption can still be as-

sessed by examining the correlation between Ŷ (0) and Ŷ (1). This correlation reflects

the extent to which potential outcomes move together based on observables, and if

it is positive it lends support to potential outcomes moving together in unobservable

ways as well, similar in spirit to how selection on unobservables can be assessed by

examining selection on unobservables (Altonji et al., 2013). Furthermore, if potential

outcomes are jointly determined by a scalar index of heterogeneity, a positive correla-

tion between Ŷ (0) and Ŷ (1) implies the potential outcomes themselves are positively

correlated.

The exchangeability condition—which is not required for the main results—implies

rank similarity with respect to S, a restriction imposed in many econometric models.

Thus tests of rank similarity such as those developed in Dong and Shen (2015) and

Frandsen and Lefgren (2015) can also be considered tests of exchangeability.

3 Simulations

This section illustrates the bounds on the distribution of treatment effects derived

above using numerical simulations. The simulations adopt the following data gen-

erating process. Untreated potential outcomes are generated as Yi (0) = βSi + εi.

The treated potential outcome is Yi (1) = Yi (0) + δ. The treatment indicator Di

is assigned independently of Si and εi by random lottery whereby half the sample

receives Di = 1 and half receive Di = 0. The unobservables are generated according

to  Si

εi

 ∼ N

0,

 σ2
S 0

0 σ2
ε


 .
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In the simulated model, the R2 between Yi (0) and Si is R2 = β2σ2
S/
(
β2σ2

S + σ2
ε

)
.

The simulations set σ2
S = 1. The simulations vary σ2

ε from .01 to 1, corresponding

to an R2 between Yi (0) and S from .99 to zero, and β is set accordingly to
√
R2/σ2

S

to ensure the variance of Yi (0) remains equal to one. The simulations also vary the

treatment effect size δ from −1 to 1.

The first set of simulations illustrates how the bounds on the average treatment

effect conditional on Yi (0) vary by across the values of Yi (0). These simulations set

the R2 between Yi (0) and Si to 0.7, corresponding to σ2
ε = 0.3 and β =

√
.7 ≈ 0.84

and set the treatment effect size to δ = 1. Figure 1 plots the bounds (9) and (10) as

a function of Y (0). The bounds always include the true treatment effect δ = 1, and

are tightest in the middle of the Y (0) distribution, and widen in the tails. Notice

that although in the simulated model the treatment effect is positive across the entire

distribution of Y (0), the bounds reach into negative territory for very high values

of Y (0), since the stochastic increasingness assumption allows for mean reversion;

individuals with high values of Y (0) have a larger probability of drawing a value of

Y (1) lower than Y (0).

The second set of simulations shows how these bounds on the average treatment

effect conditional on Yi (0) depend on the informativeness of the covariate S. These

simulations set the treatment effect δ = 1 and vary the R2 between Yi (0) and Si

from zero to .99. Figure 2 plots the bounds (9) and (10) at Y (0) = 0 (i.e., at the

median) as a function of the R2. They show that the bounds tighten dramatically as

the covariate S more strongly predicts outcomes.

The next set of simulations illustrates how bounds on the fraction of individuals

harmed by treatment (i.e., the treatment effect cdf evaluated at zero) conditional on

Y (0) depends on the size of the treatment effect δ. As above, these simulations set

the R2 between Yi (0) and Si to 0.7. Figure 3 plots the bounds (5) and (6) evaluated
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at zero as a function of δ for Y (0) = 0. Since the simulated model has constant

treatment effects, the true fraction is one on the left side of the graph (where the

treatment effect is negative) and zero on the right side. When the treatment effect

is sufficiently large in magnitude, the bounds are quite tight. When the treatment

effect is zero or slightly positive, the bounds are completely uninformative, spanning

zero and one.

The next set of simulations shows how the bounds on the fraction of individuals

hurt conditional on Yi (0) depend on the informativeness of the covariate S. These

simulations set the treatment effect δ equal to one, and vary the R2 between Yi (0)

and Si from zero to .99. Figure 4 plots the bounds (5) and (6) evaluated at zero as a

function of R2 for Y (0) = 0. Since the (constant) treatment effect in this simulation

is positive, the true fraction is zero. On the far left, where the covariate has no

predictive power, the bounds are quite wide, the upper bound reaching .3, but the

bounds tighten dramatically as R2 increases.

The next set of simulations shows how the bounds on the overall fraction of indi-

viduals hurt by treatment vary with the treatment effect size δ. Again, R2 is set to

0.7 for these simulations. Figure 5 plots the bounds (7) and (8) evaluated at zero as

a function of δ. The figure also plots the tighter bounds that result from imposing

exchangeability (darker gray), and the wider bounds (1) and (2) that impose no re-

strictions (lighter gray). The bounds are reasonably tight when the treatment effect is

large in magnitude (to the left and right ends of the plot) and are substantially tighter

than the bounds that impose no restrictions. The bounds without exchangeability

are quite wide, however, when the treatment effect is small in magnitude. Imposing

exchangeability substantially tightens the bounds for modest treatment effect sizes,

since exchangeability implies that either the upper bound must be no greater than .5

or the lower bound no less than .5.
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The final set of simulations shows how the bounds on the overall fraction of indi-

viduals hurt by treatment vary with the predictive power of the covariate S. Again,

the treatment effect δ is set to one, and R2 varies from zero to .99. Figure 6 plots

the bounds (7) and (8) evaluated at zero as a function of R2. The figure also plots

the wider bounds with no restrictions (lighter gray). Since the treatment effect is

positive, the true fraction is zero. On the left side of the plot, where the covariate has

little explanatory power, the bounds we propose are quite wide, spanning zero to .35.

However, even these are much tighter than the bounds that impose no restrictions,

which span zero to over .6. As the R2 between Y (0) and S increases, the bounds

tighten sustantially.

4 Empirical Example: Charter Schools and Stu-

dent Performance

5 Conclusion

This paper showed how to construct bounds on the distribution of individual-level

treatment effects when and individual’s potential ranks are each weakly stochastically

increasing in the other, and showed how to test the empirical restrictions implied by

the assumption. The bounds can be constructed from standard estimates of the

conditional distributions of potential outcomes.
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Appendix

The following result is crucial to Theorem 2:

Lemma 5 Let X and Y be random variables with marginal distributions FX and FY ,

where Y is the support of Y . Suppose continuously distributed random variable X is

weakly stochastically increasing in Y . Then

FX|Y (x|y) ≤ Pr (X ≤ x|Y = y) ≤ F̄X|Y (x|y) ,

where

FX|Y (x|y) =

 0 , x < F−1
X (FY (y))

FX(x)−FY (y)
1−FY (y)

, x ≥ F−1
X (FY (y))

and

F̄X|Y (x|y) =


FX(x)
FY (y)

, x ≤ F−1
X (FY (y))

1 , x ≥ F−1
X (FY (y))

.

Proof. Take the lower bound first. Assume x ≥ F−1
X (FY (y)) since the bound

is trivially satisfied otherwise. The lower bound for Pr (X ≤ x|Y = y) minimizes

FX|Y (x|y) subject to the following constraints:

(1) : FX|Y (x|y) ≤ FX|Y (x|y′) , y′ < y,

(2) : FX|Y (x|y) ≥ FX|Y (x|y′′) , y
′′ ≥ y,

(since X is stochastically increasing in Y ) and

(3) :

∫
Y
FX|Y (x|s) dFY (s) = FX (x)
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(since the conditional must integrate to the marginal). The second constraint will

clearly bind at the lower bound, which implies FX|Y (x|y′′) = K (x) for y′′ ≥ y, where

K (x) is some function that does not depend on y′′. The first constraint is maximally

relaxed by setting FX|Y (x|y′) = 1 for y′ < y. The third constraint then implies the

result:

FX (x) =

∫
Y
FX|Y (x|s) dFY (s)

= FY (y) +

∫
[y,∞)∩Y

K (x) dFY (s)

= FY (y) +K (x)

∫
[y,∞)∩Y

dFY (s)

= FY (y) +K (x) (1− FY (y))

⇔ K (x) =
FX (x)− FY (y)

1− FY (y)
.

Now take the upper bound. Assume x ≤ F−1
X (FY (y)) since the bound is trivially

satisfied otherwise. The upper bound for Pr (X ≤ x|Y = y) maximizes F̄X|Y (x|y)

subject to the following constraints:

(1) : F̄X|Y (x|y) ≤ F̄X|Y (x|y′) , y′ ≤ y,

(2) : F̄X|Y (x|y) ≥ F̄X|Y (x|y′′) , y
′′
> y,

(since X is stochastically increasing in Y ) and

(3) :

∫
Y
F̄X|Y (x|s) dFY (s) = FX (x)

(since the conditional must integrate to the marginal). The first constraint will clearly

bind at the upper bound, which implies F̄X|Y (x|y′) = G (x) for y′ ≤ y, where G (x)

is some function that does not depend on y′. The second constraint is maximally
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relaxed by setting FX|Y (x|y′) = 0 for y′′ > y. The third constraint then implies the

result:

FX (x) =

∫
Y
FX|Y (x|s) dFY (s)

=

∫
(−∞,y]∩Y

G (x) dFY (s)

= G (x)

∫
(−∞,y]∩Y

dFY (s)

= G (x)FY (y)

⇔ G (x) =
FX (x)

FY (y)
.

Proof of Theorem 2. Note that by definition

Pr (∆ ≤ t|Y (0) , S) = Pr (Y (1) ≤ Y (0) + t|Y (0) , S) .

Since Y (1) is conditional stochastically increasing in Y (0), Lemma 5 applies to this

case conditionally on S, taking x = Y (0) + t; y = Y (0); FX = FY (1)|S; FY = FY (0)|S.

Making these substitutions in the lemma’s result gives the result in the theorem. The

argument for the lower bound is similar.

Proof of Theorem 4. The theorem’s premise F1|S (y|S) ≤ F0|S (y − t|S) is by

definition equivalent to F−1
1|S (τ |S) ≥ F−1

0|S (τ |S) + t which is in turn equivalent to

F1|S

(
F−1

0|S (τ |S) + t|S
)
≤ τ . (14)
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Let U (d, S) := Fd|S (Y (d) |S) be the conditional rank of Y (d) conditional on S. Then

Pr (Y (1)− Y (0) < t|S)

= Pr
(
U (1, S) < F1|S

(
F−1

0|S (U (0, S) |S) + t|s
)
|S
)

≤ Pr (U (1, S) < U (0, S) |S)

≤ 1/2,

where the first equality is by definition, the following inequality follows from (14) and

the final inequality follows from the definition of conditional exchangeability.

Theorem 6 Let Ŷ (0) and Ŷ (1) be linear projections of potential outcomes on S with

corresponding coefficients of determination R2
0 and R2

1. Then Corr
(
Ŷ (1) , Ŷ (0)

)
≥√

(1−R2
0) (1−R2

1) / (R2
0R

2
1) implies Cov (Y (1) , Y (0)) ≥ 0.

Proof. Define ε (1) = Y (1) − Ŷ (1) and ε (0) = Y (0) − Ŷ (0). Note that by con-

struction Cov
(
Ŷ (1) , ε (0)

)
= Cov

(
Ŷ (0) , ε (1)

)
= 0. Also, note that V ar (ε (1)) =

(1−R2
1)V ar (Y (1)) and V ar (ε (0)) = (1−R2

0)V ar (Y (0)). Since ε (0) is orthogonal

to Ŷ (1) and ε (1) is orthogonal to Ŷ (0), the covariance between potential outcomes

can be written:

Cov (Y (0) , Y (1)) = Cov
(
Ŷ (0) , Ŷ (1)

)
+ Cov (ε (0) , ε (1)) . (15)

The Cauchy-Schwarz inequality implies

Cov (ε (0) , ε (1)) ≥ −
√

(1−R2
0)V ar (Y (0)) (1−R2

1)V ar (Y (1)).
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Inserting this into (15) yields a lower bound on the covariance between potential

outcomes:

Cov (Y (0) , Y (1)) ≥ Cov
(
Ŷ (0) , Ŷ (1)

)
−
√

(1−R2
0)V ar (Y (0)) (1−R2

1)V ar (Y (1)).

This lower bound is nonnegative when

Cov
(
Ŷ (0) , Ŷ (1)

)
≥
√

(1−R2
0)V ar (Y (0)) (1−R2

1)V ar (Y (1)),

or, equivalently,

Corr
(
Ŷ (0) , Ŷ (1)

)
≥

√
(1−R2

0) (1−R2
1)

R2
0R

2
1

.
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Bounds on ATE Conditional on Y(0)

Figure 1: Simulated bounds on the average treatment effect conditional on untreated
potential outcome. The true treatment effect is one for all values of Y (0).
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Bounds on ATE Conditional on Y(0)
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Figure 2: Simulated bound on the average treatment effect conditional on Y (0) = 0
as a function of the R2 between Y (0) and S. The true treatment effect is one.
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Bounds on Fraction Hurt Conditional on Y(0)
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Figure 3: Simulated bound on the fraction hurt by treatment conditional on Y (0) = 0
as a function of the treatment effect. The true fraction is one when the treatment
effect is negative (left side of the plot) and zero when the treatment effect is positive.
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Figure 4: Simulated bound on the fraction hurt by treatment conditional on Y (0) = 0
as a function of the R2 between Y (0) and S. The true fraction in the simulation is
zero.
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Figure 5: Simulated bound on the fraction hurt by treatment as a function of the
treatment effect. The true fraction is one when the treatment effect is negative (left
side of the plot) and zero when the treatment effect is positive. The lightest gray
bounds impose no restrictions. The medium gray bounds impose stochastic increas-
ingness. The darker gray bounds impose stochastic increasingness and conditional
rank exchangeability.
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Figure 6: Simulated bound on the fraction hurt by treatment as a function of the R2

between Y (0) and S. The true fraction is zero. The lightest gray bounds impose no
restrictions. The medium gray bounds imposing stochastic increasingness. The darker
gray bounds impose stochastic increasingness and conditional rank exchangeability.
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