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Abstract
Sequential service plays an important role in theory of bank panics.

The interaction of sequential service with private information over liquid-
ity needs evidently opens the door for bank panics in Diamond and Dybvig
(1983). These authors go on to suggest that deposit insurance eliminates
bank panics. Wallace (1988) has questioned the logic of their prescription
since it appears to rely on deposit insurance somehow overcoming sequen-
tial service. In our paper, we provide a theory of bank panics that is based
on the interaction of private information with scale economies—we make
no use of sequential service. Panics in our model occur when funding is
pulled in suffi cient quantities from the banking system to precude it from
operating at scale. Deposit insurance is feasible in our environment and
may be desirable.

1 Introduction

Investors in market economies have access to a wide array of financial products
with contractual options that can be exercised at investor discretion. Bryant
(1980) suggests that such options are a means to insure investors against unob-
servable risks. Market economies are also subject to recurring financial crises. It
has long been suspected that the two phenomena are linked, with the direction
of causality running from financial product design to financial instability. Estab-
lishing this causal link—either empirically or theoretically—however, has proven
elusive.1 This paper concerns the theory of bank panics, by which we take
to mean financial instability as a by-product of financial product design inter-
acting with psychological (rather than fundamental) factors influencing market
expectations.

1An alternative view is that financial instability is merely symptomatic of diffi culties ex-
perienced in the broader economy. Gorton (1988), for example, notes that banking crises are
frequently preceded by economic recession.
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Central to the theory of bank panics in the tradition of Diamond and Dyb-
vig (1983) is the notion of sequential service—the practice of satisfying depositor
withdrawal demands on a first-come-first-served basis. Absent sequential ser-
vice, Green and Lin (2000) demonstrate how the optimal banking arrangement
in Diamond and Dybvig (1983) conditions early withdrawal amounts on ag-
gregate withdrawal demand. Optimality dictates that the “haircut” on early
redemptions is increasing in the aggregate volume of early withdrawals. These
state-contingent haircuts can be structured so that suffi cient resources remain
in the bank to satisfy the promises made to those who are willing to delay
redemption at a higher rate of return. As a consequence, patient depositors
have no incentive to misrepresent their liquidity needs. If depositors collectively
understand this, then they need never fear a bank panic.

Sequential service is clearly not suffi cient to produce an equilibrium bank
panic (Green and Lin, 2000). Even in the basic Diamond and Dybvig (1983)
model, where aggregate uncertainty over liquidity demand is absent, sequential
service only produces a panic equilibrium if the deposit contract fails to suspend
payments in the event that reserves are depleted—a practice that is evidently ob-
served in historical banking crises. On the other hand, Peck and Shell (2003)
show how a bank panic is possible even under a contractual arrangement that
is optimal in a class of direct mechanisms. Sequential service is evidently neces-
sary to produce this result. Andolfatto, Nosal and Sultanum (2016), however,
demonstrate that sequential service need not impede effi cient implementation
in a broader class of mechanisms.

Thus, the role of sequential service in the theory of bank panics is not entirely
clear. Wallace (1988) forcefully contends that some form of communication
barrier in the early withdrawal period is at the very least necessary to explain
illiquid bank structures in the Diamond and Dybvig (1983) framework. If all
depositors wanting to make an early withdrawal were instead in communication
with each other and the bank, then the liquidity insurance problem is solved
through the use of state-contingent haircuts. Moreover, absent some commu-
nication barrier, Wallace (1988) points out that depositors could—and generally
would want to—participate in a one-period credit market after their liquidity
needs are realized. As demonstrated by Jacklin (1987), the opportunity for ex
post trade renders illiquid banking an unsustainable enterprise.2

In this paper, we revisit the question of whether bank panics are theoretically
possible in a version of the Diamond and Dybvig (1983) model where sequential
service for early arrivals is absent and the banking arrangement is optimal given
the properties of the environment. While the practice of first-come-first-served
is common in retail settings, we do not believe it constitutes an essential ingre-
dient for financial instability. The phenomenon of panic-induced runs on local
bakeries, for example, is not something that resonates with most people. A more

2Although depositors would not voluntarily participate in an illiquid bank (sequential ra-
tionality constraints are violated), involuntary participation through a trading restriction can
improve ex ante welfare.
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promising avenue, in our view, is to explore the role that scale economies in in-
vestment and intermediation may play in determining the fragility of funding
structures.

There is some evidence to suggest that banking is subject to scale economies;
see, for example, Hughes and Mester (2013), Beccali, Anolli, and Borello (2015),
and Wheelock and Wilson (2016). We model the scale economy as being rooted
in the nature of the investment technology itself. That is, the return to invest-
ment is subject to thresholds that, if surpassed, permit larger scale investments
to earn higher rates of return. All firms, including non-bank enterprises, poten-
tially have access to the same investment technology. The distinguishing char-
acteristic of banks is how these investments are funded. In particular, banks are
compelled (presumably through competition) to offer their depositor base struc-
tured liability products that provide the flexibility to withdraw funding on short
notice (e.g., demand deposit liabilities).3 It is the interaction of this liability
structure (itself a by-product of asymmetric information) with the underlying
non-convexity in asset returns that potentially opens the door to a bank panic.

2 The model

The model is based on Green and Lin (2000, 2003), which is a finite-trader
version of the Diamond and Dybvig (1983) model with aggregate liquidity risk.
The economy has two dates, t = 1, 2, and a finite number N ≥ 3 of ex ante
identical agents who are subject to a shock at date t = 1 that determines their
preference type ω ∈ {i, p}. We label a type ω = i agent impatient and a type
ω = p agent patient. Let 0 < π < 1 denote the probability that an agent becomes
impatient. Let πn denote the probability that 0 ≤ n ≤ N agents are impatient.
We assume that agent types are i.i.d. so that πn =

(
N
n

)
πn(1 − π)N−n. Note

that 0 < πn < 1 for all n (the distribution of types has full support).

Impatient agents want to consume at date 1 while patient agents are willing
to defer consumption to date 2 (technically, they are indifferent between con-
suming at dates 1 and 2). Let ct represent the consumption of an agent at date
t. Ex ante preferences are given by

U(c1, c2) =

{
u(c1) w.p. π
u(c1 + c2) w.p. 1− π

∣∣∣∣ (1)

where u(c) = c1−σ/(1− σ), σ > 1.

Each agent is endowed with a claim to y units of date 1 output. There is
storage technology that transforms k units of date 1 output into Fκ(k) units of
date 2 output according to

Fκ(k) =

{
rk if k < κ
Rk if k ≥ κ

∣∣∣∣ , (2)

3Moreover, because a larger more diversified depositor base lowers the cost of insurance,
there is a second dimension along which scale economies matter for banks.
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where 0 < r < 1 < R and 0 ≤ κ < Ny.4 The function (2) is a generalization of
the standard technology used in this literature, which assumes that κ = 0, so
that F0(k) = Rk for all k ≥ 0. Here, the high rate of return R is available only
the level of investment exceeds a minimum scale requirement of κ.5 When the
minimum scale is not met there is a cost to storage, indexed by the parameter
r.

The benefits of cooperation in this economy are twofold. First, there are
the usual gains associated with sharing risk. Second, and absent from the usual
model specification, scale economies are more accessible when resources are
pooled. In what follows, we relabel agents as depositors and call any contractual
arrangement among depositors to share risk and exploit scale economies a bank.
Formally, the bank is a resource-allocation mechanism that pools the resources of
0 ≤ N̂ ≤ N depositors before they learn their types in exchange for a structured
liability product that delivers consumption (withdrawal limits) at dates 1 and
2, conditional on individual and aggregate information available at each date.

An important consideration in the design of the contract is the nature of
private information and communications. What makes our environment a bank
problem– as opposed to a standard insurance problem– is that the demand for
early consumption (withdrawals) is based on private information. Consequently,
the contract must embed an option that is exercisable at the depositor’s discre-
tion at the early date– it will, in this sense, resemble a standard demand deposit
liability. Moreover, for the purpose of ensuring effi cient resource allocation, the
contract should be structured in a way that gives depositors incentives to rep-
resent their liquidity preferences truthfully– that is, the allocation implied by
the contract should be incentive-compatible.

What one assumes about communication generally matters for allocations.
Here we adopt the simple direct revelation mechanism in Peck and Shell (2013).
The mechanism works as follows: Agents agree to participate in the bank con-
tract by depositing their claims to date 1 output. Depositors then observe their
preference shock; they are either impatient or patient. Depositors can visit the
bank either at date 1 or at date 2, but not in both periods. Notice that this
assumed “travel itinerary”bears a close resemblance to actual depositor behav-
ior. That is, if a depositor wants to make a withdrawal, they visit the bank and
make their withdrawal, or else they wait to make their withdrawal at a later
date. This protocol, however, places a potentially binding restriction on com-
munications. For example, in Green and Lin (2003), effi cient risk-sharing under
a sequential service constraint requires that even patient agents communicate
their preferences to the bank in the early period– a period in which they do not
wish to make a withdrawal. We discuss the implications that our communication
restriction (or friction) has on outcomes in due course.

4Note that the return r is realized only if k is of insuffi cient scale. This poor return is not
to be confused with the scrapping cost modeled in Cooper and Ross (1998).

5One could easily generalize the analysis to permit multiple threshold levels and associated
rates of return, but here we stick to one threshold level for simplicity.
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Given our restriction on depositors’travel itineraries, communications con-
cerning preference type are transmitted indirectly via the timing of a depositor’s
visit to the bank. As a result, consumption at each date need only be conditioned
on the number of agents m visiting the bank at date 1, where m ∈ {0, 1, ..., N̂}.
In particular, if m agents travel to the bank at date 1, then each agent re-
ceives c1(m) units of date 1 consumption. Agents who visit the bank at date
2 each receive c2(m) = Fκ[N̂y − mc1(m)]/(N̂ − m) units of date 2 consump-
tion. Hence, the bank offers depositors a contract (or allocation) (c1, c2), where
c1 = [c1(1), . . . , c1(N̂)] and c2 = [c2(0), c2(1), . . . , c2(N̂ − 1)].

In what follows, we restrict attention to equilibria in which N̂ = N. It
seems clear enough that whenever a scale economy is present, N̂ = 0 can be
an equilibrium outcome. But it is an outcome that is attributable solely to the
assumed non-convexity in production and has little– if anything– to do with
how investment is financed. Our concern in what follows is to examine the
potential indeterminacy introduced by the funding structure itself.

3 Effi cient incentive-compatible allocations

In this section, we characterize the properties of effi cient incentive-compatible
allocations. We begin with the standard case in which the return to investment
is invariant to its scale (κ = 0). We then study the non-standard case in which
the return to investment is increasing in scale (κ > 0).

3.1 Linear technology

Assume, for the moment, that impatient depositors visit the bank at date 1
and that patient depositors visit at date 2. In this “truth-telling” scenario,
m = n. Recall that there is no sequential service constraint which implies that
the effi cient allocation depends on the number of depositors that visit the bank
at date 1.6

Collectively, depositors seek a contract to maximize their (ex ante identical)
expected utility,

max

N∑
n=0

πn{nu [c1(n)] + (N − n)u [c2(n)]} (3)

subject to the resource constraint,

nc1(n) +
(N − n)c2(n)

R
= Ny (4)

6Green and Lin (2000, 2003) also provide a characterization of the effi cient allocation when
there is no sequential service constraint and when the investment technology is linear. We
repeat these for the reader’s convenience.
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Let (c∗1, c
∗
2) denote the solution to the problem above. Then it is easy to see

that there is a unique solution that satisfies

u′[c∗1(n)] = Ru′[c∗2(n)] ∀n (5)

together with the resource constraint (4). Given our CES preference specifica-
tion, the solution is available in closed-form,

c∗1(n) =
Ny

n+ (N − n)R1/σ−1
(6)

c∗2(n) = R1/σc∗1(n) (7)

Notice that σ > 1 implies
(
1−R1/σ−1

)
≷ 0 as R ≷ 1. Since R > 1 here, it

follows that both c∗1(n) and c∗2(n) are decreasing in n. Using (6) and k∗(n) =
Ny − nc∗1(n) yields the associated investment schedule,

k∗(n) =
(N − n)R1/σ−1

n+ (N − n)R1/σ−1
Ny (8)

Observe here that k∗(n) and k∗(n)/(N − n) is decreasing n and that k∗(n) <
(N − n)y.7

A large value for n means that the aggregate demand for early withdrawals is
high. In this case, it makes sense to devote less resources to investment, reducing
the effective return for late withdrawals, spreading the additional early resources
more thinly among the more numerous impatient, reducing their return as well.
Note that high realizations for n are recessionary events (or investment collapses)
associated with large numbers of depositors making early withdrawals. These
events, however, are driven by economic fundamentals. A bank (or the banking
sector) could mitigate the economic impact of these “fundamental runs” by
expanding its depositor base (i.e., increasing N). Our full support assumption,
however, implies that the probability that all depositors desire early withdrawal
(πN ) will remain strictly positive, even if πN → 0 as N →∞.

If depositor preferences were observable, then this would be the end of the
story. (Up to this point we have assumed that only impatient depositors visit
the bank early, which is equivalent to assuming that depositor preferences are
observable.) However, when liquidity preferences are private information, then
depositors may misrepresent themselves for private gain and at the expense of
the community. Optimal depositor behavior will generally depend on how they
believe other depositors might behave. Hence, private information renders the
environment strategic, where depositors play a game among themselves.

The game that depositors play in this environment is simple. In the depositor
game, which is played after agents accept the contract by depositing their date
1 endowment claims at the bank and learn their type, depositor j ∈ {1, 2, ..., N}

7The latter inequality is a direct implication of risk sharing. If we replace R with r in (8),
then k∗(n) is still decreasing in n but k∗(n)/(N − n) is increasing.
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must choose an action tj ∈ {1, 2}, where tj denotes the date depositor j chooses
to visit the bank. A given strategy profile t ≡ {t1, t2, ..., tN} implies a number
m ∈ {0, 1, ..., N}, the number of depositors visiting the bank at date 1. We
define a truth-telling strategy to be a strategy profile consisting of impatient
depositors visiting the bank at date 1 and patient depositors visiting the bank
at date 2. For a truth-telling strategy, m = n. We define a panic strategy to be
a strategy profile consisting of all depositors visiting the bank at date 1. For a
panic strategy, m = N.

A strategy profile t (and its associated m) is said to be an (Bayes-Nash)
equilibrium of the depositor game with allocation (c1, c2) if tj ∈ t constitutes
a best-response for depositor j against t−j ≡ {t1, ..., tj−1,tj+1, ..., tN} for all
j ∈ {0, 1, ..., N}. An allocation (c1, c2) is said to be incentive-compatible (IC) if a
truth-telling strategy is an equilibrium for the depositor game. Mathematically,
incentive-compatibility requires

N−1∑
n=0

Πnu [c2(n)] ≥
N−1∑
n=0

Πnu [c1(n+ 1)] (9)

where Πn is the conditional probability that there are n impatient agents given
there is at least one patient agent, i.e.,

Πn =

(
N−1
n

)
(1− π)N−n−1πn∑N−1

n=0

(
N
n

)
(1− π)N−n−1πn

There are two important results associated with the solution (c∗1, c
∗
2). First,

it is incentive-compatible. To see this, note that when R > 1, (6) and (7) imply
that c∗2(n) > c∗1(n) > c∗1(n+1). In words, a patient agent’s consumption is higher
than an impatient agent’s consumption in a truthtelling equilibrium. And, if a
patient agent chooses to visit the bank at date 1, then date 1 consumption for all
agents is lower compared to what they would enjoy if the patient agent instead
traveled at date 2. Therefore, assuming that all other depositors are playing
truthfully, a patient agent has no incentive to travel at date 1 since doing so
would result in a strictly lower payoff.

Second, the truth-telling equilibrium that implements (c∗1, c
∗
2) in the depos-

itor game is unique. To see this, first note that it is a dominant strategy for
impatient depositors to visit the bank at date 1. In doing so, they represent
themselves truthfully. The question, as usual, concerns the behavior of patient
depositors. Let the patient depositor conjecture anything about the behavior
of other depositors; any such conjecture generates an m ∈ {1, 2, ..., N}. If the
patient depositor plays truthfully, he gets c∗2(m) > c∗1(m) > c∗1(m + 1), where
these inequalities follow from the stated properties of the allocation (6) and (7)
when R > 1. In other words, truth-telling for the patient depositor is a dominant
strategy. Regardless of the volume of early withdrawals, a patient depositor will
always earn a higher return by leaving his resources with the bank and letting
the deposit earn a high rate of return.

7



3.2 Scale economies

Consider now the same economy but with 0 < κ < Ny (recall that N ≥ 3)
and let’s characterize the effi cient incentive compatible allocation. We proceed
by first assuming truth-telling on the part of depositors. Let (ĉ1, ĉ2) denote
the effi cient truth-telling allocation under our assumed scale economy. We later
verify that the allocation is incentive-compatible.

A given 0 < κ < Ny will lie in the interval [k∗(n − 1), k∗(n)] for some
n ≥ 1. Let us without loss of generality assume that κ = k∗(2).8 This implies
that in any economy for which there are at least two patient depositors, the
investment level k∗(n) is feasible. It immediately follows that {ĉ1(n), ĉ2(n)} =
{c∗1(n), c∗2(n)} for n ∈ {0, 1, ..., N − 2}. Moreover, it is also clear that ĉ1(N) =
y = c∗1(N). Consequently, we have

Property 1 (ĉ1, ĉ2) = (c∗1, c
∗
2) for all n ∈ {0, 1, ..., N − 2, N}.

We now characterize the effi cient allocation in the event of a single patient
depositor, [ĉ1(N − 1), ĉ2(N − 1)]. Since k∗(1) < κ, the effi cient allocation will
be characterized by either k̂(N − 1) < κ, a project return of r and effi cient risk
sharing or k̂(N − 1) = κ, a project return of R and “ineffi cient” risk sharing.
We examine each in turn.

and Recall that any investment k < κ delivers a return rk, where r < 1. The
benefit associated with increasing investment is realized only when the threshold
level is reached. Therefore, the constrained-effi cient level of investment will be
determined either by (8) with r replacing R, or by the minimum level of invest-
ment needed to achieve scale, κ. We can rule out this latter case by considering
economies with N suffi ciently large render k∗(N − 2) = κ > 2y. In particular,
note from (8) that k∗(n) is monotonically increasing in N for any n.

Consider first a contract allocation that chooses k̂(N − 1) < κ. Then, using
(6) and (7) with r replacing R, early and late consumption allocation are given
by

ĉ1(N − 1) =

[
N

N − 1 + r1/σ−1

]
y (10)

ĉ2(N − 1) = r1/σ ĉ1(N − 1) (11)

Recall that A = 1− r1/σ < 0. Consequently, −A = −1 + r1/σ−1 = B > 0 so

ĉ1(N − 1) =

[
N

N +B

]
y

ĉ1(N−1) > y. To determine the properties of ĉ2(N−1), define α ≡ r1/σ < 1.
Thus

ĉ2(N − 1) =

[
αN

N − 1 + αr−1

]
y

8We discuss below how this assumption is without loss of generality.
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For ĉ2(N − 1) < y to be true, we need the following to hold,

[
αN

N − 1 + αr−1

]
< 1

αN < N − 1 + αr−1

1− αr−1 < N(1− α)

or

N >
1− α/r
1− α

This condition will hold for suffi ciently large N.

Property 2 ĉ2(N − 1) < y = ĉ1(N).

Property 2 means is that if a depositor knew he was the only patient one–
this is not something he knows until all bank visits are completed– he would
misreport himself as impatient. Notice that as r → 1, ĉ2(N − 1)→ y. Hence, if
r is arbitrarily close to 1, ĉ2(N − 1) ≈ ĉ1(N) = y.

Consider now a contract allocation [ĉ1(N−1), ĉ2(N−1)] that chooses k̂(N−
1) = κ = k∗(N − 2). Such an allocation implies that the project return is high,
R > 1, as well as ĉ1(N − 1) < c∗1(N − 1) and ĉ2(N − 1) > c∗2(N − 1). So,
although allocation [ĉ1(N − 1), ĉ2(N − 1)] gives a high project rate of return is
high, it does so at the cost of (worse) risk-sharing. Since k̂(N − 1) = k∗(N − 2),
ĉ1(N − 1) = Y N − k̂(N − 1) and ĉ2 = Rk̂(N − 1), we have

ĉ1(N − 1) =
N − 2

N − 2 + 2R1/σ−1
y (12)

ĉ2(N − 1) =
2R1/σ

N − 2 + 2R1/σ−1
y (13)

Proposition 1 The allocation (ĉ1, ĉ2) = (c∗1, c
∗
2) for all n ∈ {0, 1, ..., N −

2, N} with [ĉ1(N − 1), ĉ2(N − 1)] given by (10) and (11) is constrained effi -
cient incentive-compatible if r < 1 is suffi ciently close to unity and if N is
suffi ciently big.

Proof. We first show that allocation (10)-(11) generates higher welfare than
allocation (12)-(13). The we show that the allocation stated in the Proposition
is incentive compatible. When r is suffi ciently close to 1, then allocations (10)-
(11) are suffi ciently close to y, i.e., ĉ1(N −1) = ĉ2(N −1) = y and social welfare
is arbitrarily close to (1−σ)−1Ny1−σ ≡W1. Social welfare associated allocation
(12)-(13) is

(N − 1)[
N − 2

N − 2 + 2R1/σ−1
y]1−σ + [

2R1/σ

N − 2 + 2R1/σ−1
y]σ ≡W2.
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Since σ > 1, W1 > W2 if

(N − 1)[
N − 2 + 2R1/σ−1

N − 2
]σ−1 + [

N − 2 + 2R1/σ−1

2R1/σ
]σ−1 > N. (14)

Notice that: (1) σ−1 > 0; (2) the first fraction on the left side of (14) is greater
than 1; and (3) the second fraction is greater than 1 if

N − 2 + 2R1/σ−1 > 2R1/σ. (15)

Clearly, if N is suffi ciently large (for reasonable values of R, N = 3 is suffi ciently
large), then (15) is valid, as is (14), all of which implies that W1 > W2. Hence,
the effi cient truth-telling contract is the one stated in the Proposition. Since
ĉ2(n) > ĉ1(n+ 1) for all n 6= 1 and ĉ2(N − 1) ≈ ĉ1(N) = y, allocation (ĉ1, ĉ2) =
(c∗1, c

∗
2) for all n ∈ {0, 1, ..., N − 2, N} with [ĉ1(N − 1), ĉ2(N − 1)] given by (10)

and (11) is incentive compatible, i.e., it satisfies (9).

4 Panic equilibria

Before agents fund a bank and become depositors, they make the usual partic-
ipation decision: should they join the risk-sharing arrangement or not? Collec-
tively, this participation decision determines 0 ≤ N̂ ≤ N. Autarky is always a
feasible option and so places a lower bound on ex ante utility. Assuming that
no individual agent possesses suffi cient resources to operate investment at scale,
i.e., κ > y, the autarkic payoff is u(y). Autarky is always an equilibrium in
the participation game when κ > y. That is, if an agent believes that all other
agents are choosing not to participate in the banking arrangement, then it is
optimal for an agent to follow the crowd. However, this is not the indeterminacy
we are interested in. In what follows, we assume depositors can coordinate on
the participation outcome.

To highlight the role of private information in this economy, let us imagine
for the moment that it is absent. In this case, depositors traveling to the bank
at date 1 automatically reveal their type. A patient depositor visiting at date
1 is not supposed to be there, so the bank can refuse to service him (in accor-
dance to the contractual terms which would have specified this denial-of-service
stipulation ex ante). Assuming that the mechanism can commit to the threats
it makes along off-equilibrium paths, no patient depositor would ever have an
incentive to misrepresent himself. That is, in the absence of private informa-
tion, and conditional on participation, (ĉ1, ĉ2) is uniquely implementable as a
truth-telling equilibrium.

We now state our main result.

Proposition 2 If liquidity preference is private information, then allocation
(ĉ1, ĉ2) admits a panic equilibrium, where all N agents exercise their option to
withdraw funding from the bank at date 1, regardless of their true liquidity needs.
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To check the validity of the statement in Proposition 2, begin by proposing a
strategy profile in which all N depositors visit the bank at date 1. The question
is whether a patient depositor has an incentive to follow the crowd, or leave
his money in the bank, with the intent of withdrawing at the later date. If he
plays the proposed panic strategy, he receives a payoff ĉ1(N) = y. If he instead
defects from the panic strategy and travels to the bank at date 2, by Property 2
he receives ĉ2(N − 1) ≈ y but ĉ2(N − 1) < y. Consequently, a patient depositor
is strictly motivated to panic if he conjectures that other patient depositors are
as well.

5 Eliminating panics

Let θ denote the probability of a sunspot—an event that coordinates depositors
to panic. Then the expected utility of participating in the bank is computed
using a modified probability distribution function. The probability of no panic is
(1−θ) and the probability of the full redemption state N is πN . The probability
of the full redemption state regardless of the true N is θ. So, the probability of
the full redemption state is (1− θ)πN + θ. Or something like this (we can work
it out).

The mechanism could eliminate panic equilibria by guaranteeing that a min-
imum of κ units of output will always be held back for investment. This leads
to risk-sharing ineffi ciency in state n = N − 1. Even worse, I wonder if the κ
units must be wasted in state n = N. Whatever the case may be, eliminating
panics comes at a cost. The cost must be weighed against the potential benefits
which, in turn, will depend on θ.

6 Discussion

To summarize, the scenario we model is as follows. Think of a local economy
consisting of a number of people who are in a position to fund a local invest-
ment project, like a shopping mall. A minimum level of investment is needed if
the project is to offer a high return—building one or two retail spaces is point-
less. Somewhat unrealistically, the return to the project does not diminish with
scale, but this is easily relaxed. The problem is that local depositors are subject
to “unanticipated expenditure events” that they will have to funded with the
resources tied up in the investment project.9 A standard insurance contract is
not possible because there is no way for a third party to verify the expenditure
event—it is private information. The bank is a mechanism that provides the de-
sired liquidity insurance by permitting depositors to withdraw their funding on
demand (on their initiative). Because we do not assume sequential service, early

9 Implicitly, the investment project is illiquid in the sense that stakes in the project cannot
be easily traded on a secondary market.
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withdrawal limits can be conditioned on the aggregate demand for early funds.
The bank proceeds with the investment project according a scale that depends
on the amount of funds remaining after early redemption requests are satisfied.
Notice that if the available funding falls short of the minimum scale requirement,
the bank is unable to fund a high rate of return investment. Hence, in addition
to the usual reason for pooling resources in a Diamond-Dyvbig environment–
risk sharing– depositors will also want to pool to reduce funding risk, i.e., the
risk that there is insuffi cient resources to fund the capital project at a scale
suffi cient to realize a high rate of return.
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