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Abstract. A decision maker doubts the stationarity of his environment. In response, he
uses two models, one with time-varying parameters, and another with constant parameters.
Forecasts are then based on a Bayesian Model Averaging strategy, which mixes forecasts from
the two models. In reality, structural parameters are constant, but the (unknown) true model
features expectational feedback, which the reduced form models neglect. This feedback permits
fears of parameter instability to become self-confirming. Within the context of a standard
linear present value asset pricing model, we use the tools of large deviations theory to show
that even though the constant parameter model would converge to the (constant parameter)
Rational Expectations Equilibrium if considered in isolation, the mere presence of an unstable
alternative drives it out of consideration.
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1. Introduction

Economists are often accused of disagreeing with each other, and indeed, when it comes to
forecasting there is often widespread disagreement. However, there is little disagreement about
how this disagreement should be resolved. At least since Bates and Granger (1969), economists
have largely agreed that forecasters should hedge their bets by averaging. If the unknown
data-generating process is a convex combination of the different models, repeated use of model
averaging ultimately leads to the correct model, and disagreement disappears (Kalai and Lehrer
(1993)). It is also argued that in the short-run model averaging generates more stable and
accurate forecasts.1

This paper sounds a note of caution about this model averaging strategy. The typical analysis
of model averaging takes place from the perspective of an outside econometrician, one who is
attempting to understand and forecast an exogenous dynamic system. Unfortunately, this
perspective is of limited relevance to macroeconomic policymakers, whose primary interest
in forecasting is to influence the economy. There are of course well known procedures for
forecasting in the presence of feedback and endogeneity. That’s what the Rational Expectations
revolution was all about, and Lucas (1976) taught us how (in principle) to do it. However, the
Rational Expectations Hypothesis also makes model averaging a moot issue, since it presumes
agents have common knowledge of the correct underlying model. As a result, there is no
disagreement to average out.
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So instead of Lucas (1976), we follow the lead of Hansen (2014), and consider a model in which
‘inside’ agents, who fear model misspecification, employ the same procedures recommended and
studied by ‘outside’ econometricians. We show that when data are endogenous and models are
potentially misspecified, all of the above advantages of model averaging may be lost. In fact,
we argue that a process of model validation and selection may actually be preferable (Cho and
Kasa (2015)).

Our model features interactions among three groups of agents - A policymaker who must
forecast a future price, and two competing forecasters who construct and revise models of the
price process. Disagreement centers on the stationarity of the underlying environment. One
forecaster thinks the environment is stationary, and so (recursively) estimates a constant pa-
rameter model. The other forecaster thinks the environment is nonstationary, and so estimates
a model with drifting parameters. The policymaker is not sure who is correct, and so following
standard practice, he employs a Bayesian Model Averaging (BMA) strategy, in which price
forecasts are a recursively revised probability weighted average of the two forecasts. Our main
result is to show that asymptotically the weight on the time-varying parameters (TVP) model
converges to one, however small the prior probability weight might be assigned to TVP model
by the policy maker, even though the underlying structural parameters are constant. As in Gre-
sham’s Law, ‘bad models drive out good models’. The TVP model is ‘bad’ because it generates
excess volatility.2

We apply our analysis to a standard linear present value asset pricing model. We show
that self-confirming parameter drift can explain observed ‘long swings’ in asset prices. For
reasonable parameter values we find that the unconditional variance of asset prices is nearly
double its Rational Expectations value. In a sense, this is not a new result. Many others
have found that so-called ‘constant gain’ models are useful for understanding a wide variety
of dynamic economic phenomena.3 However, several nagging questions plague this literature -
Why are agents so convinced that parameters are time-varying? In terms of explaining volatility,
don’t constant gain models “assume the result”? What if agents’ beliefs were less dogmatic, and
allowed for the possibility that parameters were constant? Our Gresham’s Law result answers
these questions. It shows that constant gain learning can be a self-confirming equilibrium, even
when the underlying environment is stationary.

To prove our result, we exploit time-scale separation methods (Borkar (2008)). These meth-
ods were first applied to the macroeconomic learning literature by Marcet and Sargent (1989).
Time-scale separation methods allow us to effectively reduce the dimensionality of our problem.
Variables that operate on a relatively slow time-scale can be fixed at their current values, while
variables that operate on a relatively fast time-scale can be fixed at the means of their station-
ary distributions. Our problem features a hierarchy of four time-scales. The data operate on a
relatively fast calendar time-scale. Estimates of the TVP model evolve on a slower time-scale,
determined by the innovation variance of its parameters. Estimates of the constant parameters
model evolve even slower, on a time-scale determined by the inverse of the historical sample
size. Finally, the model weight evolves on a variable time scale, but spends most of its time in
the neighborhood of either 0 or 1, where it evolves on a time-scale that is even slower than that

2Gresham’s Law is named for Sir Thomas Gresham, who was a financial adviser to Queen Elizabeth I. He is
often credited for noting that ‘bad money drives out good money’. Not surprisingly, ‘Gresham’s Law’ is a bit
of a misnomer. As DeRoover (1949) documents, it was certainly known before Gresham, with clear descriptions
by Copernicus, Oresme, and even Aristophanes. There is also debate about its empirical validity (Rolnick and
Weber (1986)).
3Examples include: Sargent (1999), Cho, Williams, and Sargent (2002), Marcet and Nicolini (2003), Kasa (2004),
Chakraborty and Evans (2008), and Benhabib and Dave (2014).
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of the constant parameters model. The fact that the TVP model evolves on a faster time-scale
than the constant parameters model is crucial to our Gresham’s Law result.

The intuition for why the TVP model eventually dominates is the following - When the
weight on the TVP model is close to one, the world is relatively volatile (due to feedback). This
makes the constant parameters model perform relatively poorly, since it is unable to track the
feedback-induced time-variation in the data. Of course, the tables are turned when the weight
on the TVP model is close to zero. Now the world is relatively tranquil, and the TVP model
suffers from additional noise, which puts it at a disadvantage. However, as long as this noise
isn’t too large, the TVP model can exploit its ability to respond to rare sequences of shocks
that generate ‘large deviations’ in the estimates of the constant parameters model. In a sense,
during tranquil times, the TVP model is lying in wait, ready to pounce on large deviation
events. These events provide a foothold for the TVP model, which due to feedback, allows it to
regain its dominance. It is tempting to speculate whether this sort of self-confirming volatility
trap could be one factor in the lingering, long-term effects of rare events like financial crises.

In addition to providing a warning about the potential dangers of model averaging with
endogenous data, our paper also provides an example of a new equilibrium concept in learning
models. Traditional learning models in macroeconomics typically focus on either representative
agent environments, or environments in which agents are assumed to be unaware of the learning
efforts of other agents.4 Here we study an explicitly interactive learning environment, where
agents are aware that other agents are learning. Consequently, part of an agent’s Perceived
Law of Motion (PLM) must include beliefs about how other agents are learning. We follow the
traditional learning literature and assume that while these beliefs can be misspecified during
the transition, they are statistically confirmed in the limit. Esponda and Pouzo (2015) refer to
this as a ‘Berk-Nash Equilibrium’. We show that even though agents observe the same data,
their beliefs about stationarity do not ‘merge’. Although the policymaker uses the TVP model
almost always, the forecaster using the constant parameter model will nonetheless be unable to
statisically reject his beliefs about the underlying stationarity of the environment, for essentially
the same reason it is statisically difficult to distinguish a random walk from a stationary, but
very persistent process.5

The remainder of the paper is organized as follows. The next section presents the model. We
first study learning with only one model, and discuss the sense in which beliefs converge to self-
confirming equilibria. We then allow the policymaker to consider multiple models, and examine
the implications of Bayesian Model Averaging. To motivate the subsequent convergence anal-
ysis, section 3, reports a variety of simulations. These simulations show that self-confirming
parameter drift can generate significant (low frequency) asset price volatility. Section 4 de-
scribes the key concepts necessary for the analysis. Section 5 shows that the weight on the
TVP model eventually converges to one. We first study the case where individual forecasters
ignore the presence of other forecasters. We then show that under self-confirming beliefs about
other forecasters beliefs, the same Gresham’s Law result emerges. Section 6 discusses important
properties of the outcome, including persistent disagreement of beliefs, robustness of the results
to alternative interpretations of the model space and alternative interpretations of model aver-
aging. Instead of a single decision maker who averages over his own two models, we consider
a decentralized situation, in which two different forecasters forward their price forecast to the

4Evans and Honkapohja (2001) provide the definitive summary of this literature.
5Kurz (1994) and Acemoglu, Chernozhukov, and Yildiz (2016) contain similar results, for similar reasons. Kurz
(1994) appeals to nonstationarity, while Acemoglu et. al. (2016) appeal to model uncertainty and lack of
identification.
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policymaker, who then forms his own forecast by averaging the two. We show that the main
conclusions from the single agent case carry over. Section 7 discusses extensions and potential
applications, while the Appendix collects proofs of various technical results.

2. Baseline model

Our analysis is inspired by the previous work of Evans, Honkapohja, Sargent, and Williams
(2013). They study a standard cobweb model, in which a single agent considers two models,
one with constant parameters and one with time-varying parameters. The agent employs BMA
when forecasting next period’s price. Using simulations, they found that if expectational feed-
back is sufficiently strong, the weight on the TVP model often converges to one, even though
the underlying parameters are constant. They offered some insightful conjectures about why
this occurs, but provided no formal analysis. Our paper extends their analysis in a few different
directions. First, instead of a cobweb model, where current price depends on previous expec-
tations, we study an asset pricing model, where current price depends on current expectations
of future prices. This is arguably a more empirically relevant case in macroeconomics. Sec-
ond, and more importantly, we apply the tools of large deviations theory to provide a formal
convergence analysis of BMA with endogenous data. Third, and perhaps most importantly,
we consider an interactive learning environment, in which beliefs about other agents beliefs are
explicitly considered. This is aguably more descriptive of the actual forecasting environment
confronting macroeconomic policymakers.

2.1. Rational Expectations. Consider the following workhorse asset-pricing model, in which
an asset price at time t, pt, is determined according to

pt = δzt + αEtpt+1 + σεt (2.1)

where zt denotes observed fundamentals (e.g., dividends), and where α ∈ (0, 1) is a (constant)
discount rate, which determines the strength of expectational feedback. Empirically, it is close
to one. The εt shock is Gaussian white noise. Fundamentals are assumed to evolve according
to the AR(1) process

zt = ρzt−1 + σzεz,t (2.2)

for ρ ∈ (0, 1). The fundamentals shock, εz,t, is Gaussian white noise, and is orthogonal to the
price shock εt. The unique stationary rational expectations equilibrium is

pt =
δ

1− αρ
zt + σεt. (2.3)

Along the equilibrium path, the dynamics of pt can only be explained by the dynamics of
fundamentals, zt. Any excess volatility of pt over the volatility of zt must be soaked-up by the
exogenous shock εt.

It is well known that Rational Expectations versions of this kind of model cannot explain
observed asset price volatility (Shiller (1989)). We explain this volatility by assuming that
agents must learn about their environment. Of course, the notion that learning might help
to explain asset price volatility is hardly new (see, e.g., Timmermann (1996) for an early and
influential example). However, early examples were based on least-squares learning, which
exhibited asymptotic convergence to the Rational Expectations Equilibrium. This would be
fine if volatility appeared to dissipate over time, but there is no evidence for this. In response,
a more recent literature has assumed that agents use so-called constant gain learning, which
discounts old data. This keeps learning alive. For example, Benhabib and Dave (2014) show
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that constant gain learning can generate persistent excess volatility, and can explain why asset
prices have fat-tailed distributions even when the distribution of fundamentals is thin-tailed.

Our paper builds on the work of Benhabib and Dave (2014). The key parameter in their
analysis is the update gain. Not only do they assume it is bounded away from zero, but they
restrict it to be constant. Following Sargent and Williams (2005), they note that a constant
gain can provide a good approximation to the (steady state) gain of an optimal Kalman filtering
algorithm. However, they go on to show that the learning dynamics exhibit recurrent escapes
from this steady state. This calls into question whether agents would in fact cling to a constant
gain in the presence of such instability. Here we allow the agent to effectively employ a time-
varying gain, which is not restricted to be nonzero. We do this by supposing that agents
average between a constant gain and a decreasing/least-squares gain. Evolution of the model
probability weights delivers a state-dependent gain. In some respects, our analysis resembles
the gain-switching algorithm of Marcet and Nicolini (2003). However, they require the agent
to commit to one or the other, whereas we permit the agent to be a Bayesian, and average
between the two. Despite the fact that our specification of the gain is somewhat different, like
Benhabib and Dave (2014), we rely on the theory of large deviations to provide an analytical
characterization of the escape dynamics.

2.2. Learning with a correct model. Suppose an agent knows the fundamentals process in
(2.2), but does not know the structural price equation in (2.1). Instead, the agent postulates
the following state-space model for prices

pt = βtzt + σεt (2.4)

βt = βt−1 + σvvt (2.5)

where it is assumed that cov(ε, v) = 0. Note that the Rational Expectations equilibrium is a
special case of this, with

σv = 0 and β =
δ

1− αρ
.

For now, suppose the agent adopts the dogmatic prior that parameters are constant.

M0 : σ2
v = 0.

Given this belief, he estimates the unknown parameter of his model using the following Kalman
filter algorithm

β̂t+1 = β̂t +

(
Σt

σ2 +Σtz
2
t

)
zt(pt − β̂tzt) (2.6)

Σt+1 = Σt − (ztΣt)
2

σ2 +Σtz2t
(2.7)

where we adopt the common assumption that β̂t is based on time-(t − 1) information, while

the time-t forecast of pt+1, ρβ̂tzt, can incorporate the latest zt observation. This assumption is
made to avoid simultaneity between beliefs and observations.6 The process, Σt, represents the
agent’s evolving estimate of the variance of β̂t.

Notice that given his beliefs that parameters are constant, Σt converges to zero at rate t−1.
This makes sense. If parameters really are constant, then each new observation contributes less
and less relative to the existing stock of knowledge. On the other hand, notice that during the
transition, the agent’s beliefs are inconsistent with the data. He thinks β is constant, but due

6See Evans and Honkapohja (2001) for further discussion.



6 IN-KOO CHO AND KENNETH KASA

to expectational feedback, his own learning causes β to be time-varying. This can be seen by
substituting the agent’s time-t forecast into the true model in (2.1)

pt = [δ + ραβ̂t]zt + σεt

= T (β̂t)zt + σεt

Opinions differ as to whether this inconsistency is important. As long as the T -mapping between
beliefs and outcomes has the appropriate stability properties, the agent’s incorrect beliefs will
eventually be corrected. Learning-induced parameter variation eventually dissipates, and the
agent eventually learns the Rational Expectations equilibrium. However, as pointed out by
Bray and Savin (1986), in practice this convergence can be slow, and one might then ask why
agents aren’t able to detect the parameter variation that their own learning generates. If they
do, wouldn’t they want to revise their learning algorithm, and if they do, will learning still take
place?7

This debate is largely academic, however, since the more serious problem with this model
is that it fails to explain the data. Since learning is transitory, so is any learning induced
parameter instability. Although there is some evidence in favor of a ‘Great Moderation’ in the
volatility of macroeconomic aggregates (at least until the recent financial crisis!), there is little
or no evidence for such moderation in asset markets. As a result, more recent work assumes
agents view parameter instability as a permanent feature of the environment.

2.3. Learning with a wrong model. Now assume the agent has a different dogmatic prior.
Suppose he is now convinced that parameters are time-varying, which can be expressed as the
parameter restriction

M1 : σ2
v > 0.

Although this is a ‘wrong model’ from the perspective of the (unknown) Rational Expectations
equilibrium, the more serious specification error here is that the agent does not even entertain
the possibility that parameters might be constant. This prevents him from ever learning the
Rational Expectations equilibrium (Bullard (1992)). Still, due to feedback, there is a sense
in which his beliefs about parameter instability can be self-confirming, since ongoing belief
revisions will produce ongoing parameter instability.

The belief that σ2
v > 0 produces only a minor change in the Kalman filtering algorithm in

(2.6) and (2.7). We just need to replace the Riccati equation in (2.7) with the new Riccati
equation

Σt+1 = Σt − (ztΣt)
2

σ2 +Σtz2t
+ σ2

v (2.8)

The additional σ2
v term causes Σt to now converge to a strictly positive limit, Σ̄ > 0. As noted

by Benveniste et. al. (1990, pgs. 139-40), if we assume σ2
v � σ2, which we will do in what

follows, we can use the approximation σ2+Σtz
2
t ≈ σ2 in the above formulas (Σt is small relative

to σ2 and scales inversely with z2t ). The Riccati equation in (2.8) then delivers the following

approximation for the steady state variance of the state, Σ̄ ≈ σ · σvM−1/2
z , where Mz = E(z2t )

denotes the second moment of the fundamentals process. In addition, if we further assume that

7McGough (2003) addresses this issue. He pushes the analysis one step back, and shows that if agents start out
with a time-varying parameter learning algorithm, but have priors that this variation damps out over time, then
agents can still eventually converge to a constant parameter Rational Expectations equilibrium.
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priors about parameter drift take the particular form, σ2
v = γ2σ2M−1

z , then the steady state
Kalman filter takes the form of the following (discounted) recursive least-squares algorithm

β̂t+1 = β̂t + γM−1
z zt(pt − β̂tzt) (2.9)

where priors about parameter instability are now captured by the so-called ‘gain’ parameter,
γ. If the agent thinks parameters are more unstable, he will use a larger gain.

Remember that since the underlying parameters are constant, the agent’s model is ‘wrong’.
Wouldn’t a smart agent eventually discover this?8 On the one hand, this is an easy question
to answer. Since his prior dogmatically rules out the ‘right’ constant parameter model, there
is simply no way the agent can ever detect his misspecification, even with an infinite sample.
On the other hand, due to the presence of expectational feedback, a more subtle question is
whether the agent’s beliefs about parameter instability could become ‘self-confirming’ (Sargent
(2008))? That is, to what extent are the random walk priors in (2.5) consistent with the
observed behavior of the parameters in the agent’s model? Would an agent have an incentive
to revise his prior in light of the data that are themselves (partially) generated by those priors?

It is useful to divide this question into two parts, one related to the innovation variance, σ2
v ,

and the other to the random walk nature of the dynamics. As noted above, the innovation
variance is captured by the gain parameter. Typically the gain is treated as a free parameter,
and is calibrated to match some feature of the data. However, as noted by Sargent (1999,
chpt. 6), in self-referential models the gain should not be treated as a free parameter. It is an
equilibrium object. This is because the optimal gain depends on the volatility of the data, but
at the same time, the volatility of the data depends on the gain. As in a Rational Expectation
Equilbrium, we have a fixed point problem.

In a prescient paper, Evans and Honkapohja (1993) addressed the problem of computing this
fixed point. They posed the problem as one of computing a Nash equilibrium. In particular,
they ask - Suppose everyone else is using a given gain parameter, so that the data-generating
process is consistent with this gain. Would an individual agent have an incentive to switch to a
different gain? Under appropriate stability conditions, one can then compute the equilibrium
gain by iterating on a best response mapping as usual. Later we exploit this idea to study the
stability of our more complex BMA algorithm.

To address the second issue we need to study the dynamics of the agent’s parameter esti-
mation algorithm in (2.9). After substituting in the actual price process this can be written
as

β̂t+1 = β̂t + γM−1
z zt

{
[δ + (αρ − 1)β̂t]zt + σεt

}
(2.10)

Let β∗ = δ/(1 − αρ) denote the Rational Expectations equilibrium. Also let τt = t · γ, and
then define β(τt) = β̂t. We can then form the piecewise-constant continuous-time interpolation,
β(τ) = β(τt) for τ ∈ [tγ, tγ + γ). Although for a fixed γ (and σ2

v) the paths of of β(τ) are
not continuous, they converge to the following continuous limit as σ2

v → 0 (see Evans and
Honkapohja (2001) for a proof)

Proposition 2.1. As σ2
v → 0, β(τ) converges weakly to the solution of the following diffusion

process

dβ = −(1− αρ)(β − β∗)dτ + γM−1/2
z σdWτ (2.11)

8Of course, a constant gain model could be the ‘right’ model too, if the underlying environment features ex-
ogenously time-varying elements. After all, it is this possibility that motivates their use in the first place.
Interestingly, however, most existing applications of constant gain learning feature environments in which doubts
about parameter stability are entirely in the head of the agent.
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where dWτ is the standard Wiener process.

This is an Ornstein-Uhlenbeck process, which generates a stationary Gaussian distribution
centered on the Rational Expectations equilibrium, β∗. Notice that the innovation variance
is consistent with the agent’s priors, since γ2σ2M−1

z = σ2
v . However, notice also that dβ

is autocorrelated. That is, β does not follow a random walk. Strictly speaking then, the
agent’s priors are misspecified. However, remember that traditional definitions of self-confirming
equilibria presume agents have access to infinite samples. In practice, agents only have access
to finite samples. Given this, we can ask whether the agent could statistically reject his prior.9

This will be difficult when the drift in (2.11) is small. This is the case when: (1) Estimates are
close to the β∗, (2) Fundamentals are persistent, so that ρ ≈ 1, and (3) Feedback is strong, so
that α ≈ 1.

2.4. Model averaging. Dogmatic priors (about anything) are rarely a good idea. So now
suppose agents hedge their bets by entertaining the possibility that parameters are constant.
Forecasts are then constructed using a traditional Bayesian Model Averaging (BMA) strategy.
This strategy effectively ‘convexifies’ the model space.

There are two ways to think about model averaging. One is to assume the competing models
are in the mind of a single agent. This is the interpretation in Evans, Honkapohja, Sargent, and
Williams (2013). However, if this is the case, it is hard to understand why the agent does not just
expand the model space to include a model which nests both. In the above setting, this would
mean estimating a single model where σ2

v is viewed as a parameter to be estimated. The second
way to think about model averaging is from a more decentralized perspective, where multiple
agents construct and revise models, which are then ‘marketed’ to a single decisionmaker, who
does not himself construct models. This is arguably more descriptive of actual macroeconomic
forecasting, and model averaging emerges quite naturally in this case.10

We are going to consider both possibilities, mainly for pedagogical reasons. This is because
the first approach is easier to formalize, since it just involves specifying the beliefs of a single
agent. In contrast, with multiple agents and multiple models, one must specify how agents
perceive the forecasting efforts of other agents. If agents are aware that forecasts are being used
by a policymaker, whose actions potentially influence the data-generating process, they must
then form beliefs over other forecasters’ beliefs. For example, even if you are convinced the un-
derlying environment is stationary, if you know a policymaker is putting some weight on a TVP
model, then your own model must allow for the induced nonstationarity. Of course, specifying
beliefs about others’ beliefs is fraught with difficulties. In Bayesian settings it quickly produces
an infinite regress, which can only be tamed by introducing strong coordination assumptions,
like common priors. Rather than pursue this route, we introduce an element of bounded ratio-
nality, by allowing agents’ beliefs about other agents’ beliefs to be misspecified. However, as
in Esponda and Pouzo (2015), we impose discipline by requiring beliefs to be statistically con-
firmed in the limit. As it turns out, the asymptotic properties of the model averaging dynamics
are the same for both the single agent and multiple agent environments. We start with the
former, as it is easier. Once the argument is clear for this case, the more complex interactive
learning environment will be easier to understand.

Let πt denote the current probability assigned by the policymaker to M1, the TVP model,
and let βt(i) denote the current parameter estimate for Mi. The policymaker’s time-t forecast

9In the language of Hansen and Sargent (2008), we can compute the detection error probability.
10Timmermann (2006) cites evidence in support of nesting, but notes that it requires agents to have access to
the full information set, which is often not the case in practice.
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becomes11

Etpt+1 = ρ[πtβt(1) + (1− πt)βt(0)]zt (2.12)

Substituting this into the actual law of motion for prices implies that parameter estimates evolve
according to

βt+1(i) = βt(i) +

(
Σt(i)

σ2 +Σt(i)z
2
t

)
zt{[δ + αρ[πtβt(1) + (1− πt)βt(0)]− βt(i)]zt + σεt} (2.13)

As usual, we suppose the policymaker neglects the feedback from his forecast to the actual
price process. Note that the only difference between the two parameter update equations arises
from their gain sequences, Σt(i). With a single forecaster who neglects feedback, these two gain
sequences are independent of model averaging.

3. Simulations

As noted in Section 2, the present-value asset pricing model in (2.1)-(2.2) has been subjected
to a lot of previous empirical work, mostly with negative results. Perhaps its biggest problem
is its failure to generate sufficient volatility (Shiller (1989)). Our results suggest that this
negative assessment could be premature. To examine this possibility, we calibrate the model
using parameter values that have been used in the past, and see whether this can generate the
sort of self-confirming volatility that our analysis suggests is possible.

Most of the parameters are easy to calibrate. We know observed fundamentals are persistent,
so we set ρ = .99. Remember, the agent is assumed to know this. Similarly, we know discount
factors are close to 1, so we set the feedback parameter to α = .96. Since δ depends on units,
we just normalize it by setting δ = (1 − αρ). This implies the self-confirming equilibrium
value, β = 1.0. In principle, the innovations variances, (σ2, σ2

z), could be calibrated to match
those of observed assets prices and fundamentals. However, since what really matters is the
comparison between actual and predicted volatility, we follow Evans, Honkapohja, Sargent, and
Williams (2013) and just normalize them to unity (σ2 = σ2

z = 1). That leaves one remaining
free parameter, σ2

v . Of course, this is a crucial parameter, since it determines the agent’s
prior beliefs about parameter instability. If it is too big, then the TVP model will be at a
big disadvantage during tranquil times, and will therefore have a difficult time displacing the
constant parameter model. On the other hand, if it’s too small, self-confirming volatility will
be empirically irrelevant.

Figures 1-4 report typical simulations for three alternative values, σ2
v = (.0005, , .0001, .00001).

Figures 1 and 2 are for the value σ2
v = .0005. When this is the case, steady-state price volatility

is 93.3% higher when π = 1 than when π = 0, which is quite significant, although less than the
excess volatility detected by Shiller (1989). The higher price volatility when π = 1 is apparent.
The implied steady-state gain associated with this value of σ2

v is γ = .07, which is quite typical
of values used in prior empirical work. These figures also illustrate a typical feature of the
sample paths when σ2

v is relatively high, i.e., convergence to one or the other boundaries occurs
relatively quickly, usually by around T = 500.

Figures 3-4 use smaller values of σ2
v . Generally speaking, smaller values of σ2

v delay con-
vergence. In Figure 3, where σ2

v = .0001, convergence to π = 1 once again takes place, but
now its price volatility implications are not quite so dramatic. Volatility is only 41.7% higher
when π = 1. Once again, the implied steady-state gain (γ = .03) is typical of values used in
empirical work. Figure 4 uses a still smaller prior variance, σ2

v = .00001. Now the two models
do not differ by much. Steady-state price volatility is only 13% higher when π = 1. Notice that

11To ease notation in what follows, we shall henceforth omit the hats from the parameter estimates.
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v = .0005
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Figure 4: σ2
v = .00001

because the two models are so similar, it becomes easier to escape the π = 1 equilibrium. Since
the TVP world is not that volatile, a constant parameter model does not do that badly.12

The one feature that is perhaps not accurately portrayed by these figures is the fact that
on empirically relevant time-scales convergence to either boundary can occur. This fact was
emphasized by Evans, Honkapohja, Sargent, andWilliams (2013). Although our previous results
imply that eventually the π = 1 equilibrium will dominate, our simulations indicate that the
π = 0 equilibrium can persist for a long time. For example, we conducted 10,000 simulations,
each of length T = 2000, and counted the proportion of times convergence to π = 1 occurred
for various values of σ2

v . As above, the simulations were initialized at π = 0.5, with small
random perturbations of the coefficients around their self-confirming equilibrium values. Figure
5 displays the results,

The probability of convergence to π = 1 declines with σ2
v . For σ2

v = .1 × 10−4, convergence
occurs more than 80% of the time, whereas for the benchmark value used above, σ2

v = 5×10−4,

12Notice that Figure 4 uses a T = 4000 sample length, while Figures 1-4 use T = 2000. As σ2
v decreases, things

evolve more slowly, so it becomes necessary to expand the simulation length.
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Figure 5: Probability of convergence to π = 1 after 2000 periods

convergence to π = 1 occurs only about 60% of the time.13 As our above analysis makes clear,
however, one must exercise some caution when interpreting results like these. In Figure 5,
‘convergence’ was simply defined as the value of π at the end of each simulation run (i.e., at
T = 2000). According to our results, however, eventually π will escape from 1. What our
theory actually predicts is that as the sample length becomes infinitely long, the proportion of
time spent near π = 1 goes to unity. It doesn’t imply that π never returns to 0. Although
escapes from π = 1 are more likely to occur relatively early in the game, before βt(0) has settled
down, as σ2

v decreases, escapes can occur relatively late as well. Figure 4 nicely illustrates this
possibility. Hence, the results in Figure 5 are merely meant to convey the possibility that on
realistic time-scales, ‘convergence’ to either π = 1 or to π = 0 can occur.

The fact that convergence to either π = 0 or π = 1 can occur on relevant time-scales is
interesting, since it suggests that whether we live in a tranquil or volatile economy is somewhat
random and history-dependent. It also highlights a potentially adverse long-term effect of ‘large
deviation’ events, like financial crises. Although being alert to the possibility of financial crises
is probably a good thing on net, if it makes individuals living in a less than fully understood
self-referential environment more reactive, it could create its own problems.

4. Preliminaries

Since our analysis relies heavily on time-scale separation methods, we begin with a brief
discussion of time scales.

4.1. Time scales. Since each component of (βt(1), βt(0), πt) evolves at a different “speed,” it
is important to define clearly a notion of speed in terms of a benchmark time scale. We use the
sample average time scale, t−1, as the benchmark. This is the time-scale at which βt(0) evolves.
More precisely, ∀τ > 0, we can find the unique integer satisfying

K−1∑
k=1

1

k
< τ <

K∑
k=1

1

k
.

Let m(τ) = K and define

tK =
K∑
k=1

1

k

13For σ2
v = 0 convergence should occur 50% of the time.
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Therefore, tK → ∞ as K → ∞. We are interested in sample paths over the tail interval
[tK , tK + τ). Hence, we are interested in the speed of evolution in the right hand tail of a
stochastic process.

It is important to recall that the function m which maps “fictitious time” to a number of
periods is defined for the sample average time scale, and that we are interested in the right tail
of the sequence.

Definition 4.1. Let ϕt be a stochastic process. We say that ϕt evolves on a faster time scale
than βt(0) if ∀τ > 0,

lim
K→∞

m(tK+τ)∑
t=K

|ϕt − ϕt−1| = ∞,

with a positive probability, and evolves on a slower time scale than βt(0) if

lim
K→∞

m(tK+τ)∑
t=K

|ϕt − ϕt−1| = 0

with probability 1. We say that ϕt evolves on the same time scale as βt(0) if ϕt does not evolve
at a faster or slower time scale.

If a stochastic process ϕt has a recursive representation

ϕt = ϕt−1 + εtYt(ϕt−1,Xt)

where Xt is the state variable, Yt is a uniformly bounded function, and εt > 0 is the gain
function, we can compare time scales by comparing gain functions. Consider another recursive
formula

ϕ̃t = ϕ̃t−1 + ε̃tỸt(ϕ̃t−1,Xt)

with uniformly bounded Ỹt and gain function ε̃t > 0. One can show that ϕt evolves on a faster
time scale than ϕ̃t if

lim
t→∞

ε̃t
εt

= 0.

Hence, if a stochastic process can be represented recursively, it makes sense to represent its
time scale or speed of evolution in terms of its gain sequence.

4.2. Odds ratio. The policymaker updates his beliefs about models using Bayes Rule. After
a long tedious calculation, the Bayesian updating scheme for πt can be written as (see Evans,
Honkapohja, Sargent, and Williams (2013) for a partial derivation)

1

πt+1
− 1 =

At+1(0)

At+1(1)

(
1

πt
− 1

)
(4.14)

where

At(i) =
1√

2πMSE(i)
e
− (pt−p̂t(i))

2

2MSE(i) (4.15)

is the time-t predictive likelihood function for model Mi, and

MSE(i) = E(pt − p̂t(i))
2

is the mean-squared forecast error of Mi. Remember that p̂t(i) depends on assumptions about
the nature of model averaging. In the single-agent case, the multiple models are in the mind
of the policymaker, and p̂t(i) = ρβt(i)zt. In the multiple-agent case, the policymaker uses the
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forecasts provided by other agents, and the p̂t(i) are given by the more complicated expressions
in equations (6.38).

To study the dynamics of πt it is useful to rewrite eq. (4.14) as follows

πt+1 = πt + πt(1− πt)

[
At+1(1)/At+1(0) − 1

1 + πt(At+1(1)/At+1(0) − 1)

]
(4.16)

which has the familiar form of a discrete-time replicator equation, with a stochastic, state-
dependent, fitness function determined by the likelihood ratio. Equation (4.16) reveals a lot
about the model averaging dynamics. First, it is clear that the boundary points π = {0, 1}
are trivially stable fixed points, since they are absorbing. Second, we can also see that there
could be an interior fixed point, where E(At+1(1)/At+1(0)) = 1. Later we shall see that this
occurs when π = 1

2ρα , which is interior if feedback is strong enough (i.e., if α > 1
2ρ). However,

we shall also see there that this fixed point is unstable. So we know already that πt will spend
most of its time near the boundary points. This will become apparent when we turn to the
simulations in Section 4. One remaining issue is whether πt could ever become absorbed at one
of the boundary points.

Proposition 4.2. As long as the likelihoods of M0 and M1 have full support, the boundary
points πt = {0, 1} are unattainable in finite time.

Proof. See Appendix A. �	
Since the distributions here are assumed to be Gaussian, they obviously have full support,

so Proposition 4.2 applies. Although the boundary points are unattainable in finite time, the
replicator equation for πt in eq. (4.16) makes it clear that πt will spend most of its time
near these boundary points, since the relationship between πt and πt+1 has the familiar logit
function shape, which flattens out near the boundaries. As a result, πt evolves very slowly near
the boundary points. In fact, we shall now show that it evolves even more slowly than the t−1

time-scale of βt(0). This means that when studying the dynamics of the coefficient estimates
near the boundaries, we can treat πt as fixed.

4.3. Log Odds Ratio. As usual, it is more convenient to consider the log odds ratio. Let us
initialize the likelihood ratio at the prior odds ratio:

A0(0)

A0(1)
=

π0(0)

π0(1)
.

By iteration we get

πt+1(0)

πt+1(1)
=

1

πt+1
− 1 =

t+1∏
k=0

Ak(0)

Ak(1)
,

Taking logs and dividing by (t+ 1),

1

t+ 1
ln

(
1

πt+1
− 1

)
=

1

t+ 1

t+1∑
k=0

ln
Ak(0)

Ak(1)
.

Now define the average log odds ratio, φt, as follows

φt =
1

t
ln

(
1

πt
− 1

)
=

1

t
ln

(
πt(0)

πt(1)

)
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which can be written recursively as the following stochastic approximation algorithm

φt = φt−1 +
1

t

[
ln

At(0)

At(1)
− φt−1

]
.

Invoking well knowing results from stochastic approximation, we know that the asymptotic
properties of φt are determined by the stability properties of the following ordinary differential
equation (ODE)

φ̇ = E

[
ln

At(0)

At(1)

]
− φ

which has a unique stable point

φ∗ = E ln
At(0)

At(1)
.

Note that if φ∗ > 0, πt → 0, while if φ∗ < 0, πt → 1. The focus of the ensuing analysis is to
identify the conditions under which πt converges to 1, or 0. Thus, the sign of φ∗, rather than
its value, is an important object of investigation.

We show that πt evolves even more slowly than the t−1 time-scale of βt(0) and φt. This
means that when studying the dynamics of the coefficient estimates near the boundaries, we
can treat πt as fixed. In order to make the notion of “more slowly” precise, we need to define
precisely the time scale.

Note that the notion of time scale is a property of a stochastic process in the right tail. That
is, the time-scale measures the speed of evolution of the sample paths for large t. Although
πt can evolve faster than βt(1) for small t, as t → ∞, we show that πt must stay in a small
neighborhood of 1 or 0, slowly converging to the limit.

Lemma 4.3.

P

(
∃{πtk}k, and ∃π∗ ∈ (0, 1), lim

k→∞
πtk = π∗

)
= 0

and πt evolves at a slower time scale than 1/t.

Proof. See Appendix B. �	
Therefore, without loss of generality, we can assume that π = {0, 1} are the only limit points

of {πt}. After renumbering a convergent subsequence, suppose πt → 1. Following the same
reasoning as in the proof of Lemma 4.3, we can prove that

βt(0) → δ

1− αρ

with probability 1, and

βt(1) → δ

1− αρ

weakly.
If αρ > 1/2, and πt close to 1, then a simple calculation shows that

E ln
At+1(0)

At+1(1)
< 0

which implies that

φt → E ln
At+1(0)

At+1(1)
< 0.
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with probability 1. Given βt(0) = βt(1) = δ/(1 − αρ), πt → 1 with probability 1, proving that
πt = 1 is locally attracting. Similarly, we can show that if πt is close to 0, then

E ln
At(0)

At(1)
> 0.

Following the same argument, we prove that πt = 0 is locally attracting.
In general, the speed of evolution of πt compared to βt(i) (i = 1, 2) is difficult to compute.

But, in the neighborhood of the boundaries, we can show that πt evolves on an even slower
time scale than βt(0).

Lemma 4.4.

P

(
∃{φt}, lim

k→∞
φt = 0

)
= 0

and πt evolves at a slower time scale than 1/t (or βt(0)) with probability 1.

Proof. See Appendix C �	
Lemma 4.4 asserts that in the neighborhood of the boundaries, the hierarchy of time scales

is such that βt(1) evolves at a faster time scale than βt(0), while βt(0), which evolves on the
same time scale as φt, evolves at a faster time scale than πt. This time scale hierarchy greatly
facilitates the analysis of escape dynamics.

5. Model Averaging Dynamics

At this point it is useful to collect the formulas that dictate the evolution of the endogenous
variables: (πt, βt(0),Σt(0), βt(1),Σt(1)).

βt+1(0) = βt(0) +

(
Σt(0)

σ2 +Σt(0)z2t

)
zt(pt − βt(0)zt) (5.17)

Σt+1(0) = Σt(0)− (ztΣt(0))
2

σ2 +Σt(0)z2t
(5.18)

βt+1(1) = βt(1) +

(
Σt(1)

σ2 +Σt(1)z2t

)
zt(pt − βt(1)zt) (5.19)

Σt+1(1) = Σt(1)− (ztΣt(1))
2

σ2 +Σt(1)z
2
t

+ σ2
v (5.20)

1

πt+1
− 1 =

At+1(0)

At+1(1)

(
1

πt
− 1

)
(5.21)

where At(i) is defined as (4.15) ∀i, t. The actual law of motion for pt is

pt = (δ + ρ(πtβt(1) + (1− πt)βt(0))) zt + σεt.

Except for (5.21), (βt(0),Σt(0), βt(1),Σt(1)) evolve according to stochastic difference equa-
tions. A standard method to investigate the asymptotic properties of a stochastic difference
equation is to first calculate the dynamics of the mean, and to then infer the asymptotic prop-
erties of the stochastic variables from the mean dynamics (Kushner and Yin (1997)).

However, this “standard” approach does not apply here, because βt(1), βt(0) and πt evolve
at different speeds. One can easily show that Σt(0) → 0, while Σt(1) → Σ > 0. For large
values of t, βt(1) evolves infinitely faster than βt(0), since the gain function of βt(1) is uniformly
bounded away from 0, while that of βt(0) vanishes. Lemma 4.4 shows that πt evolves more
slowly than βt(0). To accommodate the different “speeds” of evolution of these variables,
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we use multiple time-scale stochastic approximation methods (Borkar (2008)). Exploiting the
time-scale hierarchy, we can first characterize the asymptotic properties of βt(1), for fixed
values of (βt(0), πt). After calculating the invariant distribution of βt(1), we then investigate
the asymptotic properties of βt(0), and then finally those of πt.

5.1. Convergence. Since the proof is very much in line with the second part of the proof of
Lemma 4.3, we just state the result without proof.

Proposition 5.1. limt→∞ βt(1) =
δ

1−αρ weakly, while limt→∞ βt(0) =
δ

1−αρ with probability 1.

πt → {0, 1} with probability 1, as t → ∞.

It is helpful to calculate the domain of attraction of each locally stable point, from the
perspective of βt(0), assuming that βt(1) has already reached its own stationary distribution.
Comparing the likelihoods, we can compute the domain of attraction for (π, β(0), β(1)) =
(0, δ

1−ρα ,
δ

1−ρα ) is the interior of

D0 =

{
(π, β(0), β(1)) | E log

At(0)

At(1)
≥ 0

}
which is roughly the area of{

(π, β(0), β(1)) |
(
β(0)− δ

1− αρ

)2

< (1− 2αρπ)σ2
ξ

(
1− αρπ

1− αρ

)2
}

where the mean-squared forecast error of M0 is smaller than that of M1. The difference arises
from the fact that the expected likelihood ratio differs from the ratio of expected mean-squared
forecast errors.

The interior of the complement of D0 is the domain of attraction for (π, β(0), β(1)) =
(1, δ

1−ρα ,
δ

1−ρα )

For small σv > 0, one can imagine D0 as a narrow “cone” in the space of (β(0), π), with

its apex at (β(0), π) =
(

δ
1−αρ ,

1
2αρ

)
and its base along the line π = 0, where β(0) is in[

δ
1−αρ − σξ

1−αρ ,
δ

1−αρ +
σξ

1−αρ

]
. Figure 6 plots D0 for the baseline parameter values used in the

previous simulations. The formal analysis will make the notion of being “narrow” precise.

5.2. Escape probabilities. We have three endogenous variables (πt, βt(0), β1(1)), which con-
verge to one of the two locally stable points: (0, δ/(1−αρ), δ/(1−αρ)) or (1, δ/(1−αρ), δ/(1−
αρ)). Let us identify a specific stable point by the value of πt at the stable point. Similarly, let
D0 be the domain of attraction to πt = 0, and D1 be the domain of attraction to πt = 1.

For fixed σ2
v > 0, the distribution of (πt, βt(0), β1(1)) assigns a large weight to either of the

two locally stable points as t → ∞. Our main interest is the limit of this probability distribution
as σ2

v → 0.
To calculate the limit probability distribution, we need to calculate the probabilities that

(πt, βt(0), β1(1)) escape from each domain of attraction. Standard results from large deviation
theory imply that the escape probabilities can be parameterized by their large deviation rate
functions.

Lemma 5.2. There exists r0 ∈ [0,∞] so that

− lim
σ2
v→0

lim
t→∞

1

t
logP

(
∃t, (πt, βt(0), βt(1)) ∈ D1 | (π1, β1(0), β1(1)) =

(
0,

δ

1− αρ
,

δ

1− αρ

))
= r0
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Figure 6: D0, the domain of Attraction for π = 0. In simulations presented in section 3, we normalize the
parameters so that δ/(1 − αρ) = 1. The shaded region is “narrow” if we use the same scale for the horizontal
axis as the scale of the vertical axis.

and ∃r1 ∈ [0,∞] so that

− lim
σ2
v→0

lim
t→∞

1

t
logP

(
∃t, (πt, βt(0), βt(1)) ∈ D0 | (π1, β1(0), β1(1)) =

(
1,

δ

1− αρ
,

δ

1− αρ

))
= r1.

The large deviation parameter ri (i = 1, 2) quantifies how difficult it is to escape from Di,
with ri = ∞ meaning that the escape never occurs, and ri = 0 meaning that the escape occurs
immediately with probability 1 (on a logarithmic time-scale).

To calculate the relative duration times of (πt, βt(0), βt(1)) around each locally attractive
boundary point, we need to compute the following ratio

lim
σ2
v→0

lim
t→∞

P
(
∃t, (πt, βt(0), βt(1)) ∈ D0 | (π0, β0(0), β0(1)) =

(
1, δ

1−αρ ,
δ

1−αρ

))
P
(
∃t, (πt, βt(0), βt(1)) ∈ D1 | (π0, β0(0), β0(1)) =

(
0, δ

1−αρ ,
δ

1−αρ

)) .
Note that (πt, βt(0), βt(1)) stays in the neighborhood of

(
1, δ

1−αρ ,
δ

1−αρ

)
almost always in the

limit, if r0 < r1, and vice versa.

Proposition 5.3. ∃σ′
v > 0 such that ∀σv ∈ (0, σ′

v), r1 > r0.

Proof. See Appendix D. �	
For fixed σ2

v > 0, the asymptotic distribution of πt assigns a large weight to 1 and 0, since 1
and 0 are locally stable points. Between the two locally stable points, we are interested in which
locally stable point is more salient than the other. One way to determine which equilibrium is
more salient than the other would be to compare the amount of time when πt stays in a small
neighborhood of each locally stable point. For fixed T , σ2

v and ε > 0, define

T1 = {t ≤ T | |πt − 1| < ε}
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as the number of calendar time periods during which πt is within a small neighborhood of 1.
Since 0 and 1 are the only two locally stable points, πt stays in the neighborhood of 0 for most
of the remaining T − T1 periods.

As a corollary of Proposition 5.3, we can show that for a small σ2
v > 0, πt stays in the

neighborhood of 1 almost always.

Theorem 5.4. ∀ε > 0,

lim
σ2
v→0

lim
T→∞

E
T1

T
= 1

The TVP model asymptotically dominates because it is better able to react to the volatility
that it itself creates. Although M1 is misspecified in the sense that it contains a fictitious
variable without any link to fundamentals, this equilibrium must be learned via some adaptive
process. What our result shows is that this learning process can be subverted by the mere
presence of misspecified alternatives, even when the correctly specified model would converge if
considered in isolation. This result therefore echoes the conclusions of Sargent (1993), who notes
that adaptive learning models often need a lot of ‘prompting’ before they converge. Elimination
of misspecified alternatives can be interpreted as a form of prompting.

6. Discussion

6.1. Persistent disagreement. We have assumed that the only agent making any real deci-
sions here is the policymaker. He must decide how much weight to assign to each model. What
about the forecasters? We have implicitly assumed they dogmatically stick to their own beliefs
about stationarity. However, since they both observe the same data, one might expect from
standard merging arguments that their opposing views would ultimately disappear, as long as
their priors put at least some weight on the alternative. Strictly speaking, however, no finite
amount of data could ever convince either that their beliefs about stationarity were incorrect
(Kurz (1994)). Of course, complete certainty is perhaps not a reasonable standard. Could
either be statistically convinced to change his views about stationarity?

Given that πt ultimately converges to unity, both forecasters end up with misspecified models,
but both will have a difficult time detecting their own misspecification. M1 thinks parameters
exhibit a random walk, when in fact they follow a mean-reverting process centered on the REE
value. M0 thinks parameters are constant, but when π = 1, they instead fluctuate randomly
around the REE value. Hence, the M1 forecaster confronts the problem of rejecting a unit root
null hypothesis. When α ≈ 1 and fundamentals are persistent, the alternative is close to being
nonstationary. As is well known, the power of unit root tests is notoriously low. It can take
thousands of observations before rejection occurs with any confidence. On the other hand, the
M0 forecaster falsely attributes M1’s parameter variation to his own model’s error term. He
therefore confronts the problem of detecting weak residual autocorrelation. Again, the power
of these tests is quite low, especially if σv > 0 is small.

Hence, the two forecasters ‘agree to disagree’ about stationarity for a long time. Although
this disagreement would disappear with an infinite sample, as σv → 0, it takes longer and
longer to do so. In the meantime, the freedom afforded by slow parameter drift allows prices
to take long excursions from their fundamental values. These excursions would not exist if the
policymaker’s beliefs ruled out nonstationarity from the beginning. However, even a ‘grain of
doubt’ opens the door to the ultimate dominance of M1.

6.2. Links to Long-Run Risk. Our previous simulations showed that self-confirming pa-
rameter drift can generate ‘long swings’ in asset prices. The conventional explanation of low



GRESHAM’S LAW OF MODEL AVERAGING 19

frequency volatility in asset prices is Bansal and Yaron’s (2004) long-run risk model. They note
that the combination of Epstein-Zin preferences and a small-noise random walk component in
consumption growth can generate long swings. Hansen and Sargent (2010) offered an interest-
ing reinterpretation of their results. They note that it is enough that agents merely suspect that
a small noise random walk component be present. A robust portfolio/learning policy will also
generate long swings, even if in reality consumption growth is i.i.d.. Our paper can be seen as a
combination of Bansal-Yaron and Hansen-Sargent. Here an agent’s suspicions that parameters
might drift can cause them to drift in reality. Unlike Bansal-Yaron and Hansen-Sargent, our
explanation does not have anything to do with time-varying risk premia or robustness. The
agents here are risk-neutral. Instead, our explanation relies on belief dynamics. However, like
them, our explanation relies on the fact that it is empirically very difficult to detect small noise
random walks with finite samples.

6.3. Averaging vs. Selection. Theorem 5.4 raises questions about the wisdom of using
model averaging, once we entertain the possibility that models are misspecified and the data
are endogenous. The fundamental problem is that model averaging forces models to compete
with each other. Of course, in general, competition is good. But here, the TVP model can
effectively change the rules of the game in its own favor, by inducing volatility that puts the
constant parameters model at a competitive disadvantage.

An alternative strategy would be to select a particular model using a well defined selection
criterion. For example, if the policymaker were simply to flip a coin, and commit to a particular
model, there would be a 50/50 chance that M0 would be used, which is certainly better odds
than with model averaging, where M1 is used with probability 1! Of course, commiting to
a model on the basis of a coin flip is a rather questionable strategy, to say the least. At a
minimum, any reasonable strategy should be sequential, and allow the policymaker the freedom
to reconsider his choice based on observed outcomes.

In Cho and Kasa (2015) we proposed an alternative learning procedure for discriminating
among multiple candidate models, which we call model validation. The idea behind model
validation is to not compare models, but rather to test them against an externally imposed
standard of statistical adequacy. If a currently employed model appears to be well specified, it
continues to be used, even though some alternative model might be lurking in the background,
which could statistically outperform it if given the chance. If a model is rejected, we assume that
another model is randomly selected, with weights determined by historical relative performance.

In order to make the paper self-contained, let us describe the validation process of M0 and
M1, following Cho and Kasa (2015). We can write the updating formula for βt(i) as

βt(i) = βt−1(i) + ηt(i)Λt(i) (6.22)

Λt(i) = zt−1[pt − ztβt−1(i)] (6.23)

where ηt(i) is the Kalman gain of Mi:

ηt(i) =
Σt(i)

σ2 + zt−1Σt(i)
.

Let st ∈ {0, 1} be the model used by the policymaker, so that the actual price in period t is
determined according to

pt = (δ + ρ(stβt(1) + (1− st)βt(0))) zt + σεt.
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Models are tested using a recursive Lagrangean Multiplier (LM) test statistic, θt(i):

θt(i) = θt−1(i) + ηαt (i)

[
Λ2
t

Ωt(i)
− θit−1

]
(6.24)

Ωt(i) = Ωt−1(i) + ηαt (i)[Λ
2
t (i) − Ωt−1(i)] (6.25)

where α ∈ (0, 1] is chosen to speed up the validation process. Hence, θt(i) is just a recursively
estimated χ2 statistic with 1 degree of freedom. We choose θ as the test threshold. The policy
maker continues to use the same model he used in period t− 1, as long as the model passes the
LM test:

st = st−1

if Mst−1 passes the test, by satisfying θt(st−1) < θ. Otherwise, st = 1 with probability one half,

and st = 0 with probability one half.14

Cho and Kasa (2015) demonstrated that in the long run, the policy maker chooses a model
with the largest large deviation parameter at the self-confirming equilibrium. In our case, βt(0)
and βt(1) have the same large deviation parameter. The large deviation properties of βt(i)
are determined by the statistical properties of the forecasting error Λt(i). When σv → 0, the
statistical properties of Λt(0) and Λt(1) converge, in the sense that the logarithmic moment
generating functions of Λt(1) and Λt(0) converge. Standard results from the large deviation
literature then show that the large deviation parameters of the two models converge (e.g.,
Dupuis and Kushner (1987)).

Proposition 6.1. Define

T v
1 = #{t ≤ T | st = 1}

as the number of periods when the policy maker uses M1 in the first T rounds, under validation
dynamics. Then,

lim
σv→0

E
T v

T
=

1

2
.

Proof. See Cho and Kasa (2015). �	
One has to take Proposition 6.1 with a grain of salt, because the convergence speed of the

large deviation parameters is known to be very slow. Even though M0 is used one half of the
time in the limit as σv → 0, the frequency that M0 is used for a small positive value of σv > 0
can be close to 1.

Here we chose θ = 2.5, so that it is very unlikely that single shock realizations produce model
rejections, and α = 1/2 to speed up the validation process. The numerical results are robust to
the selection of these parameters. Figure 7 shows the empirical distribution of st for different val-
ues of σv. We run 1,000 period simulations as many as 1,000 times, and plot the empirical distri-
bution of st for σv ∈ Ω where Ω = {.0005, .0004, .0003, .0002, .0001, .00005, .000025, .00001, .000005, .000001}.
σv = 0.0005 is hardly a large value, but the probability weight assigned by the empirical distri-
bution of st at 0 is close to 1 under σv = 0.0005. As σv → 0, the distribution of st converges
to a bimodal distribution concentrated at either 0 or 1, piling a larger weight to st = 1. Figure
8 shows the empirical expected value of T v

1 /Tv. If σv = 0.0005, T v
1 /T is close to 0. But, as

σv → 0, the empirical expected value of T v
1 /T converges to 0.5, as the theory predicts.

14The random selection rule here does not affect the long run distribution of st, as shown in Cho and Kasa
(2015).
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Figure 7: st = 1 if M1 is used by the policy maker in period t, and otherwise, st = 0. We report empirical
distributions of st for σv ∈ Ω. The number in the vertical axis is 1000 times of the probability. The horizontal axis
shows T v

1 /T , which ranges from 0 to 1. The panel is arranged from left to right and from top to bottom, according
to the descending order of the values of σv. Note that the distribution converges to a bimodal distribution, and
that the probability mass at st = 1 converges to 0.5.

6.4. Stability. Our Gresham’s Law result casts doubt on the ability of agents to adaptively
learn a constant parameters Rational Expectations equilibrium, unless they dogmatically believe
that this is the only possible equilibrium. Here we investigate the robustness of this result to
an alternative specification of the model space.

Normally, with exogenous data, it would make no difference whether a parameter known to lie
in some interval is estimated by mixing between the two extremes, or by estimating it directly.
With endogenous data, however, this could make a difference. What if the agent convexified the
model space by estimating σ2

v directly, via some sort of nonlinear adaptive filtering algorithm
(e.g., Mehra (1972)), or perhaps by estimating a time-varying gain instead, via an adaptive step-
size algorithm (Kushner and Yang (1995))? Although π = 1 is locally stable against nonlocal
alternative models, would it also be stable against local alternatives?

In this case, there is no model averaging. There is just one model, with σ2
v viewed as an

unknown parameter to be estimated. To address the stability question we exploit the connec-
tion discussed in section 2.3 between σ2

v and the steady-state gain, γ. Because the data are
endogenous, we must employ the macroeconomist’s ‘big K, little k’ trick, which in our case we
refer to as ‘big Γ, little γ’. That is, our stability question can be posed as follows: Given that
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Figure 8: The horizontal axis is the values of σv, and the vertical axis is the proportion of time M1 is selected.
The proportion of time is close to 0, if σv = 0.0005, but converges to 0.5 as σv → 0.

data are generated according to the aggregate gain parameter Γ, would an individual agent
have an incentive to use a different gain, γ? If not, then γ = Γ is a Nash equilibrium gain, and
the associated σ2

v > 0 represents self-confirming parameter instability. The stability question
can then be addressed by checking the (local) stability of the best response map, γ = B(Γ), at
the self-confirming equilibrium.

To simplify the analysis, we consider a special case, where zt = 1 (i.e., ρ = 1 and σz = 0).
The true model becomes

pt = δ + αEtpt+1 + σεt (6.26)

and the agent’s perceived model becomes

pt = βt + σεt (6.27)

βt = βt−1 + σvvt (6.28)

where σv is now considered to be an unknown parameter. Note that if σ2
v > 0, the agent’s

model is misspecified. As in Sargent (1999), the agent uses a random walk to approximate a
constant mean. (6.27) and (6.28) represent an example of ‘random walk plus noise’ model of
Muth (1960), in which constant gain updating is optimal. To see this, write pt as the following
ARMA(1,1) process

pt = pt−1 + εt − (1− Γ)εt−1 Γ =

√
4s + s2 − s

2
σ2
ε =

σ2

1− Γ
(6.29)

where s = σ2
v/σ

2 is the signal-to-noise ratio. Muth (1960) showed that optimal price forecasts,
Etpt+1 ≡ p̂t+1, evolve according to the constant gain algorithm

p̂t+1 = p̂t + Γ(pt − p̂t) (6.30)

This implies that the optimal forecast of next period’s price is just a geometrically distributed
average of current and past prices,

p̂t+1 =

(
Γ

1− (1− Γ)L

)
pt (6.31)
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Substituting this into the true model in eq. (6.26) yields the actual price process as a function
of aggregate beliefs

pt =
δ

1− α
+

(
1− (1− Γ)L

1− ( 1−Γ
1−αΓ )L

)
εt

1− αΓ
(6.32)

≡ p̄+ f(L; Γ)ε̃t

Now for the ‘big Γ, little γ’ trick. Suppose prices evolve according eq. (6.32), and that an
individual agent has the perceived model

pt =
1− (1− γ)L

1− L
ut (6.33)

≡ h(L; γ)ut

What would be the agent’s optimal gain? The solution of this problem defines a best response
map, γ = B(Γ), and a fixed point of this mapping, γ = B(γ), defines a Nash equilibrium
gain. Note that the agent’s model is misspecified, since it omits the constant that appears
in the actual prices process in eq. (6.32). The agent needs to use γ to compromise between
tracking the dynamics generated by Γ > 0, and fitting the omitted constant, p̄. This compromise
is optimally resolved by minimizing the Kullback-Leibler (KLIC) distance between equations
(6.32) and (6.33)15

γ∗ = B(Γ) = argminγ
{
E[h(L; γ)−1(p̄+ f(L; Γ)ε̃t)]

2
}

= argminγ

{
1

2π

∫ π

−π
[logH(ω; γ) + σ2

ε̃H(ω; γ)−1F (ω; Γ) + p̄2H(0)−1]dω

}

where F (ω) = f(e−iω)f(eiω) and H(ω) = h(e−iω)h(eiω) are the spectral densities of f(L) in eq.
(6.32) and h(L) in eq. (6.33). Although this problem cannot be solved with pencil and paper,
it is easily solved numerically. Figure 9 plots the best response map using the same benchmark
parameter values as before (except, of course, ρ = 1 now)16

Not surprisingly, the agent’s optimal gain increases when the external environment becomes
more volatile, i.e., as Γ increases. What is more interesting is that the slope of the best
response mapping is less than one. This means the equilibrium gain is stable. If agents believe
that parameters are unstable, no single agent can do better by thinking they are less unstable.
Figure 9 suggests that the best response map intersects the 45 degree line somewhere in the
interval (.10, .15). This suggests that the value of σ2

v used for the benchmark TVP model in
section 4 was a little too small, since it implied a steady-state gain of .072.

6.5. Multiple Agent Model Averaging. Now consider a decentralized setting with three
interacting (types of) agents: Two masses of competing, infinitesimal forecasters (M0 and M1),
and a policymaker who combines forecasts. The policymaker is the only agent engaged in model
averaging. Individual forecasters recursively update a single model. However, forecasters know
their forecasts are being averaged by the policymaker, and unlike the policymaker, they are
aware of the potential feedback from forecasts to prices. As a result, their model specifications

15See Sargent (1999, chpt. 6) for another example of this problem.
16Note, the unit root in the perceived model in eq. (6.33) implies that its spectral density is not well defined.
(It is infinite at ω = 0). In the numerical calculations, we approximate by setting (1 − L) = (1 − ηL), where
η = .995. This means that our frequency domain objective is ill-equipped to find the degenerate fixed point
where γ = Γ = 0. When this is the case, the true model exhibits i.i.d fluctuations around a mean of δ/(1 − α),
while the agent’s perceived model exhibits i.i.d fluctuations around a mean of zero. The only difference between
these two processes occurs at frequency zero, which is only being approximated here.
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Figure 9: Best Response Mapping γ = B(Γ)

must include beliefs about how other forecasters are forecasting. These beliefs take the form of
conjectures about other forecasters’ beliefs about stationarity. M1 thinks M0 uses a constant
parameter model, while M0 thinks M1 uses a random coefficients model with i.i.d. fluctuations
around a constant mean. Both beliefs are misspecified, since they neglect the other agent’s
learning dynamics. However, as in traditional (representative agent) learning models, these
misspecifications disappear asymptotically.

To be more specific, we can summarize the beliefs of M0 and M1 as a pair of perceived state
space models. The perceived observation equation for M0 is

pt = (1− πt)βt(0)zt + πtβ̄t(1)zt + σεt (6.34)

while the perceived observation equation for M1 is

pt = (1− πt)β̄t(0)zt + πtβt(1)zt + σεt (6.35)

Although forecasters are assumed to know the policymaker’s current model weight, πt, the
coefficients on zt are assumed to be hidden states. An overbar is used to represent an agent’s
belief about the other agent’s model.

M0 has the following perceived state transition equation[
βt(0)
βt(1)

]
=

[
βt−1(0)
β(1)

]
+

[
0
εv,t

]
(6.36)

where εv,t is i.i.d Gaussian white noise. That is, M0 thinks the coefficient on zt ‘should be’
constant, but at the same time recognizes the influence of a competing forecast based on al-
ternative assumptions. Both equations are misspecified, since they both neglect the presence
of learning dynamics. Misspecification about βt(0) will disappear at the usual t−1 rate. Mis-
specification about βt(1) will persist, since in fact M1’s parameter estimate is governed by the
Ornstein-Uhlenbeck process described in Proposition 2.1. However, viewed on the appropriate
time-scale, this misspecification will also disappear. From the viewpoint of M0, βt(0) appears
to be drawn from the stationary distribution which is a solution of the Ornstein-Uhlenbeck
process, centered at a constant.
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M1 has the following perceived state transition equation[
βt(0)
βt(1)

]
=

[
βt−1(0)
βt−1(1)

]
+

[
0

σvvt

]
. (6.37)

That is, M1 thinks the coefficient on zt ‘should be’ drifting, but at the same time thinks rival
forecasters are using a constant parameter model. Once again, these equations are misspecified
during the transition, but will be confirmed in the limit.

Both forecasters estimate their perceived state space models using the Kalman filter. This
generates a sequence of hidden state estimates which can then be substituted into the perceived
observation equations to generate sequences of price forecasts.

p̂t(0) = [(1− πt)βt+1|t(0) + πtβt+1|t(1)]ρzt
p̂t(1) = [(1− πt)βt+1|t(0) + πtβt+1|t(1)]ρzt (6.38)

The policymaker takes these two forecasts and averages them using the known weight,

p̂t = (1− πt)p̂t(0) + πtp̂t(1) (6.39)

The actual time-t price is then determined by the (unknown) structural model in eq. (2.1),

pt = δzt + αp̂t + σεt (6.40)

Notice that if equations (6.38) are substituted into (6.39), which is then substituted into the
actual price equation (6.40), we observe that the agents’ models in (6.34) and (6.35) suffer from
an additional form of misspecification, since each forecaster fails to recognize that their own
forecast embodies a form of model averaging in its response to the other forecasters’ forecasts.
However, like the neglected learning dynamics, this misspecification will disappear in the limit.

We can follow virtually the same analysis as in Sections 5. We state the main result without
proof.

Proposition 6.2. In the decentralized equilibrium featuring three players, we again have limt→∞ βt(1) =
δ

1−αρ weakly, while limt→∞ βt(0) =
δ

1−αρ with probability 1. πt → {0, 1} with probability 1, as

t → ∞. ∀ε > 0,

lim
σ2
v→0

lim
T→∞

E
T1

T
= 1

where T1 is the number of periods πt is within ε > 0 neighborhood of 1.

It must be emphasized that the two forecasters have different views about the stationarity
of the economy, even in the long run. Since M1 believes that βt(1) evolves according to a
random walk, he expects to see the coefficient drift. If feedback is strong and fundamentals
are persistent, this belief can persist for a very long time, as noted in the discussion following
Proposition 2.1. Interestingly, given knowledge of the policymaker’s model averaging strategy,
the persistence of his misspecification is independent of πt. If πt is close to 1, his belief will
be confirmed for as long as it takes to reject a near random walk. On the other hand, if πt
is close to 0, the conditional variance of prices is close to σ2. But, this small variation of the
price does not contradict his belief that βt(1) evolves according to a random walk, because M1

realizes that the actual price is partly determined by πt, which is selected by the policymaker.
Hence, he can rationalize the small gap between the actual variance of price and σ2 coherently,
as a consequence of πt being close to 0, rather than as invalidating his belief that the coefficient
would drift if his model were given more weight.

The fact that M1 maintains his belief even in the neighborhood of πt = 0 is crucial for the
escape dynamics of πt from the neighborhood of 0. When the M0 forecast fares badly due to



26 IN-KOO CHO AND KENNETH KASA

a sequence of unusual events, the M1 forecast can quickly adjust to the event, which triggers a
self-reinforcing escape of πt away from 0 to 1.

At the same time, M0 maintains his belief that the economy is stationary. If πt is close to 0,
his belief is confirmed by the data, since the data is generated by what M0 forecasts. If πt is
close to 1, the data is mostly generated by what M1 forecasts. However, M0 infers that βt(1)
is moving around δ/(1−αρ), and can rationalize the gap between observed price variation and
σ2 in terms of the noise εv,t introduced by M1 forecaster. Hence, the data are also consistent
with what M0 believes.

This feature of persistently misspecified beliefs is reminiscent of the Berk-Nash equilibrium
of Esponda and Pouzo (2015), who distinguish between Nash and self-confirming equilibria. In
a Nash equilibrium, each player’s belief must be correctly specified, and their strategies must be
econometrically identified. If we relax the requirement that equilibrium strategies be identified,
we have a self-confirming equilibrium. If we also relax the requirement of correctly specified
models, we then have the Berk-Nash equilibrium of Esponda and Pouzo (2015). Our model
is not game theoretic, but nonetheless captures key features of a Berk-Nash equilibrium. We
formulate the beliefs of each player in terms of a perceived law of motion. Since the perceived
law of motion of M0 about βt(1) is not equal to the actual law of motion of βt(1), the belief
of M0 is misspecified. In the long run, M0 cannot identify whether βt(1) is evolving according
to a random walk, or whether it is drawn from a stationary distribution. As a result, M0

maintains a misspecified belief even in the long run, different from what M1 perceives about
the economy.

7. Conclusion

Parameter instability is a fact of life for applied econometricians. This paper has proposed
one explanation for why this might be. We show that if econometric models are used in a
less than fully understood self-referential environment, parameter instability can become a self-
confirming equilibrium. Parameter estimates are unstable simply because model-builders think
they might be unstable.

Clearly, this sort of volatility trap is an undesirable state of affairs, which raises questions
about how it could be avoided. There are two main possibilities. First, not surprisingly, better
theory would produce better outcomes. The agents here suffer bad outcomes because they do not
fully understand their environment. If they knew the true model in eq. (2.1), they would know
that data are endogenous, and would avoid reacting to their own shadows. They would simply
estimate a constant parameters reduced form model. A second, and arguably more realistic
possibility, is to devise econometric procedures that are more robust to misspecified endogeneity.
In Cho and Kasa (2015), we argue that in this sort of environment, model selection might
actually be preferable to model averaging. If agents selected either a constant or TVP model
based on sequential application of a specification or hypothesis test, the constant parameter
model would prevail, as it would no longer have to compete with the TVP model.

Appendix A. Proof of Proposition 4.2

With two full support probability distributions, you can never conclude that a history of any finite length
couldn’t have come from either of the distributions. Slightly more formally, if the distributions have full support,
they are mutually absolutely continuous, so the likelihood ratio in eq. (4.16) is strictly bounded between 0 and
some upper bound B. To see why πt < 1 for all t, notice that πt+1 < πt + πt(1 − πt)M for some M < 1, since
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the likelihood ratio is bounded by B. Therefore, since π + π(1− π) ∈ [0, 1] for π ∈ [0, 1], we have

πt+1 ≤ πt + πt(1− πt)M

< πt + πt(1− πt)

≤ 1

and so the result follows by induction. The argument for why πt > 0 is completely symmetric. �

Appendix B. Proof of Lemma 4.3

Fix a sequence {πt} in Π0. Since the sequence is a subset of a compact set, it has a convergent subsequence.
After renumbering the subsequence, let us assume that

lim
t→∞

πt = π∗ ∈ (0, 1)

since {πt} ∈ Π0. Depending upon the rate of convergence (or the time scale according to which πt converges to
π∗), we have to treat πt has already converged to π∗.17

We only prove the case in which πt → π∗ according to the fastest time scale, in particular, faster than the
time scale of βt(1). Proofs for the remaining cases follow the same logic.

Since πt evolves according to the fastest time scale, assume that

πt = π∗.

Under the assumption of Gaussian distributions,

ln
At(0)

At(1)
= − (pt − ρβt(0)zt)

2

2(σ2 + Σt(0)z2t )
+

(pt − ρβt(1)zt)
2

2(σ2 + Σt(1)z2t )
+

1

2
ln

[
σ2 + Σt(1)z

2
t

σ2 + Σt(0)z2t

]
. (B.41)

Since the first two terms are normalized Gaussian variables,

E ln
At(0)

At(1)
= E

1

2
ln

[
σ2 + Σt(1)z

2
t

σ2 + Σt(0)z2t

]
.

Recall (2.6), and note that Σt(0) → 0. On the other hand, Σt(1) is uniformly bounded away from 0, as t → ∞,
and the lower bound converges to 0, as σ2

v → 0. Thus, βt(1) evolves on a faster time scale than βt(0). In
calculating the limit value of (B.41), we first let βt(1) reach its own “limit”, and then let βt(0) go to its own
limit point.

Let pet (i) be the period-t price forecast by model i,

pet (1) = ρβt(1)zt.

Since

pt = αρ[(1− πt)βt(0) + πtβt(1)]zt + δzt + σεt,

the forecast error of model 1 is

pt − pet (1) = [αρ(1− πt)βt(0) + (αρπt − 1)βt(1) + δ] zt + σεt.

Since βt(1) evolves according to (2.6),

lim
t→∞

E [αρ(1− πt)βt(0) + (αρπt − 1)βt(1) + δ] = 0

in any limit point of the Bayesian learning dynamics.18 Since βt(1) evolves at a faster rate than βt(0), we can
treat βt(0) as a constant. Since πt = πs, we treat πt as constant also.19 Define

β(1) = lim
t→0

Eβt(1)

whose value is conditioned on πt and βt(0). Since

lim
Σt(1)

lim
t→0

[
αρ(1− πt)βt(0) + (αρπt − 1)β(1) + δ

]
+ E(αρπt − 1)(βt(1)− β(1)) = 0.

17If πt evolves at a slower time scale than βt(0), then we fix πt while investigating the asymptotic properties of
βt(0). As it turns out, we obtain the same conclusion for all cases.
18Existence is implied by the tightness of the underlying space.
19If πt evolves on a slower time scale than βt(1), we treat πt as a constant, while investigating the asymptotic
properties of βt(1).
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Thus,

β(1) = E
αρ(1− πt)βt(0) + δ

1− αρπt
.

Define the deviation from the long-run mean as

ξt = βt(1) − β(1).

Model 1’s mean-squared forecast error is then

lim
t→0

E(pt − pet (1))
2 = lim

t→0
Ez2t (αρπt − 1)2σ2

ξ + σ2

Note that

lim
σ2
v→0

σ2
ξ = 0.

To investigate the asymptotic properties of βt(0), let us write

βt(1) =
αρ(1− πt)βt(0) + δ

1− αρπt
+ ξt

Then, we can write Model 0’s forecast error as

pt − pet (0) = zt

[
− 1− αρ

1− αρπt

(
βt(0)− δ

1− αρ

)
+ αρπtξt

]
+ σεt.

Since βt(0) evolves according to (2.6)

lim
t→∞

βt(0) =
δ

1− αρ

with probability 1. Thus, the mean-squared forecast error satisfies

lim
t→∞

E(pt − pet (0))
2 = lim

t→∞
Ez2t σ

2
ξ (αρπt)

2 + σ2

Thus, in the long run

lim
t→0

βt(1) =
δ

1− αρ

in distribution, as Σt(1) → 0 or equivalently, σ2
v → 0. Note that

lim
t→∞

E(pt − pet (0))
2

E(pt − pet (1))
2
> 1 (B.42)

if and only if

lim
t→∞

(
αρπt

1− αρπt

)2

> 1.

Now, notice that

αρπt

1− αρπt
< 1

if and only if

αρπt <
1

2
.

Hence, if (B.42) holds for some t ≥ 1, then it holds again for t+1, and vice versa. Thus, πt continues to increase
or decrease, if the inequality holds in either direction. Recall that π∗ = limt→∞ πt. Convergence to π∗ can occur
only if (B.42) holds with equality for all t ≥ 1, which is a zero probability event. We conclude that π∗ ∈ (0, 1)
occurs with probability 0. �
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Appendix C. Proof of Lemma 4.4

Given any α ≥ 1, a simple calculation shows

tα(πt − πt−1) =
tα(e(t−1)φt−1 − etφt)

(1 + etφt)(1 + e(t−1)φt−1)
.

As t → ∞, we know φt → φ∗ with probability 1. Hence, we have

lim
t→∞

tα(πt − πt−1) = lim
t→∞

tα
(
e−φ∗ − 1

)
etφ

∗

(1 + etφ∗)(1 + e(t−1)φ∗)

= (e−φ∗ − 1) lim
t→∞

tα

(1 + e−tφ∗)(1 + etφ∗e−φ∗)

Finally, notice that for both φ∗ > 0 and φ∗ < 0 the denominator converges to ∞ faster than the numerator for
any α ≥ 1. The main conclusion follows from the observation that πt ∝ 1

t
if and only if

0 < lim inf
t→∞

|t2(πt − πt−1)| ≤ lim sup
t→∞

|t2(πt − πt−1)| < ∞.

In our case, the left inequality is violated, which implies that πt evolves at a rate slower than 1/t. �

Appendix D. Proof of Proposition 5.3

D.1. Preliminaries. Lemma 4.3 and Lemma 4.4 shows that βt(1) moves at the fastest time scale, followed by
βt(0) and then πt. The same reasoning also shows the domain of attraction for π = 0 is

D0 =

{
(π, β(0), β(1)) | E log

At(0)

At(1)
> 0

}
and the domain of attraction for π = 1 is

D1 =

{
(π, β(0), β(1)) | E log

At(0)

At(1)
< 0

}
.

Since βt(1) does not trigger the escape from one domain of attraction to another, let us focus on (π, β(0),
assuming that we are moving according to the time scale of βt(0). A simple calculation shows that D0 has a
narrow symmetric shape of (π, β(0)), centered around

β(0) =
δ

1− αρ

with the base (
δ

1− αρ
− d,

δ

1− αρ
+ d

)
along the line π = 0 where

d =

√
Σ

1− αρ
. (D.43)

Note that since Σ → 0 as σv → 0,

lim
σv→0

d = 0.

Define

π̄ = sup{π | (π, β(0), β(1)) ∈ D0}
which is 1/(2αρ).

Recall that

φt =
1

t

t∑
k=1

log
Ak(0)

Ak(1)
.

Note that since βt(0), βt(1) → δ
1−αρ

,

φ∗ = E log
At(0)

At(1)
= E

1

2
log

MSE(1)

MSE(0)

is defined for βt(0) = βt(1) =
δ

1−αρ
, and π = 1 or 0.
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We know that π = 1 and π = 0 are only limit points of {πt}. Define φ∗
− as φ∗ evaluated at (β(1), β(0), π) =

( δ
1−αρ

, δ
1−αρ

, 1) and similarly, φ∗
+ as φ∗ evaluated at (β(1), β(0), π) = ( δ

1−αρ
, δ
1−αρ

, 0). A straightforward calcu-

lation shows

φ∗
− < 0 < φ∗

+

and

φ∗
− + φ∗

+ > 0.

Recall r0 and r1 are the rate functions of D0 and D1. For fixed σv > 0, define

r0(σv) = − lim
t→∞

1

t
logP

(
∃t, (βt(1), βt(0), πt) ∈ D0 | (β1(1), β1(0), π1) =

(
δ

1− αρ
,

δ

1− αρ
, 0

))
and

r1(σv) = − lim
t→∞

1

t
logP

(
∃t, (βt(1), βt(0), πt) ∈ D1 | (β1(1), β1(0), π1) =

(
δ

1− αρ
,

δ

1− αρ
, 1

))
Then,

r0 = lim
σv→0

r0(σv) and r1 = lim
σv→0

r1(σv).

Our goal is to show that ∃σv > 0 such that

inf
σv∈(0,σv)

r1(σv)− r0(σv) > 0.

D.2. Escape probability from D1. Consider a subset of D1

D′
1 = {(β(1), β(0), π) | π > π̄}.

For fixed σv > 0, define

r∗1(σv) = − lim
t→∞

1

t
logP

(
∃t, (βt(1), βt(0), πt) 
∈ D′

1 | (β1(1), β1(0), π1) =

(
δ

1− αρ
,

δ

1− αρ
, 1

))
and

r∗1 = lim inf
σv→0

r∗1(σv).

Note that

∃t, (βt(1), βt(0), πt) 
∈ D′
1

if and only if

πt < π̄

if and only if

φt > 0.

We know

lim
t→∞

1

t
logP (∃t, φt > 0 | φ1 = φ∗

−) = r∗1(σv).

We claim that

r∗1 > 0. (D.44)

The substance of this claim is that r∗1 cannot be equal to 0. This statement would have been trivial, if φ∗
− is

uniformly bounded away from 0. In our case, however,

lim
σv→0

φ∗
− = 0

which implies Σ → 0. Note that

φt > 0

if and only if

φt − φ∗
− > −φ∗

−
if and only if

1

t

t∑
k=1

[
log

At(0)

At(1)
− E log

At(0)

At(1)

]
> −φ∗

−

if and only if

1

t

t∑
k=1

[
log At(0)

At(1)
− E log At(0)

At(1)

Σ

]
> −φ∗

−
Σ

. (D.45)
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A straightforward calculation shows

lim
σv→0

−φ∗
−
Σ

=
σ2
z

σ2

(
αρ− 1

2

)
> 0.

It is tempting to conclude that we can invoke the law of large numbers to conclude that the sample average
has a finite but strictly positive rate function. However,

log At(0)
At(1)

− E log At(0)
At(1)

Σ

is not a martingale difference. Although its mean converges to 0, we cannot invoke Cramér’s theorem to show
the existence of a positive rate function. Instead, we shall invoke Gärtner Ellis theorem (Dembo and Zeitouni
(1998)).

We can write

1

t

t∑
k=1

[
log At(0)

At(1)
− E log At(0)

At(1)

Σ

]
= Zt + Yt

where

Zt =
1

t

t∑
k=1

[
log At(0)

At(1)
− Et log

At(0)
At(1)

Σ

]

and

Yt =
1

t

t∑
k=1

[
Et log

At(0)
At(1)

− E log At(0)
At(1)

Σ

]
.

We claim that ∀λ ∈ R,

lim
t→∞

1

t
log EetλYt = 0.

A simple calculation shows

Et log
At(0)

At(1)
− E log

At(0)

At(1)
=

1

2
log

Σt(1)σz,t + σ2

Σσ2
z + σ

.

Since Σt(1) → Σ > 0, and Σt(1) is bounded, ∃M > 0 such that

Σt(1) ≤ M

and ∀ε > 0, ∃T (ε) such that ∀t ≥ T (ε), ∣∣∣∣Et log
At(0)

At(1)
− E log

At(0)

At(1)

∣∣∣∣ ≤ ε.

Thus, as t → ∞,
1

t
log EetλYt ≤ 1

t
log Eet|λ|ε +

2T (ε)M

t
= |λ|ε + 2T (ε)M

t
→ |λ|ε.

Since ε > 0 is arbitrary, we have the desired conclusion.
We conclude that the H functional (a.k.a., the logarithmic moment generating function) of

1

t

t∑
k=1

[
log At(0)

At(1)
− E log At(0)

At(1)

Σ

]

is precisely

H(λ) = lim
t→∞

1

t
log EeλtZt .

That means, the large deviation properties of the left hand side of (D.45) is the same as the large deviation
properties of Zt. Since Zt is the sample average of a martingale difference, a standard argument from large
deviation theory implies that its rate function is strictly positive for given σv > 0. We normalized the martingale
difference by dividing each term by Σ so that the second moment of

log At(0)
At(1)

− Et log
At(0)
At(1)

Σ

is uniformly bounded away from 0, even in the limit as σv → 0. Hence,

lim
σv→0

H(λ)
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does not vanish to 0, which could have happened if the second moment of the marginal difference converges to
0. By applying Gärtner Ellis Theorem, we conclude that ∃r∗1(σv) > 0 such that

lim
t→∞

logP

(
1

t

t∑
k=1

[
log At(0)

At(1)
− E log At(0)

At(1)

Σ

]
≥ −φ∗

−
Σ

)
= lim

t→∞
logP

(
Zt ≥ −φ∗

−
Σ

)
= r∗1(σv) (D.46)

and

lim inf
σv→0

r∗1(σv) = r∗1 > 0

as desired.

D.3. Escape probability from D0. Recall that βt(0) evolves according to

βt+1(0) = βt(0) +
Σt(0)z

2
t

σ2 + Σt(0)z2t
[pt − βt(0)zt] .

At πt = 0, the forecasting error is

pt − βt(0)zt = (1− αρ)

[
δ

1− αρ
− βt(0)

]
zt + σεt.

Note that the forecast error is independent of σv. Following Dupuis and Kushner (1987), we can show that
∀d > 0, ∃r∗0(d) > 0 such that

lim
t→∞

−1

t
logP

(∣∣∣∣βt(0) − δ

1− αρ

∣∣∣∣ > d | β1(0) =
δ

1− αρ

)
= r∗0(d)

and

lim
d→0

r∗0(d) = 0.

D.4. Conclusion. Recall (D.43) to notice that

lim
σv→0

d = 0.

Thus, we can find σv > 0 such that ∀σv ∈ (0, σv),

r∗0(d) <
r∗1
2

=
1

2
lim inf
σv→0

r∗1(σv).

Observe

r0(σv) ≤ r∗0(d)

since the exit occurs at the most likely exit point at which r0 is determined, while r∗0(d) is determined at a
particular exit point. Since D′

1 ⊂ D1,

r∗1(σv) ≤ r1(σv).

Thus, for any σv > 0 sufficiently close to 0,

r0(σv) ≤ r∗0(d) <
r∗1
2

< r∗1 ≤ r∗1(σv) ≤ r1(σv).

from which

inf
σv∈(0,σv)

r1(σv)− r∗0(σv) > 0

follows.
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