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Abstract

In this paper, we consider a high dimensional quantile regression model where
the sparsity structure may differ between the two sub-populations. We develop `1-
penalized estimators of both regression coefficients and the threshold parameter. Our
penalized estimators not only select covariates but also discriminate between a model
with homogeneous sparsity and a model with a change point. As a result, it is not
necessary to know or pretest whether the change point is present, or where it occurs.
Our estimator of the change point achieves an oracle property in the sense that its
asymptotic distribution is the same as if the unknown active sets of regression coef-
ficients were known. Importantly, we establish this oracle property without a perfect
covariate selection, thereby avoiding the need for the minimum level condition on the
signals of active covariates. Dealing with high dimensional quantile regression with an
unknown change point calls for a new proof technique since the quantile loss function is
non-smooth and furthermore the corresponding objective function is non-convex with
respect to the change point. The technique developed in this paper is applicable to a
general M-estimation framework with a change point, which may be of independent
interest. The proposed methods are then illustrated via Monte Carlo experiments and
an application to tipping in the dynamics of racial segregation.
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1 Introduction

In this paper, we consider a high dimensional quantile regression model where the sparsity

structure (e.g., identities and effects of important or contributing regressors) may differ

between the two sub-populations, thereby allowing for a possible change point in the model.

Let Y ∈ R be a response variable, Q ∈ R be a scalar random variable that determines a

possible change point, and X ∈ Rp be a p-dimensional vector of covariates. Here, Q can be a

component of X, and p is potentially much larger than the sample size n. Specifically, high

dimensional quantile regression with a change point is modelled as follows:

Y = XTβ0 +XT δ01{Q > τ0}+ U, (1.1)

where (β0, δ0, τ0) is a vector of unknown parameters and the regression error U satisfies P(U ≤

0|X,Q) = γ for some known γ ∈ (0, 1). Unlike the mean regression, quantile regression

analyzes the effects of active regressors on different parts of the conditional distribution of

a response variable. Therefore, it allows the sparsity patterns to differ at different quantiles

and also handles heterogeneity due to either heteroscedastic variance or other forms of non-

location-scale covariate effects. By taking into account a possible change point in the model,

we provide a more realistic picture of the sparsity patterns. For instance, when analyzing

high-dimensional gene expression data, the identities of contributing genes may depend on

the environmental or demographical variables (e.g., exposed temperature, age or weights).

Our paper is closely related to the literature on models with unknown change points

(e.g., Tong (1990), Chan (1993), Hansen (2000), Pons (2003), Kosorok and Song (2007),

Seijo and Sen (2011a,b) and Li and Ling (2012) among many others). Recent papers on

change points under high-dimensional setups include Enikeeva and Harchaoui (2013); Chan

et al. (2014), Frick et al. (2014), Cho and Fryzlewicz (2015), Chan et al. (2016), Callot

et al. (2016), and Lee et al. (2016) among others; however, none of these papers consider

a change point in high dimensional quantile regression. The literature on high dimensional
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quantile regression includes Belloni and Chernozhukov (2011), Bradic et al. (2011), Wang

et al. (2012), Wang (2013), and Fan et al. (2014) among others. All the aforementioned

papers on quantile regression are under the homogeneous sparsity framework (equivalently,

assuming that δ0 = 0 in the quantile regression model). Ciuperca (2013) considers penalized

estimation of a quantile regression model with breaks, but the corresponding analysis is

restricted to the case when p is small.

In this paper, we consider estimating regression coefficients α0 ≡ (βT0 , δ
T
0 )T as well as

the threshold parameter τ0 and selecting the contributing regressors based on `1-penalized

estimators. One of the strengths of our proposed procedure is that it does not require to

know or pretest whether δ0 = 0 or not, that is, whether the population’s sparsity structure

and covariate effects are invariant or not. In other words, we do not need to know whether

the threshold τ0 is present in the model.

For a sparse vector v ∈ Rp, we denote the active set of v as J(v) ≡ {j : vj 6= 0}. One of

the main contributions of this paper is that our proposed estimator of τ0 achieves an oracle

property in the sense that its asymptotic distribution is the same as if the unknown active

sets J(β0) and J(δ0) were known. Importantly, we establish this oracle property without

assuming a perfect covariate selection, thereby avoiding the need for the minimum level

condition on the signals of active covariates.

Dealing with high dimensional quantile regression with an unknown change point calls

for a new proof technique since the quantile loss function is non-smooth and furthermore the

corresponding objective function is non-convex with respect to the threshold parameter τ0.

The technique developed in this paper is applicable to a general M-estimation framework

with a change point, which may be of independent interest.

The proposed estimation method in this paper consists of three main steps: in the first

step, we obtain initial estimators of α0 and τ0, whose rates of convergence may be suboptimal;

in the second step, we re-estimate τ0 to obtain an improved estimator of τ0 that converges

at the rate of n and achieves the oracle property mentioned above; in the third step, using
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the second step estimator of τ0, we update the estimator of α0. In particular, we propose

alternative estimators of α0, depending on the purpose of estimation (prediction vs. variable

selection).

One particular application of (1.1) comes from tipping in the racial segregation in social

sciences (see, e.g. Card et al., 2008). The empirical question addressed in Card et al. (2008) is

whether and the extent to which the neighborhood’s white population decreases substantially

when the minority share in the area exceeds a tipping point (or change point). In Section

8, we use the US Census tract dataset constructed by Card et al. (2008) and find that the

tipping exists in the neighborhoods of Chicago and Pittsburgh.

The remainder of the paper is organized as follows. Section 2 provides an informal

description of our estimation methodology. In Section 3, we derive the consistency of the

estimators in terms of the excess risk. Section 4 presents regularity assumptions we need

to establish further asymptotic properties of the proposed estimators, which are given in

Sections 5 and 6. In Section 7, we provide discussions how to choose tuning parameters and

present the results of some Monte Carlo experiments. Section 8 illustrates the usefulness

of our method by applying it to tipping in the racial segregation. Section 9 concludes and

Appendix A describes in detail regarding how to construct the confidence interval for τ0.

Apendices B and C contain high-level regularity conditions on the loss function and the

proofs of all the theoretical results, respectively.

Notation. Throughout the paper, we use |v|q for the `q norm for a vector v with

q = 0, 1, 2. We use |v|∞ to denote the sup norm. For two sequences of positive real numbers

an and bn, we write an � bn and equivalently bn � an if an = o(bn). If there exists a

positive finite constant c such that an = c ·bn, then we write an ∝ bn. Let λmin(A) denote the

minimum eigenvalue of a matrix A. We use w.p.a.1 to mean “with probability approaching

one.” We write θ0 ≡ β0 + δ0. For a 2p dimensional vector α, let αJ and αJc denote

its subvectors formed by indices in J(α0) and {1, ..., 2p}/J(α0), respectively. Likewise, let

XJ(τ) denote the subvector of X(τ) ≡ (XT , XT1{Q > τ})T whose indices are in J(α0). The
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true parameter vectors β0, δ0 and θ0 (except τ0) are implicitly indexed by the sample size

n, and we allow that the dimensions of J(β0), J(δ0) and J(θ0) can go to infinity as n→∞.

For simplicity, we omit their dependence on n in our notation.

2 Estimators

In this section, we describe our estimation method. We take the check function approach

of Koenker and Bassett (1978). Let ρ(t1, t2) ≡ (t1 − t2)(γ − 1{t1 − t2 ≤ 0}) denote the loss

function for quantile regression. Let A and T denote the parameter spaces for α0 ≡ (β0, δ0)

and τ0, respectively. For each α ≡ (β, δ) ∈ A and τ ∈ T , we write XTβ + XT δ1{Q > τ} =

X(τ)Tα with the shorthand notation that X(τ) ≡ (XT , XT1{Q > τ})T . We suppose that

the vector of true parameters is defined as the minimizer of the expected loss:

(α0, τ0) = argmin
α∈A,τ∈T

E
[
ρ(Y,X(τ)Tα)

]
. (2.1)

By construction, τ0 is not unique when δ0 = 0.

Suppose we observe independent and identically distributed samples {Yi, Xi, Qi}i≤n. Let

Xi(τ) and Xij (τ) denote the i-th realization of X(τ) and j-th element of Xi (τ) , respectively,

i = 1, . . . , n and j = 1, . . . , 2p, so that Xij(τ) ≡ Xij if j ≤ p and Xij(τ) ≡ Xi,j−p1{Qi > τ}

otherwise. Define

Rn(α, τ) ≡ 1

n

n∑
i=1

ρ(Yi, Xi(τ)Tα) =
1

n

n∑
i=1

ρ(Yi, X
T
i β +XT

i δ1{Qi > τ}).

In addition, let Dj(τ) ≡ {n−1
∑n

i=1 Xij(τ)2}1/2, j = 1, . . . , 2p.

We describe the main steps of our `1-penalized estimation method. For some tuning

parameter κn, define:

Step 1: (ᾰ, τ̆) = argminα∈A,τ∈TRn(α, τ) + κn

2p∑
j=1

Dj(τ)|αj|. (2.2)
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This step produces an initial estimator (ᾰ, τ̆). The tuning parameter κn is required to satisfy

κn ∝ (log p)(log n)

√
log p

n
. (2.3)

Note that we take κn that converges to zero at a rate slower than the standard (log p/n)1/2

rate in the literature. This modified rate of κn is useful in our context to deal with an

unknown τ0. A data-dependent method of choosing κn is discussed in Section 7.1.

Remark 2.1. Define dj ≡ ( 1
n

∑n
i=1X

2
ij)

1/2 and dj(τ) ≡ ( 1
n

∑n
i=1 X

2
ij1{Qi > τ})1/2. Note

that
∑2p

j=1 Dj(τ)|αj| =
∑p

j=1 dj|βj| +
∑p

j=1 dj(τ)|δj|, so that the weight Dj(τ) adequately

balances the regressors; the weight dj regarding |βj| does not depend on τ , while the weight

dj(τ) with respect to |δj| does, which takes into account the effect of the threshold τ on the

parameter change δ.

The main purpose of the first step is to obtain an initial estimator of α0. The achieved

convergence rates of this step might be suboptimal due to the uniform control of the score

functions over the space T of the unknown τ0.

In the second step, we introduce our improved estimator of the change point τ0. It does

not use a penalty term, while using the first step estimator of α0. Define:

Step 2: τ̂ = argmin
τ∈T

Rn(ᾰ, τ), (2.4)

where ᾰ is the first step estimator of α0 in (2.2). In Section 5, we show that when τ0 is

identifiable, τ̂ is consistent for τ0 at a rate of n−1. Furthermore, we obtain the limiting

distribution of n(τ̂ − τ0), and establish conditions under which its asymptotic distribution is

the same as if the true α0 were known, without a perfect model selection on α0, nor assuming

the minimum signal condition on the nonzero elements of α0.

In the third step, we update the Lasso estimator of α0 using a different value of the

penalization tuning parameter and the second step estimator of τ0. In particular, we recom-
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mend two different estimators of α0 : one for the prediction and the other for the variable

selection, serving for different purposes of practitioners.

For two different tuning parameters ωn and µn whose rates will be specified later by (3.2)

and (5.1), define:

Step 3a (for prediction):

α̂ = argminα∈ARn(α, τ̂) + ωn

2p∑
j=1

Dj(τ̂)|αj|, (2.5)

Step 3b (for variable selection):

α̃ = argminα∈ARn(α, τ̂) + µn

2p∑
j=1

wjDj(τ̂)|αj|, (2.6)

where τ̂ is the second step estimator of τ0 in (2.4), and the “signal-adaptive” weight wj in

(2.6), motivated by the local linear approximation of the SCAD penalties (Fan and Li, 2001;

Zou and Li, 2008), is calculated based on the Step 3a estimator α̂ from (2.5):

wj ≡


1, |α̂j| < µn

0, |α̂j| > aµn

aµn−|α̂j |
µn(a−1)

µn ≤ |α̂j| ≤ aµn.

Here a > 1 is some prescribed constant, and a = 3.7 is often used in the literature. We take

this as our choice of a.

Remark 2.2. For α̂ in (2.5), we set ωn to converge to zero at a rate of (log(p ∨ n)/n)1/2

(a more standard rate compared to κn in (2.3)). Therefore, the estimator α̂ converges in

probability to α0 faster than ᾰ. In addition, µn in (2.6) is chosen to be slightly larger than

ωn for the purpose of the variable selection. A data-dependent method of choosing ωn as

well as µn is discussed in Section 7.1. In Sections 5 and 6, we establish conditions under

which α̂ achieves the (minimax) optimal rate of convergence in probability for α0 regardless
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of the identifiability of τ0.

Remark 2.3. It is well known in linear models without the presence of an unknown τ0

(see, e.g. Bühlmann and van de Geer (2011)) that the Lasso estimator may not perform

well for the purpose of the variable selection. The estimator α̃ defined in Step 3b uses an

entry-adaptive weight wj that corrects the shrinkage bias, and possesses similar merits of

the asymptotic unbiasedness of the SCAD penalty. Therefore, we recommend α̂ for the

prediction; while suggesting α̃ for the variable selection.

Remark 2.4. Note that the objective function is non-convex with respect to τ in the first and

second steps. However, the proposed estimators can be calculated efficiently using existing

algorithms, and we describe the computation algorithms in Section 7.1.

Remark 2.5. Note that Step 2 can be repeated using the updated estimator of α0 in Step

3. Analogously, Step 3 can be iterated after that. This would give asymptotically equivalent

estimators but might improve the finite-sample performance especially when p is very large.

Repeating Step 2 might be useful especially when δ̆ = 0 in the first step. In this case, there

is no unique τ̂ in Step 2. So, we skip the second step by setting τ̂ = τ̆ and move to the third

step directly. If a preferred estimator of δ0 in the third step (either δ̂ or δ̃), depending on

the estimation purpose, is different from zero, we could go back to Step 2 and re-estimate

τ0. If the third step estimator of δ0 is also zero, then we conclude that there is no change

point and disregard the first-step estimator τ̆ since τ0 is not identifiable in this case.

3 Risk Consistency

Given the loss function ρ(t1, t2) ≡ (t1− t2)(γ− 1{t1− t2 ≤ 0}) for the quantile regression

model, define the excess risk to be

R(α, τ) ≡ Eρ(Y,X(τ)Tα)− Eρ(Y,X(τ0)Tα0). (3.1)
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By the definition of (α0, τ0) in (2.1), we have that R(α, τ) ≥ 0 for any α ∈ A and τ ∈ T .

What we mean by the “risk consistency” here is that the excess risk converges in probabil-

ity to zero for the proposed estimators. The other asymptotic properties of the proposed

estimators will be presented in Sections 5 and 6.

In this section, we begin by stating regularity conditions that are needed to develop our

first theoretical result. Recall that Xij denotes the jth element of Xi.

Assumption 3.1 (Setting). (i) The data {(Yi, Xi, Qi)}ni=1 are independent and identically

distributed with E |Xij|m ≤ m!
2
Km−2

1 for all j and some constant K1 <∞.

(ii) P(τ1 < Q ≤ τ2) ≤ K2(τ2 − τ1) for any τ1 < τ2 and some constant K2 <∞.

(iii) α0 ∈ A ≡ {α : |α|∞ ≤M1} for some constant M1 <∞, and τ0 ∈ T ≡ [τ , τ ]. Further-

more, the probability of {Q < τ} and that of {Q > τ} are strictly positive, and

sup
j≤p

sup
τ∈T

E[X2
ij|Q = τ ] <∞.

(iv) There exist universal constants D > 0 and D > 0 such that w.p.a.1,

0 < D ≤ min
j≤2p

inf
τ∈T

Dj(τ) ≤ max
j≤2p

sup
τ∈T

Dj(τ) ≤ D <∞.

(v) E
[(
XT δ0

)2 |Q = τ
]
≤ M2|δ0|22 for all τ ∈ T and for some constant M2 satisfying

0 < M2 <∞.

In addition to the random sampling assumption, condition (i) imposes mild moment

restrictions on X. Condition (ii) imposes a weak restriction that the probability that Q ∈

(τ1, τ2] is bounded by a constant times (τ2− τ1). Condition (iii) assumes that the parameter

space is compact and that the support of Q is strictly larger than T . These conditions

are standard in the literature on change-point and threshold models (e.g., Seijo and Sen

(2011a,b)). Condition (iii) also assumes that the conditional expectation of E[X2
ij|Q = ·]
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is bounded on T uniformly in j. Condition (iv) requires that each regressor be of the

same magnitude uniformly over the threshold τ . As the data-dependent weights Dj(τ) are

the sample second moments of the regressors, it is not stringent to assume them to be

bounded away from both zero and infinity. Condition (v) puts some weak upper bound on

E[
(
XT δ0

)2 |Q = τ ] for all τ ∈ T when δ0 6= 0. A simple sufficient condition for condition (v)

is that the eigenvalues of E[XJ(δ0)X
T
J(δ0)|Q = τ ] are bounded uniformly in τ , where XJ(δ0)

denotes the subvector of X corresponding to the nonzero components of δ0.

Throughout the paper, we let s ≡ |J(α0)|0, namely the cardinality of J(α0). We allow

that s→∞ as n→∞ and will give precise regularity conditions regarding its growth rates.

The following theorem is concerned about the convergence of R(ᾰ, τ̆) with the first step

estimator.

Theorem 3.1 (Risk Consistency). Let Assumption 3.1 hold. Suppose that the tuning pa-

rameter κn satisfies (2.3). Then, R(ᾰ, τ̆) = OP (κns) .

Note that Theorem 3.1 holds regardless of the identifiability of τ0 (that is, whether δ0 = 0

or not). Theorem 3.1 implies the risk consistency immediately if κns → 0 as n → ∞. The

restriction on s is slightly stronger than that of the standard result s = o(
√
n/ log p) in the

literature for the M-estimation (see, e.g. van de Geer (2008) and Chapter 6.6 of Bühlmann

and van de Geer (2011)) since the objective function ρ(Y,X(τ)Tα) is non-convex in τ , due

to the unknown change-point.

Remark 3.1. The extra logarithmic factor (log p)(log n) in the definition of κn (see (2.3))

is due to the existence of the unknown and possibly non-identifiable threshold parameter

τ0. In fact, an inspection of the proof of Theorem 3.1 reveals that it suffices to assume that

κn satisfies κn � log2(p/s)[log(np)/n]1/2. The term log2(p/s) and the additional (log n)1/2

term inside the brackets are needed to establish the stochastic equicontinuity of the empirical

process

νn (α, τ) ≡ 1

n

n∑
i=1

[
ρ
(
Yi, Xi (τ)T α

)
− Eρ

(
Y,X (τ)T α

)]
10



uniformly over (α, τ) ∈ A× T .

The following theorem shows that an improved rate of convergence is possible for the

excess risk by taking the second and third steps of estimation.

Theorem 3.2 (Improved Risk Consistency). Let Assumption 3.1 hold. In addition, assume

that |τ̂ − τ0| = OP (n−1) when δ0 6= 0. Let

ωn ∝
√

log(p ∨ n)

n
. (3.2)

Then, whether δ0 = 0 or not,

R (α̂, τ̂) = Op (ωns) .

For the sake of not introducing additional assumptions at this stage, we have assumed

in Theorem 3.2 that |τ̂ − τ0| = OP (n−1) when τ0 is identifiable. Its formal statement is

delegated to Theorem 5.3 in Section 5.

Remark 3.2. As in Theorem 3.1, the risk consistency part of Theorem 3.2 holds whether

or not δ0 = 0. We obtain the improved rate of convergence in probability for the excess risk

by combining the fact that our objective function is convex with respect to α given each τ

with the second-step estimation results that (i) if δ 6= 0, then τ̂ is within a shrinking local

neighborhood of τ0, and (ii) when δ0 = 0, τ̂ does not affect the excess risk in the sense that

R (α0, τ) = 0 for all τ ∈ T .

4 Assumptions for Oracle Properties

In this section, we list a set of assumptions that will be useful to derive asymptotic

properties of the proposed estimators in Sections 5 and 6. In the following, we divide our

discussions into two important cases: (i) δ0 6= 0 and τ0 is identified, and (ii) δ0 = 0 and thus

τ0 is not identified. The asymptotic properties are derived under both cases. Note that such
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a distinction is only needed for presenting our theoretical results. In practice, we do not

need to know whether δ0 = 0 or not.

Assumption 4.1 (Underlying Distribution). (i) The conditional distribution Y |X,Q has

a continuously differentiable density function fY |X,Q(y|x, q) with respect to y, whose

derivative is denoted by f̃Y |X,Q(y|x, q).

(ii) There are constants C1, C2 > 0 such that for all (y, x, q) in the support of (Y,X,Q),

|f̃Y |X,Q(y|x, q)| ≤ C1, fY |X,Q(x(τ0)Tα0|x, q) ≥ C2.

(iii) When δ0 6= 0, Γ(τ, α0) is positive definite uniformly in a neighborhood of τ0, where

Γ(τ, α0) ≡ ∂2E[ρ(Y,XJ(τ)Tα0J)]

∂αJ∂αTJ
= E[XJ(τ)XJ(τ)TfY |X,Q(X(τ)Tα0|X,Q)].

When δ0 = 0, the matrix E[XJ(β0)X
T
J(β0)fY |X,Q(XT

J(β0)β0J(β0)|X,Q)] is positive definite.

Conditions (i) and (ii) are standard assumptions for quantile regression models. To follow

the notation in condition (iii), recall that αJ denotes the subvector of α whose indices are in

J(α0). Expressions XJ(τ), XJ(β0), α0J and β0J(β0) can be understood similarly. Condition

(iii) is a weak condition that imposes non-singularity of the Hessian matrix of the population

objective function uniformly in a neighborhood of τ0 in case of δ0 6= 0. This condition reduces

to the usual non-singularity condition when δ0 = 0.

4.1 Compatibility Conditions

We now make an assumption that is an extension of the well-known compatibility con-

dition (see Bühlmann and van de Geer (2011), Chapter 6). In particular, the following

condition is a uniform-in-τ version of the compatibility condition. Recall that for a 2p di-

mensional vector α, we use αJ and αJc to denote its subvectors formed by indices in J(α0)

and {1, ..., 2p}/J(α0), respectively.
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Assumption 4.2 (Compatibility Condition). (i) When δ0 6= 0, there is a neighborhood

T0 ⊂ T of τ0, and a constant φ > 0 such that for all τ ∈ T0 and all α ∈ R2p satisfying

|αJc|1 ≤ 5|αJ |1,

φ|αJ |21 ≤ sαTE[X(τ)X(τ)T ]α. (4.1)

(ii) When δ0 = 0, there is a constant φ > 0 such that for all τ ∈ T and all α ∈ R2p

satisfying |αJc |1 ≤ 4|αJ |1,

φ|αJ |21 ≤ sαTE[X(τ)X(τ)T ]α. (4.2)

Assumption 4.2 requires that the compatibility condition hold uniformly in τ over a

neighbourhood of τ0 when δ0 6= 0 and over the entire parameter space T when δ0 = 0. Note

that this assumption is imposed on the population covariance matrix E[X(τ)X(τ)T ]; thus, a

simple sufficient condition of Assumption 4.2 is that the smallest eigenvalue of E[X(τ)X(τ)T ]

is bounded away from zero uniformly in τ . Even if p > n, the population covariance can still

be strictly positive definite while the sample covariance is not.

4.2 Restricted Nonlinearity Conditions

In this subsection, we make an assumption called a restricted nonlinear condition to deal

with the quantile loss function. We extend condition D.4 in Belloni and Chernozhukov (2011)

to accommodate the possible existence of the unknown threshold in our model (specifically, a

uniform-in-τ version of the restricted nonlinear condition as in the compatibility condition).

Note that when Q ≤ τ0, X(τ0)Tα0 = XTβ0, while when Q > τ0, X(τ0)Tα0 = XT θ0,

where θ0 ≡ β0 + δ0. Hence we define the “prediction balls” with radius r and corresponding

centers as follows:

B(β0, r) = {β ∈ B ⊂ Rp : E[(XT (β − β0))21{Q ≤ τ0}] ≤ r2},

G(θ0, r) = {θ ∈ G ⊂ Rp : E[(XT (θ − θ0))21{Q > τ0}] ≤ r2},
(4.3)
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where B and G are parameter spaces for β0 and θ0, respectively. To deal with the case that

δ0 = 0, we also define

B̃(β0, r, τ) = {β ∈ B ⊂ Rp : E[(XT (β − β0))21 {Q ≤ τ}] ≤ r2},

G̃(β0, r, τ) = {θ ∈ G ⊂ Rp : E[(XT (θ − β0))21 {Q > τ}] ≤ r2}.
(4.4)

Assumption 4.3 (Restricted Nonlinearity). The following holds for the constants C1 and

C2 defined in Assumption 4.1 (ii).

(i) When δ0 6= 0, there exists a constant r∗QR > 0 such that

inf
β∈B(β0,r∗QR),β 6=β0

E[|XT (β − β0)|21{Q ≤ τ0}]3/2

E[|XT (β − β0)|31{Q ≤ τ0}]
≥ r∗QR

2C1

3C2

> 0 (4.5)

and that

inf
θ∈G(θ0,r∗QR),θ 6=θ0

E[|XT (θ − θ0)|21{Q > τ0}]3/2

E[|XT (θ − θ0)|31{Q > τ0}]
≥ r∗QR

2C1

3C2

> 0. (4.6)

(ii) When δ0 = 0, there exists a constant r∗QR > 0 such that

inf
τ∈T

inf
β∈B̃(β0,r∗QR,τ),β 6=β0

E[|XT (β − β0)|21{Q ≤ τ}]3/2

E[|XT (β − β0)|31{Q ≤ τ}]
≥ r∗QR

2C1

3C2

> 0 (4.7)

and that

inf
τ∈T

inf
θ∈G̃(β0,r∗QR,τ),β 6=β0

E[|XT (θ − θ0)|21{Q > τ}]3/2

E[|XT (θ − θ0)|31{Q > τ}]
≥ r∗QR

2C1

3C2

> 0. (4.8)

Remark 4.1. As pointed out by Belloni and Chernozhukov (2011), If XT c follows a log-

concave distribution conditional on Q for any nonzero c (e.g. if the distribution of X is

multivariate normal), then Theorem 5.22 of Lovász and Vempala (2007) and the Hölder
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inequality imply that for all α ∈ A,

E[|X(τ0)T (α− α0)|3|Q] ≤ 6
{
E[{X(τ0)T (α− α0)}2|Q]

}3/2
,

which provides a sufficient condition for Assumption 4.3. On the other hand, this assumption

can hold more generally since equations (4.5)-(4.8) in Assumption 4.3 need to hold only

locally around true parameters α0.

4.3 Additional Assumptions When δ0 6= 0

We first describe the additional conditions on the distribution of (X,Q).

Assumption 4.4 (Additional Conditions on the Distribution of (X,Q)). Assume δ0 6= 0.

In addition, there exists a neighborhood T0 ⊂ T of τ0 that satisfies the following.

(i) Q has a density function fQ(·) that is continuous and bounded away from zero on T0.

(ii) Let X̃ denote all the components of X excluding Q in case that Q is an element of

X. The conditional distribution of Q given X̃ has a density function fQ|X̃(q|x̃) that is

bounded uniformly in both q ∈ T0 and x̃.

(iii) There exists M3 > 0 such that M−1
3 ≤ E[(XT δ0)2|Q = τ ] ≤M3 for all τ ∈ T0.

Condition (i) implies that P {|Q− τ0| < ε} > 0 for any ε > 0, and condition (ii) requires

that the conditional density of Q given X̃ be uniformly bounded. When τ0 is identified,

we require δ0 to be considerably different from zero. This requirement is given in condition

(iii). Note that this condition is concerned with E[
(
XT δ0

)2 |Q = τ ], which is an important

quantity to develop asymptotic results when δ0 6= 0. Note that condition (iii) is a local

condition with respect to τ in the sense that it has to hold only locally in a neighborhood

of τ0.

The following additional moment conditions are useful to derive our theoretical results.
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Assumption 4.5 (Moment Bounds). (i) There exist constants 0 < C̃1 ≤ C̃2 < 1 such

that for all β ∈ Rp satisfying E|XTβ| 6= 0,

C̃1 ≤
E[|XTβ|1{Q > τ0}]

E|XTβ|
≤ C̃2.

(ii) There exist positive constants M, r and the neighborhood T0 of τ0 such that

E
[
(XT [(θ − β)− (θ0 − β0)])2

∣∣Q = τ
]
≤M,

E[|XT (β − β0)|
∣∣Q = τ ] ≤M,

E[|XT (θ − θ0)|
∣∣Q = τ ] ≤M,

sup
τ∈T0:τ>τ0

E
[
|XT (β − β0)|1{τ0 < Q ≤ τ}

(τ − τ0)

]
≤ME[|XT (β − β0)|1{Q ≤ τ0}],

sup
τ∈T0:τ<τ0

E
[
|XT (θ − θ0)|1{τ < Q ≤ τ0}

(τ0 − τ)

]
≤ME[|XT (θ − θ0)|1{Q > τ0}],

uniformly in β ∈ B(β0, r), θ ∈ G(θ0, r) and τ ∈ T0.

Remark 4.2. Condition (i) requires that Q have non-negligible support on both sides of τ0.

Note that it is equivalent to

(
1

C̃2

− 1

)
E[|XTβ|1 {Q > τ0}] ≤ E

[
|XTβ|1 {Q ≤ τ0}

]
≤
(

1

C̃1

− 1

)
E|XTβ|1 {Q > τ0} .

(4.9)

Hence this assumption prevents the conditional expectation of XTβ given Q from chang-

ing too dramatically across regimes. Condition (ii) requires the boundedness and certain

smoothness of the conditional expectation functions E[(XT [(θ − β) − (θ0 − β0)])2
∣∣Q = τ ],

E[|XT (β − β0)|
∣∣Q = τ ], and E[|XT (θ− θ0)|

∣∣Q = τ ], and prohibits degeneracy in one regime.

The last two inequalities in condition (ii) are satisfied if

E
[∣∣XTβ

∣∣ |Q = τ
]

E [|XTβ|]
≤M
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for all τ ∈ T0 and for all β satisfying 0 < E
∣∣XTβ

∣∣ ≤ c for some small c > 0. In this view,

we may regard condition (ii) as a local version of condition (i).

5 Asymptotic Properties: Case I. δ0 6= 0

We first establish the consistency of τ̆ for τ0.

Theorem 5.1 (Consistency of τ̆). Let Assumptions 3.1, 4.1, 4.4, and 4.5 hold. Furthermore,

assume that κns = o(1). Then, τ̆
p−→ τ0.

The following theorem presents the rates of convergence for the first step estimators of

α0 and τ0. Recall that κn is the first-step penalization tuning parameter that satisfies (2.3).

Theorem 5.2 (Rates of Convergence When δ0 6= 0). Suppose that κns
2 log p = o(1). Then

under Assumptions 3.1-4.5, we have:

|ᾰ− α0|1 = OP (κns), R(ᾰ, τ̆) = OP (κ2
ns), and |τ̆ − τ0| = OP (κ2

ns).

It is worth noting that τ̆ converges to τ0 faster than the standard parametric rate of

n−1/2, as long as s2(log p)6(log n)4 = o(n). The main reason for such super-consistency is

that the objective function behaves locally linearly around τ0 with a kink at τ0, unlike in

the regular estimation problem where the objective function behaves locally quadratically

around the true parameter value. Moreover, the achieved convergence rate for ᾰ is nearly

minimax optimal, with an additional factor (log p)(log n) compared to the rate of regular

Lasso estimation (e.g., Bickel et al. (2009); Raskutti et al. (2011)). This factor arises due to

the unknown change-point τ0. We will improve the rates of convergence for both τ0 and α0

further by taking the second and third steps of estimation.

Recall that the second-step estimator of τ0 is defined as

τ̂ = argmin
τ∈T

Rn(ᾰ, τ),
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where ᾰ is the first step estimator of α0 in (2.2). Consider an oracle case for which α in

Rn(α, τ) is fixed at α0. Let R∗n (τ) = Rn (α0, τ) and

τ̃ = argmin
τ∈T

R∗n (τ) .

Define ρ̇ (t) ≡ t (γ − 1 {t ≤ 0}), so that ρ (t, s) = ρ̇ (t− s). For each i = 1, . . . , n, let Ui ≡

Yi−XT
i β0−XT

i δ01 {Qi > τ0}, ρ̇1i ≡ ρ̇
(
Ui −XT

i δ0

)
− ρ̇ (Ui) and ρ̇2i ≡ ρ̇

(
Ui +XT

i δ0

)
− ρ̇ (Ui).

We now give one of the main results of this paper.

Theorem 5.3 (Oracle Estimation of τ0). Let Assumptions 3.1-4.5 hold. Furthermore, sup-

pose that κns
2 log p = o(1). Then, we have that

τ̂ − τ̃ = op
(
n−1
)

and n (τ̂ − τ0) converges in distribution to the smallest minimizer of a compound Poisson

process, which is given by

M (h) ≡
N1(−h)∑
i=1

ρ1i1 {h < 0}+

N2(h)∑
i=1

ρ2i1 {h ≥ 0} ,

where N1 and N2 are Poisson processes with the same jump rate fQ (τ0) and {ρ1i} and

{ρ2i} are two sequences of independent and identically distributed random variables. The

two common distributions are identical to the conditional distributions of ρ̇1i and ρ̇2i given

Qi = τ0, respectively. Here, N1, N2, {ρ1i} and {ρ2i} are mutually independent.

The first conclusion of Theorem 5.3 establishes that the second step estimator of τ0 is

an oracle estimator in the sense that it is asymptotically equivalent to the infeasible, oracle

estimator τ̃ . As emphasized in the introduction, we obtain the oracle property without

relying on the perfect model selection in the first step nor on the existence of the minimum

signal condition on active covariates. The second conclusion of Theorem 5.3 follows from

combining well-known weak convergence results in the literature (see e.g. Pons (2003);
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Kosorok and Song (2007); Lee and Seo (2008)) with the argmax continuous mapping theorem

by Seijo and Sen (2011b).

Remark 5.1. Li and Ling (2012) propose a numerical approach for constructing a confidence

interval by simulating a compound Poisson process in the context of least squares estimation.

We adopt their approach to simulate the compound Poisson process for quantile regression.

See Section 8 for a detailed description of how to construct a confidence interval for τ0.

We now consider the Step 3a estimator of α0 defined in (2.5). Recall that ωn is the Step

3a penalization tuning parameter that satisfies (3.2).

Theorem 5.4 (Improved Rates of Convergence When δ0 6= 0). Suppose that κns
2 log p =

o(1). Then under Assumptions 3.1-4.5,

|α̂− α0|1 = OP (ωns) and R(α̂, τ̂) = OP (ω2
ns).

Theorem 5.4 shows that the estimator α̂ defined in Step 3a achieves the optimal rate of

convergence in terms of prediction and estimation. In other words, when ωn is proportional

to {log(p ∨ n)/n}1/2 in equation (3.2) and p is larger than n, it obtains the minimax rates

as in e.g., Raskutti et al. (2011).

As we mentioned in Section 2, the Step 3b estimator of α0 has the purpose of the variable

selection. The nonzero components of α̃ are expected to identify the important regressors.

Partition α̃ = (α̃J , α̃Jc) such that α̃J = (α̃j : j ∈ J(α0)) and α̃Jc = (α̃j : j /∈ J(α0)). Note

that α̃J consists of the estimators of β0J and δ0J , whereas α̃Jc consists of the estimators of

all the zero components of β0 and δ0. Let α
(j)
0J denote the j-th element of α0J .

We now establish conditions under which the estimator α̃ defined in Step 3b has the

change-point-oracle properties, meaning that it achieves the variable selection consistency

and has the limiting distributions as though the identities of the important regressors and

the location of the change point were known.
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Theorem 5.5 (Variable Selection When δ0 6= 0). Suppose that κns
2 log p = o(1), s4 log s =

o(n), and

ωn + s

√
log s

n
� µn � min

j∈J(α0)
|α(j)

0J |. (5.1)

Then under Assumptions 3.1-4.5, we have:

|α̃J − α0J |2 = OP

(√
s log s

n

)
, |α̃J − α0J |1 = OP

(
s

√
log s

n

)

and

P (α̃Jc = 0)→ 1.

We see that (5.1) provides a condition on the strength of the signal via minj∈J(α0) |α(j)
0J |,

and the tuning parameter in Step 3b should satisfy ωn � µn and s2 log s/n � µ2
n. Hence

the variable selection consistency demands a larger tuning parameter than in Step 3a.

To conduct statistical inference, we now discuss the asymptotic distribution of α̃J . Define

α̂∗J ≡ argminαJ R
∗
n (αJ , τ0). Note that the asymptotic distribution for α̂∗J corresponds to an

oracle case that we know τ0 as well as the true active set J(α0) a priori. The limiting

distribution of α̃J is the same as that of α̂∗J . Hence, we call this result the change-point-

oracle property of the Step 3b estimator and the following theorem establishes this property.

Theorem 5.6 (Change-Point-Oracle Properties). Suppose that all the conditions imposed

in Theorem 5.5 are satisfied. Furthermore, assume that ∂
∂α
E
[
ρ
(
Y,XTα

)
|Q = t

]
exists for

all t in a neighborhood of τ0 and all its elements are continuous and bounded, and that

s3(log s)(log n) = o (n). Then, we have that α̃J = α̂∗J + op(n
−1/2).

Since the sparsity index (s) grows at a rate slower than the sample size (n), it is straight-

forward to establish the the asymptotic normality of a linear transformation of α̃J , i.e., Lα̃J ,

where L : Rs → R with |L|2 = 1, by combing the existing results on quantile regression with

parameters of increasing dimension (see, e.g. He and Shao (2000)) with Theorem 5.6.

Remark 5.2. Without the condition on the strength of minimal signals, it may not be possi-
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ble to achieve the variable selection consistency or establish change-point-oracle properties.

However, the following theorem shows that the SCAD-weighted penalized estimation still

can achieve a satisfactory rate of convergence in estimation of α0 without the condition that

µn � minj∈J(α0) |α(j)
0J |.

Theorem 5.7 (Satisfactory Rates Without Minimum Signal Condition). Assume that As-

sumptions 3.1-4.5 hold. Suppose that κns
2 log p = o(1) and ωn � µn. Then, without the

lower bound requirement on minj∈J(α0) |α(j)
0J |, we have that |α̃− α0|1 = OP (µns) .

6 Asymptotic Properties: Case II. δ0 = 0

In this section, we show that our estimators have desirable results even if there is no

change point in the true model. The case of δ0 = 0 corresponds to the high dimensional linear

quantile regression model. Since XTβ0 +XT δ01{Q > τ0} = XTβ0, τ0 is non-identifiable, and

there is no structural change on the coefficient. But a new analysis different from that of

the standard high-dimensional model is still required because in practice we do not know

whether δ0 = 0 or not. Thus, the proposed estimation method still estimates τ0 to account

for possible structural changes. The following results show that in this case, the first step

estimator of α0 will asymptotically behave as if δ0 = 0 were a priori known.

Theorem 6.1 (Rates of Convergence When δ0 = 0). Suppose that κns = o(1). Then under

Assumptions 3.1-4.3, we have that

|ᾰ− α0|1 = OP (κns) and R(ᾰ, τ̆) = OP (κ2
ns).

The results obtained in Theorem 6.1 combined with those obtained in Theorem 5.2 imply

that the first step estimatior performs equally well in terms of rates of convergence for both

the `1 loss for ᾰ and the excess risk regardless of the existence of the threshold effect. It is

straightforward to obtain an improved rate result for the Step 3a estimator, equivalent to
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Theorem 5.4 under Assumptions 3.1-4.3. We omit the details for brevity.

We now give a result that is equivalent to Theorem 5.5.

Theorem 6.2 (Variable Selection When δ0 = 0). Suppose that κns = o(1), s4 log s = o(n),

and

ωn + s

√
log s

n
� µn � min

j∈J(α0)
|α(j)

0J |.

Then under Assumptions 3.1-4.3, we have:

∣∣∣β̃J − β0J

∣∣∣
2

= OP

(√
s log s

n

)
,
∣∣∣β̃J − β0J

∣∣∣
1

= OP

(
s

√
log s

n

)
,

and

P (β̃Jc = 0)→ 1, P (δ̃ = 0)→ 1.

Theorem 6.2 demonstrates that when there is in fact no change point, our estimator

for δ0 is exactly zero with a high probability. Therefore, the estimator can also be used as

a diagnostic tool to check whether there exists any structural change. Results similar to

Theorems 5.6 and 5.7 can be established straightforwardly as well; however, their details are

omitted for brevity.

7 Simulation Results

7.1 Tuning parameter selection

Recall that our estimators are obtained by three steps, which involve three tuning param-

eters in the penalization: (1) κn in Step 1 ought to dominate the score function uniformly

over the range of τ , and hence should be slightly larger than the others; (2) ωn is used in

Step 3a for the prediction, and (3) µn in Step 3b for the variable selection should be larger

than ωn. Note that the tuning parameters in both Steps 3a and 3b are similar to those of

the existing literature since the change point τ̂ has been estimated.
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In the following Monte Carlo experiments, we build on the data-dependent selection

method in Belloni and Chernozhukov (2011). Define

Λ(τ) := max
1≤j≤2p

∣∣∣∣∣ 1n
n∑
i=1

Xij(τ) (γ − 1{Ui ≤ γ})
Dj(τ)

∣∣∣∣∣ , (7.1)

where Ui is simulated from the i.i.d. uniform distribution on the interval [0, 1]; γ is the fixed

quantile level (for median regression γ = 0.5). Note that Λ(τ) is a stochastic process indexed

by τ . Let Λ1−q be the (1− q)-quantile of supτ∈T Λ(τ). Then, we select the tuning parameter

in Step 1 by κn = c1 ·Λ1−q. Similarly, let Λ1−q(τ̂) be the (1− q)-quantile of Λ(τ̂), where τ̂ is

chosen in Step 2. We select ωn and µn in Step 3 by ωn = c1 · Λ1−q(τ̂) and µn = c2 · ωn.

Based on the suggestions of Belloni and Chernozhukov (2011) and some preliminary

simulations, we decide to set c1 = 1.1, c2 = log log n, and q = 0.1. In addition, recall that

we set a = 3.7 when calculating the SCAD weights wj in Step 3b following the convention

in the literature (e.g. Fan and Li (2001) and Loh and Wainwright (2013)). In Step 1, we

first solve the lasso problem for α given each grid point of τ ∈ T . Then, we choose τ̆ and

the corresponding ᾰ(τ̆) that minimize the objective function. Step 2 can be solved simply

by the grid search. Step 3 is a standard lasso quantile estimation given τ̂ , whose numerical

implementation is well established.

7.2 Monte Carlo Experiments

In this section we provide the results of Monte Carlo simulation studies. The baseline

model is the following median regression: for i = 1, . . . , n,

Yi = XT
i β0 +XT

i δ01{Qi > τ0}+ Ui, (7.2)

where Ui follows the standard normal distribution, and Qi follows the uniform distribution

on the interval [0, 1]. The p-dimensional covariate Xi is composed of a constant and Zi,
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i.e. X := (1, ZT
i )T , where Zi follows the multivariate normal distribution N(0,Σ) with a

covariance matrix Σij = (1/2)|i−j|. Here, the variables Ui, Qi and Zi are independent of each

other.

The p-dimensional parameters β0 and δ0 are set to β0 = (1, 1, 1/2, 0, . . . , 0) and δ0 =

(2, 2, 1, 0, . . . , 0) in Design 1 and β0 = (1, 1, 1/2, 1/3, 1/4, 1/5, 0, . . . , 0) and δ0 = (2, 2, 1, 1/2,

1/3, 1/4, 0, . . . , 0) in Design 2. Note that the parameters in Design 2 are decaying, indicating

that the minimal signal of active regressors is weaker in Design 2 than in Design 1. In both

designs, we set the change point parameter τ0 = 0.5. The sample sizes are set to n = 200

and 400. The dimension of Xi is set to p = 250. Note that we have 500 regressors in total.

The range of τ is set to T = [0.15, 0.85]. We conduct 1,000 replications of each design.

We compare estimation results of each step. To assess the performance of our estimators,

we also compare the results with two “oracle estimators”. Specifically, Oracle 1 knows the

true active set J(α0) and the change point parameter τ0, and Oracle 2 knows only J(α0).

The threshold parameter τ0 is re-estimated in Steps 3a and 3b using updated estimates of

α0.

Tables 1–2 summarize the simulation results. We abuse notation slightly and denote

all estimators by (α̂, τ̂). They would be understood as (ᾰ, τ̆) in Step 1, τ̂ in Step 2, and

so on. We report Excess Risk, the average number of parameters selected, E[J(α̂)], and

the `2-norm of the bias, |E[α̂] − α0|2. For each sample, the excess risk is calculated by the

simulation, S−1
∑S

s=1

[
ρ(Ys, X

T
s (τ̂)α̂)− ρ(Ys, X

T
s (τ0)α0)

]
, where S = 10,000 is the number

of simulations; then we report the average value of 1,000 replications. Similarly, we also

calculate prediction errors by the simulation,
(
S−1

∑S
s=1

(
XT
s (τ̂)α̂−XT

s (τ0)α0

)2
)1/2

, and

report the average value.

We also report the root mean square error (RMSE) and the coverage probability of the

95% confidence interval (Cov. Prob. of CI) of τ̂ . The confidence intervals for τ0 are calculated

by simulating the two-sided compound Poisson process in Theorem 5.3 by adopting the

approach proposed by Li and Ling (2012). The details are provided in Section A. Note that
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the root mean square error of τ̂ and the coverage probability of the confidence interval at the

rows of Step 3a and Step 3b in the tables are estimation results of updated τ̂ : we re-estimate

τ as in Step 2 using (Ûi, α̂) and (Ũi, α̃) from Step 3a and Step 3b instead of (Ŭi, ᾰ).

Table 1: Simulation Results of Design 1

Excess Risk E[J(α̂)] |E[α̂]− α0|2 Prediction Error RMSE of τ̂ Cov. Prob. of CI
n = 200
Oracle 1 0.014 NA 0.008 0.263 NA NA
Oracle 2 0.016 NA 0.007 0.319 0.009 0.930
Step 1 0.052 20.010 0.330 0.584 0.051 0.820
Step 2 0.046 NA NA 0.541 0.045 0.900
Step 3a 0.043 21.010 0.314 0.535 0.042 0.920
Step 3b 0.033 6.170 0.259 0.456 0.020 0.920

n = 400
Oracle 1 0.002 NA 0.007 0.118 NA NA
Oracle 2 0.006 NA 0.007 0.194 0.003 0.980
Step 1 0.018 20.730 0.186 0.314 0.005 0.920
Step 2 0.017 NA NA 0.307 0.003 0.950
Step 3a 0.017 21.670 0.183 0.303 0.003 0.950
Step 3b 0.008 6.090 0.042 0.215 0.003 0.960
Note: Oracle 1 knows both J(α0) and τ0 and Oracle 2 knows only J(α0). Expectations (E) is calculated
by the average of 1,000 iterations in each design. Note that J(α0) = 6. ‘NA’ denotes ‘Not Available’ as the
parameter is not estimated in the step. The estimation results for τ at the rows of Step 3a and Step 3b are
based on the re-estimation of τ given estimates from Step 3a (α̂) and Step 3b (α̃).

Overall, the simulation results confirm the asymptotic theory developed in the previous

sections. First, when we compare prediction errors of Oracle 1 and those of the proposed

estimators in Step 3, they are mostly inside the bound of
√

log p. Only the case of n =

400 in Design 2 shows that the empirical risk is slightly bigger than the bound. With a

weak signal in this design, this is likely the case. Second, the root mean square error of τ̂

decreases quickly and confirms the super-consistency result of τ̂ . As theoretically ensured, the

super-consistency holds regardless of the signal strength. As a result, τ̂ performs relatively

satisfactorily even in Design 2. Third, the model selection in Step 3b is quite satisfactory in

Design 1. It slightly under-select the relevant regressors in Design 2 but it is a natural result

considering that some signals are quite weak in the decaying design. Fourth, the coverage
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Table 2: Simulation Results of Design 2

Excess Risk E[J(α̂)] |E[α̂]− α0|2 Prediction Error RMSE of τ̂ Cov. Prob. of CI
n = 200
Oracle 1 0.029 NA 0.020 0.392 NA NA
Oracle 2 0.031 NA 0.020 0.429 0.008 0.960
Step 1 0.094 23.700 0.507 0.842 0.101 0.830
Step 2 0.090 NA NA 0.802 0.085 0.910
Step 3a 0.084 24.880 0.451 0.754 0.076 0.910
Step 3b 0.095 9.150 0.278 0.789 0.034 0.950

n = 400
Oracle 1 0.005 NA 0.014 0.151 NA NA
Oracle 2 0.014 NA 0.015 0.279 0.003 0.990
Step 1 0.027 25.270 0.211 0.393 0.005 0.930
Step 2 0.029 NA NA 0.382 0.004 0.970
Step 3a 0.027 26.300 0.206 0.379 0.004 0.970
Step 3b 0.036 9.990 0.136 0.442 0.004 0.990
Note: Oracle 1 knows both J(α0) and τ0 and Oracle 2 knows only J(α0). Expectations (E) is calculated by
the average of 1,000 iterations in each design. Note that J(α0) = 12. ‘NA’ denotes ‘Not Available’ as the
parameter is not estimated in the step. The estimation results for τ at the rows of Step 3a and Step 3b are
based on the re-estimation of τ given estimates from Step 3a (α̂) and Step 3b (α̃).

Figure 1: Histogram of the True Covariate Selection in Design 1, J(α0) = 6
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Figure 2: Histogram of the True Covariate Selection in Design 2, J(α0) = 12

Design 2: n=200
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probabilities of the confidence interval are close to 95% except Step 1 of each design with

n = 200. Thus, we recommend practitioners to use τ̂ in Step 2 or the re-estimated version of

it based on the estimates from Step 3a or Step 3b. Finally, Figures 1–2 show the frequency

of the true covariates selected from Step 3b in each design. In Design 1, the true covariates

are almost perfectly selected when n = 400, while we miss some small-sized coefficients when

the parameters are decaying in Design 2.

In summary, the proposed estimation procedure works well in finite samples and confirms

the theoretical results developed earlier. We emphasize that the recommended estimator for

α0 is either obtained in Step 3a (for the prediction) or Step 3b (for the variable selection).

We see from Tables 1–2 that the measures of both the prediction and the variable selection

are improved in Step 3a and Step 3b, respectively, compared to the preliminary estimator

in Step 1.
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8 Estimating a Change Point in Racial Segregation

As an empirical illustration, we investigate the existence of tipping in the dynamics of

racial segregation using the dataset constructed by Card et al. (2008). They show that the

neighborhood’s white population decreases substantially when the minority share in the area

exceeds a tipping point (or threshold point), using U.S. Census tract-level data. Lee et al.

(2011) develop a test for the existence of threshold effects and apply their test to this dataset.

Different from these existing studies, we consider a high-dimensional setup by allowing both

possibly highly nonlinear effects of the main covariate (minority share in the neighborhood)

and possibly higher-order interactions between additional covariates.

We build on the specifications used in Card et al. (2008) and Lee et al. (2011) to choose

the following median regression with a constant shift due to the tipping effect:

Yi = g0(Qi) + δ01{Qi > τ0}+X ′iβ0 + Ui, (8.1)

where for census tract i, the dependent variable Yi is the ten-year change in the neighbor-

hood’s white population, Qi is the base-year minority share in the neighborhood, and Xi is

a vector of six tract-level control variables and their various interactions depending on the

model specification. The basic six variables in Xi include the unemployment rate, the log of

mean family income, the fractions of single-unit, vacant, and renter-occupied housing units,

and the fraction of workers who use public transport to travel to work. The function g(·) is

approximated by the cubic b-splines with 20 knots over equi-quantile locations, so the degree

of freedom is 24 including the intercept term.

In the first set of models, we consider possible interactions among the six tract-level con-

trol variables up to six-way interactions. Specifically, the vector X in the six-way interactions

will be composed of the following 63 regressors,

{X(1), . . . , X(6), X(1)X(2), . . . , X(5)X(6), . . . , X(1)X(2)X(3)X(4)X(5)X(6)},
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Table 3: Median Regression with a Tipping Effect (Chicago)

No. of Reg.
No. of Selected Reg.

τ̂ CI for τ0in Step 3b

6 control variables
No Interaction 31 18 48.74 [46.50, 52.20]
Two-way Interaction 46 23 48.74 [43.28, 59.13]
Three-way Interaction 66 25 48.74 [46.87, 51.40]
Four-way Interaction 81 26 48.74 [47.06, 51.72]
Five-way Interaction 87 25 48.74 [46.76, 51.11]
Six-way Interaction 88 25 48.74 [46.86, 51.24]

12 control variables
No Interaction 37 21 48.74 [44.21, 55.65]
Two-way Interaction 103 23 48.74 [46.28, 51.31]
Three-way Interaction 323 28 48.74 [46.69, 51.05]
Four-way Interaction 818 28 48.74 [47.42, 50.24]
Five-way Interaction 1610 28 48.74 [46.76, 51.10]
Six-way Interaction 2534 27 48.74 [46.19, 51.59]

Note: The sample size is n = 1, 813. The parameter τ is estimated by the grid search over {Qi} ∈ [10, 60].
Both τ̂ and the 95% confidence interval are the results of re-estimation after Step 3b: τ is estimated again
using (Ũi, α̃) from Step 3b.

Table 4: Median Regression with a Tipping Effect (Pittsburgh)

No. of Reg.
No. of Selected Reg.

τ̂ CI for τ0in Step 3b

6 control variables
No Interaction 31 8 53.45 [45.59, 60.00]
Two-way Interaction 46 6 53.45 [44.81, 60.00]
Three-way Interaction 66 6 53.45 [45.20, 60.00]
Four-way Interaction 81 6 53.45 [45.12, 60.00]
Five-way Interaction 87 6 53.45 [45.73, 60.00]
Six-way Interaction 88 6 53.45 [46.02, 60.00]

12 control variables
No Interaction 37 5 53.45 [45.89, 60.00]
Two-way Interaction 103 6 53.45 [44.63, 60.00]
Three-way Interaction 323 10 53.45 [46.03, 60.00]
Four-way Interaction 818 10 53.45 [44.65, 60.00]
Five-way Interaction 1610 10 53.45 [45.74, 60.00]
Six-way Interaction 2534 9 53.45 [46.25, 60.00]

Note: The sample size is n = 663. The parameter τ is estimated by the grid search over {Qi} ∈ [10, 60].
Both τ̂ and the 95% confidence interval are the results of re-estimation after Step 3b: τ is estimated again
using (Ũi, α̃) from Step 3b.
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where X(j) is the j-th element among those tract-level control variables. Note that the

lower order interaction vector (e.g. two-way or three-way) is nested by the higher order

interaction vector (e.g. three-way or four-way). The total number of regressors varies from

31 when there is no interaction to 88 when there are full six-way interactions. In the next

set of models, we add the square of each tract-level control variable and generate similar

interactions up to six. In this case the total number of regressors varies from 37 to 2,534.

For example, the number of regressors in the largest model consists of #(b-sline basis) +

#(indicator function) + #(interactions up to six-way out of 12) = 24 + 1 +
∑6

k=1

(
12
k

)
=

2, 534. We use the census-tract-level samples of Chicago and Pittsburgh whose base year

is 1980. The sample size of Chicago is 1,813 and that of Pittsburgh is 663. Note that the

number of regressors is much larger than the sample size in some model specifications.

Tables 3–4 summarize the estimation results. We report the total number of regressors

in each model and the number of selected regressors in Step 3b. The change point τ is

estimated by the grid search over {Qi} ∈ [10, 60]. In this empirical example, we report the

estimates of τ0 and the confidence intervals updated after Step 3b (that is, τ is re-estimated

using the estimates of α0 in Step 3b). If this estimate is different from the previous one

in Step 2, then we repeat Step 3 and Step 2 until it converges. The reported confidence

intervals for τ0 is the intersection of the simulated confidence intervals and the parameter

space [10, 60].

The estimation results suggest several interesting points. First, the proposed method

selects sparse representations in all model specifications even when the number of regressors

is relatively large. Furthermore, the sizes of selected regressors are stable and do not vary

much with the number of regressors. Second, the estimated change points are quite robust to

the model specification. This result is reconfirmed in Figure 3, where we plot the predicted

values over Qi at the sample median of Xi with observations in the data. They are from

the model of six-way interactions with 12 control variables and the vertical line indicates the

location of a tipping point. In these estimation results, white population at the threshold
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Figure 3: Estimation Results: Six-way Interactions with 12 Control Variables
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Note: Each dot denotes the tract-level observation of Minority Share and Change in White Population from
1980 to 1990. The vertical line stands for the tipping point (τ̂), which is re-estimated after Step 3b. The graph

(blue line) represents the predicted value of Yi given Qi and med(Xi). Specifically, Ŷi =
∑24

j=1B(Qi)β̃
(j)
spline+

1(Qi > τ̂)δ̃ + med(Xi)
T β̃, where B(·) is the cubic b-spline basis with 20 knots. Parameters β̃spline, δ̃ and β̃

are estimation results from Step 3b. Notice that g̃(Qi) =
∑24

j=1B(Qi)β̃
(j)
spline.

point dropped 6.61 percentage points in Chicago and 7.15 percentage points in Pittsburgh,

respectively. Finally, the confidence intervals are quite tight in all cases and they provide

convincing evidence of the tipping effect.

In summary, this empirical example shows that the proposed method works well in the

real empirical setup. The estimation results also confirm that there exists a tipping point in

the racial segregation when we consider high-dimensional median regression.

9 Conclusions

In this paper, we have developed `1-penalized estimators of a high dimensional quantile

regression model with an unknown change point due to a covariate threshold. We have

shown among other things that our estimator of the change point achieves an oracle property

without relying on a perfect covariate selection, thereby avoiding the need for the minimum

31



level condition on the signals of active covariates. We have illustrated the usefulness of our

estimation methods via Monte Carlo experiments and an application to tipping in the racial

segregation.

In a recent working paper, Leonardi and Bühlmann (2016) consider a high dimensional

mean regression model with multiple change points whose number may grow as the sample

size increases. They have proposed a binary search algorithm to choose the number of

change points. It is an important future research topic to develop a computationally efficient

algorithm to detect multiple changes for high dimensional quantile regression models.
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Appendices

We first provide the algorithm of constructing the confidence interval for τ0 in Appendix

A. To provide theoretical results, we consider a general M-estimation framework that includes

quantile regression as a special case. We provide high-level regularity conditions on the loss

function in Appendix B. Under these conditions, we derive asymptotic properties and then

we verify all the high level assumptions for the quantile regression model in Appendix C.

Hence, our general results are of independent interest and can be applicable to other models,

for example logistic regression models.

A The Algorithm of Constructing the Confidence In-

terval for τ0

The detailed algorithm for constructing the confidence interval based on the Step 2

estimator is as follows:

1. Simulate two independent Poisson processes N1(−h) for h < 0 and N2(h) for f > 0

with the same jump rate f̂Q(τ̂) over h ∈ [−Hn,Hn], where fQ(·) is the pdf of Q, n

is the sample size, and H > 0 is a large constant. For estimating fQ(·), we use the

kernel density estimator with a normal density kernel and the rule-of-thumb bandwidth,

1.06 ·min{s, (Q0.75 − Q0.25)/1.34} · n−1/5, where s is the standard deviation of Q and

Q0.75 − Q0.25 is the interquartile range of Q. A Poisson process N(h) is generated by

the following algorithm:

(a) Set h = 0 and k = 0.

(b) Generate ε from the uniform distribution on [0, 1].

(c) h = h+ [−(1/f̂Q(τ̂)) log(ε)].

(d) If h > nH, then stop and goto Step (f). Otherwise, set k = k + 1 and hk = h.

(e) Repeat Steps (b)–(d).
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(f) The algorithm generates {hk} for k = 1, . . . , K. Transform it into the Poisson

process N(h) ≡
∑K

k=1 1{hk ≤ h} for h ∈ [0, nH].

2. Using the residuals {Ŭi} and the estimate δ̆ from Step 1, construct the empirical

distributions of ˘̇ρ1i ≡ ρ̇(Ŭi−XT
i δ̆)−ρ̇(Ŭi) and ˘̇ρ2i ≡ ρ̇(Ŭi+X

T
i δ̆)−ρ̇(Ŭi) for i = 1, . . . , n,

where ρ̇ (t) ≡ t (γ − 1 {t ≤ 0}) is the check function as defined in Section 5.

3. Simulate ρ̇1j for j = 1, . . . , N1(−h) and ρ̇2j for j = 1, . . . , N2(h).

4. Recall that

M (h) ≡
N1(−h)∑
i=1

ρ1i1 {h < 0}+

N2(h)∑
i=1

ρ2i1 {h ≥ 0}

from Section 5. Construct the function M(·) for h ∈ [−Hn,Hn] using values from

Steps 1–3 above. Find the smallest minimizer h of M(·).

5. Repeat Steps 1–4 above and generate {h1, . . . , hB}.

6. Construct the 95% confidence interval of τ̂ from the empirical distribution of {hb} by

[τ̂ + h0.025/n, τ̂ + h0.975/n], where h0.025 and h0.975 are 2.5 and 97.5 percentiles of {hb},

respectively.

It is straightforward to modify the algorithm above for the confidence intervals with Step

3a and Step 3b estimators. We set H = 0.5, and B = 1, 000 in this simulation studies.

B Regularity conditions on the general loss function

Let Y be a scalar variable of outcome and X be a vector of p-dimensional observed

characteristics. Suppose there is an observable scalar variable Q such that the conditional

distribution of Y or some feature of that (given X) depends on:

XTβ01{Q ≤ τ0}+XT θ01{Q > τ0} = XTβ0 +XT δ01{Q > τ0},
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where δ0 = θ0 − β0. Let ρ : R × R → R+ be a loss function under consideration, whose

analytical form is clear in specific models. Suppose the true parameters are defined as the

minimizer of the expected loss:

(β0, δ0, τ0) ≡ argmin
(β,δ)∈A,τ∈T

E
[
ρ(Y,XTβ +XT δ1{Q > τ})

]
, (B.1)

where A and T denote the parameter spaces for (β0, δ0) and τ0. Here β represents the

components of “baseline parameters”, while δ represents the structural changes; τ is the

change point value where the structural changes occur, if any. By construction, τ0 is not

unique when δ0 = 0. For each (β, δ) ∈ A and τ ∈ T , define 2p× 1 vectors:

α ≡ (βT , δT )T , X(τ) ≡ (XT , XT1{Q > τ})T .

Then XTβ + XT δ1{Q > τ} = X(τ)Tα, and by letting α0 ≡ (βT0 , δ
T
0 )T , we can write (B.1)

more compactly as:

(α0, τ0) = argmin
α∈A,τ∈T

E
[
ρ(Y,X(τ)Tα)

]
. (B.2)

In quantile regression models, for a given quantile γ ∈ (0, 1), recall that

ρ(t1, t2) = (t1 − t2)(γ − 1{t1 − t2 ≤ 0}).

B.1 When δ0 6= 0 and τ0 is identified

For a constant η > 0, define

r1(η) ≡ sup
r

{
r : E

([
ρ
(
Y,XTβ

)
− ρ

(
Y,XTβ0

)]
1 {Q ≤ τ0}

)
≥ ηE[(XT (β − β0))21{Q ≤ τ0}] for all β ∈ B(β0, r)

}
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and

r2(η) ≡ sup
r

{
r : E

([
ρ
(
Y,XT θ

)
− ρ

(
Y,XT θ0

)]
1 {Q > τ0}

)
≥ ηE[(XT (θ − θ0))21{Q > τ0}] for all θ ∈ G(θ0, r)

}
,

where B(β0, r) and G(θ0, r) are defined in (4.3). Note that r1(η) and r2(η) are the maximal

radii over which the excess risk can be bounded below by the quadratic loss on {Q ≤ τ0}

and {Q > τ0}, respectively.

Assumption B.1. (i) Let Y denote the support of Y . There is a Liptschitz constant

L > 0 such that for all y ∈ Y, ρ(y, ·) is convex, and

|ρ(y, t1)− ρ(y, t2)| ≤ L|t1 − t2|,∀t1, t2 ∈ R.

(ii) For all α ∈ A, almost surely,

E
[
ρ(Y,X(τ0)Tα)− ρ(Y,X(τ0)Tα0)|Q

]
≥ 0.

(iii) There exist constants η∗ > 0 and r∗ > 0 such that r1(η∗) ≥ r∗ and r2(η∗) ≥ r∗.

(iv) There is a constant c0 > 0 such that for all τ ∈ T0,

E
[(
ρ
(
Y,XT θ0

)
− ρ

(
Y,XTβ0

))
1 {τ < Q ≤ τ0}

]
≥ c0E

[
(XT (β0 − θ0))2 1 {τ < Q ≤ τ0}

]
,

E
[(
ρ
(
Y,XTβ0

)
− ρ

(
Y,XT θ0

))
1 {τ0 < Q ≤ τ}

]
≥ c0E

[
(XT (β0 − θ0))2 1 {τ0 < Q ≤ τ}

]
.

In this paper, we focus on a convex Lipchitz loss function, which is assumed in condition

(i). It might be possible to weaken the convexity to a “restricted strong convexity condition”

as in Loh and Wainwright (2013). For simplicity, we focus on the case of a convex loss,

which is satisfied for quantile regression. However, unlike the framework of M-estimation
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in Negahban et al. (2012) and Loh and Wainwright (2013), we do allow ρ(t1, t2) to be non-

differentiable, which admits the quantile regression model as a special case.

Condition (iii) requires that the excess risk can be bounded below by a quadratic function

locally when τ is fixed at τ0, while condition (iv) is an analogous condition when α is fixed at

α0. conditions (iii) and (iv), combined with the convexity of ρ(Y, ·), helps us derive the rates

of convergence (in the `1 norm) of the Lasso estimators of (α0, τ0). Furthermore, these two

conditions separate the conditions for α and τ , making them easier to interpret and verify.

Remark B.1. Condition (iii) of Assumption B.1 is similar to the restricted nonlinear impact

(RNI) condition of Belloni and Chernozhukov (2011). One may consider an alternative

formulation as in van de Geer (2008) and Bühlmann and van de Geer (2011) (Chapter 6),

which is known as the margin condition. But the margin condition needs to be adjusted

to account for structural changes as in condition (iv). It would be an interesting future

research topic to develop a general theory of high-dimensional M-estimation with an unknown

sparsity-structural-change with general margin conditions.

Remark B.2. Assumptions B.1 (iv) and 4.4 (iii) together imply that for all τ ∈ T0, there

exists a constant c0 > 0 such that

∆1(τ) ≡ E
[(
ρ
(
Y,XT θ0

)
− ρ

(
Y,XTβ0

))
1 {τ < Q ≤ τ0}

]
≥ c2

0P [τ < Q ≤ τ0] ,

∆2(τ) ≡ E
[(
ρ
(
Y,XTβ0

)
− ρ

(
Y,XT θ0

))
1 {τ0 < Q ≤ τ}

]
≥ c2

0P [τ0 < Q ≤ τ ] .

(B.3)

Note that Assumption B.1 (ii) implies that ∆1(τ) is monotonely non-increasing when τ < τ0,

and ∆2(τ) is monotonely non-decreasing when τ > τ0, respectively. Therefore, Assumptions

B.1 (ii), B.1 (iv) and 4.4 (iii) all together imply that (B.3) holds for all τ in the T , not

just in the T0 since T is compact. Equation (B.3) plays an important role in achieving a

super-efficient convergence rate for τ0, since it states the presence of a kink in the expected

loss and that of a jump in the loss function at τ0.

We now move to the set of assumptions that are useful to deal with the Step 3b estimator.
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Define

mj(τ, α) ≡ ∂E[ρ(Y,X(τ)Tα)]

∂αj
, m(τ, α) ≡ (m1(τ, α), ...,m2p(τ, α))T .

Also, let mJ(τ, α) ≡ (mj(τ, α) : j ∈ J(α0)).

Assumption B.2. E[ρ(Y,X(τ)Tα)] is three times continuously differentiable with respect to

α, and there are constants c1, c2, L > 0 and a neighborhood T0 of τ0 such that the following

conditions hold: for all large n and all τ ∈ T0,

(i) there is Mn > 0, which may depend on the sample size n, such that

max
j≤2p
|mj(τ, α0)−mj(τ0, α0)| < Mn|τ − τ0|;

(ii) there is r > 0 such that for all β ∈ B(β0, r), θ ∈ G(θ0, r), α = (βT , θT − βT )T satisfies:

max
j≤2p

sup
τ∈T0
|mj(τ, α)−mj(τ, α0)| < L |α− α0|1 ;

(iii) α0 is in the interior of the parameter space A, and

inf
τ∈T0

λmin

(
∂2E[ρ(Y,XJ(τ)Tα0J)]

∂αJ∂αTJ

)
> c1,

sup
|αJ−α0J |1<c2,

sup
τ∈T0

max
i,j,k∈J

∣∣∣∣∂3E[ρ(Y,XJ(τ)TαJ)]

∂αi∂αj∂αk

∣∣∣∣ < L.

The score-condition in the population level is expressed by m(τ0, α0) = 0 since α0 is in

the interior of A by condition (iii). Conditions (i) and (ii) regulate the continuity of the score

m(τ, α), and condition (iii) assumes the higher-order differentiability of the expectation of

the loss function. Condition (i) requires the Lipschitz continuity of the score function with

respect to the threshold. The Lipschitz constant may grow with n, since it is assumed

uniformly over j ≤ 2p. In many examples, Mn in fact grows slowly; as a result, it does

not affect the asymptotic behavior of α̃. For quantile regression models, we will show that
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Mn = Cs1/2 for some constant C > 0. Condition (ii) requires the local equicontinuity at α0

in the `1 norm of the class

{mj(τ, α) : τ ∈ T0, j ≤ 2p}.

We now establish that Assumptions B.1 and B.2 are satisfied for quantile regression

models.

Lemma B.1. Suppose that Assumptions 3.1 and 4.1 hold. Then Assumptions B.1 and B.2

are satisfied by the loss function for the quantile regression model, with Mn = Cs1/2 for some

constant C > 0.

B.1.1 Proof of Lemma B.1

Verification of Assumption B.1 (i). It is straightforward to show that the loss function for

quantile regression is convex and satisfies the Liptschitz condition.

Verification of Assumption B.1 (ii). Note that ρ(Y, t) = hγ(Y −t), where hγ(t) = t(γ−1{t ≤

0}). By (B.3) of Belloni and Chernozhukov (2011),

hγ(w − v)− hγ(w) = −v(γ − 1{w ≤ 0}) +

∫ v

0

(1{w ≤ z} − 1{w ≤ 0})dz (B.4)

where w = Y −X(τ0)Tα0 and v = X(τ0)T (α− α0). Note that

E[v(γ − 1{w ≤ 0})|Q] = −E[X(τ0)T (α− α0)(γ − 1{U ≤ 0})|Q] = 0,

since P(U ≤ 0|X,Q) = γ. Let FY |X,Q denote the CDF of the conditional distribution Y |X,Q.
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Then

E
[
ρ(Y,X(τ0)Tα)− ρ(Y,X(τ0)Tα0)|Q

]
= E

[∫ X(τ0)T (α−α0)

0

(1{U ≤ z)− 1{U ≤ 0})dz
∣∣∣Q]

= E

[∫ X(τ0)T (α−α0)

0

[FY |X,Q(X(τ0)Tα0 + z|X,Q)− FY |X,Q(X(τ0)Tα0|X,Q)]dz

∣∣∣∣Q
]

≥ 0,

where the last inequality follows immediately from the fact that FY |X,Q(·|X,Q) is the CDF.

Hence, we have verified Assumption B.1 (ii).

Verification of Assumption B.1 (iii). Following the arguments analogous those used in (B.4)

of Belloni and Chernozhukov (2011), the mean value expansion implies:

E
[
ρ(Y,X(τ0)Tα)− ρ(Y,X(τ0)Tα0)|Q

]
= E

{∫ X(τ0)T (α−α0)

0

[
zfY |X,Q(X(τ0)Tα0|X,Q) +

z2

2
f̃Y |X,Q(X(τ0)Tα0 + t|X,Q)

]
dz

∣∣∣∣Q
}

=
1

2
(α− α0)TE

[
X(τ0)X(τ0)TfY |X,Q(X(τ0)Tα0|X,Q)|Q

]
(α− α0)

+E

{∫ X(τ0)T (α−α0)

0

z2

2
f̃Y |X,Q(X(τ0)Tα0 + t|X,Q)dz

∣∣∣∣Q
}

for some intermediate value t between 0 and z. By condition (ii) of Assumption 4.1,

|f̃Y |X,Q(X(τ0)Tα0 + t|X,Q)| ≤ C1 and fY |X,Q(X(τ0)Tα0|X,Q) ≥ C2.
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Hence, taking the expectation on {Q ≤ τ0} gives

E
[
ρ(Y,XTβ)− ρ(Y,XTβ0)1{Q ≤ τ0}

]
≥ C2

2
E[(XT (β − β0))21{Q ≤ τ0}]−

C1

6
E[|XT (β − β0)|31{Q ≤ τ0}]

≥ C2

4
E[|XT (β − β0)|21{Q ≤ τ0}],

where the last inequality follows from

C2

4
E[|XT (β − β0)|21{Q ≤ τ0}] ≥

C1

6
E[|XT (β − β0)|31{Q ≤ τ0}]. (B.5)

To see why (B.5) holds, note that by (4.5), for any nonzero β ∈ B(β0, r
∗
QR),

E[|XT (β − β0)|21{Q ≤ τ0}]3/2

E[|XT (β − β0)|31{Q ≤ τ0}]
≥ r∗QR

2C1

3C2

≥ 2C1

3C2

E[|XT (β − β0)|21{Q ≤ τ0}]1/2,

which proves (B.5) immediately. Thus, we have shown that Assumption B.1 (iii) holds for

r1(η) with η∗ = C2/4 and r∗ = r∗QR defined in (4.5) in Assumption 4.1. The case for r2(η) is

similar and hence is omitted.

Verification of Assumption B.1 (iv). We again start from (B.4) but with different choices of

(w, v) such that w = Y −X(τ0)Tα0 and v = XT δ0[1{Q ≤ τ0}−1{Q > τ0}]. Then arguments

similar to those used in verifying Assumptions B.1 (ii)-(iii) yield that for τ < τ0,

E
[
ρ
(
Y,XT θ0

)
− ρ

(
Y,XTβ0

)
|Q = τ

]
(B.6)

= E

{∫ XT δ0

0

zfY |X,Q(XTβ0 + t|X,Q)dz

∣∣∣∣Q = τ

}
(B.7)

≥ E

{∫ ε̃(XT δ0)

0

zfY |X,Q(XTβ0 + t|X,Q)dz

∣∣∣∣Q = τ

}
(B.8)

≥ ε̃2C3

2
E
[
(XT δ0)2|Q = τ

]
, (B.9)
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where t is an intermediate value t between 0 and z. Thus, we have that

E
[(
ρ
(
Y,XT θ0

)
− ρ

(
Y,XTβ0

))
1 {τ < Q ≤ τ0}

]
≥ ε̃2C3

2
E
[
(XT (β0 − θ0))2 1 {τ < Q ≤ τ0}

]
.

The case that τ > τ0 is similar.

Verification of Assumption B.2. Note that that

mj(τ, α) = E[Xj(τ)(1{Y −X(τ)Tα ≤ 0} − γ)].

Hence, mj(τ0, α0) = 0, for all j ≤ 2p. For condition (i) of Assumption B.2, for all j ≤ 2p,

|mj(τ, α0)−mj(τ0, α0)|

= |EXj(τ)[1{Y ≤ X(τ)Tα0} − 1{Y ≤ X(τ0)Tα0}]|

= |EXj(τ)[P(Y ≤ X(τ)Tα0|X,Q)− P(Y ≤ X(τ0)Tα0|X,Q)]|

≤ CE|Xj(τ)||(X(τ)−X(τ0))Tα0|

= CE|Xj(τ)||XT δ0(1{Q > τ} − 1{Q > τ0})|

≤ CE|Xj(τ)||XT δ0|(1{τ < Q < τ0}+ 1{τ0 < Q < τ})

≤ C(P(τ0 < Q < τ) + P(τ < Q < τ0)) sup
τ,τ ′∈T0

E(|Xj(τ)XT δ0||Q = τ ′)

≤ C(P(τ0 < Q < τ) + P(τ < Q < τ0)) sup
τ,τ ′∈T0

[E(|Xj(τ)|2||Q = τ ′)]1/2[E(|XT δ0|2|Q = τ ′)]1/2

≤ CM2K2|δ0|2|τ0 − τ |

for some constant C, where the last inequality follows from conditions (ii), (iii) and (v) of

Assumption 3.1. Therefore, we have verified condition (i) of Assumption B.2 with Mn =

CM2K2|δ0|2.
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We now verify condition (ii) of Assumption B.2. For all j and τ in a neighborhood of τ0,

|mj(τ, α)−mj(τ, α0)| = |EXj(τ)(1{Y ≤ X(τ)Tα} − 1{Y ≤ X(τ)Tα0})|

= |EXj(τ)(P(Y ≤ X(τ)Tα|X,Q)− P(Y ≤ X(τ)Tα0|X,Q))|

≤ CE|Xj(τ)||X(τ)T (α− α0)| ≤ C|α− α0|1 max
j≤2p,i≤2p

E|Xj(τ)Xi(τ)|,

which implies the result immediately in view of Assumption 3.1. Finally, it is straightforward

to verify condition (iii) using Assumption 4.1 (iii).

B.2 When δ0 = 0

We now consider the case when δ0 = 0. In this case, τ0 is not identifiable, and there is

actually no structural change in the sparsity. If α0 is in the interior of A, then m(τ, α0) = 0

for all τ ∈ T .

For a constant η > 0, define

r̃1(η) ≡ sup
r

{
r : E

([
ρ
(
Y,XTβ

)
− ρ

(
Y,XTβ0

)]
1 {Q ≤ τ}

)
≥ ηE[(XT (β − β0))21{Q ≤ τ}] for all β ∈ B̃(β0, r, τ) and for all τ ∈ T

}

and

r̃2(η) ≡ sup
r

{
r : E

([
ρ
(
Y,XT θ

)
− ρ

(
Y,XTβ0

)]
1 {Q > τ}

)
≥ ηE[(XT (θ − β0))21{Q > τ}] for all θ ∈ G̃(β0, r, τ) and for all τ ∈ T

}
,

where B̃(β0, r, τ) and G̃(β0, r, τ) are defined in (4.4).

Assumption B.3. (i) Let Y denote the support of Y . There is a Liptschitz constant
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L > 0 such that for all y ∈ Y, ρ(y, ·) is convex, and

|ρ(y, t1)− ρ(y, t2)| ≤ L|t1 − t2|,∀t1, t2 ∈ R.

(ii) For all α ∈ A and for all τ ∈ T , almost surely,

E[ρ(Y,X(τ)Tα)− ρ(Y,XTβ0)|Q] ≥ 0,

(iii) There exist constants η∗ > 0 and r∗ > 0 such that r̃1(η∗) ≥ r∗ and r̃2(η∗) ≥ r∗.

(iv) E[ρ(Y,X(τ)Tα)] is three times differentiable with respect to α, and there are universal

constants r > 0 and L > 0 such that for all β ∈ B̃(β0, r, τ), θ ∈ G̃(β0, r, τ), α =

(βT , θT − βT )T satisfies:

max
j≤2p
|mj(τ, α)−mj(τ, α0)| < L |α− α0|1 .

for all large n and for all τ ∈ T .

(v) α0 is in the interior of the parameter space A, and there are constants c1 an c2 > 0

such that

λmin

(
∂2E[ρ(Y,XT

J(β0)β0J)]

∂βJ∂βTJ

)
> c1,

sup
|αJ−α0J |1<c2,

max
i,j,k∈J(β0)

∣∣∣∣∣∂
3E[ρ(Y,XT

J(β0)βJ)]

∂βi∂βj∂βk

∣∣∣∣∣ < L.

As in Lemma B.1, we now establish that Assumption B.3 is satisfied for quantile regression

models when δ0 = 0.

Lemma B.2. Suppose that Assumptions 3.1 and 4.1 hold. Then Assumption B.3 is satisfied.
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B.2.1 Proof of Lemma B.2

Verification of Assumption B.3 (i). This is the same as the verification of Assumption B.1

(i).

Verification of Assumption B.3 (ii). This can be verified exactly as in verification of As-

sumption B.1 (ii) with α0 = β0 now.

Verification of Assumption B.3 (iv). By the arguments identical to those used to verify As-

sumption B.1 (iii), we have that

E
[
ρ(Y,XTβ)− ρ(Y,XTβ0)1{Q ≤ τ}

]
≥ C2

2
E[(XT (β − β0))21{Q ≤ τ}]− C1

6
E[|XT (β − β0)|31{Q ≤ τ}]

≥ C2

4
E[|XT (β − β0)|21{Q ≤ τ}],

where the last inequality follows from (4.7). This proves the case for r̃1(η). The case for

r̃2(η) is similar and hence is omitted.

Verification of Assumptions B.3 (iv) and (v). They can be verified similarly as in verifica-

tion of Assumption B.2 in the proof of Lemma Lemma B.1. For all j and τ ∈ T ,

|mj(τ, α)−mj(τ, α0)| = |EXj(τ)(1{Y ≤ X(τ)Tα} − 1{Y ≤ X(τ)Tα0})|

= |EXj(τ)(P(Y ≤ X(τ)Tα|X,Q)− P(Y ≤ X(τ)Tα0|X,Q))|

≤ CE|Xj(τ)||X(τ)T (α− α0)| ≤ C|α− α0|1 max
j≤2p,i≤2p

E|Xj(τ)Xi(τ)|,

which implies condition B.3 (iv) in view of Assumption 3.1. It also is straightforward to

verify condition B.3 (v) using Assumption 4.1 (iii).
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C Proofs of Theorems

Throughout the proofs, we define

νn (α, τ) ≡ 1

n

n∑
i=1

[
ρ
(
Yi, Xi (τ)T α

)
− Eρ

(
Y,X (τ)T α

)]
.

Without loss of generality let νn (αJ , τ) = n−1
∑n

i=1

[
ρ
(
Yi, XiJ (τ)T αJ

)
− Eρ

(
Y,XJ (τ)T αJ

)]
.

In this section, we suppose that Assumptions B.1 and B.2 hold when δ0 6= 0 and that

Assumption B.3 holds when δ0 = 0, respectively.

C.1 Useful Lemmas

For the positive constant K1 in Assumption 3.1 (i), define

cnp ≡
√

2 log (4np)

n
+
K1 log (4np)

n
.

Let dxe denote the smallest integer greater than or equal to a real number x. The following

lemma bounds νn (α, τ).

Lemma C.1. For any positive sequences m1n and m2n, and any δ̃ ∈ (0, 1), there are con-

stants L1, L2 and L3 > 0 such that for an = L1cnpδ̃
−1, bn = L2cnpdlog2 (m2n/m1n)eδ̃−1, and

cn = L3n
−1/2δ̃−1,

P

{
sup
τ∈T

sup
|α−α0|1≤m1n

|νn (α, τ)− νn (α0, τ)| ≥ anm1n

}
≤ δ̃, (C.1)

P

{
sup
τ∈T

sup
m1n≤|α−α0|1≤m2n

|νn (α, τ)− νn (α0, τ)|
|α− α0|1

≥ bn

}
≤ δ̃, (C.2)

and for any η > 0 and Tη = {τ ∈ T : |τ − τ0| ≤ η},

P

{
sup
τ∈Tη
|νn (α0, τ)− νn (α0, τ0)| ≥ cn|δ0|2

√
η

}
≤ δ̃. (C.3)
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Proof of (C.1): Let ε1, ..., εn denote a Rademacher sequence, independent of {Yi, Xi, Qi}i≤n.

By the symmetrization theorem (see, for example, Theorem 14.3 of Bühlmann and van de

Geer (2011)) and then by the contraction theorem (see, for example, Theorem 14.4 of

Bühlmann and van de Geer (2011)),

E

(
sup
τ∈T

sup
|α−α0|1≤m1n

|νn (α, τ)− νn (α0, τ)|

)

≤ 2E

(
sup
τ∈T

sup
|α−α0|1≤m1n

∣∣∣∣∣ 1n
n∑
i=1

εi

[
ρ
(
Yi, Xi (τ)T α

)
− ρ

(
Yi, Xi (τ)T α0

)]∣∣∣∣∣
)

≤ 4LE

(
sup
τ∈T

sup
|α−α0|1≤m1n

∣∣∣∣∣ 1n
n∑
i=1

εiXi (τ)T (α− α0)

∣∣∣∣∣
)
.

Note that

sup
τ∈T

sup
|α−α0|1≤m1n

∣∣∣∣∣ 1n
n∑
i=1

εiXi (τ)T (α− α0)

∣∣∣∣∣
= sup

τ∈T
sup

|α−α0|1≤m1n

∣∣∣∣∣
2p∑
j=1

(αj − α0j)
1

n

n∑
i=1

εiXij (τ)

∣∣∣∣∣
≤ sup
|α−α0|1≤m1n

2p∑
j=1

|αj − α0j| sup
τ∈T

max
j≤2p

∣∣∣∣∣ 1n
n∑
i=1

εiXij (τ)

∣∣∣∣∣
≤ m1n sup

τ∈T
max
j≤2p

∣∣∣∣∣ 1n
n∑
i=1

εiXij (τ)

∣∣∣∣∣ .

(C.4)

For all L̃ > K1,

E

(
sup
τ∈T

max
j≤2p

∣∣∣∣∣
n∑
i=1

εiXij (τ)

∣∣∣∣∣
)
≤(1) L̃ logE

[
exp

(
L̃−1 sup

τ∈T
max
j≤2p

∣∣∣∣∣
n∑
i=1

εiXij (τ)

∣∣∣∣∣
)]

≤(2) L̃ logE

[
exp

(
L̃−1 max

τ∈{Q1,...,Qn}
max
j≤2p

∣∣∣∣∣
n∑
i=1

εiXij (τ)

∣∣∣∣∣
)]

≤(3) L̃ log

[
4np exp

(
n

2(L̃2 − L̃K1)

)]
,

where inequality (1) follows from Jensen’s inequality, inequality (2) comes from the fact that
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Xij (τ) is a step function with jump points on T ∩ {Q1, . . . , Qn}, and inequality (3) is by

Bernstein’s inequality for the exponential moment of an average (see, for example, Lemma

14.8 of Bühlmann and van de Geer (2011)), combined with the simple inequalities that

exp(|x|) ≤ exp(x) + exp(−x) and that exp(max1≤j≤J xj) ≤
∑J

j=1 exp(xj). Then it follows

that

E

(
sup
τ∈T

max
j≤2p

∣∣∣∣∣ 1n
n∑
i=1

εiXij (τ)

∣∣∣∣∣
)
≤ L̃ log(4np)

n
+

1

2(L̃−K1)
= cnp, (C.5)

where the last equality follows by taking L̃ = K1 +
√
n/[2 log(4np)]. Thus, by Markov’s

inequality,

P

{
sup
τ∈T

sup
|α−α0|1≤m1n

|νn (α, τ)− νn (α0, τ)| > anm1n

}
≤ (anm1n)−1 4Lm1ncnp = δ̃,

where the last equality follows by setting L1 = 4L.

Proof of (C.2): Recall that ε1, ..., εn is a Rademacher sequence, independent of {Yi, Xi, Qi}i≤n.

Note that

E

(
sup
τ∈T

sup
m1n≤|α−α0|1≤m2n

|νn (α, τ)− νn (α0, τ)|
|α− α0|1

)

≤(1) 2E

sup
τ∈T

sup
m1n≤|α−α0|1≤m2n

∣∣∣∣∣∣ 1n
n∑
i=1

εi
ρ
(
Yi, Xi (τ)T α

)
− ρ

(
Yi, Xi (τ)T α0

)
|α− α0|1

∣∣∣∣∣∣


≤(2) 2
k∑
j=1

E

sup
τ∈T

sup
2j−1m1n≤|α−α0|1≤2jm1n

∣∣∣∣∣∣ 1n
n∑
i=1

εi
ρ
(
Yi, Xi (τ)T α

)
− ρ

(
Yi, Xi (τ)T α0

)
2j−1m1n

∣∣∣∣∣∣


≤(3) 4L
k∑
j=1

E

(
sup
τ∈T

sup
2j−1m1n≤|α−α0|1≤2jm1n

∣∣∣∣∣ 1n
n∑
i=1

εi
Xi (τ)T (α− α0)

2j−1m1n

∣∣∣∣∣
)
,

where inequality (1) is by the symmetrization theorem, inequality (2) holds for some k ≡

dlog2 (m2n/m1n)e, and inequality (3) follows from the contraction theorem.
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Next, the identical arguments showing (C.4) yield

sup
2j−1m1n≤|α−α0|1≤2jm1n

∣∣∣∣∣ 1n
n∑
i=1

εi
Xi (τ)T (α− α0)

2j−1m1n

∣∣∣∣∣ ≤ 2 max
j≤2p

∣∣∣∣∣ 1n
n∑
i=1

εiXij (τ)

∣∣∣∣∣
uniformly in τ ∈ T . Then, as in the proof of (C.1), Bernstein’s and Markov’s inequalities

imply that

P

{
sup
τ∈T

sup
m1n≤|α−α0|1≤m2n

|νn (α, τ)− νn (α0, τ)|
|α− α0|1

> bn

}
≤ b−1

n 8Lkcnp = δ̃,

where the last equality follows by setting L2 = 8L.

Proof of (C.3): As above, by the symmetrization and contraction theorems, we have that

E

(
sup
τ∈Tη
|νn (α0, τ)− νn (α0, τ0)|

)

≤ 2E

(
sup
τ∈Tη

∣∣∣∣∣ 1n
n∑
i=1

εi

[
ρ
(
Yi, Xi (τ)T α0

)
− ρ

(
Yi, Xi (τ0)T α0

)∣∣∣])

≤ 4LE

(
sup
τ∈Tη

∣∣∣∣∣ 1n
n∑
i=1

εiX
T
i δ0 (1 {Qi > τ} − 1 {Qi > τ0})

∣∣∣∣∣
)

≤ 4LC1(M2|δ0|22K2η)1/2

√
n

for some constant C1 < ∞, where the last inequality is due to Theorem 2.14.1 of van der

Vaart and Wellner (1996) with M2 in Assumption 3.1 (v) and K2 in Assumption 3.1 (ii).

Specifically, we apply the second inequality of this theorem to the class F = {f(ε,X,Q, τ) =

εXT δ0(1{Q > τ} − 1{Q > τ0}), τ ∈ Tη}. Note that F is a Vapnik-Cervonenkis class, which

has a uniformly bounded entropy integral and thus J(1,F) in their theorem is bounded, and

that the L2 norm of the envelope |εiXT
i δ0|1{|Qi− τ0| < η} is proportional to the square root

of the length of Tη:

(E|εiXT
i δ0|21{|Qi − τ0| < η})1/2 ≤ (2M2|δ0|22K2η)1/2.
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This implies the last inequality with C1 being
√

2 times the entropy integral of the class F .

Then, by Markov’s inequality, we obtain (C.3) with L3 = 4LC1(M2K2)1/2.

C.2 Proof of Theorem 3.1

Define D(τ) = diag(Dj(τ) : j ≤ 2p); and also let D0 = D (τ0) and D̆ = D (τ̆). It follows

from the definition of (ᾰ, τ̆) in (2.2) that

1

n

n∑
i=1

ρ(Yi, Xi(τ̆)T ᾰ) + κn|D̆ᾰ|1 ≤
1

n

n∑
i=1

ρ(Yi, Xi(τ0)Tα0) + κn|D0α0|1. (C.6)

From (C.6) we obtain the following inequality

R(ᾰ, τ̆) ≤ [νn(α0, τ0)− νn(ᾰ, τ̆)] + κn|D0α0|1 − κn|D̆ᾰ|1

= [νn(α0, τ̆)− νn(ᾰ, τ̆)] + [νn(α0, τ0)− νn(α0, τ̆)] (C.7)

+κn

(
|D0α0|1 − |D̆ᾰ|1

)
.

Note that the second component [νn(α0, τ0)− νn(α0, τ̆)] = oP
[
(s/n)1/2 log n

]
due to (C.3)

of Lemma C.1 with taking Tη = T by choosing some sufficiently large η > 0. Thus, we

focus on the other two terms in the following discussion. We consider two cases respectively:

|ᾰ− α0|1 ≤ |α0|1 and |ᾰ− α0|1 > |α0|1.

Suppose that |ᾰ− α0|1 ≤ |α0|1 . Then,
∣∣∣D̆ᾰ∣∣∣

1
≤
∣∣∣D̆ (ᾰ− α0)

∣∣∣
1

+
∣∣∣D̆α0

∣∣∣
1
≤ 2D̄ |α0|1 , and

∣∣∣κn (|D0α0|1 − |D̆ᾰ|1
)∣∣∣ ≤ 3κnD̄ |α0|1 .

Applying (C.1) in Lemma C.1 with m1n = |α0|1, we obtain

|νn(α0, τ̆)− νn(ᾰ, τ̆)| ≤ an |α0|1 ≤ κn |α0|1 w.p.a.1,

where the last inequality follows from the fact that an � κn with κn satisfying (2.3). Thus,
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the theorem follows in this case.

Now assume that |ᾰ− α0|1 > |α0|1. In this case, apply (C.2) of Lemma C.1 with m1n =

|α0|1 and m2n = 2M1p, where M1 is defined in Assumption 3.1(iii), to obtain

|νn(α0, τ̆)− νn(ᾰ, τ̆)|
|ᾰ− α0|1

≤ bn

with probability arbitrarily close to one for small enough δ̃. Since bn � Dκn, we have

|νn(α0, τ̆)− νn(ᾰ, τ̆)| ≤ κnD |ᾰ− α0|1 ≤ κn

∣∣∣D̆ (ᾰ− α0)
∣∣∣
1

w.p.a.1.

Therefore,

R(ᾰ, τ̆) + oP
(
n−1/2 log n

)
≤ κn

(
|D0α0|1 − |D̆ᾰ|1

)
+ κn

∣∣∣D̆ (ᾰ− α0)
∣∣∣
1

≤ κn

(
|D0α0|1 − |D̆ᾰJ |1

)
+ κn

∣∣∣D̆ (ᾰ− α0)J

∣∣∣
1
,

where the last inequality follows from the fact that ᾰ − α0 = ᾰJC + (ᾰ− α0)J . Thus, the

theorem follows in this case as well.

C.3 Proof of Theorem 3.2

Define

M∗ ≡ 4 max
τ∈Tn

(
R (α0, τ) + 2ωnD̄ |α0|1

)
/(ωnD), (C.8)

where Tn ⊂ T will be specified below. For each τ , define

α̂(τ) = argminα∈ARn(α, τ) + ωn

2p∑
j=1

Dj(τ)|αj|. (C.9)
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It follows from the definition of α̂(τ) in (C.9) that

1

n

n∑
i=1

ρ(Yi, Xi(τ)T α̂(τ)) + ωn|D(τ)α̂(τ)|1 ≤
1

n

n∑
i=1

ρ(Yi, Xi(τ)Tα0) + ωn|D(τ)α0|1. (C.10)

Next, let

t (τ) =
M∗

M∗ + |α̂ (τ)− α0|1

and ᾱ (τ) = t (τ) α̂ (τ) + (1− t (τ))α0. By construction, it follows that |ᾱ (τ)− α0|1 ≤ M∗.

And also note that

|ᾱ (τ)− α0|1 ≤M∗/2 implies |α̂ (τ)− α0|1 ≤M∗ (C.11)

since ᾱ (τ)− α0 = t (τ) (α̂ (τ)− α0).

For each τ , (C.10) and the convexity of the following map

α 7→ 1

n

n∑
i=1

ρ(Yi, Xi(τ)Tα) + ωn|D(τ)α|1

implies that

1

n

n∑
i=1

ρ(Yi, Xi(τ)T ᾱ (τ)) + ωn|D(τ)ᾱ (τ) |1

≤ t (τ)

[
1

n

n∑
i=1

ρ(Yi, Xi(τ)T α̂(τ)) + ωn|D(τ)α̂(τ)|1

]

+ [1− t (τ)]

[
1

n

n∑
i=1

ρ(Yi, Xi(τ)Tα0) + ωn|D(τ)α0|1

]

≤

[
1

n

n∑
i=1

ρ(Yi, Xi(τ)Tα0) + ωn|D(τ)α0|1

]
,

which in turn yields the following inequality

R(ᾱ(τ), τ) + ωn|D(τ)ᾱ(τ)|1 ≤ [νn(α0, τ)− νn(ᾱ(τ), τ)] +R(α0, τ) + ωn|D(τ)α0|1. (C.12)
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Furthermore, by the triangle inequality, (C.12) can be written as

R(ᾱ(τ), τ) + ωnD |ᾱ(τ)− α0|1 ≤ [νn(α0, τ)− νn(ᾱ(τ), τ)] +R(α0, τ) + 2ωnD|α0|1. (C.13)

Now let ZM = supτ∈Tn sup|α−α0|≤M |νn (α, τ)− νn (α0, τ)| for each M > 0. Then, by Lemma

C.1, ZM∗ = op (ωnM
∗) by the simple fact that log(np) ≤ 2 log(n ∨ p). Thus, in view of the

definition of M∗ in (C.8), the following inequality holds w.p.a.1,

R(ᾱ(τ), τ) + ωnD |ᾱ(τ)− α0|1 ≤ ωnDM
∗/2 (C.14)

uniformly in τ ∈ Tn.

We can repeat the same arguments for α̂(τ) instead of ᾱ(τ) due to (C.11) and (C.14), to

obtain

R(α̂(τ), τ) + ωnD |α̂(τ)− α0|1 ≤ ωnDM
∗ = O(ωns), w.p.a.1, (C.15)

uniformly in τ ∈ Tn. It remains to show that there exists a set Tn such that τ̂ ∈ Tn w.p.a.1

and the corresponding M∗ = O(s). We split the remaining part of the proof into two cases:

δ0 6= 0 and δ0 = 0.

(Case 1: δ0 6= 0)

Let

Tn =
{
τ : |τ − τ0| ≤ Cn−1 log log n

}
for some constant C > 0. Note that we assume that if δ0 6= 0, then

|τ̂ − τ0| = OP (n−1),
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which implies that τ̂ ∈ Tn w.p.a.1. Furthermore, note that

R (α0, τ) = E
([
ρ
(
Y,XT θ0

)
− ρ

(
Y,XTβ0

)]
1 {τ < Q ≤ τ0}

)
+ E

([
ρ
(
Y,XTβ0

)
− ρ

(
Y,XT θ0

)]
1 {τ0 < Q ≤ τ}

)
.

(C.16)

Combining the fact that the objective function is Liptschitz continuous by Assumptions B.1

(i) with Assumption 3.1, we have that

sup
τ∈Tn
|R (α0, τ) | ≤ L sup

τ∈Tn

[
E
(
|XT δ0||1 {τ < Q ≤ τ0}

)
+ E

(
|XT δ0||1 {τ0 < Q ≤ τ}

) ]
= O

(
|δ0|1 n

−1 log log n
)

= o
(
|δ0|1 ω

2
n

)
.

Thus, M∗ = O (|α0|1) = O (s).

(Case 2: δ0 = 0) Redefine M∗ with Tn = T as the maximum over the whole parameter

space for τ . Note that when δ0 = 0, we have that R (α0, τ) = 0 and M∗ = O (|α0|1) = O (s).

Therefore, the desired result follows immediately.

C.4 Proof of Theorem 5.1

Remark C.1. We first briefly provide the logic behind the proof of Theorem 5.1 here.

Note that for all α ≡ (βT , δT )T ∈ R2p and θ ≡ β + δ, the excess risk has the following

decomposition: when τ1 < τ0,

R (α, τ1) = E
([
ρ
(
Y,XTβ

)
− ρ

(
Y,XTβ0

)]
1 {Q ≤ τ1}

)
+ E

([
ρ
(
Y,XT θ

)
− ρ

(
Y,XT θ0

)]
1 {Q > τ0}

)
+ E

([
ρ
(
Y,XT θ

)
− ρ

(
Y,XTβ0

)]
1 {τ1 < Q ≤ τ0}

)
,

(C.17)
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and when τ2 > τ0,

R (α, τ2) = E
([
ρ
(
Y,XTβ

)
− ρ

(
Y,XTβ0

)]
1 {Q ≤ τ0}

)
+ E

([
ρ
(
Y,XT θ

)
− ρ

(
Y,XT θ0

)]
1 {Q > τ2}

)
+ E

([
ρ
(
Y,XTβ

)
− ρ

(
Y,XT θ0

)]
1 {τ0 < Q ≤ τ2}

)
.

(C.18)

The key observations are that all the six terms in the above decompositions are non-negative,

and are stochastically negligible when taking α = ᾰ, and τ1 = τ̆ if τ̆ < τ0 or τ2 = τ̆ if τ̆ > τ0.

This follows from the risk consistency of R(ᾰ, τ̆). Then, the identification conditions for α0

and τ0 (Assumptions B.1 (ii)-(iv)), along with Assumption 4.5 (i), are useful to show that

the risk consistency implies the consistency of τ̆ .

Proof of Theorem 5.1. Recall from (C.18) that for all α = (βT , δT )T ∈ R2p and θ = β + δ,

the excess risk has the following decomposition: when τ > τ0,

R (α, τ) = E
([
ρ
(
Y,XTβ

)
− ρ

(
Y,XTβ0

)]
1 {Q ≤ τ0}

)
+ E

([
ρ
(
Y,XT θ

)
− ρ

(
Y,XT θ0

)]
1 {Q > τ}

)
+ E

([
ρ
(
Y,XTβ

)
− ρ

(
Y,XT θ0

)]
1 {τ0 < Q ≤ τ}

)
.

(C.19)

We split the proof into four steps.

Step 1: All the three terms on the right hand side (RHS) of (C.19) are nonnegative. As a

consequence, all the three terms on the RHS of (C.19) are bounded by R(α, τ).

Proof of Step 1. Step 1 is implied by the condition that E[ρ(Y,X(τ0)Tα)−ρ(Y,X(τ0)Tα0)|Q] ≥

0 a.s. for all α ∈ A. To see this, the first two terms are nonnegative by simply multiplying

E[ρ(Y,X(τ0)Tα) − ρ(Y,X(τ0)Tα0)|Q] ≥ 0 with 1{Q ≤ τ0} and 1{Q > τ} respectively. To

show that the third term is nonnegative for all β ∈ Rp and τ > τ0, set α = (β/2, β/2) in the
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inequality 1{τ0 < Q ≤ τ}E[ρ(Y,X(τ0)Tα)− ρ(Y,X(τ0)Tα0)|Q] ≥ 0. Then we have that

1{τ0 < Q ≤ τ}E[ρ(Y,XT (β/2 + β/2))− ρ(Y,XT θ0)|Q] ≥ 0,

which yields the nonnegativeness of the third term.

Step 2: Let a ∨ b = max(a, b) and a ∧ b = min(a, b). Prove:

E
[
|XT (β − β0)|1{Q ≤ τ0}

]
≤ 1

η∗r∗
R(α, τ) ∨

[
1

η∗
R(α, τ)

]1/2

.

Proof of Step 2. Recall that

r1(η) ≡ sup
r

{
r : E

([
ρ
(
Y,XTβ

)
− ρ

(
Y,XTβ0

)]
1 {Q ≤ τ0}

)
≥ ηE[(XT (β − β0))21{Q ≤ τ0}] for all β ∈ B(β0, r)

}
.

For notational simplicity, write

E[(XT (β − β0))21{Q ≤ τ0}] ≡ ‖β − β0‖2
q,

and

F (δ) ≡ E
([
ρ
(
Y,XT (β0 + δ)

)
− ρ

(
Y,XTβ0

)]
1 {Q ≤ τ0}

)
.

Note that F (β − β0) = E
([
ρ
(
Y,XTβ

)
− ρ

(
Y,XTβ0

)]
1 {Q ≤ τ0}

)
, and β ∈ B(β0, r) if and

only if ‖β − β0‖q ≤ r.

For any β, if ‖β − β0‖q ≤ r1(η∗), then by the definition of r1(η∗), we have:

F (β − β0) ≥ η∗E[(XT (β − β0))21{Q ≤ τ0}].

If ‖β − β0‖q > r1(η∗), let t = r1(η∗)‖β − β0‖−1
q ∈ (0, 1). Since F (·) is convex, and F (0) = 0,
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we have F (β − β0) ≥ t−1F (t(β − β0)). Moreover, define

β̌ = β0 + r1(η∗)
β − β0

‖β − β0‖q
,

then ‖β̌ − β0‖q = r1(η∗) and t(β − β0) = β̌ − β0. Hence still by the definition of r1(η∗),

F (β − β0) ≥ 1

t
F (β̌ − β0) ≥ η∗

t
E[(XT (β̌ − β0))21{Q ≤ τ0}] = η∗r1(η∗)‖β − β0‖q.

Therefore, by Assumption B.1 (iii), and Step 1,

R(α, τ) ≥ E
([
ρ
(
Y,XTβ

)
− ρ

(
Y,XTβ0

)]
1 {Q ≤ τ0}

)
≥ η∗E[(XT (β − β0))21{Q ≤ τ0}] ∧ η∗r∗{E[(XT (β − β0))21{Q ≤ τ0}]}1/2

≥ η∗
(
E
[
|XT (β − β0)|1{Q ≤ τ0}

])2 ∧ η∗r∗E
[
|XT (β − β0)|1{Q ≤ τ0}

]
,

where the last inequality follows from Jensen’s inequality.

Step 3: For any ε′ > 0, there is an ε > 0 such that for all τ and α ∈ R2p, R(α, τ) < ε

implies |τ − τ0| < ε′.

Proof of Step 3. We first prove that, for any ε′ > 0, there is ε > 0 such that for all τ > τ0,

and α ∈ R2p, R(α, τ) < ε implies that τ < τ0 + ε′.

Suppose that R(α, τ) < ε. Applying the triangle inequality, for all β and τ > τ0,

E
[(
ρ
(
Y,XTβ0

)
− ρ

(
Y,XT θ0

))
1 {τ0 < Q ≤ τ}

]
≤
∣∣E [(ρ (Y,XTβ

)
− ρ

(
Y,XT θ0

))
1 {τ0 < Q ≤ τ}

]∣∣
+
∣∣E [(ρ (Y,XTβ

)
− ρ

(
Y,XTβ0

))
1 {τ0 < Q ≤ τ}

]∣∣ .
(C.20)

First, note that the first term on the RHS of (C.20) is the third term on the RHS of (C.19),

hence is bounded by R(α, τ) < ε.

We now consider the second term on the RHS of (C.20). Assumption 4.5 (i) implies, with
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C∗1 = C̃−1
1

(
1− C̃1

)
> 0 and C∗2 = C̃−1

2

(
1− C̃2

)
> 0, for all β ∈ Rp,

C∗2E
[
|XTβ|1 {Q > τ0}

]
≤ E

[
|XTβ|1 {Q ≤ τ0}

]
≤ C∗1E

[
|XTβ|1 {Q > τ0}

]
. (C.21)

It follows from the Lipschitz condition, Step 2, and (C.21) that

∣∣E [(ρ (Y,XTβ
)
− ρ

(
Y,XTβ0

))
1 {τ0 < Q ≤ τ}

]∣∣ ≤ LE
[∣∣XT (β − β0)

∣∣ 1 {τ0 < Q ≤ τ}
]

≤ LE
[∣∣XT (β − β0)

∣∣ 1 {τ0 < Q}
]

≤ LC∗
−1

2 E
[∣∣XT (β − β0)

∣∣ 1 {Q ≤ τ0}
]

≤ LC∗
−1

2

{
ε/(η∗r∗) ∨

√
ε/η∗

}
≡ C(ε).

Thus, we have shown that (C.20) is bounded by C(ε) + ε.

For any ε′ > 0, it follows from Assumptions B.1 (ii), B.1 (iv) and 4.4 (iii) (see also Remark

B.2) that there is a c > 0 such that if τ > τ0 + ε′,

cP (τ0 < Q ≤ τ0 + ε′) ≤ cP (τ0 < Q ≤ τ)

≤ E
[(
ρ
(
Y,XTβ0

)
− ρ

(
Y,XT θ0

))
1 {τ0 < Q ≤ τ}

]
≤ C(ε) + ε.

Since ε 7→ C(ε) + ε converges to zero as ε converges to zero, for a given ε′ > 0 choose a

sufficient small ε > 0 such that C(ε) + ε < cP(τ0 < Q ≤ τ0 + ε′), so that the above inequality

cannot hold. Hence we infer that for this ε, when R(α, τ) < ε, we must have τ < τ0 + ε′.

By the same argument, if τ < τ0, then we must have τ > τ0 − ε′. Hence, R(α, τ) < ε

implies |τ − τ0| < ε′.

Step 4: τ̆
p−→ τ0.

Proof of Step 4. For the ε chosen in Step 3, consider the event {R(ᾰ, τ̆) < ε}, which occurs
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w.p.a.1, due to Theorem 3.1. On this event, |τ̆ − τ0| < ε′ by Step 3. Because ε′ is taken

arbitrarily, we have proved the consistency of τ̆ .

C.5 Proof of Theorem 5.2

The proof consists of several steps. First, we prove that β̆ and θ̆ are inside the neighbor-

hoods of β0 and θ0, respectively. Second, we obtain an intermediate convergence rate for τ̆

based on the consistency of the risk and τ̆ . Finally, we use the compatibility condition to

obtain a tighter bound.

Step 1: For any r > 0, w.p.a.1, β̆ ∈ B(β0, r) and θ̆ ∈ G(θ0, r).

Proof of Step 1. Suppose that τ̆ > τ0. The proof of Step 2 in the proof of Theorem 5.1

implies that when τ > τ0,

E
[
(XT (β − β0))21{Q ≤ τ0}

]
≤ R(α, τ)2

(η∗r∗)2
∨ R(α, τ)

η∗
.

For any r > 0, note that R(ᾰ, τ̆) = oP (1) implies that the event R(ᾰ, τ̆) < r2 holds w.p.a.1.

Therefore, we have shown that β̆ ∈ B(β0, r).

We now show that θ̆ ∈ G(θ0, r). When τ > τ0, we have that

R(α, τ) ≥(1) E
([
ρ
(
Y,XT θ

)
− ρ

(
Y,XT θ0

)]
1 {Q > τ}

)
= E

([
ρ
(
Y,XT θ

)
− ρ

(
Y,XT θ0

)]
1 {Q > τ0}

)
− E

([
ρ
(
Y,XT θ

)
− ρ

(
Y,XT θ0

)]
1 {τ0 < Q ≤ τ}

)
≥(2) η

∗E
[
|XT (θ − θ0)|21{Q > τ0}

]
∧ η∗r∗

(
E
[
|XT (θ − θ0)|21{Q > τ0}

])1/2

− E
([
ρ
(
Y,XT θ

)
− ρ

(
Y,XT θ0

)]
1 {τ0 < Q ≤ τ}

)
,

where (1) is from (C.18) and (2) can be proved using arguments similar to those used in the
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proof of Step 2 in the proof of Theorem 5.1. This implies that

E
[
(XT (θ − θ0))21{Q > τ0}

]
≤ R̃(α, τ)2

(η∗r∗)2
∨ R̃(α, τ)

η∗
.

where R̃(α, τ) ≡ R(α, τ) + E
([
ρ
(
Y,XT θ

)
− ρ

(
Y,XT θ0

)]
1 {τ0 < Q ≤ τ}

)
. Thus, it suffices

to show that R̃(ᾰ, τ̆) = oP (1) in order to establish that θ̆ ∈ G(θ0, r). Note that for some

constant C > 0,

E
[
(ρ(Y,XT θ)− ρ(Y,XT θ0))1{τ0 < Q ≤ τ}

]
≤(1) LE

[
|XT (θ − θ0)|1{τ0 < Q ≤ τ}

]
≤(2) L|θ − θ0|1E

[
max
j≤p
|X̃j|1{τ0 < Q ≤ τ}

]
+ L|θ − θ0|1E [|Q|1{τ0 < Q ≤ τ}]

≤(3) L|θ − θ0|1E
[
max
j≤p
|X̃j| sup

x̃
P(τ0 < Q ≤ τ |X̃ = x̃)

]
+ L|θ − θ0|1E [|Q|1{τ0 < Q ≤ τ}]

≤(4) C(τ − τ0)|θ − θ0|1E
{[

max
j≤p
|X̃j|

]
+ 1

}
,

where (1) is by the Lipschitz continuity of ρ(Y, ·), (2) is from the fact that |XT (θ − θ0)| ≤

|θ − θ0|1(maxj≤p |X̃j| + |Q|), (3) is by taking the conditional probability, and (4) is from

Assumption 4.4 (ii).

By the expectation-form of the Bernstein inequality (Lemma 14.12 of Bühlmann and

van de Geer (2011)), E[maxj≤p |Xj|] ≤ K1 log(p+ 1) +
√

2 log(p+ 1). By (C.27), which will

be shown below, |θ̆ − θ0|1 = OP (s). Hence by (C.23), when τ̆ > τ0,

|τ̆ − τ0||θ̆ − θ0|1E[max
j≤p
|Xj|] = OP (κns

2 log p) = oP (1).

Note that when τ̆ > τ0, the proofs of (C.27) and (C.23) do not require θ̆ ∈ G(θ0, r), so there

is no problem of applying them here. This implies that R̃(ᾰ, τ̆) = oP (1).

The same argument yields that w.p.a.1, θ̆ ∈ G(θ0, r) and β̆ ∈ B(β0, r) when τ̆ ≤ τ0; hence

it is omitted to avoid repetition.
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Step 2: Let c̄0(δ0) ≡ c0 infτ∈T0 E[(XT δ0)2|Q = τ ], which is bounded away from zero and

bounded above due to Assumption 4.4 (iii) . Then c̄0(δ0) |τ̆ − τ0| ≤ 4R (ᾰ, τ̆) w.p.a.1. As a

result, |τ̆ − τ0| = OP [κns/c̄0(δ0)].

Proof. For any τ0 < τ and τ ∈ T0, and any β ∈ B(β0, r), α = (β, δ) with arbitrary δ, for

some L,M > 0 which do not depend on β and τ,

∣∣E (ρ (Y,XTβ
)
− ρ

(
Y,XTβ0

))
1 {τ0 < Q ≤ τ}

∣∣
≤(1) LE

[∣∣XT (β − β0)
∣∣ 1 {τ0 < Q ≤ τ}

]
≤(2) ML(τ − τ0)E

[∣∣XT (β − β0)
∣∣ 1 {Q ≤ τ0}

]
≤(3) ML(τ − τ0)

{
E
[(
XT (β − β0)

)2
1 {Q ≤ τ0}

]}1/2

≤(4) (ML(τ − τ0))2 / (4η∗) + η∗E
[(
XT (β − β0)

)2
1 {Q ≤ τ0}

]
≤(5) (ML(τ − τ0))2 / (4η∗) + E

[(
ρ
(
Y,XTβ

)
− ρ

(
Y,XTβ0

))
1 {Q ≤ τ0}

]
≤(6) (ML(τ − τ0))2 / (4η∗) +R(α, τ),

where (1) follows from the Lipschitz condition on the objective function, (2) is by Assumption

4.5 (ii), (3) is by Jensen’s inequality, (4) follows from the fact that uv ≤ v2/ (4c) + cu2 for

any c > 0, (5) is from Assumption B.1 (iii), and (6) is from Step 1 in the proof of Theorem

5.1.

In addition,

∣∣E [(ρ (Y,XTβ
)
− ρ

(
Y,XTβ0

))
1 {τ0 < Q ≤ τ}

]∣∣
≥(1) E

[(
ρ
(
Y,XTβ0

)
− ρ

(
Y,XT θ0

))
1 {τ0 < Q ≤ τ}

]
−
∣∣E [(ρ (Y,XTβ

)
− ρ

(
Y,XT θ0

))
1 {τ0 < Q ≤ τ}

]∣∣
≥(2) E

[(
ρ
(
Y,XTβ0

)
− ρ

(
Y,XT θ0

))
1 {τ0 < Q ≤ τ}

]
−R(α, τ)

≥(3) c0

{
inf
τ∈T0

E[(XT δ0)2|Q = τ ]

}
(τ − τ0)−R(α, τ),
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where (1) is by the triangular inequality, (2) is from (C.18), and (3) is by Assumption B.1

(iv). Therefore, we have established that there exists a constant C̃ > 0, independent of

(α, τ), such that

c̄0(δ0)(τ − τ0) ≤ C̃(τ − τ0)2 + 2R(α, τ). (C.22)

Note that when 0 < (τ − τ0) < c̄0(δ0)(2C̃)−1, (C.22) implies that

c̄0(δ0)(τ − τ0) ≤ c̄0(δ0)

2
(τ − τ0) + 2R(α, τ),

which in turn implies that τ−τ0 ≤ 4
c̄0(δ0)

R(α, τ). By the same argument, when−c̄0(δ0)(2C̃)−1 <

(τ−τ0) ≤ 0, we have τ0−τ ≤ 4
c̄0(δ0)

R(α, τ) for α = (β, δ), with any θ ∈ G(θ0, r) and arbitrary

β.

Hence when τ̆ > τ0, on the event β̆ ∈ B(β0, r), and τ̆ − τ0 < c̄0(δ0)(2C̃)−1, we have

τ̆ − τ0 ≤
4

c̄0(δ0)
R(ᾰ, τ̆). (C.23)

When τ̆ ≤ τ0, on the event θ̆ ∈ G(θ0, r), and τ0 − τ̆ < c̄0(δ0)(2C̃)−1, we have τ0 − τ̆ ≤
4

c̄0(δ0)
R(ᾰ, τ̆). Hence due to Step 1 and the consistency of τ̆ , we have

|τ̆ − τ0| ≤
4

c̄0(δ0)
R (ᾰ, τ̆) w.p.a.1. (C.24)

This also implies |τ̆ − τ0| = OP [κns/c̄0(δ0)] in view of the proof of Theorem 3.1.

Step 3: Define ν1n (τ) ≡ νn (α0, τ)− νn (α0, τ0) and cα ≡ κn

(
|D0α0|1 −

∣∣∣D̆α0

∣∣∣
1

)
+ |ν1n (τ̆)|.

Then,

R (ᾰ, τ̆) +
1

2
κn

∣∣∣D̆ (ᾰ− α0)
∣∣∣
1
≤ cα + 2κn

∣∣∣D̆ (ᾰ− α0)J

∣∣∣
1

w.p.a.1. (C.25)
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Proof. Recall the following basic inequality in (C.7):

R(ᾰ, τ̆) ≤ [νn(α0, τ̆)− νn(ᾰ, τ̆)]− ν1n (τ̆) + κn

(
|D0α0|1 − |D̆ᾰ|1

)
. (C.26)

Now applying Lemma C.1 to [νn(α0, τ̆)−νn(ᾰ, τ̆)] with an and bn replaced by an/2 and bn/2,

we can rewrite the basic inequality in (C.26) by

κn |D0α0|1 ≥ R (ᾰ, τ̆) + κn

∣∣∣D̆ᾰ∣∣∣
1
− 1

2
κn

∣∣∣D̆ (ᾰ− α0)
∣∣∣
1
− |ν1n (τ̆)| w.p.a.1.

Now adding κn

∣∣∣D̆ (ᾰ− α0)
∣∣∣
1

on both sides of the inequality above and using the fact that

|α0j|1 − |ᾰj|1 + |(ᾰj − α0j)|1 = 0 for j /∈ J , we have that

κn

(
|D0α0|1 −

∣∣∣D̆α0

∣∣∣
1

)
+ |ν1n (τ̆)|+ 2κn

∣∣∣D̆ (ᾰ− α0)J

∣∣∣
1

≥ R (ᾰ, τ̆) +
1

2
κn

∣∣∣D̆ (ᾰ− α0)
∣∣∣
1

w.p.a.1.

Therefore, we have proved Step 3.

We prove the remaining part of the steps by considering two cases: (i) κn

∣∣∣D̆ (ᾰ− α0)J

∣∣∣
1
≤

cα; (ii) κn

∣∣∣D̆ (ᾰ− α0)J

∣∣∣
1
> cα. We first consider Case (ii).

Step 4: Suppose that κn

∣∣∣D̆ (ᾰ− α0)J

∣∣∣
1
> cα. Then

|τ̆ − τ0| = OP

[
κ2
ns/c̄0(δ0)

]
and |ᾰ− α0| = OP (κns) .

Proof. By κn

∣∣∣D̆ (ᾰ− α0)J

∣∣∣
1
> cα and the basic inequality (C.25) in Step 3,

6
∣∣∣D̆ (ᾰ− α0)J

∣∣∣
1
≥
∣∣∣D̆ (ᾰ− α0)

∣∣∣
1

=
∣∣∣D̆ (ᾰ− α0)J

∣∣∣
1

+
∣∣∣D̆ (ᾰ− α0)Jc

∣∣∣
1
, (C.27)

which enables us to apply the compatibility condition in Assumption 4.2.
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Recall that ‖Z‖2 = (EZ2)1/2 for a random variable Z. Note that for s = |J(α0)|0,

R (ᾰ, τ̆) +
1

2
κn

∣∣∣D̆ (ᾰ− α0)
∣∣∣
1

≤(1) 3κn

∣∣∣D̆ (ᾰ− α0)J

∣∣∣
1

≤(2) 3κnD̄
∥∥X(τ̆)T (ᾰ− α0)

∥∥
2

√
s/φ

≤(3)
9κ2

nD̄
2s

2c̃φ2
+
c̃

2

∥∥X(τ̆)T (ᾰ− α0)
∥∥2

2
,

(C.28)

where (1) is from the basic inequality (C.25) in Step 3, (2) is by the compatibility condition

(Assumption 4.2), and (3) is from the inequality that uv ≤ v2/(2c̃) + c̃u2/2 for any c̃ > 0.

We will show below in Step 5 that there is a constant C0 > 0 such that

∥∥X(τ̆)T (ᾰ− α0)
∥∥2

2
≤ C0R(ᾰ, τ̆) + C0c̄0(δ0)|τ̆ − τ0|, w.p.a.1. (C.29)

Recall that by (C.24), c̄0(δ0) |τ̆ − τ0| ≤ 4R (ᾰ, τ̆). Hence, (C.28) with c̃ = (5C0)−1 implies

that

R (ᾰ, τ̆) + κn

∣∣∣D̆ (ᾰ− α0)
∣∣∣
1
≤ 9κ2

nD̄
2s

c̃φ2
. (C.30)

By (C.30) and (C.24), |τ̆ − τ0| = OP [κ2
ns/c̄0(δ0)]. Also, by (C.30), |ᾰ− α0| = OP (κns) since

D(τ̆) ≥ D w.p.a.1 by Assumption 3.1 (iv).

Step 5: There is a constant C0 > 0 such that
∥∥X(τ̆)T (ᾰ− α0)

∥∥2

2
≤ C0R(ᾰ, τ̆)+C0c̄0(δ0)|τ̆−

τ0|, w.p.a.1.

Proof. Note that

∥∥X(τ)T (α− α0)
∥∥2

2
≤ 2

∥∥X(τ)Tα−X(τ0)Tα
∥∥2

2

+ 4
∥∥X(τ0)Tα−X(τ0)Tα0

∥∥2

2
+ 4

∥∥X(τ0)Tα0 −X(τ)Tα0

∥∥2

2
.

(C.31)

We bound the three terms on the right hand side of (C.31). When τ > τ0, there is a constant
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C1 > 0 such that

∥∥X(τ)Tα−X(τ0)Tα
∥∥2

2

= E
[
(XT δ)21{τ0 ≤ Q < τ}

]
=

∫ τ

τ0

E
[
(XT δ)2

∣∣Q = t
]
dFQ(t)

≤ 2

∫ τ

τ0

E
[
(XT δ0)2

∣∣Q = t
]
dFQ(t) + 2

∫ τ

τ0

E
[
(XT (δ − δ0))2

∣∣Q = t
]
dFQ(t)

≤ C1c̄0(δ0)(τ − τ0),

where the last inequality is by Assumptions 3.1, 4.4 (ii), 4.4 (iii), and 4.5 (ii).

Similarly,
∥∥X(τ0)Tα0 −X(τ)Tα0

∥∥2

2
= E

[
(XT δ0)21{τ0 ≤ Q < τ}

]
≤ C1c̄0(δ0)(τ − τ0).

Hence, the first and third terms of the right hand side of of (C.31) are bounded by 6C1c̄0(δ0)(τ−

τ0).

To bound the second term, note that there exists a constant C2 > 0 such that

∥∥X(τ0)Tα−X(τ0)Tα0

∥∥2

2

=(1) E
[
(XT (θ − θ0))21{Q > τ0}

]
+ E

[
(XT (β − β0))21{Q ≤ τ0}

]
≤(2) (η∗)−1E

[(
ρ
(
Y,XT θ

)
− ρ

(
Y,XT θ0

))
1 {Q > τ0}

]
+ (η∗)−1E

[(
ρ
(
Y,XTβ

)
− ρ

(
Y,XTβ0

))
1 {Q ≤ τ0}

]
≤(3) (η∗)−1R(α, τ) + (η∗)−1E

[(
ρ
(
Y,XT θ

)
− ρ

(
Y,XT θ0

))
1 {τ0 < Q ≤ τ}

]
≤(4) (η∗)−1R(α, τ) + (η∗)−1LE

[
|XT (θ − θ0)|1 {τ0 < Q ≤ τ}

]
=(5) (η∗)−1R(α, τ) + (η∗)−1L

∫ τ

τ0

E
[
|XT (θ − θ0)|

∣∣Q = t
]
dFQ(t)

≤(6) (η∗)−1R(α, τ) + C3(τ − τ0),

where (1) is simply an identity, (2) from Assumption B.1 (iii), (3) is due to (C.19): namely,

E
[(
ρ
(
Y,XT θ

)
− ρ

(
Y,XT θ0

))
1 {Q > τ}

]
+ E

[(
ρ
(
Y,XTβ

)
− ρ

(
Y,XTβ0

))
1 {Q ≤ τ0}

]
≤ R(α, τ),
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(4) is by the Lipschitz continuity of ρ(Y, ·), (5) is by rewriting the expectation term, and (6)

is by Assumptions 3.1 (ii) and 4.5 (ii). Therefore, we have shown that
∥∥X(τ)T (α− α0)

∥∥2

2
≤

C0R(α, τ) + C0c̄0(δ0)(τ − τ0) for some constant C0 > 0. The case of τ ≤ τ0 can be proved

using the same argument. Hence, setting τ = τ̆ , and α = ᾰ, we obtain the desired result.

Step 6: We now consider Case (i). Suppose that κn

∣∣∣D̆ (ᾰ− α0)J

∣∣∣
1
≤ cα. Then

|τ̆ − τ0| = OP

[
κ2
ns/c̄0(δ0)

]
and |ᾰ− α0| = OP (κns) .

Proof. Recall that Xij is the jth element of Xi, where i ≤ n, j ≤ p. By Assumption 3.1 and

Step 2,

sup
1≤j≤p

1

n

n∑
i=1

|Xij|2 |1 (Qi < τ̆)− 1 (Qi < τ0)| = OP [κns/c̄0(δ0)] .

By the mean value theorem,

κn

∣∣∣|D0α0|1 −
∣∣∣D̆α0

∣∣∣
1

∣∣∣
≤ κn

p∑
j=1

(
4

n

n∑
i=1

|Xij1 {Qi > τ}|2
)−1/2 ∣∣∣δ(j)

0

∣∣∣ 1

n

n∑
i=1

|Xij|2 |1 {Qi > τ̆} − 1 {Qi > τ0}|

= OP

[
κ2
ns|J(δ0)|0/c̄0(δ0)

]
. (C.32)

Here, recall that τ is the right-end point of T and |J(δ0)|0 is the dimension of nonzero

elements of δ0.

Due to Step 2 and (C.3) in Lemma C.1,

|ν1n (τ̆)| = OP

[
|δ0|2√
c̄0(δ0)

(κns/n)1/2

]
. (C.33)
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Thus, under Case (i), we have that, by (C.24), (C.25), (C.32), and (C.33),

c̄0(δ0)

4
|τ̆ − τ0| ≤

κn
2

∣∣∣D̆ (ᾰ− α0)
∣∣∣
1

+R (ᾰ, τ̆)

≤ 3κn

(
|D0α0|1 −

∣∣∣D̆α0

∣∣∣
1

)
+ 3 |ν1n (τ̆)|

= OP

(
κ2
ns

2
)

+OP

[
s1/2 (κns/n)1/2

]
,

(C.34)

where the last equality uses the fact that |J(δ0)|0/c̄0(δ0) = O(s) and |δ0|2/
√
c̄0(δ0) = O(s1/2)

at most (both could be bounded in some cases).

Therefore, we now have an improved rate of convergence in probability for τ̆ from rn0,τ ≡

κns to rn1,τ ≡ [κ2
ns

2 + s1/2(κns/n)1/2]. Repeating the arguments identical to those to prove

(C.32) and (C.33) yields that

κn

∣∣∣|D0α0|1 −
∣∣∣D̆α0

∣∣∣
1

∣∣∣ = OP [rn1,τκns] and |ν1n (τ̆)| = OP

[
s1/2 (rn1,τ/n)1/2

]
.

Plugging these improved rates into (C.34) gives

c̄0(δ0) |τ̆ − τ0| = OP

(
κ3
ns

3
)

+OP

[
s1/2(κns)

3/2/n1/2
]

+OP

(
κns

3/2/n1/2
)

+OP

[
s3/4(κns)

1/4/n3/4
]

= OP

(
κ2
ns

3/2
)

+OP

[
s3/4(κns)

1/4/n3/4
]

≡ OP (rn2,τ ),

where the second equality comes from the fact that the first three terms are OP

(
κ2
ns

3/2
)

since

κns
3/2 = o(1), κnn/s→∞, and κn

√
n→∞ in view of the assumption that κns

2 log p = o(1).

Repeating the same arguments again with the further improved rate rn2,τ , we have that

|τ̆ − τ0| = OP

(
κ2
ns

5/4
)

+OP

[
s7/8(κns)

1/8/n7/8
]
≡ OP (rn3,τ ).
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Thus, repeating the same arguments k times yields

c̄0(δ0) |τ̆ − τ0| = OP

(
κ2
ns

1+2−k
)

+OP

[
s(2k−1)/2k(κns)

1/2k/n(2k−1)/2k
]
≡ OP (rnk,τ ).

Then letting k → ∞ gives the desired result that c̄0(δ0) |τ̆ − τ0| = OP (κ2
ns). Finally, the

same iteration based on (C.34) gives
∣∣∣D̆ (ᾰ− α0)

∣∣∣ = oP (κns), which proves the desired result

since D(τ̆) ≥ D w.p.a.1 by Assumption 3.1 (iv).

C.6 Proof of Theorem 5.3

Proof of Theorem 5.3. The asymptotic property of τ̃ is well-known in the literature (see

Lemma C.3 below for its asymptotic distribution). Specifically, we can apply Theorem 3.4.1

of van der Vaart and Wellner (1996) (by defining the criterion Mn (·) ≡ R∗n (·), Mn (·) ≡

ER∗n (·) = R(α0, τ), the distance function d (τ, τ0) ≡ |τ − τ0|1/2, and φn (δ) ≡ δ) to char-

acterize the convergence rate of τ̃ , which results in the super-consistency in the sense that

τ̃ − τ0 = Op(n
−1). See e.g. Section 14.5 of Kosorok (2008).

Furthermore, it is worth noting that the same theorem also implies that if

[R∗n (τ̂)−R∗n (τ0)]− [Rn (ᾰ, τ̂)−Rn (ᾰ, τ0)] = Op(r
−2
n ) (C.35)

for some sequence rn satisfying r2
nφn (r−1

n ) ≤
√
n, then

rnd (τ̂ , τ0) = Op (1) .
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This is because

R∗n (τ̂) = R∗n (τ̂)− [Rn (ᾰ, τ̂)−Rn (ᾰ, τ0) +R∗n (τ0)] + [Rn (ᾰ, τ̂)−Rn (ᾰ, τ0) +R∗n (τ0)]

≤(1) R
∗
n (τ̂)− [Rn (ᾰ, τ̂)−Rn (ᾰ, τ0) +R∗n (τ0)] + [Rn (ᾰ, τ0)−Rn (ᾰ, τ0) +R∗n (τ0)]

=(2) {[R∗n (τ̂)−R∗n (τ0)]− [Rn (ᾰ, τ̂)−Rn (ᾰ, τ0)]}+R∗n (τ0)

=(3) Op

(
r−2
n

)
+R∗n (τ0) ,

where inequality (1) uses the fact that τ̂ is a minimizer of Rn (ᾰ, τ), equality (2) follows since

Rn (ᾰ, τ0)−Rn (ᾰ, τ0) +R∗n (τ0) = R∗n (τ0), and equality (3) comes from (C.35).

Then, note that we can set r−2
n = ansn log(np) with sn = 1 and an = κns log n due to

Lemma C.2 and the rate of convergence ᾰ− α0 = Op (κns) given by Theorem 5.2. Next, we

will apply a chaining argument to obtain the convergence rate of τ̂ by repeatedly verifying

the condition R∗n(τ̂) ≤ R∗n(τ0) + Op(r
−2
n ), with an iteratively improved rate rn. Applying

Theorem 3.4.1 of van der Vaart and Wellner (1996) with rn = (an log(np))−1/2 , we have

τ̂ − τ0 = Op (an log(np)) = Op (κns log n log(np)) .

Next, we reset sn = κns (log n)2 log(np) and an = κns log n to apply Lemma C.2 again and

then Theorem 3.4.1 of van der Vaart and Wellner (1996) with rn = (snan log(np))−1/2. It

follows that

τ̂ − τ0 = Op

(
[κns]

2 (log n)3 (log(np))2) .
In the next step, we set rn =

√
n since it should satisfy the constraint that r2

nφn (r−1
n ) ≤

√
n as well. Then, we conclude that τ̂ = τ0 + Op (n−1). Furthermore, in view of Lemma

C.2, τ̂ = τ0 + Op (n−1) implies that the asymptotic distribution of n (τ̂ − τ0) is identical

to n (τ̃ − τ0) since each of them is characterized by the minimizer of the weak limit of

n (Rn (α, τ0 + tn−1)−Rn (α, τ0)) with α = ᾰ and α = α0, respectively. That is, the weak

limits of the processes are identical due to Lemma C.2. Therefore, we have proved the first
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conclusion of the theorem. Lemma C.3 establishes the second conclusion.

Lemma C.2. Suppose that α ∈ An ≡ {α =
(
βT , δT

)T
: |α− α0|1 ≤ Kan} and τ ∈ Tn ≡

{|τ − τ0| ≤ Ksn} for some K <∞ and for some sequences an and sn as n→∞. Then,

sup
α∈An,τ∈Tn

∣∣∣ {Rn (α, τ)−Rn (α, τ0)} − {Rn (α0, τ)−Rn (α0, τ0)}
∣∣∣ = Op [ansn log(np)] .

Proof of Lemma C.2. Noting that

ρ
(
Yi, X

T
i β +XT

i δ1 {Qi > τ}
)

= ρ
(
Yi, X

T
i β
)

1 {Qi ≤ τ}+ ρ
(
Yi, X

T
i β +XT

i δ
)

1 {Qi > τ} ,

we have, for τ > τ0,

Dn (α, τ) := {Rn (α, τ)−Rn (α, τ0)} − {Rn (α0, τ)−Rn (α0, τ0)}

=
1

n

n∑
i=1

[
ρ
(
Yi, X

T
i β
)
− ρ

(
Yi, X

T
i β0

)]
1 {τ0 < Qi ≤ τ}

− 1

n

n∑
i=1

[
ρ
(
Yi, X

T
i θ
)
− ρ

(
Yi, X

T
i θ0

)]
1 {τ0 < Qi ≤ τ}

=: Dn1 (α, τ)−Dn2 (α, τ) .

However, the Lipschiz property of ρ yields that

|Dn1 (α, τ)| =

∣∣∣∣∣ 1n
n∑
i=1

[
ρ
(
Yi, X

T
i β
)
− ρ

(
Yi, X

T
i β0

)]
1 {τ0 < Qi ≤ τ}

∣∣∣∣∣
≤ Lmax

i,j
|Xij| |β − β0|1

1

n

n∑
i=1

1 {τ0 < Qi ≤ τ}

= Op [log(np) · an · sn] uniformly in (α, τ) ∈ An × Tn,

where log(np) term comes from the Bernstein inequality and the sn term follows from the

fact that E
∣∣ 1
n

∑n
i=1 1 {τ0 < Qi ≤ τ}

∣∣ = E1 {τ0 < Qi ≤ τ} ≤ C ·Ksn due to the boundedness

of the density of Qi around τ0. The other term Dn2 (α, τ) can be bounded similarly. The

70



case of τ < τ0 can be treated analogously and hence details are omitted.

Lemma C.3. We have that n (τ̃ − τ0) converges in distribution to the smallest minimizer

of a compound Poisson process defined in Theorem 5.3.

Proof of Lemma C.3. The convergence rate of τ̃ is standard as commented in the beginning

of the proof of Theorem 5.3 and thus details are omitted here. We present the characteriza-

tion of the asymptotic distribution for the given convergence rate n.

Recall that ρ (t, s) = ρ̇ (t− s) , where ρ̇ (t) = t (γ − 1 {t ≤ 0}). Note that

nR∗n (τ)

=
n∑
i=1

ρ̇
(
Yi −XT

i β0 −XT
i δ01 {Qi > τ}

)
− ρ̇

(
Yi −XT

i β0 −XT
i δ01 {Qi > τ0}

)
=

n∑
i=1

[
ρ̇
(
Ui −XT

i δ0 (1 {Qi > τ} − 1 {Qi > τ0})
)
− ρ̇ (Ui)

]
(1 {τ < Qi ≤ τ0}+ 1 {τ0 < Qi ≤ τ})

=
n∑
i=1

[
ρ̇
(
Ui −XT

i δ0

)
− ρ̇ (Ui)

]
1 {τ < Qi ≤ τ0}

+
n∑
i=1

[
ρ̇
(
Ui +XT

i δ0

)
− ρ̇ (Ui)

]
1 {τ0 < Qi ≤ τ} .

Thus, the asymptotic distribution of n (τ̃ − τ0) is characterized by the smallest minimizer of

the weak limit of

Mn (h) =
n∑
i=1

ρ̇1i1

{
τ0 +

h

n
< Qi ≤ τ0

}
+

n∑
i=1

ρ̇2i1

{
τ0 < Qi ≤ τ0 +

h

n

}

for |h| ≤ K for some large K, where ρ̇1i = ρ̇
(
Ui −XT

i δ0

)
− ρ̇ (Ui) and ρ̇2i = ρ̇

(
Ui +XT

i δ0

)
−

ρ̇ (Ui). The weak limit of the empirical process Mn (·) is well developed in the literature, (see

e.g. Pons (2003); Kosorok and Song (2007); Lee and Seo (2008)) and the argmax continuous

mapping theorem by Seijo and Sen (2011b) yields the asymptotic distribution, namely the

smallest minimizer of a compound Poisson process, which is defined in Theorem 5.3.
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C.7 Proof of Theorem 5.4

Let D̂ ≡ D (τ̂). It follows from the definition of α̂ in (2.5) that

1

n

n∑
i=1

ρ(Yi, Xi(τ̂)T α̂) + ωn|D̂α̂|1 ≤
1

n

n∑
i=1

ρ(Yi, Xi(τ̂)Tα0) + ωn|D̂α0|1.

From this, we obtain the following inequality

R(α̂, τ̂) ≤ [νn(α0, τ̂)− νn(α̂, τ̂)] +R(α0, τ̂) + ωn|D̂α0|1 − ωn|D̂α̂|1. (C.36)

Now applying Lemma C.1 to [νn(α0, τ̂)− νn(α̂, τ̂)], we rewrite the basic inequality in (C.36)

by

ωn

∣∣∣D̂α0

∣∣∣
1
≥ R(α̂, τ̂) + ωn

∣∣∣D̂α̂∣∣∣
1
− 1

2
ωn

∣∣∣D̂ (α̂− α0)
∣∣∣
1
− |R(α0, τ̂)| w.p.a.1.

As before, adding ωn

∣∣∣D̂ (α̂− α0)
∣∣∣
1

on both sides of the inequality above and using the fact

that |α0j|1 − |α̂j|1 + |(α̂j − α0j)|1 = 0 for j /∈ J , we have that

R (α̂, τ̂) +
1

2
ωn

∣∣∣D̂ (α̂− α0)
∣∣∣
1
≤ |R(α0, τ̂)|+ 2ωn

∣∣∣D̂ (α̂− α0)J

∣∣∣
1

w.p.a.1. (C.37)

As in the proof of Theorem 5.2, we consider two cases: (i) ωn

∣∣∣D̂ (α̂− α0)J

∣∣∣
1
≤ |R(α0, τ̂)|;

(ii) ωn

∣∣∣D̂ (α̂− α0)J

∣∣∣
1
> |R(α0, τ̂)|. We first consider case (ii). Recall that ‖Z‖2 = (EZ2)1/2

for a random variable Z. It follows from the compatibility condition (Assumption 4.2) and

the same arguments as in (C.28) that

ωn

∣∣∣D̂ (α̂− α0)J

∣∣∣
1
≤ ωnD̄

∥∥X(τ̂)T (α̂− α0)
∥∥

2

√
s/φ

≤ ω2
nD̄

2s

2c̃φ2
+
c̃

2

∥∥X(τ̂)T (α̂− α0)
∥∥2

2

(C.38)

for any c̃ > 0. Recall that c̄0(δ0) ≡ c0 infτ∈T0 E[(XT δ0)2|Q = τ ]. As in Step 5 of the proof of
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Theorem 5.2, there is a constant C0 > 0 such that

∥∥X(τ̂)T (α̂− α0)
∥∥2

2
≤ C0R(α̂, τ̂) + C0c̄0(δ0)|τ̂ − τ0|, (C.39)

w.p.a.1. Combining (C.37)-(C.39) with a sufficiently small c̃ yields

R (α̂, τ̂) + ωn

∣∣∣D̂ (α̂− α0)
∣∣∣
1
≤ C

(
ω2
ns+ |τ̂ − τ0|

)
(C.40)

for some finite constant C > 0. Since |τ̂ − τ0| = OP (n−1) by Theorem 5.3, the desired results

follow (C.40) immediately.

Now we consider case (i). In this case,

R (α̂, τ̂) +
1

2
ωn

∣∣∣D̂ (α̂− α0)
∣∣∣
1
≤ 3 |R(α0, τ̂)| . (C.41)

As shown in the proof of Theorem 3.2, we have that

|R (α0, τ̂) | = OP

(
|δ0|1 n

−1 log n
)

= OP

(
ω2
ns
)
. (C.42)

Therefore, we obtain the desired results in case (i) as well by combining (C.42) with (C.41).

C.8 Proof of Theorems 5.5

We write αJ be a subvector of α whose components’ indices are in J(α0). Define Q̄n(αJ) ≡

S̃n((αJ , 0)), so that

Q̄n(αJ) =
1

n

n∑
i=1

ρ(Yi, XiJ(τ̂)TαJ) + µn
∑

j∈J(α0)

wjD̂j|αj|.

73



For notational simplicity, here we write D̂j ≡ Dj(τ̂). When τ0 is identifiable, our argument

is conditional on

τ̂ ∈ Tn =
{
|τ − τ0| ≤ n−1 log n

}
, (C.43)

whose probability goes to 1 due to Theorem 5.3.

We first prove the following two lemmas. Define

ᾱJ ≡ argmin
αJ

Q̄n(αJ). (C.44)

Lemma C.4. Suppose that M2
n(log n)2/(s log s) = o(n), s4 log s = o(n), s2 log n/ log s =

o(n) and τ̂ ∈ Tn if δ0 6= 0; suppose that s4 log s = o(n) and τ̂ is any value in T if δ0 = 0.

Then

|ᾱJ − α0J |2 = OP

(√
s log s

n

)
.

Proof of Lemma C.4. Let kn =
√

s log s
n

. We first prove that for any ε > 0, there is Cε > 0,

with probability at least 1− ε,

inf
|αJ−α0J |2=Cεkn

Q̄n(αJ) > Q̄n(α0J) (C.45)

Once this is proved, then by the continuity of Q̄n, there is a local minimizer of Q̄n(αJ) inside

B(α0J , Cεkn) ≡ {αJ ∈ Rs : |α0J − αJ |2 ≤ Cεkn}. Due to the convexity of Q̄n, such a local

minimizer is also global. We now prove (C.45).

Write

lJ(αJ) =
1

n

n∑
i=1

ρ(Yi, XiJ(τ̂)TαJ), LJ(αJ , τ) = E[ρ(Y,XJ(τ)TαJ)].
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Then for all |αJ − α0J |2 = Cεkn,

Q̄n(αJ)− Q̄n(α0J)

= lJ(αJ)− lJ(α0J) +
∑

j∈J(α0)

wjµnD̂j(|αj| − |α0j|)

≥ LJ(αJ , τ̂)− LJ(α0J , τ̂)︸ ︷︷ ︸
(1)

− sup
|αJ−α0J |2≤Cδkn

|νn(αJ , τ̂)− νn(α0J , τ̂)|︸ ︷︷ ︸
(2)

+
∑

j∈J(α0)

µnD̂jwj(|αj| − |α0j|)︸ ︷︷ ︸
(3)

.

To analyze (1), note that |αJ − α0J |2 = Cεkn and mJ(τ0, α0) = 0 and when δ0 = 0,

mJ(τ, α0J) is free of τ . Then there is c3 > 0,

LJ(αJ , τ̂)− LJ(α0J , τ̂)

≥ mJ(τ0, α0J)T (αJ − α0J) + (αJ − α0J)T
∂2E[ρ(Y,XJ(τ̂)Tα0J)]

∂αJ∂αTJ
(αJ − α0J)

−|mJ(τ0, α0J)−mJ(τ̂ , α0J)|2|αJ − α0J |2 − c3|α0J − αJ |31

≥ λmin

(
∂2E[ρ(Y,XJ(τ̂)Tα0J)]

∂αJ∂αTJ

)
|αJ − α0J |22

−(|mJ(τ0, α0J)−mJ(τ̂ , α0J)|2)|αJ − α0J |2 − c3s
3/2|α0J − αJ |32

≥ c1C
2
ε k

2
n − (|mJ(τ0, α0J)−mJ(τ̂ , α0J)|2)Cεkn − c3s

3/2C3
δ k

3
n

≥ Cεkn(c1Cεkn −Mnn
−1 log n− c3s

3/2C2
ε k

2
n) ≥ c1C

2
δ k

2
n/3,

where the last inequality follows from Mnn
−1 log n < 1/3c1Cεkn and c3s

3/2C2
ε k

2
n < 1/3c1Cεkn.

These follow from the conditions M2
n(log n)2/(s log s) = o(n) and s4 log s = o(n).

To analyze (2), by the symmetrization theorem and the contraction theorem (see, for ex-

ample, Theorems 14.3 and 14.4 of Bühlmann and van de Geer (2011)), there is a Rademacher

sequence ε1, ..., εn independent of {Yi, Xi, Qi}i≤n such that (note that when δ0 = 0, αJ = βJ ,

νn (αJ , τ) ≡ 1

n

n∑
i=1

[
ρ
(
Yi, X

T
J(β0)iβJ

)
− Eρ

(
Y,XT

J(β0)βJ
)]
,
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which is free of τ)

Vn = E

(
sup
τ∈Tn

sup
|αJ−α0J |2≤Cεkn

|νn(αJ , τ)− νn(α0J , τ)|

)

≤ 2E

(
sup
τ∈Tn

sup
|αJ−α0J |2≤Cεkn

∣∣∣∣∣ 1n
n∑
i=1

εi[ρ(Yi, XiJ(τ)TαJ)− ρ(Yi, XiJ(τ)Tα0J)]

∣∣∣∣∣
)

≤ 4LE

(
sup
τ∈Tn

sup
|αJ−α0J |2≤Cεkn

∣∣∣∣∣ 1n
n∑
i=1

εi(XiJ(τ)T (αJ − α0J))

∣∣∣∣∣
)
,

which is bounded by the sum of the following two terms, V1n + V2n, due to the triangle

inequality and the fact that |αJ −α0J |1 ≤ |αJ −α0J |2
√
s: when δ0 6= 0 and τ0 is identifiable,

V1n = 4LE

(
sup
τ∈Tn

sup
|αJ−α0J |1≤Cεkn

√
s

∣∣∣∣∣ 1n
n∑
i=1

εi(XiJ(τ)−XiJ(τ0))T (αJ − α0J)

∣∣∣∣∣
)

≤ 4LE

(
sup
τ∈Tn

sup
|δJ−δ0J |1≤Cεkn

√
s

∣∣∣∣∣ 1n
n∑
i=1

εiX
T
iJ(δ0)(1{Qi > τ} − 1{Qi > τ0})(δJ − δ0J)

∣∣∣∣∣
)

≤ 4LCεkn
√
sE

(
sup
τ∈Tn

max
j∈J(δ0)

∣∣∣∣∣ 1n
n∑
i=1

εiXij(1{Qi > τ} − 1{Qi > τ0})

∣∣∣∣∣
)

≤ 4LCεkn
√
sC1 |J(δ0)|0

√
log n

n2
,

due to the maximal inequality (for VC class indexed by τ and j); when δ0 = 0, V1n ≡ 0.

V2n = 4LE

(
sup

|αJ−α0J |1≤Cεkn
√
s

∣∣∣∣∣ 1n
n∑
i=1

εiXiJ(τ0)T (αJ − α0J)

∣∣∣∣∣
)

≤ 4LCεkn
√
sE

(
max
j∈J(α0)

∣∣∣∣∣ 1n
n∑
i=1

εiXij(τ0)

∣∣∣∣∣
)
≤ 4LCεC2k

2
n,

due to the Bernstein’s moment inequality (Lemma 14.12 of Bühlmann and van de Geer

(2011) for some C2 > 0. Therefore,

Vn ≤ 4LCεkn
√
sC1 |J(δ0)|0

√
log n

n2
+ 4LCεC2k

2
n < 5LCεC2k

2
n,
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where the last inequality is due to s2 log n/ log s = o(n). Therefore, conditioning on the

event τ̂ ∈ Tn when δ0 6= 0, or for τ̂ ∈ T when δ0 = 0, with probability at least 1 − ε,

(2) ≤ 1
ε
5LC2Cεk

2
n.

In addition, note that P (maxj∈J(α0) |wj| = 0) = 1, so (3) = 0 with probability approach-

ing one. Hence

inf
|αJ−α0J |2=Cεkn

Q̄n(αJ)− Q̄n(α0J) ≥ c1C
2
ε k

2
n

3
− 1

ε
5LC2Cεk

2
n > 0.

The last inequality holds for Cε >
15LC2

c1ε
. By the continuity of Q̄n, there is a local minimizer

of Q̄n(αJ) inside {αJ ∈ Rs : |α0J − αJ |2 ≤ Cεkn}, which is also a global minimizer due to

the convexity.

On R2p, recall that

Rn(τ, α) =
1

n

n∑
i=1

ρ(Yi, Xi(τ)Tα).

For ᾱJ = (β̄J(β0), δ̄J(δ0)) ≡ (β̄J , δ̄J) in the previous lemma, define

ᾱ = (β̄TJ , 0
T , δ̄TJ , 0

T )T .

Without introducing confusions, we also write ᾱ = (ᾱJ , 0) for notational simplicity. This

notation indicates that ᾱ has zero entries on the indices outside the oracle index set J(α0).

We prove the following lemma.

Lemma C.5. With probability approaching one, there is a random neighborhood of ᾱ in R2p,

denoted by H, so that ∀α = (αJ , αJc) ∈ H, if αJc 6= 0, we have S̃n(αJ , 0) < Q̃n(α).

Proof of Lemma C.5. Define an l2-ball, for rn ≡ µn/ log n,

H = {α ∈ R2p : |α− ᾱ|2 < rn/(2p)}.

Then supα∈H |α − ᾱ|1 = supα∈H
∑

l≤2p |αl − ᾱl| < rn. Consider any τ ∈ Tn. For any α =
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(αJ , αJc) ∈ H, write

Rn(τ, αJ , 0)−Rn(τ, α)

= Rn(τ, αJ , 0)− ERn(τ, αJ , 0) + ERn(τ, αJ , 0)−Rn(τ, α) + ERn(τ, α)− ERn(τ, α)

≤ ERn(τ, αJ , 0)− ERn(τ, α) + |Rn(τ, αJ , 0)− ERn(τ, αJ , 0) + ERn(τ, α)−Rn(τ, α)|

≤ ERn(τ, αJ , 0)− ERn(τ, α) + |νn(αJ , 0, τ)− νn(α, τ)|.

Note that |(αJ , 0)− ᾱ|22 = |αJ − ᾱJ |22 ≤ |αJ − ᾱJ |22 + |αJc − 0|22 = |α− ᾱ|22. Hence α ∈ H

implies (αJ , 0) ∈ H. In addition, by definition of ᾱ = (ᾱJ , 0) and |ᾱJ − α0J |2 = OP (
√

s log s
n

)

(Lemma C.4), we have |ᾱ− α0|1 = OP (s
√

log s
n

), which also implies

sup
α∈H
|α− α0|1 = OP

(
s

√
log s

n

)
+ rn,

where the randomness in supα∈H |α− α0|1 comes from that of H.

By the mean value theorem, there is h in the segment between α and (αJ , 0),

ERn(τ, αJ , 0)− ERn(τ, α) = Eρ(Y,XJ(τ)TαJ)− Eρ(Y,XJ(τ)TαJ +XJc(τ)TαJc)

= −
∑

j /∈J(α0)

∂Eρ(Y,X(τ)Th)

∂αj
αj ≡

∑
j /∈J(α0)

mj(τ, h)αj

where mj(τ, h) = −∂Eρ(Y,X(τ)T h)
∂αj

. Hence, ERn(τ, αJ , 0)− ERn(τ, α) ≤
∑

j /∈J |mj(τ, h)||αj|.

Because h is on the segment between α and (αJ , 0), so h ∈ H. So for all j /∈ J(α0),

|mj(τ, h)| ≤ sup
α∈H
|mj(τ, α)| ≤ sup

α∈H
|mj(τ, α)−mj(τ, α0)|+ |mj(τ, α0)−mj(τ0, α0)|.

We now argue that we can apply Assumption B.2 (ii). Let

cn ≡ s
√

(log s) /n+ rn.
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For any ε > 0, there is Cε > 0, with probability at last 1−ε, supα∈H |α−α0|1 ≤ Cεcn. ∀α ∈ H,

write α = (β, δ) and θ = β + δ. On the event |α − α0|1 ≤ Cεcn, we have |β − β0|1 ≤ Cεcn

and |θ − θ0|1 ≤ Cεcn. Hence E[(XT (β − β0))21{Q ≤ τ0}] ≤ |β − β0|21 maxi,j≤pE|XiXj| < r2,

yielding β ∈ B(β0, r). Similarly, θ ∈ G(θ0, r). Therefore, by Assumption B.2 (ii), with

probability at least 1− ε, (note that neither Cε, L nor cn depend on α)

max
j /∈J(α0)

sup
τ∈Tn

sup
α∈H
|mj(τ, α)−mj(τ, α0)| ≤ L sup

α∈H
|α− α0|1 ≤ L(Cεcn),

max
j≤2p

sup
τ∈Tn
|mj(τ, α0)−mj(τ0, α0)| ≤Mnn

−1 log n.

In particular, when δ0 = 0, mj(τ, α0) = 0 for all τ . Therefore, when δ0 6= 0,

sup
j /∈J(α0)

sup
τ∈Tn
|mj(τ, h)| = OP (cn +Mnn

−1 log n) = oP (µn);

when δ0 = 0, supj /∈J(α0) supτ∈T |mj(τ, h)| = OP (cn) = oP (µn).

Let ε1, ..., εn be a Rademacher sequence independent of {Yi, Xi, Qi}i≤n. Then by the

symmetrization and contraction theorems,

E
(

sup
τ∈T
|νn(αJ , 0, τ)− νn(α, τ)|

)
≤ 2E

(
sup
τ∈T

∣∣∣∣∣ 1n
n∑
i=1

εi[ρ(Yi, XiJ(τ)TαJ)− ρ(Yi, Xi(τ)Tα)]

∣∣∣∣∣
)

≤ 4LE

(
sup
τ∈T

∣∣∣∣∣ 1n
n∑
i=1

εi[XiJ(τ)TαJ −Xi(τ)Tα]

∣∣∣∣∣
)

≤ 4LE

(
sup
τ∈T

∥∥∥∥∥ 1

n

n∑
i=1

εiXi(τ)

∥∥∥∥∥
max

) ∑
j /∈J(α0)

|αj| ≤ 2ωn
∑

j /∈J(α0)

|αj|,

where the last equality follows from (C.5).

Thus uniformly over α ∈ H, Rn(τ, αJ , 0)−Rn(τ, α) = oP (µn)
∑

j /∈J(α0) |αj|. On the other

hand, ∑
j∈J(α0)

wjµnD̂j|αj| −
∑
j

wjµnD̂j|αj| =
∑

j /∈J(α0)

µnwjD̂j|αj|.
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Also, w.p.a.1, wj = 1 and D̂j ≥ D for all j /∈ J(α0). Hence with probability approaching

one, Q̃n(αJ , 0)− Q̃n(α) equals

Rn(τ̂ , αJ , 0) +
∑

j∈J(α0)

D̂jwjλn|αj| −Rn(τ̂ , α)−
∑
j≤2p

D̂jwjωn|αj| ≤ −D
µn
2

∑
j /∈J(α0)

|αj| < 0.

Proof of Theorem 5.5. Conditions in Lemmas C.4 and C.5 are expressed in terms of Mn.

By Lemma B.1, we verify that in quantile regression models, Mn = Cs1/2 for some C > 0.

Then all the required conditions in Lemmas C.4 and C.5 are satisfied by the conditions

imposed in Theorem 5.5.

By Lemmas C.4 and C.5, w.p.a.1, for any α = (αJ , αJc) ∈ H,

S̃n(ᾱJ , 0) = Q̄n(ᾱJ) ≤ Q̄n(αJ) = S̃n(αJ , 0) ≤ S̃n(α).

Hence (ᾱJ , 0) is a local minimizer of S̃n, which is also a global minimizer due to the convexity.

This implies that w.p.a.1, α̃ = (α̃J , α̃Jc) satisfies: α̃Jc = 0, and α̃J = ᾱJ , so

|α̃J − α0J |2 = OP

(√
s log s

n

)
, |α̃J − α0J |1 = OP

(
s

√
log s

n

)
.

C.9 Proof of Theorem 5.6

Recall that by Theorems 5.3 and 5.5, we have

|α̃J − α0J |2 = OP

(√
s log s

n

)
and |τ̂ − τ0| = OP (n−1), (C.46)
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and the set of regressors with nonzero coefficients is recovered w.p.a.1. Hence we can restrict

ourselves on the oracle space J(α0). In view of (C.46), define rn ≡
√
n−1s log s and sn. Let

R∗n (αJ , τ) ≡ 1

n

n∑
i=1

ρ
(
Yi, XiJ(τ)TαJ

)
,

where αJ ∈ An ≡ {αJ : |αJ − α0J |2 ≤ Krn} ⊂ Rs and τ ∈ Tn ≡ {τ : |τ − τ0| ≤ Ksn} for

some K <∞, where K is a generic finite constant.

The following lemma is useful to establish that α0 can be estimated as if τ0 were known.

Lemma C.6 (Asymptotic Equivalence). Assume that ∂
∂α
E
[
ρ
(
Y,XTα

)
|Q = t

]
exists for

all t in a neighborhood of τ0 and all its elements are continuous and bounded. Suppose that

s3(log s)(log n) = o (n). Then

sup
αJ∈An,τ∈Tn

|{R∗n (αJ , τ)−R∗n (αJ , τ0)} − {R∗n (α0J , τ)−R∗n (α0J , τ0)}| = oP
(
n−1
)
.

This lemma implies that the asymptotic distribution of argminαJ R
∗
n (αJ , τ̂) can be charac-

terized by α̂∗J ≡ argminαJ R
∗
n (αJ , τ0). It then follows immediately from the variable selection

consistency that the asymptotic distribution of α̃J is equivalent to that of α̂∗J . Therefore, we

have proved the theorem.

Proof of Lemma C.6. Noting that

ρ
(
Yi, X

T
i β +XT

i δ1 {Qi > τ}
)

= ρ
(
Yi, X

T
i β
)

1 {Qi ≤ τ}+ ρ
(
Yi, X

T
i β +XT

i δ
)

1 {Qi > τ} ,
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we have, for τ > τ0,

Dn (α, τ)

≡ {Rn (α, τ)−Rn (α, τ0)} − {Rn (α0, τ)−Rn (α0, τ0)}

=
1

n

n∑
i=1

[
ρ
(
Yi, X

T
i β
)
− ρ

(
Yi, X

T
i β0

)]
1 {τ0 < Qi ≤ τ}

− 1

n

n∑
i=1

[
ρ
(
Yi, X

T
i β +XT

i δ
)
− ρ

(
Yi, X

T
i β0 +XT

i δ0

)]
1 {τ0 < Qi ≤ τ}

=: Dn1 (α, τ)−Dn2 (α, τ) .

To prove this lemma, we consider empirical processes

Gnj (αJ , τ) ≡
√
n (Dnj (αJ , τ)− EDnj (αJ , τ)) , (j = 1, 2),

and apply the maximal inequality in Theorem 2.14.2 of van der Vaart and Wellner (1996).

First, for Gn1 (αJ , τ), we consider the following class of functions indexed by (βJ , τ):

Fn ≡ {
(
ρ
(
Yi, X

T
iJβJ

)
− ρ

(
Yi, X

T
iJβ0J

))
1 (τ0 < Qi ≤ τ) : |βJ−β0J |2 ≤ Krn and |τ − τ0| ≤ Ksn}.

Note that the Lipschitz property of ρ yields that

∣∣ρ (Yi, XT
iJβJ

)
− ρ

(
Yi, X

T
iJβ0J

)∣∣ 1 {τ0 < Qi ≤ τ} ≤
∣∣XT

iJ

∣∣
2
|βJ − β0J |21 {|Qi − τ0| ≤ Ksn} .

Thus, we let the envelope function be Fn(XiJ , Qi) ≡ |XiJ |2Krn1 {|Qi − τ0| ≤ Ksn} and

note that its L2 norm is O
(√

srn
√
sn
)
.

To compute the bracketing integral

J[] (1,Fn, L2) ≡
∫ 1

0

√
1 + logN[] (ε‖Fn‖L2 ,Fn, L2)dε,
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note that its 2ε bracketing number is bounded by the product of the ε bracketing num-

bers of two classes Fn1 ≡
{
ρ
(
Yi, X

T
iJβJ

)
− ρ

(
Yi, X

T
iJβ0

)
: |βJ − β0J |2 ≤ Krn

}
and Fn2 ≡

{1 (τ0 < Qi ≤ τ) : |τ − τ0| ≤ Ksn} by Lemma 9.25 of Kosorok (2008) since both classes are

bounded w.p.a.1 (note that w.p.a.1, |XiJ |2Krn < C <∞ for some constant C). That is,

N[] (2ε‖Fn‖L2 ,Fn, L2) ≤ N[] (ε‖Fn‖L2 ,Fn1, L2)N[] (ε‖Fn‖L2 ,Fn2, L2) .

Let Fn1(XiJ) ≡ |XiJ |2Krn and ln(XiJ) ≡ |XiJ |2. Note that by Theorem 2.7.11 of van der

Vaart and Wellner (1996), the Lipschitz property of ρ implies that

N[] (2ε‖ln‖L2 ,Fn1, L2) ≤ N(ε, {βJ : |βJ − β0J |2 ≤ Krn}, | · |2),

which in turn implies that, for some constant C,

N[] (ε‖Fn‖L2 ,Fn1, L2) ≤ N

(
ε‖Fn‖L2

2‖ln‖L2

, {βJ : |βJ − β0J |2 ≤ Krn}, | · |2
)

≤ C

( √
s

ε
√
sn

)s
= C

(√
ns

ε

)s
,

where the last inequality holds since a ε-ball contains a hypercube with side length ε/
√
s in

the s-dimensional Euclidean space. On the other hand, for the second class of functions Fn2

with the envelope function Fn2(Qi) ≡ 1 {|Qi − τ0| ≤ Ksn}, we have that

N[] (ε‖Fn‖L2 ,Fn2, L2) ≤ C

√
sn

ε‖Fn‖L2

=
C

ε
√
srn

=
C
√
n

εs
√

log s
,

for some constant C. Combining these results together yields that

N[] (ε‖Fn‖L2 ,Fn, L2) ≤ C2
√
n

εs
√

log s

(√
ns

ε

)s
≤ C2ε−s−1n(s+1)/2
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for all sufficiently large n. Then we have that

J[] (1,Fn, L2) ≤ C2(
√
s log n+

√
s)

for all sufficiently large n. Thus, by the maximal inequality in Theorem 2.14.2 of van der

Vaart and Wellner (1996),

n−1/2 E sup
An×Tn

|Gn1 (αJ , τ)| ≤ O
[
n−1/2

√
srn
√
sn(
√
s log n+

√
s)
]

= O
[ s

n3/2

√
log s(

√
s log n+

√
s)
]

= o
(
n−1
)
,

where the last equality follows from the restriction that s3(log s)(log n) = o (n). Identical

arguments also apply to Gn2 (αJ , τ).

Turning to EDn (α, τ) , note that by the condition that ∂
∂α
E
[
ρ
(
Y,XTα

)
|Q = t

]
exists

for all t in a neighborhood of τ0 and all its elements are continuous and bounded, we have

that for some mean value β̃J between βJ and β0J ,

∣∣E (ρ (Y,XT
J βJ

)
− ρ

(
Y,XT

J β0J

))
1 {τ0 < Q ≤ τ}

∣∣
=

∣∣∣∣E [ ∂∂βE [ρ(Y,XT β̃J

)
|Q
]

1 {τ0 < Q ≤ τ}
]

(β − β0)

∣∣∣∣
= O (srnsn)

= O

[
s3/2

n3/2

√
log s

]
= o

(
n−1
)
,

where the last equality follows from the restriction that s3(log s) = o (n). Since the same

holds for the other term in EDn, sup |EDn (α, τ)| = o (n−1) as desired.
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C.10 Proof of Theorem 5.7

By definition,

1

n

n∑
i=1

ρ(Yi, Xi(τ̂)T α̃) + µn|WD̂α̃|1 ≤
1

n

n∑
i=1

ρ(Yi, Xi(τ̂)Tα0) + µn|WD̂α0|1.

where W = diag{w1, ..., w2p}. From this, we obtain the following inequality

R(α̃, τ̂) + µn|WD̂α̃|1 ≤ |νn(α0, τ̂)− νn(α̃, τ̂)|+R(α0, τ̂) + µn|WD̂α0|1.

Now applying Lemma C.1 yields, when
√

log(np)/n = o(µn) (which is true under the as-

sumption that ωn � µn), we have that w.p.a.1, |νn(α0, τ̂) − νn(α̃, τ̂)| ≤ 1
2
µn|D̂(α0 − α̃)|1.

Hence on this event,

R(α̃, τ̂) + µn|WD̂α̃|1 ≤
1

2
µn|D̂(α0 − α̃)|1 +R(α0, τ̂) + µn|WD̂α0|1.

Note that maxj wj ≤ 1, so for ∆ := α̃− α0,

R(α̃, τ̂) + µn|(WD̂∆)Jc|1 ≤
3

2
µn|D̂∆J |1 +

1

2
µn|D̂∆Jc|1 +R(α0, τ̂).

By Theorem 5.2, maxj /∈J |α̂j| = OP (ωns). Hence for any ε > 0, there is C > 0, maxj /∈J |α̂j| ≤

Cωns < µn with probability at least 1 − ε. On the event maxj /∈J |α̂j| ≤ Cωns < µn, by

definition, wj = 1 ∀j /∈ J . Hence on this event,

R(α̃, τ̂) +
1

2
µn|(D̂∆)Jc|1 ≤

3

2
µn|D̂∆J |1 +R(α0, τ̂).

We now consider two cases: (i) 3
2
µn|D̂∆J |1 ≤ R(α0, τ̂); (ii) 3

2
µn|D̂∆J |1 > R(α0, τ̂).

case 1: 3
2
µn|D̂∆J |1 ≤ R(α0, τ̂)

We have: for C = 14D−1/3, µn|∆|1 ≤ CR(α0, τ̂). If τ̂ > τ0, for τ = τ̂ in the inequalities
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below,

R(α0, τ̂) = E(ρ(Y,XTβ0)− ρ(XT θ0))1{τ0 < Q < τ} ≤ LE|XT δ0|1{τ0 < Q < τ}

≤ L|δ0|1 max
j≤p

E|Xj|1{τ0 < Q < τ} ≤ L|δ0|1 max
j≤p

sup
q
E(|Xj||Q = q)P (τ0 < Q < τ)

≤ Cs(τ − τ0).

The case for τ ≤ τ0 follows from the same argument. Hence µn|∆|1 ≤ C|τ̂ − τ0|s.

case 2: 3
2
µn|D̂∆J |1 > R(α0, τ̂)

Then by the compatibility property,

R(α̃, τ̂) +
1

2
µn|(D̂∆)Jc |1 ≤ 3µn|D̂∆J |1 ≤ 3µnD̄

√
s‖X(τ0)∆‖2/

√
φ.

The same argument as that of Step 5 in the proof of Theorem 5.2 yields

‖X(τ0)∆‖2
2 ≤ CR(α̃, τ̂) + C|τ̂ − τ0|

for some generic constant C > 0. This implies, for some generic constant C > 0,

R(α̃, τ̂)2 ≤ µ2
nsC(R(α̃, τ̂) + |τ̂ − τ0|).

It follows that R(α̃, τ̂) ≤ C(µ2
ns+ |τ̂ − τ0|), and ‖X(τ0)∆‖2

2 ≤ C(µ2
ns+ |τ̂ − τ0|). Hence

|∆|21 ≤ Cs‖X(τ0)∆‖2
2 ≤ C(µ2

ns
2 + |τ̂ − τ0|s).

Combining both cases, we reach:

|α̃− α0|21 ≤ C(µ2
ns

2 + |τ̂ − τ0|s+
1

µ2
n

|τ̂ − τ0|2s2),

which gives the desired result since the first term µ2
ns

2 dominates the other two terms.
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C.11 Proof of Theorem 6.1

If δ0 = 0, τ0 is non-identifiable. In this case, we decompose the excess risk in the following

way:

R (α, τ) = E
([
ρ
(
Y,XTβ

)
− ρ

(
Y,XTβ0

)]
1 {Q ≤ τ}

)
+ E

([
ρ
(
Y,XT θ

)
− ρ

(
Y,XTβ0

)]
1 {Q > τ}

)
.

(C.47)

We split the proof into three steps.

Step 1: For any r > 0, we have that w.p.a.1, β̆ ∈ B̃(β0, r, τ̆) and θ̆ ∈ G̃(β0, r, τ̆).

Proof of Step 1. As in the proof of Step 1 in the proof of Theorem 5.2, Assumption B.3 (iv)

implies that

E
[
(XT (β − β0))21{Q ≤ τ}

]
≤ R(α, τ)2

(η∗r∗)2
∨ R(α, τ)

η∗
.

For any r > 0, note that R(ᾰ, τ̆) = oP (1) implies that the event R(ᾰ, τ̆) < r2 holds w.p.a.1.

Therefore, we have shown that β̆ ∈ B̃(β0, r, τ̆). The other case can be proved similarly.

Step 2 : Suppose that δ0 = 0. Then

R (ᾰ, τ̆) +
1

2
κn

∣∣∣D̆ (ᾰ− α0)
∣∣∣
1
≤ 2κn

∣∣∣D̆ (ᾰ− α0)J

∣∣∣
1

w.p.a.1. (C.48)

Proof. The proof of this step is similar to that of Step 3 in the proof of Theorem 5.2. Since

(ᾰ, τ̆) minimizes the `1-penalized objective function in (2.2), we have that

1

n

n∑
i=1

ρ(Yi, Xi(τ̆)T ᾰ) + κn|D̆ᾰ|1 ≤
1

n

n∑
i=1

ρ(Yi, Xi(τ̆)Tα0) + κn|D̆α0|1. (C.49)

When δ0 = 0, ρ(Y,X(τ̆)Tα0) = ρ(Y,X(τ0)Tα0). Using this fact and (C.49), we obtain the
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following inequality

R(ᾰ, τ̆) ≤ [νn(α0, τ̆)− νn(ᾰ, τ̆)] + κn|D̆α0|1 − κn|D̆ᾰ|1. (C.50)

As in Step 3 in the proof of Theorem 5.2, we apply Lemma C.1 to [νn(α0, τ̆)− νn(ᾰ, τ̆)]

with an and bn replaced by an/2 and bn/2. Then we can rewrite the basic inequality in

(C.50) by

κn

∣∣∣D̆α0

∣∣∣
1
≥ R (ᾰ, τ̆) + κn

∣∣∣D̆ᾰ∣∣∣
1
− 1

2
κn

∣∣∣D̆ (ᾰ− α0)
∣∣∣
1

w.p.a.1.

Now adding κn

∣∣∣D̆ (ᾰ− α0)
∣∣∣
1

on both sides of the inequality above and using the fact that

|α0j|1 − |ᾰj|1 + |(ᾰj − α0j)|1 = 0 for j /∈ J , we have that w.p.a.1,

2κn

∣∣∣D̆ (ᾰ− α0)J

∣∣∣
1
≥ R (ᾰ, τ̆) +

1

2
κn

∣∣∣D̆ (ᾰ− α0)
∣∣∣
1
.

Therefore, we have obtained the desired result.

Step 3 : Suppose that δ0 = 0. Then

R (ᾰ, τ̆) = OP (κ2
ns) and |ᾰ− α0| = OP (κns) .

Proof. By Step 2,

4
∣∣∣D̆ (ᾰ− α0)J

∣∣∣
1
≥
∣∣∣D̆ (ᾰ− α0)

∣∣∣
1

=
∣∣∣D̆ (ᾰ− α0)J

∣∣∣
1

+
∣∣∣D̆ (ᾰ− α0)Jc

∣∣∣
1
, (C.51)

which enables us to apply the compatibility condition in Assumption 4.2.
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Recall that ‖Z‖2 = (EZ2)1/2 for a random variable Z. Note that for s = |J(α0)|0,

R (ᾰ, τ̆) +
1

2
κn

∣∣∣D̆ (ᾰ− α0)
∣∣∣
1

≤(1) 2κn

∣∣∣D̆ (ᾰ− α0)J

∣∣∣
1

≤(2) 2κnD̄
∥∥X(τ̆)T (ᾰ− α0)

∥∥
2

√
s/φ

≤(3)
4κ2

nD̄
2s

2c̃φ2
+
c̃

2

∥∥X(τ̆)T (ᾰ− α0)
∥∥2

2
,

(C.52)

where (1) is from the basic inequality (C.48) in Step 2, (2) is by the compatibility condition

(Assumption 4.2), and (3) is from the inequality that uv ≤ v2/(2c̃) + c̃u2/2 for any c̃ > 0.

Note that

∥∥X(τ)Tα−X(τ)Tα0

∥∥2

2

=(1) E
[
(XT (θ − β0))21{Q > τ}

]
+ E

[
(XT (β − β0))21{Q ≤ τ}

]
≤(2) (η∗)−1E

[(
ρ
(
Y,XT θ

)
− ρ

(
Y,XTβ0

))
1 {Q > τ}

]
+ (η∗)−1E

[(
ρ
(
Y,XTβ

)
− ρ

(
Y,XTβ0

))
1 {Q ≤ τ}

]
≤(3) (η∗)−1R(α, τ),

where (1) is simply an identity, (2) from Assumption B.3 (iv) , and (3) is due to (C.47).

Hence, (C.52) with c̃ = η∗ implies that

R (ᾰ, τ̆) + κn

∣∣∣D̆ (ᾰ− α0)
∣∣∣
1
≤ 4κ2

nD̄
2s

η∗φ2
. (C.53)

Therefore, R (ᾰ, τ̆) = OP (κ2
ns). Also, |ᾰ− α0| = OP (κns) since D(τ̆) ≥ D w.p.a.1 by

Assumption 3.1 (iv).
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C.12 Proof of Theorem 6.2

When τ0 is not identifiable (δ0 = 0), τ̂ obtained in the second-step estimation can be

any value in T . Note that Lemmas C.4 and C.5 are stated and proved for this case as

well. Similar to the proof of Theorem 5.5, by Lemma B.1, in quantile regression models,

Mn = Cs1/2 for some C > 0. Hence all the required conditions in Lemmas C.4 and C.5 are

satisfied by the conditions imposed in Theorem 6.2. Then by Lemmas C.4 and C.5, w.p.a.1,

for any α = (αJ , αJc) ∈ H,

S̃n(ᾱJ , 0) = Q̄n(ᾱJ) ≤ Q̄n(αJ) = S̃n(αJ , 0) ≤ S̃n(α).

Hence (ᾱJ , 0) is a local minimizer of S̃n, which is also a global minimizer due to the convexity.

This implies that w.p.a.1, α̃ = (α̃J , α̃Jc) satisfies: α̃Jc = 0, and α̃J = ᾱJ , so

|α̃J − α0J |2 = OP

(√
s log s

n

)
, |α̃J − α0J |1 = OP

(
s

√
log s

n

)
.
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