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Abstract

This paper considers the generalized empirical likelihood (GEL) estimation and tests of spatial autoregressive
(SAR) models by exploring an inherent martingale structure. The GEL estimator has the same asymptotic dis-
tribution as the generalized method of moments estimator explored with same moment conditions for estimation,
but circumvents a first step estimation of the optimal weighting matrix with a preliminary estimator, and thus
can be robust to unknown heteroskedasticity and non-normality. While a general GEL removes the asymptotic
bias from the preliminary estimator and partially removes the bias due to the correlation between the moment
conditions and their Jacobian, the empirical likelihood as a special member of GELs further partially removes the
bias from estimating the second moment matrix. We also formulate the GEL overidentification test, Moran’s I
test, and GEL ratio tests for parameter restrictions and non-nested hypotheses. While some of the conventional
tests might not be robust to non-normality and/or unknown heteroskedasticity, the corresponding GEL tests

can.
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1 Introduction

In this paper, we consider empirical likelihood (EL) and generalized EL (GEL) estimation and tests of the pop-
ular spatial autoregressive (SAR) model with spatially dependent data. The EL approach is introduced in Owen
(1991) for independent sample observations. It can be interpreted as a nonparametric maximum likelihood and a

generalized minimum contrast estimation method (Kitamura, 2007).! The class of GEL estimators includes the
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EL, the exponential tilting (ET) of Kitamura and Stutzer (1997) and Imbens et al. (1998), and the continuous
updating generalized method of moments (GMM) of Hansen et al. (1996). With independent sample observations,
the EL and GEL can have various advantages over other methods as shown in the literature. They can be robust
against distributional assumptions but may still have good properties analogous to the parametric likelihood pro-
cedure in estimation and testing. As alternatives to the two-step optimal GMM estimator which usually requires
a first step estimation of an optimal weighting matrix with a preliminary estimator, the EL and GEL estimators
are one-step estimators. They are consistent and have the same asymptotic distribution as the two-step optimal
GMM estimator by using same moment conditions, but invariant to parameter-dependent linear transformations of
moment conditions, and have improved high order properties (Imbens et al., 1998; Owen, 2001; Newey and Smith,
2004). In particular, Newey and Smith (2004) show that, for i.i.d. data, the GEL estimator has no asymptotic bias
from estimation of the Jacobian or the preliminary estimator, and the EL further removes a bias component from
estimation of the second moment matrix. In finite samples, while the two-step optimal GMM can have large bias
(e.g., Altonji and Segal, 1996), the GEL estimators are observed to perform better than the GMM estimator (e.g.,
Hansen et al., 1996; Imbens, 1997; Ramalho, 2002; Mittelhammer et al., 2005; Newey et al., 2005). The EL and
GEL can also be applied to testing problems. A nonparametric analog of the parametric likelihood ratio statistic
follows an asymptotic chi-squared distribution under the null. An EL ratio test and confidence region are often
Bartlett correctable (Corcoran, 1998; DiCiccio et al., 1991; Lazar and Mykland, 1999), and EL tests are Bahadur
efficient (Otsu, 2010) and have optimality properties in terms of large deviations (Kitamura, 2001).

The EL and GEL have originally been considered for independent data. Later on, there are attempts to
generalize them for time series data (e.g., Kitamura, 1997). For time series, some authors have studied the EL
for models with martingale structures. Mykland (1995) generalizes the EL definition for i.i.d. data to models
with martingale structures and introduces the concept of dual likelihood, and Chuang and Chan (2002) develop
the EL for autoregressive models with innovations that form a martingale difference sequence. But the EL and
GEL approaches have not be considered for estimation and testing with spatially dependent data. These motivate
our investigation of the use of EL and GEL for estimation and hypothesis testing with spatial data. We realize
that many popular spatial econometric models and hence spatially correlated variables can be characterized by
martingale processes under proper filtrations. The importance of martingale processes for spatial random variables
has been recognized by Kelejian and Prucha (2001). They develop a central limit theorem (CLT) for linear-quadratic
forms of independent disturbances by exploring the martingale structure of a linear-quadratic form.? This CLT can
be applied to a large class of spatial econometric models such as the SAR model, the spatial error (SE) model, the
spatial moving average model, the spatial Durbin model, the spatial error components model, and the SAR model
with SAR disturbances (SARAR model).

Various estimation methods for the SARAR model, which includes the SAR and SE models as special cases, have
been proposed in the literature, e.g., the generalized spatial two-stage least squares (GS2SLS) estimation (Kelejian

and Prucha, 1998), the quasi maximum likelihood (QML) estimation (Lee, 2004), and the GMM estimation (Lee,

2In the time series literature, quadratic statistics have long been written as martingales. See, e.g., Hall and Heyde (1980).



2007).% The GS2SLS estimates the equation by the two stage least squares (2SLS), thus it is computationally
simple, but can be asymptotically inefficient compared to the QML. Although being relatively efficient, the QML
may be computationally intensive for large sample sizes, especially for SAR models with high order spatial lags.
The GMM can be computationally simpler than the QML and can be as efficient as the QML.* The GMM may
employ not only linear moments in disturbances but also quadratic ones. Quadratic moments can be motivated
from the QML and Moran’s I test (Moran, 1950), which capture spatial dependence. In the presence of unknown
heteroskedasticity, by selecting quadratic matrices with zero diagonals, the quadratic moments can obtain robust
estimates (Kelejian and Prucha, 2010; Lin and Lee, 2010). Liu and Yang (2015) propose to modify the QML
scores to obtain estimators robust to unknown heteroskedasticity. We consider the GEL estimation of the SARAR
model under both homoskedasticity and unknown heteroskedasticity in this paper. For spatial data, original sample
observations are not martingale differences, so the EL. and GEL cannot be applied directly to them. However, as
noted in Kelejian and Prucha (2001), linear-quadratic forms of independent disturbances can be written as a sum
of martingale differences. For linear and quadratic moments, treating each martingale difference as if it was a data
observation, we can set up EL and GEL objective functions to derive corresponding estimates and relevant test
statistics.

We show that, for spatial data, the GEL estimation with moment conditions can remove the asymptotic bias
from the preliminary estimator and partially remove the asymptotic bias due to the correlation between moment
conditions and their Jacobian. The EL further partially removes the bias from estimation of the second moment
matrix. This conclusion is consistent with that in Anatolyev (2005) for stationary time series models under mixing
conditions. In the event that only linear moments are used, the EL has the ability to completely remove the
asymptotic bias from estimation of the second moment matrix.

We also consider test statistics in the GEL framework. The GEL objective function (with proper normalization)
evaluated at the GEL estimator is an overidentification test statistic that can be used to test for validity of moment
conditions. Tests of parameter restrictions can be conveniently implemented with GEL ratio statistics. The popular
Moran’s I test for spatial dependence formulated with a GEL ratio is robust to unknown heteroskedasticity. In
addition, we employ the GEL ratio statistic to construct a spatial J test for competing SARAR models (Kelejian,
2008; Kelejian and Piras, 2011). Unlike original spatial J tests based on the 2SLS or GS2LS estimation, the
spatial J test with a GEL ratio conveniently employs quadratic moments in addition to linear ones to obtain more
efficient estimators for testing. These tests do not involve estimation of variances and are robust to unknown
heteroskedasticity. For testing with quadratic moments, GEL tests are also robust to non-normality in the sense
that (higher order) moment parameters do not need to be evaluated. As far as we know, this may be the first paper

that explores the GEL estimation and tests of models with spatial data.®

3Due to endogeneity of the spatial lag in an SAR model, the least squares estimator is only consistent in certain cases (Lee, 2002).
4The GMM estimator with properly chosen moments can be as efficient as the QML estimator for the SARAR model with normal

disturbances, but it can be more efficient than the QML estimator for the SARAR model with non-normal disturbances (Liu et al.,

2010; Lee and Liu, 2010).
5 Although we only focus on the SARAR model, by exploring martingale structures, other spatial econometric models may be possibly



This paper is organized as follows. Section 2 introduces the SARAR model, and the GEL and GMM estimation
based on its martingale structure. Section 3 shows the consistency and asymptotic normality of the GEL estimator
and compare its asymptotic bias with that of the GMM estimator. Section 4 investigates test statistics in the GEL
framework. Section 5 reports some Monte Carlo results, which demonstrate desirable finite sample performance of

GEL estimators and test statistics. Section 6 concludes. All lemmas and proofs are collected in appendices.

2 The SARAR model and GEL estimation
Consider the SARAR model:
Y, = kW, Y, + Xnﬂ +U,, U,=7MU,+V,, (1)

where n is the sample size, Y,, is an n x 1 vector of observations on the dependent variable, X,, is an n X k,
matrix of exogenous variables with parameter vector 8, W,, = (wy,;;) and M,, = (my, ;) are n x n nonstochastic
spatial weights matrices with zero diagonals, x and 7 are scalar spatial dependence parameters, and V,, = (vp;)
is an n x 1 vector of independent disturbances with mean zero and finite variances. In this paper, we consider
two cases on the variance of v,;. In the first case v,;’s are homoskedastic, and in the second case v,;’s have
heteroskedastic variances with unknown form. Let S, (k) = I, — kW,,, and R, (1) = I,, — 7M,,, with I,, being the
n x n identity matrix, and (g, 79, 85)" be the true value of (k,7,8")’. As an equilibrium model, Y;, has the reduced
form Y, = S, (X080 + R,,'V,), where S, = S, (ko) and R, = R,(79) are assumed to be invertible. The X,, is
assumed to be nonstochastic for convenience, as in Kelejian and Prucha (1998) and Lee (2004).5

If the disturbances v,,;’s in model (1) are i.i.d. with mean 0 and variance o2, the moment vector for a GMM

estimation can be

gn(0) = %[VA(@PMVn(@) — 02t (Pa1), -, Vi (0) Pk, Vi (0) — 0° t2(Pr g, ), Vi (0)Qu)', (2)
where V,,(0) = R,,(7)[Sn(k)Y, — X,8], with 6 = (k, 7, 8',0%)’ being a ko-dimensional vector for kg = k, + 3, Py
for I =1,...,k, are n x n nonstochastic matrices, and @, is an n x k, matrix of instrumental variables (IV) with
full column rank k,. Without loss of generality, assume that P,;, for [ = 1,...,k,, are symmetric and linearly
independent.” The quadratic moments are valid since E(V,!P,,V;,) = o2 tr(P,;). The IV matrix Q,, may consist of
independent columns of X,,, W,, X,, and so on, and P,;’s can be functions of W,, and M,, such as W,,, M,,, Wﬁ and
M?2. The total number of elements in g, (6) is k, = k;, + k4, which is greater than or equal to kg.

As each moment condition of g, () at the true parameter vector 6y is either linear or quadratic in V;,, we may
also consider a more general vector moment conditions of linear-quadratic forms, which are linearly independent,

such as

1
= [V A1 Vi = 05 tr(Ap1) + b,y Vs -, Vi A Vi — 03 tr(App) + ), Vi)

n —
n

studied.
GAlternatively, X, can be stochastic with finite moments of certain order.
7If P,; is not symmetric, replacing it with (Pni + P;Ll)/2 does not change the value of the moment vector.



for some finite p, where A, = (anr4;) for r =1,...,p are n x n symmetric matrices and by, = (b, ;) forr=1,...,p

are n x 1 vectors. We can rewrite Z,, as a sum of martingale differences. Specifically E,, = %Z?:l &ni, Where

i—1 i—1
2 2 2
gni = [anl,ii ('Uni - UO) + 2Uni Z anl,ijvnj + bnl,ivnia .. anp zz(v 00) + 2'Un7, Z anp zgvnj + bnp zvnz]
j=1 j=1
is a p-dimensional column vector. Consider the o-fields %, = {0,Q}, Fni = 0(vn1,---,Uni), 1 < i < n. As

Fnic1 C Fpi and E(&ni| Fric1) = 0, {&ni, Fniy 1 < @ < n,n > 1} forms a martingale difference array. Thus
&ni’s are uncorrelated and the variance of Z,, is % Yo E(&ni€l;). Let on = (€n1s--., &)’ be an n X p matrix
of martingale differences. Then, the variance of Z,, is =3 E(¢),¢,). The moment vector g,(f) in (2) can be

equivalent to =,, above when relevant quadratic matrices and linear functions including zeros are properly chosen.

Let Qn = [Qnis---, Qunl’s ViL(0) PV (0) — 0% tr(Pat) = Yoy wnii(0) for 1 =1,...,k,, where
Wnl,i (0) = Pnl,ii [Ufn(a) + 2Un1 anl z]vn] (3)
with v,,;(6) being the jth element of V,,(6), and

9ni(0) = [wWn1,i(0), - - -, Wn 1, i (0), Qrivni(0)]'. (4)

Then g,(0) = =37 | gni(#). The quadratic moments involve the variance parameter o2 due to (3) in order that
gn(6) can be decomposed into a sum of g,;(0)’s in (4), where g,;(6p) for ¢ = 1,...,n, are martingale differences.
Thus the variance of g, (60) is -5 Y1 | E[g,i(60)gh;(60)]. Our quadratic moments involving the estimation of ¢
are in line with those in Kelejian and Prucha (1998, 1999).8

In the case that there is unknown heteroskedasticity, we may select all P,;’s to have zero diagonals in order to
derive valid moment conditions, as in Kelejian and Prucha (2010) and Lin and Lee (2010). Such P,;’s can be W,
M,,, W2 — diag(W?2), M2 — diag(M?2) and so on, where diag(A) for a square matrix A denotes a diagonal matrix

formed by the diagonal elements of A. Let the moment vector be
1
9n(0) = —IVa(0) PraVa(0), - Vi (0) Py, Vi (0), Vi (0)Qu]', (5)

where P,;’s have zero diagonals, and V,,(6) is the same as above, but 6 = (k,7, ")’ would not contain o2 so that
0 is ke-dimensional for kg = k; + 2.9 Then wy,;(f) and g,;(#) can still have the forms in (3) and (4), as the first

term on the r.h.s. of (3) is zero.

8Note that E(V, PyiVn) — 02 t1(Pni) = E{V)[Pu — tr(Pp)In/n]Va} + [E(V, Va) tr(Pn1)/n — 02 tr(Py)] = 0, where E{V/[Pn; —
tr(Ppi)In/n|Va} =0 as Py — tr(Py;)In/n is a matrix with a zero trace. Lee (2001) and Lee (2007) use quadratic moments of the form
E{V! [P — tr(Ppn;)In/n]Va} = 0 to formulate the GMM estimation, which do not involve o2. The zero trace quadratic matrices would
not be appropriate to be used here due to the required martingale difference property. However the two sets of quadratic moments can
be asymptotically equivalent as shown in Liu et al. (2010) for GMM estimation. As we show in Appendix A, in the case that v,;’s are
normal, for the GMM in Lee (2001, 2007) and that considered here, there are moment vectors with which the resulting GMM estimators

are as efficient as the ML estimator.

9This is proper because a single 02 would not be meaningful with heteroskedastic errors.



We consider the GEL estimator:

n

én,GEL = argmingcSupyey,, (9) Z p(N'gni(0)), (6)

i=1
where A, (0) = {A: Ngni(0) € V,i=1,...,n} for an open interval V containing 0, and p(v) is a twice continuously
differentiable concave function of a scalar v on V.1° Denote p(v) = dl;’;(,f) and pg = pr(0) for k =1 and 2. As long

as p1 # 0 and py < 0, without loss of generality, we may let p; = po = —1 (Newey and Smith, 2004). The EL is a
special case of the GEL with p(v) = In(1 — v) for v < 1 (Qin and Lawless, 1994; Smith, 1997); the ET is a special
case with p(v) = —e¥ (Kitamura and Stutzer, 1997; Smith, 1997); and the continuous updating GMM is a special
case with a quadratic p(v) = —3(v + 1) (Newey and Smith, 2004).

To study large sample properties of the GEL estimator, we assume formally the following regularity conditions.

Assumption 1. Either (i) vy;’s are i.i.d. with mean zero, variance o3 and E(|v,;|*T) < oo for some v > 0; or (ii)

Uni s are independent with mean zero and variances 02;’s, and sup,, SUp; <;<, B(Jvn:[*1*) < 0o.

Assumption 2. The elements of X,, are uniformly bounded constants, X, has full column rank, and lim,, ., %X,’an

ezxists and is nonsingular.

Assumption 3. (i) W, and M, have zero diagonals; (ii) S, and R, are nonsingular; and (iii) the sequences of

matrices {W, }, {M,}, {S;1} and {R,;'} are bounded in both row and column sum norms.
Assumption 4. 6, is in the interior of a compact parameter space © in the ko-dimensional Fuclidean space.
Assumption 5. p(v) is concave on V), twice continuously differentiable in a neighborhood of zero, and py = p = —1.

We shall consider both homoskedastic and heteroskedastic cases, so Assumption 1 gives general conditions to
allow both cases. Assumptions 1(¢) and 24 are the same as those in Lee (2007); and the additional conditions on M,
are similar to those on W,,. Assumption 1(#¢) for the heteroskedastic case is the same as that in Lin and Lee (2010).
The existence of moments higher than the fourth order in Assumption 1 is needed for the application of the CLT
on linear-quadratic forms as in Kelejian and Prucha (2001). In Assumption 2, explanatory variables are assumed
to be constants for convenience and multicollinearity is ruled out. Assumption 3 restricts the degree of spatial
dependence to be manageable. Assumption 4 is a standard assumption on extremum estimation. Assumption 5 is
a smoothness condition on p(+) as in Newey and Smith (2004).

We have the interest to compare asymptotic properties of GEL estimation with GMM estimation. Let €,,(0) =
L 9ni(0)gL;(0), then var[y/ng,(60)] = E[Q,(60)]. Denote Q,, = E[Q,(6p)], which can be estimated by Q,.(6,)
with some initial consistent estimator 6,,. With €,,(6,,), we consider the following feasible optimal GMM (FOGMM)

estimator:

én}GMM = arg minee@g;(G)le(én)gn (0)y (7)

101n practice, A can be chosen from R¥s. If for some 6, for any )\, there exists some 4 such that X gni(0) falls out of the domain of p(-),
it is theoretically appropriate to set the GEL objective function at 0 to infinity. If not, but A’g,;() falls out of the domain of p(-) for
some % and A, then the X is not the solution of the problem. This is because An = Op (n’l/z) by Proposition 3.1, and with probability

approaching one, N gn;(f) € V forall 1 <i<mn, # € © and ||\|| < n~¢, where ( is a positive number, by Lemma C.10.
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We shall compare this FOGMM estimator with the GEL estimator. For these estimators, (2,, is required to be
nonsingular in the limit. The nonsingularity of Q, will be guaranteed by the linear independence of the linear-
quadratic moment conditions. In the limit, we just require such linear independence properties not to vanish.

Assumption 6. lim,_, 2, exists and is nonsingular.

For the initial estimator §, for the FOGMM, one may suppose that it is derived from mingee ¢/, (6)J;  gn(6),
where J,, is a kg x kg weighting matrix. Following Newey and Smith (2004), we assume that J,, satisfies the following

assumption.

Assumption 7. jn =J,+ n*1/2§,{ + Op(n’l), where J,, is a nonstochastic positive definite matriz, imy,_ oo Jy 15

nonsingular, & = O,(1) and E(&]) = 0.

3 Large sample properties of estimators

In this section, we investigate the consistency and asymptotic normality of the GEL estimator, and compare its

asymptotic bias of some higher orders with that of the FOGMM estimator.

3.1 Consistency and asymptotic distribution

For the GEL estimation, it is convenient to present results on asymptotic properties in both the homoskedastic and
heteroskedastic cases together, though 6 and other terms below may have different expressions in the two cases.
Under the identification assumptions 11 and 12 in Appendix A, the following proposition establishes the consistency

of émGEL and related probability orders of the moment vector and the corresponding GEL estimate X,,,GEL of \.

Proposition 3.1. Under Assumptions 1(i), 2, 3, 5, 6 and 11 in the homoskedastic case, or under Assump-
tions 1(ii), 2, 8, 5, 6 and 12 in the heteroskedastic case, én,GEL 2 by, and gn(OAmGEL) = Op(n’l/z); further-
more, A GEL = arg max, g GEL)% S PN gni(On.arL)) exists with probability approaching one (w.p.a.1.), and

)\n,GEL = Op(n_l/Q).

With the consistency of the GEL estimator, its asymptotic distribution can be derived as usual. Let G, =
E(aggié?o)), v = (0", ), and yo = (05, 01xx,)’. Furthermore, denote Y. = (G QG Hy = (GLO1GL) GO0,

and Dy, = Q-1 — Q- 1G (G0 1G) G0
Assumption 8. lim, . G, has full rank.

As usual, Assumption 8 rules out functionally dependent moments. The next proposition shows that 4, grr, =

(é;’GEL, S\Z’GEL)' is asymptotically normal.

Proposition 3.2. Under Assumptions 1(i), 2-6, 8 and 11 in the homoskedastic case, or under Assumptions 1(ii),
2-6, 8 and 12 in the heteroskedastic case, v/n(¥n,cEL — Y0) 4, ZV(O,lirnn_)(><> diag(X,, D,,)), where diag(3%,,, D,,) is

the block diagonal matriz formed by ¥, and D,,.



We see that the GEL estimator HAmGEL of 8y has the same asymptotic distribution as the GMM estimator én,GMM

in (7) (see Propositions A.1 and A.2 in Appendix A).!!

3.2 Stochastic expansion and high order asymptotic bias

To study high order asymptotic biases of the GMM and GEL estimators, we shall first derive Nagar-type expansions

(Nagar, 1959) of a y/n-consistent estimator 4, of 7o with the form

\/ﬁﬁ/n - '70) =&+ nil/an + O;D(nil)a (8)

where &, = 0,(1), E(&,) = 0 and 1, = O,(1). High order bias of the estimator 4,, can be computed as  E(t,,).

For the FOGMM estimator én,GMM, following Newey and Smith (2004), an auxiliary parameter vector

An,GMM = —Qfll(én)gn(én,GMM)

can be defined to make the derivation of its corresponding Nagar-type expansion easier. With /A\mGMM, the first

order condition for the FOGMM estimator én,GMM can be written as

0=— ( G%(enxGMM))‘n,GMM )
gn(

On,avnt) + 2 (0n) AnaMm

The stochastic expansion requires the existence of higher order moments of disturbances.

Assumption 9. sup,, sup; «; <, E|v,:[® < oc.

Proposition 3.3. For the FOGMM estimator 4, cym = (OgyGMM,)A\’mGMM)’, under Assumptions 1(i), 2—4, 6-9
and 11 in the homoskedastic case, or under Assumptions 1(i), 2—4, 6-9 and 12 in the heteroskedastic case, the

expansion (8) holds.

The explicit forms of &, and ¥, for the asymptotic expansion of 4,, gmm are rather complex, but can be found
in Appendix D in the proof of that proposition. A similar expansion for the GEL estimator én,GEL can also be

derived as in Appendix D. The expansion requires further smoothness condition on p(v).

Assumption 10. p(v) is four times continuously differentiable with Lipschitz fourth derivative in a neighborhood

of zero.

Proposition 3.4. For the GEL estimator 4y, ggr, under Assumptions 1(i), 2-6, 8-10 and 11 in the homoskedastic

case, or under Assumptions 1(ii), 2—6, 8-10 and 12 in the heleroskedastic case, the expansion (8) holds.

With the above two propositions, we can compute the asymptotic biases of the FOGMM and GEL estimators

with the form %E(wn) Let Q, = Q,(00), G, = G, (60), Gg’ll) = E(a(;gig(f()))’ n = 9n(00), gni = gni(bo), g(l) =

ni
99ni(6o)
00,

, and ey, ; be the [th column of the kg x kg identity matrix, where 0; denotes the /th element of 6.

HSince the GMM estimators in both homoskedastic and heteroskedastic cases have been studied in the literature, we relegate their

consistency and asymptotic distribution results to Appendix A and omit their proofs.



Proposition 3.5. Under Assumptions 1(i), 2—4, 6-9 and 11 in the homoskedastic case, or under Assumptions 1(ii),

2-4, 6-9 and 12 in the heteroskedastic case, the bias of the FOGMM estimator én,GMM is B + B¢ + B + B/,

where Bl = H, B(G,,H,g,) — i k" Hnéﬁ)inew, BY = -3, E(G! D,g,), B$ = H,E(Q,D,g,) and B; =
=200 e iy HalBlgnigy) +g£f£g;l>1bnm<ﬁz — Hy)'ex,q with H] = (G 11 Ga) ' Gl

In Proposition 3.5, Bl is the asymptotic bias for a GMM estimator with the optimal linear combination
G Q-1g,(60) of empirical moments g, (f); BS arises from estimating G,,; BS! arises from estimating the second
moment matrix €, with the empirical variance €,,; and B;] arises from the choice of the initial GMM estimator.
For the latter, if J,, is a scalar multiple of €,,, then B = 0 as H,, = H;. With exact identification, D,, = 0; thus,

BS = B = B = 0. Let G,,; = 2o — g()  gko)],

Proposition 3.6. Under Assumptions 1(i), 2-6, 8-10 and 11 in the homoskedastic case, or under Assumptions
1(ii), 2-6, 8-10 and 12 in the heteroskedastic case, the bias of the GEL estimator émGEL is Bl + B¢ — BS + B +
£s BQ, where BG —%in Y E(G iDngni), p3 = dzg(?,o) is the third order derivative of p(v) evaluated at v = 0,

aNd vizz n2 Zz 1 H E(gnzgniDngnz)

Since gni(fo)’s are not independent across i, BS # B and B # B2 in general. Thus, unlike the case with
i.i.d. data, the bias of the GEL estimator does not reduce to B} + BS! + %SB,? and does not reduce further to Bl for
the EL with p3 = —2. The GEL only partially removes the asymptotic bias from the correlation between G,,(6p)
and g (6p). This conclusion is similar to that in Anatolyev (2005) for stationary time series models with mixing
conditions.

When g,,(#) only contains linear moments, g,,; becomes @Q,,;v,;. Then, with only IV estimation, B! = BQ and
the bias of the EL estimator reduces to B + BS — BS, i.e., the EL does not have a bias from estimation of the
second moment matrix Q,,. If further E(v3,) = 0 for i = 1,...,n, because BS = B! = 0, B? is removed from the

bias of the FOGMM estimator and BS! + %”Bﬁ} is removed from the bias of any GEL estimator, not just the EL

estimator.

Corollary 3.1. When g,,(0) = Q1 V,.(6), the bias of the EL estimator reduces to Bl + BS — BS, and the bias of
the FOGMM estimator is Bl + BS + B + B, where Bf} = 12 a, S QniQiDnQni E(v3,).

n’

4 Test statistics

In this section, we investigate several popular test statistics for SAR models in the GEL framework, including the
parameter restriction test, overidentification test, Moran’s I test and spatial J test. As shown below, an interesting
aspect of those test statistics is their robustness to unknown heteroskedasticity as long as their moment conditions
are valid, while conventional test statistics without taking into account carefully their heteroskedastic variances for
relevant evaluation might not be robust. Furthermore, GEL test statistics based on quadratic moments with zero
diagonal quadratic matrices can be robust to non-normal distributions, while conventional test statistics might not

be so if higher order moments are not properly taken into account.



4.1 Test for parameter restrictions

We may test for parameter restrictions in the GEL framework. Let 6 = (o', ¢')’, where « is a ko x 1 sub-
vector of 0, e.g., @ might be a vector of spatial dependence parameters x and/or 7 in (1). Suppose that we
are interested in testing whether the true value of « is equal to zero or more generally a known constant vec-
tor co. Let 6, = (c,,¢,) be the restricted GEL estimator with the restriction a = ¢, imposed, and \, =
argmax, ., . ) S p(N gni(én))~ By the max-min characterization of the saddle point of the GEL objective
function, Y ., PN gni(0)) > S p(A N gni(0n)) > S p(A X gni(0,)). Then we have the following GEL ratio
test.

Proposition 4.1. Suppose that Assumptions 2-6 and 8 are satisfied. Then, given Assumptions 1(i) and 11 for the

homoskedastic case, or Assumptions 1(ii) and 12 for the heteroskedastic case, under the null hypothesis Hy : ag = Cq,

n

Q[Zp( v Gni (0 Zp X, gni () }ixz(ka)-

i=1

The GEL ratio test is asymptotically equivalent to the distance difference test in the GMM framework (Donald
et al., 2003). But it does not involve estimation of an optimal weighting of moments as in the GMM distance
difference test. The GEL ratio has a similarity to a classical likelihood ratio statistic. As long as the moment vector
gn(0) is valid, this test statistic can be formulated and is robust to unknown heteroskedasticity. These latter and
distribution-free features are more attractive than those of a likelihood ratio test statistic. In a likelihood ratio test,
the likelihood function needs to be properly specified to take into account heteroskedasticity and distributions of
sample observations. For this GEL, one relies only on moments and does not need to have the proper formulation
of heteroskedastic variances and distributions of disturbances. In the regard of unknown heteroskedasticity, it has
a computational advantage over a Wald test as the latter would require the use of a robust variance estimate as in
White (1980).

To understand power properties of this test statistic, we investigate its power under a local alternative sequence.
Suppose that the true value of « is subject to a Pitman drift a,, = ¢o + n~/2d,,, where d, is a ko x 1 vector of
constants, then the GEL ratio statistic can be shown to be asymptotically distributed with a noncentral chi-squared
distribution, which is the same as that for a distance difference test in the GMM framework (Newey and West,
1987). Let Gro = B(281%)), Gy = B(220)) D,y = Q5% — Q1 Gg (G105, Gg) LG, 050 and x3(a, b) be

a noncentral chi-squared distribution with a degrees of freedom and a noncentrality parameter b.

Proposition 4.2. Suppose that Assumptions 2-6 and 8 are satisfied. Then, given Assumptions 1(i) and 11 for
the homoskedastic case, or Assumptions 1(ii) and 12 for the heteroskedastic case, under the Pitman drift o, =
Ca +n712d,,
N () . VAP d 2 . AP A
Q[Zp(Angnl(Qn)) Zp(/\ngnl(en)) — X (kavnll)rrolo daGnaDn¢Gn0¢da)'
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4.2 Overidentification test

Like the GMM, a properly normalized GEL objective function at the GEL estimator (6/,,\) can provide an
overidentification test of moment conditions. The test statistic 2[> ", PN gni(0,,)) —np(0)] is non-negative as p(0)
is the restricted value of £ 37 p(Nigni(0,)) with the restriction A = 0 while DD PN gni(0,)) is an unrestricted

maximum for A.

Proposition 4.3. Suppose that Assumptions 2-6 and 8 are satisfied. Then under Assumptions 1(i) and 11 in
the homoskedastic case, or Assumptions 1(ii) and 12 in the heteroskedastic case, 2[y p(j\%gnz(én)) —np(0)] 4,

XQ(kg — ko), where the number of moments ky is not less than the number of parameters ky.

This GEL overidentification test is asymptotically equivalent to the GMM overidentification test. In general,
misspecification of a SAR model may come from different sources which give misspecified moment conditions. The
overidentification test will be able to detect those misspecifications. If one believes that misspecification might come
only from a particular source, then the overidentifcation test might detect it. However, for a specific direction of
departure, it is desirable to design more power test statistics. In a subsequent section, we consider a non-nested
test, namely, a J-test, for SAR models with different specified spatial weights matrices. Before that, we consider a

test of spatial dependence, the well-known Moran’s I statistic.

4.3 Moran’s I test

Moran’s T test is a popular test for spatial dependence. In practice, the least squares (LS) residual vector Vn =
(I, — X, (X} X,,) "t X]]Y, from the regression of Y, on X,, in the regression model Y,, = X,,3+V,, is often used and
the test is based on the asymptotic distribution of %VAWHVH After normalization with a proper standard error, an
asymptotically normal distribution of the normalized statistic is used for testing. Such a test has a null hypothesis
that v,;” in V,, are independent but not spatially correlated.'?> Here we show that such a test of spatial dependence
can be conveniently implemented in the GEL framework. Such a GEL test can be robust against disturbances
with unknown heteroskedasticity, while there is no need to estimate the asymptotic variance of ﬁf/' W, V,,. Let
Ini = Uni Z;;ll (Wn,ij + Wn,ji)Unj and Gni = On; Z;;ll(wn” + Wy, ji)0nj, where 0,; is the ith element of V,,, for

i=1,...,n, and[&n:{/\:/\gm6V,i:1,...,n}.13

Proposition 4.4. Suppose that in the regression model Y,, = X, 8o + V,, with zero mean independent disturbances
Uni’s, Wn 18 an n X n nonstochastic matrix with a zero diagonal and bounded row and column sum norms, and
limy, o0 = >y BE(g2;) # 0. Under Assumptions 1, 2 and 5,

2 mae 3 o) = o)) = (32) (D) +00l1) % 300,

AEA, i=1

12Kelejian and Prucha (2001) propose a generalized Moran’s T test that cover the SARAR models and limited dependent variable
models. Qu and Lee (2012, 2013) have considered the use of generalized residuals for the construction of locally most powerful LM tests

for the spatial Tobit model.
13Note that §n1 = gn1 = 0 by the convention of the summation notation. We define §,,1 and g1 for convenience.
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The GEL test statistic can use the estimated §,; instead of the true g,;, because ﬁVAWnVn with the OLS
estimated V;, has the same asymptotic distribution as ﬁVéWnVn due to an orthogonality property. Note that the
GEL Moran’s I test statistic is robust to unknown heteroskedasticity. A conventional Moran’s I test would need
to evaluate the asymptotic variance of the statistic %VTQWHVTT under the null. A robust Moran’s I test can be
computed as (31, 92;,) " (31—, Gni)?, given in the above proposition, if we use Y, §2; to estimate the variance
of > | gni- A GEL version of Moran I’s test can bypass such calculations as the GEL takes cares of unknown
heteroskedasticity internally.

For the local power of Moran’s I test, we consider the alternative model being an SE model, Y,, = X,,6+U,, U, =

7, Uy, + V,,, where the spatial error dependence parameter is subject to the Pitman drift 7, = n='/2d,.

Proposition 4.5. Suppose that Y, = X,,80 +Up, U, = n=Y2d, W, U, +V,,, where d; is a constant, W,, is an nxn
nonstochastic matriz with a zero diagonal and bounded row and column sum norms, and lim,, ., + 37" E(g2,) # 0.

n 2ai=1
Under Assumptions 1, 2 and 5,
- - a2 . 1 ’ o1y —144r / / 2
2| max 2 P(ins) = np(0)] 5 X2 (1, lim {= E[(VWa V) )} { S BV (W + W) WaVal ).

We may compare this GEL Moran’s I test with the parameter restriction test for spatial error dependence in
the SE model based on the moment vector ~[V/W,V,,V,X,]'. By Propositions 4.2 and 4.5, these test statistics
have the same asymptotic distribution under the same Pitman drift.

The above GEL Moran’s I test uses the estimated moment condition ﬁVAWnVn, which relies on the null model
being a linear regression model. If the model is an SARAR model (1), and the test is for spatial dependence in
disturbances, then with consistently estimated residual vector V,, such as the estimated residuals from a 2SLS or
QML estimated SAR equation, ﬁVAWnVn may not have the same asymptotic distribution as ﬁVAWnVn and the
test statistic would not be asymptotically chi-squared distributed. Neither would the GEL test version. This problem
occurs due to the issue that the consistent estimator used to construct the moments for testing has an impact on
the asymptotic distribution of the moments.'* To overcome this problem in the GEL framework, we may consider
a corresponding C'(a)-type statistic as suggested in Jin and Lee (2016). Let 8 = (o, ¢')’, where « is the spatial error
dependence parameter 7 and the test is on whether g = 0. Denote 6,, = (0, qz%)’ for any y/n-consistent estimator bn
of ¢o. Instead of the moment g1, (6) = 2V, ()M, V,,(6),'® where V;,(0) = (I, — 7M,,)[(I, — W)Yy — X, 8], we may
use the moment g,,(0) = g1,(0) — 895725,(9)(%:5,(9))_19% (0), where ga,,(0) is a (kg —1) x 1 vector of linear and quadratic
moments. As g1,,(0) and g, () are linear and quadratic moments, g, (f) can be written as g, () = * Yo gni(8),

where g,,;(0) = gin.i(0) — 8957;/(0)(8957;/(6))7192”71(0) with g1p,:(00)’s and goni(6)’s being martingale differences. In

place of the estimated moment g¢1,,(6,,), we consider the alternative g, (6,,). By the mean value theorem, we can see

that v/ng,(0,) has the same asymptotic distribution as v/ng,(6p).

14For Moran’s I test, the orthogonality holds because ﬁ(Yn — Xn[%n)’Wn(Yn — Xan) = ﬁ(Yn — XnB0) Wi (Yn — XnBo) + 0p(1)

due to Bn being the least squares estimator.

15Model (1) can allow for different spatial weights matrices in the spatial lag and spatial error processes, even though in practice they

are usually the same. The spatial weights matrix in the spatial error process is My, so we have the quadratic moment %V,’L (0) My Vi (0).
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Proposition 4.6. For model (1) with 7o = 0, suppose that Assumptions 1-3 and 5 hold, and lim, . £ 37" | E(g2,(6)) #

0. Then 2[maXAeAn(én) 21 P()‘gm‘(én)) —np(0)| = (X0, gii(én)>_1(2?:1 gm‘(én))g + op(1) < x*(1).

The test statistic is readily available with the GEL estimate of A. It is robust to unknown heteroskedasticity
if quadratic matrices in the quadratic moments of g,2(6) have zero diagonals. The above GEL test can use any
/n-consistent estimator 6,,. However, it is desirable to choose ga,,(0) and its moment estimator 6, = (0, ¢/,)’ such
that go,, (0, qgn) = 0. Because with such moments, the estimated moment vector gn(én) is exactly the same estimated

moment g1,(6,) and we do not change the basic moments g1,,(0) for testing. However, the individual g,;(6,) and
gin,i(0,) are different even their summations over i are the same. The direct use of g1, ;(6,) in a GEL test would
not overcome the impact of 6, on the asymptotic distribution of that GEL test statistic while the former can,

because g, (#) has an orthogonality property while g1,,(0) does not.

4.4 Spatial J test

Empirical researchers often face the problem on how to specify econometric models. In spatial econometrics, since
an economic theory may be ambiguous on spatial weights matrices, their specifications are frequently challenged.
Thus we may have possible specifications of SAR models with different spatial weights matrices. For testing and
model selection, SARAR models with different spatial weights matrices are non-nested. A popular testing procedure
is based on the spatial .J test (Kelejian, 2008; Kelejian and Piras, 2011).16 In this section, we formulate the spatial
J test in the GEL framework.

Suppose that we are interested in testing model (1) against an alternative SARAR model:
Yn - K/lwlnYn + Xlnﬁl + U1n7 Uln - TlManlTL + Vlna (10)

where W1y, M1, X1, and Vi, have similar meanings to those in model (1).17 The J test is originated in Davidson
and MacKinnon (1981) and is based on whether the alternative model can significantly improve the prediction of
the dependent variable vector Y,,. Let <1, and Bln be, respectively, estimators of x; and 8y in (10), which are
consistent if model (10) was the true model. The &1, and Bln can be the QML, GMM or even GEL estimators.'®
A predictor of Y,, from the alternative model can be either Y, = finWinYs + XlnﬁAln using the main equation of
(10) or Y, = (I, — Ranm)_lenBln using the reduced form of Y,, under (10). The difference of using the two
versions has been discussed in Kelejian and Piras (2011). As Y,, is on the right hand side of the first prediction
version, that Y,, would be endogenous, while the second one is exogenous. The spatial J test for (1) is based on an
augmented model:

16 Cox-type tests for SARAR models are developed in Jin and Lee (2013). Delgado and Robinson (2015) propose non-nested tests in

a general spatial, spatio-temporal or panel data context.
7"While it is possible to test one model against several alternatives simultaneously, we only consider one alternative model for

simplicity.
18Large sample properties of the GEL estimators &1, and Bln are presented in Appendix B under regularity conditions for misspecified

models.
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where Y, is added in the null model (1) to predict Y,,. We test whether the coeflicient 7 is significantly different
from zero or not. If it is, we do not reject the alternative model; otherwise, we reject it. In Kelejian and Piras
(2011), the spatial J test uses the GS2SLS to estimate the augmented model.!® When Y, is exogenous, it can be
used directly as an extra IV for W,,Y,,. For the version that Y, is endogenous, then extra IVs would be needed for
Y,,. The GS2SLS uses only linear IV moments but does not utilize quadratic moments for the main equation of
(11). Thus it may lead to a relatively inefficient estimator and a less powerful test (Jin and Lee, 2013). Here as a
generalization, we consider the GEL estimation of model (11) with both linear and quadratic moments.

For the augmented model (11), let V,,(0) = Ry (7)[Sn(k)Yn — Xn8 — nY,], where 9 = (¢,)". The moment

vector can be
gn(0) = [V () Pra Vo (9) = 02 tx(Paa), - ., Vi (9) P, Vo (9) — 0% t2(Pr1), @,V (9)]
in the homoskedastic case, and
9n(0) = [V (9)Pai Vi (9), ..., Vi (9) Pk, Vi (9), @1, Vi (0)]

where each P, l = 1,...,kp, has a zero diagonal in the heteroskedastic case. Define g,;(¢) such that g,(d) =
LS 9ni(9). Under the null, g,,;(Jo)’s are martingale differences, where 9o = (6(, 0)’. The GEL estimator is

n

Dy, = arg mingcgmaxyea,, (o) Z PN gni(9)),

i=1
where A, (¥) = {A: Ngni(¥) € Vi =1,...,n} and O is the parameter space of ¥. With the identification and
regularity conditions in Appendix B, the spatial J test statistic can be formulated as a GEL ratio. This GEL test is
essentially a test of the parameter restriction that 7 = 0 in (11). It differs from the one in the preceding Section 4.1

in that here Y,, on the right hand side of (11) is a generated regressor. As the following proposition will show, the

initial estimate in Y, does not have an asymptotic impact on the GEL statistic under the null.

Proposition 4.7. Suppose that Assumptions 2-6, 8, 13 and 14 hold and ¢ is in the interior of the compact
parameter space ©. Then, under Assumptions 1(i) and 11 in the homoskedastic case, or Assumptions 1(ii) and 12
in the heteroskedastic case, 2[3°1_, p(N,gni(0n)) — max, ) S PN gni(0))] LN X2(1), where (8., X)) is the

GEL estimator for model (1), i.e., it is the restricted GEL estimator with the restriction n = 0 imposed.

5 Monte Carlo

In this section, we report Monte Carlo results on the GEL estimator and test statistics considered in this paper.
The data generating process is the SARAR model (1) or its restricted form with k = 0 and/or 7 = 0. There
are three exogenous variables in X,,: an intercept term, a variable randomly drawn from the standard normal

distribution N(0,1) and a variable from the uniform distribution U0, v/12]. The true value 8y of 5 = (81, 82, B3)’

9Since the original spatial J test uses the GS2SLS to estimate the augmented model, the main equation of (11) is transformed by

pre-multiplying it with (I, — 71, M1y ) before estimation, where 71, is a consistent estimator of 71o (Kelejian and Piras, 2011).
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is [0.5,0.5,0.5)". The disturbances v,;’s are randomly drawn from the normal distribution N(0,03) in the ho-
moskedastic case, or N(0,03c¢?) in the heteroskedastic case, where ¢; is the the number of nonzero elements in
the ith row of the spatial weights matrix W, and o3 is chosen such that R? = var(X,[3)/[var(X, () + 52]
is either 0.4 or 0.8, where 52 is the average variance of all v,;’s. We set the two spatial weights matrices W,
and M, to be the same. For GEL estimation and tests other than the spatial J test, W,, is based on the cir-
cular world matrix in Arraiz et al. (2010). For the circular world matrix, spatial units are equally spaced on a
circle. One third of them are connected to ten nearest neighbors and the rest are connected to two nearest neigh-
bors. For the spatial J test, the null and alternative models only differ in W,,; specifically, the circular matrix
and the one based on the queen criterion are tested against each other. These matrices are normalized to have
row sums equal to one. For the estimation of model (1), in the homoskedastic case, we use the moment vector
LVIV, —nod, VIW, V,, VAW 2V, — o2 tr(W2), Vi (X, W, X5, W2X)], where X is a submatrix of X, that excludes
the intercept term so that the IV matrix (X, W,, X, W2X*) only contains one intercept; in the heteroskedastic
case, we use the moment vector 2 [V W, V,,, V,,(W2 — diag(W?2))Vy, V. (X0, Wn X5, W2X:)]. For the spatial J test,
the null and alternative models are estimated with moment vectors similar to the above ones. To estimate the
augmented model (11), if }7” = (I, — f%anM)_lenBln is used as the augmented explanatory variable, ?n is added
to the IV matrix in the above moment vectors; on the other hand, if Y/n = R1nWinyn + Xln,@ln is the augmented
explanatory variable, W1, [Xa,, X3,] is added to the IV matrix. The nominal size of various tests is 0.05. The
number of Monte Carlo repetitions for each case is 1, 000.

Table 1 reports biases, standard errors, and root mean square errors (RMSE) of the GMM, EL and ET estimators
in the homoskedastic case.?? The GMM estimator is a FOGMM estimator where in the first step the identity matrix
is used as the weighting matrix to derive a consistent estimator 6,, and in the second step Qn(én) is used as the
weighting matrix. The biases of the EL and ET estimators are smaller than those of the GMM estimator except
for some cases, mostly for 7. For the comparison of the EL and ET, except for the variance parameter o2, they
have similar biases in most cases and neither the EL nor the ET would dominate each other. For o2, the bias of
the GMM estimator is significantly larger than that of the ET estimator, while the latter is larger than that of the
EL estimator. In terms of standard errors, the ET estimator performs better than the EL estimator, and the GMM
estimator generally performs the worst. Since standard errors of estimates dominate biases for parameters other
than o2, the RMSEs display an order in magnitude similar to that of standard errors. For o2, the EL estimator
has the smallest RMSE, and the ET estimator has a smaller RMSE than that of the GMM estimator. As the
sample size increases from 144 to 400, biases generally decrease, and standard errors decrease approximately at the
theoretical rate.

Table 2 shows summary statistics of the estimators in the heteroskedastic case. The biases are small and their
pattern are similar to those in the homoskedastic case. The EL estimator is observed to have larger standard errors

and RMSEs than those of the ET estimator. For the parameters x, 7 and the intercept (1, the ET estimator

20We do not consider the continuous updating GMM estimator because it is often observed to possess multiple modes and thus

generally considered to be less desirable than the EL and ET estimators (Hansen et al., 1996; Imbens et al., 1998).
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generally has the smallest standard errors and RMSEs, even though for the parameters S5 and 3 of regressors, the
GMM estimator has the smallest standard errors and RMSEs in some cases.

Table 3 reports coverage probabilities (CP) of 95% confidence intervals for parameters in the SARAR model
(1). In the homoskedastic case, for n = 144, the GMM CPs are below 95%, and those for 02 are much smaller than
95%; the EL and ET CPs are closer to 95% than GMM ones, and those for o2 are about ten percentage points
higher than corresponding GMM CPs. The ET CPs are higher than EL ones except for ¢2. With a larger sample
size n = 400, the CPs are closer to 95%, but the patterns are similar. In the heteroskedastic case, the EL and ET
CPs are still closer to 95% than GMM ones in general, though the differences are smaller.

For Monte Carlo studies on hypothesis testing, nine tests are considered in the homoskedastic case: “PTqun”,
“PTyg,” and “PTg,” denote parameter restriction tests implemented with, respectively, the GMM distance difference,
EL ratio and ET ratio based on the moment vector 2[V,!V,,—no3, VW, Vy,, VI W2V, —03 tr(W2), V) (X, Wy X5, W2X )]s
“OTqum”, “OTg.” and “OTg” denote, respectively, the GMM, EL and ET overidentification tests based on the mo-
ment vector %[V,{WnVn, V! X,]'; “Moran” denotes Moran’s I test with a robust variance estimator, and “Morang,,”
and “Morang;” denote, respectively, EL and ET Moran’s I tests. For the latter three tests, OLS residuals are used
to formulate test statistics. In the heteroskedastic case, the above tests are also considered, among which param-
eter restriction tests are based on the moment vector + [V, W, V,, V, (W2 — diag(W2))V,,, Vi (X0, W X5, W2X )]
robust to unknown heteroskedasticity. In addition, we consider two tests which do not take into account un-
known heteroskedasticity: the GMM parameter restriction test PTh,,, based on the moment vector %[VéVn -
nod, VWV, VIW2EV, — ol tr(W2), V) (X,,, W, X, W2X})] and conventional Moran’s I test Moran®.

Table 4 presents empirical sizes of tests for 79 = 0 in an SE model. PTy, and PTy; have relatively large sizes for
small sample cases and have improved sizes for the larger sample size n = 400. As expected, PT{,,,, and Moran®
have large size distortions and the distortions do not improve with the larger sample size n = 400. Other tests have
relatively small size distortions. Powers of these tests except PTG, and Moran™ are presented in Table 5. Their
powers are generally similar for different valid tests, but are higher for the homoskedastic model than those of the
heteroskedastic model. R? does not have much impact on powers. These tests are powerful in cases with a larger
7o and a larger sample size in the data generating process (DGP).

Test results on 79 = 0 in the SARAR model (1) are reported in Tables 6 and 7. Parameter restriction tests
are based on moment conditions similar to those for the SE model. Overidentification tests are based on the
moment vector =[V/W, V,, V(W2 — diag(W2))Vy, Vi (X, W (I, — fn W) 1 X, 8,)), where &, and f, are the
FOGMM estimator of the SAR model as described above. To compute Moran’s I tests, we use the 2SLS estimator
bn of ¢ = (k,8") with the IV matrix Q, = [X,, W, X7, W2X?] for the SAR model. The test statistics employ
the moment condition g, (0) = ¢1,(0) — %ﬂ(%ﬂ)_lggnw), where g1,,(6) = 2V ()W, V,,(0) and g2, (0) =
121 Qu(Q1Qn) ' Q. Vi, (0) with Z, = [W, Yy, X,]. Thus g2,,(0,) = 0, where 6,, = (0,¢/,)’. When n = 144, the
size distortions of parameter restriction tests are larger than those of overidentification tests, and those of Moran’s

I tests are smallest; when n = 400, all sizes are general close to the nominal 5%. Different versions of parameter
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restriction tests have similar powers. So are different versions of overidentification tests and those of Moran’s I
tests. Parameter restriction tests are more powerful than overidentification tests, and the latter ones are generally
more powerful than Moran’s I tests. With larger R?, sample sizes, and 7y in the DGP, all tests tend to be more
powerful.

Tables 8 and 9 report empirical sizes and powers of spatial .J tests for the SARAR model (1). ?GMM;” denotes
the spatial J test implemented with the GMM distance difference test using the predictor Yn = RinW1in Yo+ X1, Bln,
and ?GMMy” uses Y, = (I, — Rln)*len,Bln. Correspondingly, we have EL and ET ratio tests “EL;”, “ELy",
“ET:” and “ET5”. The ELq, ELy, ET; and ET5 have relatively larger size distortions for a small sample size, but
are reasonably adequate for a larger sample size. Powers of these tests are similar. With larger R?, ko and sample

sizes, these tests are more powerful.

[Tables 1-9 about here.]

6 Conclusion

By exploring the martingale structure of the SARAR model, this paper considers its GEL estimation and tests. We
show that the GEL estimator is consistent and has the same asymptotic normal distribution as the optimal GMM
estimator based on the same moment conditions. But the GEL avoids a first step estimation of the optimal weighting
matrix with a preliminary estimator and can be robust to unknown heteroskedasticity without the computation
of possibly higher order moment parameters of disturbances. A general GEL is free from the asymptotic bias of
the preliminary estimator and partially removes the bias due to the correlation between the moment conditions
and their Jacobian. An EL further partially removes the bias from estimating the second moment matrix. We
also investigate the GEL overidentification test, Moran’s I test, GEL ratio tests for parameter restrictions and
non-nested hypotheses. These tests do not involve estimation of variances and higher order moment parameters,
and can be robust to unknown heteroskedasticity. Our Monte Carlo results show that GEL estimators and tests
perform well compared with GMM estimators and tests when the latter GMM estimates and tests take into account
properly their variances and/or moment parameters of disturbances. The GMM tests are not robust while GEL
tests are much better to deal with extra complexity of spatial regression models.

In a future research, it is of interest to investigate various optimality properties of EL tests for the SARAR
model as in Kitamura (2001) and Otsu (2010), and their Bartlett correctability. The latter is expected by Mykland
(1995). However, Bartlett correctability is based on Edgeworth expansions, for which it is not known how to show

general pointwise results on martingales.?!

21For SAR models, a “smoothed” (instead of pointwise) asymptotic expansion based on martingales in Mykland (1993) is shown in

Jin and Lee (2013).
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Appendix A GMM estimation

In this section, we present identification and large sample properties of the GMM estimators for model (1) in both

homoskedastic and heteroskedastic cases.

A.1 Homoskedastic case

First, we summarize parameter identification and asymptotic distributions of GMM estimators. The details are in
Liu et al. (2010), which are general for high order SARAR models. The summarized results here are the first order
SARAR case. As V,,(0) is quadratic in 6, we may write

where d,,(0) = R,,(7)[(ko — &)WaS; X80 + X (Bo — B)], and

E[V,1(0) PV (0)] — o2 tr(Pp1)
= E{[dn(0) + R (7)Sn () S, ' Ry, ' Vol Puldn(0) + R (7)Sn(k)S, ' Ry, ' Vol — 02 tr(Pur)
= dy,(0) Puidn (0) + 04 tr{[Rn (1) Sn (k) Sy, Ry Pt [Ri (1) S () Sy P Ry Y = 02 tr(Prr)
=d (0)Pdn,(0) + (08 — o) tr(Pyy) + 208 (10 — 7) tr(Py M, R, Y) + oa (10 — 7)* tr(R, ' M! Py M, R, ")
+ 205 (ko — K) tr(Py R WSy ' Ry Y + 03 (ko — &) tr(Ry, S0 ' W) Rl Py R, W, S, 'R, )
+ 202(ko — k) (10 — 7) tr(RL M), Py R, W, S, 'R 4+ Py M, W, S, 'R
+ 202 (ko — k) (10 — 7) tr(R ST TW M) Py RyWo Sy RN 4 202 (ko — &) (1o — 7) 2 te(RA S W M), Py M, R

+02(ko — K)2(10 — 7)* tr (R, ESYW! M) Py M, W, S R,

As X, has full rank, we may assume that lim,,_, %Q;RH(T)Xn has full column rank for any 7 in its parameter
space. If lim,,_, %QIHR”(T)(XTL, WS 1X,,80) has full column rank for any 7 in its parameter space, then 3 and
% can be identified from the linear moments. As a result, only o2 and 7 need to be identified from the quadratic
moments. If lim,,_, o %Q;Rn(r)(Xn, WS, 1 X,,80) does not have full rank for some T, %Q;Rn(T)WnSngnﬁo is
linearly dependent on Q) R, (7)X,, for large enough n. For such 7, let Q) R, (T)W, S, X080 = Q) R (1) Xnt(7)
for some linear coefficient vector ¢(7). Then Q) d,(0) = Q) Rn(7) X [t(7)(ko — k) + Bo — B]. Thus, the solutions to
Q. d,(0) = 0 are described by the relation 8 = By + ¢(7)(ko — k) and Sy is identified as long as kg is identified. The
identification of kg can be from the quadratic moments. As d,(8) = 0, a sufficient condition is a rank condition

given in Assumption 11(i4). Let Apy = [tr(Pa1), ..., tr(Pa,)], Ane = [tr(Poi My R, ..o tr(Po g, Mo RV,

Aps = [tr(R, "M} Py MR, te(Ry M Py e, M RV
Ang = [tr(Pai Ra WL S RYY), 61 (P, Ra W Sy R
Ans = [tr(Ry NS W R, P RoW, S Ry, te(Ry VST W R, Py gy R WS R

Ang = [tr(Ry "M} Pyt RyW, Sy Ry + P Mo WS Ry, L te(Ry MY, Py e, RoWL Sy PRy + P, Mo WS PR
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Apr = [tr(R,NSTYW M Py RoW, S Ry, Lt (RS W ML Py g, Ra WS, R

Ans = [tr(Ry NS W M, Py My RY), . te (RS W, ML Py g My R
and Apg = [tr(RISITIW) M), Py MW, SR, Lt (RITESIAW) M, Py gy Mo W, S R

Assumption 11. (i) lim, %Q;RH(T)(X,“ WS X, 80) has full column rank for any T in its parameter space,
and lim, o0 L[An1, Ana, Aps)(cr,2c2,¢3) # 0 for any (c1,c2) # 0; or (ii) limy—oe 2Q), R (1) X, has full column
rank for any T in its parameter space, and lim,_, %[Anl, ooy Ano](cr,2¢2, €3, 23, €3, 2cac3, 2¢9¢3, 2¢35c3, c3c3) # 0

for any (c1,c2,c3) # 0.

In the case that M,, = W,,, Assumption 11(i¢) cannot hold, because when x = 79 and 7 = ko, E[V,,(0) PV, (6)] —
o2 tr(Pyy) = d,(0)Pod,(0)+(02—0?) tr(Py), which implies that A,,1, . .., A, are linearly dependent. Identification
for the case with M,, = W, will rely on Assumption 11(i).

Next we summarize the asymptotic distributions of GMM estimators. Let Y,, = [vec(Pp1), ..., vec(Ppk,)] and
E, = [vecp(Pn1), ..., vecp(Pyk,)], where vecp(A) with a square matrix A denotes a column vector consisting of

the diagonal elements of A. Then,

G — 1 208!, vec(R,2W,, S RN 20277 vee(My R, 1) 0 17 vec(I,)
T\ QRS X 0 Rx, 0 )
and
0, = varfyga (o)) = & [ 20T 0] LU T B0EE O
K 0 03Qn@n " p3Qn=n 0

Proposition A.1. (1) Under Assumptions 1(i), 2-4, 7, 8 and 11, the initial GMM estimator 0,, is consistent,
and /n(6, — o) i>N(o,nm,mo(c’:/nj,;l(; VLG T T G (G TG ) )

(2) under Assumptions 1(i), 2—4, and 6-11, the optimal GMM estimator 0, is consistent, and

Vn(l, — 00) % N(o, lim (G"n();lén)*l).

n— oo

If 1y — 303 = pz = 0, e.g., vy,;’s are normal, the third and fourth moments of v,,; in €, disappear and €,, reduces

to a block diagonal matrix. Then,

- ~ 1
GO G, = W[ZU% vec(R, W, S, R, Y), 208 vec( M, R, 1), 0, vee(1,)] o (Y1, X,) 1Y),
00
x [208 vec(R, W,S, *R.’1), 202 vec(M, R;; ), 0, vec(I,,)]

1
+ W[Wnsngnﬁm 0’ XTH O]/R;LQTL(Q;LQn)_1anRn[WnS;1Xn50> 07 Xna 0]

< —— (208 vec(R, W, S, 'R, 205 vee(M, R, ), 0, vee(I,)]
2nog

x [208 vec(R, W, S, *R.’1), 202 vec(M, R;; ), 0, vec(I,,)]

1
+ F[Wns*;lxnﬁo,0,Xn,()]’R;Rn[Wms*;lxnﬂo, 0, X, 0],
<)
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where the inequality follows by the generalized Cauchy-Schwarz inequality, and it becomes an equality when the mo-
ment vector is L (V2(0)V,,(0) —no?, V., (0) M, R, 'V, (0) — o tr(M,, R, 1), Vi (0) Ry Wy, S RV, (0) — 02 tr(W, 5,71,
V! (0)R, W, S, X, 80, X»n])'. This is the best moment vector as it yields the smallest asymptotic variance. As in
Lee (2007), a feasible moment vector can be obtained by replacing (o, 70, ))" in the best moment vector by a

consistent estimator (%, 7, 3,)" of (ko, 70, 85)’.

A.2 Heteroskedastic case

The identification and asymptotic distributions for GMM estimators in the heteroskedastic case can be derived

similarly to that in the homoskedastic case.?? Let %,, be a diagonal matrix consisting of o2,’s,

Uy = [tr(Poi MRy S0), (P, My Ry VS

Upo = [tr(Ry M) Py Mo RS, . tr(Ry M) Py, Mo RS,

Uy = [tr(Pa Ry WoS, 'Ry 8, - te (P, Ra WS, RS,

Uy = [tr(R ST W R Pyt RyWo S, RS, L te(Ry NS WL RL Py gy RaW, Sy RS,
U5 = [tr((R), ' M}, Poi Ry + P M)W, S RS, ot (R M, Py, Ry + P, My )W, S, RS,
U = [tr(R S, W M), Py Ry W, S, Ry S, te(R VS WML Py g Ra W, S, RIS,

Upr = [te(Ry, Sy Wi My P My R, S), o te (RS, W M, P, My RS,
and W, = [tr(RLS W, M) Py My WSy RIS, o tr(REVSIT YW MY Py g My W, S RS,

Assumption 12. (i) lim, %Q%RH(T)(XH, WoS X, B0) has full column rank for any T in its parameter space,
and lim,_s o0 %[\I/nl, U,0](2¢,c?) # 0 for any ¢ # 0; or (ii) lim, s %Q;Rn (1) X, has full column rank for any T in

its parameter space, and lim,,_, o %[\Ilnl, oo Uasl(2¢1, 63, 269, €3, 2¢1 69, 261 €3, 2¢3 ¢a, c3c3) # O for any (c1,c2) # 0.

Let T,, = [vec(E}/QPnl Ei/Q), e ,vec(E}/ZPn,kp 25/2)]. With heteroskedastic disturbances,

1 (27 vee(Sn PR, W, STIRISN?) 27 vee(Sn /A M, RAEE?) 0
and
_ 1 (27,7, 0

Q, = var[vng,(0o)] = —
0 QnZnQn

Proposition A.2. (1) Under Assumptions 1(ii), 24, 7, 8 and 12, the initial GMM estimator 0,, is consistent,
and

V0, — 00) L N(0, lim (G T G) Gy 1, T G (G T ) 7Y

n— oo

(2) under Assumptions 1(ii), 2—4, 6-8 and 12, the GMM estimator 6, is consistent, and

V0, —60) & N(0, lim (G0, G) 7).

22The results summarized here extend those in Liu et al. (2010) and Lin and Lee (2010) to the first order SARAR case.
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Note that
G, = %[vec(Z;l/QRanS;l3;125/2),vec(z,;l/?MnR,;lz}/?),oyrn(T;Tn)—lm
x [vee(S7 Y2 R, W, S RS2 vee(S Y2 M, R 1E/2), 0]
+ ;[WnS;lxnﬁo, 0, X Ry, Qu (@1 Zn@n) ' @ Rn WSy, X B0, 0, X ).
Hence, the best moment vector is

1
(Va(0)[S, My R, — diag(S, ' My R, MV (0), Vi (0)[S, Ry WS, ' R, — diag(S, ' Ry WS, RV (8),

n
V2 (0) Ru[W0 Syt X, 50, X))

Since the best moment vector involves 3., it is infeasible unless there are structures on the heteroskedasticity so

2

that each of the variances o;,’s can be consistently estimated.

Appendix B Identification conditions for the spatial J test

In this appendix, we provide an identification condition of the augmented model (11) for the spatial J test. The
identification condition is in terms of pseudo true values of parameter estimates of a model for an alternative model
while the null model is the DGP. In general, we expect that parameter estimates for the alternative model would
converge to their pseudo true values. For GS2SLS estimates of the alternative model for the J test, relevant studies
are in Kelejian (2008) and Kelejian and Piras (2011). We show the convergence result under regularity conditions

if the alternative model is estimated by the GEL in the second part of this section.

B.1 Identification conditions

For the estimator 0y, of an alternative model while the null model is the DGP, assume that {67} is a sequence of

nonstochastic pseudo-true values such that the following convergence is satisfied.
Assumption 13. 6, — 0%, = 0,(1).

With 65,,, the identification condition for the GEL estimation of the augmented model (11) is similar to that for
model (1), by taking into account additional terms from the predictor Yn, and possible inclusion of the generated
regressor anl(/%ln)Xlan in the IV matrix @,, when ?n = anl(/%ln)XlnBln. Ify, = anl(f%ln)XlnBlm let

= SLMKE) X 1B, and € = Onx1; if Yy = A1nWinYn + X10B1n, let Y = w3, W1,S7 X, 80 + X1065, and
€ = k%, Wi, S 'R, 1V,,. The leading order terms for elements of Y}, are elements of Y;* +¢*. For Y;, = &1, W1, Y, +
Xin ﬂlm due to the presence of the stochastic part €} and its correlation with vectors linear in V,,, additional terms
from quadratic moments appear for identification. For Y,, = anl(f%m)XlnﬁAln, note that %V,{Ananl (l%ln)Xlan =
op(1) and 24/, 4,57, (F1n) X1nfin = Lb! A, ST (KY,) X1n Bt + 0p(1), where A, is an n x n nonstochastic matrix

bounded in both row and column sum norms and b, is an n X 1 vector of uniformly bounded constants. Then

anl(/%ln)X 1n31n is asymptotically exogenous and the identification conditions involving linear moments only need
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to be modified to account for the randomness of Q,,. Let @ be the matrix obtained by replacing anl(/%ln)XlnﬁAln
with S7,1(k5,) X1nB5, in @, if it is in Q,, and Q¥ = Q, otherwise. With QZ, the identification conditions
involving linear moments are similar to those for (1). Define A, 19 = [E(e;:/R;ananefl), ... ,E(e;/ R}, Py 1, Rue,)],

A1y = [E(€ M}, P Ra€), . B(ey M), P o, Rues)|'s An 1o = [E(e M}, PaiMyey,), .. Ee My, Py i, Myey,)]
Apas = [B(€ Ry PuaVa), - Bl Ry, P, Vo)l
Apia = [E(e} R Py Mo Ry Vi + € ML P V), .. E(€l R Py, My Ry Wiy + € MY P i Vi)Y',
Apis = [E(eX M, Py MR, 'WV,), .. B(el M) P,y M, R, V)
Ani6 = [E(ef R, Py RyW, S R, o (el R Pty RaWn S RV,
A7 = [B(e), (R, Pt My + M, Py R)Wo S Ry Vo), B (6 (R P, My + My P Ra)Wo S RV,

and A5 = [E(el M Py M, W,S, R\, .. E(el MY, Py, My W, Sy R 1W;,)]. The explicit forms for the

above terms can be easily derived for both the homoskedastic and heteroskedastic cases. We omit them for simplicity.
Assumption 14. (1) If Y, = Sl_nl(/%ln)XlnﬁAln,

(I) {Sin(K%,)} are invertible and {Sy,}(k%,)} are bounded in both row and column sum norms;
(II) in the homoskedastic case, either (i) lim, o %Q;an(T)(Xn, WnS 1 X, B0, Y,") has full column rank for
any T in its parameter space, and lim,_ o %[Anl, Ao, Ansl(er, 2e2,¢3) # 0 for any (c1,ca) # 0; or (ii)

lim,, o0 %QZ,RH(T)(XH, Y*) has full column rank for any T in its parameter space, and

1
: 2 2 26,2, 22
nhm ﬁ[Anl, ooy Apgl(e1, 2¢9, €5, 2¢3, ¢35, 2¢2¢3, 20205, 2¢5¢3, ¢5¢5)" # 0

for any (c1, c2,c3) # 0;

(III) in the heteroskedastic case, either (i) lim, oo %Q;IRH(T)(XTL, WoS; 1 X, B0, Y,") has full column rank for
any T in its parameter space, and limy,_, o0 = [U1, U] (2¢, ¢?) # 0 for any ¢ # 0; or (ii) limy, o0 %Q:/Rn(T)(Xn7 Yy)
has full column rank for any T in its parameter space, and

1
: 2 2 2 6.2 22V
nllr)n E[\I/nl,...,\Ifng](201701,262,62,26102,20162,2810270162) #£0

for any (c1,¢2) # 0.
(2) If ?n = glnwlnyn + Xlthw
(1) in the homoskedastic case, either (i) limy, o0 L Q) Ry (7) (X, Wi Syt X080, Y,¥) has full column rank for

any T in its parameter space, and

. 1
lim —[An1, Anz, Az, A 10y, Ap1s](e1, 260, 63,07, 2¢am?, €307, —21, —2cam, —2c3n) # 0

n—oo N
for any (c1,c2,m) # 0; or (ii) lim, oo ~Q) Rn(7) (X0, Y,) has full column rank for any 7 in its pa-

. 1
rameter space, and limy, o0 ~[Ant, ..., Ao, An 10, ..., Ansle(cr, c2,¢3,m) # 0, where c(c1,c2,¢3,1) =
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(c1,2¢2,¢3,2¢3, 3, 2¢a¢3, 2¢2¢3, 23 ¢, c3¢3, 12, 2can?, c3n?, —2n, —2cam, —2c3m, —2c3m, —2cac3n, —2c3¢3n)’, for
any (c1,c2,¢3,1) # 0;
(II) ‘in the heteroskedastic case, either (i) limy, oo Q) Ry (7)( Xy, WSyt X080, Y,7) has full column rank for
any T in its parameter space, and lim,, o %[\Ilnl, U2, Ap 10, - - - Ap1s] (26, 2,02, 2en?, 02, —2n, —2cn, —2¢2n)’ #
0 for any (c,n) # 0; or (ii) lim, o ~Q1 Ry (7)(Xy, Y,?) has full column rank for any T in its parameter
L, .., U, Ay 10 .-, Apasle(er, c2,m) # 0, where

space, and limy,, =

2 2 2 2 2.2 2 2 2 2 2 2 /
C(Cla C2, 7’) = (2617 €1y 2027 Ca, 201023 20102’ 261627 C1C2, 1, 20177 ANy 7277, 7201777 72017’7 7202773 726102777 72010277) )

for any (c1,¢2,m) # 0.

B.2 GEL estimation of the alternative model

For the alternative model (10), let V1, (61) = (I, — 71 M1n)[(In — £1W1n)Ys — X1,01], the moment vector can be
1
gin(6h) = E[an(91)P1n,1V1n(91) —oitr(Pina), .-y Vin(01)Pry ), Vin(61) — o? tr(Prn,ky, ) @1 Vin(61)],

if elements of V1, were assumed to be i.i.d., where P1 1,..., Pink,, aren X n spatial weights matrices and Q1, is
an n X kg1 IV matrix. On the other hand, if elements of V,, were independent but heteroskedastic, the moment

vector for consistent estimation would be

1
gin(01) = E[wn(al)Pln,l‘/ln(gl)v e s VI (01) Py g, Vin(61), Q1 Vin(61)],

where Py, ;’s now have zero diagonals. With the moment vector gi,(601), define g1, 4(01) in a way similar to g,;(6)

in Section 2 with the intension to capture the martingale difference property. The GEL estimators are

n

n
01 = argming, co maxy,en, Y p(Ngin.i(61)), and Ay, = argmaxy cn, > p(Nig1n.i(01n)),
=1 =1

where ©; and A; are compact.? Suppose that there exist pseudo true values 65, € ©; and A}, € A; such that

n

E Z p(AT;mgln,Z (HTTL)) = min91 €6, MaAXN €Ay E Z p(Allgln,’i (91))

i=1 =1

Under regularity conditions, the pseudo true values would satisfy 61, — 6%, = 0,(1) and Ay, — A}, = 0,(1).

Assumption 15. (i) ©1 and Ay are compact, and V includes all realizations of Ngin,i(61) for alll <i<mn, \y € Ay
and 6y € 1 (i1) $ups, e, greon 110y PN G1i(00)~E X1y p(Xog1ai(B0)] = 0p(1); (i) L E X, p(Nigun01))
is uniformly equicontinuous on (0©1,A1); (iv) for each 01 € O1, the identifiably unique mazimizer Xj,(61) € A1 of
argmaxy, en, B Y7, p(Nig1n.i(61)) is equicontinuous in 61;2* (v) BES ", p(Nir, (61)91n.i(61)) has identifiably unique

minimizer 07, € ©1.

23For analytical convenience, the parameter space of A1 for the alternative model is assumed to be compact, unlike the case of the

null model where the compactness assumption can be avoided by the concavity of p(-).
24)1,,(61) is identifiably unique if for all € > 0, lim SUPy, s o0 [MaXy; e B (¢) % EX> " p(N gin,:i(01))— % EX>!, p(/\{;(91)g1n,i(91))] <
0, where BS (¢) is the complement in A; of an open ball By (€) centered at A}, (61) with radius e (White, 1994).
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The above assumption gives high level conditions similar to those in Hong et al. (2003).2° Some conditions
might be relaxed, e.g., the uniform convergence condition in Assumption 15(i%) follows by pointwise convergence
and stochastic equicontinuity, while the latter holds if the first order derivative of p(-) is bounded on its domain.
With Assumption 15, it justifies the convergence of the GEL estimates for the alternative model to their pseudo

true values as in Assumption 13, where the null model is the DGP.

Proposition B.1. Under Assumption 15, 61, — 0%, = 0,(1) and A1, — A}, = 0,(1).

Appendix C Lemmas related to GMM and GEL estimation

C.1 General lemmas on martingale differences of linear and quadratic moments

Lemma C.1. Let up; = [unii] be n x 1 random vectors, Dpi(0) = [dni,i;(0)] be n x n nonstochastic matrices whose
elements are functions of 0 € O, forl =1,...,s, and b,(0) = [b,:(0)] and ¢, (0) = [cni(0)] be n X 1 nonstochastic
vectors whose elements are functions of 0 € © such that supgeg ||bn(0)]|oc = O(1) and supgeg ||cn(0)]|« = O(1).
Then,

(i) if Dn1(0) is bounded in either row or column sum norm uniformly on ©, supgcg = b, (0) Dp1(6)cy (0)] = O(1);
(it) if supy<jcp B |un1,5] = O(1), supgee |50, (0)un1| = Op(1);

(i) if Dpi(0)’s are bounded in row sum norm uniformly in 0 € © and there are a; > 1 for 1l =1,...,s such that
s 1
SUpPi1<i<s SuP1§jgnE |Unl,j|a’ = O(1), then SUPgeco SUP1<i<n | Hlszl Z?:l dnl,ij(a)“nl,j‘ = Op(nzl:1 “), and
SUPgeo %|Z?:1 Ih- Z?:l dnt,ij (0)unt ;| = Op(1) if 327, a% <=1
(v) if Dni(0)’s are bounded in row sum norm uniformly in 6 € © and there are a; > 1 forl =1,...,s such that

: 1 s L
SUP| << SUP << B [Uni 5| = O(1), then supgee supi<;<n B TT7— D071 dntij (0)uni /Liziar = O(1).

Proof. (i) If D,1(0) is bounded in row sum norm uniformly in § € ©, then

1 1 1
sup — by, (0) D1 (0)cn (0)] < sup — 167, (0)[|oo [ D1 (0)] o e (0) lloo < sup ~[8,(8)[|oo SUp [[ D1 (0) [loo sUp [len (0)[|oo = O(1).
SCRL fce N fce N (IE) 0co

Similarly, we can show the result when D,,1 () is bounded in column sum norm uniformly in § € ©.

(i1) E(supgee |50, (0)unl) < E(supgee 71167, (0)[11[[unllr) = supgee 105,(0)]11(5 37t Elunil) = O(1).

(7i7) There exists a finite ¢; > 0 such that cl, —+ a% = 1. By Hoélder’s inequality,

n n N n
D7 s Ot <D e i5(60) 7 |t i (017 5
j=1 j=1

25 Among the regularity conditions, uniform convergence of the GEL objective function is assumed. With a misspecified model, the
proof strategy of Proposition 3.1 for a correctly specified model might not be applicable and also the GEL objective function is not a sum
of martingale differences. Thus, other low level conditions for uniform convergence might be needed. We assume uniform convergence

for simplicity.
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n l/al
S (Z |dnl,ij ) (Z |dnl 1] ‘unl ]| l)
1/a;
< (03 s @) )

=1 j=1
n
where ¢ = sup,, SUp; <;<, SUPgee SUP1<j<n D=1 |dnt,ij ()| < 0o. Then,

‘sznl ij unl]‘ < CZ[ ter (ZZ |dnl ZJ |unl]| l)Z?ZI Tll (12)

1=1j=1 =1 j=1

XN, 10>

1
] (21:1 ijl ‘unl,j| ' SUPpeo, 1<i<s ||Dnl( )Hoo)zz:l at, where W i1 ijl |Unl,j “
equality. Hence the first result holds. When }°;_; = < 1, by (12) and Jensen’s inequality, [+ 3" | TI;_, Dy i (0)un 5] <

a1 s 1
i (5 201 iy oy ldnais (0 )|'|Unz,j|a")2l:1 < i (3 2oy oy [uni j|* supgee 1<i<s 1Dt ()] o)== 71

Thus the second result follows.

(iv) By (12),

L. /¥ o
sup sup E“l E dntij (0)tni U iy ) Ticrar sup sup E E |dnt,ij (O) E Jung ;1 = O(1).
feo1<isn 11y 6€0 1<i<n =} =

= 0,(1) by Markov’s in-

Hence the result holds. O

The following lemma is useful to show orders of terms in Nagar-type expansions of GMM and GEL estimators.

In particular, it is used to prove Lemma C.7.

Lemma C.2. Suppose that v,;’s are independent with zero mean and E(v2,) = o2, fori=1,...,n, and [ani,ij],
(bnt,ijls [entisls [dniigls lentisly [Fatiils neis] and [hniqg] for 1 =1,2 are n x n nonstochastic matrices with bounded

row sum norms. Then,

(i) for 7“7(31) = n,ii(V2; — 02.) 4 bntiiVni + (Cntii + dniiiVng) 22_11 €nl,ijUnj + Zé;i Inl,ijVn;j Zi_i Pl ikUng With
I =1 and 2, if sup, sup, ;< E(v,) < 0o, then 2 S0 E(rYrl?y = 0(1) and 2 50, [rBr D —E((Dr®)) =

Tni Tni Tni Tni ni Tni
op(1);
(i) for
i—1 i—1 J—
(O 2 Z Z 2 Z Z
Tni = Qnl,ii (’U )+bnl uvnz"_(cnl i +dnl uvnz €nl,ijUnj + fnl z] Unj)+ 9nl,ijUnj hnl,ikvnk
Jj=1 Jj=1 = =

with [ =1 and 2, if sup,, sup; <;<,, E(v8,) < oo, then *ZZ 1 (1),.(2) —E(r () (2))] Op(n*1/2).

ni nz ni 711

Proof. (i) We shall prove the results for the simplified 1} = but,i10ni + (Cat,ii + dnt,i10ni) Y0y

ff}’s hold similarly. Since

€nl,ijUnj+
23711 9nl,ijVUnj Zi;ll Pt ikVnk for I =1 and 2, and point out the results with the original r

1), 2y _ 2 2 i—1 2 i—1 2 j—1 2
E(r/ i ) = 05ibnt,iibn2,iit(Cnt,iiCn2,iit 00 dnt,iidn2,ii) 3251 €n1,ij€n2,ii0m; 2 5—1 In1,ij9n2,ii0m; D ke Pnt,ikPn2,ik0 0,

i—1
sup sup |E(r Sz) Tni )| < sup sup [Uzi\bm,nbnzii\ + (JentiiCnz.iil + 0nildn1 iidnz,iil) Z |€n1,ij€n2,ij03j|
n 1<i<n n 1<i<n j=1
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i—1 j—1

+ Z |9n1,19n2,i50 ;] Z |hn1,ikhn2,ik0}2ﬂg‘] <e,

j=1 k=1

1),.(2) —E(r 1) (2))]

for some constant c. Thus, L Y% | E(r flll) 7(121)) O(1). To prove the convergence of £ 3" [r)/r" Td T

rewrite 7"(1) (2) _ E(r m),.(2 )) Ap1,i + Apai, where

nt nz 7L7, TLZ

2 2 E
Anl,i = bnl,iian,ii(vni - 0'7”-) + [bnl 11Cn2,iiUni + bnl udn2 1% (U €n2,i7Unj
+ [an iiCnl,iiUni + bn2 udnl L4 (U E €nl,ijUnj
i—1 7j—1 i—1 j—1
+ bn1,iiVni E 9In2,ijVUn; E Nn2,ikVnk + bn2,iitni E Inl,ijVUnj E Pon,ikUnk
j=1 k=1 Jj=1 k=1

2 2 2
+ [(en1,iidn2,ii + n2,iidn1,60)Vni + dn1iidno,ii (Vi — Oy ( E n1,ijen2,ij(Vnj — 0n;j)

i—1j—1
+ E E (eni,ijen2,ik + en?,ijenl,ik)vnjvnk>
j=1k=1
+ [(cnl uan i1 + Cn2, udnl u)vnz + dnl zzdn2 u( E €nl ,4] €n2 ZJUnJ
i—1 j—1 i—1
2 2
+ dn1,iiVni E n1,ijgn2,ij(Vnj — 0n;j) E hn2,ikVnk + dn2,iiVni g €n2,ij9nl, lj( E Pt ik Unk
Jj=1 k=1 j=1
i—1 j—1 i—1 _
Z Z 2 Z Z 2
+ dnl,iivni gnZ,ijvnj enl,ikhnZ,ik (Unk ) + dn2 iiUni In1 Z]vnj €n2, zkhnl zk( nk — Unk)
j=1 k=1 j=1 k=1
i—1 j—1 i—1 j—1
+ dnl iiUni § €nl,ij9n2, zgan] § hn2 ikUnk + dn2 i1 Uni g €n2,ij9n1, z]Un] § hnl ikUnk
j=1 = Jj=1 k=1
i—1 j—1 i—1 j—1
2 2
+ dn1,i5Vni E 9n2,ijUnj E ent,ikPn2,ikOnk + dn2,iiVni g 9nl,ijUnj g en2,ikhnl ikOnk
j=1 k=1 j=1 k=1
—1j-1k—1
+ dn1,iiVni E E E UnjUnkUni(€n1,i9n2,ikPn2,it + Gn2,ij€n1,ikhn2,il + 9n2,ijhn2 ik€ni i)
j=1k=11=1
i—1j—1k—1
+ dn2,iiVni E E E UnjUnkUni(€n2,ijGn1,ikPnt il + Gn1ij€n2,ikPn1 il + Gn1,ijBn1ik€n2,il),
j=1k=11=1
and
i—1 i—1
An2,i = bnl,iian,iiU%i €n2,ijUnj + bn2,iidn1,ii072n‘ €nl,ijUnj
j=1 Jj=1
i—1 i—1j5—1
2 2 2
+ (Cn1,iiCn2,ii + Umdm,iidnz,ii)( E en1,ijen2,ij(Vpj — 0nj) + E E (en1,ij€n2,ik + en2,ij€n1,ikr)vnjvnk)
j=1 j=1k=1
i—1 ] 1 —1
g . (v? h h
+ Cnl,ii €nl1,i59n2,ij (Un n2,ikUnk + Cn2,ii €n2,i59n1, z]( nl,ikUnk
Jj=1 k_l j=1
1—1
+ cn1 ,4% gn2 Zjvn] €nl 1khn2 1k( + Cn2 i gnl UUnj en2 zkhnl zk( k)
j=1 k=1
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i—1
+ Cnl,ii E €nl,ijgn2, lenJ E hn2 ikUnk + Cn2,ii § €n2,ijgni, Z]Unj § hnl ikUnk

i=1 k=1 J=1 k=1
i—1 Jj—1 i—1 j—1
2 2
+ Cn i E In2,ijUnj E enl,ikMn2,ikOnk + Cn2,ii E 9nl,ijUnj E €n2,ikPn1,ikOnk
j=1 k=1 j=1 k=1
im1j—1k—1
+ Cniii E E E UnjUnkUni(€n1,ij9n2,ikPn2,il + gn2,ij€nl,ikAn2.il + gn2,ijAn2.ik€ni it)
G=1 k=1 1=1
i—1j—1k—1
+ Cn2ii E E E UnjUnkUni(€n2,i9n1,ikPnt it + Gnl,ij€n2,ikhn1 it + 9ni,ijhnt ik€n2,i)
j=1 k=1 I=1
i—1
Z Z o2
+ 9nl,ij9n2, 1]( hnl 1khn2 1k( k)
j=1
i—1 i—1 j—1
2 2 2 2
+ E 9nl,ij9n2, zganj E Bt ikhn2. ik (Ve — 08) + E In1,ijgn2.ij(Vy; — 00) E Pt ik Pn2,ikOni,
j=1 =1 j=1 k=1
i1 j=1k—1
2 2
+ E In1,ijgn2,ij(Vn; — Onji) E E (hnt,ikPn2.it + ot ithng,ik) Unkni
i=1 k=1 I=1
J—1k—1
Z 2 ZZ
+ 9nl,ij9n2,ij Un] nl zkth ,il + hnl zlhn2 zk)vnkvnl
J=1 k=1 1=1

+ E 9n2,ijUnj E gnl zkhn2 zk( E hnl ilUnl
i—1 Jj—1 k—1
2 2
+ E Inl,ijUnj E n2,ikhn1 ik (Vg — k) g hn2,itVni
j=1 k=1 =1
i—1 j—1 k—1 i—1 j—1 k—1
2 2
+ E In2,ijUnj E In1ikhn2,ik0 0 E Pt svnt + E 9nl,ijVn; E In2,ikPn1,ik O E hn2,itVn
j=1 k=1 =1 j=1 k=1 =1

i—1 -1 k=1
2 2
+ E E (Gn1,ijGn2,ik + In2,ijIn1,ik)VnjUnk E hintithn,a (v — 02;)
J=1 k=1 =1
im1j—1 k—1
2
+ E E (Gn1,ijgn2,ik + Gn2,ij9n1.ik)VnjUnk E hnithn2,i10y,
J=1 k=1 =1

=1 j—1k—1 I—1
—+ E E E E Unj UnkUniUnm (Gn1,ij Pnt,ikGn2,ithn2,im + Gn1,ij9n2,ikhn1,ithn2,im

j=1k=1I1=1 m=1

+ Gn1,ij9n2,ikPn2,ithntim + 9n2,ij9n1,ikPnt it hn2,im + 9n2,ij9n1,ikPn2,ihntim + 9n2,ijin2.iknt,ihnt im)-

Note that A,i;’s are martingale differences, and A2 ; only involves vpi,...,vn—1. Each term in A,;; has
the form IT7_; 37 pntij(0)un,; in Lemma C.1(iv). Under the assumption that sup, sup;<;<, E |vd.| < oo, by
Lemma C.1(iv), Ay1;’s are uniformly integrable. Thus, by the martingale law of large numbers in Davidson
(1994, p. 299, Theorem 19.7), %21;1 Api1; = 0p(1). This argument still holds for the original 1"7(111») and rfi) with
the assumption sup,, sup;<;<, E |vd.| < co. For Ay, because each term in its expression has mean zero and is

uncorrelated with the corresponding one in A5 ; for s # 4, the sample average over ¢ of each term has a variance
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of order O(n™") under the assumption sup,, sup; <;<,, E(vj;) < co. For example,

n i—17-1

J
VaI‘Z
=1 j=1 k=1
i—1 7j—1

1 n
2 h? h
- ’I’L2 In1 ,87 n] nl zkonk gn2 zlo—nl n2,im Onm
1

=1 j= m=1

k—11-1
§ § UnjUnkUnlUnmdnl,ij Pt ,ikdn2, ithn2 mn)
=1 m=1

=0(n™).

Thus, L 30 | Apai = O,(n~1/2). With the original r and r?)| the argument still applies with the assumption

supnsuplgignE( ;) < 0o. Hence, *Zz 1 1),.(2) —E(r () (2))] op(1).

?’L’L TL7, ?’L’L TH,
1) .(2) (1),.(2)

(#1) We decompose r, /.. — E(r,/r.7)

= Ap1,; + Ay, in a way similar to that in (¢). With the assumption
Sup,, SUpP; <<, B(v;) < 00, instead of using a martingale CLT for £ ™" | A, ;, we may prove that = 37" | Ay =
Op (nil/ 2) by showing that the sample average of each term in its expression has a variance of order O(n~!). Thus,

LS Anri = Op(n=1/2). Similar to (i), £ 37 | Apa; = Op(n~1/2). Hence the result holds. O

C.2 Lemmas related to the GMM

All lemmas below accommodate both the homoskedastic and heteroskedastic cases for the SARAR model (1), where
0 = (1,K, B',02) for the homoskedastic case, and 6 = (7, x, 3')’ for the heteroskedastic case. Let ky be the dimension
of 6. The next lemma shows the consistency of an estimator of the covariance of two linear-quadratic forms, where
the estimator is formed with estimated martingale differences. For a square matrix A, let tril(A) be the strictly

lower triangle matrix formed by the elements below the diagonal of A.

Lemma C.3. Suppose that Ap1(0) = [an1,;(8)] and An2(8) = [an2,:;(0)] are nonstochastic symmetric square
matrices of dimension n, bp1(0) = [by1,:(0)] and by2(0) = [bne,:(0)] are nonstochastic column vectors of dimension

n, and their elements are functions of 6 € ©. Assume that each element of Ap1(0), Ana(0), bp1(6) and byo(0) is

differentiable with respect to 0, the sequences An1(0), Ana(6), aAggl(e) and 8‘4"2(0 forj=1,... kg are bounded in

both row and column sum norms, and by1(0), bpa(6), 8bg;;9) and 61’5;;0 for j=1,... kg are bounded in row sum
norm, uniformly on ©.

Let &uri(0) = anpii(0) [v2,(0) — 0] + 200i(8) 3255 @i (0)0n(0) + bur i (0)vni (0) for v = 1,2 if the disturbances
Uns 'S are homoskedastic, and &y i (0) = 2vp,(0) Z;;ll Unr,ij (0)Un;(0) + bpnri ()i (0) for r = 1,2 if the disturbances
Uni s are heteroskedastic. Assume that én = 0y + 0p(1). Then, either under Assumptions 1(i) and 2—4 in the ho-
moskedastic case, or under Assumptions 1(ii) and 2—4 with diag(An1(0)) = diag(A,2(0)) = 0 in the heteroskedastic

case,

- Z gnl % 6712 7 = % Z E[fnl,i(90)€n2,i(90)] + Op(l)'

i=1

Proof. By the mean value theorem,

b . 8n ’L ;3 8n 'Lén A
*anlz £n2z n Zgnlz 90 §n2z 90 Z;Z[ f = §n2z( )+§n1 1(9 )52’7&()}(97#_90[);
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where 6, lies between 6, and 6,,. We shall show that the second term on the r.h.s. of the above equation goes to
zero in probability. Note that &,,.;(0) = anrii(0)[(€l;Va(0))? — 2] +2¢l,,Vy (0)el i tril[An (0)]V (0) + by i (0) €l Vi (6),

where e,,; is the ¢th unit column vector of dimension n, and tril[A,,(6)] and M for | =1,...,p are bounded
in both row and column sum norms uniformly on ©. Since Y, = S;; 1 X,, 30 + S,leleVn,
Va(8) = [Rn + (10 — T)MJ{[Sy + (ko — &)W (S, ' X0 B0 + S RV, — X}
= Ry Xn(Bo — B) + (ko — K)Ra Wi Sy " X Bo + M X (Bo — B) (10 — 7) + (ko — &) (10 — 7) My Wi S, ' X, B0
+ (ko = K)Ra WSy 'Ry MV + (10 — T) MG Ry, MWV + (10 — 7) (ko — K)MpWa Sy Ry, + Vi,

(13)
which is linear in V,, and quadratic in 6. In (13), terms that do not involve V,, have uniformly bounded elements,
and terms that involve V,, have matrices in front of V,, bounded in both row and column sum norms. We can
expand %Z?:l[afgej(e)fng i(0) + gm,i(e)aﬁi;iéj@] by using (13) such that it is a sum of terms that have the
forms in Lemma C.1 with up;; = vp;. Then %E:L: [85”1 .i(6) €n2,i(0) + & i(@)(%ygié"'(m] = O,(1) uniformly in a
neighborhood of 6. Since 8, = 6y + 0,(1), fﬁl IS [85"50?[ §n2 (0) + € Z(Vn)%gl(é")} = O,(1). Thus,

n

A 1
- anl 7 £n2 7 en) n Z gnl,i(GO)gnQ,i(eO) + Op(1)~
i=1
By Lemma C.2(3), L Yo €n1,i(00)En2,i(600) = % i1 El6n1,i(00)€n2,i(00)] + 0p(1). Hence, the result in the lemma

n

follows. H

The 2z,1,:(9), gni(68) and g, (0) have different expressions depending on variances of disturbances. In the ho-
moskedastic case, ¢,,(0), zni:(0) and g,;(0) are given in, respectively, (2), (3) and (4); in the heteroskedastic case,

9n(0), zn1,:(0) and gn;(0) are given in, respectively, (2), (3) and (4) with pp;; =0fori=1,...,nandl=1,...,k,.
Lemma C.4. Under Assumptions 1-8, supgcg SUP1<i<y, |gni(0)]| = 0, (n?/(4+1).

Proof. The expression for g,;(6) is given in (4), in which wy; ;(0) = pnris[(€); Vi (0))2—02]42€.,,V; (0) €l tril(Pry) Vi (6)
in the homoskedastic case, and wy;;(0) = 2e,;V,,(0)el;tril(Pn) Vi (0), where V;,(0) is linear in V,, and quadratic in
6 in (13), and tril(P,;) is bounded in both row and column sum norms. Using the expression of V,,(#) in (13), each
element of g,;(6) can be expanded as a polynomial of § whose coefficients have the form II7_, 2?21 dnt,ij (0)tni,;

with wn; j = vnj and s =1 or 2 in Lemma C.1(¢4¢). Thus, the result follows by Lemma C.1(ii7). O

i oG, (0 ij 892G, (0 ijk 3G, (0 0G i (0 Agni (0
Let G (0) = 250 G (0) = S5, GiM (0) = srspb- and G (0) = 2559 where Gi(0) = 2552,

Lemma C.5. Under Assumptions 1-3, supgeg + Y1 19ni(0)||%, suppeo = Sy [|Gni(0)], supgeo £ Y0, HGSZ)(H)H,

i i ijk
suppee [19n(0)1], supgeo [1Gn (O], supi<ic, supgee |G (O, supi<; <, suppee |G (0), and supy<; ; iy Supgeo 1GH™ (0)]
are all of order Op(1).
Proof. By (13) and the proof of Lemma C.4, we can expand + 3" | [wy;;(6)[? and £ 3" | v,,:(6)]* as polynomials
of #. Since g, (0) is quadratic in V,,(9), each element of g,,(8) can be expanded as a polynomial of . Each coefficient

of those polynomials is Op(1) by Lemma C.1. Hence the results hold. O
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(*) 89ni(0)  (KD) g\ 82gni(0)  (KIr) g\ 83gn;(8) (klrs) 9% gni(0)
Let g,; (0) = gaek s Gni (0) = 6&891 s Gy (0) = ae,féelae,,n and g (0) = aekaglﬁe,,,aeg'

Lemma C.6. Under Assumptions 1-3, supgeo || 371 gui(0)g4:(0)]l, supgeo 12 S0, 0% (0)g,:(0)]),
kl k ! n klr
swpgeo |12 30, 0% (0)9; (0, supgeo 12 S, 9% (0)9L) (0)1, supgeo 12 S0y 9% (0)90,:(0)]],
kl r klrs klr <
suppeo 12 00, 950 (0)9) (O)1], suppeo 12 71 9 (0)gL: ()1, suppeo |12 S0, 68 (8)9%) (O) and

supgeo 12 S0, gV (0)%Y (0| have order O,(1).

Proof. As in the proof of Lemma C.5, L 3" | 4,,(6)g.,;(f) can be expanded as a polynomial of  with coefficients
being O,(1) by Lemma C.1. Then the results in the lemma follow. O

Lemma C.7. Under Assumptions 1-3, (i) %E?:l gni(00)d,:(00) = Q, + 0,(1), (u) Zz [Eg, k)(ﬁo)] ;(00)
O, (n~Y2), and (iii) %22;1 E[gfj)(ﬂo)g;i(eo)] = O(1); under Assumptions 1-3 and 9, (iv) L L 1 gni(00)gh:(60)
O + O0p(n=12), and (v) L7 {9\ (00)9,:(00) — Elg's) (00)gL:(00)]} = Op(n=2), for k =1,... ke

Proof. Since P,;’s are symmetric, each element of g,,;(fy) has the linear-quadratic form ay, ;; (v2;—02)+2v,; Z;;ll n,ijUnj+
bpiUni OF 2Up; Z;;ll n,ijVnj + bniUni, where ay, ;5 is the (z, j)th element of a nonstochastic matrix with bounded row
and column sum norms, and b,; for i = 1,...,n are bounded uniformly in ¢. Then (i) and (iv) follow respectively

from Lemma C.2(¢) and Lemma C.2(i3). It remains to show (1), (4ii) and (v).

k . Owny,i(0 OVn i Ovn; (0
The /th element of g,(”-)(é') for1 <i<k,is alé ©) _ 2Pn1,ii0ni(0) dvaelge) —Dni i 89 ) Z] 1 Pnl,ij [vm(é’) 85: ) 4
vnj(H)ang@} in the homoskedastic case, and 2<aL ’(9 = 22 L Dalij [vm(ﬁ)ai’#ﬂ:g) + vnj(G)%] in the het-

eroskedastic case; and the last k, elements are Qy; 8”’”( ). By (13), 8”’”(00) has the form ay,; + Zr 1 bk irUnr,
where anj; is bounded uniformly in & and 4, and by, i is the (¢,7)th element of an n x n matrix bounded in both

row and column sum norms. Hence, every element of 97(:2) (6o) has the form

n o 2 i—1
Enk,i = 2pnl,iivni (ank,i + Z bnk,isvns) Pnl,ii 8 +2 zpnl ij | Uni (ank J + Z bnk,gsvns) + Unj (ank i+ Z bnk mvne)]

s=1 s=1 s=1

—_ 2 1—1 . . . .
Thus, E(Enk.) = 2pnl,iibnk,iiaii - pnl,ii% + 22;:1 Pniij (bnk,jmf”» + bnk’ijcf%j) is bounded uniformly in ¢ and k.
Note that the variance of the term in (4¢) only involves the first fourth moments of v,,;, then the result (i7) follows

by Lemma C.2(i3).

Below we shall prove (i) in the lemma and (vi) £ 37" {( g(k) gm (00)])g;i(9 ) — [gm (60)9,,:(00)]} =

n n
Op(nfl/z). The result (v) in the lemma follows by (ii%) and (vi). Write E,k; — E(Enk:) = S1nk,i + Z2nk,i, where
i—1 i—1

- 2 2
Elink,i = 2Dnl,iiGnk,iVni + 2PnliiVni E bik,isUns + 2Pnl,iibnk,ii (Vs — 023) + 2Un; E Dnl,ijOnk,;
s=1 j=1
i—1 i—1

+ 2vnz anl ©j Z bnk,jsvns + 2 anl 1j nk ,Ji + 2ank: % anl ijUnj +2 anl ijUnj Z bnk isUns

7j=1 s=1
1—1 1—1 1—1

+ 2 pnl,ijbnk,ij (Unj + 2 Pnl,ijUng bnk ,isUns + 2bnk ,i1Uni Pnl,ijUng,
Jj=1 Jj=1 s=j+1 Jj=1

and

_an K 2pnl 7.1an< Z bnk zsvns) + QUn1 (anl 17 Z bnk jsvns> +2 anl ijUnj Z bnk yisUns

s=i+1 s=i+1 s=i+1
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- 2pnl uvnz< Z bnk zsvns) + 2Unz( Z Uns anl ij nk,]s) +2 Z bnk isUns anl ijUng-

s=i+1 s=i+1 j=1 s=i+1

Note that Z1,4,; has the form of T‘Si) in Lemma C.2(i7) because

2 anl ijUnj Z bnk isUns = 2 Z bnk isUns anl ijUng-

s=j+1

Thus £ 37" E[E1nk,i00:(60)] = O(1) and £ 377 E1,ki00,:(00) — 2 Yoy E[E1nk.i0,:(00)] = Op(n=1/2). For Egpgi,
we shall ShOW that %Z?:l E[E’an,zgfnl(eo)] = 0 and %Z?:l Egnkﬂg;”(go) -1 Z?:l E[Egnk@g;‘i(ao)] = Op(nil/Q).

P ) n * 7 % *
Each term in Zap4,; has the form (3°0_,. l)n,msvns)(zjjz1 pnl’ijvn]) where b}, .

is the (4, s)th element of a general
n X n matrix with bounded row and column sum norms uniformly in k. The term 23:1 Pyu.ijVng 1s & special form of

(" in Lemma C.2(ii). Compared with the form of r{}r) |

i in Lemma C.2(i7), each element of Z,1,:g,,(00) has the

(1) (2) —B(r (1) (2))

additional term Y77, b}, ; Uns. In the proof of Lemma C.2(i4), If we multiply each term in r,;/r5 N

by Yoo_. 4103 i5Uns, then the obtained terms have zero expected values and the sample average of those terms
over i still has the order O,(n~'/2), because the summation Y .., bk.isVns starts from s = 7 + 1. Hence,

E(Zonk, ﬁm ) =0and £ Ly [Eonk,i9hi (00) — E(Zank,ig0:(00))] = O, (n~Y/2). Then (iii) and (vi) follow. O

The first order condition for the initial GMM can be written as
G ()M
o= (GO ) "
where \,, = —jn_lgn(én). Let 4, = (9;,/\;)' and 7o = (0y,01xx,)’. Recall in the following Lemma, Gy, is the

expected value of G,,, J, is in Assumption 7, and €k,.j 1s the jth column of the k, x k, identity matrix.

Lemma C.8. Under Assumptions 1(i) (or (ii)), 24, 7, 8 and 11 (or 12), \/n(Fn — 70) = & + n Y24, +

. _ - _ 0 V(G -GN\ -
Op(n_l); where &, = _(K;{)_l(\/ﬁqi(eo)) = Op(l) and v, = _(Kr{)_l _ &n —
_ 0o G\ 0 G _
LKD)t 6 Kb = 0,(1), where K = | " K= | for 1 <i < kg, and Ky =
G Ju GY o
(G eryimhgse s G ery i)

fOTkg—i—lS’iSkg—l—kg.
0 0

Proof. By Proposition A.1, 6, = 6y + O,(n~%/2). Then by the mean value theorem and Lemma C.5, gn(én) =
0,(n~1/2). Thus A, = —J; ' g, (0,) = O, (n~1/?). Tt follows that 7, —~o = O,(n~'/?). Together with Assumption 7,
the first order condition (14) for the initial GMM is equal to

0— _( i G%(én)j\n i
Gn(On) + (Jn + nil/zf}{))‘n

By a second order Taylor expansion of the first vector on the right hand side at vy, and using Lemma C.5,

) + 0,(n=3/?).

ko+kg
0 1
= — —KJ N’I’L_ - = NTLi_ Zan Nn_ _3/2
0 (gn(90)> (= 70) 5 ; (Ani — Y0i) Kni(Fn — 70) + Op(n™/?),
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0 @, (60) 0 G (6,)

where K = ~ , Ky = ) for 1 <14 < kg, and
Gn(bo) Jn+n12¢7 G (00) 0
GV (00)er inys - G (Oo)er. iw] O _
K, — (™ (Bo)ery.i—ko (Bo)ery i for kg +1 < i < kg + ky. As KJ = E(KJ) = O(1) and
0 0

K, =E(K,;)) =0(1) forall i =1,... kg + ky,
Kotk
Vi) = =G (g a) 7D LRG0 =GR 3 G G000, ™),
(15)
As every element of g,(0) is a linear-quadratic form of V;,(#), which is linear in V,, by (13), so it is easily seen that
Gn(60) — G = O,(n~12) and G (6y) — G (6) = O,(n=1/2). Tt follows that K7 — K7 = 0,(n~'/2) and K,; —
K,i = 0,(n~/?). Hence, v/n(n — 70) = &n 4+ Op(n~1/2), where &, = _([_(J)_l(\/ﬁgg(eo)) = O,(1). Substituting

n

Kni - Km' = Op(n71/2) and \/ﬁ(:}/n - 70) = gn + O;D(nil/2) into (15) yields \/ﬁ(:}/n - 70) = gn + f&n + Ol)(nil)' 0

Lemma C.9. Under Assumptions 1(i) (or (ii)), 2-3, 7, 8 and 11 (or 12), 2,(6,) = O, +0,(1); under the additional
Assumption 9,

\/E[Qn(én) - Qn] = 57? + Op(n_1/2)7
where €2 = /AL S 90i(00)9h:(00) — ) + SF L S0 Elgni(90)9 (60) + 9% (00)9,:(00)) Yéur = Op(1).

Proof. By a first order Taylor expansion and Lemma C.6,

Qn(én) = Q ( ng 90 gm 90 ) + Z{ Z g'm 90 gnz (90) + géﬁ)(eo)gibz(ao)]}(énk - 90k) + Op(nil)-

=

Under Assumptions 1(i) (or (ii)), 2-3, 7 and 11 (or 12), by Lemma C.7(i), the second term on the r.h.s. of the
above equation is o0,(1); by Lemma C.6(iii), the third term is o0,(1). Thus the first result follows. The second
result requires the existence of higher order moments of disturbances. Substituting the expression for 6,, — 6, in
Lemma C.8 into the above equation and keeping only terms with order O, (n='/2) by using Lemma C.7, we obtain

the result. O

C.3 Lemmas related to the GEL

Lemma C.10. Under Assumptions 1-3, for any ¢ with ¢ > 4+L and Ap, = {X: [\l <07}, supgeo ren, 1<i<nl N gni(0)] 2z,
0, and w.p.a.1., A, C Ap(0) for all 0 € O.

Proof. Let b, = sup;<;<, SuPpee [|gni(0)||. By Lemma C.4, b, = 0, (n?/(4+1). Then by the Cauchy-Schwarz
inequality, SUPpco ren, 1<i<nlNgni(0)] < n7Cb, = Op(n*/(*T9=¢) = 0,(1). Given the first conclusion, w.p.a.1.

Ngni(0) € Vforalll <i<n, 0€0and | <nC. O
Denote ¢n (9, 4) = % S p(Ngni(0)) for the next lemmas for simplicity.

Lemma C.11. Under Assumptions 1-3, 5 and 6, if 0, = 69,0, € O, and g,(0,) = Op(n_l/Q), then \, =

argmaxyca (g,)0n(0n, A) ezists w.p.a.1., X, = O,(n~Y/?), and supyc @) @n(On; X) < p(0) + Op(n1).
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Proof. As in the proof of Lemma C.9, 1 Z?ﬂ gm-(én)g;i(én) =Q,+ op(1). Since lim, Q,, is nonsingular, its
smallest eigenvalue is bounded away from zero for large enough n. Let A, = {X: | A < n=¢} for some 2 +L <(<3
By Lemma C.10 and twice continuous differentiability of p(v) in a neighborhood of zero, 0, (0, ) is continuously
differentiable on A,, w.p.a.l., then A = argmaxye, On (0, \) exists w.p.a.1. Furthermore, for any A\, between A,
and 0, by Lemma C.10 and p; = —1, max;<;<p pl()'\;lgm'(én)) < —%, w.p.a.l. Then by a first order Taylor expansion
of 0, (0, S\n) at A = 0, there is A, between \,, and 0, such that

p(O) = Qn(ona 0) < Qn(gna ;\n) = p(O) - 5‘/ngn ‘|’ X [ 292 ngm gm(é )gm(é )} An
< p(O)—-A;gn<éﬁ>-—A§X;[——jijgkn<éﬁ>g;i<én>}xn (16)

< p(0) + [ Aall - 9 (Bu)ll = el Anl,

for some positive constant ¢. Thus ¢||A,|| < ||gn(fn)]|, w.p-a.1. Since g,,(0,) = Op(n=2), |[\u]| = Op(n~1/?) =

0p(n~¢). Therefore, \, € int(A,) w.p.a.1, and %ﬁ’j‘")

= 0, the first order condition for an interior maxi-
mum. By Lemma C.10, A, € An(6,) w.p.a.l. Then by concavity of g, (,,\) and convexity of A, (f,), it follows
that o, (0, 5\n) = Sup,¢ An(gn)gn(én,)\), which gives the first and second conclusions with A, = \,. Finally, by

19 (6:)]] = Op(n=2), | Anll = Op(n'/2) and the last inequality of (16), we obtain

00 (0 An) < p(0) + [IAnl - [lgn (8) | = €l Anll> = p(0) + Op(n_l)- O
Lemma C.12. Under Assumptions 1-3, 5 and 6, ||gn(0n.ceL)|| = O,(n~Y/2), where én,GEL is the GEL estimator.

Proof. Consider any M €A, = {X: |All € n=¢}. By Lemma C.10, maxj<i<n |)\;lgm(énGEL)\ 2 0 for any A
between \,, and 0. Thus w.p.a.l. pg(}\;gni(émGEL)) > —c, for some positive constant ¢ and for all : = 1,...,n. Be-
cause all eigenvalues of ¢,,;(0)g,,;(0) are nonnegative and their sum is tr(g,:(6)g.,,(0)) = 9.,;(0)gn(0), gni(0)g,,;(0) <
Gos@)9ns(O) T for i = 1. m. Thus, 257 6B cer)ghps(Bncen) < (Subpeo & S0 lgni (@) T, which is
O,(1) by Lemma C.5. It follows that the largest eigenvalue of %2?21 gni(én,GEL)g;i(émGEL) is bounded above

w.p.a.l. A first order Taylor expansion then gives

R - - R 1- 1 & . R R R
0n(On,cEL: An) = p(0) — N, gn (0n.GEL) + §>\:L [ﬁ Z p2(N i (On,GEL)) 9ni (On,GEL) Ghi (0n,cEL) | An
i=1

- . c- 1 <& . . s
> p(0) = Augn(On.cEL) — 5/\; [ﬁ > 9ni(On,cmL) g (On. L)) An
i=1

> p(0) — X;zgn(én,GEL) - 015\;5\71,

w.p.a.1. for some ¢; > 0. Note that Lemma C.11 holds for 6,, = 6, then since (émGEL, An,gEL) is a saddle point,

p(0) = N gn(On,cEL) — 1A A < 00(0n,GEL: An) < 0n(0n.GEL, An,GEL) < SUDycA, () 2n (00, A) < p(0) + Op(n 7).
(17)
|~1, as the Buclidean norm of this A, is n~¢. Then (17)

2t (17)7 we may let )\n = _n_<g7L(én,GEL)||gn(én,GEL)
implies that Hgn(énGEL)H <en ¢4 0p(ns71) = 0,(n™°), as ¢ < 1/2. With this order of 9n(0n.cEL), We may let
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A\ = — ngn(énVGEL) in (17), where U,, — 0, since this A € A, w.p.a.l. Then w.p.a.l., p(0) — S\Lgn(émGEL) —
015\;5\,1 = p(0) + Uann(émGEL)H2 - clUfL||gn(9An,GEL)||2 < p(0) + Op(n~1). Since 1 — c1U, is bounded away from
zero for large enough n, Uy||gn (0n.cur)||? = Op(n~1). The conclusion then follows from the standard result that if

UpJn = O,(n~1) for all U, — 0, then J,, = O,(n~"). Hence, ||gn(fn.cer)|| = Op(n~1/?). O

Appendix D Proofs

Proof of Proposition 3.1. By (13), each element of g, () can be expanded as a linear-quadratic form of V,, and is
a polynomial of 8. Thus supgeel|lgn(8) — E[gn(8)]]| £ 0. By Lemma C.12, g,(fn.cur) = Op(n~/2). Let g,(0) =
E[gn(0)], then |G (Bn,cor) || = [1Gn (O, c61) = 9n (0n,GEL) 490 (On.cuL)|| < 180 (0n.coL)—gn (On,cuu) 1+ (On,crL) || =
0p(1). Since lim,, o g, (6) is uniquely zero at 6y under Assumption 11 or Assumption 12 as discussed in Appendix A,
1 (0)]] must be bounded away from zero outside of any neighborhood of 6. Therefore émGEL must be inside any
neighborhood of 8y w.p.a.l, i.e., én,GEL 2 0y. As gn(§n7GEL) = Op(nfl/Q), Lemma C.11 holds for 6,, = HAMGEL.

Hence, \, gpL = arg maxy . . GEL)Tll Dy PN gni(0n.urL)) exists w.p.a.1, and A, ger, = Op(n~1/2). O

Proof of Proposition 3.2. By Proposition 3.1, XH,GEL = Op(n’l/z). Then by Lemma C.10, maxlgign|5\;L,GELgm(én’GEL)\ EN
0. Hence, the first order condition
Z Pl(S\Z,GELQM(én,GEL))gm(én,GEL) =0
i=1
is satisfied w.p.a.1. By the implicit function theorem, there is a neighborhood of ,, g1, Where the solution A(6) to
o1 p1(Ngni(0))gni(9) = 0 exists and is continuously differentiable. Then by the envelope theorem, the first order

conditions for the GEL are

n

Z p1(N i Gni(0n,GEL)) Gl (On,GEL) An.cEL = 0 and > p1(X), qprgni(On.cEL))gni (On,cEL) = 0.
i=1 i=1

Applying the mean value theorem to these first order conditions, we have

0
. " A’ﬂ AnA — ,
where
lzn: "gnz ))G (9 )5\ 5\ nz(e )+p1( ngnz(a L))[Gﬁlli)/(én)j\"’"'?Gglkie)/(én)j\n} .
nia P2(N9ni (0n))gni (0n) X, i (Bn) + p1 (AN gni(02)) Grni () p2(Xgni (01))gni (0n) gni (0n)

and (0., \,)" is between 4, grr, and o elementwise. As maxlgign|A;7GELgm(0n,GEL)| 25 0, by the twice continuous

differentiability of p(v), maxi<i<y |pi(Nygni(0n)) + 1| = 0,(1) for I = 1 and 2. Then by Lemma C.5 and the mean
value theorem,

n n

%Zpl (S\{ylgnz(én))an(én) - %Z[ﬂl(X;g'm(&n)) + }an(é ) 1 Z nz 90 - Z Z G 7nl - 901)

=1 11l1
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where 6, lies between 6, and 6. Similarly, by Lemmas C.6 and C.7,

n n ko

= %Z[ 2 (N, ni(02)) + 1gni(0:) 945 () ng (00)gi (6) — i > 198 0n) 95 (0) + i (02) 9 (6))(Brt — o)
=1 =1 =1 1=1

= _Qn + Op(l)v

Vi =) =K (s’ 0 Y o)

n Zi:1 9ni
_ -¥, H,
Since K,;' = ],
A D,
V(5 — %) =— i, izn: (0o) + 0p(1) (18)
Yn,GEL Yo) = Dn \/ﬁ — Inil\bo D .
Then the asymptotic distribution of \/n(%,,geL — o) follows by the central limit theorem in Kelejian and Prucha
(2001, Theorem 1). O
Proof of Proposition 3.3. Since XmGMM = fQ,’Ll(én)gn(émGMM) = Op(n’l/z), by Lemma C.9, the first order

condition (9) can be written as

G/n(én,GMM)/A\n,GMM _3/2
0=— . ~ Y + O, (n™7/7). (19)
Gn(On.cvim) + (Qn + 071262 N avm

By a second order Taylor expansion and Lemma C.5,

k‘9+k‘g

0 A . A A )
0=— (g (00)) — K3} (00) (m.anam — 70) — 5 Z (Fmi.anint — Y0i) Kni (Fm,anint — Y0) + Op(n™2/2),
! =1

GV 0, ...,GE (o) G’ (0)

where K$(0) = -
G.(0) Q, +n 128

) , and K,;’s are given in the proof of Lemma C.8. Let

Vi(in.eam —70) = —K,; <\fg (%% ) K KR (80) = Kol v/n(Fn,cvim — 70)
J Fete (20)
N TH ; K Kni(Am,avm — 70) (Bni,avnt — Y0i) + Op(n™h).
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By (20), we have
\/ﬁ(ﬁn,GMM - '70) = én + Op(n_1/2)7 (21)

where &, = K1 (\an(ao)) = O,(1). Substituting (21) into the the second and third terms of (20) yields
Vi(An.evm — 70) = & + 172, + O,(n1), where

_ 0 G -G ottt
n n — Un n 1=1

Proof of Proposition 3.4. Let 'Uni(’Y) = /\/gni(e)a hni(’Y) = (%3717(7) = (ir;:((%))/\)v and mnz(’y) = pl(vni(’}/))hni(’}/)'
Then the first order condition of the GEL estimator is:

1 n
n Z M (Yn,ceL) = 0. (23)

=1

Let gn;+ be the tth element of g,;, and g(k-) be the tth element of g(k-). Then,

nit ni

ohns(y)  [IGD OA,....c%) 0N G0

/ = )
oy Gni(6) 0
Phu(y) (G ON. G 00 G (0) ‘
= ) for 1 < j < ky,

97 G2)(o) 0

2, G O)ex, j—ror-- - GED (B)e 0

a hnz('}//) _ [ ni ( ) kg,j—ke ( ) kg,j— ]99] for ko + 1 < j < ke + kg7

9707 0 0

37 G(l_jk)/ ON,..., G(k_e,jk) )A] G(Jk)
0 hnz(fy)/ _ [ ni ( ) ‘ ni ( < S ke, and 1 g k S k@;
Ok 0,0y GUm) (g)

3p, G Der bnnse ., GFD (g)e
73hm(7)/: (G ()kgk ko m (>kkk9 for 1 <j<koand kg +1<k<ky+kg
Ok 0v;0v 0 0

37 GO (0)ey ,...,G(k-e’k), fey, i
a hnz(fy)/ _ [ ni ( ) k_qd ko ni ( ) kg:.] ke] fOI‘ k& + 1 S ] S k& +kg and 1 S k S k&,
OVk0v;0v 0 0

and % =0for kg +1 <75 <ko+kyand kg +1 <k < kg + ky. Hence, by the chain rule of differentiation,

Imni(r0) _ 0 Gri(fo)
7 = — )
Oy Gni(00)  gni(00)gy,:(60)
9 ] 0 G(])
O mni(y0) _ [0 e for 1< j < ko,
6’}/]‘8’7/ G(]) g( )g + gmg(])
2 . G(l.)/e S7...,G(k9) €ky,s G’ e ,8 + n1sG/
mzf [ ni Ckg, kg ] nitky gnz g fork9+1§j§k9+kg7ands:j*ke’
8’)’]‘8'7 gmezg,SGm‘ + GnisGni —pggmsgmgm
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(4K)'
83 ni 0 an
ama(gO)':_ GR)(h) G @ oo w Gy | rESiSkeand Sk <k,
TRV anz gnjz g;n + gnlgnjz + gnjz Ini + Ini gnjz

Pmni(v) G eyt GO g iy G x4 + Clien, 1) + 950G + g G
AN ;
007307 gnich, ;GO + g0 el ,Gri+ 95 Gri + gnin G 0390 nidi — P3gnit (95 di + gnig$))

fOI'].Sjgkg,k9+1§k§k9+k9,andt:k7k9,

1k ko ,k)’ k)’ k k k
Pmni(v0) G ety oo G ey ] G\ en, 1l + Glien, 10l + 051Gl + s Gl
. /T - k ’
a’}/ka’yja’}’ gnze;c tG( ) + gy(n ek; thz + gnlthz + gnzthl) —,0397(uggmgm P39nit (gin)gnz + gnzggn) )
for ko +1<j<ko+ky, 1 <k <kpandt=j— kg and
Fmni(0) —Ghiehky,s€k,1Gni — Griekg i€l sGni P3GnisGriCry,tGni + P3gnitGriek,,sGni + P3gnisgnitGri
6’}%87‘767/ pSQnisgniegggthni + pSgnitgnie;cgyani + pBQnisgnithi p4gnlsgnzfgnzg;n

nis[GLY ergr - G ey ] + 9t |G eryr- - G e, ] 0
0 0
forkg +1<j<ko+ky ko+1<k<ko+ky, s=j—koandt==Fk— ks Byasecond order Taylor expansion of

(23),
n ke+k
amm ('70) 1 ! ~ aZmni (’YO) N
Z Mg ’70 ; T(”yn GEL — 70 % ; ; (%j,GEL - ’YOj)W(%,GEL - 70)

+ Op(Ilin.cEL — Y0[°),
where the order of the remainder is derived by using the Liptchitz hypothesis of p(v) and Lemma C.5. Hence,

V1 (An,cEL — Y0)
8mm —1 1 amnz - 8mni ~
[ ) om0 + o3 P e P )

11 =1 =1

n

+
g N 32mm- N N
Z Z (%j,GEL - 'YOj)J('Yn,GEL - Wo)} + Op(\/ﬁ”'yn,GEL - 70||3)~
=1 ‘:1

?V

9,07
Thus,
Vi(n,GEL = 70) = & + Op(n™1?), (25)
where &, = —[2 30 B(Z5000)] 1L ST mai(v0) = — K (g 00) = —(B7)Vgn(09). Substituting (25)

into the second and third terms of (24) yields v/n(¥n.ceL — Y0) = &n + 1724, + O, (n~1), where

n kotkg

ZE amm 70 {f > 8m5;(lvo) —E(Z 8mnz(% €n+7z S £n][ (agﬁné(f))]ﬁ"}

=1 =1 j=1

n kotkg

0o @ G;)en+K—lzzgw[(ag;;;m}gn

i=1 gj=1

= —vnK, ' (
_ 0o G -G 1 da 0 ay)
= k! T e - =R i E "
Vit ( Q )5 2n " ZZSJ ( OROW ar | &

Gni Ini 9ni +gnzgn7,

n k 1 ko)’
1 Rt Zg ¢ E G gm) N ) Ggm'g) ekg,s} G’/!Liekgysg:‘Li + Gnis G ¢
— 5. 1n n,kg+s n-
2n i=1 s=1 gniekg’ani + gnsznz _pSansgnzg'/m,
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O

Proof of Proposition 3.5. Note that £, = —(gz)\/ﬁgn(go) and E(¢,¢,) = diag(Z,,, D,,). Then by Proposition 3.3
with v, in (22),

_ 0o a i ko _ 0 GY
Bl '3 (] - 5

Gn| — n . diag(2,, Dy )ex oy
G, n71/2§2 D, an:1 G%y) 0 ( ) o+kg,J
Fothy A ~ (o)’
1Rk (16 ey gk G e o
_% Z Kgl [ kg,j—ke kg,j ke] diag(znaDn)€k9+kg’j
Jj=ke+1 0 0
" \E(GnHugn +nY/262Dugn) = 35 Y4, G Soen,

Since 553 = /n(Q, — Q) + Z] 1 ?:1[E(gmg7(i) —|—g(J) !

~ ~ rrJ
ni gnz)}gn] by Lemma Cga where fn = _(gz)\/ﬁgn(HO)
Lemma C.8,
k}g 1 n .
( _1/253Dn9n) =E(QnDngn) — ) [E(gmgﬁi) + gg)g;”)]DnQnH;{ Cko,j
=
_ -%, H,
Since K1 =

~ and DnQnﬁ; = 0, the leading bias of the GMM estimator én is the first kg components
H! D,
LE(4,), which is

ko n ko
1 _ _ _ 1 _ o
- Z n2 Z n gnlgnz + gv(v,Jz)g:u)]D Q (Hr{ Hy) ko,j — m Z HnGsi])Enekeaj' O
j=1" i=1 j=1
Proof of Proposition 3.6. As in the proof of Proposition 3.5, E(£,£)) = diag(X,, D,). Then by Proposition 3.4,
with 1, in (26),

1 _ 0 G, -G, H
*E(@Z)n) —Kn1E|: _ _ (—n>gn(90)}

n @)
1 0 G, o
3 n diag(S,, D .
" jﬂ"; GY) gD+ gnig) iag (X, Dn)eky +k, 5
- = ni Ini ni

k ko)’
1 - 1 CAGNL [G(l) €ky,s5+ G;ie) ekg,s] G;nekg,sg;”‘ + gmsG/
oan "

ni . S =

dla‘g(znv Dn)€k9+k9,kg+s
—1 i— . G, -G _ . .q .
s=11=1 gnzekgys nz+gnls ni p3gnzsgnzgnz

n

"1<E(anf (G)+Eg(ﬂ) Diuga) > & _ﬁze Z< e )

_ l Z <E(G;Liekg13g’:7,i + gnisG;u')Dnekgvs)
an " n —pP3 E(gnisgnig;m‘)Dnekg,S
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-3, H,

The leading bias of the GEL estimator én)GEL is the first kg elements of E(¢,,), and, as I_(;l = ~ " ], itis
H, D,
1ol
— S, E(G Dpgn) + > > = SLE(Ghiek, s0hi + GnisGii) Dnek, s + Ho B(GnHngn) + Hy B(Qn Dygn)
n n
s=1 =1

kg n
Z ZH an by n€ky,j T 7P Z % Z gnisgnig;ﬂ)DnekQ,s-

Note that Esgzl E(G;liekgysg;zi)l_)nekg# = ngzl E(G;«Liekg,se;cg,sbngni) =E(G),; _ngm)
kg kg
ZE(gnisG/ni)Dnekg,s = ZE(GIniDngnisekg,s) = (G/ 711977,1)

s=1 s=1

k = k = = . .
and ngzl E(gnisgm'g;”')Dnekg,s = ngzl E(gm‘g;ziDnekg,sgms) = E(gnigq/ziDngni)~ Thus, the bias is

n ko
_ 1 - _ _ _ _ 1 _
’ /
E(GnDn.QN) + ﬁzn ; E(Gm‘Dngni) + H, E(Gangn) + H, E(Qn ngn o z_: nekeﬁj
p n

Proof of Proposition 4.1. The unconstrained GEL estimator \,, is a maximizer, so Ly ;m (N i (00))gni(0) = 0.
Asp(0) = L5 | p(0- gni(0,)), by a first order Taylor expansion of N p(0-gn:(0,,)) at Ay, and using po(0) = —1,
Lemma C.5 and (18) successively, we have

~2n[p(0 —pr Lni(0n)| = sz (X ni (0n)) X, g (0r) i (Br) A

_Z/\ngm )i (0n) An + 0,(1) (27)

=0\ QA +0,(1)
= [erl/Q \/ﬁgn(eo)]IQ}/QDnng[051/2\/59“(90)] + 0p(1),
where A, lies between 0 and \,,, because \/nh, = —Dnﬁ S gni(60) + 0p(1) and D,Q, D!, = D,,.
For the restricted GEL estimators 6, and )\m the results in Proposition 3.1 hold under the null by similar

arguments. In particular, 6,, = 6y+0,(1), and A, = O,(n~/2). With these results, as in the proof of Proposition 3.2,

we can apply the mean value theorem to the first order conditions of the restricted GEL estimation

9 n . . .
Zpl )‘;7, Gni(0n) 973; )>‘ =0 and Zpl()‘;gni(en))gni(gn) =0
=1

to obtain
Vi )=~ () 3 guutt) + 0,(1)
T On 0) — Dn¢> \/ﬁi=1 gnilVo Op .

where 571 = ( n’)‘;m)/’ Gn¢ = E(aggiéﬁo)), 2n¢ = (G‘;,wﬂglén(b)*l, H ng = En¢G Q-1 and Dn¢ = Q;l —

n 7
Q;lémﬁiw@’nd@;l. Then we can obtain the following expression analogous to (27) above:

n

~20[p(0) — 37 p(¥,900000)] = 19772V () O D 0210 2V igu(0)] + 0p(1). (29)

i=1
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Combining (27) and (28) yields
[Zp ! i (6) Zp ! gni(0)] = 9572/ (80) 2L/ (D — Do) Y/2 /g (60)] + 0,(1).  (29)

o0 £ Gy has full rank, Q3/*(D ¢>—Dn)Q3/2=Q7’”2@ (G101 G) 1 G0 P~
Q*I/QG (G/ 1Gn¢>) 1G/ 1/2 M Q 1/2Gna(G/ 1/2M Q 1/2G ) 1G/ 1/ Mn is a pI'OJeCtIOIl

Since Gn¢ is a submatrix of G}, and plim

matrix with rank ko, where M,, = I, — Qn @G, o (G0 Gng) '@, 0,2 (Ruud, 2000, p. 60, (3.13)). Hence

the proposition follows. O

Proof of Proposition 4.2. With the Pitman drift in the proposition, we still have the consistency that 0,, = 6, +o,(1)
and 6, = 6y + op(1). This is because V,(6) can be expanded in a form similar to that in (13), where 6y,
Sp and R, are replaced by, respectively, 0, = (al,, o), Sn(kn) and R, (7). Then under the Pitman drift,
Lemmas C.3—-C.7 and C.10-C.12 all hold by similar arguments. Hence, as in the proof of Proposition 4.1, we
have (29). By the mean value theorem, v/ng,(0o) = /ng.(0,) + 8g"(9 )\f( g — apn) = V/1gn(0n) — Grads +

0,(1), where 6, lies between 6y and 6, elementwise. Under the Pitman drift, v/ng,(6,) = %[V’ PV, —
E(V,PuVi), .., Vi Pak, Vo — E(V, Pak, Vo), V, Q] 4, N(0,lim,, 00 2y,). Since DpGro = 0 and (Grada)'(Dpg —
Dy)Grada = (Grada)' DpgGrada, the proposition holds by (29). O

Proof of Proposition 4.3. The asymptotic distribution follows by (27) in the proof of Proposition 4.1. Because
0/?D, Q% is a projection matrix with rank (k, — ko) and Q5,7 /ng, (6o) is asymptotically standard multivariate
normal, ~2n[p(0) — £ X0, p(Mygns(B))] L X2 0k, — ko). O

Proof of Proposition 4.4. Explicitly, g, = £ 3" | gn; = %VéWnVn = VW, V=iV (W + W) P, Vo + L VP, W, P, Vi,
_ 1 1 _ 1 —11 _

where P, = X,(X},X,,)"'X}. Note that 2V/(W, + W)V, = A VI(Wo + W)X, (5 X0 X,) " L XLV, =

Op(n™1). Similarly, VP, W, P, V;, = Op(n~1). As LV!W,V,, has mean zero under both homoskedasticity and un-

known heteroskedasticity, g, = 1V, W, V,,+0,(n"!) = O,(n~'/?). Then by Lemma C.11, An = arg max, i Yty P(AGni)
exists w.p.a.l., and its first order condition for A is DIy pl(Xngm)gm = 0. Applying the mean value theorem to

this first order condition at A = 0, we have 0 = >_"_| p1(0)gn;i + >y P2(Andini) 92, An, where A, lies between 0 and

An. Then, because v/ngn = /nign + O,(n~1/2), where g,, = lV/LI/VnVn,

1 — ST o S Qe 1 — 1] &
:{nZZ_EPQ()‘ngm')gii] %; [n;Egm} ﬁ;gnﬁop(l)

d . 1 = 2 -1
where gn; = vn; Z;:ll(wn ijFWn ji)Unj, and the second equality holds because Ly (A NGni) 2 = —% S Gkt
0p(1) as in the proof of Proposition 3.2 and 137" 2, = 13" E(g2,) + 0,(1) by Lemma C.3. Because

p(0) = L3  p(0 - Gni), by a first order Taylor expansion of 23"  p(0 - g,;) at A and using the first order
condition of ., p(0) = Iy P(Anini) + = p2(Andini)§2,A2, where A, lies between 0 and \,,. Hence,

20[ 23" pOhnini) = p(0)] = ~(Vih) - 3" p2 () = (VA 3B+ o) B (0
=1 =1 1= []
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Proof of Proposition 4.5. Let 6 = (1,8"), 6o = (0, 8), 6 = (n=1/2d,, 3))', 0, = (0,3, and V,,(0) = Ru(7)(Yy, —
X,f), where B = (X! X,)"1X]Y, is the OLS estimate. Then as in the proof of Proposition 4.4,

Vit = [ 30 rundiis] 7= Y = = [ S B(aE)] T Z2VIOW Vi) + 0, 1)
i=1

n
i=1

B

i=1
By the mean value theorem,

60 W Vi (6) = %

N
where 6, lies between 6, and 6,, elementwise. Since ﬁVTZ(Gn)WnVn(Gn) = Ly'W,V,, and %w

T n

Vi(0,) W0 Vi (0) + %5[1/,{(9”);/1;“1/”(9“)] Vn(to — ),

—LEV (W, + W)W, V,] + 0,(1), the result in the proposition follows by the expansion in (30). O

Proof of Proposition 4.6. By the mean value theorem and Lemma C.5,

agln(én) Jg n(én) -1
a¢/ ( Zé¢/ ) \/’59271(00)

Vi — ) — 2 lC0d (DBl 71 S02B0) G, — )

89197;(/‘90) (892871@5(100) )—l \/HQQTL(QO) n Op(l)’

where 6, lies between 6,, and 6. Thus \/ﬁgn(én) has the same asymptotic distribution as \/ng,(6y). The rest of

\/ﬁgn(én) = \/ﬁgln(go) -

¢/

= \/ﬁgln(eo) -

+

the proof is similar to that for Proposition 4.4. O

Proof of Proposition 4.7. We only prove the consistency of ﬁn, as the rest of the proof is similar to that of Propo-
sition 4.1 for parameter restrictions.

First, for Y;* and €’ defined in Appendix B, we have the following results: (i) %C;L(Yn —Y¥) = o0,(1), (ii)
Lyr A, (Y, — V7)) = LE(V]Anel) + 0,(1), and (iii)

n'n

L(F = Vi) Au(o — V) = LE(e Aues) + 0,(1), where C,,
is an n x 1 vector of uniformly bounded constants and A, is an n X n nonstochastic matrix which is bounded
in both row and column sum norms. For Yn = anl(f%ln)XlnBln, the results follow by the mean value theorem,
Proposition B.1 and the fact that S},! (k1) is bounded in both row and column sum norms in a neighborhood of «%,,.
For Yy, = fi1nWin Yy + X1 B1n, note that Vi, —Y," = (R1n —K5,) Win Sy ' XnBo+ X1n(Bin — Bip) + 51n Win Sy L Ry V.
Substituting this expression into the terms in (i)—(iii), we can easily see that the results hold.

With the above results, we first prove the uniform convergence supycg [gn(9) — gn(9)| = 0p(1) if the IV matrix
Q,, does not contain the generated regressor Sl_nl(f%ln)Xlan. Since %Q’nVn(ﬂ) = %Q;VH(Q) — %nQ’an(T)Yn =
LQIVi(8) — 1nQL[R, + (10 — 7)M,]Y,, and V() in (13) is linear in V,, and quadratic in 6, supyce 1LQLV, () —
LQhd,(9)]| = o0p(1), where d,(9) = d,(0) — nR,(7)Y," and d,, () is given in Appendix A. Rewrite V,(d) =

Ay (9) Vi (0) =R (7) (Ve =Y, where Vi, (6) = V;,(0)—d(8). As V;,(¥9) is quadratic in 9, supyeg |2V (19) Poi Vi (9) —

n

%d%(ﬁ)Pnidn(ﬁ) - %E[VA(Q)PmVn(G)] - %772 E[EZIR/n(T)PniRn(T)fm + %E[Vé(a)PmRn(T)G:” = 0p(1). Hence,

SuDgee |94(9) — 3 (9)] = 0,(1), where
5u(0) = ~{EIVL(6) P Va(O)] 477 Bles Ry (r) Pas R (1)es] — 2B (VA (6) P Ru(r)es]
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B[V, (0) P, Vi (0)] +0* Bles, B}, (7) Pk, R (7)€n] = 2BV, (0) Pk, R (7)€, 1, (9) QY.

»vp

In the case that @),, contains S_l(/%ln)Xln/S’ln, as explained in Section B.1, %V,;Ansl_nl (/%1n)X1n51n = 0p(1) and
1 ~b, A Sln (mn)Xlnﬁln =1 ~b; AnSm (K1,) X108t + 0p(1) by the mean value theorem, where A,, is an n X n non-
stochastic matrix that is bounded in both row and column sum norms and b,, is an n x 1 vector of uniformly bounded
constants. Then anl (f%ln)XlnBln is asymptotically exogenous. For Q! obtained by replacing anl (Rln)XlnBM with
SRS, X181, in @y, the above argument for supyeg |gn (9) — Gn (9)| = 0,(1) still holds if Q,, in g, () is replaced
by Q7. Since each element of g, () can be expressed as a polynomial of (9 —1), as in Appendix A, the identification
condition in Assumption 14 guarantees that lim, % Jn(9) is uniquely zero at .

Next we can show that Lemmas C.4 and C.10-C.12 hold if g,;(0) and g, () are replaced by, respectively, g,;(¢)
and g, (¢). By these lemmas, the consistency of ¥,, follows as in the proof of Proposition 3.1. For Lemma C.4, note
that V,,(0) — V,u(9) = nRu (7)Y I Yy, = S7.1 (A1) X10B1n, by the mean value theorem, nR, (7)Y, = nR,(1)Y;" +
an(T)Sl_nl(j\ln)Wlnanl(;\M)Xlnﬁln()\ln - A5 + an(T)Sl_n (x\ln)Xln(Bln — B5,), where 01,, lies between 61,
and 03, elementwise. Since elements of R, (7)Y,* are uniformly bounded, and elements of Rn(T)Sl_nl(j\ln)Xln
and Rn(T)anl(j\ln)Xln are uniformly bounded in probability, elements of an(T)Yn are uniformly bounded in
probability. By the original Lemma C.4 for g,;(f), the lemma still holds if g,;(0) is replaced by g;(¢) when
Y, = ST ) X1 Bin. I Yy = MnWinYy 4 X1 B1n, then nRy (7)Y, = nRn (1Y, + nRn(T)Win S X, Bo(Arn —
M) 4 R (T) X1n (Bin — B5,) 4+ R (T)Win ST RV, Ap,. Since elements of Ry, (7)Y, nRy (T)W1n St X, 8 and
R, (7) X1, are uniformly bounded, and nR, (7)W1,S,, 'R, 'V, is linear in V,,, Lemma C.4 still holds for g,;(?).
Then Lemmas C.10-C.12 also hold.

With the consistency that Oy = Yo + 0p(1), similar to the proof of Proposition 3.2, ¥J,, and the estimated A can
be shown to be asymptotically normal. Then the asymptotic distribution of the GEL ratio follows as in the proof

of Proposition 4.1. O

Proof of Proposition B.1. Let Ai,,(61) = argmaxy, ca, o p(N1g1n,i(61)). Under Assumption 13, as in the proof of
Lemma 1 in Hong et al. (2003), supy, co, [ A1n (61)=X5,, (61)]] = 0p(1). Thensupy, co, 2|ED, PN, (01)g1m.i(61))—
EY ", p(N5 (01)g10.(61))] = 0,(1) under Assumption 13(iii). By Assumption 13(ii),

sup *‘Z /\1n (01)g1n.:(61)) — Zp(;\lln(el)gln,i(el))‘ = 0,(1).

6,€0, T i—1

Thus, supy, ce, 7| $im1 PAL (01)91n:(61) B iy (AL (01)g1n,: (01)] = 0p(1). Hence, 61, —07, = 0,(1) (White,
1994, Theorem 3.4 on p. 28). If follows that A1, = A1y (01,) = AL, (01n) +0,(1) = A5, (05,)+0,(1) = AL, +0,(1). O
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Table 1: Biases, standard errors and RMSEs of estimators for the SARAR model (1) in the homoskedastic case
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GMM
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ET
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n = 400
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0.000[0.079]0.079
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-0.005[0.069]0.069
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-0.002[0.031]0.031
-0.001[0.031]0.031
-0.001[0.031]0.031
-0.001[0.031]0.031
-0.001[0.031]0.031
-0.001[0.031]0.031
-0.002[0.030]0.030
-0.002[0.030]0.030
-0.002[0.030]0.030
-0.006[0.077]0.078
-0.004[0.077)0.077
-0.004[0.078]0.078
-0.001[0.079]0.079

0.001[0.079]0.079

0.002[0.079]0.079
-0.005[0.081]0.081
-0.003[0.080]0.080
-0.003[0.080]0.080
-0.005[0.076]0.076
-0.003[0.076]0.076
-0.003[0.076]0.076

-0.000[0.017]0.017
-0.000[0.017]0.017
-0.000[0.017]0.017
-0.001[0.019]0.019
-0.001[0.019]0.019
-0.001[0.019]0.019
-0.000[0.019]0.019
-0.000[0.019]0.019
-0.000[0.019]0.019
-0.000[0.017]0.017
-0.000[0.017]0.017
-0.000[0.017]0.017
-0.002[0.043]0.044
-0.001[0.043]0.043
-0.001[0.043]0.043
-0.002[0.044]0.044
-0.001[0.044]0.044
-0.001[0.044]0.044

0.001[0.045]0.045

0.001[0.045]0.045

0.001[0.045]0.045
-0.002[0.043]0.043
-0.001[0.043]0.043
-0.001[0.043]0.043

-0.001[0.031]0.031
-0.001[0.031]0.031
-0.001[0.031]0.031
-0.002[0.031]0.031
-0.002[0.031]0.031
-0.002[0.031]0.031
-0.000[0.030]0.030
-0.001[0.030]0.030
-0.001[0.030]0.030

0.000[0.032]0.032

0.000[0.032]0.032

0.000[0.032]0.032
-0.004[0.076]0.076
-0.002[0.076]0.076
-0.001[0.076]0.076
-0.005[0.077]0.077
-0.003[0.077]0.077
-0.003[0.077]0.077
-0.003[0.078]0.078
-0.001[0.077]0.077
-0.001[0.077]0.077
-0.007[0.076]0.077
-0.005[0.077]0.077
-0.005[0.076]0.077

-0.001[0.018]0.018
-0.001[0.018]0.018
-0.001[0.018]0.018
-0.001[0.018]0.018
-0.000[0.018]0.018
-0.000[0.018]0.018
-0.001[0.018]0.018
-0.001[0.018]0.018
-0.001[0.018]0.018
-0.001[0.018]0.018
-0.001[0.018]0.018
-0.001[0.018]0.018
-0.002[0.047]0.047
-0.001[0.047]0.047
-0.001[0.046]0.046
-0.002[0.043]0.043
-0.002[0.043]0.043
-0.002[0.043]0.043

0.001[0.045]0.045

0.001[0.045]0.045

0.001[0.045]0.045
-0.003[0.045]0.045
-0.003[0.045]0.045
-0.002[0.045]0.045

-0.011
-0.007
-0.009
-0.012
-0.007
-0.009
-0.012
-0.007
-0.010
-0.011
-0.007
-0.009
-0.081
-0.050
-0.066
-0.081
-0.050
-0.066
-0.079
-0.049
-0.065
-0.082
-0.052
-0.068

0.015]0.019
0.015]0.016
0.015]0.018
0.015]0.019
0.015]0.016
0.015]0.018
0.015]0.019
0.015]0.017
0.015]0.018
0.015]0.019
0.015]0.016
0.015]0.018
0.089]0.120
0.089]0.102
0.088]0.110
0.093]0.123
0.092]0.105
0.092]0.113
0.094]0.123
0.094]0.106
0.093]0.114
0.093]0.124
0.093]0.107
0.092]0.114

-0.004[0.009]0.010
-0.002[0.009]0.009
-0.003[0.009]0.010
-0.004[0.009]0.010
-0.002[0.009]0.009
-0.003[0.009]0.010
-0.004[0.009]0.010
-0.002[0.009]0.009
-0.003[0.009]0.009
-0.004[0.009]0.010
-0.002[0.009]0.009
-0.003[0.009]0.009
-0.031[0.054]0.063
-0.017[0.054]0.057
-0.024[0.054]0.059
-0.032[0.055]0.064
-0.017[0.055]0.058
-0.024[0.055]0.060
-0.029[0.054]0.062
-0.015[0.054]0.056
-0.022[0.054]0.058
-0.033[0.055]0.064
-0.019[0.055]0.058
-0.026[0.054]0.060

Bo = [0.5,0.5,0.5)".
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Table 2: Biases, standard errors and RMSEs of estimators for the SARAR model (1) in the heteroskedastic case

2
R*, ko, 10

B

B2

B3

n = 144

0.8,0.2,0.2 GMM
EL
ET
GMM
EL
ET
GMM
EL
ET
GMM
EL
ET
GMM
EL
ET
GMM
EL
ET
GMM
EL
ET
GMM
EL
ET

0.8,0.2,0.4

0.8,0.4, 0.2

0.8,0.4, 0.4

0.4, 0.2,0.2

0.4,0.2,04

0.4,04, 0.2

04,04, 04

n = 400

0.8,0.2,0.2 GMM
EL
ET
GMM
EL
ET
GMM
EL
ET
GMM
EL
ET
GMM
EL
ET
GMM
EL
ET
GMM
EL
ET
GMM
EL
ET

0.8,0.2,0.4

0.8, 0.4, 0.2

0.8,0.4, 0.4

0.4,0.2,0.2

0.4,0.2,04

0.4, 0.4, 0.2

0.4,0.4, 0.4

-0.001[0.048]0.048
-0.001[0.048]0.048
-0.001[0.046]0.046
-0.001[0.051]0.051

0.001[0.051]0.051

0.000[0.050]0.050
-0.001[0.047]0.047
-0.001[0.041]0.041
-0.001[0.041]0.041
-0.003[0.050]0.050
-0.003[0.049]0.049
-0.003[0.047]0.047
-0.001[0.121]0.121

0.001[0.114]0.114

0.001[0.109]0.109
-0.005[0.134]0.134

0.000[0.124]0.124

0.001[0.121]0.121
-0.011[0.122]0.122
-0.011[0.111]0.112
-0.010[0.106]0.106
-0.009[0.132]0.133
-0.003[0.119]0.119
-0.003[0.116]0.116

-0.000[0.025]0.025
-0.000[0.025]0.025
-0.000[0.025]0.025

0.002[0.029]0.029

0.002[0.029]0.029

0.002[0.029]0.029
-0.001[0.024]0.024
-0.001[0.024]0.024
-0.001[0.024]0.024
-0.001[0.027]0.027
-0.001[0.027]0.027
-0.001[0.026]0.026

0.002[0.062]0.062

0.002[0.063]0.063

0.003[0.062]0.062
-0.002[0.069]0.069
-0.001[0.069]0.069
-0.001[0.068]0.068
-0.005[0.060]0.060
-0.005[0.059]0.059
-0.005[0.058]0.058
-0.000[0.067]0.067
-0.001[0.068]0.068
-0.001[0.067]0.067

0.001[0.229]0.229
-0.025[0.235]0.237
-0.022[0.229]0.230

0.013[0.232]0.232
-0.021[0.258]0.259
-0.018[0.245]0.246

0.000[0.240]0.240
-0.032(0.234]0.236
-0.029[0.229]0.230
-0.004[0.230]0.230
-0.043[0.238]0.242
-0.036[0.224]0.227
-0.002[0.277]0.277
-0.035[0.261]0.263
-0.030[0.255]0.256

0.003[0.269]0.269
-0.041[0.248]0.251
-0.033[0.258]0.260

0.017[0.279]0.279
-0.012[0.263]0.263
-0.009[0.254]0.254
-0.001[0.255]0.255
-0.040[0.244]0.247
-0.035[0.238]0.240

0.002[0.127]0.127
-0.012[0.127]0.128
-0.011[0.125]0.126
-0.004[0.114]0.114
-0.018[0.115]0.116
-0.017[0.113]0.114

0.004[0.120]0.120
-0.009[0.119]0.119
-0.008[0.117]0.118
-0.001[0.115]0.115
-0.015[0.116]0.116
-0.014[0.113]0.114
-0.002[0.140]0.140
-0.015[0.141]0.142
-0.014[0.139]0.139

0.001[0.129]0.129
-0.015[0.123]0.124
-0.014[0.121]0.122

0.014[0.138]0.139

0.001[0.136]0.136

0.002[0.134]0.134
-0.003[0.129]0.129
-0.017[0.129]0.130
-0.016[0.127]0.128

0.005[0.108]0.108
0.006[0.110]0.110
0.005[0.106]0.106
0.004[0.131]0.131
0.001[0.127]0.127
0.001[0.123]0.123
0.005[0.130]0.130
0.005[0.116]0.116
0.004[0.114]0.114
-0.001[0.270]0.270
0.008[0.146]0.146
0.010[0.178]0.179
0.009[0.370]0.370
0.010[0.263]0.263
0.010[0.253]0.253
0.031[0.702]0.703
0.006[0.297]0.297
0.005[0.288]0.288
0.034[0.357]0.358
0.035[0.333]0.335
0.031[0.310]0.312
0.028[0.460]0.461
0.012[0.351]0.351
0.011[0.344]0.345

0.001[0.060]0.060
0.002[0.060]0.060
0.001[0.059]0.059
-0.004[0.071]0.072
-0.005[0.072]0.072
-0.005[0.071)0.071
0.005[0.066]0.066
0.005[0.067]0.067
0.005[0.065]0.065
0.003[0.082]0.082
0.004[0.080]0.080
0.004[0.078]0.078
-0.003[0.145]0.145
-0.003[0.147]0.147
-0.003[0.144]0.144
0.007[0.174]0.174
0.004[0.175]0.175
0.004[0.172]0.172
0.015[0.1750.176
0.016[0.166]0.167
0.015[0.162]0.163
0.006[0.200]0.200
0.007[0.202]0.202
0.006[0.197]0.197

-0.001[0.022]0.022
-0.002[0.023]0.023
-0.001[0.022]0.022
-0.000[0.023]0.023
-0.000[0.023]0.023
-0.000[0.022]0.022
-0.001[0.022]0.022
-0.001[0.021]0.021
-0.001[0.020]0.020
-0.001[0.021]0.021
-0.001[0.021]0.021
-0.001[0.020]0.020
-0.005[0.054]0.054
-0.004[0.053]0.053
-0.004[0.051]0.051
-0.005[0.059]0.059
-0.003[0.057]0.057
-0.003[0.056]0.056
-0.004[0.055]0.055
-0.002[0.054]0.054
-0.002[0.051]0.051
-0.006[0.056]0.056
-0.004[0.054]0.054
-0.004[0.053]0.053

-0.000[0.012]0.012
-0.000[0.012]0.012
-0.000[0.012]0.012

0.001[0.013]0.013

0.001[0.013]0.013

0.001[0.013]0.013
-0.001[0.012]0.012
-0.001[0.012]0.012
-0.001[0.012]0.012

0.000[0.012]0.012
-0.000[0.012]0.012
-0.000[0.012]0.012
-0.001[0.029]0.029
-0.001[0.029]0.029
-0.001[0.029]0.029
-0.001[0.031]0.031
-0.000[0.031]0.031
-0.000[0.031]0.031
-0.001[0.028]0.029
-0.001[0.028]0.028
-0.001[0.028]0.028
-0.000[0.030]0.030
-0.000[0.030]0.030
-0.000[0.029]0.029

-0.001[0.022
-0.001[0.022
-0.001[0.021
-0.001[0.022
-0.000[0.023
-0.000[0.022
-0.001[0.021
-0.000[0.021
-0.000[0.020
-0.001[0.021
-0.001[0.021
-0.001[0.020
-0.005[0.055
-0.004[0.053
-0.004[0.051
-0.005[0.058
-0.003[0.057
-0.003[0.055
-0.003[0.056
-0.002[0.055
-0.001[0.053
-0.004[0.054
-0.002[0.052
-0.002[0.051

-0.000[0.012
-0.000[0.012
-0.000[0.012

0.000[0.013

0.000[0.013

0.000[0.013
-0.001[0.011
-0.001[0.011
-0.001[0.011
-0.000[0.012
-0.000[0.012
-0.000[0.012
-0.002[0.029
-0.002[0.029
-0.001[0.029
-0.002[0.030
-0.001[0.031
-0.001[0.030
-0.002[0.029
-0.002[0.029
-0.002[0.028
-0.001[0.029
-0.001[0.030
-0.001[0.029

0.022
0.022
0.021
0.022
0.023
0.022
0.021
0.021
0.020
0.021
0.021
0.020
0.055
0.053
0.051
0.059
0.057
0.055
0.056
0.055
0.053
0.054
0.052
0.051

0.012
0.012
0.012
0.013
0.013
0.013
0.011
0.011
0.011
0.012
0.012
0.012
0.029
0.029
0.029
0.030
0.031
0.030
0.029
0.029
0.028
0.029
0.030
0.029

Bo = [0.5,0.5,0.5]".
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Table 3: Coverage probabilities of 95% confidence intervals for the SARAR model (1)

Homoskedastic case

Heteroskedastic case

R?, ko, To K T 51 B2 B3 o? K T 51 B2 B3
n = 144
0.8,0.2,0.2 GMM 0.893 0.893 0.902 0.910 0.926 0.769 0.921 0.880 0.921 0.906 0.924
EL 0.912 0.917 0915 0.926 0.935 0.873 0.929 0.922 0.929 0.923 0.940
ET 0.923 0.925 0.927 0.935 0.947 0.828 0.933 0.931 0.935 0.939 0.949
0.8,0.2,04 GMM 0.920 0.917 0.925 0.917 0.920 0.787 0.933 0.856 0.932 0.926 0.920
EL 0.932 0.941 0.928 0.921 0.932 0.886 0.938 0.907 0.930 0.937 0.932
ET 0.938 0.952 0.939 0.936 0.938 0.848 0.947 0.919 0.940 0.949 0.938
0.8,0.4,0.2 GMM 0.908 0.907 0.899 0.926 0.923 0.781 0.925 0.873 0.927 0.932 0.937
EL 0.922 0.920 0.922 0.938 0.935 0.882 0.941 0.904 0.946 0.946 0.957
ET 0.932 0.930 0.926 0.946 0.945 0.838 0.947 0.921 0.947 0.954 0.963
0.8,0.4,04 GMM 0.916 0.893 0.923 0.919 0.914 0.793 0.934 0.848 0.934 0.951 0.931
EL 0.930 0.920 0.934 0.932 0.930 0.885 0.935 0.911 0.935 0.958 0.938
ET 0.937 0.929 0.941 0.946 0.936 0.847 0.949 0.924 0.945 0.964 0.949
0.4,0.2,0.2 GMM 0.848 0.833 0.861 0.917 0.923 0.750 0.919 0.872 0.902 0.925 0.927
EL 0.878 0.880 0.896 0.928 0.939 0.866 0.934 0.907 0.920 0.945 0.940
ET 0.885 0.889 0.907 0.935 0.944 0.817 0.948 0.919 0.929 0.950 0.949
0.4,0.2,04 GMM 0.841 0.840 0.856 0.896 0.919 0.751 0.911 0.841 0.929 0.916 0.927
EL 0.875 0.878 0.893 0.915 0.934 0.854 0.928 0.897 0.931 0.935 0.943
ET 0.880 0.892 0.902 0.929 0.939 0.825 0.936 0.905 0.944 0.947 0.953
0.4,0.4,02 GMM 0.864 0.850 0.870 0.912 0.912 0.776 0.909 0.851 0914 0.913 0.913
EL 0.897 0.867 0.891 0.932 0.925 0.890 0.928 0.901 0.920 0.946 0.941
ET 0.911 0.887 0.910 0.940 0.930 0.849 0.936 0.912 0.929 0.952 0.950
0.4,0.4,04 GMM 0.836 0.838 0.851 0.916 0.918 0.765 0.912 0.869 0.922 0.902 0.913
EL 0.872 0.866 0.874 0.929 0.928 0.856 0.925 0.906 0.924 0.922 0.927
ET 0.881 0.880 0.887 0.937 0.937 0.821 0.937 0.923 0.938 0.935 0.938
n = 400
0.8,0.2,0.2 GMM 0.945 0.932 0.941 0.920 0.951 0.886 0.942 0916 0.924 0.937 0.948
EL 0.943 0.934 0.944 0.921 0.955 0.932 0.937 0.922 0.929 0.934 0.946
ET 0.948 0.942 0.948 0.927 0.958 0.917 0.941 0.929 0.934 0.940 0.950
0.8,0.2,04 GMM 0.928 0.945 0.934 0.958 0.936 0.887 0.943 0.929 0.940 0.950 0.942
EL 0.933 0.947 0.936 0.957 0.941 0.938 0.931 0.938 0.941 0.949 0.938
ET 0.934 0.949 0941 0.964 0.944 0.911 0.939 0.946 0.944 0.954 0.942
0.8,0.4,0.2 GMM 0.948 0.942 0.950 0.940 0.947 0.868 0.942 0914 0.957 0.949 0.951
EL 0.953 0.955 0.946 0.940 0.950 0.921 0.942 0.933 0.954 0.949 0.952
ET 0.955 0.956 0.949 0.946 0.956 0.893 0.943 0.936 0.957 0.951 0.958
0.8,0.4,04 GMM 0.937 0.920 0.940 0.934 0.950 0.888 0.946 0.931 0.939 0.955 0.956
EL 0.943 0.929 0.939 0.938 0.951 0.937 0.939 0.942 0.928 0.952 0.950
ET 0.943 0.933 0.943 0.941 0.953 0.916 0.945 0.945 0.935 0.958 0.957
0.4,0.2,0.2 GMM 0.922 0.928 0.922 0.932 0.937 0.880 0.951 0.923 0.943 0.937 0.952
EL 0.931 0.934 0.929 0.934 0.942 0.924 0.945 0.932 0.937 0.940 0.950
ET 0.933 0.936 0.934 0.939 0.941 0.909 0.951 0.940 0.944 0.942 0.956
0.4,0.2,04 GMM 0.911 0.908 0.904 0.937 0.941 0.886 0.948 0.929 0.946 0.935 0.947
EL 0.922 0.920 0.923 0.938 0.944 0.923 0.947 0.941 0945 0.933 0.944
ET 0.925 0.922 0.927 0.944 0.948 0.904 0.952 0.945 0.948 0.935 0.947
0.4,0.4,0.2 GMM 0.917 0.909 0.934 0.933 0.939 0.876 0.950 0.934 0.958 0.940 0.961
EL 0.926 0.917 0.942 0.936 0.942 0.927 0.942 0.944 0.950 0.939 0.966
ET 0.930 0.920 0.945 0.937 0.945 0.902 0.944 0.949 0.960 0.940 0.967
0.4,0.4,04 GMM 0.906 0.898 0.907 0.932 0.944 0.868 0.940 0.938 0.943 0.944 0.951
EL 0.910 0.917 0915 0.936 0.947 0.917 0.934 0.943 0.935 0.946 0.945
ET 0.914 0.922 0.920 0.940 0.950 0.897 0.946 0.948 0.941 0.952 0.949

The variance matrix of a GMM estimator 6, is computed as La, (0:2)9251(0,)Gn(0,)] 7, and that of a GEL

n

estimator , = (9;1,)\;)/ is computed as TAZ'(4y) <

0 0

0 Q.(6n)

> A (4n), where A, (y) is the second order

derivative matrix of the GEL objective function given in the proof of Proposition 3.2.
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Table 4: Empirical sizes of tests for 7p = 0 in an SE model

Homoskedastic case

Heteroskedastic case

n=144 n = 400 n =144 n = 400
R?>=0.8 R%2=0.4 R?2=08 RZ=04 R?2=08 R%?2=04 R?=08 R%2=04
PTeun 0.034 0.061 0.051 0.050 0.057 0.068 0.053 0.058
PTy, 0.072 0.107 0.061 0.061 0.113 0.144 0.082 0.078
PTer 0.065 0.092 0.063 0.060 0.094 0.122 0.080 0.074
OTenu 0.043 0.050 0.053 0.042 0.040 0.050 0.052 0.050
OTyy 0.049 0.063 0.054 0.044 0.058 0.073 0.057 0.059
OTyr 0.050 0.059 0.054 0.044 0.050 0.067 0.058 0.057
Moran 0.043 0.050 0.054 0.043 0.041 0.052 0.055 0.050
Morang, 0.049 0.066 0.054 0.044 0.055 0.063 0.058 0.055
Morang; 0.052 0.060 0.054 0.044 0.047 0.064 0.058 0.058
PTY,. 0.105 0.107 0.156 0.175
Moran* 0.011 0.013 0.020 0.018

“PToun”, “PTg” and “PTgy” denote, respectively, the GMM, EL and ET parameter restriction tests; “OTcu”,
“OTg.” and “OTgy” denote, respectively, the GMM, EL and ET overidentification tests; “Moran”, “Morang, ” and

“Morang, ” denote, respectively, the robust, EL and ET Moran’s I tests;

«pT*

GMM

” denotes the GMM overidentification

test without taking into account unknown heteroskedasticity; and “Moran™” denotes the conventional Moran’s I test
that does not take into account unknown heteroskedasticity. The nominal size is 5%.

Table 5: Powers of tests for 7o = 0 in an SE model

n = 144 n = 400
70:0.2 T():O.4 7'0:0.6 T0:0.2 T0:0‘4 7'0:0.6

Homoskedastic case

R?=0.8 PTeu 0.441 0.952 1.000 0.901 1.000 1.000
PTy 0.551 0.982 1.000 0.915 1.000 1.000
PTer 0.537 0.980 1.000 0.910 1.000 1.000
OTemu 0.474 0.977 1.000 0.913 1.000 1.000
OTyg, 0.500 0.984 1.000 0.913 1.000 1.000
OTgr 0.503 0.985 1.000 0.915 1.000 1.000
Moran 0.471 0.978 1.000 0.912 1.000 1.000
Morang,, 0.497 0.982 1.000 0.914 1.000 1.000
Morangr 0.505 0.983 1.000 0.915 1.000 1.000

R?2=04 PTem 0.429 0.959 0.999 0.911 1.000 1.000
PTg, 0.546 0.985 1.000 0.921 1.000 1.000
PTgr 0.517 0.982 1.000 0.926 1.000 1.000
OTenu 0.461 0.973 1.000 0.918 1.000 1.000
OTy, 0.493 0.977 1.000 0.922 1.000 1.000
OTgr 0.488 0.975 1.000 0.922 1.000 1.000
Moran 0.461 0.970 1.000 0.918 1.000 1.000
Morang;, 0.492 0.977 1.000 0.922 1.000 1.000
Morangy 0.488 0.976 1.000 0.923 1.000 1.000

Heteroskedastic case

R?>=0.8 PTeu 0.196 0.550 0.915 0.348 0.932 1.000
PTg, 0.270 0.631 0.927 0.384 0.932 1.000
PTer 0.245 0.625 0.933 0.385 0.939 1.000
OTemu 0.127 0.480 0.881 0.296 0.904 1.000
OTy, 0.133 0.477 0.874 0.294 0.887 1.000
OTgr 0.133 0.498 0.886 0.304 0.904 1.000
Moran 0.122 0.457 0.873 0.285 0.898 1.000
Morang;, 0.131 0.469 0.872 0.287 0.887 1.000
Morangy 0.136 0.489 0.885 0.302 0.901 1.000

R?2=04 PTem 0.186 0.586 0.930 0.371 0.916 1.000
PTy, 0.267 0.654 0.944 0.394 0.926 1.000
PTgr 0.249 0.651 0.952 0.399 0.927 1.000
OT ey 0.119 0.496 0.903 0.294 0.869 0.999
OTy, 0.134 0.489 0.887 0.297 0.864 0.999
OTgr 0.134 0.512 0.901 0.300 0.873 0.999
Moran 0.114 0.476 0.900 0.289 0.865 0.999
Morang;, 0.131 0.479 0.885 0.295 0.861 0.999
Morang; 0.131 0.502 0.902 0.299 0.871 0.999

“PToun”, “PTg.” and “PTg” denote, respectively, the GMM, EL and ET parameter restriction
tests; “OTaoun”, “OTg” and “OTy” denote, respectively, the GMM, EL and ET overidenti-

fication tests; and “Moran”, “Morang, ” and “Morang, ” denote, respectively, the robust, EL

and ET Moran’s I tests.

»
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Table 6: Empirical sizes of tests for 75 = 0 in the SARAR model (1)

n = 144

n = 400

R?>=0.8

R?>=04

R?=0.8

R?>=0.4

Ko = 0.2 Ko = 0.4

Ko = 0.2 Ko = 0.4

Ko = 0.2 Ko = 0.4

Ko = 0.2 Ko = 0.4

Homoskedastic case

PTemu 0.049 0.049
PTg, 0.083 0.089
PTer 0.072 0.079
OT e 0.047 0.048
OTyg, 0.071 0.070
OTer 0.068 0.070

Moran 0.054 0.047
Morang,, 0.060 0.059
Morangy 0.059 0.059

Heteroskedastic case

PTemu 0.054 0.069
PTg, 0.105 0.123
PTyr 0.093 0.103
OTeun 0.032 0.049
OTy 0.075 0.093
OTer 0.064 0.081

Moran 0.043 0.058
Morany,, 0.061 0.079
Morang 0.056 0.071

0.043
0.067
0.057
0.048
0.066
0.063
0.041
0.054
0.053

0.092
0.127
0.117
0.040
0.073
0.070
0.040
0.063
0.056

0.048
0.066
0.064
0.052
0.075
0.066
0.052
0.060
0.060

0.067
0.125
0.104
0.035
0.086
0.075
0.048
0.060
0.058

0.055
0.065
0.068
0.052
0.065
0.061
0.051
0.056
0.056

0.052
0.068
0.062
0.056
0.065
0.064
0.047
0.056
0.055

0.047
0.050
0.054
0.050
0.055
0.055
0.048
0.052
0.053

0.042
0.060
0.056
0.045
0.055
0.056
0.037
0.044
0.041

0.048
0.058
0.057
0.050
0.056
0.057
0.059
0.061
0.062

0.063
0.076
0.071
0.055
0.078
0.072
0.048
0.061
0.059

0.045
0.053
0.056
0.053
0.061
0.061
0.043
0.046
0.046

0.051
0.073
0.069
0.049
0.064
0.066
0.053
0.061
0.062

“PTeoun”, “PTg” and “PTy” denote, respectively, the GMM, EL and ET parameter restriction
tests; “OTeun”, “OTg” and “OTg” denote, respectively, the GMM, EL and ET overidenti-

fication tests; and “Moran”, “Morang, ”
and ET Moran’s I tests. The nominal size is 5%.

Table 7: Powers of tests for 79 = 0 in the SARAR model (1)

and “Morang, ” denote, respectively, the robust, EL

n =144, ko = 0.2

n =144, ko = 0.4

n =400, ko = 0.2

n = 400, ko = 0.4

T0 = 0.2 TO0 = 0.4 T0 = 0.6

T0:0.2 7'0:0.4 T():O.G

T0 = 0.2 T0 = 0.4 T0 = 0.6

T0:0.2 7'0:0.4 70:0.6

Homoskedastic case

R? = 0.8 PTeu 0.301 0.825 0.986
PTg, 0.399 0.895 0.997
PTer 0.392 0.883 0.996
OT ey 0.207 0.762 0.979
OTy, 0.276 0.811 0.986
OTgr 0.272 0.807 0.986
Moran 0.282 0.828 0.988
Morang,, 0.308 0.841 0.991
Morang, 0.315 0.846 0.993
R%2 =0.4 PTeuu 0.147 0.488 0.833
PTy, 0.207 0.572 0.868
PTyr 0.188 0.552 0.861
OTemu 0.105 0.350 0.679
OTyg, 0.137 0.412 0.728
OTygy 0.132 0.404 0.718
Moran 0.048 0.125 0.097

Morang,, 0.060 0.159 0.138
Morangy 0.061 0.154 0.137

Heteroskedastic case

R? = 0.8 PTeu 0.202 0.545 0.919
PTg, 0.278 0.590 0.921
PTur 0.255 0.595 0.926
OT ey 0.136 0.439 0.862
OTy, 0.174 0.478 0.856
OTgr 0.171 0.490 0.872
Moran 0.116 0.382 0.842
Morang,, 0.129 0.400 0.822
Morang, 0.133 0.414 0.849
R%2 =0.4 PTeuu 0.202 0.516 0.871
PTy, 0.242 0.515 0.868
PTyr 0.224 0.509 0.878
OTemu 0.116 0.341 0.695
OTyg, 0.145 0.362 0.709
OTygr 0.142 0.377 0.723
Moran 0.052 0.232 0.589

Morang;, 0.073 0.276 0.604
Morangr 0.070 0.276 0.621

“PTeun”, “PTr” and “PTy” denote, respectively, the GMM, EL and ET parameter restriction tests;
respectively, the GMM, EL and ET overidentification tests; and “Moran”, “Morang, ” and “Morang,

and ET Moran’s I tests.
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Table 8: Empirical sizes of spatial J tests for the SARAR model (1)

n = 144 n = 400

GMM; ELy ET, GMM2 EL> ET, GMM; EL, ET, GMMs EL> ET,
Circular vs Queen: Homoskedastic case
R?=0.8, ko = 0.2, 70 = 0.2 0.048 0.068 0.064 0.055 0.063  0.062 0.049 0.059 0.058 0.054  0.060  0.060
R? = 0.8, ko = 0.2, 7o = 0.4 0.054 0.076 0.075 0.057 0.068 0.062 0.044 0.055 0.055 0.044 0.051 0.050
R%2=0.8, ko =0.4, 70 = 0.2 0.054 0.081 0.081 0.058 0.076  0.064 0.057 0.065 0.067 0.056  0.063  0.062
R?=0.8, k0 =04, 70 =04 0.060 0.094 0.084 0.059 0.076  0.071 0.049 0.056  0.057 0.045 0.054 0.053
R%2 =04, kg =0.2, 70 = 0.2 0.063 0.114  0.105 0.060 0.074 0.071 0.051  0.065 0.064 0.056  0.060  0.060
R%2 =0.4, kg =0.2, 70 = 0.4 0.080 0.111  0.109 0.062 0.072 0.072 0.065 0.072  0.077 0.049 0.058 0.056
R? =0.4, ko = 0.4, 70 = 0.2 0.070  0.103  0.093 0.055 0.081 0.074 0.052  0.063  0.060 0.038  0.047 0.044
R%? =04, ko =0.4, 70 = 0.4 0.070  0.122  0.113 0.056  0.067  0.063 0.056  0.064 0.064 0.057  0.061  0.057
Circular vs Queen: Heteroskedastic case
R%2=0.8, kg =0.2, 70 = 0.2 0.052 0.129 0.104 0.051 0.106  0.084 0.057 0.086 0.077 0.053  0.079 0.073
R%2 =0.8, kg =0.2, 70 = 0.4 0.046  0.108 0.085 0.047 0.089 0.076 0.060 0.084 0.080 0.053 0.074  0.065
R? =0.8, ko = 0.4, 7o = 0.2 0.052  0.147  0.117 0.063 0.122  0.100 0.056  0.087  0.082 0.056  0.082  0.079
R?=0.8, k0 =0.4, 70 =0.4 0.056  0.117  0.098 0.063  0.095 0.084 0.050 0.078  0.066 0.056  0.074 0.071
R%2 =04, kg =0.2, 70 = 0.2 0.069 0.140 0.115 0.066 0.101  0.089 0.054 0.078 0.076 0.058 0.075 0.077
R%2 =04, kg =0.2, 7 =0.4 0.060 0.142 0.121 0.068 0.113  0.096 0.051  0.081  0.069 0.052  0.071  0.068
R?=0.4, kg =0.4, 70 = 0.2 0.064 0.151 0.123 0.061 0.110  0.100 0.053 0.079 0.071 0.061 0.076  0.069
R%2 =04, kg =0.4, 70 = 0.4 0.076  0.155  0.120 0.066 0.115  0.092 0.067  0.102  0.092 0.061  0.069 0.066
Queen vs Circular: Homoskedastic case
R%2=0.8, ko =0.2, 70 = 0.2 0.048 0.087 0.074 0.049 0.073  0.068 0.055 0.068 0.065 0.059  0.067 0.069
R2 =08, k0 =0.2,7=04 0.055 0.085  0.082 0.054 0.089 0.081 0.049 0.060 0.057 0.051 0.062 0.064
R?=0.8, kg = 0.4, 7o = 0.2 0.047  0.077  0.075 0.045 0.059  0.059 0.049 0.054 0.059 0.043 0.051 0.051
R%2=0.8, kg =0.4, 79 = 0.4 0.046 0.078 0.070 0.043 0.069 0.058 0.036 0.044 0.044 0.034 0.040 0.041
R%? =0.4, ko =0.2, 70 = 0.2 0.059 0.089 0.079 0.044 0.071  0.064 0.048 0.052  0.055 0.043  0.050 0.053
R%? =04, kg =0.2, 70 =0.4 0.066  0.097  0.090 0.060 0.073  0.068 0.047  0.058  0.055 0.050 0.056  0.056
R? =0.4, ko = 0.4, 70 = 0.2 0.072  0.112  0.093 0.068 0.093  0.080 0.055 0.062  0.056 0.060  0.060  0.060
R%2 =04, kg =04, 70 =0.4 0.076  0.117  0.104 0.069 0.080 0.075 0.058 0.068 0.069 0.057  0.057  0.059
Queen vs Circular: Heteroskedastic case
R%2 =0.8, ko =0.2, 79 = 0.2 0.050 0.081 0.075 0.054 0.082 0.074 0.045 0.050 0.051 0.043  0.047 0.048
R%2=0.8, k0 =0.2, 70 =0.4 0.063 0.094 0.087 0.064 0.090 0.090 0.050 0.062 0.063 0.054 0.062  0.060
R? =0.8, ko = 0.4, 70 = 0.2 0.047 0.082 0.073 0.041  0.067  0.062 0.046 0.054 0.055 0.049 0.056  0.056
R%2 =08, kg =04, 70 =04 0.046  0.076  0.069 0.044 0.072 0.067 0.042 0.055 0.051 0.053  0.061  0.060
R%2 =04, kg =0.2, 70 = 0.2 0.059  0.092 0.082 0.043 0.069 0.064 0.059  0.075 0.072 0.062  0.068 0.068
R?=0.4, k0 =0.2, 70 =04 0.052  0.081 0.076 0.056  0.059  0.056 0.049 0.055 0.054 0.055 0.058  0.060
R%2 =04, ko =0.4, 70 = 0.2 0.063  0.103  0.090 0.061  0.091 0.082 0.054 0.060 0.061 0.049 0.064 0.063
R%2 =04, ko =0.4, 70 = 0.4 0.066  0.101  0.096 0.062 0.073 0.071 0.062 0.064 0.067 0.066  0.070  0.071

?”GMM;” denotes the spatial J test implemented with the GMM distance difference test using the predictor Yn = R1nWinYn + Xlnﬁln, and
?»GMMz2” uses Y,, = (I, — %ln)71X1n61n' Correspondingly, we have EL and ET ratio tests “EL1”, “EL2”, “ET;” and “ETy”. “Circular vs
Queen” means that an SARAR model with the circular world matrix is tested against one with the queen matrix. “Queen vs Circular” has a
similar meaning. The nominal size is 5%.
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Table 9: Powers of spatial J tests for the SARAR model (1)

n = 144 n = 400

GMM; ELy ET, GMM2 EL> ET, GMM; EL, ET, GMMs EL> ET,
Circular vs Queen: Homoskedastic case
R?=0.8, ko = 0.2, 70 = 0.2 0.361 0.449 0.431 0.367 0.426  0.413 0.731  0.760  0.755 0.732  0.745  0.747
R? = 0.8, ko = 0.2, 7o = 0.4 0.334 0.426 0.403 0.330 0.391 0.370 0.680 0.710 0.713 0.669 0.693 0.696
R%2=0.8, ko =0.4, 70 = 0.2 0.840 0.898  0.890 0.853 0.893  0.882 1.000 1.000 1.000 0.998 0.999 0.999
R?=0.8, k0 =04, 70 =04 0.758 0.823 0.812 0.728 0.786  0.771 0.990 0.993 0.992 0.987 0.989  0.990
R? = 0.4, ko = 0.2, 7o = 0.2 0.127 0.188 0.176 0.126 0.146 0.135 0.210 0.223 0.224 0.200 0.216 0.214
R%2 =0.4, kg =0.2, 70 = 0.4 0.173  0.237  0.225 0.168 0.191 0.180 0.244  0.265 0.261 0.230 0.232 0.235
R? =0.4, ko = 0.4, 70 = 0.2 0.363 0.421 0.411 0.325 0.382  0.369 0.586  0.608  0.608 0.570  0.572  0.573
R%? =04, ko =0.4, 70 = 0.4 0.331 0.418 0.398 0.286 0.325 0.314 0.555  0.591  0.589 0.520 0.526  0.528
Circular vs Queen: Heteroskedastic case
R%2=0.8, kg =0.2, 70 = 0.2 0.414  0.508 0.493 0.414 0477  0.468 0.747  0.753  0.766 0.742  0.745  0.757
R%2 =0.8, kg =0.2, 70 = 0.4 0.404 0.492 0.480 0.405 0.445 0.443 0.699 0.710 0.726 0.683 0.695 0.706
R? =0.8, ko = 0.4, 7o = 0.2 0.886  0.917 0.918 0.888 0.901  0.905 0.998 0.997 0.998 0.998 0.996  0.997
R?=0.8, k0 =0.4, 70 =0.4 0.774 0.832 0.831 0.765 0.807  0.806 0.991  0.992 0.993 0.989  0.991 0.991
R%2 =04, kg =0.2, 70 = 0.2 0.162  0.248 0.220 0.167 0.200 0.184 0.237 0.266  0.268 0.231 0.248 0.253
R%2 =04, kg =0.2, 7 =0.4 0.188 0.289 0.251 0.176  0.237  0.218 0.255  0.283  0.292 0.225 0.252  0.252
R?=0.4, kg =0.4, 70 = 0.2 0.365 0.471 0.458 0.339 0.411 0.397 0.636  0.651  0.665 0.617 0.633  0.642
R%2 =04, kg =0.4, 70 = 0.4 0.364 0.444  0.440 0.337 0.408 0.393 0.576  0.581  0.598 0.540  0.547  0.558
Queen vs Circular: Homoskedastic case
R%2=0.8, ko =0.2, 70 = 0.2 0.634 0.736  0.712 0.632 0.711  0.694 0.981 0.984 0.984 0.969 0976 0.976
R2 =08, k0 =0.2,7=04 0.579  0.670  0.654 0.538 0.614  0.599 0.955 0.964 0.966 0.930 0.936  0.940
R?=0.8, kg = 0.4, 7o = 0.2 0.975 0.986  0.987 0.965 0.979 0.978 1.000 1.000 1.000 1.000 1.000 1.000
R%2=0.8, kg =0.4, 79 = 0.4 0.945 0974 0.963 0.903 0.944  0.940 1.000 1.000 1.000 0.997  1.000 1.000
R%? =0.4, ko =0.2, 70 = 0.2 0.243 0.290 0.276 0.219 0.270  0.261 0.498 0.520 0.518 0.410 0.441  0.444
R%? =04, kg =0.2, 70 =0.4 0.251  0.293  0.278 0.211  0.237 0.231 0.539  0.565 0.571 0.376  0.412  0.403
R? =0.4, ko = 0.4, 70 = 0.2 0.539  0.605 0.591 0.461  0.528  0.521 0.932 0934 0.936 0.806  0.829  0.831
R%2 =04, kg =04, 70 =0.4 0.536  0.578 0.554 0.385  0.448 0.435 0.882 0.878 0.877 0.636  0.689  0.683
Queen vs Circular: Heteroskedastic case
R%2 =0.8, ko =0.2, 79 = 0.2 0.696  0.757  0.757 0.675 0.711  0.717 0.977 0.978 0.979 0.964 0.968 0.972
R%2=0.8, k0 =0.2, 70 =0.4 0.618 0.689  0.682 0.558 0.633  0.620 0.959 0.953  0.959 0.896 0.894 0.906
R? =0.8, ko = 0.4, 70 = 0.2 0.983  0.987  0.990 0.972  0.980  0.982 1.000 1.000 1.000 1.000 1.000 1.000
R%2 =08, kg =04, 70 =04 0.953 0977 0.976 0.914 0.942 0.946 1.000 1.000 1.000 0.998 0.996  0.997
R%2 =04, kg =0.2, 70 = 0.2 0.297 0.348 0.341 0.252  0.322  0.300 0.540  0.555  0.560 0.456  0.476  0.484
R?=0.4, k0 =0.2, 70 =04 0.283 0.343 0.316 0.199 0.265 0.242 0.541 0.557  0.560 0.389 0.422 0.417
R%2 =04, ko =0.4, 70 = 0.2 0.600 0.634 0.627 0.507 0.576  0.573 0.909 0.901 0.911 0.779  0.796  0.811
R%2 =04, ko =0.4, 70 = 0.4 0.563  0.600 0.591 0.412  0.499 0.481 0.885 0.873  0.882 0.646  0.682  0.705

?”GMM;” denotes the spatial J test implemented with the GMM distance difference test using the predictor Yn = R1nWinYn + Xlnﬁln, and
?»GMMz2” uses Y,, = (I, — %ln)71X1n61n' Correspondingly, we have EL and ET ratio tests “EL1”, “EL2”, “ET;” and “ETy”. “Circular vs
Queen” means that an SARAR model with the circular world matrix is tested against one with the queen matrix. “Queen vs Circular” has a
similar meaning.
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