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Abstract

We propose a test for a generalized regression monotonicity (GRM) hypothesis. The

GRM hypothesis is the sharp testable implication of the monotonicity of certain latent

structures, as we show in this paper. Examples include the monotone instrumental vari-

able assumption of Manski and Pepper (2000) and the monotonicity of the conditional

mean function when only interval data are available for the dependent variable. These

instances of latent monotonicity can be tested using our test. Moreover, the GRM hy-

pothesis includes regression monotonicity and stochastic monotonicity as special cases.

Thus, our test also serves as an alternative to existing tests for those hypotheses. We

show that our test controls the size uniformly over a broad set of data generating pro-

cesses asymptotically, is consistent against fixed alternatives, and has nontrivial power

against some n−1/2 local alternatives.

JEL classification: C01, C12, C21

Keywords: Generalized regression monotonicity, hypothesis testing, monotone instru-

mental variable, interval outcome, uniform size control.
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1 Introduction

In this paper, we construct a test for the generalized regression monotonicity (GRM)

hypothesis defined as:

H0 : EP [f (1)(W, τ)|X = x1, Z = z] ≥ EP [f (2)(W, τ)|X = x2, Z = z],

∀x1, x2 ∈ X and x1 ≥ x2, ∀z ∈ Z and τ ∈T , (1.1)

where W = (Y ′, X ′, Z ′)′ are observed random variables generated from a distribution

P , EP denotes the expectation under P , and f (1)(W, τ) and f (2)(W, τ) are known real

valued functions indexed by τ ∈ T where T can be either finite or infinite. The random

variables Y , X, and Z are of dimensions dy ≥ 1, dx ≥ 1, and dz ≥ 0, respectively.1 The

sets X and Z are the support sets of X and Z, respectively. Without loss of generality,

we assume that X ⊆ [0, 1]dx and Z ⊆ [0, 1]dz .2

The null hypothesis in (1.1) is the sharp testable implications of the monotonicity

of certain latent structures. One example is the monotonicity of potential outcomes in

an instrumental variable, better known as the monotone instrumental variable (MIV)

assumption after Manski and Pepper (2000). The MIV assumption has been recogonized

as a useful identification tool in Manski and Pepper (2000, 2009), Kreider and Pepper

(2007), Kreider and Hill (2009), and Gunderson, Kreider, and Pepper (2012).3 However,

a test for MIV validity has not been developed.4

Another example is the monotonicity of the conditional mean of an interval-observed

dependent variable. The interval data problem is wide-spread in empirical research either

due to survey design, where people are asked to choose from several brackets rather than

to report their actual value of a variable, or due to some inherent missing data problems,

for example, potential wage for females. As a result, regressions using interval data as

1If dz = 0, then there is no Z in the model.
2A strictly monotone transformation can always be applied to bring the support of each component

to [0, 1] without changing the information content of the inequalities.
3A Stata command for bounding treatment effects under the MIV and other related assumptions is

developed by McCarthy, Millimet, and Roy (2015).
4Chetverikov (2013) develops a test for the related monotone treatment response and the monotone

treatment selection assumptions. Kitagawa (2015) develops a test for IV validity in the context of local

average treatment effect.
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the dependent variable are unavoidable sometimes. Manski and Tamer (2002) provide

econometrics tools for estimation in such situations, but a nonparametric test for the

monotonicity of the regression function has not been specifically considered. We show

that the sharp testable implications of both the MIV assumption and the latent regression

monotonicity are in the form of GRM, and our test can be used for these hypotheses.

The GRM hyothesis also includes regression monotonicity and stochastic monotonic-

ity as special cases. Thus, our test also offers an alternative to existing tests of those.

Regression monotonicity arises in a lot of problems in economics. For example, many

comparative static hypotheses directly take the form of regression monotonicity. In addi-

tion, Chetverikov (2013) shows that regression monotonicity is the testable implication of

the monotone treatment response assumption and monotone treatment selection assump-

tion introduced in Manski and Pepper (2000). Existing tests for regression monotonicity

have been proposed by Ghosal, Sen, and van der Vaart (2000), Hall and Heckman (2000),

and Chetverikov (2013). Testing stochastic monotonicity is useful for bounding parame-

ters in a selection model and for assessing the stationarity of a Markov process. See Lee,

Linton, and Whang (2009) and Seo (2015) for details and further applications. Existing

tests for stochastic monotonicity include Lee, Linton, and Whang (2009), Delgado and

Escanciano (2012), and Seo (2015). We compare these existing tests to our test in Section

2.4.

To test the GRM, we adapt Andrews and Shi’s (2013a, AS hereafter) instrumental

function approach to transform the conditional inequality hypothesis into an inequality

hypothesis that involves only unconditional moments without loss of information content

of the original inequality hypothesis. The adaption is needed because each of our inequal-

ities involves conditional moments evaluated at two different values of the conditioning

variable, for which AS’ approach does not apply.

After the transformation, we approximate each unconditional moment by its sample

counterpart, and construct a Cramér-von Mises type test. Since our problem involves

moment inequalities, we employ the generalized moment selection method (GMS) to

improve the power of the test as in AS, and propose both a bootstrap GMS critical value

and a multiplier GMS critical value. We show that our test has uniform asymptotic size

over a broad set of data generating processes, is consistent against fixed alternatives,
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and has nontrivial local power against some n−1/2-local alternatives. We conduct Monte-

Carlo simulations for two examples to examine the finite-sample properties of our test.

A different test from ours for the GRM may be constructed by verifying the conditions

in Lee, Song, and Whang’s (2016) recent paper. Comparing to such a test, our test has

the advantage of not requiring a non-parametric estimator of the conditional moments.

The rest of this paper is organized as follows. In Section 2, we give five motivating

examples for testing GRM. We introduce the modified instrumental function approach,

and propose our test in Section 3. Uniform size property and power properties of our

tests are given in Section 4 and Section 5, respectively. Section 6 reports Monte-Carlo

simulation results, and Section 7 concludes. All mathematical proofs are deferred to the

Appendix.

We adopt the following convention in the paper: for x1, x2 ∈ Rdx with dx ≥ 2, we

say that x1 ≥ x2 iff x1s ≥ x2s for all s = 1, . . . , dx, where xjs is the sth element of vector

xj . Also, we say that x1 > x2 iff x1s ≥ x2s for all s = 1, . . . , dx, and x1k > x2k for some

k ∈ {1, . . . , dx}. Finally, x1 � x2 iff x1s > x2s for all s = 1, . . . , dx.

2 Examples of GRM

Hypotheses given in (1.1) are of interest in a wide array of econometrics problems. We

give several examples below.

2.1 Testing MIV

Example 2.1. The MIV condition proposed by Manski and Pepper (2000) has been used

to obtain tighter identification in a selection model. One can test the MIV condition by

testing a hypothesis of the form of H0 in (1.1). To fix ideas, let D be a binary treatment

and (Y (0), Y (1)) be the potential outcomes. The variable Y (0) is only observed when

D = 0, and Y (1) is only observed when D = 1. Let X be a monotone IV in the sense of

Manski and Pepper (2000):

HMIV
0 : E[Y (d)|X = x1] ≥ E[Y (d)|X = x2], for all x1 ≥ x2, for d = 0, 1. (2.1)
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Suppose that Y (0) and Y (1) are known to lie in the deterministic interval [yl, yu]. Then

the MIV condition in (2.1) implies the following hypothesis:

HGRM
0 : E[f (1)(Y, τ)|X = x1] ≥ E[f (2)(Y, τ)|X = x2],

for all x1 ≥ x2, for τ = 1 and 2, (2.2)

and

f (1)(Y, 1) = Y D + yu · (1−D), f (1)(Y, 2) = yuD + Y · (1−D),

f (2)(Y, 1) = Y D + yl · (1−D), f (2)(Y, 2) = ylD + Y · (1−D). (2.3)

In this example, X can be a vector. Additional control variables Z may be present.

As shown in the following theorem, HMIV
0 implies HGRM

0 , and thus should be rejected

if the latter is rejected. The theorem also shows that HGRM
0 is the sharp, that is,

the strongest, testable implication of HMIV
0 . The proof of the theorem is given in the

appendix.

Theorem 2.1. (i) Suppose that the distribution of (Y (1), Y (0), D,X) satisfies HMIV
0 ,

and Y (1), Y (0) ∈ [y`, yu]. Then the distribution of (Y,D,X) satisfies HGRM
0 .

(ii) Suppose that Y ∈ [y`, yu], and the distribution of (Y,D,X) satisfies HGRM
0 . Then

there exists (Y (1), Y (0)) such that Y = DY (1) +(1−D)Y (0), y` ≤ Y (1), Y (0) ≤ yu, and

the distribution of (Y (1), Y (0), D,X) satisfies HMIV
0 .

Even though HGRM
0 is the sharp testable implication of HMIV

0 , the two are not

equivalent. The sharpness only guarantees that HMIV
0 can not be ruled out based on

observed data whenever HGRM
0 holds. It can certainly happen that HMIV

0 is violated

when HGRM
0 holds, in which case our test asymptotically detects the violation with

probability less than or equal to size. In general, the power of our test depends on the

functions E[yu · (1−D)|X = x] and E[y` · (1−D)|X = x]. The closer these two functions

are, the more likely for us to detect the violation of the MIV assumption.

2.2 Testing Regression Monotonicity with Interval-Observed Depen-

dent Variable

Example 2.2. Consider a dependent variable Y and covariate vectors X and Z. The

researcher is interested to know whether E[Y |X = x, Z = z] is monotonically increasing
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in x. However, Y is not observed. Instead, Y is known to lie in the observed random

interval [Y`, Yu], as considered in Manski and Tamer (2002). Thus, one cannot directly

test the null hypothesis:

HLRM
0 : E[Y |X = x1, Z = z] ≥ E[Y |X = x2, Z = z] ∀x1 ≥ x2, ∀z, (2.4)

where LRM stands for “latent regression monotonicity.” We show that HLRM
0 can be

tested through a GRM type hypothesis:

HGRM
0 : E[Yu|X = x1, Z = z] ≥ E[Y`|X = x2, Z = z] ∀x1 ≥ x2, ∀z. (2.5)

We show in the next theorem that HGRM
0 in (2.5) is the sharp testable implication

of HLRM
0 . The proof of this theorem is given in the appendix.

Theorem 2.2. (i) Suppose that the distribution of (Y,X,Z) satiafies HLRM
0 , and that

Y ∈ [Yu, Y`]. Then HGRM
0 in (2.5) holds.

(ii) Suppose that the distribution of (Yu, Y`, X, Z) satisfies HGRM
0 in (2.5). Then, there

exists a random variable Y such that Y ∈ [Y`, Yu] everywhere, and that the distribution

of (Y,X,Z) satisfies HLRM
0 .

The remarks below Theorem 2.1 apply here as well, with HMIV
0 replaced by HLRM

0 ,

and with E[yu · (1−D)|X = x] and E[y` · (1−D)|X = x] replaced by E[Yu|X = x, Z = z]

and E[Y`|X = x, Z = z], respectively.

2.3 Other examples

The GRM hypothesis includes the hypotheses of regression monotonicity, stochastic

monotonicity, and higher-order stochastic monotonicity as special cases, as we describe

in details now.

Example 2.3. Suppose that f (1)(W, τ) = f (2)(W, τ) = Y and Y is a scalar. Then H0 in

(1.1) reduces to:

H0 : E[Y |X = x, Z = z] is weakly increasing in x ∈ X , ∀z ∈ Z. (2.6)

This is the usual regression monotonicity hypothesis. Testing H0 is a nonparametric

version of testing the sign of a regression coefficient in a linear regression model. For
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example, if Y is the survival of a patient and X is the daily dose of a certain drug given

to the patient. Then H0 implies that there is a monotone relationship between the daily

dose and the survival rate as the dose varies in a chosen range X . Note that if dz = 0,

then H0 is the regression monotonicity hypothesis studied in Ghosal, Sen, and van der

Vaart (2000) and Chetverikov (2013). See Chetverikov (2013) for more testing problems

that can be formulated as (2.6) with dz = 0.

Example 2.4. Suppose that f (1)(Y, τ) = f (2)(Y, τ) = −1(Y ≤ τ) for τ ∈ R and dz = 0.

Then H0 reduces to:

H0 : FY |X(y|x) is non-increasing in x ∈ X for all y ∈ R, (2.7)

where FY |X(y|x) denotes the conditional distribution of Y conditioning on X = x. Then

H0 is the stochastic monotonicity hypothesis studied in Lee, Linton, and Whang (2009),

Delgado and Escanciano (2012), and Seo (2015).

Example 2.5. Suppose that f (1)(Y, τ) = f (2)(Y, τ) = − 1
(j−1)!1(Y ≤ τ)(τ − Y )j−1 for

τ ∈ R and dz = 0. Then H0 reduces to:

H0 : Ij(y;FY |X(s|x)) is non-increasing in x ∈ X for all y ∈ R, (2.8)

where Ij(.;F ) is the function that integrates the function F to order j − 1 so that,

I1(y;F ) =F (y),

I2(y;F ) =

∫ y

0
F (t)dt =

∫ y

0
I1(t;F )dt,

...

Ij(y;F ) =

∫ y

0
Ij−1(t;F )dt.

Therefore, H0 is the higher-order stochastic monotonicity hypothesis. Shen (2015) studies

the conditional higher-order stochastic monotonicity at a fixed point of X = x. Our test

covers the uniform version of Shen’s hypothesis.

2.4 Discussions

1. When Z contains only discrete random variables, the tests proposed in Ghosal, Sen,

and van der Vaart (2000) and Chetverikov (2013) are applicable to Example 2.3,
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and the tests proposed in Lee, Linton, and Whang (2009), Delgado and Escanciano

(2012), and Seo (2015) are applicable to Example 2.4. These tests do not apply

when Z contains continuous random variables. In addition, the tests of Ghosal,

Sen, and van der Vaart (2000), Lee, Linton, and Whang (2009), and Delgado and

Escanciano (2012) rely on least-favorable case critical value, and can have poor

power when the data generating process is not close to the least-favorable case.

None of the tests in the five papers mentioned apply to Examples 2.1 and 2.2,

where f (1)(Y, τ) 6= f (2)(Y, τ).

2. Chetverikov (2013) considers a testable implication of the monotone treatment

selection and monotone treatment response assumptions of Manski and Pepper

(2000), which, in the notation of Example 2.1, is

E[Y |X = x1] ≥ E[Y |X = x2], for all x1 ≥ x2. (2.9)

This is a special case of Example 2.3.

3. As we mentioned in Introduction, the only testing framework that covers Examples

2.1 and 2.2 is Lee, Song, and Whang’s (2016). To be specific, let x̃ = (x1, x2, z),

X̃ = {X × X × Z| x1 ≥ x2}, qτ,1(x̃) = E[f (1)(Y, τ)|X = x1, Z = z] and qτ,2(x̃) =

E[f (2)(Y, τ)|X = x2, Z = z], and let ντ (x̃) = qτ,2(x̃) − qτ,1(x̃). Then, (1.1) can be

rewritten into Lee, Song and Whang’s (2016) framework:

H0 : ντ (x̃) ≤ 0 for all (x̃, τ) ∈ X̃ × T . (2.10)

Lee, Song, and Whang’s (2016) conditions for the validity of their test may cover

hypothesis (2.10) under suitable primitive conditions. We do not aim to provide

those primitive conditions in this paper because we take a different approach to-

ward testing the GRM hypothesis. Unlike their approach, ours does not require

preliminary nonparametric estimation.
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3 Proposed Test

3.1 Model Transformation

In order to form a test statistic, we transform the conditional inequality hypothesis into

an inequality hypothesis that involves only unconditional moments. The transformation

should preserve all the information content of the original inequality hypothesis because

otherwise the resulting test has no power against some fixed alternatives. The most

closely related approach in the literature is AS, where they transform conditional mo-

ment inequalities into unconditional ones using an infinite set of instrumental functions.

Our problem is more complicated because our inequalities involve conditional moments

evaluated at different values of the conditioning variable.

We propose a modification to AS’s instrumental function approach. The basic idea

of our modified approach is to use two different instrumental functions on the two sides

of the inequalities. To be specific, we find a set, G, of g = (g
(1)
x , g

(2)
x , gz) such that (1.1)

is equivalent to

H0 : νP (τ, g) ≡ m(2)
P (τ, g)w

(1)
P (g)−m(1)

P (τ, g)w
(2)
P (g) ≤ 0,

for all τ ∈ T and for all g ∈ G, (3.1)

where, for j = 1 and 2,

m
(j)
P (τ, g) = EP [f (j)(Y, τ)g(j)x (X)gz(Z)], w

(j)
P (g) = EP [g(j)x (X)gz(Z)]. (3.2)

Like in AS, we also would like the set G to be simple enough in order for certain uniform

central limit theorem to apply.

We consider two possible G choices, for both of which, we define the following notation:

Cx,r ≡
( dx∏
j=1

[xj , xj + r]
)
∩ X for x ∈ X and r ∈ (0, 1],

Cz,r ≡
( dz∏
j=1

[zj , zj + r]
)
∩ Z for z ∈ Z and r ∈ (0, 1]. (3.3)

For ` = (x1, x2, z, r) ∈ X 2 ×Z × (0, 1], define

g
(1)
x,` = 1(x ∈ Cx1,r), g

(2)
x,` = 1(x ∈ Cx2,r), gz,` = 1(z ∈ Cz,r). (3.4)
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The first G we consider is the set of the indicator functions of countable hypercubes:

Gc-cube =
{
g` ≡

(
g
(1)
x,` , g

(2)
x,` , gz,`

)
: ` ∈ Lc-cube

}
, where (3.5)

Lc-cube =
{

(x1, x2, z, r) : r = q−1, q · (x1, x2, z) ∈ {0, 1, 2, · · · , q − 1}2dx+dz ,

x1 ≥ x2, , and q = q0, q0 + 1, · · ·
}
,

and q0 is a natural number.

The second G that we consider is the set of the indicator functions of a continuum of

hypercubes:

Gcube = {g` : ` ∈ Lcube} , where (3.6)

Lcube = {(x1, x2, z, r) : x1, x2 ∈ [0, 1− r]2dx+dz , x1 ≥ x2, r ∈ (0, r̄]},

for some 0 < r̄ < 1.

Because there is a one-to-one mapping between Gcube (or Gc-cube) and the set of indices

Lcube (or Lc-cube), for the remainder of the paper, we will use ` to stand for g` when used

inside a function to simplify notation. For example, νP (τ, g`) will be written as νP (τ, `),

m
(j)
P (τ, g`) as m

(j)
P (τ, `), and w

(j)
P (g`) as w

(j)
P (`).

Both Gc-cube and Gcube are Vapnik-Cĕrvonenkis (VC) sets, and thus will guarantee

the application of a uniform central limit theorem. Both are also rich enough to capture

all the information provided by (1.1), which is shown in the following lemma.

Assumption 3.1. Suppose that for j = 1 and 2, EP [f (j)(Y, τ)|X = x, Z = z] is contin-

uous on X × Z for all τ ∈ T under distribution P .

Lemma 3.1. Suppose Assumption 3.1 holds. Then for G = Gc-cube or G = Gcube, H0 in

(1.1) is equivalent to that in (3.1).

The proof for Lemma 3.1 is relatively straightforward because we assume continuity of

EP [f (j)(Y, τ)|X = x, Z = z], unlike in AS. The continuity assumption allows X and Z to

be discretely distributed and is reasonably weak. Also note that if f (1)(Y, τ) = f (2)(Y, τ),

we can drop the instrumental functions with x1 = x2 because for those g’s, for all P ,

m
(1)
P (τ, `) = m

(2)
P (τ, `) and w

(1)
P (`) = w

(2)
P (`), which implies that νP (τ, `) = 0.
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3.2 Estimation of νP (τ, `)

In the following, all results hold for both Gc-cube and Gcube, so for notational simplicity,

we suppress the subscripts “c-cube” and “cube” and just write G and L unless necessary.

Suppose, we have an i.i.d. sample of size n

Now that we have transformed the conditional inequalities into unconditional inequal-

ities, we are ready to introduce the test statistic. Define, for j = 1, 2,

m
(j)
i (τ, `) = m(j)(Wi, τ, `) = f (j)(Yi, τ)g

(j)
x,`(Xi)gz,`(Zi)

w
(j)
i (`) = w(j)(Wi, `) = g

(j)
x,`(Xi)gz,`(Zi). (3.7)

Let the sample means of them be

m̂(j)
n (τ, `) =

1

n

n∑
i=1

m
(j)
i (τ, `), ŵ(j)

n (`) =
1

n

n∑
i=1

w
(j)
i (`). (3.8)

We estimate νP (τ, `) by its sample analogue:

ν̂n(τ, `) = m̂(2)
n (τ, `)ŵ(1)

n (`)− m̂(1)
n (τ, `)ŵ(2)

n (`). (3.9)

As we mentioned above, the simplicity of Gc-cube and Gcube, along with a manageability

condition on T (given later) makes sure that
√
n(ν̂n(τ, `)− νP (τ, `)) satisfies a functional

central limit theorem.

3.3 Test Statistic

Here we define the test statistic T̂n for our test. Let σ̂2n(τ, `) be

σ̂2n(τ, `)

=
1

n

n∑
i=1

{
ŵ(1)
n (`)

(
m

(2)
i (τ, `)− m̂(2)

n (τ, `)
)

+ m̂(2)
n (τ, `)

(
w

(1)
i (`)− ŵ(1)

n (`)
)

− ŵ(2)
n (`)

(
m

(1)
i (τ, `)− m̂(1)

n (τ, `)
)
− m̂(1)

n (τ, `)
(
w

(2)
i (`)− ŵ(2)

n (`)
)}2

, (3.10)

which is an estimator for the asymptotic variance of
√
n(ν̂n(τ, `) − νP (τ, `)). Note that

σ̂2n(τ, `) may be close to 0 with non-negligible probability for some (τ, `) ∈ T ×L. This is

not desirable because the inverse of it needs to be consistent for its population counterpart

uniformly over T × L for the test statistics considered below. In consequence, as in AS,
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we consider a modification, denoted as σ̂2ε,n(τ, `), that is bounded away from 0. For some

fixed ε > 0, define σ̂2ε,n(τ, `) as

σ̂2ε,n(τ, `) = max{σ̂2n(τ, `), ε}, for all (τ, `) ∈ T × L. (3.11)

Note that unlike AS, the σ̂2ε,n(τ, `) in (3.11) is not scale-equivariant to the moment con-

ditions, meaning that our test statistic defined below is not scale-invariant. It is hard to

get scale-equivariance in our case due to the presence of τ . See Andrews and Shi (2015)

for the use of non-scale-equivariant weights as well.

Let Q be a probability measure on T × L, and our test statistic is defined as

T̂n =

∫
max

{√
n
ν̂n(τ, `)

σ̂ε,n(τ, `)
, 0
}2
dQ(τ, `). (3.12)

We only consider the measures such that Q(τ, `) = QT (τ)QL(`) for measures QT on

T and QL on L because such measures are sufficient for our purpose in all cases that

we can think of. We require that the support of Q equal T × L. The support condition

is needed to ensure that there is no information loss in the aggregation, and is formally

stated in the next assumption. Let dτ be a metric on T and d` be a metric on L. Let

Bc(τ∗) = {τ ∈ T : dτ (τ, τ∗) ≤ c}, and Bc(`∗) = {` ∈ L : d`(`, `∗) ≤ c}.

Assumption 3.2. For any c > 0, any τ ∈ T , and any ` ∈ L, (a) QT (Bc(τ)) > 0, and

(b) QL(Bc(`)) > 0.

We give some examples of Q that satisfies Assumption 3.2. Because we only consider

product measures, we can choose QT and QL separately. For QT , if T is a singleton or a

finite set as in Examples 2.1-2.3, we let QT assign equal weight on each element in T . If T

contains a continuum of elements as in Examples 2.4 and 2.5, and T has a finite support,

e.g., [a, b], which would be true if we know in advance that Y has support on [a, b], we

can let QT be a uniform distribution on [a, b]. If T has support on the whole real line,

we can let QT be from a standard normal distribution. For QL, if L = Lc-cube, we can let

QL assign weight ∝ q−2 on each q where ∝ stands for “is proportional to,” and, for each

q, let QL assign equal weight on each instrumental function with r = q−1.5 If L = Lcube,

we can let the marginal of QL on (0, r̄] be a uniform distribution and conditional on each

r, let QL induce a uniform distribution on {(x1, x2, z) ∈ [1− r]2dx+dz : x1 ≥ x2}.6

5Note that for each q, there are (q(q + 1)/2)dx · qdz of instrumental functions with r = q−1.
6There are many choices of Q satisfying Assumption 3.2. Different choices of Q will not affect the
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3.4 Generalized Moment Selection

We define the critical value for our test. Note that our null hypothesis involves inequality

constraints. It is well known that if one obtains critical values based on the least favorable

configuration (LFC) where all inequalities are assumed to be binding, the power of the

test may be poor when the data generating process is not local to the LFC. We employ the

generalized moment selection (GMS) approach in AS to achieve better power property.

Let {κn : n ≥ 1} be a sequence of positive numbers that diverges to infinity as n → ∞

and {Bn : n ≥ 1} be a non-decreasing sequence of positive numbers that diverges to

infinity as n→∞ as well. Let the GMS function φn(τ, `) be

φn(τ, `) = −Bn · 1
(√

n
ν̂n(τ, `)

σ̂ε,n(τ, `)
< −κn

)
for all (τ, `) ∈ T × L. (3.13)

Assumption 3.3. (GMS) Assume that κn → ∞, Bn → ∞, n−1/2κn → 0, and

κ−1n Bn → 0 as n→∞.

Assumption 3.3 imposes conditions on κn and Bn sequences, and is a combined version

of Assumptions GMS1 and GMS2 of AS.

3.5 Null Distribution Approximation

Before defining the critical values, we provide two approaches to approximating the pro-

cess Φ̂n(·) ≡
√
n(ν̂n(·) − νP (·)). We first introduce the multiplier method based on the

conditional multiplier central limit theorem in Chapter 2.9 of van der Vaart and Wellner

(1996). Let {Ui : i ≥ 1} be a sequence of i.i.d. random variables that is independent of

the whole sample path {Wi : n ≥ 1} such that E[U ] = 0, E[U2] = 1, and E[|U |δ1 ] < C

for some 2 < δ1 < δ and C <∞ where δ is the constant in Assumption 4.1 below. Define

Φ̂u
n(τ, `) as

Φ̂u
n(τ, `)

=
1√
n

n∑
i=1

Ui

{
ŵ(1)
n (`)

(
m

(2)
i (τ, `)− m̂(2)

n (τ, `)
)

+ m̂(2)
n (τ, `)

(
w

(1)
i (`)− ŵ(1)

n (`)
)

uniform asymptotic size property and the consistency against fixed alternatives of our test. However,

our tests based on different choices of Q will have different power in finite samples and asymptotically

against local alternatives. To discuss the properties of our tests equipped with different choices of Q is

an interesting topic that we do not pursue this in this paper.
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− ŵ(2)
n (`)

(
m

(1)
i (τ, `)− m̂(1)

n (τ, `)
)
− m̂(1)

n (τ, `)
(
w

(2)
i (`)− ŵ(2)

n (`)
)}
. (3.14)

Next we describe the bootstrap method to approximate Φ̂n(·). Let {W b
i : i ≤ n} be

an i.i.d. bootstrap sample drawn from the empirical distribution of {Wi : i ≤ n}. Let

m
(j)b
i (τ, `) = m(j)(W b

i , τ, `) and w
(j)b
i (`) = w(j)(W b

i , `) for j = 1 and 2. Define

ν̂bn(τ, `) = m̂(2)b
n (τ, `)ŵ(1)b

n (`)− m̂(1)b
n (τ, `)ŵ(2)b

n (`),

m̂(j)b
n (τ, `) =

1

n

n∑
i=1

m
(j)b
i (τ, `), ŵ(j)b

n (`) =
1

n

n∑
i=1

w
(j)b
i (`). (3.15)

Finally, define the bootstrap process Φ̂b
n(·) as

Φ̂b
n(·) =

√
n(ν̂bn(τ, `)− ν̂n(τ, `)). (3.16)

Let the critical value statistics be

T̂ un =

∫
max

{ Φ̂u(τ, `)

σ̂ε(τ, `)
+ φn(τ, `), 0

}2
dQ(τ, `), (3.17)

T̂ bn =

∫
max

{ Φ̂b(τ, `)

σ̂ε(τ, `)
+ φn(τ, `), 0

}2
dQ(τ, `). (3.18)

We call T̂ un the multiplier statistic and T̂ bn the bootstrap statistic. The conditional dis-

tributions (given the original sample) of them asymptotically provide upper bounds for

the null distribution of our test statistic.

3.6 GMS Critical Value

We are ready to define the multiplier GMS critical value ĉuη and the bootstrap GMS

critical value, ĉbη:

ĉuη = sup
{
q
∣∣P u(T̂ un ≤ q) ≤ 1− α+ η

}
+ η, (3.19)

ĉbη = sup
{
q
∣∣P b(T̂ bn ≤ q) ≤ 1− α+ η

}
+ η, (3.20)

where η > 0 is an arbitrarily small positive number, e.g., 10−6, and P u and P b de-

note the multiplier probability measure and bootstrap probability measure, respectively.

Note that ĉuη and ĉbη are defined as the (1 − α + η)-th quantiles of the multiplier null

distribution and bootstrap null distribution plus η, respectively. AS call the constant η

an infinitesimal uniformity factor that is used to avoid the problems that arise due to
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the presence of the infinite-dimensional nuisance parameter νP (τ, `) and to eliminate the

need for complicated and difficult-to-verify uniform continuity and strictly-monotonicity

conditions on the large sample distribution functions of the test statistic.

3.7 Decision Rule

The decision rule is the following:

Reject H0 in (3.1) if T̂n > ĉη, (3.21)

where ĉη can be ĉuη or ĉbη.

4 Uniform Asymptotic Size

In this section, we show that our test has correct asymptotic size uniformly over a broad

set of distributions. We impose conditions on {f (j)(τ,W ) : τ ∈ T } for j = 1 and 2

to regulate the complexity of them. It ensures that the empirical process Φ̂n(·) and its

multiplier and bootstrap counterparts satisfy the functional central limit theorem under

drifting sequence of distributions.

Let the collection of distributions of our interest be denoted as P.

Assumption 4.1. Let (Ω,z,P) be the underlying probability space equipped with proba-

bility distribution P. Let P denote the collection of distributions P such that:

(a) max{
∣∣f (1)(τ, w)

∣∣, ∣∣f (2)(τ, w)
∣∣} ≤ F (w) for all w ∈ W, for all τ ∈ T for some envelope

function F (w).

(b) EPF
δ(Wn,i) ≤ C <∞ for all P ∈ P for some δ > 2.

(c) the processes {f (j)(τ,Wn,i) : τ ∈ T , i ≤ n, 1 ≤ n} for j = 1 and 2 are manageable

with respect to the envelope function F (Wn,i) where {Wn,i : i ≤ n, 1 ≤ n} is a row-wise

i.i.d. triangular array with Wn,i ∼ Pn for any sequence {Pn ∈ P}.

The manageability condition in Assumption 4.1(c) is from Definition 7.9 of Pollard

(1990); see Pollard (1990) for more details. Assumption 4.1(c) is not restrictive. For

example, if T is finite as in Examples 2.1-2.3, or if {f (j)(τ, ·) : τ ∈ T } is a VC class

as in Examples 2.4 and 2.5, Assumption 4.1(c) holds. Assumption 4.1(b) implies that
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|EP [m(j)(τ, `)]| ≤ M for some M > 0 for all (τ, `) uniformly over P ∈ P. This ensures

that the asymptotic covariance kernel of
√
n
(
ν̂n(τ, `)−νP (τ, `)) is uniformly bounded for

all P ∈ P.

To establish the uniform asymptotic size, we introduce some notation. Define

h1,P (τ, `) = EP (ẅ(W, τ, `)), and

h2,P
(
(τ1, `1), (τ2, `2)

)
= CovP (m̈(τ1, `1), m̈(τ2, `2)), where

ẅ(W, τ, `) = (−w(2)(W, `), w(1)(W, `),−m(2)(W, τ, `),m(1)(W, τ, `))′,

m̈(W, τ, `) = (m(1)(W, τ, `),m(2)(W, τ, `), w(1)(W, `), w(2)(W, `))′. (4.1)

We define h1,P (τ, `) and h2,P ((τ1, `1), (τ2, `2)) this way so that under suitable assump-

tions, we have

CovP

(√
n
(
ν̂n(τ1, `1)− νP (τ1, `1)

)
,
√
n
(
ν̂n(τ2, `2)− νP (τ2, `2)

))
≈ h1,P (τ1, `1)

′ · h2,P
(
(τ1, `1), (τ2, `2)

)
· h1,P (τ2, `2). (4.2)

Also, h1,P (τ, `) determines νP (τ, `) because

νP (τ, `) = EP [m(2)(W, τ, `)]EP [w(1)(W, `)]− EP [m(1)(W, τ, `)]EP [w(2)(W, `)]. (4.3)

Let

H1 = {h1,P (·) : P ∈ P}, H2 = {h2,P (·, ·) : P ∈ P},

H = H1 ×H2. (4.4)

On the space of H, we use the metric d defined by

d(h(1), h(2)) = max{d1(h(1)1 , h
(2)
1 ), d2(h

(1)
2 , h

(2)
2 )},

d1(h
(1)
1 , h

(2)
1 ) = sup

(τ,`)∈T ×L
‖h(1)1 (τ, `)− h(2)1 (τ, `)‖, (4.5)

d2(h
(1)
2 , h

(2)
2 ) = sup

(τ1,`1),(τ2,`2)∈T ×L
‖h(1)2

(
(τ1, `1), (τ2, `2)

)
− h(2)2

(
(τ1, `1), (τ2, `2)

)
‖,

where ‖ · ‖ denotes the Euclidean norms. For notational simplicity, we use d to denote d1

and d2 as well, and we suppress (τ, `) whenever there is no confusion. For example, let

h1,P denote h1,P (·), and h2,P denote h2,P (·, ·). For any h ∈ H, define h2,ν = h′1 ·h2 ·h1 and
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for any P , define h2,ν,P as h′1,P ·h2,P ·h1,P . Let H2,ν ≡ {h2,ν : h2,ν = h′1 ·h2 ·h1, h ∈ H}.

The metric d on the space H2,ν is defined similarly.

Let P0 denote the collection of null distributions in P . We impose the following

conditions on P0.

Assumption 4.2. The set P0 satisfies:

(a) P0 ⊆ P.

(b) The null hypothesis H0 defined in (3.1) holds under any P ∈ P0.

(c) H0 ≡ {(h1,P , h2,P ) : P ∈ P0} is a compact subset of H under the metric d defined in

equation (4.5).

Let H0
2,ν ≡ {h2,ν : h2,ν = h′1 ·h2 ·h1, h ∈ H0}. The compactness of H0 in Assumption

4.2(c) implies the compactness of H0
2,ν . The compactness of H0

2,ν is necessary for us

to obtain the uniform asymptotic size over P0. This is assumed in AS, Donald and

Hsu (2016), and Hsu (2016) as well. The following theorem summarizes the uniform

asymptotic size of our test. Additional notation are needed. Let

T o(P ) ≡ {τ ∈ T : ∃ x1`,τ � x1u,τ , x2`,τ � x2u,τ , z`,τ � zu,τ ,

x1`,τ ≤ x2`,τ , x1u,τ ≤ x2u,τ , and for some constant Cτ ∈ R

EP [f (1)(Y, τ)|X = x1, Z = z] = EP [f (2)(Y, τ)|X = x2, Z = z] = Cτ ,

for all x1 ∈ [x1`,τ , x1u,τ ], x2 ∈ [x2`,τ , x2u,τ ], and z ∈ [z`,τ , zu,τ ].} (4.6)

Lo(τ, P ) ≡ {` ∈ L : νP (`, τ) = 0} (4.7)

(T L)o(P ) ≡ {(τ, `) ∈ T × L : νP (τ, `) = 0} = {(τ, `) : ` ∈ Lo(τ, P )}. (4.8)

The set T o(P ) denotes the collection of τ ’s such that the inequalities are binding over

a hypercube of (x1, x2, z) under P . The set Lo(τ, P ) denotes the collection of `’s such

that the unconditional moment defined by ` is binding at τ , and (T L)o(P ) the set of

(τ, `) such that the unconditional moment with (τ, `) is binding. Under Assumption 3.2,

it is straightforward to see that if τ ∈ T o(P ), then
∫
Lo(τ,P ) dQL(`) > 0, and that if∫

T o(P ) dQT (τ) > 0, then
∫
(T L)o(P ) dQ(`, τ) > 0.

Let Ψh2,ν denote the mean-zero Gaussian process with covariance kernel function h2,ν .

Let σ2ε,h2,ν (τ, `) = max{h2,ν((τ, `), (τ, `)), ε}.
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Assumption 4.3. There exists a Pc ∈ P0 such that
∫
(T L)o(Pc) max

{
Φh2,ν,Pc

(τ, `)/σε,h2,ν (τ,

`), 0
}2
dQ(τ, `) is non-degenerate.

We restate the conditions on the multipliers {Ui : i ≥ 1} in the following assumption.

Assumption 4.4. Let {Ui : i ≥ 1} be a sequence of i.i.d. random variables independent

with the original sample such that E[U ] = 0, E[U2] = 1, and E[|U |δ1 ] < C for some

2 < δ1 < δ and some C > 0 where δ is the same as in Assumption 4.1.

Assumption 4.4 is needed for the multiplier method only. For the rest of the paper, we

implicitly assume that Assumption 4.4 holds for all the results associated with multiplier

method.

Theorem 4.1. Suppose that Assumptions 3.1, 3.3, and 4.1-4.2 hold, and that α < 1/2.

Let ĉη be either ĉuη or ĉbη. Then

(i) lim supn→∞ supP∈P0 PP (T̂n > ĉη) ≤ α;

(ii) if Assumption 4.3 also holds, then limη→0 lim supn→∞ supP∈P0 PP (T̂n > ĉη) = α.

Theorem 4.1(i) shows that our test has correct uniform asymptotic size over P0

defined by Assumptions 4.1-4.2. This result is similar to Theorem 2(a) of AS. Theorem

4.1(ii) shows that our test is at most infinitesimally conservative asymptotically when

there exists at least one Pc that is at the boundary of the null hypothesis in the sense

that the limiting distribution of T̂n is non-degenerate under Pc, which our Assumption

4.3 guarantees.

5 Power Properties

In this section, we show the consistency of our test against fixed alternatives and we show

that our test has non-trivial local power against some n−1/2-local alternatives.

5.1 Power against Fixed Alternatives

Define the collections of τ ’s at which the the null hypothesis is violated as

T a(P ) ≡
{
τ :EP [f (1)(W, τ)|X = x1, Z = z] < EP [f (2)(W, τ)|X = x2, Z = z],
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for some z ∈ Z and x1, x2 ∈ X with x1 ≥ x2.
}

(5.1)

The following assumption specifies the fixed alternatives we consider.

Assumption 5.1. The distribution P∗ ∈ P satisfies:

(a) T a(P∗) contains Bc(τ∗) for some c > 0 and some τ∗ ∈ T ,

(b) Assumption 3.1 holds under P∗, and

(c) Assumption 4.1 holds with P∗ in place of Pn and P ∈ P.

Assumption 5.1(a) together with Assumption 3.2 ensures that T a(P∗) has strictly

positive measure under Q. This automatically holds when T is finite and T a(P∗) is

non-empty. The following theorem shows the consistency of our test against the fixed

alternatives satisfying Assumption 5.1.

Theorem 5.1. Suppose that Assumptions 3.1-3.3 and 5.1, and α < 1/2. Then we have

limn→∞ PP∗(T̂n > ĉη) = 1.

The proof is done by showing that T̂n diverges to positive infinity, and that ĉη is

bounded in probability.

5.2 Asymptotic Local Power

We consider the local power of our tests in this section. Consider a sequence of Pn ∈ P\P0

that converges to some Pc ∈ P0 under the Kolmogove-Smirnov metric where A\B ≡ {x :

x ∈ A but x 6∈ B} for any two sets A and B. The n−1/2-local alternatives are defined in

the following assumptions.

Let Pxz denote the marginal distribution of (X,Z) under P .

Assumption 5.2. The sequence {Pn ∈ P\P0 : n ≥ 1} satisfies:

(a) for some Pc ∈ P0 that satisfies the non-degeneracy in Assumption 4.3,

EPn [f (1)(W, τ)|X,Z] = EPc [f
(1)(W, τ)|X,Z] + γδ1(X,Z, τ)/

√
n,

EPn [f (2)(W, τ)|X,Z] = EPc [f
(2)(W, τ)|X,Z] + γδ2(X,Z, τ)/

√
n.

where γ > 0 is a constant, and δ1 and δ2 are two functions.

(b) Pn,xz = Pc,xz for all n ≥ 1.
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(c) for j = 1 and 2, δj(x, z, τ) is continuous on X × Z for all τ ∈ T .

(d) δ1(x1, z, τ) ≤ δ2(x2, z, τ) for all x1, x2 ∈ X such that x1 ≥ x2, z ∈ Z and for all

τ ∈ T .

(e) for some τ ∈ T o(Pc), δ1(x1, z, τ) < δ2(x2, z, τ) for some x1 ∈ (x1`,τ , x1u,τ ), x2 ∈

(x2`,τ , x2u,τ ) such that x1 > x2, and some z ∈ (z`,τ , zu,τ ), where x1`,τ , x1u,τ , x2`,τ , x2u,τ ,

z`,τ , and zu,τ are some values satisfying the conditions defining T o(Pc) in (4.6).

(f) d(hPn , hPc)→ 0.

Assumption 5.2(a) requires that for j = 1, 2, the difference between the conditional

mean of f (j)(W, τ) on X and Z under Pn and that under Pc is of order n−1/2. Assumption

5.2(b) requires that the marginal distribution of X and Z remains the same along the

sequence. With some minor modifications of our proof, this condition can be relaxed.

Assumption 5.2(c) along with Assumption 3.1 ensures that the conditional means of

f (1)(W, τ) and f (2)(W, τ) under Pn are continuous on X and Z. Assumption 5.2(e)

ensures that the null hypothesis does not hold under Pn for n ≥ 1, i.e., Pn 6∈ P0.

Assumption 5.2(f) implies that d(h2,ν,Pn , h2,ν,Pc) → 0, which specifies the asymptotic

covariance kernel of
√
n(ν̂n(·)− νPc(·)).

Let x1`,τ , x1u,τ , x2`,τ , x2u,τ , z`,τ , and zu,τ be the values specified in Assumption 5.2(e).

Define T +(Pc) as

T +(Pc) ≡ {τ ∈ T o(Pc) : δ1(x1, z, τ) < δ2(x2, z, τ) for some x1 ∈ (x1`,τ , x1u,τ ),

x2 ∈ (x2`,τ , x2u,τ ) such that x1 > x2, and some z ∈ (z`,τ , zu,τ )}. (5.2)

Assumption 5.3. Assume that
∫
T +(Pc)

dQT > 0 where T +(Pc) is defined in (5.2).

Assumption 5.3 holds if T +(Pc) contains an open ball around τ∗ for some τ∗ in T by

Assumption 3.2.

The following theorem shows the local power of our test.

Theorem 5.2. Suppose Assumptions 3.1-3.3, 5.2, and 5.3 hold, and α < 1/2. Then

(i) limη→0 lim infn→∞ PPn(T̂n > ĉη) ≥ α.

(ii) limγ→∞ lim infn→∞ PPn(T̂n > ĉη) = 1.

Part (i) of the theorem shows the near asymptotic unbiasedness of our test against

the n−1/2-local alternatives defined by Assumptions 5.2 and 5.3. Part (ii) of the theorem
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implies that as long as the n−1/2-local alternative defined in Assumption 5.2 is far enough

from the null (that is, γ is large enough), the asymptotic power of our test is strictly

greater than size.

6 Monte Carlo Simulation

To implement our test, one needs to pick several user-chosen parameters in advance. In

this section, we first make suggestions on how to pick these parameters. We then report

Monte Carlo results for two examples. The first example is a test of the monotone instru-

mental variable assumption. The second example is a test of regression monotonicity, as

also considered in Chetverikov (2013).

6.1 Implementation

We make the following suggestions.

1. Support of Covariates: Transform the support of each covariate, Xj , to unit

interval by applying the following mapping. If Xj has support [a, b], then define

X∗j = (X − a)/(b − a). If Xj has support on the whole real line, define X∗j =

Φ(σ̂−1j (Xj − µ̂j)) where σ̂j is the sample standard deviation of Xji’s, µ̂j is the

sample mean of Xji’s, and Φ(·) is the standard normal cdf function. Apply the

same mapping to each Zj .

2. Instrumental functions: Use the countable hypercube instrumental functions on

the new conditioning variables:

Gc-cube =
{
g` ≡

(
g
(1)
x∗,`, g

(2)
x∗,`, gz∗,`

)
: ` ∈ Lc-cube

}
, where (6.1)

Lc-cube =
{

(x∗1, x
∗
2, z
∗, r) : r = q−1, q · (x∗1, x∗2, z∗) ∈ {0, 1, 2, · · · , q − 1}2dx+dz ,

x1 ≥ x2, , and q = 2, 3, · · · , q1
}
,

where q1 is a natural number and is picked such that the expected sample size of

the smallest cube is around 15 as suggested by AS.7

7The expected sample size of the smallest cube is roughly equal to n · (q1)−(dx+dz).
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3. Selection of τ ’s: If T is of finite elements as in Examples 2.1-2.3, use all elements

in T . If T contains a continuum of elements as in Examples 2.4 and 2.5, pick a finite

number of τ ’s and allow the number of τ ’s grows with sample size. For Examples

2.4 and 2.5, we specifically suggest to consider the finite subset {y1, . . . , yn} of T

that is also used in Lee, Linton and Whang (2009).

4. Q(τ, `): the distribution QT assigns equal weights on T , and the distribution QL

assigns weight ∝ q−2 on each q and for each q, QL assigns equal weight on each

instrumental function with r = q−1. Recall that for each q, there are (q(q+1)/2)dx ·

qdz of instrumental functions with r = q−1.

5. ε, κn, Bn, η: Based on the experiments in the simulations, we suggest to set

ε = 10−6, κn = 0.15 · ln(n), Bn = 0.85 · ln(n)/ ln ln(n), and η = 10−6.

For both of the Monte Carlo examples below, we consider samples of sizes n = 100,

200, and 500. For q1, we set q1 = 6 when n = 100, q1 = 13 when n = 200, and q1 = 33

when n = 500. The expected sample sizes of the smallest cube are 16.6, 15.3 and 15.1,

respectively. All our simulation results are based on 500 simulation repetitions, and for

each repetition, the critical value is approximated by 500 bootstrap replications. Nominal

size of the test is set to be 10%.

6.2 Testing the Monotone Instrumental Variable Assumption

We then consider the finite-sample performance of our test for Example 2.1. Without

loss of generality, we assume that Y (0) = 0. Then, we only need to consider the null that

E[f (1)(Y, 1)|X = x1] ≥ E[f (2)(Y, 1)|X = x2] when x1 ≥ x2.

By the Remarks below Theorem 2.1, violations of HMIV
0 are not always statistically

detectable (regardless of sample size). It is also mentioned there that the closer E[yu ·

(1−D)|X = x] and E[y` ·(1−D)|X = x] are, the more likely for us to detect the violation

of MIV. Note that

E[yu(1−D)|X = x] = E[yu|D = 0, X = x]P (D = 0|X = x).

We can see that the smaller P (D = 0|X = x) is and the smaller the gap between yu

and y`, the more likely for us to detect the violation. Therefore, we consider the cases
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where the MIV assumption is violated and control these two factors to make the violation

statistically detectable or not detectable.

Case (1): Let

Y (1) = −2X + ε, X ∼ Uni[0, 1],

ε ∼ Uni[−0.1, 0.1], D = 1(U ≤ 0.8), and U ∼ Uni[0, 1],

where X, ε, U are mutually independent, and Uni[a, b] stands for the uniform dis-

tribution on the interval [a, b]. Here yu = 0.1 and y` = −2.1. In this case, the MIV

is violated, and it is detectable because HGRM
0 is also violated.

Case (2): Let

Y (1) = −2X + ε, X ∼ Uni[0, 1],

ε ∼ Uni[−1, 1], D = 1(U ≤ 0.5), and U ∼ Uni[0, 1],

where X, ε, U are mutually independent. Here yu = 1 and y` = −3. In this case, we

can verify that the MIV is violated, but the violation is not statistically detectable

because HGRM
0 is not violated.

Case (3): Let

Y (1) = −2X + ε, X ∼ Uni[0, 1],

ε ∼ Uni[−0.1, 0.1], D = 1(U ≤ 0.2 + 0.8X), and U ∼ Uni[0, 1],

where X, ε, U are mutually independent. Here yu = 0.1 and y` = −2.1. In this

case, we can verify that the MIV is violated, and the violation is detectable because

HGRM
0 is also violated.

Case (4): Let

Y (1) = −2X + ε, X ∼ Uni[0, 1],

ε ∼ Uni[−1, 1], D = 1(U ≤ 0.9− 0.8X), and U ∼ Uni[0, 1],

where X, ε, U are mutually independent. Here yu = 1 and y` = −3. In this case, we

can verify that the MIV is violated, but the violation is not statistically detectable

because HGRM
0 is not violated.
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In the simulations we consider two possibilities: (a) yu and y` are known, and (b)

yu and y` are unknown but we replace yu and y` with maxi Yi and mini Yi, respectively.

Note that maxi Yi
p→ yu and mini Yi

p→ y` at a faster rate than n−1/2 which implies that

the estimation effects of maxi Yi and mini Yi can be ignored asymptotically. On the other

hand, maxi Yi ≤ yu and mini Yi ≥ y`, so we expect that the power of case (b) be better

than (a) when the violation is statistically detectable.

Table 1 shows the rejection probabilities for our test, and it confirms our theoretical

findings. The rejection probabilities are greater than the nominal size 0.1 in cases (1)

and (3) where the GRM and the MIV are both violated. In these cases, the rejection

probabilities of the multipler version (GMS-u) and the bootstrap version (GMS-b) are

similar, both increases with the sample size, and both are higher when yu and y` are

estimated. Neither version of our test has any power in cases (2) and (4). This is

consistent with Theorem 2.1, which says that no test can have power greater than size

in those cases because the sharp testable implication of MIV is not violated.

6.3 Testing Regression Monotonicity

We next consider a Monte Carlo demonstration of our test for a regression monotonicity

example. We use the same designs as in Chetverikov (2013), where there is no Z in the

model and X is a scalar. Let X be a uniform distribution on [−1, 1] and ξ be a normal

distribution or uniform distribution with mean zero and standard deviation equal to σξ.

The variable Y is generated as

Y = c1X − c2φ(c3X) + ξ, (6.2)

where c1, c2, c3 ≥ 0 and φ(·) is the pdf of the standard normal distribution. As in

Chetverikov (2013), we consider four set of parameters:

Case (1): c1 = c2 = c3 = 0 and σξ = 0.05.

Case (2): c1 = c3 = 1, c2 = 4 and σξ = 0.05.

Case (3): c1 = 1, c2 = 1.2, c3 = 5 and σξ = 0.05.

Case (4): c1 = 1, c2 = 1.5, c3 = 4 and σξ = 0.1.
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Table 1: Rejection Probabilities of our Test for MIV (α = 0.1, number of simulation

repetitions = 500, critical value simulation draws =500)

yu and y` are known yu and y` are unknown

Cases n GMS-u GMS-b GMS-u GMS-b

(1): HMIV
0 violated 100 0.912 0.918 0.954 0.954

HGRM
0 violated 200 0.994 0.992 1.000 1.000

500 1.000 1.000 1.000 1.000

(2): HMIV
0 violated 100 0.000 0.000 0.000 0.000

HGRM
0 holds 200 0.000 0.000 0.000 0.000

500 0.000 0.000 0.000 0.000

(3): HMIV
0 violated 100 0.230 0.218 0.306 0.292

HGRM
0 violated 200 0.472 0.472 0.584 0.596

500 0.910 0.910 0.944 0.950

(4): HMIV
0 violated 100 0.000 0.000 0.000 0.000

HGRM
0 holds 200 0.000 0.000 0.000 0.000

500 0.000 0.000 0.000 0.000

It can be verified that H0 holds in Cases (1) and (2), and H1 holds in Cases (3) and

(4). Table 2 shows the rejection probabilities for our test with both the multiplier critical

value (GMS-u) and the bootstrap critical value (GMS-b). The columns of CS-SD and

IS-SD are taken from Chetverikov (2013). CS-SD refers to the step-down procedure with

consistent sigma estimator and IS-SD refers to the step-down procedure with inconsistent

sigma estimator. For details of the procedures CS-SD and IS-SD, see Chetverikov (2013).

As we can see from Table 2, our test controls the size well in Cases (1) and (2), and

the rejection rates increase with the sample size in Cases (3) and (4). The performance

of our tests is comparable to the tests proposed by Chetverikov’s (2013).
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Table 2: Rejection Probabilities of Our Test (GMS-u, GMS-b) and Chetverikov’s (2013)

test (CS-SD, IS-SD) for Regression Monotonicity (α = 0.1, number of simulation repeti-

tions = 500, critical value simulation draws = 500)

normal uniform

Case n GMS-u GMS-b CS-SD IS-SD GMS-u GMS-b CS-SD IS-SD

100 0.106 0.100 0.128 0.164 0.100 0.088 0.122 0.201

(1) 200 0.118 0.116 0.114 0.149 0.126 0.136 0.121 0.160

500 0.090 0.090 0.114 0.133 0.118 0.110 0.092 0.117

100 0.000 0.000 0.008 0.024 0.000 0.000 0.007 0.033

(2) 200 0.002 0.002 0.010 0.017 0.002 0.004 0.010 0.024

500 0.004 0.004 0.007 0.016 0.000 0.000 0.011 0.021

100 0.008 0.008 0.433 0.000 0.010 0.008 0.449 0.000

(3) 200 0.706 0.674 0.861 0.650 0.712 0.678 0.839 0.617

500 0.996 0.996 0.997 0.995 1.000 1.000 0.994 0.990

100 0.156 0.164 0.223 0.043 0.152 0.156 0.217 0.046

(4) 200 0.408 0.378 0.506 0.500 0.386 0.342 0.478 0.456

500 0.884 0.880 0.826 0.822 0.904 0.890 0.846 0.848

7 Conclusion

In this paper, we construct a test for the hypothesis of generalized regression mono-

tonicity. The GRM is the sharp testable implication of monotonicity in certain latent

structures. Examples include the monotone instrumental variable assumption, and the

monotonicity of a nonparametric mean regression function when the dependent variable

is only observed with interval values. The GRM also includes regression monotonicity

and stochastic monotonicity as special cases. Our tests are shown to have uniform size

control asymptotically, to be consistent against fixed alternatives, and to have nontrivial

local power against some n−1/2-local alternatives.

For future studies, it would be interesting to extend our tests to allow for the cases

in which X or/and Z include generated regressors or single indexes. Another direction
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is to test the nonparametric generalized regression monotonicity in the form of

H0 : EP [f (1)(W, τ)|X = x1, Z = zo] ≥ EP [f (2)(W, τ)|X = x2, Z = zo],

∀x1, x2 ∈ X and x1 ≥ x2, and τ ∈T ,

where zo defines a specific subpopulation of our interest. A test of this hypothesis may

be developed in the spirit of Andrews and Shi (2014).
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APPENDIX

A Auxiliary Lemmas

For any covariance kernel function h, let Ψh denote the mean-zero Gaussian process with covari-

ance kernel function h. Define

χ̂P (τ, `) ≡



√
n
(
m̂(1)(τ, `)−m(1)

P (τ, `)
)

√
n
(
m̂(2)(τ, `)−m(2)

P (τ, `)
)

√
n
(
ŵ(1)(`)− w(1)

P (`)
)

√
n
(
ŵ(2)(`)− w(2)

P (`)
)

 ,

Φ̂P (τ, `) ≡
√
n(ν̂n(τ, `)− νP (τ, `)). (A.1)

When Pan is in place of P , we have an in place of n in previous notations. Also, define

ĥ1,P (·) =
1

n

n∑
i=1

ẅ(Wi, ·), ̂̈mP (·) =
1

n

n∑
i=1

m̈(Wi, ·),

ĥ2,P (·, ·) =
1

n

n∑
i=1

(
m̈(Wi, ·)− ̂̈mP (·)

)(
m̈(Wi, ·)− ̂̈mP (·)

)′
,

ĥP = (ĥ1,P , ĥ2,P ), ĥν,P = ĥ′1,P · ĥ2,P · ĥ1,P .

Lemma A.1. Suppose Assumption 4.1 holds. For a sequence {Pan ∈ P : n ≥ 1} for a subsequence

{an} of {n}, suppose that d(hPan , h)→ 0 for some h ∈ H. Then we have:

(i) d(ĥPan , h)
p→ 0, and

(ii) χ̂Pan (τ, `)⇒ Ψh2 .

The following lemma summarizes revelent results regarding ν̂n(τ, `).

Lemma A.2. Suppose Assumption 4.1 holds. For a sequence {Pan ∈ P : n ≥ 1} for a subsequence

{an} of {n}, suppose that d(hPan , h)→ 0 for some h ∈ H. Then we have:

(i) d(h2,ν,Pan
, h2,ν)→ 0,

(ii) d(ĥ2,ν,Pan
, h2,ν)

p→ 0,

(iii) Φ̂Pan (τ, `)⇒ Ψh2,ν
,

(iv) Φ̂uPan ⇒ Ψh2,ν conditional on sample path with probability one,

(v) Φ̂bPan ⇒ Ψh2,ν
conditional on sample path with probability one,

(vi) supτ∈T ,`∈L |σ̂−1
ε,an(τ, `)− σ−1

ε,h2,ν
(τ, `)| p→ 0 where σ2

ε,h2,ν
(τ, `) = max{h2,ν((τ, `), (τ, `)), ε},

(vii) Φ̂uPan (·)/σ̂ε,an(·)⇒ ·Ψh2,ν
(·)/σε,h2,ν

(·) conditional on sample path with probability one, and

(viii) Φ̂bPan (·)/σ̂ε,an(·)⇒ Ψh2,ν (·)/σε,h2,ν (·) conditional on sample path with probability one.
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Lemma A.3. Suppose Assumptions 3.3 and 4.1 hold. For a sequence {Pan ∈ P : n ≥ 1} for

a subsequence {an} of {n}, suppose that (a) d(hPan , h) → 0 for some h ∈ H, and that (b)

νPan (τ, `) = νPc(τ, `) + δ(τ, `)/
√
n for some Pc ∈ P0 and some function δ : T ×L → R. Then we

have:

(i) T̂n
d→
∫

(T L)o(Pc)
max

{
Φh2,ν,Pc

(τ,`)+δ(τ,`)

σε,h2,ν,Pc
(τ,`) , 0

}2

dQ(τ, `).

(ii) T̂un
d→
∫

(T L)o(Pc)
max

{
Φh2,ν,Pc

(τ,`)

σε,h2,ν,Pc
(τ,`) , 0

}2

dQ(τ, `) conditional on almost all paths of the original

sample.

(iii) T̂ bn
d→
∫

(T L)o(Pc)
max

{
Φh2,ν,Pc

(τ,`)

σε,h2,ν,Pc
(τ,`) , 0

}2

dQ(τ, `) conditional on almost all paths of the original

sample.

B Proof of Theorems

Proof of Theorem 2.1. First, we show part (i). Observe that, for x1 ≥ x2,

E[f (1)(Y, 1)|X = x1] = E[Y D + yu · (1−D)|X = x1]

=E[Y (1)D + Y (1)(1−D) + (yu − Y (1)) · (1−D)|X = x1]

=E[Y (1) + (yu − Y (1)) · (1−D)|X = x1]

≥E[Y (1)|X = x1]

≥E[Y (1)|X = x2]

≥E[Y (1)D + Y (1)(1−D) + (yl − Y (1)) · (1−D)|X = x2]

=E[Y D + (yl) · (1−D)|X = x2] = E[f (2)(Y, 1)|X = x2], (B.1)

where the second line holds because Y D = Y (1)D, the fourth line holds because yu−Y (1) ≥ 0 by

assumption, and by similar arguments the last two lines hold. Similarly, E[f (1)(Y, 2)|X = x1] ≥

E[f (2)(Y, 2)|X = x2] when x1 ≥ x2. Part (i) follows.

We show part (ii) by construction. Let

I1(x) = sup
a≤x

E[DY |X = a] + y`E[1−D|X = a]

I2(x) = sup
a≤x

E[(1−D)Y |X = a] + y`E[D|X = a]. (B.2)

Let

Y (1) = DY + (1−D)
I1(X)− E(DY |X)

1− E(D|X)

Y (0) = (1−D)Y +D
I2(X)− E[(1−D)Y |X]

E(D|X)
. (B.3)
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It is easy to see that

E[Y (1)|X] = I1(X), and E[Y (0)|X] = I2(X). (B.4)

By the construction of I1(·) and I2(·), they are increasing. Thus, HMIV
0 is satisfied with

(Y (1), Y (0), D,X).

Now we only need to verify that Y (1), Y (0) are bounded between y` and yu. Consider the

derivation:

y` ≤ Y (0) ≤ yu

⇔ y` ≤
I1(X)− E(DY |X)

1− E(D|X)
≤ yu

⇔ E[DY |X] + E[(1−D)y`|X] ≤ I1(X) ≤ E[DY |X] + E[(1−D)yu|X]

⇔ I1(X) ≤ E[DY |X] + E[(1−D)yu|X]

⇔ E[DY |X] + E[(1−D)y`|X = a] ≤ I1(X) ≤ E[DY |X] + E[(1−D)yu|X = x]

∀a ≤ x

⇐ HGRM
0 , (B.5)

where the first ⇔ holds because Y ∈ [y`, yu], the second follows from rearranging terms, the

third and the fourth ⇔’s follow from the definition of I1(X), and the ⇐ holds by the definition

of HGRM
0 . Similarly, we can show that, HGRM

0 implies y` < Y (1) ≤ yu as well. Therefore, the

constructed Y (0) and Y (1) are bounded between y` and yu.

Proof of Theorem 2.2. Part (i) is obvious, thus its proof is omitted.

We show part (ii) by construction. Let fu(x, z) denote E[Yu|X = x, Z = z], and let f`(x, z)

denote E[Y`|X = x, Z = z]. Let

f(x, z) = sup
a≤x

f`(a, z). (B.6)

Then, by definition, f(x, z) is increasing in x for any z. And by HGRM
0 in (2.5), f(x, z) ∈

[f`(x, z), fu(x, z)] for all x, z. Let

λ(x, z) =
fu(x, z)− f(x, z)

fu(x, z)− f`(x, z)
, (B.7)

where 0/0 is taken to be 0. Then, λ(x, z) ∈ [0, 1] for all x, z. Let

Y = Y`λ(X,Z) + Yu(1− λ(X,Z)). (B.8)
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By construction, Y ∈ [Y`, Yu]. Also it is elementary that

E[Y |X,Z] = f`(X,Z)λ(X,Z) + fu(X,Z)(1− λ(X,Z)) = f(X,Z). (B.9)

That means that the distribution of (Y,X,Z) satisfies HLRM
0 . This concludes the proof of part

(ii).

Proof of Theorem 4.1. We prove the case for ĉη = ĉuη . The proof for ĉη = ĉbη is similar and we

omit it. Our proof is similar to that of Theorem 6.3 of Donald and Hsu (2016) and that of Hsu

(2016). Let H1,ν denote the set of all functions from T × L to [−∞, 0]. Let hν = (h1,ν , h2,ν),

where h1,ν ∈ H1,ν and h2,ν ∈ H2,ν , and define

T (hν) =

∫
max

{ Φh2,ν (τ, `)

σε,h2,ν
(τ, `)

+ h1,ν(τ, `), 0
}2

dQ(τ, `).

Define c0(h1,ν , h2,ν , 1− α) as the (1− α)-th quantile of T (hν).

Similar to Lemma A2 of AS, we can show that for any ξ > 0,

lim supn→∞ sup
P∈P0

P
(
T̂n > c0(hP1,ν,n, h2,ν,P , 1− α) + ξ

)
≤ α, (B.10)

where hP1,ν,n =
√
nνP (·, ·) and hP1,ν,n belongs to H1,ν under P ∈ P0. Also, similar to Lemma A3

of AS, we can show that for all α < 1/2

lim supn→∞ sup
P∈P0

P
(
c0(φn, h2,ν,P , 1− α) < c0(hP1,ν,n, h2,ν,P , 1− α)

)
= 0. (B.11)

As a result, to complete the proof of Theorem 4.1, it suffices to show that for all 0 < δ < η

lim supn→∞ sup
P∈P0

P
(
ĉun,η < c0(φN , h2,P , 1− α) + ξ

)
= 0. (B.12)

Let {Pn ∈ P0 : n ≥ 1} be a sequence for which the probability in the statement of (B.12) evaluated

at Pn differs from its supremum over P ∈ P0 by δn or less, where δn > 0 and limn→∞ δn = 0. By

the definition of lim sup, such sequence always exists. Therefore, it is equivalent to show that for

0 < ξ < η,

limn→∞P
(
ĉun,η < c0(φn, h2,ν,P , 1− α) + ξ

)
= 0, (B.13)

where ĉun,η denotes the critical value under Pn. To be more specific, we know that quantity on

the left hand side exists, but we want to show that it is 0. Given that H0 is a compact set,

there exists a subsequence kn of n such that hPk,n → h∗ for some h∗ ∈ H0 and this implies

that h2,ν,Pkn
converges to h∗2,ν . By Lemma A.2, ·Ψu

Pkn
(·)/σ̂ε,kn(·)⇒Ψh∗

2,ν
(·)/σε,h∗

2,ν
(·) conditional

on sample path in probability. Then there exists a further subsequence mn of kn such that

Ψu
Pmn

(·)/σ̂ε,mn(·)⇒Ψh∗
2,ν

(·)/σε,h∗
2,ν

(·) conditional on sample path almost surely.

32



For any ω ∈
{
ω ∈ Ω : Ψu

Pkn
(·)/σ̂ε,kn(·)⇒ · Ψh∗

2,ν
(·)/σε,h∗

2,ν
(·)
}
≡ Ω1, by the same argument

for Theorem 1 of AS we can show that for any constant amn ∈ R which may depend on h1 and

P and for any 0 < ξ1,

lim sup
n→∞

sup
h1,ν∈H1,ν

Pu

(∫
max

{Ψu
Pmn

(τ, `)

σ̂ε,mn(τ, `)
(ω) + h1,ν(τ, `), 0

}2

dQ(τ, `) ≤ amn
)

− P
(
T (hν) ≤ amn + ξ1

)
≤ 0. (B.14)

(B.14) is similar to (12.28) in AS. By (B.14) and by the similar argument for Lemma A5 of AS,

we have that for all 0 < ξ < ξ1 < η,

lim infn→∞ĉ
u
mn,η(ω) ≥ c0(φmn , h2,ν,Pmn , 1− α) + ξ1. (B.15)

Therefore, for any ω ∈ Ω1, (B.15) holds. Given that P (Ω1) = 1, we have that for all 0 < ξ < ξ1 < η

P
({
ω : lim infn→∞ĉ

u
mn,η(ω) ≥ c0(φmn , h2,ν,Pmn

, 1− α) + ξ1
})

= 1,

which implies that

limn→∞P (ĉumn,η < c0(φmn , h2,ν,Pmn
, 1− α) + δ) = 0. (B.16)

Note that for any convergent sequence An, if there exists a subsequence Amn converging to A,

then An converges to A as well. Therefore, (B.16) is sufficient for (B.13). Theorem 4.1(a) is

shown by combining (B.10), (B.11) and (B.12).

To show Theorem 4.1(ii), note that, under the Pc specified in Assumption 4.3, Lemma A.3

(i) implies that

T̂n
d→
∫

(T L)o(Pc)

max
{ Φh2,ν,Pc

(τ, `)

σε,h2,ν,Pc
(τ, `)

, 0
}2

dQ(τ, `). (B.17)

this limiting distribution is non-degenerate by Assumption 4.3. Let H(a) denote the CDF of

the limiting distribution defined in (B.17). By Davydov, Lifshits and Smorodina (1995), H(a)

is continuous and strictly increasing on a ∈ [0,∞) with H(0) > 1/2 under Assumption 4.3.

Therefore, the (1 − α) quantile of the limiting distribution defined in (B.17) is strictly greater

than 0 when α ≤ 1/2, and we denote it as c0(1−α). Also, c0(1−α) is continuous on α ∈ (0, 1/2].

By the same proof for part (i), it is true that ĉuη
p→ c0(1 − α + η) + η, and by the conti-

nuity of the limiting distribution, we have limη→0 c0(1 − α + η) + η → c0(1 − α). Therefore,

limη→0 lim supn→∞ P (T̂n > ĉuη) = α.
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Proof of Theorem 5.1. Assumptions 3.2(a) and 5.1 together implies that∫
T a(P∗)

dQ(τ) > 0. (B.18)

For any τ ∈ T a(P∗), there exist x1 ≥ x2 and z such that EP [f (1)(W, τ)|X = x1, Z = z] >

EP [f (2)(W, τ)|X = x2, Z = z]. By continuity, there exist r∗ > 0 such that x∗1− r∗ ≥ x∗2 + r∗, that

for all x1 ∈ [x∗1 − 2r∗, x∗1 + 2r∗], x2 ∈ [x∗2 − 2r∗, x∗2 + 2r∗] and z ∈ [z∗ − 2r∗, z + 2r∗], and that

EP [f (1)(W, τ)|X = x1, Z = z] > EP [f (2)(W, τ)|X = x2, Z = z]. Then for all ` = (x1, x2, z, r)

such that x1 ∈ [x∗1 − r∗, x∗1 + r∗], x2 ∈ [x∗2 − r∗, x∗2 + r∗], z ∈ [z∗ − r∗, z + r∗] and r ≤ r∗, we have

νP∗(τ, `) > 0. Let

L∗(τ) = [x∗1 − r∗, x∗1 + r∗]× [x∗2 − r∗, x∗2 + r∗]× [z∗ − r∗, z + r∗]× (0, r∗]. (B.19)

By assumption, we have
∫
L∗(τ)

Q(`) > 0 and this implies∫
L∗(τ)

max
{ νP∗(τ, `)

σε,h2,ν,P∗
(τ, `)

, 0
}2

Q(`) =

∫
L∗(τ)

( νP∗(τ, `)

σε,h2,ν,P∗
(τ, `)

)2

Q(`) > 0 (B.20)

because νP∗(τ, `) > 0 when ` ∈ L∗(τ). Next we have

A∗ ≡
∫

max
{ νP∗(τ, `)

σε,h2,ν,P∗
(τ, `)

, 0
}2

Q(τ, `)

≥
∫
T a(P∗)

∫
L∗(τ)

( νP∗(τ, `)

σε,h2,ν,P∗
(τ, `)

)2

Q(`)Q(τ) > 0. (B.21)

Note that n−1T̂n
p→ A∗ > 0 under P∗. Therefore, T̂n diverges to positive infinity in probability,

but ĉuη is bounded in probability. Therefore, limn→∞ P (T̂n > ĉuη) = 1. The proof for the bootstrap

critical value is the same and thus omitted.

Proof of Theorem 5.2. Note that

m
(j)
Pn

(τ, `) = EPn [f (j)(Y, τ)g
(j)
x,`(X)gz,`(Z)]

= EPn,xz
[
EPn [f (j)(Y, τ)|X,Z] · g(j)

x,`(X)gz,`(Z)
]

= EPc,xz
[
EPc [f

(j)(Y, τ)|X,Z] · g(j)
x,`(X)gz,`(Z)

]
+ EPc,xz

[
γδj(X,Z, τ) · g(j)

x,`(X)gz,`(Z)
]
/
√
n

= m
(j)
Pc

(τ, `) + γδj(τ, `)/
√
n, (B.22)

where δ(j)(τ, `) = EPc,xz
[
δj(X,Z, τ) · g(j)

x,`(X)gz,`(Z)
]
. The third equality holds because of As-

sumptions 5.2(a) and (b). Also,

w
(j)
Pn

(τ, `) = EPn [g
(j)
x,`(X)gz,`(Z)] = EPn,xz [g

(j)
x,`(X)gz,`(Z)]
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= EPc,xz [g
(j)
x,`(X)gz,`(Z)] = w

(j)
Pc

(τ, `) (B.23)

where the third equality holds because Pn,xz = Pc,xz. Therefore,

νPn(τ, `) = m
(2)
Pn

(τ, `)w
(1)
Pn

(τ, `)−m(1)
Pn

(τ, `)w
(2)
Pn

(τ, `)

= m
(2)
Pc

(τ, `)w
(1)
Pc

(τ, `)−m(1)
Pc

(τ, `)w
(2)
Pc

(τ, `)

+ γ
(
δ(2)(τ, `)w

(1)
Pc

(τ, `)− δ(1)(τ, `)w
(2)
Pc

(τ, `)
)
/
√
n

= νPc(τ, `) + γδν(τ, `)/
√
n, (B.24)

where δν(τ, `) ≡ δ(2)(τ, `)w
(1)
Pc

(τ, `)− δ(1)(τ, `)w
(2)
Pc

(τ, `). Under Assumption 5.2 (d), we have

δν(τ, `) ≥ 0 ∀τ, `. (B.25)

In addition, under Assumptions 5.2(e) and 5.3, we have,∫
(T L)+(Pc)

dQ(τ, `) > 0, where (T L)+(Pc) = {(τ, `) ∈ (T L)o(Pc) : δν(τ, `) > 0}. (B.26)

Under the local alternative sequence {Pn}n≥1, using B.24, Lemma A.3(i) shows that

T̂n
d→
∫

(T L)o(Pc)

max
{Φh2,ν,Pc

(τ, `) + γδν(τ, `)

σε,h2,ν,Pc
(τ, `)

, 0
}2

dQ(τ, `). (B.27)

Also, Lemma A.3(ii) shows that the critical value statistic

T̂un
d→
∫

(T L)o(Pc)

max
{ Φh2,ν,Pc

(τ, `)

σε,h2,ν,Pc
(τ, `)

, 0
}2

dQ(τ, `) (B.28)

conditional on almost all sample paths. Note that the limiting distribution defined in (B.28) is

identical to that in (B.17). We denote its cumulative distribution function as H(a).

We consider two cases, depending on whether the limiting distribution defined in (B.28) is

degenerate or not. First, suppose that it is non-degenerate. By the proof for part (ii) of Theorem

4.1, we have that H(a) is continuous and strictly increasing on a ∈ [0,∞). We also have that, the

(1−α) quantile of the right-hand-side of (B.28), c0(1−α), satisfies: c0(1−α) > 0 if α < 1/2, and

it is continuous on α ∈ (0, 1/2). Because δν(τ, `) ≥ 0 for all τ and `, we have that the limiting

distribution of the test statistic defined in (B.27) is non-degenerate, strictly increasing on [0,∞),

and first order stochastically dominant to that in (B.28). It follows that

lim
η→0

lim
n→∞

P (T̂n ≥ ĉuη)

= lim
η→0

P
(∫

(T L)o(Pc)

max
{Φh2,ν,Pc

(τ, `) + γδν(τ, `)

σε,h2,ν,Pc
(τ, `)

, 0
}2

dQ(τ, `) ≥ c0(1− α+ η) + η)
)

≥ lim
η→0

P
(∫

(T L)o(Pc)

max
{ Φh2,ν,Pc

(τ, `)

σε,h2,ν,Pc
(τ, `)

, 0
}2

dQ(τ, `) ≥ c0(1− α+ η) + η)
)
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= α, (B.29)

where the first equality holds because the test statistic defined in (B.27) is non-degenerate and

strictly increasing on [0,∞), and the first inequality holds because limiting distribution of the test

statistic defined in (B.27) first order stochastically dominates that in (B.28). The last equality

holds because the distribution defined in (B.28) is continuous and strictly increasing on [0,∞).

This shows part (i) of the theorem for the non-degenerate case.

We now show part (ii) for the non-degenerate case. Consider the derivation

lim
γ→∞

lim
n→∞

P (T̂n ≥ ĉuη)

= lim
γ→∞

P
(∫

(T L)o(Pc)

max
{Φh2,ν,Pc

(τ, `) + γδν(τ, `)

σε,h2,ν,Pc
(τ, `)

, 0
}2

dQ(τ, `) ≥ c0(1− α+ η) + η)
)

≥ lim
γ→∞

P
(∫

(T L)+(Pc)

max
{Φh2,ν,Pc

(τ, `) + γδν(τ, `)

σε,h2,ν,Pc
(τ, `)

, 0
}2

dQ(τ, `) ≥ c0(1− α+ η) + η)
)

= 1, (B.30)

where the last equality holds by (B.26). This shows part (ii) of the theorem for the non-degenerate

case.

Now we consider the the second case, where the limiting distribution in (B.28) is degener-

ate. The limiting distribution in (B.28) is degenerate iff the measure of {(τ, `) ∈ (T L)o(Pc) :

h2,ν,Pc((τ, `), (τ, `)) > 0}. Let

S = {(τ, `) ∈ (T L)o(Pc) : h2,ν,Pc((τ, `), (τ, `)) = 0}. (B.31)

Equation (B.26) implies that
∫

(T L)o(Pc)
dQ(τ, `) > 0 because (T L)+(Pc) ⊆ (T L)o(Pc). That

and the degeneracy of the limiting distribution in (B.28) imply that the limiting distribution in

(B.27) reduces to∫
S

max
{δν(τ, `)√

ε
, 0
}2

dQ(τ, `) =

∫
S

δ2
ν(τ, `)

ε
dQ(τ, `)

≥
∫

(T L)+(Pc)

δ2
ν(τ, `)

ε
dQ(τ, `)

> 0. (B.32)

where the strict inequality holds by (B.26).

Because the limiting distribution in (B.28) is degenerate, ĉuη
p→ c0(1−α+η)+η = η. Therefore,

for η is small enough that
∫

(T L)+
δ2
ν(τ, `)ε−1dQ(τ, `) > η,

lim
n→∞

P (T̂n ≥ ĉuη) = 1 (B.33)

This shows both part (i) and part (ii) of the theorem for the degenerate case.
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C Proof of Lemmas

Proof of Lemma 3.1. We first show that (3.1) implies (1.1) by contradiction. For this direction,

we show the case for Lc-cube and given that Lc-cube is a subset of Lcube, so the case for Lcube

follows.

Suppose that (1.1) is not true, then there exist x1 > x2, τ ∈ T and z such that EP [f (1)(Y, τ)|X

= x1, Z = z] < EP [f (2)(Y, τ)|X = x2, Z = z]. By continuity, there exist [x1`, x1u], [x2`, x2u] and

[zl, zu] with x1` � x1u, x2` � x2u, zl � zu, x1` ≥ x2`, x1u ≥ x2u such that

EP [f (1)(Y, τ)|X = x1, Z = z] < EP [f (2)(Y, τ)|X = x2, Z = z]

for all x1 ∈ [x1`, x1u], x2 ∈ [x2`, x2u], z ∈ [zl, zu]. (C.1)

Given that rational numbers are dense and x1` ≥ x2`, x1u ≥ x2u, we can find x∗1, x∗2, z∗ and

a natural number q∗ that is large enough such that

q∗ · (x1, x2, z) ∈ {0, 1, . . . , (q∗)−1}2dx+dz ,

x∗1 ≤ x∗2,

[x∗1, x
∗
1 + (q∗)−1] ⊆ [x1`, x1u], [x∗2, x

∗
2 + (q∗)−1] ⊆ [x2`, x2u], [z∗, z∗ + (q∗)−1] ⊆ [z`, zu].

Let `∗ = (x1, x2, z, (q
∗)−1) and it is obvious that `∗ ∈ Lc-cube. Equation (C.1) implies that

EP

[
f (1)(Y, τ)

∣∣X ∈ Cx∗
1 ,r

∗
x
, Z ∈ Cz∗,r∗z

]
< EP

[
f (2)(Y, τ)

∣∣X ∈ Cx∗
2 ,r

∗
x
, Z ∈ Cz∗,r∗z

]
, (C.2)

which is equivalent to

m
(1)
P (τ, `∗)

w
(1)
P (`∗)

=
EP [f (1)(Y, τ)g

(1)
x,`∗(X)gz,`∗(Z)]

EP [g
(1)
x,`∗(X)gz,`∗(Z)]

<
EP [f (2)(Y, τ)g

(2)
x,`∗(X)gz,`∗(Z)]

EP [g
(2)
x,`∗(X)gz,`∗(Z)]

=
m

(2)
P (τ, `∗)

w
(2)
P (τ, `∗)

, (C.3)

Therefore, there exist τ ∈ T and `∗ ∈ Lc-cube such that

νP (τ, `∗) = m
(2)
P (τ, `∗)w

(1)
P (`∗)−m(1)

P (τ, `∗)w
(2)
P (`∗) > 0, (C.4)

i.e., (3.1) is violated.

Next, we show that (1.1) implies (3.1). It is sufficient to show the Lcube case since Lc-cube is

a subset of Lcube. For notational simplicity, we consider the case where dx = 1 and dz = 0, and

the proof for cases where dx ≥ 2 and/or dz ≥ 1 is similar. When dx = 1 and dz = 0, we have

` = (x1, x2, r). Note that we only need to consider those `’s such that E[g
(1)
x,` ] = P (X ∈ Cx1,rx) > 0

and E[g
(2)
x,` ] = P (X ∈ Cx2,rx) > 0 because E[g

(1)
x,` ] = P (X ∈ Cx1,rx) = 0 implies that m

(1)
P (τ, `) = 0

and w
(1)
P (τ, `) = 0 for all τ ∈ T . This further implies that νP (τ, `) = 0 for all τ ∈ T . For any

` ∈ L such that E[g
(1)
x,` ] > 0 and E[g

(2)
x,` ] > 0, there are three different cases to consider:
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First. x1 = x2.

Second. x1 > x2, and x1 ≥ x2 + r.

Third. x1 > x2, and x1 < x2 + r.

For the first case, clearly, g
(1)
x,` = g

(2)
x,` and

νP (τ, `) = EP
[(
f (2)(Y, τ)− f (1)(Y, τ)

)
g

(1)
x,`(X)

]
· EP [g

(1)
x,`(X)]. (C.5)

By (1.1), we have

E[f (1)(Y, τ)|X = x] ≥ E[f (2)(Y, τ)|X = x] for all x ∈ [x1 − r, x1 + r], (C.6)

and by law of iterated expectations,

EP
[(
f (2)(Y, τ)− f (1)(Y, τ)

)
g

(1)
x,`(X)

]
= EPx

[
EP
[
(f (2)(Y, τ)− f (1)(Y, τ))|X

]
g

(1)
x,`(X)

]
≤ 0. (C.7)

This implies that νP (τ, `) ≤ 0 for the first case.

For the second case, we have x′1 ≥ x′2 for all x′1 ∈ [x1, x1 + r] and x′2 ∈ [x2, x2 + r]. By (1.1),

E[f (1)(Y, τ)|X = x′1] ≥ E[f (2)(Y, τ)|X = x′2] for all x′1 ∈ [x1, x1 + r], x′2 ∈ [x2, x2 + r].

(C.8)

It follows that

EP
[
f (1)(Y, τ)g

(1)
x,`(X)]

EP
[
g

(1)
x,`(X)]

= EP
[
f (1)(Y, τ)|X ∈ [x1, x1 + r]

]
≥ EP

[
f (2)(Y, τ)|X ∈ [x2, x2 + r]

]
=
EP
[
f (2)(Y, τ)g

(2)
x,`(X)]

EP
[
g

(2)
x,`(X)]

. (C.9)

This implies that νP (τ, `) ≤ 0 for the second case.

For the third case, it is true that x1 + r > x2 + r > x1 > x2. Therefore, [x2, x2 + r] =

[x2 + r, x1 + r] ∪ [x1 + r, x2] and [x1 + r, x1] = [x1 + r, x2] ∪ [x2, x1]. By the similar argument in

the first case and the second case,

EP
[
f (1)(Y, τ)|X ∈ [x2 + r, x1 + r]

]
≥ EP

[
f (2)(Y, τ)|X ∈ [x1, x2 + r]

]
EP
[
f (1)(Y, τ)|X ∈ [x2 + r, x1 + r]

]
≥ EP

[
f (2)(Y, τ)|X ∈ [x2, x1]

]
EP
[
f (1)(Y, τ)|X ∈ [x1, x2 + r]

]
≥ EP

[
f (2)(Y, τ)|X ∈ [x1, x2 + r]

]
EP
[
f (1)(Y, τ)|X ∈ [x1, x2 + r]

]
≥ EP

[
f (2)(Y, τ)|X ∈ [x2, x1]

]
. (C.10)
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These imply that

EP
[
f (1)(Y, τ)|X ∈ [x2 + r, x1 + r]

]
≥ P (X ∈ [x1, x2 + r])

P (X ∈ [x2, x2 + r])
EP
[
f (2)(Y, τ)|X ∈ [x1, x2 + r]

]
+

P (X ∈ [x2, x1])

P (X ∈ [x2, x2 + r])
EP
[
f (2)(Y, τ)|X ∈ [x2, x1]

= EP
[
f (2)(Y, τ)|X ∈ [x2, x1], and (C.11)

EP
[
f (1)(Y, τ)|X ∈ [x1, x2 + r]

]
≥ EP

[
f (2)(Y, τ)|X ∈ [x2, x1]. (C.12)

It follows that

EP
[
f (1)(Y, τ)|X ∈ [x1, x1 + r]

]
=
P (X ∈ [x2 + r, x1 + r])

P (X ∈ [x1, x1 + r])
EP
[
f (1)(Y, τ)|X ∈ [x2 + r, x1 + r]

]
+

P (X ∈ [x2 + r, x1 + r])

P (X ∈ [x1, x1 + r])
EP
[
f (1)(Y, τ)|X ∈ [x1, x2 + r]

]
≥ EP

[
f (2)(Y, τ)|X ∈ [x2, x1]. (C.13)

This implies that νP (τ, `) ≤ 0 for the third case.

This completes the proof for Lemma 3.1.

D Proofs of Auxiliary Lemmas

Proof of Lemma A.1. For notational simplicity, we prove it for the sequence {n} and all of the

arguments go through with {an} in place of {n}.

We apply Lemma E2 of Andrews and Shi (2013b; AS2 hereafter) to show part (i). It is suf-

ficient to show that every element of ĥPn converges to h uniformly. Note that {m(j)(ω,Wn,i, τ, `) :

τ ∈ T , ` ∈ L, i ≤ n, n ≥ 1} is manageable with respect to envelopes {(Fn,1(ω), . . . , Fn,n(ω)) : n ≥

1} because m(j)(W, τ, `) = f (j)(W, τ) · g(j)
x,`(X) · gz,`(Z), and {f (j)(ω,Wn,i, τ) : τ ∈ T , i ≤ n, n ≥

1}, {g(j)
x,`(ω,Xn,i) : ` ∈ L, i ≤ n, n ≥ 1} and {gz,`(ω,Zn,i) : ` ∈ L, i ≤ n, n ≥ 1} are

manageable with respect to envelopes {(Fn,1(ω), . . . , Fn,n(ω)) : n ≥ 1}, {(1, . . . , 1) : n ≥ 1} and

{(1, . . . , 1) : n ≥ 1} respectively. By Assumption 4.1, there exists 0 < η n−1
∑n
i=1EPnF

1+η
n,i ≤M

for some 0 < M <∞ for all n ≥ 1. Then by Lemma E2 AS2, we have

sup
τ∈T ,`∈L

| 1
n

n∑
i=1

m(j)(Wn,i, τ, `)− EPnm(j)(W, τ, `)| p→ 0. (D.1)

Similar arguments apply to w(j)(W, `). This shows that d(ĥPn,1, h1)
p→ 0.
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The proof for d(ĥPn,2, h2)
p→ 0 is identical to the proof of Lemma A1(b) of AS2 after we

replace their DF with identity matrix and their Σ̂n(θ, g, g∗) with ĥ2,P (·, ·), so we omit it for

brevity. This completes part (i).

The proof for Part (ii) is a non-standardized version of Lemma A1(a) of AS2 and the proof

is identical to that for Lemma A1(a) of AS2. We omit it for brevity.

Proof of Lemma A.2. For notational simplicity, we prove it for the sequence {n} and all of the

arguments go through with {an} in place of {n}. Part (i) follows from the fact that d(hPn , h)→ 0

and the definitions of h2,ν,Pn and h2,ν . Part (ii) follows from Lemma A.1(i).

For part (iii), note that uniformly over (τ, `) ∈ T × L,

√
n
(
m̂(2)
n (τ, `)ŵ(1)

n (`)− EPn [m(2)(τ, `)]EPn [w(1)(`)]
)

= EPn [w(1)(`)] ·
√
n(m̂(2)

n (τ, `)− EPn [m(2)(τ, `)])

+ EPn [m(2)(τ, `)] ·
√
n(ŵ(1)

n (`)− EPn [w(1)(`)])

+
√
n(m̂(2)

n (τ, `)− EPn [m(2)(τ, `)])(ŵ(1)
n (`)− EPn [w(1)(`)])

= EPn [w(1)(`)] ·
√
n(m̂(2)

n (τ, `)− EPn [m(2)(τ, `)])

+ EPn [m(2)(τ, `)] ·
√
n(ŵ(1)

n (`)− EPn [w(1)(`)]) + op(1), (D.2)

where the op(1) in the last line follows from Lemma A.1(ii). Similar expansion applies to
√
n
(
m̂

(1)
n (τ, `)ŵ

(2)
n (`)− EPn [m(1)(τ, `)]EPn [w(2)(`)]

)
. Therefore, uniformly over (τ, `) ∈ T × L,

Φ̂Pan (τ, `) =
√
n(ν̂n(τ, `)− νPn(τ, `))

= EPn [w(1)(`)] ·
√
n(m̂(2)

n (τ, `)− EPn [m(2)(τ, `)])

+ EPn [m(2)(τ, `)] ·
√
n(ŵ(1)

n (`)− EPn [w(1)(`)])

− EPn [w(2)(`)] ·
√
n(m̂(1)

n (τ, `)− EPn [m(1)(τ, `)])

− EPn [m(1)(τ, `)] ·
√
n(ŵ(2)

n (`)− EPn [w(2)(`)]) + op(1)

= hPn,1 · χ̂Pn(τ, `) + op(1). (D.3)

By Lemma A.1(ii) and the fact that d(hPn , h)→ 0, we have hPn,1 · χ̂Pn(τ, `)⇒ Ψh2,ν . Equation

(D.3) is equivalent to that sup(τ,`)∈T ×L |Φ̂Pan (τ, `)− hPn,1 · χ̂Pn(τ, `)| p→ 0 and by Lemma 1.10.2

of van der Vaart and Wellner (1996), this suffices to show that Φ̂Pan (τ, `) =
√
n(ν̂n(τ, `) −

νPn(τ, `))⇒ Ψh2,ν
.

For part (iv), we define βn(Wi, τ, `) as

βn(Wi, τ, `) = EPn [w(1)(`)] ·
(
m

(2)
i (τ, `)− EPn [m(2)(τ, `)]

)
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+ EPn [m(2)(τ, `)] ·
(
w

(1)
i (`)− EPn [w(1)(`)]

)
− EPn [w(2)(`)] ·

(
m

(1)
i (τ, `)− EPn [m(1)(τ, `)]

)
− EPn [m(1)(τ, `)] ·

(
w

(2)
i (`)− EPn [w(2)(`)]

)
, (D.4)

and we denote it as βn,i(τ, `). It is straightforward to see that Φ̂Pan (τ, `) = n−1/2
∑n
i=1 βn,i(τ, `)+

op(1) from (D.3). Also, define

β̂n,i(τ, `) = ŵ(1)
n (`) · (m(2)

i (τ, `)− m̂(2)
n (τ, `)) + m̂(2)

n (τ, `) · (w(1)
i (`)− ŵ(1)

n (`))

− ŵ(2)
n (`) · (m(1)

i (τ, `)− m̂(1)
n (τ, `))− m̂(1)

n (τ, `) · (w(2)
i (`)− ŵ(2)

n (`)), (D.5)

which is the sample counterpart of βn,i(τ, `). It is true that Φ̂uPn = n−1/2
∑n
i=1 Ui · β̂n,i(τ, `).

Because Ψhν is Borel measurable and separable, then by Section 1.12 (page 73) of van der

Vaart and Wellner (1996), Φ̂uPn ⇒ Ψh2,ν conditional on sample path with probability one iff

supg∈BL1
|Eug(Φ̂uPn)−E[g(Ψh2,ν

)]| p→ 0 where BL1 denotes the set of all real functions on `∞(T ×

L) with a Lipschitz norm bounded by 1 and Eu denotes the expectation w.r.t. Ui’s. Then

by Lemma 1.9.2 of van der Vaart and Wellner (1996), supg∈BL1
|Eug(Φ̂uPn) − E[g(Ψh2,ν

)]| p→

0 iff for any subsequence {bn} of {n}, there exists a further subsequence of {kn} such that

supg∈BL1
|Eug(Φ̂uPn)−E[g(Ψh2,ν

)]| a.s.→ 0 which is equivalent to that for any subsequence {bn} of

{n}, there exists a further subsequence of {kn} such that Φ̂uPkn ⇒ Ψh2,ν
conditional on sample

path almost surely. Hence, to show part (iv), it is sufficient to show that for any subsequence

{bn} of {n}, there exists a further subsequence of {kn} such that Φ̂uPkn ⇒ Ψh2,ν conditional on

sample path almost surely.

First, let Mg > 1 be some constant such that EPn [m
(j)
n (W, τ, `)] ≤Mg and EPn [w

(j)
n (W, `)] ≤

Mg for all n ≥ 1. Such Mg exists because of Assumption 4.1(b). Under Assumption 4.1 and

by law of large number (LLN), we have n−1
∑n
i=1(Fn,i + Mg)

2 − EPn [(Fn,i + Mg)
2]

p→ 0. Also,

by LLN, we have n−1
∑n
i=1(Fn,i + Mg)

δ1 − EPn [(Fn,i + Mg)
δ1 ]

p→ 0 where δ is as defined in

Assumption 4.1 and it is true that lim supn→∞EPkn [(Fkn,i +Mg)
δ1 ] <∞.

As a result, for any subsequence {bn} of {n}, there exists a further subsequence of {kn} such

that

d(ĥPkn , h)
a.s.→ 0,

1

kn

kn∑
i=1

(Fkn,i +Mg)
2 − EPkn [(Fkn,i +Mg)

2]
a.s.→ 0, and

1

kn

kn∑
i=1

(Fkn,i +Mg)
δ − EPkn [(Fkn,i +Mg)

δ]
a.s.→ 0. (D.6)

Define

Ω1 ≡
{
ω ∈ Ω : d(ĥPkn , h)(ω)→0,
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1

kn

kn∑
i=1

(Fkn,i +Mg)
2(ω)− EPkn [(Fkn,i +Mg)

2]→0, and

1

kn

kn∑
i=1

(Fkn,i +Mg)
δ1(ω)− EPkn [(Fkn,i +Mg)

δ1 ]→ 0
}
. (D.7)

By construction, P (Ω1) = 1. We show that k
−1/2
n

∑kn
i=1 Ui · β̂kn,i(τ, `)(ω) ⇒ Ψh2,ν (τ, `) for all

ω ∈ Ω1. First, we re-write

1√
kn

kn∑
i=1

Ui · β̂kn,i(τ, `)(ω)

=
1√
kn

kn∑
i=1

Ui · βkn,i(τ, `)(ω)

+ (ŵ(1)
n (`)− EPn [w(1)(`)])(ω) · 1√

kn

kn∑
i=1

Ui · (m(2)
i (τ, `)− EPn [m(2)(τ, `)])(ω)

+ (m̂(2)
n (τ, `)− EPn [m(2)(τ, `)])(ω) · 1√

kn

kn∑
i=1

Ui · (w(1)
i (`)− EPn [w(1)(`)])(ω)

− (ŵ(2)
n (`)− EPn [w(2)(`)])(ω) · 1√

kn

kn∑
i=1

Ui · (m(1)
i (τ, `)− EPn [m(1)(τ, `)])(ω)

− (m̂(1)
n (τ, `)− EPn [m(1)(τ, `)])(ω) · 1√

kn

kn∑
i=1

Ui · (w(2)
i (`)− EPn [w(2)(`)])(ω)

+ (ŵ(1)
n (`)− EPn [w(1)(`)])2(ω) · 1√

kn

kn∑
i=1

Ui + (m̂(2)
n (τ, `)− EPn [m(2)(τ, `)])2(ω)×

1√
kn

kn∑
i=1

Ui

− (ŵ(2)
n (`)− EPn [w(2)(`)])2(ω) · 1√

kn

kn∑
i=1

Ui − (m̂(1)
n (τ, `)− EPn [m(1)(τ, `)])2(ω)×

1√
kn

kn∑
i=1

Ui

= A+B1 +B2 −B3 −B4 + C1 + C2 − C3 − C4, (D.8)

where A, Bj ’s and Cj ’s are defined term by term. It is sufficient for us to show that A⇒ Ψh2,ν
,

and Bj ’s and Cj ’s are all op(1) uniformly over τ ∈ T and ` ∈ L.

We use Theorem 10.6 (functional central limit theorem) of Pollard (1990) to show A⇒ Ψh2,ν .

Define

gkn,i(τ, `) =
Ui√
kn
βkn,i(τ, `)(ω), (D.9)

Gkn,i =
Ui√
kn

4Mg(Fkn,i(ω) +Mg).
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By Lemma E1 of AS2 and the manageability of the every element of βkn,i(τ, `), we have that

{gkn,i(τ, `, ωu) : τ ∈ T , ` ∈ L, i ≤ kn, n ≥ 1} is manageable with respect to envelopes

{(Gkn,1(ωu), . . . , Gkn,kn(ωu) : n ≥ 1}. Hence, (i) of Theorem 10.6 of Pollard (1990) holds. Let

ζkn(τ, `) =
∑kn
i=1 gkn,i(τ, `). By definition, Eu[ζkn(τ1, `1)ζkn(τ2, `2)] = h′1,Pkn h̃2,Pkn

h1,Pkn
((τ1, `1),

(τ2, `2)) where

h̃2,Pkn
=

1

kn

kn∑
i=1

(
m̈(Wi, ·)− EPkn [m̈(·)]

)(
m̈(Wi, ·)− EPkn [m̈(·)]

)′
. (D.10)

Also,

h̃2,Pkn
= ĥ2,Pkn

(ω)−
( ̂̈mPkn

(·)− EPkn [m̈(·)]
)( ̂̈mPkn

(·)− EPkn [m̈(·)]
)′

(ω). (D.11)

Equation (D.11) and d(ĥPkn (ω), h) → 0 imply that d(h̃2,Pkn
(ω), h2) → 0. By assumption, we

have that d(h1,Pkn
, h1) → 0, so h̃2,ν,Pkn

≡ h′1,Pkn h̃2,Pkn
h1,Pkn

→ h2,ν . That is, (ii) of Theorem

10.6 of Pollard (1990) hold. Note that
∑kn
i=1(Fkn,i(ω) + Mg)

2 − EPkn [(Fkn,i(ω) + Mg)
2] → 0

and EPkn [(Fkn,i(ω) + Mg)
2] < C for some constant C. These imply that, for some constant C,

lim supn→∞ k−1
n

∑kn
i=1(Fkn,i(ω) +Mg)

2 < C. Also, consider the derivation

lim sup
n→∞

Eu

[ kn∑
i=1

G2
kn,i

]
= lim sup

n→∞

1

kn

kn∑
i=1

[
4Mg(Fkn,i(ω) +Mg)

]2
< 16M2

gC <∞. (D.12)

That is, part (iii) of Theorem 10.6 of Pollard (1990) holds. By a similar argument of (16.39) of

AS, we have, for any ε ∈ (0,∞),

kn∑
i=1

Eu
[
G2
kn,i(ω) · 1(Gkn,i > ε)

]
≤ ε−δ1

kn∑
i=1

Eu

[∣∣∣ Ui√
kn
F̈kn,i(ω)

∣∣∣δ1]
≤ C

k
δ/2−1
n εδ1

· 1

kn

kn∑
i=1

∣∣(Fkn,i(ω) +Mg)
∣∣δ1

→ 0, (D.13)

where the C in the second inequality comes from E[|U |2+δ1 ] < C and the convergence result in

the last line holds because k
−δ1/2+1
n → 0 and lim supn→∞ k−1

n

∑kn
i=1 |Fkn,i(ω) + Mg|δ1(ω) < ∞.

That is, (iv) of Theorem 10.6 of Pollard (1990) holds. Note that

ρkn((τ1, `1), (τ2, `2))

=

kn∑
i=1

Eu
[
g2
kn,i(τ1, `1) + g2

kn,i(τ2, `2)− 2gkn,i(τ1, `1)gkn,i(τ2, `2)
]

=
1

kn

kn∑
i=1

β2
kn,i(τ1, `1)(ω) + β2

kn,i(τ2, `2)(ω)− 2βkn,i(τ1, `1)(ω)βkn,i(τ2, `2)(ω)

= h̃2,ν,Pkn
((τ1, `1), (τ1, `1)) + h̃2,ν,Pkn

((τ2, `2), (τ2, `2))− 2h̃2,ν,Pkn
((τ1, `1), (τ2, `2))
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→ h2,ν((τ1, `1), (τ1, `1)) + h2,ν((τ2, `2), (τ2, `2))− 2h2,ν((τ1, `1), (τ2, `2))

≡ ρ((τ1, `1), (τ2, `2)), (D.14)

uniformly over (τ1, `1), (τ2, `2) ∈ T × L. This is sufficient for (v) of Theorem 10.6 of Pollard

(1990). Therefore, we have ζkn ⇒ Ψh2,ν by Theorem 10.6 of Pollard (1990).

For B1 term, notice that by the same argument for A, we have

1√
kn

kn∑
i=1

Ui ·
(
m

(2)
i (τ, `)− EPn [m(2)(τ, `)]

)
(ω)⇒ Ψh2(1,1), (D.15)

where h2(1, 1) denote the (1, 1)-th element of h2. Note that supτ∈T ,`∈L |ŵ
(1)
n (`)−EPn [w(1)(`)])|(ω)

→ 0, so it is true that

sup
τ∈T ,`∈L

|B1| ≤ sup
τ∈T ,`∈L

∣∣(ŵ(1)
n (`)− EPn [w(1)(`)])(ω)

∣∣×
sup

τ∈T ,`∈L

∣∣∣ 1√
kn

kn∑
i=1

Ui · (m(2)
i (τ, `)− EPn [m(2)(τ, `)])(ω)

∣∣∣
= o(1) ·Op(1) = op(1). (D.16)

Therefore, Bj = op(1) for all j = 1, . . . , 4. For C1 term, we have

1√
kn

kn∑
i=1

Ui = Op(1) (D.17)

and supτ∈T ,`∈L
∣∣(ŵ(1)

n (`)− EPn [w(1)(`)])(ω)
∣∣2 = o(1), so

sup
τ∈T ,`∈L

∣∣∣(ŵ(1)
n (`)− EPn [w(1)(`)])2(ω)

1√
kn

kn∑
i=1

Ui

∣∣∣
=
∣∣∣ 1√
kn

kn∑
i=1

Ui

∣∣∣ · sup
τ∈T ,`∈L

∣∣∣(ŵ(1)
n (`)− EPn [w(1)(`)])

∣∣∣2(ω)

=Op(1) · o(1) = op(1). (D.18)

Similarly, Cj = op(1) for j = 2, 3 and 4.

These results are sufficient to show that kn
−1/2∑kn

i=1 Ui · β̂kn,i(τ, `)(ω)⇒ Ψh2,ν
for all ω ∈ Ω1

with P (Ω1) = 1. This shows Φ̂uPn ⇒ Ψh2,ν
conditional on sample path with probability one.

For part (v), let

χ̂bPn(τ, `) ≡



√
n
(
m̂

(1)b
n (τ, `)− m̂(1)(τ, `)

)
√
n
(
m̂

(2)b
n (τ, `)− m̂(2)(τ, `)

)
√
n
(
ŵ

(1)b
n (τ, `)− ŵ(1)(`)

)
√
n
(
ŵ

(2)b
n (τ, `)− ŵ(2)(`)

)

 . (D.19)
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By part 8 of Lemma D.2 of Bugni, Canay and Shi (2015), we have χ̂bPn ⇒ Φh2
conditional on

almost all sample paths. Next, by the same arguments for part (iii), we can show part (v).

To show part (vi), we have supτ∈T ,`∈L |ĥ2,ν,Pan
((τ, `), (τ, `)) − h2,ν((τ, `), (τ, `))| p→ 0 from

part (ii). By the fact that max{a, ε} is a continuous function, it follows that

sup
τ∈T ,`∈L

|max{ĥ2,ν,Pan
((τ, `), (τ, `)), ε} −max{h2,ν((τ, `), (τ, `)), ε}| p→ 0, (D.20)

so supτ∈T ,`∈L |σ2
ε,an(τ, `) − σ2

ε (τ, `)| p→ 0. Given that ε > 0, we have σ2
ε (τ, `) ≥ ε > 0 for all τ, `.

Hence, it follows that supτ∈T ,`∈L |σ−1
ε,an(τ, `)− σ−1

ε (τ, `)| p→ 0 and this shows part (vi).

Part (vii) follows from parts (iv) and (vi), and part (viii) follows from parts (v) and (vi).

Proof of Lemma A.3. To show part (i), for ι > 0, define (T L)ι(Pc) = {(τ, `) : νPc(τ, `) ≥

−ι · σε,h2,ν,Pc
(τ, `)} and (T L)ι(Pc)

c denote the complement of (T L)ι(Pc). Note that by Lemma

A.2(v)-(vi) and condition (b) of the present lemma, we have

sup
τ∈T ,`∈L

∣∣∣ ν̂n(τ, `)

σ̂ε,n(τ, `)
− νPc(τ, `)

σε,h2,ν,Pc
(τ, `)

∣∣∣ p→ 0. (D.21)

Then it follows that, with probability approaching one,

sup
(τ,`)∈(T L)ι(Pc)c

ν̂n(τ, `)

σ̂ε,n(τ, `)
≤ −ι/2. (D.22)

This implies that∫
(T L)ι(Pc)c

max
{√

n
ν̂n(τ, `)

σ̂ε,n(τ, `)
, 0
}2

dQ(τ, `) = op(1). (D.23)

Therefore,

T̂n =

∫
(T L)ι(Pc)

max
{√

n
ν̂n(τ, `)

σ̂ε,n(τ, `)
, 0
}2

dQ(τ, `) + op(1)

≤
∫

(T L)ι(Pc)

max
{√

n
ν̂n(τ, `)− νPn(τ, `) + δ(τ, `)/

√
n

σ̂ε,n(τ, `)
, 0
}2

dQ(τ, `) + op(1) (D.24)

where the equality holds by the previous equation. The inequality holds because condition (a)

holds and νPc(τ, `) ≤ 0 and max{a2, 0} is non-decreasing in a. Therefore,

lim sup
n→∞

P (T̂n ≤ t) ≤ P
(∫

(T L)ι(Pc)

max
{Φh2,ν,Pc

(τ, `) + δ(τ, `)

σε,h2,ν,Pc
(τ, `)

, 0
}2

dQ(τ, `) ≤ a
)
. (D.25)

Note that ι is any arbitrary positive number, so letting ι→ 0 and using the facts that
Φh2,ν,Pc

(τ,`)

σε,h2,ν,Pc
(τ,`)

is a tight Gaussian process and that
∫

(T L)ι(Pc)\(T L)o(Pc)
dQ(τ, `)→ 0, we have, for any t ∈ R,

lim sup
n→∞

P (T̂n ≤ t) ≤ P
(∫

(T L)o(Pc)

max
{Φh2,ν,Pc

(τ, `) + δ(τ, `)

σε,h2,ν,Pc
(τ, `)

, 0
}2

dQ(τ, `) ≤ t
)
. (D.26)
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On the other hand, we have

T̂n ≥
∫

(T L)o(Pc)

max
{√

n
ν̂n(τ, `)

σ̂ε,n(τ, `)
, 0
}2

dQ(τ, `). (D.27)

It follows that, for all t ∈ R,

lim inf
n→∞

P (T̂n ≤ t) ≥ P
(∫

(T L)o(Pc)

max
{Φh2,ν,Pc

(τ, `) + δ(τ, `)

σε,h2,ν,Pc
(τ, `)

, 0
}2

dQ(τ, `) ≤ t
)
. (D.28)

Equations (D.26) and (D.28) together imply that, for all t ∈ R,

lim
n→∞

P (T̂n ≤ t) = P
(∫

(T L)o(Pc)

max
{Φh2,ν,Pc

(τ, `) + δ(τ, `)

σε,h2,ν,Pc
(τ, `)

, 0
}2

dQ(τ, `) ≤ t
)
. (D.29)

This concludes the proof of part (i).

Part (ii) and part (iii) can be proved following the same steps, except one uses parts (vii)

and (viii) of Lemma A.2 instead of (v) and (vi) of that lemma, and one eliminates δ(τ, `) using

Assumption 3.3. Details are omitted for brevity.
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