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Abstract

We describe how to use a composite likelihood approach to ameliorate several esti-
mation, computational and inferential problems that emerge when using misspeci�ed
dynamic stochastic general equilibrium models. We show how to perform Bayesian
inference with the composite likelihood and discuss the di¤erences with �nite mixture
models. We present examples where the methodology has the potential to resolve well
known problems. We show how misspeci�cation can be reduced with the approach and
provide an example to illustrate its properties in practice.
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1 Introduction
In macroeconomics it is now standard to construct and analyze the properties of dy-
namic general equilibrium (DSGE) models. Until a decade ago, most of the models
used for economic analysis, policy and forecasting exercises had parameters which were
formally or informally calibrated. Now, it is more common to conduct inference condi-
tional on the estimates obtained with classical or Bayesian estimation approaches.
It is well known, however, that the estimation of DSGE models it is di¢ cult because

of population and sample identi�cation problems, see e.g. Canova and Sala (2009),
Komunjer and Ng (2011), Qu and Thachenko (2013); of singularity problems (the
number of shock is generally smaller than number of endogenous variables), see e.g.
Guerron Quintana (2010), Canova et al (2014), Qu (2015); of informational de�ciencies
problems (models are constructed to explain only a portion of the data), see Boivin
and Giannoni (2006), Canova (2014), or Pagan (2016); of numerical di¢ culties (if the
model is of large scale or if the data is short or of poor quality) and of latent variable
problems. All these issues may make inference whimsical.
In addition, estimation is typically performed with full information likelihood-based

methods, see Andreasan et al. (2014) for an exception. For standard frequentist
asymptotic theory to apply, likelihood-based estimation requires regularity conditions
which are often violated in practice. In addition, when T is short or the parameter
space is large, asymptotic approximations provide a poor characterization of the actual
distribution of estimates. Bayesian methods help if T is short, but it is tricky to specify
joint priors when the parameter space is large and, as indicated by Del Negro and
Schorfheide (2008), independence is suboptimal.
Perhaps more importantly, while at the speci�cation stage there is a general con-

sensus that all available models are misspeci�ed in, at least, some dimensions, at the
estimation stage this fact is neglected. However, likelihood-based inference is condi-
tional on the estimated model being correctly speci�ed.
The recent literature has been trying to deal with some the individual problems,

although not much has been done to take into account misspeci�cation, short samples,
or large scale problems, but no uni�ed approach to deal with all these issues exists. This
paper proposes an approach based on the composite likelihood which can potentially
address all these problems. The procedure it is easy to implements, works well when
the full likelihood may be problematic to construct and use, produces estimators with
nice shrinkage properties and, in its Bayesian version, it has an appealing sequential
learning interpretation.
The composite likelihood is a limited information object constructed combining

marginal or conditional likelihoods. It can be treated as a quasi-likelihood function
and employed to estimate the parameters of structural models, both in frequentist and
Bayesian setups. Since the score and the information matrix can be easily de�ned, stan-
dard asymptotic theory can be applied as the composite likelihood has a normal shape
as either the number of observations or the number of marginal/conditional components
grows. Bayesian inference can also be performed as long as the prior makes the compos-
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ite posterior a proper density function. The idea that a prior can be used to regularize
objects which are not density functions is well established in the econometric literature,
see e.g. Kim (2002) or Chernozukov and Hong (2003), and Christiano et al. (2011)
have used this idea to provide posterior estimates of structural parameters of a DSGE
when the objective function is a weighted average of impulse responses. A composite
likelihood approach has been used to solve a variety of complicated problems in �elds
as diverse as spatial statistics, multivariate extremes, psycometrics, genetics/genomics,
see e.g. Varin et al. (2011). Applications to economic problems, however, have been
limited: except for Engle et al. (2008) and Qu (2015), the approach has been largely
ignored in the literature. The paper describes how to use the composite likelihood
approach to either solve or ameliorate the above mentioned problems, shows how the
procedure helps to robustify estimates of the structural parameters in a variety of in-
teresting economic problems, highlights how to perform composite posterior inference,
and provides an application where its use helps to improve the quality of the inference
a researcher is able to draw about one interesting economic parameter.
The rest of the paper is organized as follows. The next section presents the compos-

ite likelihood, shows some of its asymptotic properties, provides a Bayesian method-
ology to construct small sample, exact distributions of the parameters of interest and
provides intuition on how the methodology can be applied to the estimation of the
parameters of structural models. Section 3 presents a number of examples where the
procedure can be used to i) obtain shrinkage estimates of the parameters appearing
in multiple (nested and non-nested) misspeci�ed structural models; ii) improve their
(sample and population) identi�cation properties, iii) provide a tractable approach to
solve computational and singularity problems; iv) exploit information coming either
from the cross-section or from di¤erent levels of data aggregation; v) produce more
stable estimates of parameters present in large scale models. Section 4 discusses an
application dealing with the estimation of the slope of Phillips curve. Section 5 con-
cludes.

2 The composite likelihood
Suppose an unknown data generating process (DGP) produces the density f(yt; �) for
anm�1 vector of observable time series yt, where � is a q�1 vector of parameters. The
DGP could be unknown because we do not have enough information to construct f or
because f is computationally intractable; for example, it is highly nonlinear; it involves
integrals on latent (state) variables; or m is too large to be handled with existing
computers. Suppose that for some events A1; : : : AK , we can construct subdensities
f(yit 2 Ai; �; �i): These subdensities could be marginal or conditional depending on
the speci�cation of the problem and each event has implications for a subvector of the
observables yit of length Ti: The elements of yit do not have to be mutually exclusive
across events; for example, the in�ation rate could appear in each yit. Each event is
associated with an extended vector of parameters  i = [�; �i]

0 , where �i are (nuisance)
event speci�c. We represent the information generated by Ai with the tuple (yit,Ti;  i):
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For a given set of weights !i, the composite likelihood is

C(�; �; y) = �ki=1 f(yit 2 Ai; �; �i)!i = �ki=1L(�; �ijyit 2 Ai)!i (1)

C(�; �; y) is not a likelihood function and thus the properties of �CL;the maximum
composite likelihood estimator, are not immediate. If y[1;t] =(y1; : : : ; yt) is independent
sample from f(yt; �); �CL is consistent and

p
T (�CL � �)

D! N(0; G(�)�1) (2)

for T going to in�nity and K �xed (see e.g. Varin, et al., 2011) where

G(�) = H(�)J(�)�1H(�); H(�) 6= J(�) Godambe information (3)

J(�) = var�u(�; �i; y[1;t]) Variability matrix (4)

H(�) = E�[�5� u(�; �i; y[1;t])] Sensitivity matrix (5)

u(�; y) =
X
i

!i 5� li(�; �i; y[1;t]) Composite scores (6)

and 5�li(�; �i; y[1;t] denotes the score associated with each log-likelihood. If T is �xed,
but K !1; we need assumptions on how the K events are constructed. For example,
if they are independent, then (2) still holds. This is true even when fytgTt=1 is a
single time series and has correlated observations (see Engle et al., 2008). Note that a
standard Newey-West correction to G(�) can be made if y[1;t] is not an independent
sample.
From (3) one can immediately see that �CL is not fully e¢ cient. However, careful

choice of !i may help to improve its e¢ ciency. If one treats !i as �xed, one standard
a-priori choice is !i = 1

K ;8i: Alternatively, one could use a data-based approach to
select them, e.g. set !i =

exp(
i)

1+
PK�1
i=1 exp(
i)

; where 
i are a function of some statistics

(MSE, MAD, etc.) of past data 
i=fi(Y1;[1:� ]; ::::; YK;[1:� ]). Note that with this latter
choice, !i could be made time varying. There a large forecasting literature dealing
with the choice of weights (see e.g. Aiol� et al., 2010) which could be used here. As it
will be clear below, our approach is to treat !i as random variables and jointly estimate
the posterior distribution of ( i; !i):
When K or the number of nuisance parameters �i is large, a two step estimation

approach is possible. Here, �i are estimated separately from each log f(yit 2 Ai; �; �i)
and plugged in the composite likelihood, which is then optimized for �, see e.g. Pakel
et al. (2011). Consistency of �CL is una¤ected as long as �i are consistently estimated.
One can also design information criteria to optimally select the number of events K
Thus:

AICCL = �2C(�CL; �CL; y) + 2dim(�) (7)

BICCL = �2C(�CL; �CL; y) + 2dim(�) logK (8)

where dim(�) = trfH(�)G(�)�1g can be optimized in the usual way. These criteria
can also be used for model averaging exercises or for selecting tuning parameters in
shrinkage methods (see Gao and Song, 2011).
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2.1 A Bayesian setup
Because we are interested in small sample exact distributions for the common parame-
ter vector �; we treat ! as a hyperparameter vector with prior p(!). We combine the
composite likelihood (1) with a prior for ( ; !) and construct the posterior for ( ; !).
Because the posterior distribution is not available in a closed form, we describe a
Metropolis-within-Gibbs approach to numerically compute sequences for ( ; !) gener-
ated from this posterior. For each event Ai, and given (yit,Ti;  i), we assume the
likelihood L( ijyi;Ti) for each event can be constructed and, given ! = [!1 : : : !K ]

0,
where for each i, 0 < !i < 1;

P
i !i = 1; one can obtain the composite likelihood(1).

We assume that for each Ai, the priors for structural and nuisance parameters are
independent and of the form:

p( i) = p(�i)p(�)

The composite posterior kernel is:

L( 1jY1;T1)!1p( 1)!1p(!i) : : :L( K jYK;TK )!Kp( K)!Kp(!k) = �iL( ijYi;Ti)!ip( i)!ip(�)p(!i)
(9)

which can be used to estimate the parameters via standard MCMC, as described in
Kim (2002) or Chernozukov and Hong (2003).
For computational and e¢ ciency reasons, it may be preferable to use a 2K+1 block

Metropolis-within-Gibbs algorithm, where we sample the parameters in di¤erent blocks
separately. Chib and Ramamurthy (2010) and Herbst and Schorfheide (2015) have
also suggested drawing DSGE parameters in blocks. However, while they randomly
split up the parameter vector in di¤erent blocks at each iteration, the blocks here are
predetermined by the K events of interest.

2.2 Estimation Algorithm
The algorithm consists of four steps:

1. Start with 
0 = [�01 : : : �
0
K ; �

0; !01 : : : !
0
K ]:

For iter = 1 : draws do steps 2-4

2. For i = 1 : K draw ��i from a symmetric proposal P�i . Set �iter = ��i with
probability

�i = min

 
1;

L(
�
��i ; �

iter�1jYi;Ti
�!i

p(��i )
!i

L(
�
�iter�1i ; �iter�1jYi;Ti

�!i
p(�iter�1i )!i

!
Note: if !i = 1, some i, �i is the standard MH acceptance probability for model
i.

3. Draw �� from a symmetric proposal P �. Set �iter = �� with probability

� = min

 
1;

L(
�
�iter1 ; ��jY1;T1

�!1
: : :L(

�
�iterK ��jYK;TK j

�!K
p(��)

L(
�
�iter1 ; �iter�1jY1;T1

�!1
: : :L(

�
�iteri ; �iter�1jYK;TK

�!K
p(�iter�1)

!
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4. For i = 1 : K draw , draw !�i from a symmetric proposal P!. Set !iter =
!� = (!�1::: !

�
k) with probability

� = min

0@1; L(
�
�iter1 ; �iterjY1;T1

�!�1 : : :L(��iterK �iterjYK;TK j
�!�K p(!�)

L(
�
�iter1 ; �iterjY1;T1

�!iter�11 : : :L(
�
�iteri ; �iterjYK;TK

�!iter�1K p(!iter�1)

1A
When the K events feature no nuisance parameters, step 2. disappears from

the algorithm. Similarly, if the !i are treated as �xed, step 4 disappears. Notice
that when !i = 0; i 6= k, !k = 1; the algorithm collapses into a standard Metropolis
MCMC. A standard random walk proposal for (�; �i) seems to work well in practice;
a multivariate logistic proposal for ! is advisable.

2.3 A sequential learning interpretation
Suppose, for the sake of illustration, that !i are �xed. It is easy to give a sequential,
adaptive learning interpretation to the composite posterior kernel (9) and thus to the
Bayesian estimators we construct. Suppose K=2. Then

�g( 1:::: K jY1;T1 ; :::YK;TK ) =

L(�; �1jY1;T1)!1p(�1)!1p(�2jY2;T2)!2f[p(�jY2;T2 ; �2)ML(Y2;T2)]
!2p(�)!1g (10)

where ML(Y2;T2) =
R
L(Y2;T2 j 2)!2p( 2)!2d 2 is the marginal likelihood associated

with A2.
As (10) makes it clear, the posterior kernel can be obtained in two stages. In

the �rst stage the prior for  2 and the likelihood for event A2 are used to construct
the conditional posterior p(�jY2;T2 ; �2). This conditional posterior, weighted by the
marginal likelihood of A2, is combined with the prior p(�) for the next estimation
stage of �: Suppose that ML(Y2;T2) is high, i.e. the speci�cation for event A2 �ts
Y2;T2 well. If !1 = !2; the prior for event A1will more heavily re�ect the posterior of
A2 relative to the initial prior p(�). Suppose instead that the speci�cation used for
A2 �ts Y2;T2 poorly. In this case, the posterior for A2 will have a low weight relative
to p(�) when setting up the prior for event A1. In other words, the approach implicitly
discounts information contained in events whose subdensity poorly explain the data
observable for those events. In general, the prior for � in each estimation stage depends
on the relative weights assigned to the current and to the previous events, on the �ts
of the speci�cations for all previous events, and on the nuisance parameters estimated
up to the current stage. Thus, a composite Bayesian approach to estimation can be
interpreted as an adaptive sequential learning process. Here, the prior for the current
stage is not the posterior at the previous stage as in standard Bayesian setups,
but rather a weighted average of the initial prior and of the posterior obtained at the
previous stage, where the latter will be discounted by the �t of the speci�cation at that
stage.
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Notice that since only Y2;T2 contains information for �2 the posterior for this para-
meter will not be updated at stage 1. Similarly, since Y2;T2 does not contain information
for �1, p(�1) will be left unchanged after stage 2 estimation.

2.4 A comparison with �nite mixture models
The composite likelihood weights the likelihood of di¤erent events. An alternative way
to pool the information contained in di¤erent events comes from ideas of Geweke and
Amisano (2011) or Del Negro et al. (2014). The work of Waggoner and Zha (2012)
is also relevant in this respect, if one thinks of events as switching speci�cations. In
this literature, the relevant object for the analysis is the likelihood of the mixture of
the models, which for each t is L(�; �1::::�kjy1t:::ykt; ) = �Ki=1!iL(�; �ijyit) so that

logL =

�X
t=1

logL(�; �1::::�kjy1t:::ykt) (11)

where � = min(Ti).
Simple manipulation of (11) and(1) reveals that the log-likelihood of the two models

di¤er by a Jensen�s inequality term: in the composite likelihood approach the objective
function is a convex combination of (conditional or marginal) log-likelihoods; in the
�nite mixture approach, the objective function is the log-likelihood of a mixture of
conditionals 1

While a-priori both speci�cations have appealing features, for the problems we are
interested in, the composite likelihood has superior properties and added �exibility.
From a computation point of view, when the decision rules have an autoregressive
structure, estimators of � may have a closed form expression in the composite log-
likelihood case, but not in the �nite mixture case. Thus, iterative procedures need to
be employed. In addition, in the �nite mixture setup, it must be the case that yit =
yjt and Ti = Tj ; since events represent alternative models that could have generated
the observable data. As we will see below, this is not necessarily the case in the
composite likelihood formulation and gives the method much more �exibility. Third,
the interpretation of ! di¤ers: in the composite likelihood !i represents the proportion
of observations one would take from model i out of the e¤ective sample size �: In the

1The di¤erence between a �nite mixture and a composite likelihood formulations can be easily seen when
K = 2 and TA = TB = 2. Then, the composite log-likelihood is

logL = !(logLA1 + logLA2) + (1� !)(logLB1 + logLB2)

while the log-likelihood in the mixture model is

logL = log(!LA1 + (1� !)LB1) + log(!LA2 + (1� !)LB2)

Suppose ! = 1� !. Then, (1) and (11) di¤er by a Jensen�s inequality term. Using log
PT

t=1 xt � log x1 +
log(1+

PT
t=2

xt
x1
); one has log

P2
t=1 xt = log x1+log(1+

x2
x1
) and this di¤er from

P2
t=1 log xt = log x1+log x2,

since log(1 + x2
x1
) � x2

x1
if x2x1 is small.
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mixture model !i represents the probability that one observation comes from model i.
Thus, for ! to have the same interpretation, we need the e¤ective sample size � to be
large and ergodicity to apply. Finally, while in the Bayesian composite likelihood
approach there is an automatic discounting whenever a speci�cation does not �t well
the data of an event, regardless of whether !i is treated as a parameter or a random
variable, a �nite mixture does not necessarily discount the posterior obtained from
speci�cation which �ts worse in estimation. It is only when ! is treated as a random
variable that this becomes true.

2.5 What are f(yit 2 Ai; �; �i) in a DSGE context?
To understand how to apply composite likelihood ideas to the estimation DSGE models,
one needs to understand what the events Ai are and how the resulting f(yit 2 Ai; �; �i)
relate to the DGP.
In a leading example we have in mind, Ai are di¤erent economic models and

f(yit 2 Ai; �; �i) are the densities associated with these K di¤erent structures, i.e.
the densities associated with a basic RBC model, a RBC model with �nancial fric-
tions, a New Keynesian model with sticky price, a new Keynesian model with sticky
wages, etc.. Here � are the parameters which are common across all models, e.g. the
risk aversion coe¢ cient, the Frisch elasticity, or the labor share in production, while
�i are the parameters speci�c to the model, e.g. a LTV ratio parameter or a Calvo
parameter. These models are treated as subdensities because they are obtained ei-
ther by disregarding aspects of the unknown DGP, or by explicitly conditioning on
certain features, e.g. certain markets are treated as competitive or non-competitive.
Thus, all these models are mispeci�ed in a sense that will be made clear below. In
another leading example we have in mind, f(yt; �) is a large scale DGP (for example,
a multi-country model of trade interdependencies or a multi-asset pricing model) and
f(yit 2 Ai; �; �i) are components of the model obtained using sub-elements of yt, for
example, country or asset speci�c blocks or bilateral blocks. f(yit 2 Ai; �; �i) could also
represent di¤erent statistical models obtained from the same theoretical DGP but fea-
turing di¤erent observables. For instance, a standard three-equations New-Keynesian
model could be estimated using in�ation, the nominal interest rate, and a measure of
output; or in�ation, the nominal interest rate, and a measure of consumption. These
two set of observables constitute what we call two di¤erent statistical models. By
extension, f(yt; �) could also be an aggregate model and f(yit 2 Ai; �; �i) the density
obtained when data from cross sectional unit i are used; when data yit is aggregated
at di¤erent levels (e.g. �rm, industry, regional, etc.), or when K di¤erent samples
(say, pre-WWI, interwar, post-WWI, etc.) are used. As shown later on, in all these
situation a composite likelihood approach produces shrinkage estimators for the com-
mon parameters �. Alternatively, f(yit 2 Ai; �; �i) could be the densities generated by
di¤erent approximate solutions of a model, where the events Ai represent the order
of the perturbation or of the projection employed; or the densities of linear solutions,
where only the k-th component of � is allowed to be time varying. In all the example,
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f(yit 2 Ai; �; �i) ignores the potential dependence of events Ai; i = 1; :::K. Thus, the
estimators obtained are of limited information type and may lead to ine¢ cient inference
from a frequentist point of view. Moreover, since they feature nuisance parameters
�i;inference for � may be a¤ected.
Researchers working with DSGE models are generally free to choose what goes in

� and in �i - even though some parameters might be common to all events, researchers
might prefer not to estimate a common value. In the case Ai represents distinct eco-
nomic models, � could be the risk aversion parameter or the persistence of technology
shocks, while �i could be the Calvo price (wage) parameter. In the case Ai repre-
sents di¤erent statistical models, one could estimate one set of parameters for each
statistical model, or impose that some or all them are common. When Ai represents
di¤erent level of data aggregation, one could make, e.g., the marginal propensity to
consume common, while the parameters regulating the process for income to be left
event speci�c. Clearly, one can think of cases when the parameters are common to a
subset of the K events one wishes to consider.

3 Using the composite likelihood for structural
inference
This section provides examples showing the value of a composite likelihood approach
when dealing with standard problems encountered in the estimation of DSGE models.
The �rst example discusses the issue of estimating parameters appearing in multiple
misspeci�ed models; the next two examples show how the approach can ameliorate
sample and population identi�cation problems; the fourth example deals with singu-
larity issues; the �fth the problem of estimating the parameters of a large dimensional
model. The last example shows how the composite likelihood approach helps to deal
with short samples.

3.1 Estimating structural parameters appearing in mul-
tiple misspeci�ed models
Suppose we have two structural models (A, B), which may have implications for
di¤erent variables (yAt; yBt), and may feature common parameters (such as utility
function parameters or policy rule coe¢ cients) and model speci�c parameters. Both

models are treated as misspeci�ed in the sense that f(yA; �; �A) 6=
Z
f(y; �)dyB; and

f(yB; �; �B) 6=
Z
f(y; �)dyA, for some subvectors yAt and yBt of yt.

Assume that the decision rules of the two models are:

yAt = �AyAt�1 + �Aet (12)

yBt = �ByBt�1 + �But (13)
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where et and ut are iid(0,I). For the sake of illustration, suppose that �B = ��A; �B =

�A, that yAt and yBt are scalars, and that we have TA observations on yAt and TB
observations on yBt; TB � TA and that we are interested in � = (�A; �A):The (normal)
log-likelihood functions associated with each model are:

logLA / �TA log �A �
1

2�2A

TAX
t=1

(yAt � �AyAt�1)2 (14)

logLB / �TB log �B �
1

2�2B

TBX
t=1

(yBt � �ByBt�1)2 (15)

and the composite likelihood is

logC = ! logLA + (1� !) logLB (16)

where we interpret ! as the degree of a-priori trust a researcher has in model A.
Maximization of (16) leads to:

�A = (

TAX
t=1

y2At�1 + �2

TBX
t=1

y2Bt�1)
�1(

TAX
t=1

yAtyAt�1 + �1

TBX
t=1

yBtyBt�1) (17)

where �1 =
1�!
!

�

2
; �2 =

1�!
!

�2


2
= �1� and

�2A =
1

�
(

TAX
t=1

(yAt � �AyAt�1)2 +
1� !
!
2

TBX
t=1

(yBt � ��AyBt�1)2) (18)

where � = (TA+TB 1�!!
2
)�1. The estimators of �Aand of �

2
A obtained using just model

A or just model B decision rules are

�AA = (

TAX
t=1

y2At�1)
�1(

TAX
t=1

yAtyAt�1); �AB = ��1(
TBX
t=1

y2Bt�1)
�1(

TBX
t=1

yBtyBt�1) (19)

and

�2AA =
1

TA

TAX
t=1

(yAt � �AAyAt�1)2; �2AB =
1

TB

TBX
t=1

(yBt � ��AByBt�1)2) (20)

Equations (17) and (18) provide intuition on what a composite likelihood approach
does in this setup. In fact, for estimation of the common parameters �, model B plays
the role of a prior for model A. The parameters speci�c to model B (�; 
) are instead
estimated using only the information present in model B data. The formulas in (17)
and (18) are similar to those i) obtained in least square problems with uncertain linear
restrictions (Canova, 2007, Ch.10), ii) derived using a prior-likelihood approach,
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see e.g. Lee and Gri¢ th (1979) or Edwards (1969) and iii) implicitly produced by a
DSGE-VAR setup (see Del Negro and Schorfheide, 2004), where TB are the additional
observations added to the TA available to estimate �:
In general, when the decision rules feature an autoregressive structure, the compos-

ite likelihood shrinks the information contained in model A data and the amount of
shrinkage depends, among other things, on the informational content of model B data
about �, as measured by the magnitude of (
; �; !): The higher is ! the less impor-
tant is the information present in the data of model B; similarly, the larger is 
, the
larger is the variance of the shocks in the decision rules of model B, and the lower the
information content of yBt. Conversely, the smaller is �, the lower will be the shrink-
age toward the information contained in model B. Thus, in estimation, the composite
likelihood weighs more to data assumed to be generated by a model with higher per-
sistence and lower standard deviation and which is a-priori more likely. The reason is
straightforward: higher serial correlation implies important low frequency information;
lower standard deviation implies lower noise in the economic relationships.
When an array of models are considered, estimates of the common parameters �

will be constrained by the structure present in all models. For example, equation (17)
becomes

�A = (

TAX
t=1

y2At�1 +
K�1X
i=1

�i2

TiX
t=1

y2it�1)
�1(

TAX
t=1

yAtyAt�1 +
K�1X
i=1

�i1

TiX
t=1

yityit�1) (21)

where �i1 =
!i
!A

�i

2i
; �i2 = �i1�i. Thus, the composite likelihood robusti�es inference,

in the sense that estimates of the common parameters are shrunk to be consistent
with the data generated by all the models available for inference. Later we present an
example where !; rather than representing the a-priori trust an investigator has on each
model, is a vector of unknown parameters. There we show that model misspeci�cation
can be reduced by a careful choice of !.
Two further aspects of this example are worth some discussion. First, yAt and yBt

may be di¤erent series. Thus, the procedure can be used to estimate common parame-
ters in models featuring di¤erent observables. Alternatively, yAt and yBt may represent
the same series with di¤erent levels of aggregation (say, aggregate vs. individual con-
sumption). This feature makes the procedure stands apart from �nite mixture models
where, as we have seen, yAt and yBt must contain the same series. In general, yAt
and yBt may have common components (say, output and in�ation) and some model
speci�c ones (say, the trade balance or asset prices). Second, TA and TB may be of
di¤erent length. Hence, the procedure allows us to combine data of various length or
the information present in models setup up at di¤erent frequencies (e.g., a quarterly
and an annual model). TA and TB may also represent samples for the same vector of
economic variables coming from di¤erent subsamples, for example, consumption and
the real rate before and after a �nancial crisis. The setup we consider is su¢ ciently
general to account for all these possibilities.
This simple example also allows us to discuss how a composite likelihood approach

may help to reduce small sample identi�cation problems. This is a situation where
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the likelihood of model A is well behaved,but because TA is short, it may be �at and
part of the domain and � =(�A; �A) may be poorly identi�ed using yAt. It is easy to
show � could become better identi�ed if (yAt;yBt) are jointly used in estimation. This
is because the curvature of the composite likelihood depends on the e¤ective sample
size is � which, in turn, is a function of TA and TB 1�!!
2

. Thus, for example, if 
 (or
!) is small, that is the data generated by model B to be less volatile than the data
generated by model A or the degree of a-priori trust a researcher has in model B
is high enough, � >> TA and the composite likelihood will be more peaked than the
likelihood constructed with yAt only around the mode.

3.2 Ameliorating population identi�cation problems
The previous subsection discussed how a composite likelihood approach may help to
improve parameter identi�cation when the sample size associated with the baseline
model makes the likelihood in the dimensions of interest �at. This subsection presents
an example where some parameters are underidenti�ed and others only weakly identi-
�ed in population in a baseline model and shows how a composite likelihood approach
can remedy these problems.
Consider a canonical three-equations New Keynesian model (call it model A)

RAt = �Et�At+1 + e1t (22)

yAt = �EtyAt+1 � �(RAt � Et�At+1) + e2t (23)

�At = �Et�At+1 + 
yAt + e3t (24)

whereRAt is the nominal rate, yAt the output gap and �At the in�ation rate;(e1t; e2t; e3t)
are mutually uncorrelated structural disturbances, (� ; �; �; �; 
) are structural parame-
ters, and Et is the conditional expectations operator. The solution of the model is24 RAt

yAt
�At

35 =
24 1 0 0

� 1 0
�
 � 1

3524 e1t
e2t
e3t

35 � Aet (25)

Clearly, � is underidenti�ed (it disappears from the solution) and that the slope of
the Phillips curve 
 may not be well identi�ed from the likelihood of the model if �
is small, regardless of the size of TA. In fact, large variations in 
 may induce small
variations in the decision rules (25) if � is su¢ ciently small, making the likelihood �at
in the 
 dimension.
Suppose we have available another model (call it model B), which is known to

be more misspeci�ed relative to the baseline New Keynesian model and suppose we
acknowledge this by selecting ! > 1 � !: For example, consider a single equation
Phillips curve, where marginal costs are assumed to be exogenous

�Bt = �Et�Bt+1 + 
yBt + u2t (26)

yBt = �yBt�1 + u1t (27)
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where � < 1 and � 6= 0, measures the persistence of marginal costs. By repeatedly
substituting forward we have

�Bt =



1� ��yBt + u2t (28)

yBt = �yBt�1 + u1t (29)

We can rewrite (28) and (29) in terms of xt �(1� �`)yBt , wt �(1� �`)�Bt as�
xt
wt

�
=

�
1 0



1��� 1� �`

� �
u1t
u2t

�
(30)

where ` is the lag operator.
Because the log-likelihood of model B has information about �; one would be able

to identify (and estimate) � from the composite likelihood. In addition, since in model
B the curvature of the likelihood in the 
 dimension depends on 1

1��� which, in general,
is greater than one for � 6= 0. Hence, small variations 
 may lead to su¢ ciently large
variations in (30) and thus in the composite likelihood, even when 1� ! is small. In
this particular example, shrinking model A toward a model which is more misspeci�ed
but has sharper information about the parameters of interest may be bene�cial in terms
of identi�cation and estimation. It should be emphasized that all the arguments are
independent of the size of e¤ective sample size �: since the identi�cation problems we
discuss occur in population, having a large or a small � is irrelevant. It should also be
emphasized that the above argument implicitly assumes that the variances of (e2t; e3t)
are of the same order of magnitude as the variances of (u1t; u2t):

3.3 Solving singularity problems
DSGE models are typically singular. That is, since they typically features more en-
dogenous variables than shocks, the theoretical covariance matrix of the observables is
singular and the likelihood function of the model can not be constructed and optimized.
There are two types of responses to this problem in the literature : one is to select a
subvector of the observables that matches the dimension of the shock vector either
informally (see Guerron Quintana, 2010) or formally (see Canova et al. , 2014) and
then use the model to construct the log-likelihood for this subvector. The second is to
add measurement errors to some or all the observables so as to make the number of
shocks (structural and measurement) equal to the number observables or to increase
the number of structural shocks in the model, for example by transforming parameters
into disturbances (the discount factor becomes a preference shock, the elasticity of
substitution between goods in an aggregator becomes a markup shock, etc.). A more
appealing alternative is to construct the composite likelihood using non-singular sub-
models, see also Qu (2015). To illustrate the approach and the consequences of using
a composite likelihood, we use a stylized asset pricing example.
Suppose that the dividend process is given by dt = et��et�1; where et � iid(0; �2);

and � < 1; and that stock prices are the discounted in�nite sum of future dividends.
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The solution for stock prices in terms of the dividend innovation is pt = (1 � ��)et �
�et�1;where � < 1 is the discount factor. Since the same shock et drives both dividends
and stock prices, the covariance matrix of (dt; pt) is singular. Thus, one has to decide
either whether the information in dt or in pt is used to construct the likelihood and to
estimate the common parameters (�; �2) - clearly, if the dividend process is used, � is
underidenti�ed - unless we add a measurement error (which is di¢ cult to justify since
neither dividends nor stock prices are subject to revisions) or make � a random variable.
When the composite likelihood is employed, information present in both series is used
to identify and estimate (�; �2) and �; if it is of interest. The optimization process
implies that dividends and stock prices series contain di¤erent types of information;
the composite likelihood combines these types of information and thus provides a more
�exible way to use all available information to estimate parameters.
Following Hamilton (1994, p. 129), the exact likelihood functions of the two ob-

servables are

logL( ~dtj�; �2) = �0:5T log(2�)� 0:5
TX
t=1

log &t � 0:5
TX
t=1

~d2t
&t

(31)

where ~dt and &t can be recursively computed as:

~dt = dt � �
1 + �2 + �4 + : : :+ �2(t�2)

1 + �2 + �4 + : : :+ �2(t�1)
~dt�1 (32)

&t = �2
1 + �2 + �4 + : : :+ �2t

1 + �2 + �4 + : : :+ �2(t�1)
(33)

and

logL(~ptj�; �; �2) = �0:5T log(2�)� 0:5
TX
t=1

log �t � 0:5
TX
t=1

~p2t
�t

(34)

where ~pt and �t can be recursively computed as:

~pt = pt �

2

�

1 + 
2 + 
4 + : : :+ 
2(t�2)

1 + 
2 + 
4 + : : :+ 
2(t�1)
~pt�1 (35)

�t = �2(1� ��)2 1 + 
2 + 
4 + : : :+ 
2t

1 + 
2 + 
4 + : : :+ 
2(t�1)
(36)

where 
2 = �2

(1���)2 . For illustration, we set �
2 = 1 and focus attention on �. The �rst

order conditions that a maximum likelihood estimator solves are

@ logL( ~dt)

@�
= �0:5

X
t

@ log &t
@�

� 0:5
X
t

@ log ~dt
@�

1

&t
+ 0:5

X
t

@ log &t
@�

~dt
&2t

(37)

@ logL(~pt)

@

= �0:5

X
t

@ log �t
@�

� 0:5
X
t

@ log ~pt
@�

1

�t
+ 0:5

X
t

@ log �t
@�

~pt

�2t
(38)
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For a given weight ! assigned to ~dt, the composite likelihood is a weighted sum of (37)
and (38). While there are no closed expressions for either the maximum likelihood
or the maximum composite likelihood estimators of �, which would allow a direct
comparison of the properties of the two estimators, we can still infer what (37) and
(38) employ to estimate � and what a composite likelihood does using simple algebra.
In appendix A we show that � will be identi�ed and estimated more from the serial
correlation properties of the data if ~pt is used to construct the likelihood function and
more from the variance properties of the data if ~dt is used to construct the likelihood
function. Hence, estimates obtained from (38) generally di¤er from those obtained
with (37), because the former weighs more the low frequency components of data.
The composite likelihood provides a compromise between these two types of infor-

mation. Depending on the value of !, either the serial correlation properties or the
variance properties of (dt; pt) or both will be employed. Clearly, if the low frequency
components of ~pt are poorly characterized because, for example, the sample is short or
because � is close to zero, the composite likelihood provides a better objective function
to identify and estimate � than each of the individual likelihood functions. In addi-
tion, if dt is smooth and pt is highly volatile, the composite likelihood may provide a
more stable estimate of � than standard individual likelihood functions.

3.4 Dealing with large scale structural models
Combining the examples we have considered so far, we can analyze the situation when
one needs to estimate the parameters of a large scale model when the number observable
variables potentially exceeds the number of shocks. Suppose the decision rules of the
model can be written as yt = A(�)yt�1 + et; where et iid N(0,�(�)); � is a vector of
structural parameters, yt is of large dimension and, generally, dim(yt) � dim(et).
Let ~yt � yt be a subset of the variables such that dim( ~yt) = dim(et) and let ]A(�)

be the square version of A(�) corresponding to ~yt. The likelihood function is

L(~yjA(�);�(�)) = (2�)�T=2j�jT=2 expf(~yt �]A(�)~yt�1)�(�)�1(~yt �]A(�)~yt�1)0g (39)

If dim(~yt) is large, computation of ��1 may be demanding. Furthermore, numerical
di¢ culties may emerge if some of the variables in ~yt are collinear or if there are near
singularities in the model (for example, if we have a long term and a short term
interest rate). Furthermore, if ~yt = (~y1t; ~y2t); where ~y2t are non-observables,

L(~y1jA;�) =
Z
L(~y1j~y2;]A(�);�(�))g(~y2)d~y2 (40)

which may be intractable.
Rather than trying to compute the likelihood for ~y1t; we can take a limited in-

formation approach and produce estimates the parameters using objects which are
simpler to construct. Let ŷt be the set of observable variables. If we partition ŷt =
(ŷAt; ŷBt; : : : ŷKt), where dim(ŷAt) = dim(ŷBt) = : : : = dim(et); two such objects one
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can consider are:

CL1(ŷtjAi(�);�(�)) =

KX
i=1

!i logL(ŷitjAi(�);�(�)) (41)

CL2(ŷit; Ai(�);�(�)) =

KX
i=1

!i logL(ŷitjŷ�it; Ai(�);�(�)) (42)

where Ai(�);�(�) are the autoregressive and the variance parameters corresponding
to ŷit and ŷ�it indicates the combinations of the vector ŷt, which exclude the i-th
combination.

CL1 is obtained neglecting the correlation structure between ŷit. Thus, the blocks
are treated as providing independent information, even though this is not necessarily
the case. For example, in a multi-country symmetric model, ŷit could correspond to
the observables of country i; in a closed economy model, they could correspond, e.g.,
to di¤erent sectors of the economy. CL2 is obtained by conditionally blocking groups
of variables. In the multi-country example, we can construct the likelihood of each
country variables ŷit, given the vector of all other countries variables ŷ�it. Which
composite likelihood one would use depends on the problem and the tractability of
conditional vs. marginal likelihoods.

3.5 Dealing with short T when a panel is available.
The setup we consider can easily account for the situation where there is a single
economic model, for example, an asset pricing equation, or a consumption function
equation and the observable data comes to di¤erent units (consumers, portfolios, coun-
tries), as discussed by Pakel et al. (2011) or obtained at di¤erent level of aggregation
(�rm, industry, sector). Here ŷ1t; ŷ2t; :::ŷKt represent the same observables obtained
from unit i=1,2...K and the composite log-likelihood one considers is

CL(ŷ1t; ŷ2t; :::ŷKtjA(�);�(�)) =
KX
i=1

!i logL(ŷitjA(�);�(�)) (43)

(17) in this case neglects the correlation structure across units, but pools information
about the common parameters from the available cross section. Given a linear autore-
gressive structure for the decision rules, the pooling procedure produces estimators for
� which are similar to those derived by Zellner and Hong (1989): they weight individual
and a (weighted) average of the information present in the cross section of data. This
is clear when looking at (21), once it is realized that terms such as

PK
i=2 �i2

PTi
t=1 y

2
it�1

represent a weighted average of the information present in the data of the units other
than the �rst one. Such a pooling approach is likely to be superior when each ŷit is
short, since the composite likelihood uses the information present in the panel (rather
than in single individual time series). However, the cross sectional information is not
exactly pooled: the degree of shrinkage depends on the the precision of various sources
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of information. Thus, the composite likelihood uses at least as much information as
the likelihood of individual units, exploits commonalities in cross section, if they exists
and may lead to improved estimates of the vector of common parameters �:

4 Reducing misspeci�cation
As we have mentioned the shrinkage estimators that the composite likelihood generates
can help to reduce biases in likelihood (posterior) estimates obtained with misspeci�ed
models. The logic is relatively simple: when the baseline model is misspeci�ed, infor-
mation contained in additional (misspeci�cied) models restrict the range of values that
the common parameters can take and thus the quality of the estimates may improve
both in terms of location and dispersion. This is similar to having N imperfect instru-
ments in IV estimation: estimation with one instrument is likely to be less successful
than with N instruments.
To show in which practical situations this is more likely to occur, we run a simulation

exercise. We assume that the DGP is a univariate AR(2) yt = �1yt�1+�2yt�2+et; et �
(0; �2). The models we consider for estimation are an AR(1): yt = �1yt�1 + ut and an
MA(1): yt = �t + �1�t�1. We focus attention on estimates of �2, the variance of the
estimated error term, which is common across models. We are interested in examining
how posterior estimates relate to the true �2. Given that both models are misspeci�ed
relative to the DGP, �2u;ML; �

2
�;ML are likely to display biases. The question of interest

is whether the composite posterior, which jointly considers the two models, gives us
better estimates of �2 than those obtained with the AR(1) or the MA(1) and in what
conditions.
We �rst consider �xed weights and let ! be the weight for the AR(1) model.

We present composite posterior estimates obtained in a number of interesting cases: i)
equally weighting the two models, ii) using weights based on the MSE or the Marginal
likelihood for the two models in a training sample; iii) using the weights that optimize
the composite marginal likelihood in a training sample. The training sample consists of
100 observations and the estimation sample of 50 observations; since there are only two
parameters to estimate in the AR(1) and MA(1) models, and three when the composite
likelihood is used, this is actually a medium sized sample.
We consider a number of con�gurations for �1; �2; �

2 in order to gain insights about
the cases where a composite likelihood approach helps most. Table 1 reports a subset
of the results we obtain: for each DGP con�guration, we report the posterior mean
and the posterior standard deviation of �2 in the AR(1) and MA(1) models and in
various composite posterior setups we consider. In all cases, the prior for the AR (MA)
parameters is loose (mean equal to zero and variance equal to 1) and the prior for
sigma is relatively �at in the positive orthant.
There seems to be location gains when using the composite posterior. The gains

are larger whenever the DGP is persistent or has a large volatility and the results
seem insensitive to the choice of weights. As often documented in the forecasting
combination literature (see Aiol� et al, 2010), choosing equal weights is as good as
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Table 1: Estimates of �2

yt = �1yt�1 + �2yt�2 + et; et � N(0; �2), T=50
DGP AR(1) MA(1) CL, equal CL, ML CL, MSE CL, optimal

weights weigths weights weights
�2 = 0:5; �1 = 0:7; �2 = �0:1 0.36(0.03) 0.36 (0.03) 0.38 (0.03) 0.37 (0.03) 0.36 (0.03) 0.48 (0.04)
�2 = 0:5; �1 = 0:5; �2 = 0:2 0.35 (0.03) 0.36 (0.03) 0.37 (0.03) 0.36 (0.03) 0.35 (0.03) 0.47 (0.04)
�2 = 0:5; �1 = 0:6; �2 = 0:35 0.36 (0.03) 0.40 (0.03) 0.40 (0.03) 0.41 (0.03) 0.37 (0.03) 0.49 (0.04)
�2 = 1:0; �1 = 0:7; �2 = �0:1 0.61 (0.04) 0.35 (0.05) 0.62 (0.04) 0.62 (0.04) 0.60 (0.04) 0.78 (0.05)
�2 = 1:0; �1 = 0:5; �2 = 0:2 0.60 (0.04) 0.61 (0.04) 0.61 (0.04) 0.62 (0.04) 0.60 (0.04) 0.78 (0.05)
�2 = 1:0; �1 = 0:6; �2 = 0:35 0.62(0.04) 0.38 (0.05) 0.67 (0.04) 0.67 (0.04) 0.61 (0.04) 0.76 (0.05)
�2 = 2:0; �1 = 0:7; �2 = �0:1 0.95 (0.04) 0.45 (0.04) 0.96 (0.06) 0.96 (0.04) 0.93 (0.04) 1.14 (0.05)
�2 = 2:0; �1 = 0:5; �2 = 0:2 0.93 (0.04) 0.43 (0.04) 0.95 (0.04) 0.95 (0.04) 0.94 (0.04) 1.14 (0.05)
�2 = 2:0; �1 = 0:6; �2 = 0:35 0.01(0.001) 0.01 (0.001) 1.02 (0.008) 1.02 (0.008) 0.99 (0.008) 1.15 (0.05)

ML is the marginal likelihood. The MSE and the ML for the AR(1) and the MA(1) are computed in a

sample of 100 observations prior the successive T=50 data points used to construct the composite

likelihood (CL). The last column is obtained choosing weights to maximize the marginal composite

likelihood over the initial 100 points. In paranthesis are standard errors of the estimates

choosing the weights either based on MSE or the marginal likelihood of the AR(1)
and MA(1) models in the training sample (compare columns 4, 5 and 6). However,
choosing the weights to optimize the performance of the composite likelihood in the
training sample, seems to give an important hedge to the approach: location gains
are large and they increase, the smaller is the volatility of the DGP. It is important to
stress that the approach employed in column 7 is feasible even when the models feature
di¤erent observables, while this is not the case for the results produced in column 5.
When models feature a common subset of observables, an alternative approach, for
example, based on the average log-scores (see Geweke and Amisano 2011) constructed
using variables common to all models could be used. The table does not show much
gains relative to the AR(1) or MA(1) models as far as the spread of the posterior is
concerned. Two reasons account for this outcome. First, we only consider two models;
dispersion gains are more likely to occur when the number of models one consider is
larger. Second, mean estimates of �2 obtained with the AR(1) and the MA(1) models do
not di¤er much for many parameter con�guration. Thus, dispersion gains are relatively
small.
The �rst panel of Figure 1 presents the composite posteriors of � obtained when

the data has been generated by yt = 0:6yt�1 + 0:35yt�2; et;� N(0; 0:5) in three cases:
equally weighting the AR(1) and the MA(1) models; optimally selecting ! to maximize
the composite marginal likelihood in the training sample; and letting ! be a random
variable with a normal prior distribution centered at 0.5 and standard deviation equal
to 0.1,



5 AN EXAMPLE 19

0 .3 5 0 .4 0 .4 5 0 .5 0 .5 5 0 .6 0 .6 5 0 .7 0 .7 5

0

2

4

6

8

1 0

1 2

1 4
 E s t im a t e s   o f

C L (f i x e d  w e i g h ts )

C L (ra n d o m  w e i g h t s )

C L (o p t i m a l )

0 .8 0 .8 5 0 .9 0 .9 5 1 1 .0 5 1 .1

0

5

1 0

1 5

2 0

2 5
 E s t im a t e s   o f

Figure 1: Composite posteriors and posteriors for !:

The shape of posterior is similar equally weighting the two models or selecting !
optimally. However, the posterior of � obtained with optimal weights is more lep-
tokurtic and displays much longer tails. The posterior of � with random weights is
centered at the true value (mode=0.502) but has a larger dispersion relative to the
other two posterior distributions, due to the fact that there is additional uncertainty
in the model (there is one extra random variable) and, as shown in the second panel
of Figure 1, the posterior of ! is heavily skewed and has a very long left tail. Thus
while there are location gains from having a random ! in this particular case, taking
! random could increase the dispersion of the posterior of the common parameters.
Notice that having a random ! is probably more appealing from a theoretical point of
view when composite posterior gains obtained using �xed weights are parameterization
dependent.

5 An example
Schorfheide (2008) surveyed estimates of the slope of the Phillips curve and tried to
explain for the reported di¤erences. He �nds that variations in the existing estimates
are large and that they depend on i) the exact model speci�cation, iii) the observ-
ability of marginal costs, iii) the number and the type of variables used in estimation.
Given this background, we are interested in examining how the posterior distribution
of the slope of the Phillips curve would look like when composite likelihood approach
is employed. We consider four models: a small scale New Keynesian model with sticky
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prices where marginal costs are non-observable as in Rubio and Rabanal (2005) where
the variables used in estimation are detrended output Y, demeaned in�ation �; and
demeaned nominal rate R;a small scale New Keynesian model with sticky prices and
sticky wages, where marginal costs are observables, again as in Rubio and Rabanal
(2005), where the variables used in estimation are detrended Y, demeaned �; demeaned
R and detrended nominal wage W; a medium scale New Keynesian model with sticky
prices, sticky wages, habit in consumption and investment adjustment costs as in Jus-
tiniano et al. (2010), where the variables used in estimation are detrended Y, demeaned
�; demeaned R , detrended nominal W, detrended consumption C, detrended invest-
ment I, detrended hours worked N; and a monetary search and matching model, as in
Christo¤el and Kuester (2008) where the variables used in estimation are detrended
Y, demeaned �; demeaned R and detrended real wage w. Detrending in all case is
done with a quadratic trend and, for comparability, the estimation sample is 1960:1-
2005:4 for all four models. The priors for the structural parameters of various models
are standard. Because the models feature di¤erent numbers of observables, we can
not use random weights (since the posterior weight on the larger model will approach
1, simply because the likelihood of a larger model is higher than the likelihood of a
smaller model.). In the exercise we report, we �x choose ! = (0:25; 0:25; 0:25; 0:25);
choosing a higher weight on the larger model (!3 = 0:4; !i = 0:2; i =1,2,4) produces
a composite posterior with similar features.

Table 2:Estimates of the slope of the Philips curve
5% 50% 95%

Prior 0.01 0.80 1.40
Basic NK 0.06 0.18 0.49
Basic NK with nominal wages 0.05 0.06 0.07
SW with capital and adj.costs 0.04 0.05 0.07
Search model 0.44 0.62 0.86
CL 0.13 0.16 0.21

Reported are the posterior estimates of the slope of the Phillips curve for a three vairable New Keynesian

model ( Basic NK); for a four variable New Keynesian model ( Basic NK with nominal wage); for

a medium scale New Keynesian model with 7 observables ( SW with capital and adj. costs) and

the four variable search and matching model. The row with CL reports estimates obtained with

the composite likelihood approach.

Table 2 displays some percentiles of the posterior distribution for the slope of the
Phillips curve (�p) in each of the four models and when the composite likelihood is
used to aggregate their information. The posteriors for the �rst three models have
modes close to zero and, as Schorfheide suggested, having non-observables marginal
costs tend to increase the location of the mode. The search an matching model
instead has a much higher mode and the posterior does not overlap with the posterior
obtained with the large scale model or the small scale sticky-price sticky-wage model.
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Figure 2: Composite posterior density and naive combination densities.

Thus, again in agreement with Schorfheide the estimation results seem to depend
on which observable variable is used in estimation. In many cases, the spread of the
posterior is relatively large and in a few cases the amount of overlap is large. The
mode of the posterior obtained with the composite likelihood is centered around 0.2,
and the posterior has a smaller spread than the one of individual models. Thus, much
sharper inference about the e¤ect of, say, increasing marginal costs can be made in
any of these models with the composite posterior estimates.
Figure 2 present the composite posterior for the slope of the Phillips curve ob-

tained together with two alternative naive combination posterior estimators: one
that equally weights the posteriors of �p obtained with the four models; and one
which weights the posteriors of �p by the in-sample MSE they produce for in�ation
and the nominal rate. Two features of the �gures deserve discussion. First, ex-post
combining estimates of �p obtained with the four models produce results which are
di¤erent from those generated by a composite likelihood approach; both location and
spread di¤erences are important. Second, the way naive combination estimators are
constructed is irrelevant: the combination posterior produced with equal weights or
MSE weights are indistinguishable.
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6 Conclusions
This paper describes how to use the composite likelihood approach to solve or ame-
liorate estimation problems in DSGE models, shows how the procedure helps to
robustify estimates of the structural parameters in a variety of interesting economic
problems, highlights how to perform composite posterior inference, and provides intu-
ition on how the methodology can be applied to the estimation of the parameters of
structural models.
We show that the approach it is easy to implements, works well when the full

likelihood may be problematic to construct and use, produces estimators with nice
shrinkage properties and, in its Bayesian version, it has an appealing sequential learning
interpretation.
We presented a number of examples where the procedure can be used to i) obtain

shrinkage estimates of the parameters appearing in multiple (nested and non-nested)
misspeci�ed structural models; ii) improve their (sample and population) identi�cation
properties, iii) provide a tractable approach to solve computational and singularity
problems; iv) exploit information coming either from the cross-section or from di¤erent
levels of data aggregation; v) produce more stable estimates of parameters present in
large scale models.
Finally, we shows how inference in misspeci�ed models can be improved and how

estimates of the slope of Phillips curve can be robusti�ed using the composite likelihood
constructed using multiple nested and non-nested models .
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8 Appendix A
Consider observations t=1 and t=2. From (32) and (35) we have

~d1 = d1 (44)

~d2 = d2 �
�

1 + �2
d1 (45)

~p1 = p1 (46)

~p2 = p2 �
�

(1� ��)2 + �2
p1 (47)

Since �
1+�2

< �
(1���)2+�2 ~p2 puts more weights on p1 relative to p2 than

~d2 does on d1
relative to d2. By induction, ~pt puts more weights on pt�j ; j > 0 relative to pt than
does ~dt on dt�j relative to dt. Thus, ~pt has a stronger memory than ~dt.
Similarly, using (33) and (36), for t=1 and t=2 we have

&1 = �2(1 + �2) (48)

&2 = �2
1 + �2 + �4

1 + �2
(49)

�1 = �2((1� ��)2 + �2) (50)

�2 = �2(1� ��)2
1 + �2

(1���)2 +
�4

(1���)4

1 + �2

(1���)2
(51)

Clearly �1 < &1 and �2 < &2. Proceeding by induction, we have that �t < &t.
Thus, the model for ~pt implies larger weighs on ~p2t relative to log �t while the model
for ~dt implies smaller weight on ~d2t relative to log &t at each t. Combining these two
results, we have that � will be identi�ed and estimated more from the serial correlation
properties of the data if ~pt is used to construct the likelihood function and more from
the variance properties of the data if ~dt is used to construct the likelihood function.


