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1 Introduction

In the course of developing new game-theoretic models to describe economic behavior in various

situations, the existence of Nash equilibrium often emerges as the first critical test to discrimi-

nate between alternative candidate models. In most economic settings, a long-standing preference

for pure-strategy Nash equilibrium (henceforth, abbreviated PSNE) still constitutes the dominant

norm. The primary requirement of existence applies to any type of investigation, independently of

whether the analysis is meant to proceed along specific or general functional forms. In the latter

case, existence of Nash equilibrium is virtually always obtained via the application of a fixed point

theorem, following a long-standing practice going back to Nash (1951).

While Nash considered mixed-strategy equilibrium for finite games, Rosen (1965) extended his

basic insight to the case of pure-strategy equilibrium and Euclidean action spaces. In this traditional

approach, existence follows from Brouwer’s (or Kakutani’s) fixed point theorem, and is therefore

predicated on the best response functions (or correspondences) being continuous on compact and

convex action spaces. Stepping back to the payoff functions, the relevant properties are joint

continuity in the strategies and quasi-concavity in own action.1 For obvious reasons, the underlying

method has come to be known as the topological approach.

In more recent times, a new approach to the existence of pure-strategy Nash equilibrium, which

relies on the best response mapping (and thus the “reaction curves") being increasing functions

(or selections) and the action spaces being complete lattices, was proposed by Topkis (1978, 1979).

Based instead on Tarski’s lesser known fixed point theorem for monotone functions (Tarski, 1955),

this approach of an order-theoretic or algebraic nature has given rise to the recently much studied

class of supermodular games. In addition to opening a new realm for addressing the fundamental

issue of existence, this approach has also proven useful for the characterization of equilibrium

properties, in particular with respect to comparative statics conclusions (Topkis, 1979, Vives, 1990,

and Milgrom and Roberts, 1990).

The purpose of the present paper is to develop a new class of games that possess pure-strategy

Nash equilibrium, which is not covered by either of the two aforementioned existence paradigms.

In its most general form, the result pertains to two-player games with scalar action sets. This new

1These requirements have since been partially relaxed in the recent literature dealing with discontinuous games.
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result imposes different requirements on the two players’reaction curves. For one player, this curve

must be both continuous and increasing, while for the other player all that is needed is that his

reaction curve not possess any downward jump discontinuities. Fig. 1 below illustrates our basic

fixed point result.

We follow a lesser known part of Tarski’s (1955) classical paper, and call “quasi-increasing”

functions that cannot have downward jumps.2 The principal aim of this part of Tarski’s paper is

to prove an intersection point theorem between a quasi-increasing function and a quasi-decreasing

function whenever these have the same domains and ranges (both complete chains) and the former

starts above the latter and ends below it.3 An important special case of this Theorem obtains when

one takes the quasi-decreasing function to be the identity function, in which case the result boils

down to a fixed point theorem for quasi-increasing functions. Interestingly, variants of this fixed

point theorem have been rediscovered in the economics literature and applied a number of times to

establish existence of symmetric PSNE in symmetric oligopoly settings. As a result, the existence of

a symmetric PSNE then follows at once from the existence of a fixed point for the common reaction

curve to all the players.4

While the economic applications of this result have so far all shared the critical property that

the underlying game is symmetric, the starting point for the present paper is the idea that the

underlying logic may be used to to establish existence of PSNE for asymmetric two-player games.

To this end, it suffi ces to apply this fixed point theorem to the composition of the two reaction curves,

one of which is a quasi-increasing function and the other an increasing and continuous function,

upon making the key observation that the composition of two such functions is itself necessarily

quasi-increasing. While this structure makes it clear that the underlying class of games overlaps

with the two existing classes of games that are known to possess PSNEs, as described above, it is

easy to see that it is not nested with either of them.

2Tarski’s definition of quasi-increasing functions is given in purely lattice-theoretic terms for functions mapping

chains into chains. The simpler version for real numbers, which is the focus of this paper, is formalized in Section 2.
3A quasi-decreasing function is defined by the dual property of not possessing any upward jump discontinuities.

See Section 2 for a more detailed explanation and illustration of Tarski’s intersection point theorem.
4See MacManus (1962, 1964), Roberts and Sonnenschein (1976), Reinganum (1982), Vives (1990), Milgrom and

Roberts (1994), Amir (1996), Amir and Lambson (2000), and Hoernig (2003), among others.
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It is instructive to provide some basic insight into the restrictiveness of the needed assumptions

for this new existence result by comparing them to those underlying supermodular games as a

benchmark. The comparison yields a mixed outcome. On the one hand, for one player, the present

framework requires continuity in addition to upward monotonicity of the reaction curve. On the

other hand, for the other player, the requirement of upward monotonicity has been relaxed to that of

just quasi-monotonicity. Amending the standard terms to refer to these properties in the economics

literature in a suitable way, one may designate such games as being characterized by continuous

strategic complementarity for one player and limited strategic substitutability for the other player,

or what we may call strategic quasi-complementarity. While the former property may be seen as

combining the requirements from each of two known approaches to existence of PSNE so far, i.e.,

continuity and monotonicity, no such connection holds for the property of quasi-increasing reaction

curves. Recall that the latter rules out only downward jump discontinuities.

Despite the partial link with the topological approach just alluded to, it is important to stress

at the outset that the present approach is lattice-theoretic. One consequence of this fact is that

the result admits an order dual for games where the reaction function of one player is continuous

and decreasing and that of the other player is quasi-decreasing. While the two dual results are

mathematically equivalent, they tend to apply to quite different classes of economic models (we

shall have more to say on this point in the applications section below).

In delineating the proper scope for the new result at hand, it is important to point out two basic

shortcomings. The first is that the players’strategy spaces must be a chain or a totally ordered

set, a limitation that stems directly from the use of Tarski’s intersection point theorem. Indeed,

the latter result does not generalize to partially ordered sets. The second drawback is that this

basic existence result does not extend at the same level of generality to games with more than two

players. Multi-player extensions are possible, but only at the expense of some further assumptions.

In one version, players 3 to n are added into the basic two-player setting in such a way that the

new players satisfy type-symmetry with respect to one of the two basic players, so that the n-player

game contains only two types of players. Another extension posits an aggregation property in each

player’s payoff and othersise preserves the original two-player setting. These extensions to n-player

games are beyond the scope of this paper.
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While the existence conclusions described thus far constitute the main goal of the paper, the

underlying analysis requires a number of ancillary results that are of independent interest. Some

of these are crucially needed as building blocks to construct the basic machinery for the existence

result, while others are useful supplementary results. The first of the building blocks is to derive

some simple lemmas that capture the essential features of quasi-monotonic functions, provide a

basic calculus for useful operations involving them, as well as suffi cient conditions that isolate a

useful subclass of quasi-monotonic functions (the so-called upper or lower Liptschitz functions).

The second block consists in the elaboration of suffi cient conditions on a parametric optimization

problem to yield a quasi-monotonic argmax correspondence. To this end, we follow some existing

work (in particular Granot and Veinott, 1985 and Curtat, 1996) and introduce parameter-dependent

changes of variable that allow the desired conclusion to obtain in much the same way as the usual

conclusion of monotonicity of argmax’s.

In line with the theory of supermodular games, the basic existence results under consideration

do not address uniqueness of PSNE in any way. Instead, the equilibrium set is shown to constitute a

chain under great generality (this is akin to the result that the PSNE set for supermodular games is

a complete lattice). Nonetheless, some key supplementary results provide novel suffi cient conditions

for the uniqueness of PSNE. While the underlying conditions are all related in one form or another

to a contraction property in the reaction curves, they require this basic property to hold only in a

local sense. As such, the results are more reminiscent of the uniqueness results in equilibrium theory

that are based on degree theory (see e.g., Dierker, 1972). In addition to applying to some settings

covered by the existence results given here, these uniqueness results could also apply more broadly to

other classes of games. In particular, the uniqueness results apply to symmetric PSNE of symmetric

games, for which we also state the basic underlying existence result that forms the general version

of those that have appeared in specific oligopoly contexts (e.g., Roberts and Sonnenschein, 1976).

Last but certainly not least, as with any advance in abstract theory, one needs to address a

crucial test: How broad is the scope of applicability of the novel results? A related subquestion

is, how accessible is the overall tool kit developed to facilitate the use of the new results here? In

order to make a compelling case that both questions can be answered along very positive lines, we

provide several detailed examples of well known economic models for which new existence results
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are obtained via the direct use of the examples of the paper. Furthermore, as we provide all the

concomitant details of the various steps needed to apply the results for the different models, the

reader can easily appreciate the practical value of the basic results of this paper. While a large variety

of applications may be given, it suffi ces to develop the following selection of well established economic

models: A hybrid duopoly model of price-quantity competition with differentiated products, a

model of Bertrand competition with increasing returns for one firm, and a widely used model of

non-cooperative provision of public goods. In addition, the Bertrand model is also used as a vehicle

to illustrate some of the ancillary results of the paper.

The organization of the paper is as follows. We begin in Section 2 with a full exposition of the

definitions of the new notions and a derivation of the basic results for real action sets. In Section

3, the new results are stated in the form of existence results for PSNE in games, along with the

associated uniqueness results. Section 4 contains a detailed discussion of the economic applications

of the new theory. Section 5 is a brief conclusion.

2 Quasi-monotone functions on R

In the framework of real parameter and decision spaces, this section lays out all the fundamental

notions and basic results that are needed as preliminaries for our new approach to the existence

of pure-strategy Nash equilibrium (henceforth PSNE) for games with scalar real action spaces.

The present theory is based on the properties of quasi-increasing and quasi-decreasing functions,

introduced by Tarski (1955) for general totally ordered lattices (chains). We begin in Section 2.1

with the basic definitions and properties of quasi-monotone functions in one-dimensional Euclidean

space along with some basic practical tests for this property. We provide useful suffi cient conditions

for quasi-increasingness in section 2.2, before moving to the analysis of parametric optimization

problems that yield quasi-monotonic functions as optimal solutions in Section 2.3. Then Section

2.4 describes our fixed point results, which are used in section 3 for equilibrium existence in games.
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2.1 Definition and basic properties

In the same article that contains his well known fixed point theorem for increasing maps on a

complete lattice, Tarski (1955) also proved an intersection point theorem (his Theorem 3). Later,

this subsection presents this much less known result for the special case of real-valued functions on

a real domain. The main new concepts needed are the following.

Definition 1 Let X,Y ⊂ R. A function f : X → Y is quasi-increasing if for every x ∈ X,

lim sup
y↑x

f(y) 6 f(x) 6 lim inf
y↓x

f(y). (1)

f is quasi-decreasing if if for every x ∈ X,

lim inf
y↑x

f(y) > f(x) > lim sup
y↓x

f(y). (2)

A function is quasi-monotone if it is either quasi-increasing or quasi-decreasing.

Fig. 2 below illustrates the concepts of quasi-increasing and quasi-decreasing functions.

From the definition, the following facts follow easily:

Proposition 2 Let λ > 0, X ⊂ R and f, g : X → R be two functions. The following holds:

1. f is continuous if and only if it is both quasi-increasing and quasi-decreasing.

2. If f is increasing, then it is quasi-increasing. Analogously, if f is decreasing, then it is quasi-

decreasing.5

3. If f is quasi-increasing and g is continuous and increasing, then g ◦ f and f ◦ g are also

quasi-increasing.

4. If f is quasi-increasing and g is continuous and decreasing, then g ◦ f and f ◦ g are quasi-

decreasing.

5. For the last two items, it is not suffi cient that g be just increasing.

5Throughout this paper, we call "increasing" any function that is weakly increasing (i.e., nondecreasing). We use

"strictly increasing" for the strict version of this concepts. The same applies to decreasing functions.
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6. If f, g : X → R are quasi-increasing functions, then λf + g is quasi-increasing.

7. If f, g are quasi-decreasing functions, then λf + g is quasi-decreasing.

Proof. The proofs for (i) and (ii) are straightforward. Let us prove (iii). Since f is quasi-increasing,

for every x ∈ X,

lim sup
y↑x

f(y) 6 f(x) 6 lim inf
y↓x

f(y).

Since g is continuous and increasing,

lim sup
y↑x

g (f(y)) = g

(
lim sup
y↑x

f(y)

)
6 g (f(x)) 6 g

(
lim inf
y↓x

f(y)

)
= lim inf

y↓x
g (f(y)) .

Therefore, g ◦ f is quasi-increasing. Similarly,

lim sup
y↑x

f (g(y)) 6 f
(

lim sup
y↑x

g(y)

)
= f (g(x)) = f

(
lim inf
y↓x

g(y)

)
6 lim inf

y↓x
f (g(y)) .

Thus, f ◦ g is quasi-increasing.

The proof of (iv) is analogous. To see (v), let f, g : [0, 1]→ [0, 1] be defined by f(x) = 1−x and

g(x) =


x
2 if x < 1

2

1
2 if x = 1

2

1+x
2 if x > 1

2

It is easy to see that f is continuous and therefore quasi-increasing, while g is increasing but not

continuous. We have:

lim sup
y↑ 1

2

(g ◦ f)(y) =
3

4
>

1

2
= (g ◦ f)(

1

2
) >

1

4
= lim inf

y↓ 1
2

(g ◦ f)(y),

and

lim sup
y↑ 1

2

(f ◦ g)(y) =
3

4
>

1

2
= (f ◦ g)(

1

2
) >

1

4
= lim inf

y↓ 1
2

(f ◦ g)(y),

contradicting quasi-increasingness (1) both for g ◦ f and f ◦ g.

To see (vi), let f and g be quasi-increasing functions. Using the fact that (a) lim infy↑x λf(x) =

λ lim infy↑x f(x) and that a similar property holds for lim sup, and (b) the subadditivity of the

lim sup operation and the superadditivity of the lim inf operation, we have:

lim sup
y↑x

(λf(y) + g(y)) 6 λ lim sup
y↑x

f(y) + lim sup
y↑x

g(y) 6 λf(x) + g(x),
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and

lim inf
y↓x

(λf(y) + g(y)) > λ lim inf
y↓x

f(y) + lim inf
y↓x

g(y) > λf(x) + g(x).

This establishes (vi). The proof of (vii) is analogous.

Using this concept of quasi-increasing and quasi-decreasing functions, Tarski (1955) proved a

theorem whose real-valued version reads as follows.

Theorem 3 (Tarski’s Intersection Point Theorem) If f : [a, b] → R is quasi-increasing, g :

[a, b] → R is quasi-decreasing, f(a) > g(a) and f(b) 6 g(b), then the set {x ∈ [a, b] : f(x) = g(x)}

is non-empty, and has as largest element ∨{x ∈ [a, b] : f(x) > g(x)} and as smallest element

∧{x ∈ [a, b] : f(x) 6 g(x)}.

Theorem 3 is graphically illustrated in Fig. 3 below. The conditions f(a) > g(a) and f(b) 6 g(b)

are indispensable. Fig. 2 above illustrates a case where these conditions fail and there is no

intersection point.

Since Theorem 3 pertains to two functions with the same domains and the same ranges, it is

more aptly called an intersection point theorem (between two curves). We shall refer to it as such,

motivated also by the need to distinguish it from the well known fixed point theorem (Tarski, 1955).

Unaware of Tarski’s intersection point theorem, Milgrom and Roberts (1994) use (1) to define

quasi-increasing functions, which they referred to as “continuous but for upward jumps.” Indeed,

this terminology is quite revealing since one crucial implication of (1) is that jump discontinuities

in quasi-increasing functions must be upward (likewise, jumps in quasi-decreasing functions must

be downward).

Milgrom and Roberts (1994) proved a fixed-point result for quasi-increasing self maps on a

compact interval, which can be obtained as a special case of Theorem 3 by taking f to be the

mapping of interest and g to be the 45◦ line, in which case the extra conditions f(a) > g(a) and

f(b) 6 g(b) are automatically satisfied (see Corollary 11). In fact, the latter result has a remarkable

history in the economics literature in that special cases were independently discovered by McManus

(1964) and Roberts and Sonnenschein (1976). These two studies used this fact as an intermediate

result with the principal aim of establishing existence of a symmetric equilibrium for symmetric

Cournot oligopoly. In their result, the key property of the underlying reaction curve (of any one
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firm) in symmetric Cournot oligopoly with convex costs is that all its slopes are bounded below by

−1, which is a suffi cient condition for a function to be quasi-increasing. For a generalization to the

case of symmetric firms with non-convex costs, using Topkis’s monotonicity result for the first time

in this literature, see Amir and Lambson (2000) and Amir (1996).

We shall derive useful results for both quasi-increasing and quasi-decreasing functions. However,

since properties related to quasi-decreasing functions can be obtained directly from analogous ones

for quasi-increasing functions using standard duality arguments, we shall limit most of our discussion

to quasi-increasing functions.

While the property of quasi-monotonicity might at first sight appear quite esoteric as far as

its relevance to economic modeling is concerned, we shall derive functional and convenient suffi -

cient conditions for quasi-increasingness that arise in quite natural ways in economics. The next

subsection discusses some of these conditions.

2.2 On some subclasses of quasi-monotone functions

With the exception of the key implication of ruling out downward jumps, the general defini-

tion of quasi-increasing imposes hardly any useful structure on functions that would make them

amenable to practical analysis from the perspective of economic applications. For instance, since

every continuous function is both quasi-increasing and quasi-decreasing, quasi-monotonic functions

may fail to possess left and right limits at points of their domains, or to possess any smoothness

properties. In this section, we derive suffi cient conditions for quasi-monotonicity that impart cru-

cial structure to the associated subclass of functions, akin to that enjoyed by monotonic functions.

Importantly, these suffi cient conditions correspond precisely to properties that are naturally satis-

fied when quasi-monotonic functions arise as argmax’s of parametric optimization problems whose

objective functions satisfy some quasi-complementarity conditions to be identified below.

An important sub-class of quasi-increasing functions that arise naturally in economics is the

class of lower-Liptschitz functions, defined as follows. A function f : X → R is K-lower-Liptschitz

if for some K ∈ R, we have f(x) − f(y) > K(x − y) for all x, y ∈ X such that x > y.6 A function

f : X → R is K-upper-Liptschitz if −f is K-lower-Liptschitz.
6Recall that f is K-Liptschitz if for some K > 0, we have |f(x)− f(y)| 6 K|x− y| for all x, y ∈ X.
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Lemma 4 Let X ⊂ R and assume that a function f : X → R is K-lower-Liptschitz (resp. K-

upper-Liptschitz). Then

(a) f is quasi-increasing (resp. quasi-decreasing), and

(b) f is a function of bounded variation.

Proof. (a) The property of lower-Liptschitz can be rewritten as x > y =⇒ f(x)−Kx > f(y)−Ky,

that is, the function f̂(x) = f(x)−Kx is increasing. Therefore, it is quasi-increasing by Proposition

2(ii). If we add to it the function x 7→ Kx, which is continuous and therefore also quasi-increasing,

the sum x 7→ f(x) is quasi-increasing by Proposition 2(vi).

(b) From part (a), we have f(x) = f̂(x) + Kx. Hence, when K > 0, f is increasing and when

K < 0, f is the difference between two increasing functions. Thus in either case, f is a function of

bounded variation.

The proof for the K-upper-Liptschitz case is analogous.7

A useful consequence of this result is that lower-Liptschitz functions inherit all the useful prop-

erties of functions of bounded variation, such as the existence of a left and right limit at every point

of their domain and differentiability almost everywhere.

The following lemma characterizes another subclass of quasi-monotone functions that will also

prove useful for subsequent results.

Lemma 5 Let X,Y ⊂ R, r : Y → X and β : X × Y → R be two functions, and define f : Y → R

as f(y) ≡ β(r(y), y).

(a) If r is increasing and β is increasing in its first argument and jointly continuous, then f is

quasi-increasing.

(b) If in addition to the assumptions of (a), β is K-lower-Liptschitz in y for each x, then f is

K-lower-Liptschitz.

(c) If in addition to the assumptions of (a), X,Y are compact intervals and β is continuously

differentiable in y for each x, then f is K-lower-Liptschitz.

Proof. (a) Let {yn}n∈N be such that yn ↑ x and f(yn) → lim supy↑x f(y). Since yn ↑ x and r
7Note that if K > 0, one can directly observe that f will be increasing and, therefore, trivially quasi-increasing.

This lemma is useful, therefore, when K < 0.
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is increasing, r(y1) 6 r(yn) 6 r(x). Since r is increasing and {yn}n∈N is an increasing sequence,

{r(yn)}n∈N converges, so that r(yn) → r̄ 6 r(x). Since β is continuous, f(yn) = β(r(yn), yn) →

β(r̄, x) and since β is increasing in its first coordinate, β(r̄, x) 6 β(r(x), x) = f(x), that is,

lim supy↑x f(y) 6 f(x).

Taking {yn}n∈N to be such that yn ↓ x and f(yn) → lim infy↓x f(y) and repeating the same

arguments, we conclude that lim infy↓x f(y) > f(x). Thus, f is quasi-increasing.

(b) For any y′ > y, since β is increasing in its first argument and r is increasing, we have

f(y′)− f(y)

y′ − y =
β(r(y′), y′)− β(r(y), y)

y′ − y > β(r(y), y′)− β(r(y), y)

y′ − y > K.

Hence f is K-lower-Liptschitz.

(c) Since β is continuously differentiable in s for each x, and Y and X are compact, ∂β/∂y is

uniformly bounded. Hence β is lower-Liptschitz in y for each x. The result follows from part (b).

One noteworthy aspect of the above result is that the function β is not required to be monotonic

in its second argument y. In general, f as defined in this Lemma may well fail to be increasing.

We are now ready for an investigation of the emergence of the aforementioned subclasses of

quasi-monotone functions as solutions to parametric optimization problems.

2.3 Suffi cient conditions for quasi-increasing argmax

In what follows, we shall be primarily interested in quasi-monotone functions that arise as

selections of players’reaction correspondences in a game. To that end, we must therefore investigate

how such functions arise as solutions to parametric optimization problems. Thus we shall consider

a selection r : Y → X of the correspondence R : Y ⇒ X, with X,Y ⊂ R defined by:

r(y) ∈ R(y) ≡ arg max
x∈X

M(x, y), (3)

for some objective function M : X × Y → R. We wish to provide conditions on M such that r is

quasi-increasing in the parameter y.

It is useful first to recall that (at least one of the selections) r will be increasing if M satisfies a

single-crossing condition with respect to (x; y), i.e., if for any (x′; y′) > (x; y), we have8

M(x′, y) > (>)M(x, y) =⇒M(x′, y′) > (>)M(x, y′). (4)
8As it is well known, this contradiction does not imply that all selections are increasing, but that at least the
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For an argmax to be quasi-increasing in the parameter y, we need instead the notion of shifted

single-crossing, which we introduce next via a judicious (non-separable) change of decision variable.

Let there be given a continuous function α : X ×Y → Z that is strictly increasing in x for fixed

s and increasing in y for fixed x. Here, Z is the range of α and it is given by Z ≡ [α(x, y), α(x, y)],

where x = inf X,x = supX, y = inf Y, and y = supY .

If one defines a new variable z = α(x, y), then since α is continuous and strictly increasing

in x, there exists a (parametrized inverse) function β : Z × Y −→ X such that x = β(z, y). In

other words, α has an inverse in its first argument, that is, there exists a function β satisfying

α(β(z, y), y) = z and β(α(x, y), y) = x. It is not diffi cult to see that β must be increasing in its first

argument. Further, assume that β is continuous.

In view of the monotonicity properties of α, and of the fact that X = [x, x] is independent of

y, the set of feasible values of z for a fixed value of y is Z(y) ≡ [α(x, y), α(x, y)], which is clearly

ascending in y (since α is increasing in y). We have the following:

Definition 6 Let α : X × Y → Z be continuous, strictly increasing in x and increasing in y, and

β(z, y) be the continuous inverse of α with respect to the first variable. A function M : X×Y −→ R

satisfies a β-shifted single-crossing property with respect to (x; y) if M̃(z, y) ≡M(β(z, y), y) has the

single-crossing property (4) with respect to (z; y) ∈ Z × Y , that is, for any (z′; y′) > (z; y) we have

M̃(z′, y) > (>)M̃(z, y) =⇒ M̃(z′, y′) > (>)M̃(z, y′). (5)

Moreover, M satisfies a β-shifted strict single crossing property with respect to (x; y) if M̃(z, y) ≡

M(β(z, y), y) has the strict single-crossing property with respect to (z; y) ∈ Z × Y , that is, for any

(z′; y′) > (z; y), (z′; y′) 6= (z; y), we have

M̃(z′, y) > M̃(z, y) =⇒ M̃(z′, y′) > M̃(z, y′). (6)

maximal and minimal selections are. Throughout the paper, while we use the notions of increasing differences and

single-crossing as suffi cient conditions on an objective function to guarantee an increasing argmax, it is clear that we

could as well use the interval dominance order (Quah and Strulovici, 2009) for the same purpose. (In fact, the latter

is the most general condition of the three listed here when the action and parameter are real variables). In addition,

since increasing differences is the only one that survives addition without any restrictions (see Quah and Strulovici,

2012 for more on this point), we shall make extensive use of this property in the applications section.
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Naturally, a suffi cient (but in general non-necessary) condition for the β-shifted single-crossing

property is what one would naturally call β-shifted increasing differences, defined by M̃(z, y) ≡

M(β(z, y), y) having increasing differences in (z, y), when β is continuous in (z, y) and strictly

increasing in z. If both M and β are C2, this is equivalent to9 ,10

M̃12(z, y) = [M11(β(z, y), y)β2(z, y) +M12(β(z, y), y)]β1(z, y) +M1(β(z, y), y)β21(z, y) > 0

Defining the set-valued functions R : Y ⇒ X and Z∗ : Y ⇒ Z by

R(y) ≡ arg max
x∈X

M(x, y) (7)

and

Z∗(y) ≡ arg max
z∈Z(y)

M(β(z, y), y), (8)

we have a one-to-one mapping between selections r of R and selections z∗ of Z∗, that is, given

z∗(·) ∈ Z∗(·), we have r(y) = β(z∗(y), y) ∈ R(y) and, conversely, given r(·) ∈ R(·), we have

z∗(y) = α(r(y), y) ∈ Z∗(y).

Proposition 7 Assume that M : X × Y → R satisfies a β-shifted single-crossing property with

respect to (x; y), with β jointly continuous and strictly increasing in its first argument. Assume that

R(y) 6= ∅ for all y ∈ Y . Then, the following holds:

(a) The maximal and minimal selections of R, r and r, are both quasi-increasing in y.

(b) If, in addition, β is continuously differentiable, then r and r are both K-lower Liptschitz in

y for some K.

(c) If M satisfies the β-shifted strict single-crossing property, then all selections of R are quasi-

increasing in y.

Proof. (a) Since M(β(z, y), y) has the single-crossing property with respect to (z; y), and the

feasible set Z(y) ≡ [α(x, y), α(x, y)] is ascending in y (since α is increasing in y), we know from

the Topkis-Milgrom-Shannon monotonicity theorem that the extremal selections of S(y), s∗ and

s∗ are increasing functions of y. Since β is increasing in its first coordinate and continuous by

9 In this paper, we use subscripts in functions for partial derivatives.
10This equivalence is a well-known result about increasing differences.

14



assumption, the assumptions of Lemma 5(a) are satisfied by β and s∗ and s∗ and we conclude that

r(y) = β(s∗(y), y) and r(y) = β(s∗(y), y) are both quasi-increasing in y.

(b) This follows directly from Lemma 5(c).

(c) It is well known that the strict single-crossing property implies that all selections are

monotonic. Thus, the proof of (c) is similar to the proof of (a) and therefore omitted.

The following economic application illustrates the change of variable used above in the context

of a familiar model. In particular, this provides some guidance as to how a suitable choice of the

function α is arrived at. Several more relevant examples are given in the applications section.

Example 8 Consider a Bertrand duopoly with differentiated substitute products wherein firms 1

and 2 choose prices x, y (in some given price set [0, p]) and face a demand system (D, D̂) for their

products, respectively. Assume linear cost functions with marginal costs c and ĉ. In what follows,

we focus only on firm 1 (say). Its profit function is

F (x, y) = (x− c)D(x, y) (9)

Its demand D is continuously differentiable and satisfies D1 < 0 (the law of demand) and D2 > 0

(products are substitutes in demand)

Our aim here is to show that Firm 1’s reaction correspondence f(y) = arg maxx∈[0,p](x−c)D(x, y)

is quasi-decreasing in y, under the assumption that

D2D
2
1 −D [D1D12 −D2D11] > 0 for all (x, y). (10)

To see this, let firm 1 respond by choosing its own output z instead of its price x, i.e. let

z = D(x, y). Since D1 < 0, parametric inversion will yield a function h such that

x = h(z, y) ⇐⇒ z = D(x, y).

As is easy to check, the partials of h and D are then related by

h1 =
1

D1
, h2 = −D2

D1
, and h12 =

1

D3
1

(D2D11 −D1D12). (11)

Given y, the best response problem of firm 1 may be equivalently viewed as

max
{
F̃ (z, y) , z[h(z, y)− c] : z ∈ [D(p, y), D(0, y)]

}
. (12)
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The first step is to derive conditions under which the argmax z∗(y) is increasing in y. Since the

feasible set [D(p, y), D(0, y)] is ascending in y (as D2 > 0), by Topkis’s Theorem, all the selections

of z∗(y) are increasing in y if F̃ has strictly increasing differences in (z, y). For this, it suffi ces that

F̃12(z, y) = h2(z, y) + zh12(z, y) > 0, for all (z, y). Using (11), the latter is equivalent to

−D2

D1
+D

1

D3
1

(D1D12 −D2D11) > 0,

which is the same as (10).

Since the argmax’s of (9) and (12) are related by z∗(y) = D(f(y), y) or f(y) = h(z∗(y), y), and

h is decreasing in its first argument, f(y) is quasi-decreasing in y by Lemma 5.

The interpretation is that when firm 2 raises its price y, firm 1 may optimally react by increasing

or decreasing its price x, but, in the latter case, never by so much that firm 1’s output would end

up increasing. In other words, while strategic complementarity in pricing decisions is allowed to

any extent, a limited form of strategic substitutability can also be accommodated by condition (10).

More precisely, condition (10) accommodates what we named strategic quasi-complementarity.

We shall return to this particular economic application below to illustrate other results from the

present paper.

The following remark introduces a particular change of variable with a separable structure that

will prove useful in some of the economic applications presented in section 4.

Remark 9 For many problems, a simple change of variable is as follows. Let z = α(x, y) = x+k(y)

for some strictly increasing function k. Then for Z∗(·) to be increasing in y, it is suffi cient that

M̃(z, y) ≡M(z−k(y), y) has the single-crossing property with respect to (z; y). A suffi cient condition

that is easy to check is that M̃(z, y) has increasing differences with respect to (z, y). When M̃ and

k are both twice continuously differentiable, this is equivalent to

M̃12(z, y) = −M11(z − k(y), y)k′(y) +M12(z − k(y), y) > 0. (13)

The idea of a change of variable to perform comparative statics of a non-monotonic sort has

already appeared repeatedly in the literature on supermodular optimization and games. In a set-

ting with scalar decision and parameter variables, Granot and Veinott (1985) define the notion of

16



doubly-increasing differences for an objective function as being the conjunction of the properties of

increasing differences and of β-shifted increasing differences with an additively separable function

(as in the previous remark). Curtat (1996) extends their result to multi-dimensional decision and

parameter sets. Similar ideas have also appeared in the context of oligopoly applications with quasi-

increasing reaction curves, e.g., in Amir (1996) and Amir and Lambson (2000), where the relevant

change of variable is z = x+ y.

The modern theory of monotone comparative statics is often qualified as being of a qualitative

nature. Indeed, it aims to predict the directions of change of endogenous variables in response

to changes in exogenous parameters, but usually not the associated magnitudes of these changes.

In contrast, the conclusion that an argmax is quasi-decreasing in a parameter can be viewed as a

comparative statics result of a non-monotonic and quantitative sort. As an illustration, consider

the Bertrand duopoly example above. The derived conclusion may be re-stated as f ′(y) 6 −

D2(f(y), y)/D1(f(y), y), for almost all y (w.r.t. Lebesgue measure),11 which provides a lower bound

on the rate of decrease of f(y) as y changes. If one adds the reasonable further assumption on

demand that D2(f(y), y)/ |D1(f(y), y)| < 1 for all y, then one can conclude the firm 1 never lowers

its price by as much as the increase in its rival’s price, a conclusion of a clearly quantitative nature.

Observing that a similar (dual) argument can handle the derivation of upper bounds on the

rate of the change of argmax’s, as will be illustrated in the last section below, this method can

easily be used to provide suffi cient conditions on the players’reaction curves in a game to constitute

contraction mappings, thus ensuring uniqueness of PSNE. For instance, Amir (1996) uses such

arguments to establish uniqueness of Cournot equilibrium.

2.4 Our fixed point results

This subsection states the simplest form of our basic fixed point result in the Euclidean case, and

discusses its direct connection to Tarski’s intersection point Theorem. To fix ideas, the functions

may be thought of as selections from players’best response correspondences in a strategic game.

In the next section, we provide suffi cient conditions directly on the payoff functions of a game that

yield the following properties on players’best responses.

11This is justified since f is a function of bounded variation (Lemma 4).
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Theorem 10 (Fixed Point Theorem) Let f : [a, b]→ [c, d] be quasi-increasing, g : [c, d]→ [a, b]

be continuous and increasing, and define h(x, y) = (g(y), f(x)). Then there exists (x̄, ȳ) ∈ [a, b] ×

[c, d] such that h(x̄, ȳ) = (x̄, ȳ).

Proof. By Proposition 2(iii), the composition f ◦ g : X −→ X is quasi-increasing. Let ι : X → X

be the identity. Since ι is continuous, Proposition 2(i) implies it is quasi-decreasing. If inf X = x

and supX = x̄, we have f ◦ g(x) > x = ι(x) and f ◦ g(x̄1) 6 x̄ = ι(x̄). Therefore, the assumptions

of Tarski’s Intersection Point Theorem 3 are satisfied for f ◦ g and ι and we conclude that the set

X̄1 ≡ {x ∈ X : f(g(x)) = x} is nonempty. If x̄ ∈ {x ∈ [a, b] : g ◦ f(x) = x} and we define ȳ = f(x̄),

then (x̄, ȳ) is a fixed point of h.

From this proof, it is clear that the key idea here is to translate Tarksi’s result from an inter-

section point result to a fixed point theorem for an important subclass of bivariate maps, namely

those that are formed by the conjunction of two one-dimensional functions, as is the best response

mapping for a two-player game. Put differently, the idea is to translate an intersection point result

between two functions with the same domains and the same ranges to an intersection point re-

sult between two functions with interchanged domains and ranges, in line with the usual graphical

depiction of intersecting reaction curves in economics as a simple way of representing PSNE.

A well-known interesting and immediate corollary is the following.

Corollary 11 (a) Let f : [a, b] −→ [a, b] be quasi-increasing. Then f has a fixed-point.

(b) Let f : [a, b] −→ [a, b] be such that f(x′)−f(x)
x′−x > −k, for some k > 0 and any x′, x ∈ [a, b], x 6=

x′. Then f has a fixed-point.

Proof. (a) Simply apply Theorem 10 to f and g(x) = x (the identity).

(b) The given slope condition means that f is k-lower-Liptschitz, and hence quasi-increasing (Lemma

4). Then use part (a).

As noted earlier, the result in part (b) with k = 1 was proved and used by MacManus (1964)

and Roberts and Sonnenschein (1976) to establish existence of symmetric Cournot equilibrium in

symmetric Cournot oligopoly with convex costs.12 The latter property alone ensures that each

firm’s reaction curve has all its slopes above −1 (though it may be discontinuous), so that each

12The proof of this result by Mac Manus is not fully rigorous.
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firm always reacts to rivals’output in a way that increases total output. Existence then follows

from this property alone, even though the game is neither of strategic substitutes nor of strategic

complements. Amir and Lambson (2000) extends this result to oligopolies with some level of non-

convex costs. Milgrom and Roberts (1994) prove part (a) independently and use it to conduct

comparative statics of equilibrium points.

The following theorem is the order-dual of Theorem 10, that is, it says that if f is quasi-

decreasing and g is continuous and decreasing, then h(x, y) = (g(y), f(x)) has a fixed point. The

economic models to which it might apply can be substantially different from those associated with

Theorem 10, as will be confirmed by some of the applications later on.

Theorem 12 Let f : [a, b] → [c, d] be quasi-decreasing, g : [c, d] → [a, b] be continuous and de-

creasing, and define h(x, y) = (g(y), f(x)). Then there exists (x̄, ȳ) ∈ [a, b] × [c, d] such that

h(x̄, ȳ) = (x̄, ȳ).

The fixed point theorems presented in this section will be translated into equilibrium existence

results for games in section 3. The next subsection deals with the issue of uniqueness of fixed points

of quasi-monotone functions and will be useful to establish uniqueness of PSNE.

2.5 Uniqueness of fixed points

In some applications, beyond the issue of existence, the uniqueness of fixed points is often a

highly desirable property. In fact, most studies in applied microeconomics postulate game-theoretic

models with a unique PSNE, independently of whether specific functional forms are adopted or

not. The standard methods used to establish uniqueness of fixed points or PSNEs typically rely

on dominant diagonal conditions on payoff functions or, equivalently, on contraction arguments for

best response mappings (Rosen, 1965; Milgrom and Roberts, 1990). Both of these conditions are

generally postulated to hold in a global sense. In this section, we present two results that establish

the uniqueness of fixed points in the present setting without requiring global contraction arguments.

Our first result of this form allows the function to be quasi-decreasing (instead of continuous, or

often even smooth) and satisfy a local contraction property along the diagonal, that is, only at
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candidate fixed points.13

Proposition 13 Let f : [a, b] → [a, b] be quasi-decreasing and satisfy the following property: for

every x ∈ [a, b] such that x = f(x), we have

lim sup
y→x

f(y)− f(x)

y − x < 1. (14)

Then f has at most one fixed point.

Proof. Suppose that x̄, ȳ ∈ [a, b] are both fixed points of f , with (say) x̄ < ȳ. Because of (14),

there are neighborhoods U1 of x̄ and U2 of ȳ such that y ∈ U1 ∩ ([a, b] \ {x̄}) =⇒ f(y)−x̄
y−x̄ < 1 and

y ∈ U2∩ ([a, b] \ {ȳ}) =⇒ f(y)−ȳ
y−ȳ < 1. Then we can pick y1 ∈ U1∩ (x̄, ȳ) and y2 ∈ U2∩ (x̄, ȳ), y1 < y2

such that f(y1)−x̄
y1−x̄ < 1 and f(y2)−ȳ

y2−ȳ < 1. Hence f(y1) < y1 and f(y2) > y2.

Define the function g(y) = f(y)−y on [y1, y2]. Since f is quasi-decreasing and −y is continuous,

hence quasi-decreasing, g is quasi-decreasing by Proposition 2(vii). Moreover, g(y1) < 0 < g(y2).

We can apply Tarski’s intersection point theorem (Theorem 3) to the function g thus defined and

the constant function c(y) = 0,∀y, which is continuous and thus quasi-increasing. The supremum of

{y ∈ [y1, y2] : 0 > g(y)} is contained in, and is the supremum of {y ∈ [y1, y2] : 0 = g(y)}. Denote by

ẙ ∈ [y1, y2] this supremum. It is clear that ẙ < y2, since g(y2) > 0 and ẙ is the highest fixed point of

f in [y1, y2]. Using again property (14) for ẙ, we can find ŷ ∈ (ẙ, y2) such that f(ŷ) < ŷ. Defining

as before ĝ : [ŷ, y2]→ R by ĝ(y) = f(y)− y, we see that it is a quasi-decreasing function satisfying

the assumptions of Theorem 3. Therefore, there exists ỹ ∈ (ŷ, y2), such that 0 = ĝ(ỹ) = f(ỹ) − ỹ,

that is, ỹ ∈ [y1, y2] is a fixed point of f and ỹ > ŷ > ẙ, which contradicts the fact that ẙ is the

highest fixed point of f in [y1, y2]. This contradiction establishes the property.

Remark 14 While this Proposition might a priori appear to be directly suitable for use as a unique-

ness argument only for symmetric PSNE of symmetric games, one can also use it for two-player

asymmetric games by applying it to the composition of the two players’ reaction functions, which

maps (say) player 1’s action space to itself. Indeed, it is well known that the set of fixed points

of such a composition coincides with the set of PSNEs of the game (Vives, 1990). In this form,

all that is needed for a unique PSNE is that the mentioned composition is 1-upper Lipschitz in a

13To underscore the novelty of this result, an application to Bertrand competition is presented in Section 4.
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neighborhood of any fixed point (as captured by (14)), and not necessarily a global contraction (i.e.,

a globally 1-upper and 1-lower Lipschitz function).

Relying on first order conditions under smoothness assumptions, another convenient test for the

uniqueness of a fixed point that is non-global in character can be given in the form of the following

suffi cient condition.

Proposition 15 Let X = [a, b] ⊂ R and n ∈ N. Assume that M : Xn → R is differentiable in its

first coordinate and satisfies the following:

x, x′ ∈ X,x′ > x and M1(x, x, ..., x) 6 0 imply M1(x′, x′, ..., x′) < 0. (15)

Then a function r : X → X satisfying r(x) ∈ arg maxy∈XM(y, x, ..., x)has at most one fixed point.

Proof. The proof rules out multiple interior fixed points, and then multiple corner fixed points.

Since r(x) ∈ arg maxy∈XM(y, x, ..., x) and M is differentiable in its first variable, we must have

M1(r(x), x, ..., x) = 0 if x is an interior point of X. Assume that x and x′ are interior fixed points

of r, with x′ > x. Then, M1(x, x, ..., x) = 0 and M1(x′, x′, ..., x′) = 0, but this contradicts (15).

Assume now that the endpoint a is a fixed point of r. In this case, we must have M1(a, ..., a) 6 0.

By (15), M1(x′, ..., x′) < 0 for all x′ > a, which shows that there is no other fixed point of r above

a. Similarly, if the endpoint b is a fixed point of r, then M1(b, ..., b) > 0 and (15) implies that

M1(x, ..., x) > 0 for all x < b. Therefore, there are no other fixed point of r below b. This concludes

the proof.

The above proposition will be used to establish uniqueness of symmetric equilibria in symmetric

games later on. A slight adaptation of the results above can yield analogous uniqueness results for

asymmetric games.

Interestingly, (15) may be seen as a strict dual single-crossing condition for the partialM1(x, ..., x),

viewed as a function of one variable. As such, it becomes transparent that a suffi cient condition for

(15) is thatM1(a, a, ..., a) is strictly decreasing in a, which (ifM is twice continuously differentiable)

is in turn implied by

M11(a, ..., a) +
∑
j 6=1

M1j(a, a, ..., a) < 0.
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The latter condition is of the dominant diagonal type; it says that any row sum of the Hessian

matrix of M is negative. Nevertheless, this condition is in general significantly less restrictive than

the typical related conditions in the literature, in that it is not required to hold globally, but rather

only along the diagonal of the domain Xn.

3 Pure-strategy Nash equilibrium in games

This section contains our results about the existence and uniqueness of pure-strategy Nash

equilibrium (henceforth PSNE) in games. Its main objective is to translate our fixed points results

into conclusions about the existence of PSNE. In the process, the relevant suffi cient conditions shall

be placed on the primitives of the game.

We begin by describing results for two players games in subsection 3.1. Then n-player symmetric

games are the object of subsection 3.2.

3.1 Two-player games

Consider a two-player strategic game with action spaces X and Y and payoff functions F,G :

X × Y −→ R. The following result translates the assumptions of Theorem 10 onto suffi cient

conditions on the primitives of the game.

Theorem 16 Assume that X and Y are compact intervals in R, F and G are upper semi-continuous

in own action, and that:

(a) F satisfies a β-shifted single-crossing property with respect to (x; y) for some β that is

continuous and increasing, and

(b) G is strictly quasi-concave in y for each fixed x, and satisfies the single-crossing property

with respect to (y;x).

Then the set E of PSNE is non-empty.

Proof. Due to the upper semi-continuity assumption, the best-reply correspondences have non-

empty values. By Proposition 7, the maximal and minimal selections of the best-reply correspon-

dence for the first player, x̄(·) and x(·), are quasi-increasing.
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From the assumption that G is strictly quasi-concave and upper semi-continuous in y, we know

that the best-reply correspondence is a single-valued continuous function denoted ȳ. From the

single-crossing property, ȳ(·) is increasing in x. By Theorem 10, there exists (x∗, y∗) such that

x̄(y∗) = x∗ and ȳ(x∗) = y∗, that is, (x∗, y∗) is a PSNE of the game and E is non-empty.

It is instructive to contrast this result with its counterpart from the theory of supermodular

games for the present setting. While the latter relies on Tarski’s well kwown fixed point theorem

for increasing maps, the present result is based on a reinterpretation of Tarski’s intersection point

theorem as a fixed point theorem for bivariate maps that arise as best-response maps of two-

player games. In terms of scope, the two approaches are not nested. On the one hand, for player

1, the present result imposes less structure since his reaction curve is only quasi-decreasing and

not necessarily increasing. On the other hand, for player 2, the present result requires continuity

of the reaction curve in addition to monotonicity while the latter property is all that is needed

for supermodular games. Put differently, the present result relaxes strategic complementarity to

strategic quasi-complementarity (i.e., allows a limited form of strategic substitutability) for one

player, but imposes continuity as an extra condition on the reaction curve of the other player.

Since the result relies on a mix of continuity and generalized monotonicity conditions, it may

be regarded as a synthesis of the two existing methodologies for establishing existence of PSNE in

general games: the classical (topological) approach via Brouwer’s or Kakutani’s fixed point theorem

(Nash, 1951 and Rosen, 1965) and the algebraic (supermodularity) approach via Tarski’s fixed point

theorem (Topkis, 1979).

Theorem 16 admits an order-dual, which is as follows.

Theorem 17 Assume that X and Y are compact intervals in R, and F and G are upper semi-

continuous in own action. Let α be a continuous function on X × Y that is strictly decreasing in x

and decreasing in y, and β(·, y) be the inverse of α with respect to the first variable. If

(a) F̂ (z, y) ≡ F (β(z, y), y) satisfies the dual single-crossing property with respect to (x; y), and

(b) G is strictly quasi-concave in y for each fixed x, and satisfies the dual single-crossing property

with respect to (y;x).

Then the set of PSNE of this game is non-empty.
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Proof. If the order on (say) player 2’s action set is reversed, the assumptions of this theorem turn

into those of Theorem 16. Hence, the conclusion follows from the latter result.

While equivalent to Theorem 16 from a mathematical point of view, in terms of economics

applications, this order-dual will apply to models that are quite distinct from those of Theorem 16.

In fact, this version will be directly invoked in some of the applications later on.

One can extend Theorem 17 to also deliver uniqueness of PSNE by using the novel insight from

Proposition 13.

Proposition 18 In addition to the assumptions of Theorem 17, assume that the composition of the

two reaction curves f ◦ g satisfies (14) at all of its fixed points. Then there exists a unique PSNE.

Proof. Since the composition f ◦ g is quasi-decreasing, the uniqueness conclusion follows directly

from Proposition 13, when one takes into account that the set of PSNE coincides with the set of

fixed points of the composition f ◦ g.

At the level of generality at which they are stated, Theorem 16 and its order-dual (Theorem 17)

are a priori valid only for two-player games. Nevertheless, these results can be extended to n-player

games upon the inclusion of some additional assumptions on the primitives. This can be done in a

number of different ways. The first and more natural extension is to work with symmetric players.

This is considered in subsection 3.2 below.

3.2 N-player symmetric games

Consider a n-player game, where all players have the same action space X, assumed to be a

compact interval in R, and the same payoff function F : X×Xn−1 → R, where the first entry is the

player’s own action. With the usual abuse of notation, we can write a joint action vector x ∈ Xn

as (xi, x−i) for any i ∈ N .

We now state a basic existence result for symmetric games, special versions of which have

surfaced in the economics literature a number of times in specific contexts (e.g., Amir and Lambson,

2000 and Milgrom and Roberts, 1994). This result provides conditions on the payoff function that

lead to the (common) reaction correspondence satisfying Corollary 11(a).
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Theorem 19 Assume that

(a) F is upper semi-continuous in own action (or first entry);

(b) for each a ∈ X, F̂ (x, a) ≡ F (x, a, ..., a) satisfies a β-shifted single-crossing property with

respect to (x; a) for some β : X ×X → X that is continuous and increasing.

Then the set of symmetric PSNE is non-empty.

Proof. The assumption that F is upper semi-continuous in its first entry guarantees that the

best-reply correspondence is non-empty. By Proposition 7, the maximal best-reply restricted to

symmetric actions x̄ : X → X is quasi-increasing. By Corollary 11, the set of fixed points of x̄ is a

non-empty chain. Since a fixed point of x̄ is an equilibrium, the set of equilibria is non-empty.

For the next uniqueness result, existence of PSNE may be guaranteed either by the continuity

of the (common) reaction curve or by the fact that it is quasi-increasing.

Theorem 20 Assume that F is C2 and

(a) for each a ∈ X, F̂ (x, a) ≡ F (x, a, ..., a) is either strictly quasi-concave in x or satisfies a

β-shifted single-crossing property with respect to (x; a) for some β : X ×X → X that is continuous

and increasing.

(b) for each a ∈ X, F̂ satisfies F̂11(a, a) + F̂12(a, a) < 0.

Then, there exists a unique symmetric PSNE of this game.

Proof. The existence of a symmetric PSNE follows from either of the two assumptions in (a), the

quasi-concavity in x or the β-shifted single-crossing property, see Theorem 19. Since F is C2, we

know from (b) that for each a, F̂11(x, a) + F̂12(x, a) < 0 for all (x, a) in some neighborhood of (a, a).

Hence, with the change of variable z = x + a, F̂ (z − a, a) has strongly increasing differences in

(z, a), i.e., ∂F̂ /∂a is strictly increasing in z; see Amir (1996b) or [Topkis, 1998, p. 79]. Thus, all

the selections of z∗(a) ≡ F̂ (z − a, a) are strictly increasing in a. In other words, x∗(a) has all its

slopes strictly less than 1 in a neighborhood of a. The uniqueness of symmetric PSNE then follows

from Proposition 13.

Again, the main novelty in the underlying argument is that the assumption in part (b) generates

a local contraction property for the reaction curve along the diagonal, which is not required to hold

in a global sense. Due to the latter point, multiple asymmetric PSNEs are not ruled out.
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Before considering an extension to a class of n-player games, we provide a new uniqueness

result for symmetric pure-strategy Nash equilibrium for symmetric normal-form games, which is of

independent interest for many potential economic applications.

Theorem 21 Assume that:

(a) F is differentiable in its first variable (own action) and

(b) For any x′, x ∈ X with x′ > x, F1(x, x, ..., x) 6 0 =⇒ F1(x′, x′, ..., x′) < 0.

Then, there exists at most one symmetric equilibrium of this game.

Proof. This follows directly from Proposition 15.

Observe here that the given assumptions do not preclude the existence of other PSNEs as long

as they are asymmetric.

A suffi cient condition for the assumption in Theorem 21(b) is that ∂1Fi(x, ..., x) is strictly

decreasing in x (see comments after Proposition 15).

We now provide an illustration of Proposition 13 in a familiar setting.

Example 22 Consider the symmetric version of the Bertrand model of Example 8 with demand

function D(x, y). We shall show that there can be at most one symmetric Bertrand equilibrium

provided one assumes that demand satisfies (10) and

D2(x, x) < |D1(x, x) | for all x. (16)

Recall that in Example 8, we showed that f(y) is quasi-decreasing in y, due to Assumption

(10), or equivalently that z∗(y) = D(f(y), y) is increasing in y. Consider any candidate fixed point

y0 = f (y0). Since D(f(y), y) is increasing in y, it is differentiable a.e. in y (with respect to Lebesgue

measure). Therefore, we can find a sequence yn −→ y0 such that D(f(y), y) is differentiable at yn

for each n, so that one has

D1(f(yn), yn)f ′(yn) +D2(f(yn), yn) > 0 or f ′(yn) 6 −D2(f(yn), yn)

D1(f(yn), yn)
.

Taking limsup on both sides yields (in view of (16))

lim sup
n→∞

f ′(yn) 6 −D2(y0, y0)

D1(y0, y0)
< 1.

As this holds at all candidate symmetric PSNE, there is a unique one by Proposition 13.
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Some key aspects of the uniqueness result here are worth stressing:

(a) The argument extends to any number of firms along the same lines (using a two-player example

here is just for simplity of notation).

(b) Continuity of reaction curves is not needed, quasi-decreasingness being suffi cient.

(c) The reaction curve is required to be contractive only locally, around fixed points; it need not

be a global contraction. For the latter property, one would need to strengthen Assumption (A3) to

hold at all pairs (x, y). This would be a much more restrictive assumption, which is not satisfied

by many known (non-linear) demand systems.

(d) As made clear here, as a uniqueness result, Proposition 13 is quite convenient for direct use.

4 Some Selected Applications

This section presents a selection of well known models in applied microeconomics for which the

results of the present paper apply quite naturally and in a straightforward manner to yield novel

results. Despite the fact that some of these models have extensive literature dealing specifically with

the existence of PSNEs, the results proposed below constitute either significant generalizations of

their counterparts in the literature or new versions that are not nested with existing ones. Since

the results presented below are actually new to the separate literatures dealing with each model,

we present the results in the form of formal propositions with concise proofs.

The first two applications below serve to illustrate how our results can be used to tackle the

issue of PSNE existence for classes of games that cannot be handled via the existing approaches,

thus giving some economic insight as to how the key asymmetry between the two players’reaction

curves can arise naturally. The third application illustrates how the present approach can lead to

alternative suffi cient conditions for the existence of PSNE for a well known model, relative to the

existing approach.

4.1 Price-quantity duopoly

In their pioneering paper on linear duopoly, Singh and Vives (1984) introduced a hybrid notion

of duopoly wherein one firm is a price setter and the other firm a quantity setter. Singh and

27



Vives (1984) analyzed only the case of linear demands and derived closed-form PSNEs. In their

specification, the reaction curves are both linear, downward-sloping for the price setter and upward-

sloping for the quantity setter. Owing to this two-way monotonicity, no lattice-theoretic argument

can establish existence of PSNE in more general cases. Instead, one would therefore a priori resort

back to a Brouwer-type fixed point argument to obtain PSNEs (and thus impose continuity of the

reaction curves). Nevertheless, in this subsection, we invoke our main existence result to provide

the very first general PSNE existence result for this hybrid duopoly.

Consider an asymmetric duopoly with differentiated substitute products and linear costs c1 and

c2. Denote the direct and inverse demand functions by Di(p1, p2) and P i(q1, q2), i = 1, 2, where

(p1, p2) and (q1, q2) are the prices and the outputs chosen by the two firms. In order to introduce

the new hybrid duopoly game, we need to also consider the related standard price (Bertrand) and

quantity (Cournot) games.

For the price (Bertrand) game, firm i’s payoff function is

ΠiB(p1, p2) = (pi − ci)Di(p1, p2).

For the quantity (Cournot) game, firm i’s payoff function is

ΠiC(q1, q2) = qi[P
i(q1, q2)− ci].

To define the price-quantity duopoly, assume that Di and P i are smooth (for convenience only),

and that Di
i < 0 and P ii < 0 (i.e., the Law of Demand).14 To avoid technicalities, we also assume

that the firms’outputs and prices lie in compact sets.15 For the products to be substitutes, we need

to postulate that
∂Di(p1, p2)

∂pj
> 0 and

∂P i(q1, q2)

∂qj
< 0.

By taking parametrized inverse functions, there are functions H1 and H2 such that

p1 = P 1(q1, q2) ⇐⇒ q1 = H1(p1, q2)

14 In this section, subscripts denote partial differentiation with respect to the indicated variable(s). Throughout this

section, we assume that that the primitive functions of each model are twice continuously differentiable. This is only

for convenience in establishing the relevant complementarities via Topkis’s cross partial test.
15This may be justified on economic grounds too by postulating for instance that firms face capacity constraints

and regulatory price ceilings.
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and

q2 = D2(p1, p2) ⇐⇒ p2 = H2(p1, q2)

The payoffs in the price-quantity duopoly (with firm 1 as the price setter) are then

F (p1, q2) = (p1 − c1)H1(p1, q2)

and

G(p1, q2) = q2[H2(p1, q2)− c2]

We can now state our main result for this section. A discussion and economic interpretation of the

assumptions used here follows the proof below.

Proposition 23 Assume that the original demand system satisfies the following conditions

P 1
2 (q1, q2) + q1P

1
12(q1, q2) < 0, for all q1, q2 ≥ 0 (17)

D2
1(p1, p2) + (p2 − c2)D2

21(p1, p2) > 0, for all p1, p2 ≥ 0 (18)

and 1
D2(p1,p2)

is strictly convex in p2, or

D2(p1, p2)D2
22(p1, p2)− 2

[
D2

2(p1, p2)
]2
< 0 (19)

Then the price-quantity duopoly possesses a PSNE.

Proof. Denote the reaction correspondences in the price-quantity duopoly by

r1(q2) = arg max
p1

F (p1, q2) and r2(p1) = arg max
q2

G(p1, q2).

Consider the change of variable

z1 = H1(p1, q2) ⇐⇒ p1 = h1(z1, q2)

then firm 1’s payoff function can be rewritten as

F̃ (z1, q2) = z1[h1(z1, q2)− c1)]
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For firm 1, we aim to show that z∗1 = arg maxz1 F̃ (z1, q2), or equivalentlyH1(r1(q2), q2), is decreasing

in q2, so that r1(q2) is quasi-increasing. To this end, a suffi cient condition is that F̃ (z1, q2) has

decreasing differences in (z1, q2), or

h1
2(z1, q2) + z1h

1
12(z1, q2) < 0 (20)

Using the simple formulas that relate the partial derivatives of a function and its parametric inverse

(11) a first time, it is easy to see that (20) is equivalent to

−H
1
2 (p1, q2)

H1
1 (p1, q2)

+
H1(p1, q2)[
H1

1 (p1, q2)
]3 [H1

2 (p1, q2)H1
1 (p1, q2)−H1

12(p1, q2)H1
1 (p1, q2)] < 0

which via (11) is in turn equivalent to (17) upon simplification.

As for firm 2, to show continuity of r2(p1), (19) implies that Π2
B(p1, p2) is strictly quasi-concave in

p2 (Caplin and Nalebuff, 1991). Since G(p1, q2) is obtained from Π2
B(p1, p2) via a strictly monotonic

transformation of firm 2’s action, this implies thatG(p1, q2) is strictly quasi-concave in q2. Therefore,

r2(p1) is a continuous function.

With the change of decision variable z2 = H2(p1, q2) for firm 2, a similar two-step procedure as

for firm 1 above show that r2(p1) is increasing if (18) holds.

The existence of PSNE follows from our basic existence result (Theorem 16).

For a good understanding of the result, we now interpret the specific role played by each of the

assumptions in familiar contexts, and then relate this Proposition to known results on the existence

of PSNEs in the two standard oligopolies. Condition (17) is known to make the payoff of firm 1 in

the standard Cournot game submodular, and thus firm 1’s reaction curve decreasing. Condition (18)

is known to make the payoff of firm 1 in the standard Bertrand game supermodular, and thus firm

1’s reaction curve increasing. It follows that the three assumptions are quite natural since Cournot

and Bertrand duopolies are typically games of strategic substitutes and complements respectively.

Finally, (19) guarantees the quasi-concavity of firm 2’s payoff in own price in the Bertrand game.

Significantly, it turns out that these familiar structural conditions on the two standard duopolies

also constitute minimal suffi cient conditions to make the price-quantity duopoly enjoy strategic

quasi-complementarities and thus possess PSNEs according to the results of the present paper. It

follows that the basic structure imposed by the approach to PSNE existence in the present paper
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is as natural for the hybrid duopoly as the familiar strategic complementarity and substitutability

are to the standard Bertrand and Cournot duopolies respectively.

4.2 Bertrand Competition with increasing returns for one firm

Consider a Bertrand oligopoly with differentiated substitute products wherein firms 1 and 2

choose prices x and y (in a given price set [0, p]) and face a demand system (D1, D2) for their

products, such that Di
i < 0 (the Law of Demand) and Di

j > 0, i, j = 1, 2, and i 6= j (goods are

substitutes). With C1(·) and C2(y) = c2y denoting the firms’cost functions, the profit function of

firms 1 and 2 are then

F (x, y) = xD1(x, y)− C1[D1(x, y)]

and

G(x, y) = (y − c2)D2(x, y).

Using basic insights from the theory of supermodular games, Vives (1990) and Milgrom and

Shannon (1994) derive suffi cient conditions that imply existence of PSNE via the strategic comple-

mentarity of the game. Likewise, for the classical approach using Brouwer’s fixed point theorem,

suffi cient conditions for continuous reaction curves are easily written down (e.g., Caplin and Nale-

buff, 1991 or Vives, 1999). Though based on different arguments, both approaches require a convex

cost function (or decreasing returns to scale) for both firms. In fact, with (at least one) general

concave cost function, it is easy to see that the above approaches do not extend, and thus, not

surprisingly, no existence result is known so far. In this subsection, we provide the first such result,

which imposes no restriction on one firm’s cost function, so in particular it may well be concave

(locally or globally).

Assumptions

(A1) (i) D2(x, y) is log-submodular (i.e., D2D2
12 −D2

1D
2
2 ≤ 0)

(ii) 1
D2(x,y)

is strictly convex in x for each y, i.e., D2(x, y)D2
11(x, y) − 2[D2

1(x, y)]2 < 0 for

all (x, y).

(A2) D1
2(D1

1)2 −D1
[
D1

1D
1
12 −D1

2D
1
11

]
> 0 for all (x, y).
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Assumption (A1) is well known to yield a reaction curve that is downward-sloping (part i) and

continuous (part ii), as seen in the proof. (A1) (i) is quite restrictive, as it requires D2
12 to be

strongly negative.16 However, given the paucity of existence results under increasing returns in

oligopoly in general, one would not expect a high level of generality.

The new assumption here is (A2). It clearly imposes a very mild restriction on the demand

function. Indeed, the third term is always negative, and the first term has a high tendency for a

negative sign. In addition, it is suffi cient (but not necessary) for (A2) to hold to have D1
2D

1
11 −

D1
1D

1
12 < 0. The latter is equivalent to D1

1/D
1
2 being decreasing in x, which is a very general

condition.

Importantly, the following existence result imposes no assumptions at all on the cost function

of firm 1.

Proposition 24 Under Assumptions (A1)-(A3), the Bertrand game has a PSNE.

Proof. For firm 2, by Assumption (A1)(ii), G(x, y) is strictly quasi-concave in y for each x, and

thus the reaction correspondence f(y) of firm 2 is a continuous function (Caplin and Nalebuff, 1991).

In addition, logG(x, y) = log(y − c2) + logD2(x, y) so (A1(i)) implies that logG(x, y) is super-

modular, so the reaction curve r2(x) is decreasing (Milgrom and Shannon, 1994).

For firm 1, the fact that (A2) implies that the reaction curve r1(y) is quasi-decreasing was

already proved in Example 8.

Existence of PSNE then follows from Theorem 17.

A noteworthy point is that this existence result imposes no restrictions at all on the cost function

of firm 1 (other than continuity). Therefore, a key implication of this result is that a quasi-decreasing

reaction curve is a natural property for a Bertrand firm when its cost function has increasing returns

to scale (even strong ones), either in a local or a global sense. In contrast, in such cases, in general,

the other two common properties, upward-monotonicity and continuity, can easily fail to hold.

16One example of a demand function satisfying this assumptions is

D
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4.3 Provision of public goods

We consider the standard model of noncooperative provision of public goods (e.g., Bergstrom,

Blume and Varian, 1986, or BBV), and modify it in that agents contribute an input to the production

of the public good output. Let agent i ∈ {1, 2}, with utility function U i(·, ·) and wealth wi,

contribute xi ∈ [0, wi] as input to produce the public good (whole price is normalized at 1), and

spend the rest of his wealth (wi − xi) on consumption of a composite good with price p. Denoting

by f(·) the production function, with f ′(·) > 0, the payoffs of agents 1 and 2 are then

F (x1, x2) = U1[w1 − px1, f(x1 + x2)]

and

G(x1, x2) = U2[w2 − px2, f(x1 + x2)].

In what follows, we aim to make minimal assumptions to obtain existence of PSNE via Theorem

??. In addition, to make the problem interesting for the approach at hand, we refrain from making

any concavity assumptions on the utility and production functions, so that the existing approach

based on continuous reaction curves (as in BBV, 1986) does not apply. The need for our approach

becomes critical if production has increasing returns to scale (either globally or even locally).

(A1) U1 satisfies

(i) U1
2 f
′′ − pU1

21f
′ + U1

22(f ′)2 > 0

(ii) U1[w1 − px1, f(x1 + x2)] is strictly quasi-concave in x1.

(A2) U2 satisfies U2
12f
′ − pU2

11 > 0, i = 1, 2.

We now discuss the meaning and plausibility of these assumptions. The assumption here that

departs most from the usual setting of BBV is (A1)(i). It is seen by inspection that it is easier for

(A1)(i) to hold when the utility function is linear in the public good (i.e., U1
22 = 0), and submodular

(U1
12 < 0) or additively separable (i.e., U1

12 = 0), and the production function is convex or has

increasing returns (in the relevant range). Clearly, these conditions need not hold simultaneously

for (A1)(i) to be valid.

While Assumption (A1)(ii) puts a bound on the extent of increasing returns for f , and thus goes

against (A1)(i), the two can be seen to be mutually compatible. As an example, let U1(x1, x2) =

x2 log x1 and f(z) = z2.
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As to Assumption (A2), it amounts to assuming that the private good (good 1) is a normal good

for agent 2 (in the sense of standard consumer theory). To see this, note that along with the first

order condition −pU2
1 = U2

2 f
′, (A2) amounts to U2

1U
2
12 − U2

2U
2
11 > 0. Hence, (A2) is very general.

Proposition 25 Under Assumption (A0)-(A1), the game possesses a PSNE.

Proof. For agent 1, by Assumption (A1)(i) and Topkis’s Theorem, the reaction curve f(x2) is

upward-sloping since

∂F (x1, x2)

∂x1∂x2
= U1

2 f
′′ − pU1

21f
′ + U1

22(f ′)2 (21)

> 0 by (A1)

Due to Assumption (A1)(ii), f(x2) is also a continuous function.

For agent 2, consider the change of variable z = x1 + x2, and rewrite his payoff as

G̃(x1, z) = U2[w2 − p(z − x1), f(z)]

Then

∂G̃(z, x2)

∂z∂x2
= −p2U2

11 + pU2
12f
′

> 0 by (A2)

Hence, by Topkis’s Theorem, given that the feasible set for z, i.e., [x1,∞), is ascending in x1,

z∗(x1) = arg maxz≥x1 G̃(x1, z) is increasing in x1. Since g(x1) = z∗(x1)−x1, it follows that g(·) has

all slopes ≥ −1, i.e., g(x
′
1)−g(x1)
x′1−x1

≥ −1, which implies that g(x1) is quasi-increasing.

Existence of PSNE then follows from Theorem 16.

The fact that the only assumption that is required for agent is (A2), i.e., normality, irrespective

of the nature of the returns to scale in production, is quite remarkable. It follows that quasi-

increasingness is a natural and robust property for agents’reaction functions in tis standard public

good provision setting.

The following consequence is noteworthy for the original BBV model, which is obtained from

the above formulation by letting f(x) = x (the identity function).
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Corollary 26 Consider the BBV model but only under the assumptions that

(i) the public good (good 2) is inferior for agent 1 (i.e., that −pU1
21 + U1

22 > 0) and

(ii) U1 is strictly jointly quasi-concave.

(iii) the private good (good 1) is a normal good for agent 2 (i.e, A2 holds).

Then the game possesses a PSNE.

Proof. From the previous proof, F has increasing differences since (see (21))

∂F (x1, x2)

∂x1∂x2
= −pU1

21 + U1
22 > 0

From Assumption (ii), f is also a continuous function.

The proof that g is quasi-increasing (but not necessarily continuous) follows directly from the

proof of the previous result.

Existence of PSNE then follows from Theorem 16.

In contrast, BBV’s existence result assumed that (i) both the private and the public goods

are normal for both players, and (ii) both utility functions are strictly jointly quasi-concave. The

present result reflects a significant generalization for both types of assumptions (we stress that,

here, U2 need not be quasi-concave).

4.4 Final remarks

The applications to hybrid duoply and to standard duopoly with increasing returns provide nice

illustrations of the scope for strategic pseudo-complementarities in various simple games in industrial

organization, for which strategic complementarity woud not be as appropriate. The duality between

pseudo-complementarities in hybrid duopoly on the one hand and strategic complementarity in

Bertrand duopoly and substitutability in Cournot duopoly on the other is a novel insight in oligopoly

theory in general. Likewise, the fact that a Bertrand firm that produces with increasing returns to

scale will aways have a quasi-decreasing reaction curve is notwworthy in itself. Similar insights can

be obtained by natural modifications in well known models, such as introducing scale economies in

production.

As illustrated in the public goods example, the results of the present paper also apply in various

models for which they require alternative suffi cient conditions on the primitives that may or may
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not be nested with known conditions that make the standard supermodular approach go through.

For the BBV model, our conditions are strictly more general than existing ones. However, one can

easily apply our results to the standard Cournot or Bertrand models with differentiated products

and obtain suffi cient conditions on demand and costs that are not nested with existing ones (this

is available from the authors upon request). Finally, one can also apply our results to some of the

models proposed by Monaco and Sabarwal (2016) as games with strategic complementarity for one

player and strategic substitutability for the other player.

5 Conclusion

By building on an intersection point theorem due to Tarski (1955), the main result of this paper

demonstrates that a pure-strategy Nash equilibrium exists in two-player games when one reaction

curve is continuous and increasing and the other has no downward jumps (though it may well

have upward jumps). We elaborate in some detail on functions with the latter property, called

quasi-increasing in Tarski (1955), by deriving a number of results on natural operations involving

such functions. In particular, these results include suffi cient conditions on an objective function for

quasi-increasing functions to arise as argmax’s of parametric optimization problems.

Some novel uniqueness results are also proved, which rely on a local (instead of the commonly

used global) contraction property, and require quasi-increasingness instead of continuity of the best

response maps.

The special case of symmetric n-player games is also covered, thus unifying some existing results

dealing mostly with Cournot oligopoly.

In an important part of the paper, we argue that the new results here have a promising scope of

application for a wide variety of economic models, including a hybrid duopoly model (of price and

quantity competition), a Bertrand model with increasing returns for one firm, and a public good

provision game. We illustrate in elementary ways all the various steps needed to actually apply

some of the results of this paper for each of these models, tacitly establishing that strategic quasi-

complementarity (or a quasi-increasing reaction curve) forms a convenient relaxation of strategic

complementarity, and arises naturally in well-known economic models.
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