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Abstract

This paper considers the generalized empirical likelihood (GEL) estimation and tests of spatial autoregressive

(SAR) models by exploring an inherent martingale structure. The GEL estimator has the same asymptotic dis-

tribution as the generalized method of moments estimator explored with same moment conditions for estimation,

but circumvents a first step estimation of the optimal weighting matrix with a preliminary estimator, and thus

can be robust to unknown heteroskedasticity and non-normality. While a general GEL removes the asymptotic

bias from the preliminary estimator and partially removes the bias due to the correlation between the moment

conditions and their Jacobian, the empirical likelihood as a special member of GELs further partially removes the

bias from estimating the second moment matrix. We also formulate the GEL overidentification test, Moran’s I

test, and GEL ratio tests for parameter restrictions and non-nested hypotheses. While some of the conventional

tests might not be robust to non-normality and/or unknown heteroskedasticity, the corresponding GEL tests

can.

Keywords: Spatial autoregressive, martingale, empirical likelihood, higher order asymptotic bias, unknown het-

eroskedasticity, non-normality, robustness, over-identification test, Moran’s I test for spatial dependence, J test
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1 Introduction

In this paper, we consider empirical likelihood (EL) and generalized EL (GEL) estimation and tests of the pop-

ular spatial autoregressive (SAR) model with spatially dependent data. The EL approach is introduced in Owen

(1991) for independent sample observations. It can be interpreted as a nonparametric maximum likelihood and a

generalized minimum contrast estimation method (Kitamura, 2007).1 The class of GEL estimators includes the

∗Corresponding author. Tel.: +1 614 292 5508; fax: +1 614 292 4192. E-mail addresses: jin.fei@sufe.edu.cn (F. Jin), lee.1777@osu.edu

(L.-F. Lee).
1Helpful reviews include, among others, Hall and La Scala (1990), Owen (2001), Kitamura (2007) and Chen and Keilegom (2009).
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EL, the exponential tilting (ET) of Kitamura and Stutzer (1997) and Imbens et al. (1998), and the continuous

updating generalized method of moments (GMM) of Hansen et al. (1996). With independent sample observations,

the EL and GEL can have various advantages over other methods as shown in the literature. They can be robust

against distributional assumptions but may still have good properties analogous to the parametric likelihood pro-

cedure in estimation and testing. As alternatives to the two-step optimal GMM estimator which usually requires

a first step estimation of an optimal weighting matrix with a preliminary estimator, the EL and GEL estimators

are one-step estimators. They are consistent and have the same asymptotic distribution as the two-step optimal

GMM estimator by using same moment conditions, but invariant to parameter-dependent linear transformations of

moment conditions, and have improved high order properties (Imbens et al., 1998; Owen, 2001; Newey and Smith,

2004). In particular, Newey and Smith (2004) show that, for i.i.d. data, the GEL estimator has no asymptotic bias

from estimation of the Jacobian or the preliminary estimator, and the EL further removes a bias component from

estimation of the second moment matrix. In finite samples, while the two-step optimal GMM can have large bias

(e.g., Altonji and Segal, 1996), the GEL estimators are observed to perform better than the GMM estimator (e.g.,

Hansen et al., 1996; Imbens, 1997; Ramalho, 2002; Mittelhammer et al., 2005; Newey et al., 2005). The EL and

GEL can also be applied to testing problems. A nonparametric analog of the parametric likelihood ratio statistic

follows an asymptotic chi-squared distribution under the null. An EL ratio test and confidence region are often

Bartlett correctable (Corcoran, 1998; DiCiccio et al., 1991; Lazar and Mykland, 1999), and EL tests are Bahadur

efficient (Otsu, 2010) and have optimality properties in terms of large deviations (Kitamura, 2001).

The EL and GEL have originally been considered for independent data. Later on, there are attempts to

generalize them for time series data (e.g., Kitamura, 1997). For time series, some authors have studied the EL

for models with martingale structures. Mykland (1995) generalizes the EL definition for i.i.d. data to models

with martingale structures and introduces the concept of dual likelihood, and Chuang and Chan (2002) develop

the EL for autoregressive models with innovations that form a martingale difference sequence. But the EL and

GEL approaches have not be considered for estimation and testing with spatially dependent data. These motivate

our investigation of the use of EL and GEL for estimation and hypothesis testing with spatial data. We realize

that many popular spatial econometric models and hence spatially correlated variables can be characterized by

martingale processes under proper filtrations. The importance of martingale processes for spatial random variables

has been recognized by Kelejian and Prucha (2001). They develop a central limit theorem (CLT) for linear-quadratic

forms of independent disturbances by exploring the martingale structure of a linear-quadratic form.2 This CLT can

be applied to a large class of spatial econometric models such as the SAR model, the spatial error (SE) model, the

spatial moving average model, the spatial Durbin model, the spatial error components model, and the SAR model

with SAR disturbances (SARAR model).

Various estimation methods for the SARAR model, which includes the SAR and SE models as special cases, have

been proposed in the literature, e.g., the generalized spatial two-stage least squares (GS2SLS) estimation (Kelejian

and Prucha, 1998), the quasi maximum likelihood (QML) estimation (Lee, 2004), and the GMM estimation (Lee,

2In the time series literature, quadratic statistics have long been written as martingales. See, e.g., Hall and Heyde (1980).
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2007).3 The GS2SLS estimates the equation by the two stage least squares (2SLS), thus it is computationally

simple, but can be asymptotically inefficient compared to the QML. Although being relatively efficient, the QML

may be computationally intensive for large sample sizes, especially for SAR models with high order spatial lags.

The GMM can be computationally simpler than the QML and can be as efficient as the QML.4 The GMM may

employ not only linear moments in disturbances but also quadratic ones. Quadratic moments can be motivated

from the QML and Moran’s I test (Moran, 1950), which capture spatial dependence. In the presence of unknown

heteroskedasticity, by selecting quadratic matrices with zero diagonals, the quadratic moments can obtain robust

estimates (Kelejian and Prucha, 2010; Lin and Lee, 2010). Liu and Yang (2015) propose to modify the QML

scores to obtain estimators robust to unknown heteroskedasticity. We consider the GEL estimation of the SARAR

model under both homoskedasticity and unknown heteroskedasticity in this paper. For spatial data, original sample

observations are not martingale differences, so the EL and GEL cannot be applied directly to them. However, as

noted in Kelejian and Prucha (2001), linear-quadratic forms of independent disturbances can be written as a sum

of martingale differences. For linear and quadratic moments, treating each martingale difference as if it was a data

observation, we can set up EL and GEL objective functions to derive corresponding estimates and relevant test

statistics.

We show that, for spatial data, the GEL estimation with moment conditions can remove the asymptotic bias

from the preliminary estimator and partially remove the asymptotic bias due to the correlation between moment

conditions and their Jacobian. The EL further partially removes the bias from estimation of the second moment

matrix. This conclusion is consistent with that in Anatolyev (2005) for stationary time series models under mixing

conditions. In the event that only linear moments are used, the EL has the ability to completely remove the

asymptotic bias from estimation of the second moment matrix.

We also consider test statistics in the GEL framework. The GEL objective function (with proper normalization)

evaluated at the GEL estimator is an overidentification test statistic that can be used to test for validity of moment

conditions. Tests of parameter restrictions can be conveniently implemented with GEL ratio statistics. The popular

Moran’s I test for spatial dependence formulated with a GEL ratio is robust to unknown heteroskedasticity. In

addition, we employ the GEL ratio statistic to construct a spatial J test for competing SARAR models (Kelejian,

2008; Kelejian and Piras, 2011). Unlike original spatial J tests based on the 2SLS or GS2LS estimation, the

spatial J test with a GEL ratio conveniently employs quadratic moments in addition to linear ones to obtain more

efficient estimators for testing. These tests do not involve estimation of variances and are robust to unknown

heteroskedasticity. For testing with quadratic moments, GEL tests are also robust to non-normality in the sense

that (higher order) moment parameters do not need to be evaluated. As far as we know, this may be the first paper

that explores the GEL estimation and tests of models with spatial data.5

3Due to endogeneity of the spatial lag in an SAR model, the least squares estimator is only consistent in certain cases (Lee, 2002).
4The GMM estimator with properly chosen moments can be as efficient as the QML estimator for the SARAR model with normal

disturbances, but it can be more efficient than the QML estimator for the SARAR model with non-normal disturbances (Liu et al.,

2010; Lee and Liu, 2010).
5Although we only focus on the SARAR model, by exploring martingale structures, other spatial econometric models may be possibly
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This paper is organized as follows. Section 2 introduces the SARAR model, and the GEL and GMM estimation

based on its martingale structure. Section 3 shows the consistency and asymptotic normality of the GEL estimator

and compare its asymptotic bias with that of the GMM estimator. Section 4 investigates test statistics in the GEL

framework. Section 5 reports some Monte Carlo results, which demonstrate desirable finite sample performance of

GEL estimators and test statistics. Section 6 concludes. All lemmas and proofs are collected in appendices.

2 The SARAR model and GEL estimation

Consider the SARAR model:

Yn = κWnYn +Xnβ + Un, Un = τMnUn + Vn, (1)

where n is the sample size, Yn is an n × 1 vector of observations on the dependent variable, Xn is an n × kx

matrix of exogenous variables with parameter vector β, Wn = (wn,ij) and Mn = (mn,ij) are n × n nonstochastic

spatial weights matrices with zero diagonals, κ and τ are scalar spatial dependence parameters, and Vn = (vni)

is an n × 1 vector of independent disturbances with mean zero and finite variances. In this paper, we consider

two cases on the variance of vni. In the first case vni’s are homoskedastic, and in the second case vni’s have

heteroskedastic variances with unknown form. Let Sn(κ) = In − κWn, and Rn(τ) = In − τMn, with In being the

n× n identity matrix, and (κ0, τ0, β
′
0)′ be the true value of (κ, τ, β′)′. As an equilibrium model, Yn has the reduced

form Yn = S−1
n (Xnβ0 + R−1

n Vn), where Sn = Sn(κ0) and Rn = Rn(τ0) are assumed to be invertible. The Xn is

assumed to be nonstochastic for convenience, as in Kelejian and Prucha (1998) and Lee (2004).6

If the disturbances vni’s in model (1) are i.i.d. with mean 0 and variance σ2
0 , the moment vector for a GMM

estimation can be

gn(θ) =
1

n
[V ′n(θ)Pn1Vn(θ)− σ2 tr(Pn1), . . . , V ′n(θ)Pn,kpVn(θ)− σ2 tr(Pn,kp), V ′n(θ)Qn]′, (2)

where Vn(θ) = Rn(τ)[Sn(κ)Yn − Xnβ], with θ = (κ, τ, β′, σ2)′ being a kθ-dimensional vector for kθ = kx + 3, Pnl

for l = 1, . . . , kp are n× n nonstochastic matrices, and Qn is an n× kq matrix of instrumental variables (IV) with

full column rank kq. Without loss of generality, assume that Pnl, for l = 1, . . . , kp, are symmetric and linearly

independent.7 The quadratic moments are valid since E(V ′nPnlVn) = σ2
0 tr(Pnl). The IV matrix Qn may consist of

independent columns of Xn,WnXn and so on, and Pni’s can be functions of Wn and Mn such as Wn, Mn, W 2
n and

M2
n. The total number of elements in gn(θ) is kg = kp + kq, which is greater than or equal to kθ.

As each moment condition of gn(θ) at the true parameter vector θ0 is either linear or quadratic in Vn, we may

also consider a more general vector moment conditions of linear-quadratic forms, which are linearly independent,

such as

Ξn =
1

n
[V ′nAn1Vn − σ2

0 tr(An1) + b′n1Vn, . . . , V
′
nAnpVn − σ2

0 tr(Anp) + b′npVn]′

studied.
6Alternatively, Xn can be stochastic with finite moments of certain order.
7If Pnl is not symmetric, replacing it with (Pnl + P ′nl)/2 does not change the value of the moment vector.
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for some finite p, where Anr = (anr,ij) for r = 1, . . . , p are n×n symmetric matrices and bnr = (bnr,i) for r = 1, . . . , p

are n× 1 vectors. We can rewrite Ξn as a sum of martingale differences. Specifically Ξn = 1
n

∑n
i=1 ξni, where

ξni = [an1,ii(v
2
ni − σ2

0) + 2vni

i−1∑
j=1

an1,ijvnj + bn1,ivni, . . . , anp,ii(v
2
ni − σ2

0) + 2vni

i−1∑
j=1

anp,ijvnj + bnp,ivni]
′

is a p-dimensional column vector. Consider the σ-fields Fn0 = {∅,Ω}, Fni = σ(vn1, . . . , vni), 1 ≤ i ≤ n. As

Fn,i−1 ⊂ Fni and E(ξni|Fn,i−1) = 0, {ξni,Fni, 1 ≤ i ≤ n, n ≥ 1} forms a martingale difference array. Thus

ξni’s are uncorrelated and the variance of Ξn is 1
n2

∑n
i=1 E(ξniξ

′
ni). Let ϕn = (ξn1, . . . , ξnn)′ be an n × p matrix

of martingale differences. Then, the variance of Ξn is 1
n2 E(ϕ′nϕn). The moment vector gn(θ) in (2) can be

equivalent to Ξn above when relevant quadratic matrices and linear functions including zeros are properly chosen.

Let Qn = [Qn1, . . . , Qnn]′, V ′n(θ)PnlVn(θ)− σ2 tr(Pnl) =
∑n
i=1 ωnl,i(θ) for l = 1, . . . , kp, where

ωnl,i(θ) = pnl,ii[v
2
ni(θ)− σ2] + 2vni(θ)

i−1∑
j=1

pnl,ijvnj(θ) (3)

with vnj(θ) being the jth element of Vn(θ), and

gni(θ) = [ωn1,i(θ), . . . , ωn,kp,i(θ), Q
′
nivni(θ)]

′. (4)

Then gn(θ) = 1
n

∑n
i=1 gni(θ). The quadratic moments involve the variance parameter σ2 due to (3) in order that

gn(θ) can be decomposed into a sum of gni(θ)’s in (4), where gni(θ0) for i = 1, . . . , n, are martingale differences.

Thus the variance of gn(θ0) is 1
n2

∑n
i=1 E[gni(θ0)g′ni(θ0)]. Our quadratic moments involving the estimation of σ2

are in line with those in Kelejian and Prucha (1998, 1999).8

In the case that there is unknown heteroskedasticity, we may select all Pnl’s to have zero diagonals in order to

derive valid moment conditions, as in Kelejian and Prucha (2010) and Lin and Lee (2010). Such Pni’s can be Wn,

Mn, W 2
n − diag(W 2

n), M2
n − diag(M2

n) and so on, where diag(A) for a square matrix A denotes a diagonal matrix

formed by the diagonal elements of A. Let the moment vector be

gn(θ) =
1

n
[V ′n(θ)Pn1Vn(θ), . . . , V ′n(θ)Pn,kpVn(θ), V ′n(θ)Qn]′, (5)

where Pnl’s have zero diagonals, and Vn(θ) is the same as above, but θ = (κ, τ, β′)′ would not contain σ2 so that

θ is kθ-dimensional for kθ = kx + 2.9 Then ωnl,i(θ) and gni(θ) can still have the forms in (3) and (4), as the first

term on the r.h.s. of (3) is zero.

8Note that E(V ′nPnlVn) − σ2
0 tr(Pnl) = E{V ′n[Pnl − tr(Pnl)In/n]Vn} + [E(V ′nVn) tr(Pnl)/n − σ2

0 tr(Pnl)] = 0, where E{V ′n[Pnl −

tr(Pnl)In/n]Vn} = 0 as Pnl − tr(Pnl)In/n is a matrix with a zero trace. Lee (2001) and Lee (2007) use quadratic moments of the form

E{V ′n[Pnl − tr(Pnl)In/n]Vn} = 0 to formulate the GMM estimation, which do not involve σ2. The zero trace quadratic matrices would

not be appropriate to be used here due to the required martingale difference property. However the two sets of quadratic moments can

be asymptotically equivalent as shown in Liu et al. (2010) for GMM estimation. As we show in Appendix A, in the case that vni’s are

normal, for the GMM in Lee (2001, 2007) and that considered here, there are moment vectors with which the resulting GMM estimators

are as efficient as the ML estimator.
9This is proper because a single σ2 would not be meaningful with heteroskedastic errors.
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We consider the GEL estimator:

θ̂n,GEL = arg minθ∈Θsupλ∈Λn(θ)

n∑
i=1

ρ(λ′gni(θ)), (6)

where Λn(θ) = {λ : λ′gni(θ) ∈ V, i = 1, . . . , n} for an open interval V containing 0, and ρ(v) is a twice continuously

differentiable concave function of a scalar v on V.10 Denote ρk(v) = dkρ(v)
dvk

and ρk = ρk(0) for k = 1 and 2. As long

as ρ1 6= 0 and ρ2 < 0, without loss of generality, we may let ρ1 = ρ2 = −1 (Newey and Smith, 2004). The EL is a

special case of the GEL with ρ(v) = ln(1− v) for v < 1 (Qin and Lawless, 1994; Smith, 1997); the ET is a special

case with ρ(v) = −ev (Kitamura and Stutzer, 1997; Smith, 1997); and the continuous updating GMM is a special

case with a quadratic ρ(v) = − 1
2 (v + 1)2 (Newey and Smith, 2004).

To study large sample properties of the GEL estimator, we assume formally the following regularity conditions.

Assumption 1. Either (i) vni’s are i.i.d. with mean zero, variance σ2
0 and E(|vni|4+ι) <∞ for some ι > 0; or (ii)

vni’s are independent with mean zero and variances σ2
ni’s, and supn sup1≤i≤n E(|vni|4+ι) <∞.

Assumption 2. The elements of Xn are uniformly bounded constants, Xn has full column rank, and limn→∞
1
nX
′
nXn

exists and is nonsingular.

Assumption 3. (i) Wn and Mn have zero diagonals; (ii) Sn and Rn are nonsingular; and (iii) the sequences of

matrices {Wn}, {Mn}, {S−1
n } and {R−1

n } are bounded in both row and column sum norms.

Assumption 4. θ0 is in the interior of a compact parameter space Θ in the kθ-dimensional Euclidean space.

Assumption 5. ρ(v) is concave on V, twice continuously differentiable in a neighborhood of zero, and ρ1 = ρ2 = −1.

We shall consider both homoskedastic and heteroskedastic cases, so Assumption 1 gives general conditions to

allow both cases. Assumptions 1(i) and 2–4 are the same as those in Lee (2007); and the additional conditions on Mn

are similar to those on Wn. Assumption 1(ii) for the heteroskedastic case is the same as that in Lin and Lee (2010).

The existence of moments higher than the fourth order in Assumption 1 is needed for the application of the CLT

on linear-quadratic forms as in Kelejian and Prucha (2001). In Assumption 2, explanatory variables are assumed

to be constants for convenience and multicollinearity is ruled out. Assumption 3 restricts the degree of spatial

dependence to be manageable. Assumption 4 is a standard assumption on extremum estimation. Assumption 5 is

a smoothness condition on ρ(·) as in Newey and Smith (2004).

We have the interest to compare asymptotic properties of GEL estimation with GMM estimation. Let Ωn(θ) =

1
n

∑n
i=1 gni(θ)g

′
ni(θ), then var[

√
ngn(θ0)] = E[Ωn(θ0)]. Denote Ω̄n = E[Ωn(θ0)], which can be estimated by Ωn(θ̃n)

with some initial consistent estimator θ̃n. With Ωn(θ̃n), we consider the following feasible optimal GMM (FOGMM)

estimator:

θ̂n,GMM = arg minθ∈Θg
′
n(θ)Ω−1

n (θ̃n)gn(θ), (7)

10In practice, λ can be chosen from Rkg . If for some θ, for any λ, there exists some i such that λ′gni(θ) falls out of the domain of ρ(·),

it is theoretically appropriate to set the GEL objective function at θ to infinity. If not, but λ′gni(θ) falls out of the domain of ρ(·) for

some i and λ, then the λ is not the solution of the problem. This is because λ̂n = Op(n−1/2) by Proposition 3.1, and with probability

approaching one, λ′gni(θ) ∈ V for all 1 ≤ i ≤ n, θ ∈ Θ and ‖λ‖ ≤ n−ζ , where ζ is a positive number, by Lemma C.10.
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We shall compare this FOGMM estimator with the GEL estimator. For these estimators, Ω̄n is required to be

nonsingular in the limit. The nonsingularity of Ω̄n will be guaranteed by the linear independence of the linear-

quadratic moment conditions. In the limit, we just require such linear independence properties not to vanish.

Assumption 6. limn→∞ Ω̄n exists and is nonsingular.

For the initial estimator θ̃n for the FOGMM, one may suppose that it is derived from minθ∈Θ g
′
n(θ)Ĵ−1

n gn(θ),

where Ĵn is a kg×kg weighting matrix. Following Newey and Smith (2004), we assume that Ĵn satisfies the following

assumption.

Assumption 7. Ĵn = J̄n +n−1/2ξJn +Op(n
−1), where J̄n is a nonstochastic positive definite matrix, limn→∞ J̄n is

nonsingular, ξJn = Op(1) and E(ξJn) = 0.

3 Large sample properties of estimators

In this section, we investigate the consistency and asymptotic normality of the GEL estimator, and compare its

asymptotic bias of some higher orders with that of the FOGMM estimator.

3.1 Consistency and asymptotic distribution

For the GEL estimation, it is convenient to present results on asymptotic properties in both the homoskedastic and

heteroskedastic cases together, though θ and other terms below may have different expressions in the two cases.

Under the identification assumptions 11 and 12 in Appendix A, the following proposition establishes the consistency

of θ̂n,GEL and related probability orders of the moment vector and the corresponding GEL estimate λ̂n,GEL of λ.

Proposition 3.1. Under Assumptions 1(i), 2, 3, 5, 6 and 11 in the homoskedastic case, or under Assump-

tions 1(ii), 2, 3, 5, 6 and 12 in the heteroskedastic case, θ̂n,GEL
p−→ θ0, and gn(θ̂n,GEL) = Op(n

−1/2); further-

more, λ̂n,GEL = arg maxλ∈Λn(θ̂n,GEL)
1
n

∑n
i=1 ρ(λ′gni(θ̂n,GEL)) exists with probability approaching one (w.p.a.1.), and

λ̂n,GEL = Op(n
−1/2).

With the consistency of the GEL estimator, its asymptotic distribution can be derived as usual. Let Ḡn =

E(∂gn(θ0)
∂θ′ ), γ = (θ′, λ′)′, and γ0 = (θ′0, 01×kg )′. Furthermore, denote Σ̄n = (Ḡ′nΩ̄−1

n Ḡn)−1, H̄n = (Ḡ′nΩ̄−1
n Ḡn)−1Ḡ′nΩ̄−1

n ,

and D̄n = Ω̄−1
n − Ω̄−1

n Ḡn(Ḡ′nΩ̄−1
n Ḡn)−1Ḡ′nΩ̄−1

n .

Assumption 8. limn→∞ Ḡn has full rank.

As usual, Assumption 8 rules out functionally dependent moments. The next proposition shows that γ̂n,GEL =

(θ̂′n,GEL, λ̂
′
n,GEL)′ is asymptotically normal.

Proposition 3.2. Under Assumptions 1(i), 2–6, 8 and 11 in the homoskedastic case, or under Assumptions 1(ii),

2–6, 8 and 12 in the heteroskedastic case,
√
n(γ̂n,GEL − γ0)

d−→ N
(
0, limn→∞ diag(Σ̄n, D̄n)), where diag(Σ̄n, D̄n) is

the block diagonal matrix formed by Σ̄n and D̄n.
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We see that the GEL estimator θ̂n,GEL of θ0 has the same asymptotic distribution as the GMM estimator θ̂n,GMM

in (7) (see Propositions A.1 and A.2 in Appendix A).11

3.2 Stochastic expansion and high order asymptotic bias

To study high order asymptotic biases of the GMM and GEL estimators, we shall first derive Nagar-type expansions

(Nagar, 1959) of a
√
n-consistent estimator γ̂n of γ0 with the form

√
n(γ̂n − γ0) = ξn + n−1/2ψn +Op(n

−1), (8)

where ξn = Op(1), E(ξn) = 0 and ψn = Op(1). High order bias of the estimator γ̂n can be computed as 1
n E(ψn).

For the FOGMM estimator θ̂n,GMM, following Newey and Smith (2004), an auxiliary parameter vector

λ̂n,GMM = −Ω−1
n (θ̃n)gn(θ̂n,GMM)

can be defined to make the derivation of its corresponding Nagar-type expansion easier. With λ̂n,GMM, the first

order condition for the FOGMM estimator θ̂n,GMM can be written as

0 = −
(

G′n(θ̂n,GMM)λ̂n,GMM

gn(θ̂n,GMM) + Ωn(θ̃n)λ̂n,GMM

)
. (9)

The stochastic expansion requires the existence of higher order moments of disturbances.

Assumption 9. supn sup1≤i≤n E |vni|8 <∞.

Proposition 3.3. For the FOGMM estimator γ̂n,GMM = (θ̂′n,GMM, λ̂
′
n,GMM)′, under Assumptions 1(i), 2–4, 6–9

and 11 in the homoskedastic case, or under Assumptions 1(ii), 2–4, 6–9 and 12 in the heteroskedastic case, the

expansion (8) holds.

The explicit forms of ξn and ψn for the asymptotic expansion of γ̂n,GMM are rather complex, but can be found

in Appendix D in the proof of that proposition. A similar expansion for the GEL estimator θ̂n,GEL can also be

derived as in Appendix D. The expansion requires further smoothness condition on ρ(v).

Assumption 10. ρ(v) is four times continuously differentiable with Lipschitz fourth derivative in a neighborhood

of zero.

Proposition 3.4. For the GEL estimator γ̂n,GEL, under Assumptions 1(i), 2–6, 8–10 and 11 in the homoskedastic

case, or under Assumptions 1(ii), 2–6, 8–10 and 12 in the heteroskedastic case, the expansion (8) holds.

With the above two propositions, we can compute the asymptotic biases of the FOGMM and GEL estimators

with the form 1
n E(ψn). Let Ωn = Ωn(θ0), Gn = Gn(θ0), Ḡ

(l)
n = E(∂Gn(θ0)

∂θl
), gn = gn(θ0), gni = gni(θ0), g

(l)
ni =

∂gni(θ0)
∂θl

, and ekθ,l be the lth column of the kθ × kθ identity matrix, where θl denotes the lth element of θ.

11Since the GMM estimators in both homoskedastic and heteroskedastic cases have been studied in the literature, we relegate their

consistency and asymptotic distribution results to Appendix A and omit their proofs.
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Proposition 3.5. Under Assumptions 1(i), 2–4, 6–9 and 11 in the homoskedastic case, or under Assumptions 1(ii),

2–4, 6–9 and 12 in the heteroskedastic case, the bias of the FOGMM estimator θ̂n,GMM is BIn + BGn + BΩ
n + BJn ,

where BIn = H̄n E(GnH̄ngn) − 1
2n

∑kθ
l=1 H̄nḠ

(l)
n Σ̄nekθ,l, B

G
n = −Σ̄n E(G′nD̄ngn), BΩ

n = H̄n E(ΩnD̄ngn) and BJn =

−
∑kθ
l=1

1
n2

∑n
i=1 H̄n[E(gnig

(l)′

ni + g
(l)
ni g
′
ni)]D̄nΩ̄n(H̄J

n − H̄n)′ekθ,l with H̄J
n = (Ḡ′nJ̄

−1
n Ḡn)−1Ḡ′nJ̄

−1
n .

In Proposition 3.5, BIn is the asymptotic bias for a GMM estimator with the optimal linear combination

Ḡ′nΩ̄−1
n gn(θ0) of empirical moments gn(θ0); BGn arises from estimating Ḡn; BΩ

n arises from estimating the second

moment matrix Ω̄n with the empirical variance Ωn; and BJn arises from the choice of the initial GMM estimator.

For the latter, if J̄n is a scalar multiple of Ω̄n, then BJn = 0 as H̄n = H̄J
n . With exact identification, D̄n = 0; thus,

BGn = BΩ
n = BJn = 0. Let Gni = ∂gni(θ0)

∂θ′ = [g
(1)
ni , . . . , g

(kθ)
ni ].

Proposition 3.6. Under Assumptions 1(i), 2–6, 8–10 and 11 in the homoskedastic case, or under Assumptions

1(ii), 2–6, 8–10 and 12 in the heteroskedastic case, the bias of the GEL estimator θ̂n,GEL is BIn +BGn − B̃Gn +BΩ
n +

ρ3
2 B̃

Ω
n , where B̃Gn = − 1

n2 Σ̄n
∑n
i=1 E(G′niD̄ngni), ρ3 = d3ρ(0)

dv3 is the third order derivative of ρ(v) evaluated at v = 0,

and B̃Ω
n = 1

n2

∑n
i=1 H̄n E(gnig

′
niD̄ngni).

Since gni(θ0)’s are not independent across i, BGn 6= B̃Gn and BΩ
n 6= B̃Ω

n in general. Thus, unlike the case with

i.i.d. data, the bias of the GEL estimator does not reduce to BIn+BΩ
n + ρ3

2 B̃
Ω
n and does not reduce further to BIn for

the EL with ρ3 = −2. The GEL only partially removes the asymptotic bias from the correlation between Gn(θ0)

and gn(θ0). This conclusion is similar to that in Anatolyev (2005) for stationary time series models with mixing

conditions.

When gn(θ) only contains linear moments, gni becomes Qnivni. Then, with only IV estimation, BΩ
n = B̃Ω

n and

the bias of the EL estimator reduces to BIn + BGn − B̃Gn , i.e., the EL does not have a bias from estimation of the

second moment matrix Ω̄n. If further E(v3
ni) = 0 for i = 1, . . . , n, because BΩ

n = B̃Ω
n = 0, BΩ

n is removed from the

bias of the FOGMM estimator and BΩ
n + ρ3

2 B̃
Ω
n is removed from the bias of any GEL estimator, not just the EL

estimator.

Corollary 3.1. When gn(θ) = 1
nQ
′
nVn(θ), the bias of the EL estimator reduces to BIn +BGn − B̃Gn , and the bias of

the FOGMM estimator is BIn +BGn +BΩ
n +BJn , where BΩ

n = 1
n2 H̄n

∑n
i=1QniQ

′
niD̄nQni E(v3

ni).

4 Test statistics

In this section, we investigate several popular test statistics for SAR models in the GEL framework, including the

parameter restriction test, overidentification test, Moran’s I test and spatial J test. As shown below, an interesting

aspect of those test statistics is their robustness to unknown heteroskedasticity as long as their moment conditions

are valid, while conventional test statistics without taking into account carefully their heteroskedastic variances for

relevant evaluation might not be robust. Furthermore, GEL test statistics based on quadratic moments with zero

diagonal quadratic matrices can be robust to non-normal distributions, while conventional test statistics might not

be so if higher order moments are not properly taken into account.
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4.1 Test for parameter restrictions

We may test for parameter restrictions in the GEL framework. Let θ = (α′, φ′)′, where α is a kα × 1 sub-

vector of θ, e.g., α might be a vector of spatial dependence parameters κ and/or τ in (1). Suppose that we

are interested in testing whether the true value of α is equal to zero or more generally a known constant vec-

tor cα. Let θ̇n = (c′α, φ̇
′
n)′ be the restricted GEL estimator with the restriction α = cα imposed, and λ̇n =

arg maxλ∈Λn(θ̇n)

∑n
i=1 ρ(λ′gni(θ̇n)). By the max-min characterization of the saddle point of the GEL objective

function,
∑n
i=1 ρ(λ̇′ngni(θ̇n)) ≥

∑n
i=1 ρ(λ̂′ngni(θ̇n)) ≥

∑n
i=1 ρ(λ̂′ngni(θ̂n)). Then we have the following GEL ratio

test.

Proposition 4.1. Suppose that Assumptions 2–6 and 8 are satisfied. Then, given Assumptions 1(i) and 11 for the

homoskedastic case, or Assumptions 1(ii) and 12 for the heteroskedastic case, under the null hypothesis H0 : α0 = cα,

2
[ n∑
i=1

ρ(λ̇′ngni(θ̇n))−
n∑
i=1

ρ(λ̂′ngni(θ̂n))
]
d−→ χ2(kα).

The GEL ratio test is asymptotically equivalent to the distance difference test in the GMM framework (Donald

et al., 2003). But it does not involve estimation of an optimal weighting of moments as in the GMM distance

difference test. The GEL ratio has a similarity to a classical likelihood ratio statistic. As long as the moment vector

gn(θ) is valid, this test statistic can be formulated and is robust to unknown heteroskedasticity. These latter and

distribution-free features are more attractive than those of a likelihood ratio test statistic. In a likelihood ratio test,

the likelihood function needs to be properly specified to take into account heteroskedasticity and distributions of

sample observations. For this GEL, one relies only on moments and does not need to have the proper formulation

of heteroskedastic variances and distributions of disturbances. In the regard of unknown heteroskedasticity, it has

a computational advantage over a Wald test as the latter would require the use of a robust variance estimate as in

White (1980).

To understand power properties of this test statistic, we investigate its power under a local alternative sequence.

Suppose that the true value of α is subject to a Pitman drift αn = cα + n−1/2dα, where dα is a kα × 1 vector of

constants, then the GEL ratio statistic can be shown to be asymptotically distributed with a noncentral chi-squared

distribution, which is the same as that for a distance difference test in the GMM framework (Newey and West,

1987). Let Ḡnα = E(∂gn(θ0)
∂α′ ), Ḡnφ = E(∂gn(θ0)

∂φ′ ), D̄nφ = Ω̄−1
n − Ω̄−1

n Ḡnφ(Ḡ′nφΩ̄−1
n Ḡnφ)−1Ḡ′nφΩ̄−1

n , and χ2(a, b) be

a noncentral chi-squared distribution with a degrees of freedom and a noncentrality parameter b.

Proposition 4.2. Suppose that Assumptions 2–6 and 8 are satisfied. Then, given Assumptions 1(i) and 11 for

the homoskedastic case, or Assumptions 1(ii) and 12 for the heteroskedastic case, under the Pitman drift αn =

cα + n−1/2dα,

2
[ n∑
i=1

ρ(λ̇′ngni(θ̇n))−
n∑
i=1

ρ(λ̂′ngni(θ̂n))
]
d−→ χ2(kα, lim

n→∞
d′αḠ

′
nαD̄nφḠnαdα).
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4.2 Overidentification test

Like the GMM, a properly normalized GEL objective function at the GEL estimator (θ̂′n, λ̂
′
n)′ can provide an

overidentification test of moment conditions. The test statistic 2[
∑n
i=1 ρ(λ̂′ngni(θ̂n))−nρ(0)] is non-negative as ρ(0)

is the restricted value of 1
n

∑n
i=1 ρ(λ′gni(θ̂n)) with the restriction λ = 0 while 1

n

∑n
i=1 ρ(λ̂′ngni(θ̂n)) is an unrestricted

maximum for λ.

Proposition 4.3. Suppose that Assumptions 2–6 and 8 are satisfied. Then under Assumptions 1(i) and 11 in

the homoskedastic case, or Assumptions 1(ii) and 12 in the heteroskedastic case, 2[
∑n
i=1 ρ(λ̂′ngni(θ̂n)) − nρ(0)]

d−→

χ2(kg − kθ), where the number of moments kg is not less than the number of parameters kθ.

This GEL overidentification test is asymptotically equivalent to the GMM overidentification test. In general,

misspecification of a SAR model may come from different sources which give misspecified moment conditions. The

overidentification test will be able to detect those misspecifications. If one believes that misspecification might come

only from a particular source, then the overidentifcation test might detect it. However, for a specific direction of

departure, it is desirable to design more power test statistics. In a subsequent section, we consider a non-nested

test, namely, a J-test, for SAR models with different specified spatial weights matrices. Before that, we consider a

test of spatial dependence, the well-known Moran’s I statistic.

4.3 Moran’s I test

Moran’s I test is a popular test for spatial dependence. In practice, the least squares (LS) residual vector V̂n =

[In−Xn(X ′nXn)−1X ′n]Yn from the regression of Yn on Xn in the regression model Yn = Xnβ+Vn is often used and

the test is based on the asymptotic distribution of 1√
n
V̂ ′nWnV̂n. After normalization with a proper standard error, an

asymptotically normal distribution of the normalized statistic is used for testing. Such a test has a null hypothesis

that vni’ in Vn are independent but not spatially correlated.12 Here we show that such a test of spatial dependence

can be conveniently implemented in the GEL framework. Such a GEL test can be robust against disturbances

with unknown heteroskedasticity, while there is no need to estimate the asymptotic variance of 1√
n
V̂ ′WnV̂n. Let

gni = vni
∑i−1
j=1(wn,ij + wn,ji)vnj and ĝni = v̂ni

∑i−1
j=1(wn,ij + wn,ji)v̂nj , where v̂ni is the ith element of V̂n, for

i = 1, . . . , n, and Λ̂n = {λ : λĝni ∈ V, i = 1, . . . , n}.13

Proposition 4.4. Suppose that in the regression model Yn = Xnβ0 + Vn with zero mean independent disturbances

vni’s, Wn is an n × n nonstochastic matrix with a zero diagonal and bounded row and column sum norms, and

limn→∞
1
n

∑n
i=1 E(g2

ni) 6= 0. Under Assumptions 1, 2 and 5,

2
[

max
λ∈Λ̂n

n∑
i=1

ρ(λĝni)− nρ(0)
]

=
( n∑
i=1

ĝ2
ni

)−1( n∑
i=1

ĝni

)2

+ op(1)
d−→ χ2(1).

12Kelejian and Prucha (2001) propose a generalized Moran’s I test that cover the SARAR models and limited dependent variable

models. Qu and Lee (2012, 2013) have considered the use of generalized residuals for the construction of locally most powerful LM tests

for the spatial Tobit model.
13Note that ĝn1 = gn1 = 0 by the convention of the summation notation. We define ĝn1 and gn1 for convenience.
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The GEL test statistic can use the estimated ĝni instead of the true gni, because 1√
n
V̂ ′nWnV̂n with the OLS

estimated V̂n has the same asymptotic distribution as 1√
n
V ′nWnVn due to an orthogonality property. Note that the

GEL Moran’s I test statistic is robust to unknown heteroskedasticity. A conventional Moran’s I test would need

to evaluate the asymptotic variance of the statistic 1√
n
V ′nWnVn under the null. A robust Moran’s I test can be

computed as (
∑n
i=1 ĝ

2
ni)
−1(
∑n
i=1 ĝni)

2, given in the above proposition, if we use
∑n
i=1 ĝ

2
ni to estimate the variance

of
∑n
i=1 ĝni. A GEL version of Moran I’s test can bypass such calculations as the GEL takes cares of unknown

heteroskedasticity internally.

For the local power of Moran’s I test, we consider the alternative model being an SE model, Yn = Xnβ+Un, Un =

τnUn + Vn, where the spatial error dependence parameter is subject to the Pitman drift τn = n−1/2dτ .

Proposition 4.5. Suppose that Yn = Xnβ0 +Un, Un = n−1/2dτWnUn+Vn, where dτ is a constant, Wn is an n×n

nonstochastic matrix with a zero diagonal and bounded row and column sum norms, and limn→∞
1
n

∑n
i=1 E(g2

ni) 6= 0.

Under Assumptions 1, 2 and 5,

2
[

max
λ∈Λ̂n

n∑
i=1

ρ(λĝni)− nρ(0)
]
d−→ χ2

(
1, lim
n→∞

{ 1

n
E[(V ′nWnVn)2]}−1

{dτ
n

E[V ′n(Wn +W ′n)WnVn]
}2
)
.

We may compare this GEL Moran’s I test with the parameter restriction test for spatial error dependence in

the SE model based on the moment vector 1
n [V ′nWnVn, V

′
nXn]′. By Propositions 4.2 and 4.5, these test statistics

have the same asymptotic distribution under the same Pitman drift.

The above GEL Moran’s I test uses the estimated moment condition 1√
n
V̂ ′nWnV̂n, which relies on the null model

being a linear regression model. If the model is an SARAR model (1), and the test is for spatial dependence in

disturbances, then with consistently estimated residual vector V̂n such as the estimated residuals from a 2SLS or

QML estimated SAR equation, 1√
n
V̂ ′nWnV̂n may not have the same asymptotic distribution as 1√

n
V ′nWnVn and the

test statistic would not be asymptotically chi-squared distributed. Neither would the GEL test version. This problem

occurs due to the issue that the consistent estimator used to construct the moments for testing has an impact on

the asymptotic distribution of the moments.14 To overcome this problem in the GEL framework, we may consider

a corresponding C(α)-type statistic as suggested in Jin and Lee (2016). Let θ = (α, φ′)′, where α is the spatial error

dependence parameter τ and the test is on whether α0 = 0. Denote θ̂n = (0, φ̂′n)′ for any
√
n-consistent estimator φ̂n

of φ0. Instead of the moment g1n(θ) = 1
nV
′
n(θ)MnVn(θ),15 where Vn(θ) = (In−τMn)[(In−κWn)Yn−Xnβ], we may

use the moment gn(θ) = g1n(θ)− ∂g1n(θ)
∂φ′ (∂g2n(θ)

∂φ′ )−1g2n(θ), where g2n(θ) is a (kθ−1)×1 vector of linear and quadratic

moments. As g1n(θ) and g2n(θ) are linear and quadratic moments, gn(θ) can be written as gn(θ) = 1
n

∑n
i=1 gni(θ),

where gni(θ) = g1n,i(θ)− ∂g1n(θ)
∂φ′ (∂g2n(θ)

∂φ′ )−1g2n,i(θ) with g1n,i(θ0)’s and g2n,i(θ0)’s being martingale differences. In

place of the estimated moment g1n(θ̂n), we consider the alternative gn(θ̂n). By the mean value theorem, we can see

that
√
ngn(θ̂n) has the same asymptotic distribution as

√
ngn(θ0).

14For Moran’s I test, the orthogonality holds because 1√
n

(Yn −Xnβ̂n)′Wn(Yn −Xnβ̂n) = 1√
n

(Yn −Xnβ0)′Wn(Yn −Xnβ0) + op(1)

due to β̂n being the least squares estimator.
15Model (1) can allow for different spatial weights matrices in the spatial lag and spatial error processes, even though in practice they

are usually the same. The spatial weights matrix in the spatial error process is Mn, so we have the quadratic moment 1
n
V ′n(θ)MnVn(θ).
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Proposition 4.6. For model (1) with τ0 = 0, suppose that Assumptions 1–3 and 5 hold, and limn→∞
1
n

∑n
i=1 E(g2

ni(θ0)) 6=

0. Then 2
[
maxλ∈Λn(θ̂n)

∑n
i=1 ρ(λgni(θ̂n))− nρ(0)

]
= (
∑n
i=1 g

2
ni(θ̂n))−1(

∑n
i=1 gni(θ̂n))2 + op(1)

d−→ χ2(1).

The test statistic is readily available with the GEL estimate of λ. It is robust to unknown heteroskedasticity

if quadratic matrices in the quadratic moments of gn2(θ) have zero diagonals. The above GEL test can use any
√
n-consistent estimator θ̂n. However, it is desirable to choose g2n(θ) and its moment estimator θ̂n = (0, φ̂′n)′ such

that g2n(0, φ̂n) = 0. Because with such moments, the estimated moment vector gn(θ̂n) is exactly the same estimated

moment g1n(θ̂n) and we do not change the basic moments g1n(θ) for testing. However, the individual gni(θ̂n) and

g1n,i(θ̂n) are different even their summations over i are the same. The direct use of g1n,i(θ̂n) in a GEL test would

not overcome the impact of θ̂n on the asymptotic distribution of that GEL test statistic while the former can,

because gn(θ) has an orthogonality property while g1n(θ) does not.

4.4 Spatial J test

Empirical researchers often face the problem on how to specify econometric models. In spatial econometrics, since

an economic theory may be ambiguous on spatial weights matrices, their specifications are frequently challenged.

Thus we may have possible specifications of SAR models with different spatial weights matrices. For testing and

model selection, SARAR models with different spatial weights matrices are non-nested. A popular testing procedure

is based on the spatial J test (Kelejian, 2008; Kelejian and Piras, 2011).16 In this section, we formulate the spatial

J test in the GEL framework.

Suppose that we are interested in testing model (1) against an alternative SARAR model:

Yn = κ1W1nYn +X1nβ1 + U1n, U1n = τ1M1nU1n + V1n, (10)

where W1n, M1n, X1n and V1n have similar meanings to those in model (1).17 The J test is originated in Davidson

and MacKinnon (1981) and is based on whether the alternative model can significantly improve the prediction of

the dependent variable vector Yn. Let κ̂1n and β̂1n be, respectively, estimators of κ1 and β1 in (10), which are

consistent if model (10) was the true model. The κ̂1n and β̂1n can be the QML, GMM or even GEL estimators.18

A predictor of Yn from the alternative model can be either Ŷn = κ̂1nW1nYn + X1nβ̂1n using the main equation of

(10) or Ŷn = (In − κ̂1nW1n)−1X1nβ̂1n using the reduced form of Yn under (10). The difference of using the two

versions has been discussed in Kelejian and Piras (2011). As Yn is on the right hand side of the first prediction

version, that Ŷn would be endogenous, while the second one is exogenous. The spatial J test for (1) is based on an

augmented model:

Yn = κWnYn +Xnβ + ηŶn + Un, Un = τMnUn + Vn, (11)

16Cox-type tests for SARAR models are developed in Jin and Lee (2013). Delgado and Robinson (2015) propose non-nested tests in

a general spatial, spatio-temporal or panel data context.
17While it is possible to test one model against several alternatives simultaneously, we only consider one alternative model for

simplicity.
18Large sample properties of the GEL estimators κ̂1n and β̂1n are presented in Appendix B under regularity conditions for misspecified

models.
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where Ŷn is added in the null model (1) to predict Yn. We test whether the coefficient η is significantly different

from zero or not. If it is, we do not reject the alternative model; otherwise, we reject it. In Kelejian and Piras

(2011), the spatial J test uses the GS2SLS to estimate the augmented model.19 When Ŷn is exogenous, it can be

used directly as an extra IV for WnYn. For the version that Ŷn is endogenous, then extra IVs would be needed for

Ŷn. The GS2SLS uses only linear IV moments but does not utilize quadratic moments for the main equation of

(11). Thus it may lead to a relatively inefficient estimator and a less powerful test (Jin and Lee, 2013). Here as a

generalization, we consider the GEL estimation of model (11) with both linear and quadratic moments.

For the augmented model (11), let Vn(ϑ) = Rn(τ)[Sn(κ)Yn − Xnβ − ηŶn], where ϑ = (θ′, η)′. The moment

vector can be

gn(ϑ) = [V ′n(ϑ)Pn1Vn(ϑ)− σ2 tr(Pn1), . . . , V ′n(ϑ)Pn,kpVn(ϑ)− σ2 tr(Pn1), Q′nVn(ϑ)]

in the homoskedastic case, and

gn(ϑ) = [V ′n(ϑ)Pn1Vn(ϑ), . . . , V ′n(ϑ)Pn,kpVn(ϑ), Q′nVn(ϑ)]

where each Pnl, l = 1, . . . , kp, has a zero diagonal in the heteroskedastic case. Define gni(ϑ) such that gn(ϑ) =

1
n

∑n
i=1 gni(ϑ). Under the null, gni(ϑ0)’s are martingale differences, where ϑ0 = (θ′0, 0)′. The GEL estimator is

ϑ̂n = arg minϑ∈Θmaxλ∈Λn(ϑ)

n∑
i=1

ρ(λ′gni(ϑ)),

where Λn(ϑ) = {λ : λ′gni(ϑ) ∈ V, i = 1, . . . , n} and Θ is the parameter space of ϑ. With the identification and

regularity conditions in Appendix B, the spatial J test statistic can be formulated as a GEL ratio. This GEL test is

essentially a test of the parameter restriction that η = 0 in (11). It differs from the one in the preceding Section 4.1

in that here Ŷn on the right hand side of (11) is a generated regressor. As the following proposition will show, the

initial estimate in Ŷn does not have an asymptotic impact on the GEL statistic under the null.

Proposition 4.7. Suppose that Assumptions 2–6, 8, 13 and 14 hold and ϑ0 is in the interior of the compact

parameter space Θ. Then, under Assumptions 1(i) and 11 in the homoskedastic case, or Assumptions 1(ii) and 12

in the heteroskedastic case, 2[
∑n
i=1 ρ(λ̂′ngni(θ̂n))−maxλ∈Λn(ϑ̂n)

∑n
i=1 ρ(λ′gni(ϑ̂n))]

d−→ χ2(1), where (θ̂′n, λ̂
′
n)′ is the

GEL estimator for model (1), i.e., it is the restricted GEL estimator with the restriction η = 0 imposed.

5 Monte Carlo

In this section, we report Monte Carlo results on the GEL estimator and test statistics considered in this paper.

The data generating process is the SARAR model (1) or its restricted form with κ = 0 and/or τ = 0. There

are three exogenous variables in Xn: an intercept term, a variable randomly drawn from the standard normal

distribution N(0, 1) and a variable from the uniform distribution U [0,
√

12]. The true value β0 of β = (β1, β2, β3)′

19Since the original spatial J test uses the GS2SLS to estimate the augmented model, the main equation of (11) is transformed by

pre-multiplying it with (In − τ̂1nM1n) before estimation, where τ̂1n is a consistent estimator of τ10 (Kelejian and Piras, 2011).
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is [0.5, 0.5, 0.5]′. The disturbances vni’s are randomly drawn from the normal distribution N(0, σ2
0) in the ho-

moskedastic case, or N(0, σ2
0c

2
i ) in the heteroskedastic case, where ci is the the number of nonzero elements in

the ith row of the spatial weights matrix Wn, and σ2
0 is chosen such that R2 ≡ var(Xnβ0)/[var(Xnβ0) + σ̄2

n]

is either 0.4 or 0.8, where σ̄2
n is the average variance of all vni’s. We set the two spatial weights matrices Wn

and Mn to be the same. For GEL estimation and tests other than the spatial J test, Wn is based on the cir-

cular world matrix in Arraiz et al. (2010). For the circular world matrix, spatial units are equally spaced on a

circle. One third of them are connected to ten nearest neighbors and the rest are connected to two nearest neigh-

bors. For the spatial J test, the null and alternative models only differ in Wn; specifically, the circular matrix

and the one based on the queen criterion are tested against each other. These matrices are normalized to have

row sums equal to one. For the estimation of model (1), in the homoskedastic case, we use the moment vector

1
n [V ′nVn−nσ2

0 , V
′
nWnVn, V

′
nW

2
nVn−σ2

0 tr(W 2
n), V ′n(Xn,WnX

∗
n,W

2
nX
∗
n)]′, where X∗n is a submatrix of Xn that excludes

the intercept term so that the IV matrix (Xn,WnX
∗
n,W

2
nX
∗
n) only contains one intercept; in the heteroskedastic

case, we use the moment vector 1
n [V ′nWnVn, V

′
n(W 2

n −diag(W 2
n))Vn, V

′
n(Xn,WnX

∗
n,W

2
nX
∗
n)]′. For the spatial J test,

the null and alternative models are estimated with moment vectors similar to the above ones. To estimate the

augmented model (11), if Ŷn = (In− κ̂1nW1n)−1X1nβ̂1n is used as the augmented explanatory variable, Ŷn is added

to the IV matrix in the above moment vectors; on the other hand, if Ŷn = κ̂1nW1nyn + X1nβ̂1n is the augmented

explanatory variable, W1n[X2n, X3n] is added to the IV matrix. The nominal size of various tests is 0.05. The

number of Monte Carlo repetitions for each case is 1, 000.

Table 1 reports biases, standard errors, and root mean square errors (RMSE) of the GMM, EL and ET estimators

in the homoskedastic case.20 The GMM estimator is a FOGMM estimator where in the first step the identity matrix

is used as the weighting matrix to derive a consistent estimator θ̃n and in the second step Ωn(θ̃n) is used as the

weighting matrix. The biases of the EL and ET estimators are smaller than those of the GMM estimator except

for some cases, mostly for τ . For the comparison of the EL and ET, except for the variance parameter σ2, they

have similar biases in most cases and neither the EL nor the ET would dominate each other. For σ2, the bias of

the GMM estimator is significantly larger than that of the ET estimator, while the latter is larger than that of the

EL estimator. In terms of standard errors, the ET estimator performs better than the EL estimator, and the GMM

estimator generally performs the worst. Since standard errors of estimates dominate biases for parameters other

than σ2, the RMSEs display an order in magnitude similar to that of standard errors. For σ2, the EL estimator

has the smallest RMSE, and the ET estimator has a smaller RMSE than that of the GMM estimator. As the

sample size increases from 144 to 400, biases generally decrease, and standard errors decrease approximately at the

theoretical rate.

Table 2 shows summary statistics of the estimators in the heteroskedastic case. The biases are small and their

pattern are similar to those in the homoskedastic case. The EL estimator is observed to have larger standard errors

and RMSEs than those of the ET estimator. For the parameters κ, τ and the intercept β1, the ET estimator

20We do not consider the continuous updating GMM estimator because it is often observed to possess multiple modes and thus

generally considered to be less desirable than the EL and ET estimators (Hansen et al., 1996; Imbens et al., 1998).
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generally has the smallest standard errors and RMSEs, even though for the parameters β2 and β3 of regressors, the

GMM estimator has the smallest standard errors and RMSEs in some cases.

Table 3 reports coverage probabilities (CP) of 95% confidence intervals for parameters in the SARAR model

(1). In the homoskedastic case, for n = 144, the GMM CPs are below 95%, and those for σ2 are much smaller than

95%; the EL and ET CPs are closer to 95% than GMM ones, and those for σ2 are about ten percentage points

higher than corresponding GMM CPs. The ET CPs are higher than EL ones except for σ2. With a larger sample

size n = 400, the CPs are closer to 95%, but the patterns are similar. In the heteroskedastic case, the EL and ET

CPs are still closer to 95% than GMM ones in general, though the differences are smaller.

For Monte Carlo studies on hypothesis testing, nine tests are considered in the homoskedastic case: “PTgmm”,

“PTel” and “PTet” denote parameter restriction tests implemented with, respectively, the GMM distance difference,

EL ratio and ET ratio based on the moment vector 1
n [V ′nVn−nσ2

0 , V
′
nWnVn, V

′
nW

2
nVn−σ2

0 tr(W 2
n), V ′n(Xn,WnX

∗
n,W

2
nX
∗
n)]′;

“OTgmm”, “OTel” and “OTet” denote, respectively, the GMM, EL and ET overidentification tests based on the mo-

ment vector 1
n [V ′nWnVn, V

′
nXn]′; “Moran” denotes Moran’s I test with a robust variance estimator, and “Moranel”

and “Moranet” denote, respectively, EL and ET Moran’s I tests. For the latter three tests, OLS residuals are used

to formulate test statistics. In the heteroskedastic case, the above tests are also considered, among which param-

eter restriction tests are based on the moment vector 1
n [V ′nWnVn, V

′
n(W 2

n − diag(W 2
n))Vn, V

′
n(Xn,WnX

∗
n,W

2
nX
∗
n)]′

robust to unknown heteroskedasticity. In addition, we consider two tests which do not take into account un-

known heteroskedasticity: the GMM parameter restriction test PT∗gmm based on the moment vector 1
n [V ′nVn −

nσ2
0 , V

′
nWnVn, V

′
nW

2
nVn − σ2

0 tr(W 2
n), V ′n(Xn,WnX

∗
n,W

2
nX
∗
n)]′ and conventional Moran’s I test Moran∗.

Table 4 presents empirical sizes of tests for τ0 = 0 in an SE model. PTel and PTet have relatively large sizes for

small sample cases and have improved sizes for the larger sample size n = 400. As expected, PT∗gmm and Moran∗

have large size distortions and the distortions do not improve with the larger sample size n = 400. Other tests have

relatively small size distortions. Powers of these tests except PT∗gmm and Moran∗ are presented in Table 5. Their

powers are generally similar for different valid tests, but are higher for the homoskedastic model than those of the

heteroskedastic model. R2 does not have much impact on powers. These tests are powerful in cases with a larger

τ0 and a larger sample size in the data generating process (DGP).

Test results on τ0 = 0 in the SARAR model (1) are reported in Tables 6 and 7. Parameter restriction tests

are based on moment conditions similar to those for the SE model. Overidentification tests are based on the

moment vector 1
n [V ′nWnVn, V

′
n(W 2

n − diag(W 2
n))Vn, V

′
n(Xn,Wn(In − κ̂nWn)−1Xnβ̂n)]′, where κ̂n and β̂n are the

FOGMM estimator of the SAR model as described above. To compute Moran’s I tests, we use the 2SLS estimator

φ̂n of φ = (κ, β′)′ with the IV matrix Qn = [Xn,WnX
∗
n,W

2
nX
∗
n] for the SAR model. The test statistics employ

the moment condition gn(θ) = g1n(θ) − ∂g1n(θ)
∂φ′ (∂g2n(θ)

∂φ′ )−1g2n(θ), where g1n(θ) = 1
nV
′
n(θ)WnVn(θ) and g2n(θ) =

1
nZ
′
nQn(Q′nQn)−1QnVn(θ) with Zn = [WnYn, Xn]. Thus g2n(θ̂n) = 0, where θ̂n = (0, φ̂′n)′. When n = 144, the

size distortions of parameter restriction tests are larger than those of overidentification tests, and those of Moran’s

I tests are smallest; when n = 400, all sizes are general close to the nominal 5%. Different versions of parameter
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restriction tests have similar powers. So are different versions of overidentification tests and those of Moran’s I

tests. Parameter restriction tests are more powerful than overidentification tests, and the latter ones are generally

more powerful than Moran’s I tests. With larger R2, sample sizes, and τ0 in the DGP, all tests tend to be more

powerful.

Tables 8 and 9 report empirical sizes and powers of spatial J tests for the SARAR model (1). ”GMM1” denotes

the spatial J test implemented with the GMM distance difference test using the predictor Ŷn = κ̂1nW1nYn+X1nβ̂1n,

and ”GMM2” uses Ŷn = (In − κ̂1n)−1X1nβ̂1n. Correspondingly, we have EL and ET ratio tests “EL1”, “EL2”,

“ET1” and “ET2”. The EL1, EL2, ET1 and ET2 have relatively larger size distortions for a small sample size, but

are reasonably adequate for a larger sample size. Powers of these tests are similar. With larger R2, κ0 and sample

sizes, these tests are more powerful.

[Tables 1–9 about here.]

6 Conclusion

By exploring the martingale structure of the SARAR model, this paper considers its GEL estimation and tests. We

show that the GEL estimator is consistent and has the same asymptotic normal distribution as the optimal GMM

estimator based on the same moment conditions. But the GEL avoids a first step estimation of the optimal weighting

matrix with a preliminary estimator and can be robust to unknown heteroskedasticity without the computation

of possibly higher order moment parameters of disturbances. A general GEL is free from the asymptotic bias of

the preliminary estimator and partially removes the bias due to the correlation between the moment conditions

and their Jacobian. An EL further partially removes the bias from estimating the second moment matrix. We

also investigate the GEL overidentification test, Moran’s I test, GEL ratio tests for parameter restrictions and

non-nested hypotheses. These tests do not involve estimation of variances and higher order moment parameters,

and can be robust to unknown heteroskedasticity. Our Monte Carlo results show that GEL estimators and tests

perform well compared with GMM estimators and tests when the latter GMM estimates and tests take into account

properly their variances and/or moment parameters of disturbances. The GMM tests are not robust while GEL

tests are much better to deal with extra complexity of spatial regression models.

In a future research, it is of interest to investigate various optimality properties of EL tests for the SARAR

model as in Kitamura (2001) and Otsu (2010), and their Bartlett correctability. The latter is expected by Mykland

(1995). However, Bartlett correctability is based on Edgeworth expansions, for which it is not known how to show

general pointwise results on martingales.21

21For SAR models, a “smoothed” (instead of pointwise) asymptotic expansion based on martingales in Mykland (1993) is shown in

Jin and Lee (2013).
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Appendix A GMM estimation

In this section, we present identification and large sample properties of the GMM estimators for model (1) in both

homoskedastic and heteroskedastic cases.

A.1 Homoskedastic case

First, we summarize parameter identification and asymptotic distributions of GMM estimators. The details are in

Liu et al. (2010), which are general for high order SARAR models. The summarized results here are the first order

SARAR case. As Vn(θ) is quadratic in θ, we may write

E[Q′nVn(θ)] = Q′ndn(θ),

where dn(θ) = Rn(τ)[(κ0 − κ)WnS
−1
n Xnβ0 +Xn(β0 − β)], and

E[V ′n(θ)PnlVn(θ)]− σ2 tr(Pnl)

= E{[dn(θ) +Rn(τ)Sn(κ)S−1
n R−1

n Vn]′Pnl[dn(θ) +Rn(τ)Sn(κ)S−1
n R−1

n Vn]} − σ2 tr(Pnl)

= d′n(θ)Pnldn(θ) + σ2
0 tr{[Rn(τ)Sn(κ)S−1

n R−1
n ]′Pnl[Rn(τ)Sn(κ)S−1

n R−1
n ]} − σ2 tr(Pnl)

= d′n(θ)Pnldn(θ) + (σ2
0 − σ2) tr(Pnl) + 2σ2

0(τ0 − τ) tr(PnlMnR
−1
n ) + σ2

0(τ0 − τ)2 tr(R′−1
n M ′nPnlMnR

−1
n )

+ 2σ2
0(κ0 − κ) tr(PnlRnWnS

−1
n R−1

n ) + σ2
0(κ0 − κ)2 tr(R′−1

n S′−1
n W ′nR

′
nPnlRnWnS

−1
n R−1

n )

+ 2σ2
0(κ0 − κ)(τ0 − τ) tr(R′−1

n M ′nPnlRnWnS
−1
n R−1

n + PnlMnWnS
−1
n R−1

n )

+ 2σ2
0(κ0 − κ)2(τ0 − τ) tr(R′−1

n S′−1
n W ′nM

′
nPnlRnWnS

−1
n R−1

n ) + 2σ2
0(κ0 − κ)(τ0 − τ)2 tr(R′−1

n S′−1
n W ′nM

′
nPnlMnR

−1
n )

+ σ2
0(κ0 − κ)2(τ0 − τ)2 tr(R′−1

n S′−1
n W ′nM

′
nPnlMnWnS

−1
n R−1

n ).

As Xn has full rank, we may assume that limn→∞
1
nQ
′
nRn(τ)Xn has full column rank for any τ in its parameter

space. If limn→∞
1
nQ
′
nRn(τ)(Xn,WnS

−1
n Xnβ0) has full column rank for any τ in its parameter space, then β and

κ can be identified from the linear moments. As a result, only σ2 and τ need to be identified from the quadratic

moments. If limn→∞
1
nQ
′
nRn(τ)(Xn,WnS

−1
n Xnβ0) does not have full rank for some τ , 1

nQ
′
nRn(τ)WnS

−1
n Xnβ0 is

linearly dependent on 1
nQ
′
nRn(τ)Xn for large enough n. For such τ , let Q′nRn(τ)WnS

−1
n Xnβ0 = Q′nRn(τ)Xnι(τ)

for some linear coefficient vector ι(τ). Then Q′ndn(θ) = Q′nRn(τ)Xn[ι(τ)(κ0 − κ) + β0 − β]. Thus, the solutions to

Q′ndn(θ) = 0 are described by the relation β = β0 + ι(τ)(κ0− κ) and β0 is identified as long as κ0 is identified. The

identification of κ0 can be from the quadratic moments. As dn(θ) = 0, a sufficient condition is a rank condition

given in Assumption 11(ii). Let ∆n1 = [tr(Pn1), . . . , tr(Pn,kp)]′, ∆n2 = [tr(Pn1MnR
−1
n ), . . . , tr(Pn,kpMnR

−1
n )]′,

∆n3 = [tr(R′−1
n M ′nPn1MnR

−1
n ), . . . , tr(R′−1

n M ′nPn,kpMnR
−1
n )]′,

∆n4 = [tr(Pn1RnWnS
−1
n R−1

n ), . . . , tr(Pn,kpRnWnS
−1
n R−1

n )]′,

∆n5 = [tr(R′−1
n S′−1

n W ′nR
′
nPn1RnWnS

−1
n R−1

n ), . . . , tr(R′−1
n S′−1

n W ′nR
′
nPn,kpRnWnS

−1
n R−1

n )]′,

∆n6 = [tr(R′−1
n M ′nPn1RnWnS

−1
n R−1

n + Pn1MnWnS
−1
n R−1

n ), . . . , tr(R′−1
n M ′nPn,kpRnWnS

−1
n R−1

n + Pn,kpMnWnS
−1
n R−1

n )]′,
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∆n7 = [tr(R′−1
n S′−1

n W ′nM
′
nPn1RnWnS

−1
n R−1

n ), . . . , tr(R′−1
n S′−1

n W ′nM
′
nPn,kpRnWnS

−1
n R−1

n )]′,

∆n8 = [tr(R′−1
n S′−1

n W ′nM
′
nPn1MnR

−1
n ), . . . , tr(R′−1

n S′−1
n W ′nM

′
nPn,kpMnR

−1
n )]′,

and ∆n9 = [tr(R′−1
n S′−1

n W ′nM
′
nPn1MnWnS

−1
n R−1

n ), . . . , tr(R′−1
n S′−1

n W ′nM
′
nPn,kpMnWnS

−1
n R−1

n )]′.

Assumption 11. (i) limn→∞
1
nQ
′
nRn(τ)(Xn,WnS

−1
n Xnβ0) has full column rank for any τ in its parameter space,

and limn→∞
1
n [∆n1,∆n2,∆n3](c1, 2c2, c

2
2) 6= 0 for any (c1, c2) 6= 0; or (ii) limn→∞

1
nQ
′
nRn(τ)Xn has full column

rank for any τ in its parameter space, and limn→∞
1
n [∆n1, . . . ,∆n9](c1, 2c2, c

2
2, 2c3, c

2
3, 2c2c3, 2c2c

2
3, 2c

2
2c3, c

2
2c

2
3)′ 6= 0

for any (c1, c2, c3) 6= 0.

In the case that Mn = Wn, Assumption 11(ii) cannot hold, because when κ = τ0 and τ = κ0, E[V ′n(θ)PnlVn(θ)]−

σ2 tr(Pnl) = d′n(θ)Pnldn(θ)+(σ2
0−σ2) tr(Pnl), which implies that ∆n1, . . . ,∆n9 are linearly dependent. Identification

for the case with Mn = Wn will rely on Assumption 11(i).

Next we summarize the asymptotic distributions of GMM estimators. Let Υn = [vec(Pn1), . . . , vec(Pn,kp)] and

Ξn = [vecD(Pn1), . . . , vecD(Pn,kp)], where vecD(A) with a square matrix A denotes a column vector consisting of

the diagonal elements of A. Then,

Ḡn = − 1

n

2σ2
0Υ′n vec(RnWnS

−1
n R−1

n ) 2σ2
0Υ′n vec(MnR

−1
n ) 0 Υ′n vec(In)

Q′nRnWnS
−1
n Xnβ0 0 Q′nRnXn 0

 ,

and

Ω̄n = var[
√
ngn(θ0)] =

1

n

2σ4
0Υ′nΥn 0

0 σ2
0Q
′
nQn

+
1

n

(µ4 − 3σ4
0)Ξ′nΞn µ3Ξ′nQn

µ3Q
′
nΞn 0

 .

Proposition A.1. (1) Under Assumptions 1(i), 2–4, 7, 8 and 11, the initial GMM estimator θ̃n is consistent,

and
√
n(θ̃n − θ0)

d−→ N
(

0, limn→∞(Ḡ′nJ̄
−1
n Ḡn)−1Ḡ′nJ̄

−1
n Ω̄nJ̄

−1
n Ḡn(Ḡ′nJ̄

−1
n Ḡn)−1

)
;

(2) under Assumptions 1(i), 2–4, and 6–11, the optimal GMM estimator θ̂n is consistent, and

√
n(θ̂n − θ0)

d−→ N
(

0, lim
n→∞

(Ḡ′nΩ̄−1
n Ḡn)−1

)
.

If µ4−3σ4
0 = µ3 = 0, e.g., vni’s are normal, the third and fourth moments of vni in Ω̄n disappear and Ω̄n reduces

to a block diagonal matrix. Then,

Ḡ′nΩ̄−1
n Ḡn =

1

2nσ4
0

[2σ2
0 vec(RnWnS

−1
n R−1

n ), 2σ2
0 vec(MnR

−1
n ), 0, vec(In)]′Υn(Υ′nΥn)−1Υ′n

× [2σ2
0 vec(RnWnS

−1
n R−1

n ), 2σ2
0 vec(MnR

−1
n ), 0, vec(In)]

+
1

nσ2
0

[WnS
−1
n Xnβ0, 0, Xn, 0]′R′nQn(Q′nQn)−1Q′nRn[WnS

−1
n Xnβ0, 0, Xn, 0]

≤ 1

2nσ4
0

[2σ2
0 vec(RnWnS

−1
n R−1

n ), 2σ2
0 vec(MnR

−1
n ), 0, vec(In)]′

× [2σ2
0 vec(RnWnS

−1
n R−1

n ), 2σ2
0 vec(MnR

−1
n ), 0, vec(In)]

+
1

nσ2
0

[WnS
−1
n Xnβ0, 0, Xn, 0]′R′nRn[WnS

−1
n Xnβ0, 0, Xn, 0],
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where the inequality follows by the generalized Cauchy-Schwarz inequality, and it becomes an equality when the mo-

ment vector is 1
n (V ′n(θ)Vn(θ)−nσ2, V ′n(θ)MnR

−1
n Vn(θ)−σ2 tr(MnR

−1
n ), V ′n(θ)RnWnS

−1
n R−1

n Vn(θ)−σ2 tr(WnS
−1
n ),

V ′n(θ)Rn[WnS
−1
n Xnβ0, Xn])′. This is the best moment vector as it yields the smallest asymptotic variance. As in

Lee (2007), a feasible moment vector can be obtained by replacing (κ0, τ0, β
′
0)′ in the best moment vector by a

consistent estimator (κ̃n, τ̃n, β̃
′
n)′ of (κ0, τ0, β

′
0)′.

A.2 Heteroskedastic case

The identification and asymptotic distributions for GMM estimators in the heteroskedastic case can be derived

similarly to that in the homoskedastic case.22 Let Σn be a diagonal matrix consisting of σ2
ni’s,

Ψn1 = [tr(Pn1MnR
−1
n Σn), . . . , tr(Pn,kpMnR

−1
n Σn)]′,

Ψn2 = [tr(R′−1
n M ′nPn1MnR

−1
n Σn), . . . , tr(R′−1

n M ′nPn,kpMnR
−1
n Σn)]′,

Ψn3 = [tr(Pn1RnWnS
−1
n R−1

n Σn), . . . , tr(Pn,kpRnWnS
−1
n R−1

n Σn)]′,

Ψn4 = [tr(R′−1
n S′−1

n W ′nR
′
nPn1RnWnS

−1
n R−1

n Σn), . . . , tr(R′−1
n S′−1

n W ′nR
′
nPn,kpRnWnS

−1
n R−1

n Σn)]′,

Ψn5 = [tr((R′−1
n M ′nPn1Rn + Pn1Mn)WnS

−1
n R−1

n Σn), . . . , tr((R′−1
n M ′nPn,kpRn + Pn,kpMn)WnS

−1
n R−1

n Σn)]′,

Ψn6 = [tr(R′−1
n S′−1

n W ′nM
′
nPn1RnWnS

−1
n R−1

n Σn), . . . , tr(R′−1
n S′−1

n W ′nM
′
nPn,kpRnWnS

−1
n R−1

n Σn)]′,

Ψn7 = [tr(R′−1
n S′−1

n W ′nM
′
nPn1MnR

−1
n Σn), . . . , tr(R′−1

n S′−1
n W ′nM

′
nPn,kpMnR

−1
n Σn)]′,

and Ψn8 = [tr(R′−1
n S′−1

n W ′nM
′
nPn1MnWnS

−1
n R−1

n Σn), . . . , tr(R′−1
n S′−1

n W ′nM
′
nPn,kpMnWnS

−1
n R−1

n Σn)]′.

Assumption 12. (i) limn→∞
1
nQ
′
nRn(τ)(Xn,WnS

−1
n Xnβ0) has full column rank for any τ in its parameter space,

and limn→∞
1
n [Ψn1,Ψn2](2c, c2) 6= 0 for any c 6= 0; or (ii) limn→∞

1
nQ
′
nRn(τ)Xn has full column rank for any τ in

its parameter space, and limn→∞
1
n [Ψn1, . . . ,Ψn8](2c1, c

2
1, 2c2, c

2
2, 2c1c2, 2c1c

2
2, 2c

2
1c2, c

2
1c

2
2)′ 6= 0 for any (c1, c2) 6= 0.

Let Υn = [vec(Σ
1/2
n Pn1Σ

1/2
n ), . . . , vec(Σ

1/2
n Pn,kpΣ

1/2
n )]. With heteroskedastic disturbances,

Ḡn = − 1

n

2Υ′n vec(Σ
−1/2
n RnWnS

−1
n R−1

n Σ
1/2
n ) 2Υ′n vec(Σ

−1/2
n MnR

−1
n Σ

1/2
n ) 0

Q′nRnWnS
−1
n Xnβ0 0 Q′nRnXn

 ,

and

Ω̄n = var[
√
ngn(θ0)] =

1

n

2Υ′nΥn 0

0 Q′nΣnQn

 .

Proposition A.2. (1) Under Assumptions 1(ii), 2–4, 7, 8 and 12, the initial GMM estimator θ̃n is consistent,

and
√
n(θ̃n − θ0)

d−→ N
(
0, lim
n→∞

(Ḡ′nJ̄
−1
n Ḡn)−1Ḡ′nJ̄

−1
n Ω̄nJ̄

−1
n Ḡn(Ḡ′nJ̄

−1
n Ḡn)−1

)
;

(2) under Assumptions 1(ii), 2–4, 6–8 and 12, the GMM estimator θ̂n is consistent, and

√
n(θ̂n − θ0)

d−→ N
(
0, lim
n→∞

(Ḡ′nΩ̄−1
n Ḡn)−1

)
.

22The results summarized here extend those in Liu et al. (2010) and Lin and Lee (2010) to the first order SARAR case.
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Note that

Ḡ′nΩ̄−1
n Ḡn =

2

n
[vec(Σ−1/2

n RnWnS
−1
n R−1

n Σ1/2
n ), vec(Σ−1/2

n MnR
−1
n Σ1/2

n ), 0]′Υn(Υ′nΥn)−1Υ′n

× [vec(Σ−1/2
n RnWnS

−1
n R−1

n Σ1/2
n ), vec(Σ−1/2

n MnR
−1
n Σ1/2

n ), 0]

+
1

n
[WnS

−1
n Xnβ0, 0, Xn]′R′nQn(Q′nΣnQn)−1Q′nRn[WnS

−1
n Xnβ0, 0, Xn].

Hence, the best moment vector is

1

n

(
V ′n(θ)[Σ−1

n MnR
−1
n − diag(Σ−1

n MnR
−1
n )]Vn(θ), V ′n(θ)[Σ−1

n RnWnS
−1
n R−1

n − diag(Σ−1
n RnWnS

−1
n R−1

n )]Vn(θ),

V ′n(θ)Rn[WnS
−1
n Xnβ0, Xn]

)′
.

Since the best moment vector involves Σn, it is infeasible unless there are structures on the heteroskedasticity so

that each of the variances σ2
ni’s can be consistently estimated.

Appendix B Identification conditions for the spatial J test

In this appendix, we provide an identification condition of the augmented model (11) for the spatial J test. The

identification condition is in terms of pseudo true values of parameter estimates of a model for an alternative model

while the null model is the DGP. In general, we expect that parameter estimates for the alternative model would

converge to their pseudo true values. For GS2SLS estimates of the alternative model for the J test, relevant studies

are in Kelejian (2008) and Kelejian and Piras (2011). We show the convergence result under regularity conditions

if the alternative model is estimated by the GEL in the second part of this section.

B.1 Identification conditions

For the estimator θ̂1n of an alternative model while the null model is the DGP, assume that {θ∗1n} is a sequence of

nonstochastic pseudo-true values such that the following convergence is satisfied.

Assumption 13. θ̂1n − θ∗1n = op(1).

With θ∗1n, the identification condition for the GEL estimation of the augmented model (11) is similar to that for

model (1), by taking into account additional terms from the predictor Ŷn, and possible inclusion of the generated

regressor S−1
1n (κ̂1n)X1nβ̂1n in the IV matrix Qn, when Ŷn = S−1

1n (κ̂1n)X1nβ̂1n. If Ŷn = S−1
1n (κ̂1n)X1nβ̂1n, let

Ȳ ∗n = S−1
1n (κ∗1n)X1nβ

∗
1n and ε∗n = 0n×1; if Ŷn = κ̂1nW1nYn + X1nβ̂1n, let Ȳ ∗n = κ∗1nW1nS

−1
n Xnβ0 + X1nβ

∗
1n and

ε∗n = κ∗1nW1nS
−1
n R−1

n Vn. The leading order terms for elements of Ŷn are elements of Ȳ ∗n +ε∗n. For Ŷn = κ̂1nW1nYn+

X1nβ̂1n, due to the presence of the stochastic part ε∗n and its correlation with vectors linear in Vn, additional terms

from quadratic moments appear for identification. For Ŷn = S−1
1n (κ̂1n)X1nβ̂1n, note that 1

nV
′
nAnS

−1
1n (κ̂1n)X1nβ̂1n =

op(1) and 1
nb
′
nAnS

−1
1n (κ̂1n)X1nβ̂1n = 1

nb
′
nAnS

−1
1n (κ∗1n)X1nβ

∗
1n + op(1), where An is an n × n nonstochastic matrix

bounded in both row and column sum norms and bn is an n × 1 vector of uniformly bounded constants. Then

S−1
1n (κ̂1n)X1nβ̂1n is asymptotically exogenous and the identification conditions involving linear moments only need
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to be modified to account for the randomness of Qn. Let Q∗n be the matrix obtained by replacing S−1
1n (κ̂1n)X1nβ̂1n

with S−1
1n (κ∗1n)X1nβ

∗
1n in Qn if it is in Qn, and Q∗n = Qn otherwise. With Q∗n, the identification conditions

involving linear moments are similar to those for (1). Define ∆n,10 = [E(ε∗
′

n R
′
nPn1Rnε

∗
n), . . . ,E(ε∗

′

n R
′
nPn,kpRnε

∗
n)]′,

∆n,11 = [E(ε∗
′

nM
′
nPn1Rnε

∗
n), . . . ,E(ε∗

′

nM
′
nPn,kpRnε

∗
n)]′, ∆n,12 = [E(ε∗

′

nM
′
nPn1Mnε

∗
n), . . . ,E(ε∗

′

nM
′
nPn,kpMnε

∗
n)]′,

∆n,13 = [E(ε∗
′

n R
′
nPn1Vn), . . . ,E(ε∗

′

n R
′
nPn,kpVn)]′,

∆n,14 = [E(ε∗
′

n R
′
nPn1MnR

−1
n Vn + ε∗

′

nM
′
nPn1Vn), . . . ,E(ε∗

′

n R
′
nPn,kpMnR

−1
n Vn + ε∗

′

nM
′
nPn,kpVn)]′,

∆n,15 = [E(ε∗
′

nM
′
nPn1MnR

−1
n Vn), . . . ,E(ε∗

′

nM
′
nPn,kpMnR

−1
n Vn)]′,

∆n,16 = [E(ε∗
′

n R
′
nPn1RnWnS

−1
n R−1

n Vn), . . . ,E(ε∗
′

n R
′
nPn,kpRnWnS

−1
n R−1

n Vn)]′,

∆n,17 = [E(ε∗
′

n (R′nPn1Mn +M ′nPn1Rn)WnS
−1
n R−1

n Vn), . . . ,E(ε∗
′

n (R′nPn,kpMn +M ′nP
′
n,kpRn)WnS

−1
n R−1

n Vn)]′,

and ∆n,18 = [E(ε∗
′

nM
′
nPn1MnWnS

−1
n R−1

n Vn), . . . ,E(ε∗
′

nM
′
nPn,kpMnWnS

−1
n R−1

n Vn)]′. The explicit forms for the

above terms can be easily derived for both the homoskedastic and heteroskedastic cases. We omit them for simplicity.

Assumption 14. (1) If Ŷn = S−1
1n (κ̂1n)X1nβ̂1n,

(I) {S1n(κ∗1n)} are invertible and {S−1
1n (κ∗1n)} are bounded in both row and column sum norms;

(II) in the homoskedastic case, either (i) limn→∞
1
nQ
∗′
n Rn(τ)(Xn,WnS

−1
n Xnβ0, Ȳ

∗
n ) has full column rank for

any τ in its parameter space, and limn→∞
1
n [∆n1,∆n2,∆n3](c1, 2c2, c

2
2) 6= 0 for any (c1, c2) 6= 0; or (ii)

limn→∞
1
nQ
∗′
n Rn(τ)(Xn, Ȳ

∗
n ) has full column rank for any τ in its parameter space, and

lim
n→∞

1

n
[∆n1, . . . ,∆n9](c1, 2c2, c

2
2, 2c3, c

2
3, 2c2c3, 2c2c

2
3, 2c

2
2c3, c

2
2c

2
3)′ 6= 0

for any (c1, c2, c3) 6= 0;

(III) in the heteroskedastic case, either (i) limn→∞
1
nQ
∗′
n Rn(τ)(Xn,WnS

−1
n Xnβ0, Ȳ

∗
n ) has full column rank for

any τ in its parameter space, and limn→∞
1
n [Ψn1,Ψn2](2c, c2) 6= 0 for any c 6= 0; or (ii) limn→∞

1
nQ
∗′
n Rn(τ)(Xn, Ȳ

∗
n )

has full column rank for any τ in its parameter space, and

lim
n→∞

1

n
[Ψn1, . . . ,Ψn8](2c1, c

2
1, 2c2, c

2
2, 2c1c2, 2c1c

2
2, 2c

2
1c2, c

2
1c

2
2)′ 6= 0

for any (c1, c2) 6= 0.

(2) If Ŷn = κ̂1nW1nYn +X1nβ̂1n,

(I) in the homoskedastic case, either (i) limn→∞
1
nQ
′
nRn(τ)(Xn,WnS

−1
n Xnβ0, Ȳ

∗
n ) has full column rank for

any τ in its parameter space, and

lim
n→∞

1

n
[∆n1,∆n2,∆n3,∆n,10, . . . ,∆n,15](c1, 2c2, c

2
2, η

2, 2c2η
2, c22η

2,−2η,−2c2η,−2c22η)′ 6= 0

for any (c1, c2, η) 6= 0; or (ii) limn→∞
1
nQ
′
nRn(τ)(Xn, Ȳ

∗
n ) has full column rank for any τ in its pa-

rameter space, and limn→∞
1
n [∆n1, . . . ,∆n9,∆n,10, . . . ,∆n,18]c(c1, c2, c3, η) 6= 0, where c(c1, c2, c3, η) =

22



(c1, 2c2, c
2
2, 2c3, c

2
3, 2c2c3, 2c2c

2
3, 2c

2
2c3, c

2
2c

2
3, η

2, 2c2η
2, c22η

2,−2η,−2c2η,−2c22η,−2c3η,−2c2c3η,−2c22c3η)′, for

any (c1, c2, c3, η) 6= 0;

(II) in the heteroskedastic case, either (i) limn→∞
1
nQ
′
nRn(τ)(Xn,WnS

−1
n Xnβ0, Ȳ

∗
n ) has full column rank for

any τ in its parameter space, and limn→∞
1
n [Ψn1,Ψn2,∆n,10, . . . ,∆n,15](2c, c2, η2, 2cη2, c2η2,−2η,−2cη,−2c2η)′ 6=

0 for any (c, η) 6= 0; or (ii) limn→∞
1
nQ
′
nRn(τ)(Xn, Ȳ

∗
n ) has full column rank for any τ in its parameter

space, and limn→∞
1
n [Ψn1, . . . ,Ψn8,∆n,10, . . . ,∆n,18]c(c1, c2, η) 6= 0, where

c(c1, c2, η) = (2c1, c
2
1, 2c2, c

2
2, 2c1c2, 2c1c

2
2, 2c

2
1c2, c

2
1c

2
2, η

2, 2c1η
2, c21η

2,−2η,−2c1η,−2c21η,−2c2η,−2c1c2η,−2c21c2η)′,

for any (c1, c2, η) 6= 0.

B.2 GEL estimation of the alternative model

For the alternative model (10), let V1n(θ1) = (In − τ1M1n)[(In − κ1W1n)Yn −X1nβ1], the moment vector can be

g1n(θ1) =
1

n
[V ′1n(θ1)P1n,1V1n(θ1)− σ2

1 tr(P1n,1), . . . , V ′1n(θ1)P1n,kp1V1n(θ1)− σ2
1 tr(P1n,kp1), Q′1nV1n(θ1)],

if elements of V1n were assumed to be i.i.d., where P1n,1,. . . , P1n,kp1 are n× n spatial weights matrices and Q1n is

an n × kq1 IV matrix. On the other hand, if elements of V1n were independent but heteroskedastic, the moment

vector for consistent estimation would be

g1n(θ1) =
1

n
[V ′1n(θ1)P1n,1V1n(θ1), . . . , V ′1n(θ1)P1n,kp1V1n(θ1), Q′1nV1n(θ1)],

where P1n,i’s now have zero diagonals. With the moment vector g1n(θ1), define g1n,i(θ1) in a way similar to gni(θ)

in Section 2 with the intension to capture the martingale difference property. The GEL estimators are

θ̂1n = arg minθ1∈Θ1
maxλ1∈Λ1

n∑
i=1

ρ(λ′1g1n,i(θ1)), and λ̂1n = arg maxλ1∈Λ1

n∑
i=1

ρ(λ′1g1n,i(θ̂1n)),

where Θ1 and Λ1 are compact.23 Suppose that there exist pseudo true values θ∗1n ∈ Θ1 and λ∗1n ∈ Λ1 such that

E

n∑
i=1

ρ(λ∗
′

1ng1n,i(θ
∗
1n)) = minθ1∈Θ1

maxλ1∈Λ1
E

n∑
i=1

ρ(λ′1g1n,i(θ1)).

Under regularity conditions, the pseudo true values would satisfy θ̂1n − θ∗1n = op(1) and λ̂1n − λ∗1n = op(1).

Assumption 15. (i) Θ1 and Λ1 are compact, and V includes all realizations of λ′1g1n,i(θ1) for all 1 ≤ i ≤ n, λ1 ∈ Λ1

and θ1 ∈ Θ1; (ii) supλ1∈Λ1,θ1∈Θ1

1
n |
∑n
i=1 ρ(λ′1g1n,i(θ1))−E

∑n
i=1 ρ(λ′1g1n,i(θ1))| = op(1); (iii) 1

n E
∑n
i=1 ρ(λ′1g1n,i(θ1))

is uniformly equicontinuous on (Θ1,Λ1); (iv) for each θ1 ∈ Θ1, the identifiably unique maximizer λ∗1n(θ1) ∈ Λ1 of

arg maxλ1∈Λ1
E
∑n
i=1 ρ(λ′1g1n,i(θ1)) is equicontinuous in θ1;24 (v) E

∑n
i=1 ρ(λ∗

′

1n(θ1)g1n,i(θ1)) has identifiably unique

minimizer θ∗1n ∈ Θ1.

23For analytical convenience, the parameter space of λ1 for the alternative model is assumed to be compact, unlike the case of the

null model where the compactness assumption can be avoided by the concavity of ρ(·).
24λ∗1n(θ1) is identifiably unique if for all ε > 0, lim supn→∞[maxλ1∈Bcn(ε)

1
n

E
∑n
i=1 ρ(λ′1g1n,i(θ1))− 1

n
E
∑n
i=1 ρ(λ∗

′
1n(θ1)g1n,i(θ1))] <

0, where Bcn(ε) is the complement in Λ1 of an open ball Bn(ε) centered at λ∗1n(θ1) with radius ε (White, 1994).
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The above assumption gives high level conditions similar to those in Hong et al. (2003).25 Some conditions

might be relaxed, e.g., the uniform convergence condition in Assumption 15(ii) follows by pointwise convergence

and stochastic equicontinuity, while the latter holds if the first order derivative of ρ(·) is bounded on its domain.

With Assumption 15, it justifies the convergence of the GEL estimates for the alternative model to their pseudo

true values as in Assumption 13, where the null model is the DGP.

Proposition B.1. Under Assumption 15, θ̂1n − θ∗1n = op(1) and λ̂1n − λ∗1n = op(1).

Appendix C Lemmas related to GMM and GEL estimation

C.1 General lemmas on martingale differences of linear and quadratic moments

Lemma C.1. Let unl = [unl,i] be n× 1 random vectors, Dnl(θ) = [dnl,ij(θ)] be n×n nonstochastic matrices whose

elements are functions of θ ∈ Θ, for l = 1, . . . , s, and bn(θ) = [bni(θ)] and cn(θ) = [cni(θ)] be n × 1 nonstochastic

vectors whose elements are functions of θ ∈ Θ such that supθ∈Θ ‖bn(θ)‖∞ = O(1) and supθ∈Θ ‖cn(θ)‖∞ = O(1).

Then,

(i) if Dn1(θ) is bounded in either row or column sum norm uniformly on Θ, supθ∈Θ
1
n |b
′
n(θ)Dn1(θ)cn(θ)| = O(1);

(ii) if sup1≤j≤n E |un1,j | = O(1), supθ∈Θ | 1nb
′
n(θ)un1| = Op(1);

(iii) if Dnl(θ)’s are bounded in row sum norm uniformly in θ ∈ Θ and there are al > 1 for l = 1, . . . , s such that

sup1≤l≤s sup1≤j≤n E |unl,j |al = O(1), then supθ∈Θ sup1≤i≤n |
∏s
l=1

∑n
j=1 dnl,ij(θ)unl,j | = Op(n

∑s
l=1

1
al ), and

supθ∈Θ
1
n |
∑n
i=1

∏s
l=1

∑n
j=1 dnl,ij(θ)unl,j | = Op(1) if

∑s
l=1

1
al
≤ 1;

(iv) if Dnl(θ)’s are bounded in row sum norm uniformly in θ ∈ Θ and there are al > 1 for l = 1, . . . , s such that

sup1≤l≤s sup1≤j≤n E |unl,j |al = O(1), then supθ∈Θ sup1≤i≤n E |
∏s
l=1

∑n
j=1 dnl,ij(θ)unl,j |

1/
∑s
l=1

1
al = O(1).

Proof. (i) If Dn1(θ) is bounded in row sum norm uniformly in θ ∈ Θ, then

sup
θ∈Θ

1

n
|b′n(θ)Dn1(θ)cn(θ)| ≤ sup

θ∈Θ

1

n
‖b′n(θ)‖∞‖Dn1(θ)‖∞‖cn(θ)‖∞ ≤ sup

θ∈Θ

1

n
‖b′n(θ)‖∞ sup

θ∈Θ
‖Dn1(θ)‖∞ sup

θ∈Θ
‖cn(θ)‖∞ = O(1).

Similarly, we can show the result when Dn1(θ) is bounded in column sum norm uniformly in θ ∈ Θ.

(ii) E(supθ∈Θ | 1nb
′
n(θ)un|) ≤ E(supθ∈Θ

1
n‖b
′
n(θ)‖1‖un‖1) = supθ∈Θ ‖b′n(θ)‖1( 1

n

∑n
i=1 E |uni|) = O(1).

(iii) There exists a finite cl > 0 such that 1
cl

+ 1
al

= 1. By Hölder’s inequality,

∣∣∣ n∑
j=1

dnl,ij(θ)unl,j

∣∣∣ ≤ n∑
j=1

|dnl,ij(θ)|
1
cl |dnl,ij(θ)|

1
al |unl,j |

25Among the regularity conditions, uniform convergence of the GEL objective function is assumed. With a misspecified model, the

proof strategy of Proposition 3.1 for a correctly specified model might not be applicable and also the GEL objective function is not a sum

of martingale differences. Thus, other low level conditions for uniform convergence might be needed. We assume uniform convergence

for simplicity.
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≤
( n∑
j=1

|dnl,ij(θ)|
)1/cl( n∑

j=1

|dnl,ij(θ)| · |unl,j |al
)1/al

≤ c1/cl
( s∑
l=1

n∑
j=1

|dnl,ij(θ)| · |unl,j |al
)1/al

,

where c = supn sup1≤l≤s supθ∈Θ sup1≤i≤n
∑n
j=1 |dnl,ij(θ)| <∞. Then,

∣∣∣ s∏
l=1

n∑
j=1

dnl,ij(θ)unl,j

∣∣∣ ≤ c∑s
l=1

1
cl

( s∑
l=1

n∑
j=1

|dnl,ij(θ)| · |unl,j |al
)∑s

l=1
1
al . (12)

Thus sup1≤i≤n |Πs
l=1

∑n
j=1 dnl,ij(θ)unl,j | ≤ c

∑s
l=1

1
cl (
∑s
l=1

∑n
j=1(sup1≤i≤n,1≤j≤n |dnl,ij(θ)|)|unl,j |al)

∑s
l=1

1
al ≤

c
∑s
l=1

1
cl (
∑s
l=1

∑n
j=1 |unl,j |al supθ∈Θ,1≤l≤s ‖Dnl(θ)‖∞)

∑s
l=1

1
al , where 1

n

∑s
l=1

∑n
j=1 |unl,j |al = Op(1) by Markov’s in-

equality. Hence the first result holds. When
∑s
l=1

1
al
≤ 1, by (12) and Jensen’s inequality, | 1n

∑n
i=1 Πs

l=1

∑n
j=1 dnl,ij(θ)unl,j | ≤

c
∑s
l=1

1
cl ( 1

n

∑n
i=1

∑s
l=1

∑n
j=1 |dnl,ij(θ)|·|unl,j |al)

∑s
l=1

1
al ≤ c

∑s
l=1

1
cl ( 1

n

∑s
l=1

∑n
j=1 |unl,j |al supθ∈Θ,1≤l≤s ‖Dnl(θ)‖∞)

∑s
l=1

1
al .

Thus the second result follows.

(iv) By (12),

sup
θ∈Θ

sup
1≤i≤n

E
∣∣∣ s∏
l=1

n∑
j=1

dnl,ij(θ)unl,j

∣∣∣1/∑s
l=1

1
al ≤ c(

∑s
l=1

1
cl

)/
∑s
l=1

1
al sup
θ∈Θ

sup
1≤i≤n

s∑
l=1

n∑
j=1

|dnl,ij(θ)|E |unl,j |al = O(1).

Hence the result holds.

The following lemma is useful to show orders of terms in Nagar-type expansions of GMM and GEL estimators.

In particular, it is used to prove Lemma C.7.

Lemma C.2. Suppose that vni’s are independent with zero mean and E(v2
ni) = σ2

ni for i = 1, . . . , n, and [anl,ij ],

[bnl,ij ], [cnl,ij ], [dnl,ij ], [enl,ij ], [fnl,ij ], [gnl,ij ] and [hnl,ij ] for l = 1, 2 are n×n nonstochastic matrices with bounded

row sum norms. Then,

(i) for r
(l)
ni = anl,ii(v

2
ni − σ2

ni) + bnl,iivni + (cnl,ii + dnl,iivni)
∑i−1
j=1 enl,ijvnj +

∑i−1
j=1 gnl,ijvnj

∑j−1
k=1 hnl,ikvnk with

l = 1 and 2, if supn sup1≤i≤n E(v4
ni) <∞, then 1

n

∑n
i=1 E(r

(1)
ni r

(2)
ni ) = O(1) and 1

n

∑n
i=1[r

(1)
ni r

(2)
ni −E(r

(1)
ni r

(2)
ni )] =

op(1);

(ii) for

r
(l)
ni = anl,ii(v

2
ni−σ2

ni)+bnl,iivni+(cnl,ii+dnl,iivni)

i−1∑
j=1

enl,ijvnj+

i−1∑
j=1

fnl,ij(v
2
nj−σ2

nj)+

i−1∑
j=1

gnl,ijvnj

j−1∑
k=1

hnl,ikvnk

with l = 1 and 2, if supn sup1≤i≤n E(v8
ni) <∞, then 1

n

∑n
i=1[r

(1)
ni r

(2)
ni − E(r

(1)
ni r

(2)
ni )] = Op(n

−1/2).

Proof. (i) We shall prove the results for the simplified r
(l)
ni = bnl,iivni + (cnl,ii + dnl,iivni)

∑i−1
j=1 enl,ijvnj+∑i−1

j=1 gnl,ijvnj
∑j−1
k=1 hnl,ikvnk for l = 1 and 2, and point out the results with the original r

(l)
ni ’s hold similarly. Since

E(r
(1)
ni r

(2)
ni ) = σ2

nibn1,iibn2,ii+(cn1,iicn2,ii+σ
2
nidn1,iidn2,ii)

∑i−1
j=1 en1,ijen2,ijσ

2
nj+

∑i−1
j=1 gn1,ijgn2,ijσ

2
nj

∑j−1
k=1 hn1,ikhn2,ikσ

2
nk,

sup
n

sup
1≤i≤n

|E(r
(1)
ni r

(2)
ni )| ≤ sup

n
sup

1≤i≤n

[
σ2
ni|bn1,iibn2,ii|+ (|cn1,iicn2,ii|+ σ2

ni|dn1,iidn2,ii|)
i−1∑
j=1

|en1,ijen2,ijσ
2
nj |
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+

i−1∑
j=1

|gn1,ijgn2,ijσ
2
nj |

j−1∑
k=1

|hn1,ikhn2,ikσ
2
nk|
]
< c,

for some constant c. Thus, 1
n

∑n
i=1 E(r

(1)
ni r

(2)
ni ) = O(1). To prove the convergence of 1

n

∑n
i=1[r

(1)
ni r

(2)
ni − E(r

(1)
ni r

(2)
ni )],

rewrite r
(1)
ni r

(2)
ni − E(r

(1)
ni r

(2)
ni ) = ∆n1,i + ∆n2,i, where

∆n1,i = bn1,iibn2,ii(v
2
ni − σ2

ni) + [bn1,iicn2,iivni + bn1,iidn2,ii(v
2
ni − σ2

ni)]

i−1∑
j=1

en2,ijvnj

+ [bn2,iicn1,iivni + bn2,iidn1,ii(v
2
ni − σ2

ni)]

i−1∑
j=1

en1,ijvnj

+ bn1,iivni

i−1∑
j=1

gn2,ijvnj

j−1∑
k=1

hn2,ikvnk + bn2,iivni

i−1∑
j=1

gn1,ijvnj

j−1∑
k=1

hn1,ikvnk

+ [(cn1,iidn2,ii + cn2,iidn1,ii)vni + dn1,iidn2,ii(v
2
ni − σ2

ni)]
(i−1∑
j=1

en1,ijen2,ij(v
2
nj − σ2

nj)

+

i−1∑
j=1

j−1∑
k=1

(en1,ijen2,ik + en2,ijen1,ik)vnjvnk

)

+ [(cn1,iidn2,ii + cn2,iidn1,ii)vni + dn1,iidn2,ii(v
2
ni − σ2

ni)]

i−1∑
j=1

en1,ijen2,ijσ
2
nj

+ dn1,iivni

i−1∑
j=1

en1,ijgn2,ij(v
2
nj − σ2

nj)

j−1∑
k=1

hn2,ikvnk + dn2,iivni

i−1∑
j=1

en2,ijgn1,ij(v
2
nj − σ2

nj)

j−1∑
k=1

hn1,ikvnk

+ dn1,iivni

i−1∑
j=1

gn2,ijvnj

j−1∑
k=1

en1,ikhn2,ik(v2
nk − σ2

nk) + dn2,iivni

i−1∑
j=1

gn1,ijvnj

j−1∑
k=1

en2,ikhn1,ik(v2
nk − σ2

nk)

+ dn1,iivni

i−1∑
j=1

en1,ijgn2,ijσ
2
nj

j−1∑
k=1

hn2,ikvnk + dn2,iivni

i−1∑
j=1

en2,ijgn1,ijσ
2
nj

j−1∑
k=1

hn1,ikvnk

+ dn1,iivni

i−1∑
j=1

gn2,ijvnj

j−1∑
k=1

en1,ikhn2,ikσ
2
nk + dn2,iivni

i−1∑
j=1

gn1,ijvnj

j−1∑
k=1

en2,ikhn1,ikσ
2
nk

+ dn1,iivni

i−1∑
j=1

j−1∑
k=1

k−1∑
l=1

vnjvnkvnl(en1,ijgn2,ikhn2,il + gn2,ijen1,ikhn2,il + gn2,ijhn2,iken1,il)

+ dn2,iivni

i−1∑
j=1

j−1∑
k=1

k−1∑
l=1

vnjvnkvnl(en2,ijgn1,ikhn1,il + gn1,ijen2,ikhn1,il + gn1,ijhn1,iken2,il),

and

∆n2,i = bn1,iidn2,iiσ
2
ni

i−1∑
j=1

en2,ijvnj + bn2,iidn1,iiσ
2
ni

i−1∑
j=1

en1,ijvnj

+ (cn1,iicn2,ii + σ2
nidn1,iidn2,ii)

(i−1∑
j=1

en1,ijen2,ij(v
2
nj − σ2

nj) +

i−1∑
j=1

j−1∑
k=1

(en1,ijen2,ik + en2,ijen1,ik)vnjvnk

)

+ cn1,ii

i−1∑
j=1

en1,ijgn2,ij(v
2
nj − σ2

nj)

j−1∑
k=1

hn2,ikvnk + cn2,ii

i−1∑
j=1

en2,ijgn1,ij(v
2
nj − σ2

nj)

j−1∑
k=1

hn1,ikvnk

+ cn1,ii

i−1∑
j=1

gn2,ijvnj

j−1∑
k=1

en1,ikhn2,ik(v2
nk − σ2

nk) + cn2,ii

i−1∑
j=1

gn1,ijvnj

j−1∑
k=1

en2,ikhn1,ik(v2
nk − σ2

nk)
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+ cn1,ii

i−1∑
j=1

en1,ijgn2,ijσ
2
nj

j−1∑
k=1

hn2,ikvnk + cn2,ii

i−1∑
j=1

en2,ijgn1,ijσ
2
nj

j−1∑
k=1

hn1,ikvnk

+ cn1,ii

i−1∑
j=1

gn2,ijvnj

j−1∑
k=1

en1,ikhn2,ikσ
2
nk + cn2,ii

i−1∑
j=1

gn1,ijvnj

j−1∑
k=1

en2,ikhn1,ikσ
2
nk

+ cn1,ii

i−1∑
j=1

j−1∑
k=1

k−1∑
l=1

vnjvnkvnl(en1,ijgn2,ikhn2,il + gn2,ijen1,ikhn2,il + gn2,ijhn2,iken1,il)

+ cn2,ii

i−1∑
j=1

j−1∑
k=1

k−1∑
l=1

vnjvnkvnl(en2,ijgn1,ikhn1,il + gn1,ijen2,ikhn1,il + gn1,ijhn1,iken2,il)

+

i−1∑
j=1

gn1,ijgn2,ij(v
2
nj − σ2

nj)

j−1∑
k=1

hn1,ikhn2,ik(v2
nk − σ2

nk)

+

i−1∑
j=1

gn1,ijgn2,ijσ
2
nj

j−1∑
k=1

hn1,ikhn2,ik(v2
nk − σ2

0) +

i−1∑
j=1

gn1,ijgn2,ij(v
2
nj − σ2

0)

j−1∑
k=1

hn1,ikhn2,ikσ
2
nk

+

i−1∑
j=1

gn1,ijgn2,ij(v
2
nj − σ2

nj)

j−1∑
k=1

k−1∑
l=1

(hn1,ikhn2,il + hn1,ilhn2,ik)vnkvnl

+

i−1∑
j=1

gn1,ijgn2,ijσ
2
nj

j−1∑
k=1

k−1∑
l=1

(hn1,ikhn2,il + hn1,ilhn2,ik)vnkvnl

+

i−1∑
j=1

gn2,ijvnj

j−1∑
k=1

gn1,ikhn2,ik(v2
nk − σ2

nk)

k−1∑
l=1

hn1,ilvnl

+

i−1∑
j=1

gn1,ijvnj

j−1∑
k=1

gn2,ikhn1,ik(v2
nk − σ2

nk)

k−1∑
l=1

hn2,ilvnl

+

i−1∑
j=1

gn2,ijvnj

j−1∑
k=1

gn1,ikhn2,ikσ
2
nk

k−1∑
l=1

hn1,ilvnl +

i−1∑
j=1

gn1,ijvnj

j−1∑
k=1

gn2,ikhn1,ikσ
2
nk

k−1∑
l=1

hn2,ilvnl

+

i−1∑
j=1

j−1∑
k=1

(gn1,ijgn2,ik + gn2,ijgn1,ik)vnjvnk

k−1∑
l=1

hn1,ilhn2,il(v
2
nl − σ2

nl)

+

i−1∑
j=1

j−1∑
k=1

(gn1,ijgn2,ik + gn2,ijgn1,ik)vnjvnk

k−1∑
l=1

hn1,ilhn2,ilσ
2
nl

+

i−1∑
j=1

j−1∑
k=1

k−1∑
l=1

l−1∑
m=1

vnjvnkvnlvnm(gn1,ijhn1,ikgn2,ilhn2,im + gn1,ijgn2,ikhn1,ilhn2,im

+ gn1,ijgn2,ikhn2,ilhn1,im + gn2,ijgn1,ikhn1,ilhn2,im + gn2,ijgn1,ikhn2,ilhn1,im + gn2,ijhn2,ikgn1,ilhn1,im).

Note that ∆n1,i’s are martingale differences, and ∆n2,i only involves vn1, . . . , vn,i−1. Each term in ∆n1,i has

the form Πs
l=1

∑n
j=1 pnl,ij(θ)unl,j in Lemma C.1(iv). Under the assumption that supn sup1≤i≤n E |v4

ni| < ∞, by

Lemma C.1(iv), ∆n1,i’s are uniformly integrable. Thus, by the martingale law of large numbers in Davidson

(1994, p. 299, Theorem 19.7), 1
n

∑n
i=1 ∆n1,i = op(1). This argument still holds for the original r

(1)
ni and r

(2)
ni with

the assumption supn sup1≤i≤n E |v4
ni| < ∞. For ∆n2,i, because each term in its expression has mean zero and is

uncorrelated with the corresponding one in ∆n2,s for s 6= i, the sample average over i of each term has a variance

27



of order O(n−1) under the assumption supn sup1≤i≤n E(v4
ni) <∞. For example,

var(
1

n

n∑
i=1

i−1∑
j=1

j−1∑
k=1

k−1∑
l=1

l−1∑
m=1

vnjvnkvnlvnmgn1,ijhn1,ikgn2,ilhn2,im)

=
1

n2

n∑
i=1

i−1∑
j=1

g2
n1,ijσ

2
nj

j−1∑
k=1

h2
n1,ikσ

2
nk

k−1∑
l=1

g2
n2,ilσ

2
nl

l−1∑
m=1

h2
n2,imσ

2
nm

= O(n−1).

Thus, 1
n

∑n
i=1 ∆n2,i = Op(n

−1/2). With the original r
(1)
ni and r

(2)
ni , the argument still applies with the assumption

supn sup1≤i≤n E(v4
ni) <∞. Hence, 1

n

∑n
i=1[r

(1)
ni r

(2)
ni − E(r

(1)
ni r

(2)
ni )] = op(1).

(ii) We decompose r
(1)
ni r

(2)
ni − E(r

(1)
ni r

(2)
ni ) = ∆n1,i + ∆n2,i in a way similar to that in (i). With the assumption

supn sup1≤i≤n E(v8
ni) <∞, instead of using a martingale CLT for 1

n

∑n
i=1 ∆n1,i, we may prove that 1

n

∑n
i=1 ∆n1,i =

Op(n
−1/2) by showing that the sample average of each term in its expression has a variance of order O(n−1). Thus,

1
n

∑n
i=1 ∆n1,i = Op(n

−1/2). Similar to (i), 1
n

∑n
i=1 ∆n2,i = Op(n

−1/2). Hence the result holds.

C.2 Lemmas related to the GMM

All lemmas below accommodate both the homoskedastic and heteroskedastic cases for the SARAR model (1), where

θ = (τ, κ, β′, σ2)′ for the homoskedastic case, and θ = (τ, κ, β′)′ for the heteroskedastic case. Let kθ be the dimension

of θ. The next lemma shows the consistency of an estimator of the covariance of two linear-quadratic forms, where

the estimator is formed with estimated martingale differences. For a square matrix A, let tril(A) be the strictly

lower triangle matrix formed by the elements below the diagonal of A.

Lemma C.3. Suppose that An1(θ) = [an1,ij(θ)] and An2(θ) = [an2,ij(θ)] are nonstochastic symmetric square

matrices of dimension n, bn1(θ) = [bn1,i(θ)] and bn2(θ) = [bn2,i(θ)] are nonstochastic column vectors of dimension

n, and their elements are functions of θ ∈ Θ. Assume that each element of An1(θ), An2(θ), bn1(θ) and bn2(θ) is

differentiable with respect to θ, the sequences An1(θ), An2(θ), ∂An1(θ)
∂θj

and ∂An2(θ)
∂θj

for j = 1, . . . , kθ are bounded in

both row and column sum norms, and bn1(θ), bn2(θ), ∂bn1(θ)
∂θj

and ∂bn2(θ)
∂θj

for j = 1, . . . , kθ are bounded in row sum

norm, uniformly on Θ.

Let ξnr,i(θ) = anr,ii(θ)[v
2
ni(θ)− σ2] + 2vni(θ)

∑i−1
j=1 anr,ij(θ)vnj(θ) + bnr,i(θ)vni(θ) for r = 1, 2 if the disturbances

vni’s are homoskedastic, and ξnr,i(θ) = 2vni(θ)
∑i−1
j=1 anr,ij(θ)vnj(θ) + bnr,i(θ)vni(θ) for r = 1, 2 if the disturbances

vni’s are heteroskedastic. Assume that θ̂n = θ0 + op(1). Then, either under Assumptions 1(i) and 2–4 in the ho-

moskedastic case, or under Assumptions 1(ii) and 2–4 with diag(An1(θ)) = diag(An2(θ)) = 0 in the heteroskedastic

case,
1

n

n∑
i=1

ξn1,i(θ̂n)ξn2,i(θ̂n) =
1

n

n∑
i=1

E[ξn1,i(θ0)ξn2,i(θ0)] + op(1).

Proof. By the mean value theorem,

1

n

n∑
i=1

ξn1,i(θ̂n)ξn2,i(θ̂n) =
1

n

n∑
i=1

ξn1,i(θ0)ξn2,i(θ0) +

kθ∑
l=1

1

n

n∑
i=1

[∂ξn1,i(θ̌n)

∂θl
ξn2,i(θ̌n) + ξn1,i(θ̌n)

∂ξn2,i(θ̌n)

∂θl

]
(θ̂nl − θ0l),
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where θ̌n lies between θ0 and θ̂n. We shall show that the second term on the r.h.s. of the above equation goes to

zero in probability. Note that ξnr,i(θ) = anr,ii(θ)[(e
′
niVn(θ))2−σ2]+2e′niVn(θ)e′nitril[An(θ)]Vn(θ)+bnr,i(θ)e

′
niVn(θ),

where eni is the ith unit column vector of dimension n, and tril[An(θ)] and ∂tril[An(θ)]
∂θl

for l = 1, . . . , p are bounded

in both row and column sum norms uniformly on Θ. Since Yn = S−1
n Xnβ0 + S−1

n R−1
n Vn,

Vn(θ) = [Rn + (τ0 − τ)Mn]{[Sn + (κ0 − κ)Wn](S−1
n Xnβ0 + S−1

n R−1
n Vn)−Xnβ}

= RnXn(β0 − β) + (κ0 − κ)RnWnS
−1
n Xnβ0 +MnXn(β0 − β)(τ0 − τ) + (κ0 − κ)(τ0 − τ)MnWnS

−1
n Xnβ0

+ (κ0 − κ)RnWnS
−1
n R−1

n Vn + (τ0 − τ)MnR
−1
n Vn + (τ0 − τ)(κ0 − κ)MnWnS

−1
n R−1

n Vn + Vn,

(13)

which is linear in Vn and quadratic in θ. In (13), terms that do not involve Vn have uniformly bounded elements,

and terms that involve Vn have matrices in front of Vn bounded in both row and column sum norms. We can

expand 1
n

∑n
i=1

[∂ξn1,i(θ)
∂θl

ξn2,i(θ) + ξn1,i(θ)
∂ξn2,i(θ)
∂θl

]
by using (13) such that it is a sum of terms that have the

forms in Lemma C.1 with unl,i = vni. Then 1
n

∑n
i=1

[∂ξn1,i(θ)
∂θl

ξn2,i(θ) + ξn1,i(θ)
∂ξn2,i(θ)
∂θl

]
= Op(1) uniformly in a

neighborhood of θ0. Since θ̂n = θ0 + op(1),
∑kθ
l=1

1
n

∑n
i=1

[∂ξn1,i(θ̌n)
∂θl

ξn2,i(θ̌n) + ξn1,i(θ̌n)
∂ξn2,i(θ̌n)

∂θl

]
= Op(1). Thus,

1

n

n∑
i=1

ξn1,i(θ̂n)ξn2,i(θ̂n) =
1

n

n∑
i=1

ξn1,i(θ0)ξn2,i(θ0) + op(1).

By Lemma C.2(i), 1
n

∑n
i=1 ξn1,i(θ0)ξn2,i(θ0) = 1

n

∑n
i=1 E[ξn1,i(θ0)ξn2,i(θ0)] + op(1). Hence, the result in the lemma

follows.

The znl,i(θ), gni(θ) and gn(θ) have different expressions depending on variances of disturbances. In the ho-

moskedastic case, gn(θ), znl,i(θ) and gni(θ) are given in, respectively, (2), (3) and (4); in the heteroskedastic case,

gn(θ), znl,i(θ) and gni(θ) are given in, respectively, (2), (3) and (4) with pnl,ii = 0 for i = 1, . . . , n and l = 1, . . . , kp.

Lemma C.4. Under Assumptions 1–3, supθ∈Θ sup1≤i≤n ‖gni(θ)‖ = Op(n
2/(4+ι)).

Proof. The expression for gni(θ) is given in (4), in which ωnl,i(θ) = pnl,ii[(e
′
niVn(θ))2−σ2]+2e′niVn(θ)e′nitril(Pnl)Vn(θ)

in the homoskedastic case, and ωnl,i(θ) = 2e′niVn(θ)e′nitril(Pnl)Vn(θ), where Vn(θ) is linear in Vn and quadratic in

θ in (13), and tril(Pnl) is bounded in both row and column sum norms. Using the expression of Vn(θ) in (13), each

element of gni(θ) can be expanded as a polynomial of θ whose coefficients have the form Πs
l=1

∑n
j=1 dnl,ij(θ)unl,j

with unl,j = vnj and s = 1 or 2 in Lemma C.1(iii). Thus, the result follows by Lemma C.1(iii).

Let G
(i)
n (θ) = ∂Gn(θ)

∂θi
, G

(ij)
n (θ) = ∂2Gn(θ)

∂θi∂θj
, G

(ijk)
n (θ) = ∂3Gn(θ)

∂θi∂θj∂θk
and G

(j)
ni (θ) = ∂Gni(θ)

∂θj
, where Gni(θ) = ∂gni(θ)

∂θ′ .

Lemma C.5. Under Assumptions 1–3, supθ∈Θ
1
n

∑n
i=1 ‖gni(θ)‖2, supθ∈Θ

1
n

∑n
i=1 ‖Gni(θ)‖, supθ∈Θ

1
n

∑n
i=1 ‖G

(j)
ni (θ)‖,

supθ∈Θ ‖gn(θ)‖, supθ∈Θ ‖Gn(θ)‖, sup1≤i≤p supθ∈Θ ‖G
(i)
n (θ)‖, sup1≤i,j≤p supθ∈Θ ‖G

(ij)
n (θ)‖, and sup1≤i,j,k≤p supθ∈Θ ‖G

(ijk)
n (θ)‖

are all of order Op(1).

Proof. By (13) and the proof of Lemma C.4, we can expand 1
n

∑n
i=1 |ωnl,i(θ)|2 and 1

n

∑n
i=1 |vni(θ)|2 as polynomials

of θ. Since gn(θ) is quadratic in Vn(θ), each element of gn(θ) can be expanded as a polynomial of θ. Each coefficient

of those polynomials is Op(1) by Lemma C.1. Hence the results hold.
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Let g
(k)
ni (θ) = ∂gni(θ)

∂θk
, g

(kl)
ni (θ) = ∂2gni(θ)

∂θk∂θl
, g

(klr)
ni (θ) = ∂3gni(θ)

∂θk∂θl∂θr
, and g

(klrs)
ni (θ) = ∂4gni(θ)

∂θk∂θl∂θr∂θs
.

Lemma C.6. Under Assumptions 1–3, supθ∈Θ ‖ 1
n

∑n
i=1 gni(θ)g

′
ni(θ)‖, supθ∈Θ ‖ 1

n

∑n
i=1 g

(k)
ni (θ)g′ni(θ)‖,

supθ∈Θ ‖ 1
n

∑n
i=1 g

(kl)
ni (θ)g′ni(θ)‖, supθ∈Θ ‖ 1

n

∑n
i=1 g

(k)
ni (θ)g

(l)′

ni (θ)‖, supθ∈Θ ‖ 1
n

∑n
i=1 g

(klr)
ni (θ)g′ni(θ)‖,

supθ∈Θ ‖ 1
n

∑n
i=1 g

(kl)
ni (θ)g

(r)′

ni (θ)‖, supθ∈Θ ‖ 1
n

∑n
i=1 g

(klrs)
ni (θ)g′ni(θ)‖, supθ∈Θ ‖ 1

n

∑n
i=1 g

(klr)
ni (θ)g

(s)′

ni (θ)‖ and

supθ∈Θ ‖ 1
n

∑n
i=1 g

(kl)
ni (θ)g

(rs)′

ni (θ)‖ have order Op(1).

Proof. As in the proof of Lemma C.5, 1
n

∑n
i=1 gni(θ)g

′
ni(θ) can be expanded as a polynomial of θ with coefficients

being Op(1) by Lemma C.1. Then the results in the lemma follow.

Lemma C.7. Under Assumptions 1–3, (i) 1
n

∑n
i=1 gni(θ0)g′ni(θ0) = Ω̄n + op(1), (ii) 1

n

∑n
i=1[E g

(k)
ni (θ0)]g′ni(θ0) =

Op(n
−1/2), and (iii) 1

n

∑n
i=1 E[g

(k)
ni (θ0)g′ni(θ0)] = O(1); under Assumptions 1–3 and 9, (iv) 1

n

∑n
i=1 gni(θ0)g′ni(θ0) =

Ω̄n +Op(n
−1/2), and (v) 1

n

∑n
i=1

{
g

(k)
ni (θ0)g′ni(θ0)− E[g

(k)
ni (θ0)g′ni(θ0)]

}
= Op(n

−1/2), for k = 1, . . . , kθ.

Proof. Since Pni’s are symmetric, each element of gni(θ0) has the linear-quadratic form an,ii(v
2
ni−σ2

0)+2vni
∑i−1
j=1 an,ijvnj+

bnivni or 2vni
∑i−1
j=1 an,ijvnj + bnivni, where an,ij is the (i, j)th element of a nonstochastic matrix with bounded row

and column sum norms, and bni for i = 1, . . . , n are bounded uniformly in i. Then (i) and (iv) follow respectively

from Lemma C.2(i) and Lemma C.2(ii). It remains to show (ii), (iii) and (v).

The lth element of g
(k)
ni (θ) for 1 ≤ l ≤ kp is

∂ωnl,i(θ)
∂θk

= 2pnl,iivni(θ)
∂vni(θ)
∂θk

−pnl,ii ∂σ
2

∂θk
+2
∑i−1
j=1 pnl,ij

[
vni(θ)

∂vnj(θ)
∂θk

+

vnj(θ)
∂vni(θ)
∂θk

]
in the homoskedastic case, and

∂ωnl,i(θ)
∂θk

= 2
∑i−1
j=1 pnl,ij

[
vni(θ)

∂vnj(θ)
∂θk

+ vnj(θ)
∂vni(θ)
∂θk

]
in the het-

eroskedastic case; and the last kq elements are Qni
∂vni(θ)
∂θk

. By (13), ∂vni(θ0)
∂θk

has the form ank,i +
∑n
r=1 bnk,irvnr,

where ank,i is bounded uniformly in k and i, and bnk,ir is the (i, r)th element of an n× n matrix bounded in both

row and column sum norms. Hence, every element of g
(k)
ni (θ0) has the form

Ξnk,i = 2pnl,iivni
(
ank,i +

n∑
s=1

bnk,isvns
)
− pnl,ii

∂σ2

∂θk
+ 2

i−1∑
j=1

pnl,ij
[
vni
(
ank,j +

n∑
s=1

bnk,jsvns
)

+ vnj
(
ank,i +

n∑
s=1

bnk,isvns
)]
.

Thus, E(Ξnk,i) = 2pnl,iibnk,iiσ
2
ni − pnl,ii ∂σ

2

∂θk
+ 2

∑i−1
j=1 pnl,ij(bnk,jiσ

2
ni + bnk,ijσ

2
nj) is bounded uniformly in i and k.

Note that the variance of the term in (ii) only involves the first fourth moments of vnj , then the result (ii) follows

by Lemma C.2(ii).

Below we shall prove (iii) in the lemma and (vi) 1
n

∑n
i=1

{
(g

(k)
ni (θ0)−E[g

(k)
ni (θ0)])g′ni(θ0)−E[g

(k)
ni (θ0)g′ni(θ0)]

}
=

Op(n
−1/2). The result (v) in the lemma follows by (iii) and (vi). Write Ξnk,i − E(Ξnk,i) = Ξ1nk,i + Ξ2nk,i, where

Ξ1nk,i = 2pnl,iiank,ivni + 2pnl,iivni

i−1∑
s=1

bnk,isvns + 2pnl,iibnk,ii(v
2
ni − σ2

ni) + 2vni

i−1∑
j=1

pnl,ijank,j

+ 2vni

i−1∑
j=1

pnl,ij

i−1∑
s=1

bnk,jsvns + 2(v2
ni − σ2

ni)

i−1∑
j=1

pnl,ijbnk,ji + 2ank,i

i−1∑
j=1

pnl,ijvnj + 2

i−1∑
j=1

pnl,ijvnj

j−1∑
s=1

bnk,isvns

+ 2

i−1∑
j=1

pnl,ijbnk,ij(v
2
nj − σ2

nj) + 2

i−1∑
j=1

pnl,ijvnj

i−1∑
s=j+1

bnk,isvns + 2bnk,iivni

i−1∑
j=1

pnl,ijvnj ,

and

Ξ2nk,i = 2pnl,iivni

( n∑
s=i+1

bnk,isvns

)
+ 2vni

(i−1∑
j=1

pnl,ij

n∑
s=i+1

bnk,jsvns

)
+ 2

i−1∑
j=1

pnl,ijvnj

n∑
s=i+1

bnk,isvns
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= 2pnl,iivni

( n∑
s=i+1

bnk,isvns

)
+ 2vni

( n∑
s=i+1

vns

i−1∑
j=1

pnl,ijbnk,js

)
+ 2

n∑
s=i+1

bnk,isvns

i−1∑
j=1

pnl,ijvnj .

Note that Ξ1nk,i has the form of r
(1)
ni in Lemma C.2(ii) because

2

i−1∑
j=1

pnl,ijvnj

i−1∑
s=j+1

bnk,isvns = 2

i−1∑
s=1

bnk,isvns

s−1∑
j=1

pnl,ijvnj .

Thus 1
n

∑n
i=1 E[Ξ1nk,ig

′
ni(θ0)] = O(1) and 1

n

∑n
i=1 Ξ1nk,ig

′
ni(θ0)− 1

n

∑n
i=1 E[Ξ1nk,ig

′
ni(θ0)] = Op(n

−1/2). For Ξ2nk,i,

we shall show that 1
n

∑n
i=1 E[Ξ2nk,ig

′
ni(θ0)] = 0 and 1

n

∑n
i=1 Ξ2nk,ig

′
ni(θ0) − 1

n

∑n
i=1 E[Ξ2nk,ig

′
ni(θ0)] = Op(n

−1/2).

Each term in Ξ2nk,i has the form (
∑n
s=i+1 b

∗
nk,isvns)(

∑i
j=1 p

∗
nl,ijvnj), where b∗nk,is is the (i, s)th element of a general

n×n matrix with bounded row and column sum norms uniformly in k. The term
∑i
j=1 p

∗
nl,ijvnj is a special form of

r
(1)
ni in Lemma C.2(ii). Compared with the form of r

(1)
ni r

(2)
ni in Lemma C.2(ii), each element of Ξ2nk,ig

′
ni(θ0) has the

additional term
∑n
s=i+1 b

∗
nk,isvns. In the proof of Lemma C.2(ii), If we multiply each term in r

(1)
ni r

(2)
ni − E(r

(1)
ni r

(2)
ni )

by
∑n
s=i+1 b

∗
nk,isvns, then the obtained terms have zero expected values and the sample average of those terms

over i still has the order Op(n
−1/2), because the summation

∑n
s=i+1 b

∗
nk,isvns starts from s = i + 1. Hence,

E(Ξ2nk,ir
(2)
ni ) = 0 and 1

n

∑n
i=1[Ξ2nk,ig

′
ni(θ0)− E(Ξ2nk,ig

′
ni(θ0))] = Op(n

−1/2). Then (iii) and (vi) follow.

The first order condition for the initial GMM can be written as

0 = −
(

G′n(θ̃n)λ̃n

gn(θ̃n) + Ĵnλ̃n

)
, (14)

where λ̃n = −Ĵ−1
n gn(θ̃n). Let γ̃n = (θ̃′n, λ̃

′
n)′ and γ0 = (θ′0, 01×kg )′. Recall in the following Lemma, Ḡn is the

expected value of Gn, J̄n is in Assumption 7, and ekg,j is the jth column of the kg × kg identity matrix.

Lemma C.8. Under Assumptions 1(i) (or (ii)), 2–4, 7, 8 and 11 (or 12),
√
n(γ̃n − γ0) = ξ̃n + n−1/2ψ̃n +

Op(n
−1), where ξ̃n = −(K̄J

n )−1
(

0√
ngn(θ0)

)
= Op(1) and ψ̃n = −(K̄J

n )−1

 0
√
n(G′n − Ḡ′n)

√
n(Gn − Ḡn) ξJn

 ξ̃n −

1
2 (K̄J

n )−1
∑kθ+kg
i=1 ξ̃niK̄niξ̃n = Op(1), where K̄J

n =

 0 Ḡ′n

Ḡn J̄n

, K̄ni =

 0 Ḡ
(i)′

n

Ḡ
(i)
n 0

 for 1 ≤ i ≤ kθ, and K̄ni =

[Ḡ
(1)′

n ekg,i−kθ , . . . , Ḡ
(kθ)′

n ekg,i−kθ ] 0

0 0

 for kθ + 1 ≤ i ≤ kθ + kg.

Proof. By Proposition A.1, θ̃n = θ0 + Op(n
−1/2). Then by the mean value theorem and Lemma C.5, gn(θ̃n) =

Op(n
−1/2). Thus λ̃n = −Ĵ−1

n gn(θ̃n) = Op(n
−1/2). It follows that γ̃n−γ0 = Op(n

−1/2). Together with Assumption 7,

the first order condition (14) for the initial GMM is equal to

0 = −
(

G′n(θ̃n)λ̃n

gn(θ̃n) + (J̄n + n−1/2ξJn)λ̃n

)
+Op(n

−3/2).

By a second order Taylor expansion of the first vector on the right hand side at γ0, and using Lemma C.5,

0 = −
(

0

gn(θ0)

)
−KJ

n (γ̃n − γ0)− 1

2

kθ+kg∑
i=1

(γ̃ni − γ0i)Kni(γ̃n − γ0) +Op(n
−3/2),
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where KJ
n =

 0 G′n(θ0)

Gn(θ0) J̄n + n−1/2ξJn

, Kni =

 0 G
(i)′

n (θ0)

G
(i)
n (θ0) 0

 for 1 ≤ i ≤ kθ, and

Kni =

[G
(1)′

n (θ0)ekg,i−kθ , . . . , G
(kθ)′

n (θ0)ekg,i−kθ ] 0

0 0

 for kθ + 1 ≤ i ≤ kθ + kg. As K̄J
n = E(KJ

n ) = O(1) and

K̄ni = E(Kni) = O(1) for all i = 1, . . . , kθ + kg,

√
n(γ̃n−γ0) = −(K̄J

n )−1

(
0√

ngn(θ0)

)
−(K̄J

n )−1(KJ
n−K̄J

n )
√
n(γ̃n−γ0)−

√
n

2
(K̄J

n )−1

kθ+kg∑
i=1

(γ̃ni−γ0i)Kni(γ̃n−γ0)+Op(n
−1).

(15)

As every element of gn(θ) is a linear-quadratic form of Vn(θ), which is linear in Vn by (13), so it is easily seen that

Gn(θ0)− Ḡn = Op(n
−1/2) and G

(i)
n (θ0)− Ḡ(i)

n (θ0) = Op(n
−1/2). It follows that KJ

n − K̄J
n = Op(n

−1/2) and Kni −

K̄ni = Op(n
−1/2). Hence,

√
n(γ̃n − γ0) = ξ̃n + Op(n

−1/2), where ξ̃n = −(K̄J
n )−1

(
0√

ngn(θ0)

)
= Op(1). Substituting

Kni − K̄ni = Op(n
−1/2) and

√
n(γ̃n − γ0) = ξ̃n +Op(n

−1/2) into (15) yields
√
n(γ̃n − γ0) = ξ̃n + ψ̃n +Op(n

−1).

Lemma C.9. Under Assumptions 1(i) (or (ii)), 2–3, 7, 8 and 11 (or 12), Ωn(θ̃n) = Ω̄n+op(1); under the additional

Assumption 9,
√
n[Ωn(θ̃n)− Ω̄n] = ξΩ

n +Op(n
−1/2),

where ξΩ
n =

√
n[ 1
n

∑n
i=1 gni(θ0)g′ni(θ0)− Ω̄n] +

∑kθ
k=1{

1
n

∑n
i=1 E[gni(θ0)g

(k)′

ni (θ0) + g
(k)
ni (θ0)g′ni(θ0)]}ξ̃nk = Op(1).

Proof. By a first order Taylor expansion and Lemma C.6,

Ωn(θ̃n) = Ω̄n +
( 1

n

n∑
i=1

gni(θ0)g′ni(θ0)− Ω̄n

)
+

kθ∑
k=1

{ 1

n

n∑
i=1

[gni(θ0)g
(k)′

ni (θ0) + g
(k)
ni (θ0)g′ni(θ0)]

}
(θ̃nk − θ0k) +Op(n

−1).

Under Assumptions 1(i) (or (ii)), 2–3, 7 and 11 (or 12), by Lemma C.7(i), the second term on the r.h.s. of the

above equation is op(1); by Lemma C.6(iii), the third term is op(1). Thus the first result follows. The second

result requires the existence of higher order moments of disturbances. Substituting the expression for θ̃n − θ0 in

Lemma C.8 into the above equation and keeping only terms with order Op(n
−1/2) by using Lemma C.7, we obtain

the result.

C.3 Lemmas related to the GEL

Lemma C.10. Under Assumptions 1–3, for any ζ with ζ > 2
4+ι and Λn = {λ : ‖λ‖ ≤ n−ζ}, supθ∈Θ,λ∈Λn,1≤i≤n|λ

′gni(θ)|
p−→

0, and w.p.a.1., Λn ⊂ Λn(θ) for all θ ∈ Θ.

Proof. Let bn = sup1≤i≤n supθ∈Θ ‖gni(θ)‖. By Lemma C.4, bn = Op(n
2/(4+ι)). Then by the Cauchy-Schwarz

inequality, supθ∈Θ,λ∈Λn,1≤i≤n|λ
′gni(θ)| ≤ n−ζbn = Op(n

2/(4+ι)−ζ) = op(1). Given the first conclusion, w.p.a.1.

λ′gni(θ) ∈ V for all 1 ≤ i ≤ n, θ ∈ Θ and ‖λ‖ ≤ n−ζ .

Denote %n(θ, λ) = 1
n

∑n
i=1 ρ(λ′gni(θ)) for the next lemmas for simplicity.

Lemma C.11. Under Assumptions 1–3, 5 and 6, if θ̄n
p−→ θ0, θ̄n ∈ Θ, and gn(θ̄n) = Op(n

−1/2), then λ̄n =

arg maxλ∈Λn(θ̄n)%n(θ̄n, λ) exists w.p.a.1., λ̄n = Op(n
−1/2), and supλ∈Λn(θ̄n) %n(θ̄n, λ) ≤ ρ(0) +Op(n

−1).
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Proof. As in the proof of Lemma C.9, 1
n

∑n
i=1 gni(θ̄n)g′ni(θ̄n) = Ω̄n + op(1). Since limn→∞ Ω̄n is nonsingular, its

smallest eigenvalue is bounded away from zero for large enough n. Let Λn = {λ : ‖λ‖ ≤ n−ζ} for some 2
4+ι < ζ < 1

2 .

By Lemma C.10 and twice continuous differentiability of ρ(v) in a neighborhood of zero, %n(θ̄n, λ) is continuously

differentiable on Λn w.p.a.1., then λ̃n = arg maxλ∈Λn%n(θ̄n, λ) exists w.p.a.1. Furthermore, for any λ̇n between λ̃n

and 0, by Lemma C.10 and ρ1 = −1,max1≤i≤n ρ1(λ̇′ngni(θ̄n)) < − 1
2 , w.p.a.1. Then by a first order Taylor expansion

of %n(θ̄n, λ̃n) at λ = 0, there is λ̇n between λ̃n and 0, such that

ρ(0) = %n(θ̄n, 0) ≤ %n(θ̄n, λ̃n) = ρ(0)− λ̃′ngn(θ̄n) +
1

2
λ̃′n

[ 1

n

n∑
i=1

ρ2(λ̇′ngni(θ̄n))gni(θ̄n)g′ni(θ̄n)
]
λ̃n

≤ ρ(0)− λ̃′ngn(θ̄n)− 1

4
λ̃′n

[ 1

n

n∑
i=1

gni(θ̄n)g′ni(θ̄n)
]
λ̃n

≤ ρ(0) + ‖λ̃n‖ · ‖gn(θ̄n)‖ − c‖λ̃n‖2,

(16)

for some positive constant c. Thus c‖λ̃n‖ ≤ ‖gn(θ̄n)‖, w.p.a.1. Since gn(θ̄n) = Op(n
−1/2), ‖λ̃n‖ = Op(n

−1/2) =

op(n
−ζ). Therefore, λ̃n ∈ int(Λn) w.p.a.1, and ∂%n(θ̄n,λ̃n)

∂λ = 0, the first order condition for an interior maxi-

mum. By Lemma C.10, λ̃n ∈ Λn(θ̄n) w.p.a.1. Then by concavity of %n(θ̄n, λ) and convexity of Λn(θ̄n), it follows

that %n(θ̄n, λ̃n) = supλ∈Λn(θ̄n)%n(θ̄n, λ), which gives the first and second conclusions with λ̄n = λ̃n. Finally, by

‖gn(θ̄n)‖ = Op(n
−1/2), ‖λ̃n‖ = Op(n

−1/2) and the last inequality of (16), we obtain

%n(θ̄n, λ̄n) ≤ ρ(0) + ‖λ̄n‖ · ‖gn(θ̄n)‖ − c‖λ̄n‖2 = ρ(0) +Op(n
−1).

Lemma C.12. Under Assumptions 1–3, 5 and 6, ‖gn(θ̂n,GEL)‖ = Op(n
−1/2), where θ̂n,GEL is the GEL estimator.

Proof. Consider any λ̃n ∈ Λn = {λ : ‖λ‖ ≤ n−ζ}. By Lemma C.10, max1≤i≤n |λ̇′ngni(θ̂n,GEL)| p−→ 0 for any λ̇n

between λ̃n and 0. Thus w.p.a.1. ρ2(λ̇′ngni(θ̂n,GEL)) ≥ −c, for some positive constant c and for all i = 1, . . . , n. Be-

cause all eigenvalues of gni(θ)g
′
ni(θ) are nonnegative and their sum is tr(gni(θ)g

′
ni(θ)) = g′ni(θ)gn(θ), gni(θ)g

′
ni(θ) ≤

g′ni(θ)gni(θ)In for i = 1, . . . , n. Thus, 1
n

∑n
i=1 gni(θ̂n,GEL)g′ni(θ̂n,GEL) ≤ (supθ∈Θ

1
n

∑n
i=1 ‖gni(θ)‖2)In, which is

Op(1) by Lemma C.5. It follows that the largest eigenvalue of 1
n

∑n
i=1 gni(θ̂n,GEL)g′ni(θ̂n,GEL) is bounded above

w.p.a.1. A first order Taylor expansion then gives

%n(θ̂n,GEL, λ̃n) = ρ(0)− λ̃′ngn(θ̂n,GEL) +
1

2
λ̃′n
[ 1

n

n∑
i=1

ρ2(λ̇′ngni(θ̂n,GEL))gni(θ̂n,GEL)g′ni(θ̂n,GEL)
]
λ̃n

≥ ρ(0)− λ̃′ngn(θ̂n,GEL)− c

2
λ̃′n
[ 1

n

n∑
i=1

gni(θ̂n,GEL)g′ni(θ̂n,GEL)
]
λ̃n

≥ ρ(0)− λ̃′ngn(θ̂n,GEL)− c1λ̃′nλ̃n,

w.p.a.1. for some c1 > 0. Note that Lemma C.11 holds for θ̄n = θ0, then since (θ̂n,GEL, λ̂n,GEL) is a saddle point,

ρ(0)− λ̃′ngn(θ̂n,GEL)− c1λ̃′nλ̃n ≤ %n(θ̂n,GEL, λ̃n) ≤ %n(θ̂n,GEL, λ̂n,GEL) ≤ supλ∈Λn(θ0)%n(θ0, λ) ≤ ρ(0) +Op(n
−1).

(17)

In (17), we may let λ̃n = −n−ζgn(θ̂n,GEL)‖gn(θ̂n,GEL)‖−1, as the Euclidean norm of this λ̃n is n−ζ . Then (17)

implies that ‖gn(θ̂n,GEL)‖ ≤ c1n
−ζ + Op(n

ζ−1) = Op(n
−ζ), as ζ < 1/2. With this order of gn(θ̂n,GEL), we may let
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λ̃n = −Ungn(θ̂n,GEL) in (17), where Un → 0, since this λ̃n ∈ Λn w.p.a.1. Then w.p.a.1., ρ(0) − λ̃′ngn(θ̂n,GEL) −

c1λ̃
′
nλ̃n = ρ(0) + Un‖gn(θ̂n,GEL)‖2 − c1U2

n‖gn(θ̂n,GEL)‖2 ≤ ρ(0) + Op(n
−1). Since 1 − c1Un is bounded away from

zero for large enough n, Un‖gn(θ̂n,GEL)‖2 = Op(n
−1). The conclusion then follows from the standard result that if

UnJn = Op(n
−1) for all Un → 0, then Jn = Op(n

−1). Hence, ‖gn(θ̂n,GEL)‖ = Op(n
−1/2).

Appendix D Proofs

Proof of Proposition 3.1. By (13), each element of gn(θ) can be expanded as a linear-quadratic form of Vn and is

a polynomial of θ. Thus supθ∈Θ‖gn(θ) − E[gn(θ)]‖ p−→ 0. By Lemma C.12, gn(θ̂n,GEL) = Op(n
−1/2). Let ḡn(θ) =

E[gn(θ)], then ‖ḡn(θ̂n,GEL)‖ = ‖ḡn(θ̂n,GEL)−gn(θ̂n,GEL)+gn(θ̂n,GEL)‖ ≤ ‖ḡn(θ̂n,GEL)−gn(θ̂n,GEL)‖+‖gn(θ̂n,GEL)‖ =

op(1). Since limn→∞ ḡn(θ) is uniquely zero at θ0 under Assumption 11 or Assumption 12 as discussed in Appendix A,

‖ḡn(θ)‖ must be bounded away from zero outside of any neighborhood of θ0. Therefore θ̂n,GEL must be inside any

neighborhood of θ0 w.p.a.1, i.e., θ̂n,GEL
p−→ θ0. As gn(θ̂n,GEL) = Op(n

−1/2), Lemma C.11 holds for θ̄n = θ̂n,GEL.

Hence, λ̂n,GEL = arg maxλ∈Λn(θ̂n,GEL)
1
n

∑n
i=1 ρ(λ′gni(θ̂n,GEL)) exists w.p.a.1, and λ̂n,GEL = Op(n

−1/2).

Proof of Proposition 3.2. By Proposition 3.1, λ̂n,GEL = Op(n
−1/2). Then by Lemma C.10, max1≤i≤n|λ̂′n,GELgni(θ̂n,GEL)| p−→

0. Hence, the first order condition

n∑
i=1

ρ1(λ̂′n,GELgni(θ̂n,GEL))gni(θ̂n,GEL) = 0

is satisfied w.p.a.1. By the implicit function theorem, there is a neighborhood of θ̂n,GEL where the solution λ(θ) to∑n
i=1 ρ1(λ′gni(θ))gni(θ) = 0 exists and is continuously differentiable. Then by the envelope theorem, the first order

conditions for the GEL are

n∑
i=1

ρ1(λ̂′n,GELgni(θ̂n,GEL))G′ni(θ̂n,GEL)λ̂n,GEL = 0 and

n∑
i=1

ρ1(λ̂′n,GELgni(θ̂n,GEL))gni(θ̂n,GEL) = 0.

Applying the mean value theorem to these first order conditions, we have

0 =

(
0

− 1
n

∑n
i=1 gni(θ0)

)
+ ∆n(γ̂n,GEL − γ0),

where

∆n =
1

n

n∑
i=1

ρ2(λ̄′ngni(θ̄n))G′ni(θ̄n)λ̄nλ̄
′
nGni(θ̄n) + ρ1(λ̄′ngni(θ̄n))[G

(1)′

ni (θ̄n)λ̄n, . . . , G
(kθ)

′

ni (θ̄n)λ̄n] ∗

ρ2(λ̄′ngni(θ̄n))gni(θ̄n)λ̄′nGni(θ̄n) + ρ1(λ̄′ngni(θ̄n))Gni(θ̄n) ρ2(λ̄′ngni(θ̄n))gni(θ̄n)g′ni(θ̄n)


and (θ̄′n, λ̄

′
n)′ is between γ̂n,GEL and γ0 elementwise. As max1≤i≤n|λ̂′n,GELgni(θ̂n,GEL)| p−→ 0, by the twice continuous

differentiability of ρ(v), max1≤i≤n |ρl(λ̄′ngni(θ̄n)) + 1| = op(1) for l = 1 and 2. Then by Lemma C.5 and the mean

value theorem,

1

n

n∑
i=1

ρ1(λ̄′ngni(θ̄n))Gni(θ̄n) =
1

n

n∑
i=1

[ρ1(λ̄′ngni(θ̄n)) + 1]Gni(θ̄n)− 1

n

n∑
i=1

Gni(θ0)− 1

n

n∑
i=1

kθ∑
l=1

G
(l)
ni (θ̌n)(θ̄nl − θ0l)

= −Ḡn + op(1),
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where θ̌n lies between θ̄n and θ0. Similarly, by Lemmas C.6 and C.7,

1

n

n∑
i=1

ρ2(λ̄′ngni(θ̄n))gni(θ̄n)g′ni(θ̄n)

=
1

n

n∑
i=1

[ρ2(λ̄′ngni(θ̄n)) + 1]gni(θ̄n)g′ni(θ̄n)− 1

n

n∑
i=1

gni(θ0)g′ni(θ0)− 1

n

n∑
i=1

kθ∑
l=1

[g
(l)
ni (θ̌n)g′ni(θ̌n) + gni(θ̌n)g

(l)′

ni (θ̌n)](θ̄nl − θ0l)

= −Ω̄n + op(1),

1
n

∑n
i=1 ρ2(λ̄′ngni(θ̄n))G′ni(θ̄n)λ̄nλ̄

′
nGni(θ̄n) = − 1

n

∑n
i=1G

′
ni(θ̄n)λ̄nλ̄

′
nGni(θ̄n) + op(1) = op(1),

1

n

n∑
i=1

ρ1(λ̄′ngni(θ̄n))[G
(1)′

ni (θ̄n)λ̄n, . . . , G
(kθ)′

ni (θ̄n)λ̄n] = − 1

n

n∑
i=1

[G
(1)′

ni (θ̄n)λ̄n, . . . , G
(kθ)′

ni (θ̄n)λ̄n] + op(1) = op(1),

and 1
n

∑n
i=1 ρ2(λ̄′ngni(θ̄n))gni(θ̄n)λ̄′nGni(θ̄n) = − 1

n

∑n
i=1 gni(θ̄n)λ̄′nGni(θ̄n) + op(1) = op(1). Thus, ∆n = −K̄n +

op(1), where K̄n =

 0 Ḡ′n

Ḡn Ω̄n

. Hence,

√
n(γ̂n,GEL − γ0) = −K̄−1

n

(
0

1√
n

∑n
i=1 gni(θ0)

)
+ op(1).

Since K̄−1
n =

−Σ̄n H̄n

H̄ ′n D̄n

,

√
n(γ̂n,GEL − γ0) = −

(
H̄n

D̄n

)
1√
n

n∑
i=1

gni(θ0) + op(1). (18)

Then the asymptotic distribution of
√
n(γ̂n,GEL − γ0) follows by the central limit theorem in Kelejian and Prucha

(2001, Theorem 1).

Proof of Proposition 3.3. Since λ̂n,GMM = −Ω−1
n (θ̃n)gn(θ̂n,GMM) = Op(n

−1/2), by Lemma C.9, the first order

condition (9) can be written as

0 = −
(

G′n(θ̂n,GMM)λ̂n,GMM

gn(θ̂n,GMM) + (Ω̄n + n−1/2ξΩ
n )λ̂n,GMM

)
+Op(n

−3/2). (19)

By a second order Taylor expansion and Lemma C.5,

0 = −
(

0

gn(θ0)

)
−KΩ

n (θ0)(γ̂n,GMM − γ0)− 1

2

kθ+kg∑
i=1

(γ̂ni,GMM − γ0i)Kni(γ̂n,GMM − γ0) +Op(n
−3/2),

where KΩ
n (θ) =

[G
(1)′

n (θ)λ, . . . , G
(kθ)′

n (θ)λ] G′n(θ)

Gn(θ) Ω̄n + n−1/2ξΩ
n

, and Kni’s are given in the proof of Lemma C.8. Let

K̄n =

 0 Ḡ′n

Ḡn Ω̄n

. Then,

√
n(γ̂n,GMM − γ0) = −K̄−1

n

(
0√

ngn(θ0)

)
− K̄−1

n [KΩ
n (θ0)− K̄n]

√
n(γ̂n,GMM − γ0)

−
√
n

2

kθ+kg∑
i=1

K̄−1
n Kni(γ̂n,GMM − γ0)(γ̂ni,GMM − γ0i) +Op(n

−1).

(20)
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By (20), we have
√
n(γ̂n,GMM − γ0) = ξn +Op(n

−1/2), (21)

where ξn = −K̄−1
n

(
0√

ngn(θ0)

)
= Op(1). Substituting (21) into the the second and third terms of (20) yields

√
n(γ̂n,GMM − γ0) = ξn + n−1/2ψn +Op(n

−1), where

ψn = −K̄−1
n

 0
√
n(G′n − Ḡ′n)

√
n(Gn − Ḡn) ξΩ

n

 ξn −
1

2

kθ+kg∑
i=1

K̄−1
n K̄niξnξni = Op(1). (22)

Proof of Proposition 3.4. Let vni(γ) = λ′gni(θ), hni(γ) = ∂vni(γ)
∂γ =

(G′ni(θ)λ
gni(θ)

)
, and mni(γ) = ρ1(vni(γ))hni(γ).

Then the first order condition of the GEL estimator is:

1

n

n∑
i=1

mni(γ̂n,GEL) = 0. (23)

Let gnit be the tth element of gni, and g
(k)
nit be the tth element of g

(k)
ni . Then,

∂hni(γ)

∂γ′
=

[G
(1)′

ni (θ)λ, . . . , G
(kθ)′

ni (θ)λ] G′ni(θ)

Gni(θ) 0

 ,

∂2hni(γ)

∂γj∂γ′
=

[G
(1j)′

ni (θ)λ, . . . , G
(kθ,j)

′

ni (θ)λ] G
(j)′

ni (θ)

G
(j)
ni (θ) 0

 for 1 ≤ j ≤ kθ,

∂2hni(γ)

∂γj∂γ′
=

[G
(1)′

ni (θ)ekg,j−kθ , . . . , G
(kθ)′

ni (θ)ekg,j−kθ ] 0

0 0

 for kθ + 1 ≤ j ≤ kθ + kg,

∂3hni(γ)

∂γk∂γj∂γ′
=

[G
(1jk)′

ni (θ)λ, . . . , G
(kθ,jk)′

ni (θ)λ] G
(jk)′

ni (θ)

G
(jk)
ni (θ) 0

 for 1 ≤ j ≤ kθ, and 1 ≤ k ≤ kθ,

∂3hni(γ)

∂γk∂γj∂γ′
=

[G
(1j)′

ni (θ)ekg,k−kθ , . . . , G
(kθ,j)

′

ni (θ)ekg,k−kθ ] 0

0 0

 for 1 ≤ j ≤ kθ and kθ + 1 ≤ k ≤ kθ + kg,

∂3hni(γ)

∂γk∂γj∂γ′
=

[G
(1k)′

ni (θ)ekg,j−kθ , . . . , G
(kθ,k)′

ni (θ)ekg,j−kθ ] 0

0 0

 for kθ + 1 ≤ j ≤ kθ + kg and 1 ≤ k ≤ kθ,

and ∂3hni(γ)
∂γk∂γj∂γ′

= 0 for kθ + 1 ≤ j ≤ kθ + kg and kθ + 1 ≤ k ≤ kθ + kg. Hence, by the chain rule of differentiation,

∂mni(γ0)

∂γ′
= −

 0 G′ni(θ0)

Gni(θ0) gni(θ0)g′ni(θ0)

 ,

∂2mni(γ0)

∂γj∂γ′
= −

 0 G
(j)′

ni

G
(j)
ni g

(j)
ni g

′
ni + gnig

(j)′

ni

 for 1 ≤ j ≤ kθ,

∂2mni(γ0)

∂γj∂γ′
= −

[G
(1)′

ni ekg,s, . . . , G
(kθ)′

ni ekg,s] G′niekg,sg
′
ni + gnisG

′
ni

gnie
′
kg,s

Gni + gnisGni −ρ3gnisgnig
′
ni

 for kθ + 1 ≤ j ≤ kθ + kg, and s = j − kθ,
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∂3mni(γ0)

∂γk∂γj∂γ′
= −

 0 G
(jk)′

ni

G
(jk)
ni g

(jk)
ni g′ni + gnig

(jk)′

ni + g
(j)
ni g

(k)′

ni + g
(k)
ni g

(j)′

ni

 for 1 ≤ j ≤ kθ and 1 ≤ k ≤ kθ,

∂3mni(γ0)

∂γk∂γj∂γ′
= −

 [G
(1j)′

ni ekg,k−kθ , . . . , G
(kθ,j)

′

ni ekg,k−kθ ] G
(j)′

ni ekg,tg
′
ni +G′niekg,tg

(j)′

ni + g
(j)
nitG

′
ni + g′nitG

(j)′

ni

gnie
′
kg,t

G
(j)
ni + g

(j)
ni e
′
kg,t

Gni + g
(j)
nitGni + gnitG

(j)
ni −ρ3g

(j)
nitgnig

′
ni − ρ3gnit(g

(j)
ni g

′
ni + gnig

(j)′

ni )


for 1 ≤ j ≤ kθ, kθ + 1 ≤ k ≤ kθ + kg, and t = k − kθ,

∂3mni(γ0)

∂γk∂γj∂γ′
= −

 [G
(1k)′

ni ekg,j−kθ , . . . , G
(kθ,k)′

ni ekg,j−kθ ] G
(k)′

ni ekg,tg
′
ni +G′niekg,tg

(k)′

ni + g
(k)
nitG

′
ni + g′nitG

(k)′

ni

gnie
′
kg,t

G
(k)
ni + g

(k)
ni e

′
kg,t

Gni + g
(k)
nitGni + gnitG

(k)
ni −ρ3g

(k)
nitgnig

′
ni − ρ3gnit(g

(k)
ni g

′
ni + gnig

(k)′

ni )


for kθ + 1 ≤ j ≤ kθ + kg, 1 ≤ k ≤ kθ and t = j − kθ, and

∂3mni(γ0)

∂γk∂γj∂γ′
=

 −G′niekg,se′kg,tGni −G
′
niekg,te

′
kg,sGni ρ3gnisG

′
niekg,tg

′
ni + ρ3gnitG

′
niekg,sg

′
ni + ρ3gnisgnitG

′
ni

ρ3gnisgnie
′
kg,tGni + ρ3gnitgnie

′
kg,sGni + ρ3gnisgnitGni ρ4gnisgnitgnig

′
ni


−

gnis[G(1)′

ni ekg,t, . . . , G
(kθ)

′

ni ekg,t] + gnit[G
(1)′

ni ekg,s, . . . , G
(kθ)

′

ni ekg,s] 0

0 0

 ,

for kθ + 1 ≤ j ≤ kθ + kg, kθ + 1 ≤ k ≤ kθ + kg, s = j − kθ and t = k − kθ. By a second order Taylor expansion of

(23),

0 =
1

n

n∑
i=1

mni(γ0) +
1

n

n∑
i=1

∂mni(γ0)

∂γ′
(γ̂n,GEL − γ0) +

1

2n

n∑
i=1

kθ+kg∑
j=1

(γ̂nj,GEL − γ0j)
∂2mni(γ0)

∂γj∂γ′
(γ̂n,GEL − γ0)

+Op(‖γ̂n,GEL − γ0‖3),

where the order of the remainder is derived by using the Liptchitz hypothesis of ρ(v) and Lemma C.5. Hence,

√
n(γ̂n,GEL − γ0)

= −
[ 1

n

n∑
i=1

E
(∂mni(γ0)

∂γ′
)]−1

{ 1√
n

n∑
i=1

mni(γ0) +
1√
n

[ n∑
i=1

∂mni(γ0)

∂γ′
− E

( n∑
i=1

∂mni(γ0)

∂γ′
)]

(γ̂n,GEL − γ0)

+
1

2

1√
n

n∑
i=1

kθ+kg∑
j=1

(γ̂nj,GEL − γ0j)
∂2mni(γ0)

∂γj∂γ′
(γ̂n,GEL − γ0)

}
+Op(

√
n‖γ̂n,GEL − γ0‖3).

(24)

Thus,
√
n(γ̂n,GEL − γ0) = ξn +Op(n

−1/2), (25)

where ξn = −[ 1
n

∑n
i=1 E(∂mni(γ0)

∂γ′ )]−1 1√
n

∑n
i=1mni(γ0) = −K̄−1

n

(
0√

ngn(θ0)

)
= −

(
H̄n
D̄n

)√
ngn(θ0). Substituting (25)

into the second and third terms of (24) yields
√
n(γ̂n,GEL − γ0) = ξn + n−1/2ψn +Op(n

−1), where

ψn = −
[ 1

n

n∑
i=1

E
(∂mni(γ0)

∂γ′
)]−1

{ 1√
n

[ n∑
i=1

∂mni(γ0)

∂γ′
− E

( n∑
i=1

∂mni(γ0)

∂γ′
)]
ξn +

1

2n

n∑
i=1

kθ+kg∑
j=1

ξnj
[
E
(∂2mni(γ0)

∂γj∂γ′

)]
ξn
}

= −
√
nK̄−1

n

 0 G′n − Ḡ′n

Gn − Ḡn Ωn − Ω̄n

 ξn +
1

2n
K̄−1
n

n∑
i=1

kθ+kg∑
j=1

ξnj
[
E
(∂2mni(γ0)

∂γj∂γ′

)]
ξn

= −
√
nK̄−1

n

 0 G′n − Ḡ′n

Gn − Ḡn Ωn − Ω̄n

 ξn −
1

2n
K̄−1
n

n∑
i=1

kθ∑
j=1

ξnj E

 0 G
(j)′

ni

G
(j)
ni g

(j)
ni g

′
ni + gnig

(j)′

ni

 ξn

− 1

2n
K̄−1
n

n∑
i=1

kg∑
s=1

ξn,kθ+s E

[G
(1)′

ni ekg,s, . . . , G
(kθ)

′

ni ekg,s] G′niekg,sg
′
ni + gnisG

′
ni

gnie
′
kg,sGni + gnisGni −ρ3gnisgnig′ni

 ξn.

(26)
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Proof of Proposition 3.5. Note that ξn = −
(
H̄n
D̄n

)√
ngn(θ0) and E(ξnξ

′
n) = diag(Σ̄n, D̄n). Then by Proposition 3.3,

with ψn in (22),

1

n
E(ψn) = K̄−1

n E

[ 0 G′n

Gn n−1/2ξΩ
n

(H̄n

D̄n

)
gn

]
− 1

2n

kθ∑
j=1

K̄−1
n

 0 Ḡ
(j)′

n

Ḡ
(j)
n 0

 diag(Σ̄n, D̄n)ekθ+kg,j

− 1

2n

kθ+kg∑
j=kθ+1

K̄−1
n

[Ḡ
(1)′

n ekg,j−kθ , . . . , Ḡ
(kθ)′

n ekg,j−kθ ] 0

0 0

 diag(Σ̄n, D̄n)ekθ+kg,j

= K̄−1
n

(
E(G′nD̄ngn)

E(GnH̄ngn + n−1/2ξΩ
n D̄ngn)− 1

2n

∑kθ
j=1 Ḡ

(j)
n Σ̄nekθ,j

)
.

Since ξΩ
n =

√
n(Ωn − Ω̄n) +

∑kθ
j=1

1
n

∑n
i=1[E(gnig

(j)′

ni + g
(j)
ni g

′
ni)]ξ̃nj by Lemma C.9, where ξ̃n = −

(H̄Jn
D̄Jn

)√
ngn(θ0) by

Lemma C.8,

E(n−1/2ξΩ
n D̄ngn) = E(ΩnD̄ngn)−

kθ∑
j=1

1

n2

n∑
i=1

[E(gnig
(j)′

ni + g
(j)
ni g

′
ni)]D̄nΩ̄nH̄

J′

n ekθ,j .

Since K̄−1
n =

−Σ̄n H̄n

H̄ ′n D̄n

 and D̄nΩ̄nH̄
′
n = 0, the leading bias of the GMM estimator θ̂n is the first kθ components

of 1
n E(ψn), which is

− Σ̄n E(G′nD̄ngn) + H̄n E(GnH̄ngn) + H̄n E(ΩnD̄ngn)

−
kθ∑
j=1

1

n2

n∑
i=1

H̄n[E(gnig
(j)′

ni + g
(j)
ni g

′
ni)]D̄nΩ̄n(H̄J

n − H̄n)′ekθ,j −
1

2n

kθ∑
j=1

H̄nḠ
(j)
n Σ̄nekθ,j .

Proof of Proposition 3.6. As in the proof of Proposition 3.5, E(ξnξ
′
n) = diag(Σ̄n, D̄n). Then by Proposition 3.4,

with ψn in (26),

1

n
E(ψn) = K̄−1

n E

[ 0 G′n − Ḡ′n
Gn − Ḡn Ωn − Ω̄n

(H̄n

D̄n

)
gn(θ0)

]

− 1

2n
K̄−1
n

kθ∑
j=1

1

n

n∑
i=1

 0 G
(j)′

ni

G
(j)
ni g

(j)
ni g

′
ni + gnig

(j)′

ni

 diag(Σ̄n, D̄n)ekθ+kg,j

− 1

2n
K̄−1
n

kg∑
s=1

n∑
i=1

[G
(1)′

ni ekg,s, . . . , G
(kθ)′

ni ekg,s] G′niekg,sg
′
ni + gnisG

′
ni

gnie
′
kg,s

Gni + gnisGni −ρ3gnisgnig
′
ni

 diag(Σ̄n, D̄n)ekθ+kg,kθ+s

= K̄−1
n

(
E(G′nD̄ngn)

E(GnH̄ngn) + E(ΩnD̄ngn)

)
− 1

2n
K̄−1
n

kθ∑
j=1

1

n

n∑
i=1

(
0

Ḡ
(j)
ni Σ̄nekθ,j

)

− 1

2n
K̄−1
n

kg∑
s=1

1

n

n∑
i=1

(
E(G′niekg,sg

′
ni + gnisG

′
ni)D̄nekg,s

−ρ3 E(gnisgnig′ni)D̄nekg,s

)
.
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The leading bias of the GEL estimator θ̂n,GEL is the first kθ elements of E(ψn), and, as K̄−1
n =

−Σ̄n H̄n

H̄ ′n D̄n

, it is

− Σ̄n E(G′nD̄ngn) +
1

2n

kg∑
s=1

1

n

n∑
i=1

Σ̄n E(G′niekg,sg
′
ni + gnisG

′
ni)D̄nekg,s + H̄n E(GnH̄ngn) + H̄n E(ΩnD̄ngn)

− 1

2n

kθ∑
j=1

1

n

n∑
i=1

H̄nḠ
(j)
ni Σ̄nekθ,j +

1

2n
ρ3

kg∑
s=1

1

n

n∑
i=1

H̄n E(gnisgnig
′
ni)D̄nekg,s.

Note that
∑kg
s=1 E(G′niekg,sg

′
ni)D̄nekg,s =

∑kg
s=1 E(G′niekg,se

′
kg,s

D̄ngni) = E(G′niD̄ngni),

kg∑
s=1

E(gnisG
′
ni)D̄nekg,s =

kg∑
s=1

E(G′niD̄ngnisekg,s) = E(G′niD̄ngni),

and
∑kg
s=1 E(gnisgnig

′
ni)D̄nekg,s =

∑kg
s=1 E(gnig

′
niD̄nekg,sgnis) = E(gnig

′
niD̄ngni). Thus, the bias is

− Σ̄n E(G′nD̄ngn) +
1

n2
Σ̄n

n∑
i=1

E(G′niD̄ngni) + H̄n E(GnH̄ngn) + H̄n E(ΩnD̄ngn)− 1

2n

kθ∑
j=1

H̄nḠ
(j)
n Σ̄nekθ,j

+
ρ3

2n2

n∑
i=1

H̄n E(gnig
′
niD̄ngni).

Proof of Proposition 4.1. The unconstrained GEL estimator λ̂n is a maximizer, so 1
n

∑n
i=1 ρ1(λ̂′ngni(θ̂n))gni(θ̂n) = 0.

As ρ(0) = 1
n

∑n
i=1 ρ(0·gni(θ̂n)), by a first order Taylor expansion of 1

n

∑n
i=1 ρ(0·gni(θ̂n)) at λ̂n, and using ρ2(0) = −1,

Lemma C.5 and (18) successively, we have

−2n
[
ρ(0)− 1

n

n∑
i=1

ρ(λ̂′ngni(θ̂n))
]

= −
n∑
i=1

ρ2(λ̌′ngni(θ̂n))λ̂′ngni(θ̂n)g′ni(θ̂n)λ̂n

=

n∑
i=1

λ̂′ngni(θ̂n)g′ni(θ̂n)λ̂n + op(1)

= nλ̂′nΩ̄nλ̂n + op(1)

= [Ω̄−1/2
n

√
ngn(θ0)]′Ω̄1/2

n D̄nΩ̄1/2
n [Ω̄−1/2

n

√
ngn(θ0)] + op(1),

(27)

where λ̌n lies between 0 and λ̂n, because
√
nλ̂n = −D̄n

1√
n

∑n
i=1 gni(θ0) + op(1) and D̄nΩ̄nD̄

′
n = D̄n.

For the restricted GEL estimators θ̇n and λ̇n, the results in Proposition 3.1 hold under the null by similar

arguments. In particular, θ̇n = θ0+op(1), and λ̇n = Op(n
−1/2). With these results, as in the proof of Proposition 3.2,

we can apply the mean value theorem to the first order conditions of the restricted GEL estimation

n∑
i=1

ρ1(λ̇′ngni(θ̇n))
∂g′ni(θ̇n)

∂φ
λ̇n = 0 and

n∑
i=1

ρ1(λ̇′ngni(θ̇n))gni(θ̇n) = 0

to obtain
√
n(δ̇n − δ0) = −

(
H̄nφ

D̄nφ

)
1√
n

n∑
i=1

gni(θ0) + op(1).

where δ̇n = (φ̇′n, λ̇
′
n)′, Ḡnφ = E(∂gn(θ0)

∂φ′ ), Σ̄nφ = (Ḡ′nφΩ̄−1
n Ḡnφ)−1, H̄nφ = Σ̄nφḠ

′
nφΩ̄−1

n , and D̄nφ = Ω̄−1
n −

Ω̄−1
n ḠnφΣ̄nφḠ

′
nφΩ̄−1

n . Then we can obtain the following expression analogous to (27) above:

− 2n
[
ρ(0)− 1

n

n∑
i=1

ρ(λ̇′ngni(θ̇n))
]

= [Ω̄−1/2
n

√
ngn(θ0)]′Ω̄1/2

n D̄nφΩ̄1/2
n [Ω̄−1/2

n

√
ngn(θ0)] + op(1). (28)
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Combining (27) and (28) yields

2
[ n∑
i=1

ρ(λ̇′ngni(θ̇n))−
n∑
i=1

ρ(λ̂′ngni(θ̂n))
]

= [Ω̄−1/2
n

√
ngn(θ0)]′Ω̄1/2

n (D̄nφ − D̄n)Ω̄1/2
n [Ω̄−1/2

n

√
ngn(θ0)] + op(1). (29)

Since Ḡnφ is a submatrix of Ḡn and plimn→∞
1
n Ḡn has full rank, Ω̄

1/2
n (D̄nφ−D̄n)Ω̄

1/2
n = Ω̄

−1/2
n Ḡn(Ḡ′nΩ̄−1

n Ḡn)−1Ḡ′nΩ̄
−1/2
n −

Ω̄
−1/2
n Ḡnφ(Ḡ′nφΩ̄−1

n Ḡnφ)−1Ḡ′nφΩ̄
−1/2
n = MnΩ̄

−1/2
n Ḡnα(Ḡ′nαΩ̄

−1/2
n MnΩ̄

−1/2
n Ḡnα)−1Ḡ′nαΩ̄

−1/2
n Mn is a projection

matrix with rank kα, where Mn = Ikg − Ω̄
−1/2
n Ḡnφ(Ḡ′nφΩ̄−1

n Ḡnφ)−1Ḡ′nφΩ̄
−1/2
n (Ruud, 2000, p. 60, (3.13)). Hence

the proposition follows.

Proof of Proposition 4.2. With the Pitman drift in the proposition, we still have the consistency that θ̂n = θ0+op(1)

and θ̇n = θ0 + op(1). This is because Vn(θ) can be expanded in a form similar to that in (13), where θ0,

Sn and Rn are replaced by, respectively, θn = (α′n, φ0)′, Sn(κn) and Rn(τn). Then under the Pitman drift,

Lemmas C.3–C.7 and C.10–C.12 all hold by similar arguments. Hence, as in the proof of Proposition 4.1, we

have (29). By the mean value theorem,
√
ngn(θ0) =

√
ngn(θn) + ∂gn(θ̌n)

∂α′
√
n(α0 − αn) =

√
ngn(θn) − Ḡnαdα +

op(1), where θ̌n lies between θ0 and θn elementwise. Under the Pitman drift,
√
ngn(θn) = 1√

n
[V ′nPn1Vn −

E(V ′nPn1Vn), . . . , V ′nPn,kpVn − E(V ′nPn,kpVn), V ′nQn]
d−→ N(0, limn→∞ Ω̄n). Since D̄nḠnα = 0 and (Ḡnαdα)′(D̄nφ −

D̄n)Ḡnαdα = (Ḡnαdα)′D̄nφḠnαdα, the proposition holds by (29).

Proof of Proposition 4.3. The asymptotic distribution follows by (27) in the proof of Proposition 4.1. Because

Ω̄
1/2
n D̄nΩ̄

1/2
n is a projection matrix with rank (kg− kθ) and Ω̄

−1/2
n
√
ngn(θ0) is asymptotically standard multivariate

normal, −2n[ρ(0)− 1
n

∑n
i=1 ρ(λ̂′ngni(θ̂n))]

d−→ χ2(kg − kθ).

Proof of Proposition 4.4. Explicitly, ĝn = 1
n

∑n
i=1 ĝni = 1

n V̂
′
nWnV̂n = 1

nV
′
nWnVn− 1

nV
′
n(Wn+W ′n)PnVn+ 1

nV
′
nPnWnPnVn,

where Pn = Xn(X ′nXn)−1X ′n. Note that 1
nV
′
n(Wn + W ′n)PnVn = 1

n
√
n
V ′n(Wn + W ′n)Xn( 1

nX
′
nXn)−1 1√

n
X ′nVn =

Op(n
−1). Similarly, 1

nV
′
nPnWnPnVn = Op(n

−1). As 1
nV
′
nWnVn has mean zero under both homoskedasticity and un-

known heteroskedasticity, ĝn = 1
nV
′
nWnVn+Op(n

−1) = Op(n
−1/2). Then by Lemma C.11, λ̂n = arg maxλ∈Λ̂n

∑n
i=1 ρ(λĝni)

exists w.p.a.1., and its first order condition for λ̂n is
∑n
i=1 ρ1(λ̂nĝni)ĝni = 0. Applying the mean value theorem to

this first order condition at λ = 0, we have 0 =
∑n
i=1 ρ1(0)ĝni +

∑n
i=1 ρ2(λ̌nĝni)ĝ

2
niλ̂n, where λ̌n lies between 0 and

λ̂n. Then, because
√
nĝn =

√
ngn +Op(n

−1/2), where gn = 1
nV
′
nWnVn,

√
nλ̂n =

[ 1

n

n∑
i=1

ρ2(λ̌nĝni)ĝ
2
ni

]−1 1√
n

n∑
i=1

ĝni = −
[ 1

n

n∑
i=1

E(g2
ni)
]−1 1√

n

n∑
i=1

gni + op(1)

d−→ N
(

0, lim
n→∞

[ 1

n

n∑
i=1

E(g2
ni)
]−1)

,

where gni = vni
∑i−1
j=1(wn,ij+wn,ji)vnj , and the second equality holds because 1

n

∑n
i=1 ρ1(λ̌nĝni)ĝ

2
ni = − 1

n

∑n
i=1 ĝ

2
ni+

op(1) as in the proof of Proposition 3.2 and 1
n

∑n
i=1 ĝ

2
ni = 1

n

∑n
i=1 E(g2

ni) + op(1) by Lemma C.3. Because

ρ(0) = 1
n

∑n
i=1 ρ(0 · ĝni), by a first order Taylor expansion of 1

n

∑n
i=1 ρ(0 · ĝni) at λ̂n and using the first order

condition of λ̂n, ρ(0) = 1
n

∑n
i=1 ρ(λ̂nĝni) + 1

2n

∑n
i=1 ρ2(λ̌nĝni)ĝ

2
niλ̂

2
n, where λ̌n lies between 0 and λ̂n. Hence,

2n
[ 1

n

n∑
i=1

ρ(λ̂nĝni)− ρ(0)
]

= −(
√
nλ̂n)2 1

n

n∑
i=1

ρ2(λ̌nĝni)ĝ
2
ni = (

√
nλ̂n)2 1

n

n∑
i=1

E(g2
ni) + op(1)

d−→ χ2(1). (30)
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Proof of Proposition 4.5. Let θ = (τ, β′)′, θ0 = (0, β′0)′, θn = (n−1/2dτ , β
′
0)′, θ̂n = (0, β̂′n)′, and Vn(θ) = Rn(τ)(Yn−

Xnβ), where β̂n = (X ′nXn)−1X ′nYn is the OLS estimate. Then as in the proof of Proposition 4.4,

√
nλ̂n =

[ 1

n

n∑
i=1

ρ1(λ̌nĝni)ĝ
2
ni

]−1 1√
n

n∑
i=1

ĝni = −
[ 1

n

n∑
i=1

E(g2
ni)
]−1 1√

n
V ′n(θ0)WnVn(θ0) + op(1).

By the mean value theorem,

1√
n
V ′n(θ0)WnVn(θ0) =

1√
n
V ′n(θn)WnVn(θn) +

1

n

∂[V ′n(θ̌n)WnVn(θ̌n)]

∂τ

√
n(τ0 − τn),

where θ̌n lies between θ0 and θn elementwise. Since 1√
n
V ′n(θn)WnVn(θn) = 1

nV
′
nWnVn, and 1

n
∂[V ′n(θ̌n)WnVn(θ̌n)]

∂τ =

− 1
n E[V ′n(Wn +W ′n)WnVn] + op(1), the result in the proposition follows by the expansion in (30).

Proof of Proposition 4.6. By the mean value theorem and Lemma C.5,

√
ngn(θ̂n) =

√
ng1n(θ0)− ∂g1n(θ̂n)

∂φ′
(∂g2n(θ̂n)

∂φ′
)−1√

ng2n(θ0)

+
∂g1n(θ̌n)

∂φ′
√
n(φ̂n − φ0)− ∂g1n(θ̂n)

∂φ′
(∂g2n(θ̂n)

∂φ′
)−1 ∂g2n(θ̌n)

∂φ′
√
n(φ̂n − φ0)

=
√
ng1n(θ0)− ∂g1n(θ0)

∂φ′
(∂g2n(θ0)

∂φ′
)−1√

ng2n(θ0) + op(1),

where θ̌n lies between θ̂n and θ0. Thus
√
ngn(θ̂n) has the same asymptotic distribution as

√
ngn(θ0). The rest of

the proof is similar to that for Proposition 4.4.

Proof of Proposition 4.7. We only prove the consistency of ϑ̂n, as the rest of the proof is similar to that of Propo-

sition 4.1 for parameter restrictions.

First, for Ȳ ∗n and ε∗n defined in Appendix B, we have the following results: (i) 1
nC
′
n(Ŷn − Ȳ ∗n ) = op(1), (ii)

1
nV
′
nAn(Ŷn − Ȳ ∗n ) = 1

n E(V ′nAnε
∗
n) + op(1), and (iii) 1

n (Ŷn − Ȳ ∗n )′An(Ŷn − Ȳ ∗n ) = 1
n E(ε∗

′

n Anε
∗
n) + op(1), where Cn

is an n × 1 vector of uniformly bounded constants and An is an n × n nonstochastic matrix which is bounded

in both row and column sum norms. For Ŷn = S−1
1n (κ̂1n)X1nβ̂1n, the results follow by the mean value theorem,

Proposition B.1 and the fact that S−1
1n (κ1) is bounded in both row and column sum norms in a neighborhood of κ∗1n.

For Ŷn = κ̂1nW1nYn+X1nβ̂1n, note that Ŷn− Ȳ ∗n = (κ̂1n−κ∗1n)W1nS
−1
n Xnβ0 +X1n(β̂1n−β∗1n)+ κ̂1nW1nS

−1
n R−1

n Vn.

Substituting this expression into the terms in (i)–(iii), we can easily see that the results hold.

With the above results, we first prove the uniform convergence supϑ∈Θ |gn(ϑ)− ḡn(ϑ)| = op(1) if the IV matrix

Qn does not contain the generated regressor S−1
1n (κ̂1n)X1nβ̂1n. Since 1

nQ
′
nVn(ϑ) = 1

nQ
′
nVn(θ) − 1

nηQ
′
nRn(τ)Ŷn =

1
nQ
′
nVn(θ)− 1

nηQ
′
n[Rn + (τ0 − τ)Mn]Ŷn and Vn(θ) in (13) is linear in Vn and quadratic in θ, supϑ∈Θ ‖ 1

nQ
′
nVn(ϑ)−

1
nQ
′
ndn(ϑ)‖ = op(1), where dn(ϑ) = dn(θ) − ηRn(τ)Ȳ ∗n and dn(θ) is given in Appendix A. Rewrite Vn(ϑ) =

dn(ϑ)+Ṽn(θ)−ηRn(τ)(Ŷn−Ȳ ∗n ), where Ṽn(θ) = Vn(θ)−dn(θ). As Vn(ϑ) is quadratic in ϑ, supϑ∈Θ | 1nV
′
n(ϑ)PniVn(ϑ)−

1
nd
′
n(ϑ)Pnidn(ϑ) − 1

n E[Ṽ ′n(θ)PniṼn(θ)] − 1
nη

2 E[ε∗
′

n R
′
n(τ)PniRn(τ)ε∗n] + 2

n E[Ṽ ′n(θ)PniRn(τ)ε∗n]| = op(1). Hence,

supϑ∈Θ |gn(ϑ)− ḡn(ϑ)| = op(1), where

ḡn(ϑ) =
1

n
{E[Ṽ ′n(θ)Pn1Ṽn(θ)] + η2 E[ε∗

′

n R
′
n(τ)Pn1Rn(τ)ε∗n]− 2 E[Ṽ ′n(θ)Pn1Rn(τ)ε∗n], . . . ,
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E[Ṽ ′n(θ)Pn,kp Ṽn(θ)] + η2 E[ε∗
′

n R
′
n(τ)Pn,kpRn(τ)ε∗n]− 2 E[Ṽ ′n(θ)Pn,kpRn(τ)ε∗n], d′n(ϑ)Qn}′.

In the case that Qn contains S−1
1n (κ̂1n)X1nβ̂1n, as explained in Section B.1, 1

nV
′
nAnS

−1
1n (κ̂1n)X1nβ̂1n = op(1) and

1
nb
′
nAnS

−1
1n (κ̂1n)X1nβ̂1n = 1

nb
′
nAnS

−1
1n (κ∗1n)X1nβ

∗
1n + op(1) by the mean value theorem, where An is an n× n non-

stochastic matrix that is bounded in both row and column sum norms and bn is an n×1 vector of uniformly bounded

constants. Then S−1
1n (κ̂1n)X1nβ̂1n is asymptotically exogenous. For Q∗n obtained by replacing S−1

1n (κ̂1n)X1nβ̂1n with

S−1
1n (κ∗1n)X1nβ

∗
1n in Qn, the above argument for supϑ∈Θ |gn(ϑ)− ḡn(ϑ)| = op(1) still holds if Qn in ḡn(ϑ) is replaced

by Q∗n. Since each element of ḡn(ϑ) can be expressed as a polynomial of (ϑ−ϑ0), as in Appendix A, the identification

condition in Assumption 14 guarantees that limn→∞
1
n ḡn(ϑ) is uniquely zero at ϑ0.

Next we can show that Lemmas C.4 and C.10–C.12 hold if gni(θ) and gn(θ) are replaced by, respectively, gni(ϑ)

and gn(ϑ). By these lemmas, the consistency of ϑ̂n follows as in the proof of Proposition 3.1. For Lemma C.4, note

that Vn(θ) − Vn(ϑ) = ηRn(τ)Ŷn. If Ŷn = S−1
1n (λ̂1n)X1nβ̂1n, by the mean value theorem, ηRn(τ)Ŷn = ηRn(τ)Ȳ ∗n +

ηRn(τ)S−1
1n (λ̌1n)W1nS

−1
1n (λ̌1n)X1nβ̌1n(λ̂1n − λ̄∗1n) + ηRn(τ)S−1

1n (λ̌1n)X1n(β̂1n − β∗1n), where θ̌1n lies between θ̂1n

and θ∗1n elementwise. Since elements of Rn(τ)Ȳ ∗n are uniformly bounded, and elements of Rn(τ)S−1
1n (λ̌1n)X1n

and Rn(τ)S−1
1n (λ̌1n)X1n are uniformly bounded in probability, elements of ηRn(τ)Ŷn are uniformly bounded in

probability. By the original Lemma C.4 for gni(θ), the lemma still holds if gni(θ) is replaced by gni(ϑ) when

Ŷn = S−1
1n (λ̂1n)X1nβ̂1n. If Ŷn = λ̂1nW1nYn + X1nβ̂1n, then ηRn(τ)Ŷn = ηRn(τ)Ȳ ∗n + ηRn(τ)W1nS

−1
n Xnβ0(λ̂1n −

λ∗1n) + ηRn(τ)X1n(β̂1n − β∗1n) + ηRn(τ)W1nS
−1
n R−1

n Vnλ̂1n. Since elements of ηRn(τ)Ȳ ∗n , ηRn(τ)W1nS
−1
n Xnβ0 and

ηRn(τ)X1n are uniformly bounded, and ηRn(τ)W1nS
−1
n R−1

n Vn is linear in Vn, Lemma C.4 still holds for gni(ϑ).

Then Lemmas C.10–C.12 also hold.

With the consistency that ϑ̂n = ϑ0 + op(1), similar to the proof of Proposition 3.2, ϑ̂n and the estimated λ can

be shown to be asymptotically normal. Then the asymptotic distribution of the GEL ratio follows as in the proof

of Proposition 4.1.

Proof of Proposition B.1. Let λ̂1n(θ1) = arg maxλ1∈Λ1

∑n
i=1 ρ(λ′1g1n,i(θ1)). Under Assumption 13, as in the proof of

Lemma 1 in Hong et al. (2003), supθ1∈Θ1
‖λ̂1n(θ1)−λ∗1n(θ1)‖ = op(1). Then supθ1∈Θ1

1
n |E

∑n
i=1 ρ(λ̂′1n(θ1)g1n,i(θ1))−

E
∑n
i=1 ρ(λ∗

′

1n(θ1)g1n,i(θ1))| = op(1) under Assumption 13(iii). By Assumption 13(ii),

sup
θ1∈Θ1

1

n

∣∣∣ n∑
i=1

ρ
(
λ̂′1n(θ1)g1n,i(θ1)

)
− E

n∑
i=1

ρ
(
λ̂′1n(θ1)g1n,i(θ1)

)∣∣∣ = op(1).

Thus, supθ1∈Θ1

1
n |
∑n
i=1 ρ(λ̂′1n(θ1)g1n,i(θ1))−E

∑n
i=1 ρ((λ∗

′

1n(θ1)g1n,i(θ1))| = op(1). Hence, θ̂1n−θ∗1n = op(1) (White,

1994, Theorem 3.4 on p. 28). If follows that λ̂1n = λ̂1n(θ̂1n) = λ∗1n(θ̂1n)+op(1) = λ∗1n(θ∗1n)+op(1) = λ∗1n+op(1).
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Table 1: Biases, standard errors and RMSEs of estimators for the SARAR model (1) in the homoskedastic case

R2, κ0, τ0 κ τ β1 β2 β3 σ2

n = 144

0.8, 0.2, 0.2 GMM -0.003[0.080]0.080 -0.010[0.131]0.131 0.009[0.157]0.157 -0.003[0.032]0.032 -0.001[0.031]0.031 -0.011[0.015]0.019

EL -0.003[0.079]0.079 -0.013[0.127]0.127 0.010[0.154]0.154 -0.003[0.032]0.032 -0.001[0.031]0.031 -0.007[0.015]0.016

ET -0.003[0.078]0.078 -0.013[0.126]0.127 0.009[0.153]0.154 -0.003[0.032]0.032 -0.001[0.031]0.031 -0.009[0.015]0.018

0.8, 0.2, 0.4 GMM -0.002[0.081]0.082 -0.010[0.119]0.120 0.008[0.169]0.170 -0.002[0.031]0.031 -0.002[0.031]0.031 -0.012[0.015]0.019

EL 0.000[0.079]0.079 -0.019[0.115]0.117 0.003[0.165]0.165 -0.001[0.031]0.031 -0.002[0.031]0.031 -0.007[0.015]0.016

ET 0.000[0.079]0.079 -0.018[0.115]0.117 0.003[0.165]0.165 -0.001[0.031]0.031 -0.002[0.031]0.031 -0.009[0.015]0.018

0.8, 0.4, 0.2 GMM -0.005[0.069]0.069 -0.009[0.127]0.127 0.013[0.172]0.173 -0.001[0.031]0.031 -0.000[0.030]0.030 -0.012[0.015]0.019

EL -0.006[0.067]0.068 -0.011[0.122]0.122 0.016[0.169]0.169 -0.001[0.031]0.031 -0.001[0.030]0.030 -0.007[0.015]0.017

ET -0.006[0.067]0.067 -0.010[0.122]0.122 0.016[0.168]0.169 -0.001[0.031]0.031 -0.001[0.030]0.030 -0.010[0.015]0.018

0.8, 0.4, 0.4 GMM -0.006[0.076]0.076 -0.011[0.121]0.122 0.016[0.198]0.199 -0.002[0.030]0.030 0.000[0.032]0.032 -0.011[0.015]0.019

EL -0.005[0.075]0.075 -0.017[0.118]0.119 0.013[0.195]0.196 -0.002[0.030]0.030 0.000[0.032]0.032 -0.007[0.015]0.016

ET -0.005[0.075]0.075 -0.016[0.118]0.119 0.014[0.195]0.196 -0.002[0.030]0.030 0.000[0.032]0.032 -0.009[0.015]0.018

0.4, 0.2, 0.2 GMM -0.005[0.177]0.177 -0.021[0.211]0.212 0.018[0.357]0.358 -0.006[0.077]0.078 -0.004[0.076]0.076 -0.081[0.089]0.120

EL -0.002[0.160]0.160 -0.025[0.191]0.193 0.008[0.327]0.327 -0.004[0.077]0.077 -0.002[0.076]0.076 -0.050[0.089]0.102

ET -0.002[0.160]0.160 -0.024[0.191]0.192 0.008[0.328]0.328 -0.004[0.078]0.078 -0.001[0.076]0.076 -0.066[0.088]0.110

0.4, 0.2, 0.4 GMM 0.000[0.185]0.185 -0.026[0.200]0.201 0.015[0.394]0.394 -0.001[0.079]0.079 -0.005[0.077]0.077 -0.081[0.093]0.123

EL 0.008[0.169]0.169 -0.035[0.184]0.187 -0.004[0.365]0.365 0.001[0.079]0.079 -0.003[0.077]0.077 -0.050[0.092]0.105

ET 0.009[0.169]0.169 -0.035[0.183]0.187 -0.004[0.366]0.366 0.002[0.079]0.079 -0.003[0.077]0.077 -0.066[0.092]0.113

0.4, 0.4, 0.2 GMM -0.017[0.175]0.176 -0.019[0.208]0.209 0.048[0.446]0.448 -0.005[0.081]0.081 -0.003[0.078]0.078 -0.079[0.094]0.123

EL -0.023[0.164]0.165 -0.012[0.193]0.193 0.058[0.419]0.423 -0.003[0.080]0.080 -0.001[0.077]0.077 -0.049[0.094]0.106

ET -0.023[0.161]0.163 -0.011[0.191]0.191 0.057[0.415]0.419 -0.003[0.080]0.080 -0.001[0.077]0.077 -0.065[0.093]0.114

0.4, 0.4, 0.4 GMM -0.021[0.184]0.186 -0.021[0.197]0.198 0.054[0.478]0.481 -0.005[0.076]0.076 -0.007[0.076]0.077 -0.082[0.093]0.124

EL -0.019[0.169]0.170 -0.023[0.180]0.181 0.048[0.443]0.446 -0.003[0.076]0.076 -0.005[0.077]0.077 -0.052[0.093]0.107

ET -0.019[0.169]0.170 -0.023[0.179]0.181 0.047[0.442]0.444 -0.003[0.076]0.076 -0.005[0.076]0.077 -0.068[0.092]0.114

n = 400

0.8, 0.2, 0.2 GMM -0.000[0.043]0.043 -0.004[0.069]0.069 0.001[0.086]0.086 -0.000[0.017]0.017 -0.001[0.018]0.018 -0.004[0.009]0.010

EL -0.000[0.043]0.043 -0.004[0.068]0.069 0.001[0.086]0.086 -0.000[0.017]0.017 -0.001[0.018]0.018 -0.002[0.009]0.009

ET -0.000[0.043]0.043 -0.004[0.068]0.068 0.001[0.086]0.086 -0.000[0.017]0.017 -0.001[0.018]0.018 -0.003[0.009]0.010

0.8, 0.2, 0.4 GMM -0.002[0.048]0.048 -0.002[0.065]0.065 0.004[0.098]0.098 -0.001[0.019]0.019 -0.001[0.018]0.018 -0.004[0.009]0.010

EL -0.001[0.048]0.048 -0.004[0.065]0.065 0.003[0.097]0.098 -0.001[0.019]0.019 -0.000[0.018]0.018 -0.002[0.009]0.009

ET -0.001[0.048]0.048 -0.004[0.065]0.065 0.003[0.097]0.097 -0.001[0.019]0.019 -0.000[0.018]0.018 -0.003[0.009]0.010

0.8, 0.4, 0.2 GMM -0.002[0.040]0.040 -0.003[0.073]0.073 0.006[0.099]0.099 -0.000[0.019]0.019 -0.001[0.018]0.018 -0.004[0.009]0.010

EL -0.003[0.039]0.040 -0.003[0.072]0.072 0.007[0.098]0.098 -0.000[0.019]0.019 -0.001[0.018]0.018 -0.002[0.009]0.009

ET -0.003[0.039]0.039 -0.003[0.072]0.072 0.007[0.098]0.098 -0.000[0.019]0.019 -0.001[0.018]0.018 -0.003[0.009]0.009

0.8, 0.4, 0.4 GMM -0.003[0.045]0.045 -0.005[0.070]0.070 0.008[0.116]0.117 -0.000[0.017]0.017 -0.001[0.018]0.018 -0.004[0.009]0.010

EL -0.003[0.045]0.045 -0.006[0.069]0.070 0.008[0.116]0.116 -0.000[0.017]0.017 -0.001[0.018]0.018 -0.002[0.009]0.009

ET -0.003[0.045]0.045 -0.006[0.069]0.070 0.008[0.116]0.116 -0.000[0.017]0.017 -0.001[0.018]0.018 -0.003[0.009]0.009

0.4, 0.2, 0.2 GMM -0.001[0.106]0.106 -0.008[0.118]0.118 0.006[0.209]0.209 -0.002[0.043]0.044 -0.002[0.047]0.047 -0.031[0.054]0.063

EL -0.000[0.101]0.101 -0.009[0.113]0.113 0.005[0.202]0.202 -0.001[0.043]0.043 -0.001[0.047]0.047 -0.017[0.054]0.057

ET -0.000[0.101]0.101 -0.009[0.113]0.113 0.005[0.202]0.202 -0.001[0.043]0.043 -0.001[0.046]0.046 -0.024[0.054]0.059

0.4, 0.2, 0.4 GMM -0.004[0.108]0.108 -0.007[0.110]0.110 0.011[0.232]0.233 -0.002[0.044]0.044 -0.002[0.043]0.043 -0.032[0.055]0.064

EL -0.000[0.105]0.105 -0.012[0.107]0.108 0.004[0.227]0.227 -0.001[0.044]0.044 -0.002[0.043]0.043 -0.017[0.055]0.058

ET 0.000[0.104]0.104 -0.012[0.106]0.107 0.003[0.226]0.226 -0.001[0.044]0.044 -0.002[0.043]0.043 -0.024[0.055]0.060

0.4, 0.4, 0.2 GMM -0.009[0.094]0.094 -0.001[0.117]0.117 0.016[0.234]0.234 0.001[0.045]0.045 0.001[0.045]0.045 -0.029[0.054]0.062

EL -0.011[0.091]0.092 0.002[0.113]0.113 0.020[0.228]0.229 0.001[0.045]0.045 0.001[0.045]0.045 -0.015[0.054]0.056

ET -0.011[0.091]0.091 0.002[0.113]0.113 0.020[0.227]0.228 0.001[0.045]0.045 0.001[0.045]0.045 -0.022[0.054]0.058

0.4, 0.4, 0.4 GMM -0.003[0.106]0.106 -0.011[0.121]0.121 0.013[0.277]0.278 -0.002[0.043]0.043 -0.003[0.045]0.045 -0.033[0.055]0.064

EL -0.003[0.102]0.102 -0.012[0.116]0.117 0.013[0.267]0.268 -0.001[0.043]0.043 -0.003[0.045]0.045 -0.019[0.055]0.058

ET -0.003[0.102]0.102 -0.012[0.116]0.116 0.012[0.267]0.267 -0.001[0.043]0.043 -0.002[0.045]0.045 -0.026[0.054]0.060

β0 = [0.5, 0.5, 0.5]′.
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Table 2: Biases, standard errors and RMSEs of estimators for the SARAR model (1) in the heteroskedastic case

R2, κ0, τ0 κ τ β1 β2 β3

n = 144

0.8, 0.2, 0.2 GMM -0.001[0.048]0.048 0.001[0.229]0.229 0.005[0.108]0.108 -0.001[0.022]0.022 -0.001[0.022]0.022

EL -0.001[0.048]0.048 -0.025[0.235]0.237 0.006[0.110]0.110 -0.002[0.023]0.023 -0.001[0.022]0.022

ET -0.001[0.046]0.046 -0.022[0.229]0.230 0.005[0.106]0.106 -0.001[0.022]0.022 -0.001[0.021]0.021

0.8, 0.2, 0.4 GMM -0.001[0.051]0.051 0.013[0.232]0.232 0.004[0.131]0.131 -0.000[0.023]0.023 -0.001[0.022]0.022

EL 0.001[0.051]0.051 -0.021[0.258]0.259 0.001[0.127]0.127 -0.000[0.023]0.023 -0.000[0.023]0.023

ET 0.000[0.050]0.050 -0.018[0.245]0.246 0.001[0.123]0.123 -0.000[0.022]0.022 -0.000[0.022]0.022

0.8, 0.4, 0.2 GMM -0.001[0.047]0.047 0.000[0.240]0.240 0.005[0.130]0.130 -0.001[0.022]0.022 -0.001[0.021]0.021

EL -0.001[0.041]0.041 -0.032[0.234]0.236 0.005[0.116]0.116 -0.001[0.021]0.021 -0.000[0.021]0.021

ET -0.001[0.041]0.041 -0.029[0.229]0.230 0.004[0.114]0.114 -0.001[0.020]0.020 -0.000[0.020]0.020

0.8, 0.4, 0.4 GMM -0.003[0.050]0.050 -0.004[0.230]0.230 -0.001[0.270]0.270 -0.001[0.021]0.021 -0.001[0.021]0.021

EL -0.003[0.049]0.049 -0.043[0.238]0.242 0.008[0.146]0.146 -0.001[0.021]0.021 -0.001[0.021]0.021

ET -0.003[0.047]0.047 -0.036[0.224]0.227 0.010[0.178]0.179 -0.001[0.020]0.020 -0.001[0.020]0.020

0.4, 0.2, 0.2 GMM -0.001[0.121]0.121 -0.002[0.277]0.277 0.009[0.370]0.370 -0.005[0.054]0.054 -0.005[0.055]0.055

EL 0.001[0.114]0.114 -0.035[0.261]0.263 0.010[0.263]0.263 -0.004[0.053]0.053 -0.004[0.053]0.053

ET 0.001[0.109]0.109 -0.030[0.255]0.256 0.010[0.253]0.253 -0.004[0.051]0.051 -0.004[0.051]0.051

0.4, 0.2, 0.4 GMM -0.005[0.134]0.134 0.003[0.269]0.269 0.031[0.702]0.703 -0.005[0.059]0.059 -0.005[0.058]0.059

EL 0.000[0.124]0.124 -0.041[0.248]0.251 0.006[0.297]0.297 -0.003[0.057]0.057 -0.003[0.057]0.057

ET 0.001[0.121]0.121 -0.033[0.258]0.260 0.005[0.288]0.288 -0.003[0.056]0.056 -0.003[0.055]0.055

0.4, 0.4, 0.2 GMM -0.011[0.122]0.122 0.017[0.279]0.279 0.034[0.357]0.358 -0.004[0.055]0.055 -0.003[0.056]0.056

EL -0.011[0.111]0.112 -0.012[0.263]0.263 0.035[0.333]0.335 -0.002[0.054]0.054 -0.002[0.055]0.055

ET -0.010[0.106]0.106 -0.009[0.254]0.254 0.031[0.310]0.312 -0.002[0.051]0.051 -0.001[0.053]0.053

0.4, 0.4, 0.4 GMM -0.009[0.132]0.133 -0.001[0.255]0.255 0.028[0.460]0.461 -0.006[0.056]0.056 -0.004[0.054]0.054

EL -0.003[0.119]0.119 -0.040[0.244]0.247 0.012[0.351]0.351 -0.004[0.054]0.054 -0.002[0.052]0.052

ET -0.003[0.116]0.116 -0.035[0.238]0.240 0.011[0.344]0.345 -0.004[0.053]0.053 -0.002[0.051]0.051

n = 400

0.8, 0.2, 0.2 GMM -0.000[0.025]0.025 0.002[0.127]0.127 0.001[0.060]0.060 -0.000[0.012]0.012 -0.000[0.012]0.012

EL -0.000[0.025]0.025 -0.012[0.127]0.128 0.002[0.060]0.060 -0.000[0.012]0.012 -0.000[0.012]0.012

ET -0.000[0.025]0.025 -0.011[0.125]0.126 0.001[0.059]0.059 -0.000[0.012]0.012 -0.000[0.012]0.012

0.8, 0.2, 0.4 GMM 0.002[0.029]0.029 -0.004[0.114]0.114 -0.004[0.071]0.072 0.001[0.013]0.013 0.000[0.013]0.013

EL 0.002[0.029]0.029 -0.018[0.115]0.116 -0.005[0.072]0.072 0.001[0.013]0.013 0.000[0.013]0.013

ET 0.002[0.029]0.029 -0.017[0.113]0.114 -0.005[0.071]0.071 0.001[0.013]0.013 0.000[0.013]0.013

0.8, 0.4, 0.2 GMM -0.001[0.024]0.024 0.004[0.120]0.120 0.005[0.066]0.066 -0.001[0.012]0.012 -0.001[0.011]0.011

EL -0.001[0.024]0.024 -0.009[0.119]0.119 0.005[0.067]0.067 -0.001[0.012]0.012 -0.001[0.011]0.011

ET -0.001[0.024]0.024 -0.008[0.117]0.118 0.005[0.065]0.065 -0.001[0.012]0.012 -0.001[0.011]0.011

0.8, 0.4, 0.4 GMM -0.001[0.027]0.027 -0.001[0.115]0.115 0.003[0.082]0.082 0.000[0.012]0.012 -0.000[0.012]0.012

EL -0.001[0.027]0.027 -0.015[0.116]0.116 0.004[0.080]0.080 -0.000[0.012]0.012 -0.000[0.012]0.012

ET -0.001[0.026]0.026 -0.014[0.113]0.114 0.004[0.078]0.078 -0.000[0.012]0.012 -0.000[0.012]0.012

0.4, 0.2, 0.2 GMM 0.002[0.062]0.062 -0.002[0.140]0.140 -0.003[0.145]0.145 -0.001[0.029]0.029 -0.002[0.029]0.029

EL 0.002[0.063]0.063 -0.015[0.141]0.142 -0.003[0.147]0.147 -0.001[0.029]0.029 -0.002[0.029]0.029

ET 0.003[0.062]0.062 -0.014[0.139]0.139 -0.003[0.144]0.144 -0.001[0.029]0.029 -0.001[0.029]0.029

0.4, 0.2, 0.4 GMM -0.002[0.069]0.069 0.001[0.129]0.129 0.007[0.174]0.174 -0.001[0.031]0.031 -0.002[0.030]0.030

EL -0.001[0.069]0.069 -0.015[0.123]0.124 0.004[0.175]0.175 -0.000[0.031]0.031 -0.001[0.031]0.031

ET -0.001[0.068]0.068 -0.014[0.121]0.122 0.004[0.172]0.172 -0.000[0.031]0.031 -0.001[0.030]0.030

0.4, 0.4, 0.2 GMM -0.005[0.060]0.060 0.014[0.138]0.139 0.015[0.175]0.176 -0.001[0.028]0.029 -0.002[0.029]0.029

EL -0.005[0.059]0.059 0.001[0.136]0.136 0.016[0.166]0.167 -0.001[0.028]0.028 -0.002[0.029]0.029

ET -0.005[0.058]0.058 0.002[0.134]0.134 0.015[0.162]0.163 -0.001[0.028]0.028 -0.002[0.028]0.028

0.4, 0.4, 0.4 GMM -0.000[0.067]0.067 -0.003[0.129]0.129 0.006[0.200]0.200 -0.000[0.030]0.030 -0.001[0.029]0.029

EL -0.001[0.068]0.068 -0.017[0.129]0.130 0.007[0.202]0.202 -0.000[0.030]0.030 -0.001[0.030]0.030

ET -0.001[0.067]0.067 -0.016[0.127]0.128 0.006[0.197]0.197 -0.000[0.029]0.029 -0.001[0.029]0.029

β0 = [0.5, 0.5, 0.5]′.
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Table 3: Coverage probabilities of 95% confidence intervals for the SARAR model (1)

Homoskedastic case Heteroskedastic case

R2, κ0, τ0 κ τ β1 β2 β3 σ2 κ τ β1 β2 β3

n = 144
0.8, 0.2, 0.2 GMM 0.893 0.893 0.902 0.910 0.926 0.769 0.921 0.880 0.921 0.906 0.924

EL 0.912 0.917 0.915 0.926 0.935 0.873 0.929 0.922 0.929 0.923 0.940
ET 0.923 0.925 0.927 0.935 0.947 0.828 0.933 0.931 0.935 0.939 0.949

0.8, 0.2, 0.4 GMM 0.920 0.917 0.925 0.917 0.920 0.787 0.933 0.856 0.932 0.926 0.920
EL 0.932 0.941 0.928 0.921 0.932 0.886 0.938 0.907 0.930 0.937 0.932
ET 0.938 0.952 0.939 0.936 0.938 0.848 0.947 0.919 0.940 0.949 0.938

0.8, 0.4, 0.2 GMM 0.908 0.907 0.899 0.926 0.923 0.781 0.925 0.873 0.927 0.932 0.937
EL 0.922 0.920 0.922 0.938 0.935 0.882 0.941 0.904 0.946 0.946 0.957
ET 0.932 0.930 0.926 0.946 0.945 0.838 0.947 0.921 0.947 0.954 0.963

0.8, 0.4, 0.4 GMM 0.916 0.893 0.923 0.919 0.914 0.793 0.934 0.848 0.934 0.951 0.931
EL 0.930 0.920 0.934 0.932 0.930 0.885 0.935 0.911 0.935 0.958 0.938
ET 0.937 0.929 0.941 0.946 0.936 0.847 0.949 0.924 0.945 0.964 0.949

0.4, 0.2, 0.2 GMM 0.848 0.833 0.861 0.917 0.923 0.750 0.919 0.872 0.902 0.925 0.927
EL 0.878 0.880 0.896 0.928 0.939 0.866 0.934 0.907 0.920 0.945 0.940
ET 0.885 0.889 0.907 0.935 0.944 0.817 0.948 0.919 0.929 0.950 0.949

0.4, 0.2, 0.4 GMM 0.841 0.840 0.856 0.896 0.919 0.751 0.911 0.841 0.929 0.916 0.927
EL 0.875 0.878 0.893 0.915 0.934 0.854 0.928 0.897 0.931 0.935 0.943
ET 0.880 0.892 0.902 0.929 0.939 0.825 0.936 0.905 0.944 0.947 0.953

0.4, 0.4, 0.2 GMM 0.864 0.850 0.870 0.912 0.912 0.776 0.909 0.851 0.914 0.913 0.913
EL 0.897 0.867 0.891 0.932 0.925 0.890 0.928 0.901 0.920 0.946 0.941
ET 0.911 0.887 0.910 0.940 0.930 0.849 0.936 0.912 0.929 0.952 0.950

0.4, 0.4, 0.4 GMM 0.836 0.838 0.851 0.916 0.918 0.765 0.912 0.869 0.922 0.902 0.913
EL 0.872 0.866 0.874 0.929 0.928 0.856 0.925 0.906 0.924 0.922 0.927
ET 0.881 0.880 0.887 0.937 0.937 0.821 0.937 0.923 0.938 0.935 0.938

n = 400
0.8, 0.2, 0.2 GMM 0.945 0.932 0.941 0.920 0.951 0.886 0.942 0.916 0.924 0.937 0.948

EL 0.943 0.934 0.944 0.921 0.955 0.932 0.937 0.922 0.929 0.934 0.946
ET 0.948 0.942 0.948 0.927 0.958 0.917 0.941 0.929 0.934 0.940 0.950

0.8, 0.2, 0.4 GMM 0.928 0.945 0.934 0.958 0.936 0.887 0.943 0.929 0.940 0.950 0.942
EL 0.933 0.947 0.936 0.957 0.941 0.938 0.931 0.938 0.941 0.949 0.938
ET 0.934 0.949 0.941 0.964 0.944 0.911 0.939 0.946 0.944 0.954 0.942

0.8, 0.4, 0.2 GMM 0.948 0.942 0.950 0.940 0.947 0.868 0.942 0.914 0.957 0.949 0.951
EL 0.953 0.955 0.946 0.940 0.950 0.921 0.942 0.933 0.954 0.949 0.952
ET 0.955 0.956 0.949 0.946 0.956 0.893 0.943 0.936 0.957 0.951 0.958

0.8, 0.4, 0.4 GMM 0.937 0.920 0.940 0.934 0.950 0.888 0.946 0.931 0.939 0.955 0.956
EL 0.943 0.929 0.939 0.938 0.951 0.937 0.939 0.942 0.928 0.952 0.950
ET 0.943 0.933 0.943 0.941 0.953 0.916 0.945 0.945 0.935 0.958 0.957

0.4, 0.2, 0.2 GMM 0.922 0.928 0.922 0.932 0.937 0.880 0.951 0.923 0.943 0.937 0.952
EL 0.931 0.934 0.929 0.934 0.942 0.924 0.945 0.932 0.937 0.940 0.950
ET 0.933 0.936 0.934 0.939 0.941 0.909 0.951 0.940 0.944 0.942 0.956

0.4, 0.2, 0.4 GMM 0.911 0.908 0.904 0.937 0.941 0.886 0.948 0.929 0.946 0.935 0.947
EL 0.922 0.920 0.923 0.938 0.944 0.923 0.947 0.941 0.945 0.933 0.944
ET 0.925 0.922 0.927 0.944 0.948 0.904 0.952 0.945 0.948 0.935 0.947

0.4, 0.4, 0.2 GMM 0.917 0.909 0.934 0.933 0.939 0.876 0.950 0.934 0.958 0.940 0.961
EL 0.926 0.917 0.942 0.936 0.942 0.927 0.942 0.944 0.950 0.939 0.966
ET 0.930 0.920 0.945 0.937 0.945 0.902 0.944 0.949 0.960 0.940 0.967

0.4, 0.4, 0.4 GMM 0.906 0.898 0.907 0.932 0.944 0.868 0.940 0.938 0.943 0.944 0.951
EL 0.910 0.917 0.915 0.936 0.947 0.917 0.934 0.943 0.935 0.946 0.945
ET 0.914 0.922 0.920 0.940 0.950 0.897 0.946 0.948 0.941 0.952 0.949

The variance matrix of a GMM estimator θ̂n is computed as 1
n

[G′n(θ̂n)Ω−1
n (θ̂n)Gn(θ̂n)]−1, and that of a GEL

estimator γ̇n = (θ̇′n, λ̇
′
n)′ is computed as 1

n
∆−1
n (γ̇n)

(
0 0

0 Ωn(θ̇n)

)
∆−1
n (γ̇n), where ∆n(γ) is the second order

derivative matrix of the GEL objective function given in the proof of Proposition 3.2.
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Table 4: Empirical sizes of tests for τ0 = 0 in an SE model

Homoskedastic case Heteroskedastic case

n = 144 n = 400 n = 144 n = 400

R2 = 0.8 R2 = 0.4 R2 = 0.8 R2 = 0.4 R2 = 0.8 R2 = 0.4 R2 = 0.8 R2 = 0.4

PTgmm 0.034 0.061 0.051 0.050 0.057 0.068 0.053 0.058

PTel 0.072 0.107 0.061 0.061 0.113 0.144 0.082 0.078

PTet 0.065 0.092 0.063 0.060 0.094 0.122 0.080 0.074

OTgmm 0.043 0.050 0.053 0.042 0.040 0.050 0.052 0.050

OTel 0.049 0.063 0.054 0.044 0.058 0.073 0.057 0.059

OTet 0.050 0.059 0.054 0.044 0.050 0.067 0.058 0.057

Moran 0.043 0.050 0.054 0.043 0.041 0.052 0.055 0.050

Moranel 0.049 0.066 0.054 0.044 0.055 0.063 0.058 0.055

Moranet 0.052 0.060 0.054 0.044 0.047 0.064 0.058 0.058

PT∗gmm 0.105 0.107 0.156 0.175

Moran∗ 0.011 0.013 0.020 0.018

“PTgmm”, “PTel” and “PTet” denote, respectively, the GMM, EL and ET parameter restriction tests; “OTgmm”,
“OTel” and “OTet” denote, respectively, the GMM, EL and ET overidentification tests; “Moran”, “Moranel ” and
“Moranel ” denote, respectively, the robust, EL and ET Moran’s I tests; “PT∗gmm” denotes the GMM overidentification
test without taking into account unknown heteroskedasticity; and “Moran∗” denotes the conventional Moran’s I test
that does not take into account unknown heteroskedasticity. The nominal size is 5%.

Table 5: Powers of tests for τ0 = 0 in an SE model

n = 144 n = 400

τ0 = 0.2 τ0 = 0.4 τ0 = 0.6 τ0 = 0.2 τ0 = 0.4 τ0 = 0.6

Homoskedastic case

R2 = 0.8 PTgmm 0.441 0.952 1.000 0.901 1.000 1.000

PTel 0.551 0.982 1.000 0.915 1.000 1.000

PTet 0.537 0.980 1.000 0.910 1.000 1.000

OTgmm 0.474 0.977 1.000 0.913 1.000 1.000

OTel 0.500 0.984 1.000 0.913 1.000 1.000

OTet 0.503 0.985 1.000 0.915 1.000 1.000

Moran 0.471 0.978 1.000 0.912 1.000 1.000

Moranel 0.497 0.982 1.000 0.914 1.000 1.000

Moranet 0.505 0.983 1.000 0.915 1.000 1.000

R2 = 0.4 PTgmm 0.429 0.959 0.999 0.911 1.000 1.000

PTel 0.546 0.985 1.000 0.921 1.000 1.000

PTet 0.517 0.982 1.000 0.926 1.000 1.000

OTgmm 0.461 0.973 1.000 0.918 1.000 1.000

OTel 0.493 0.977 1.000 0.922 1.000 1.000

OTet 0.488 0.975 1.000 0.922 1.000 1.000

Moran 0.461 0.970 1.000 0.918 1.000 1.000

Moranel 0.492 0.977 1.000 0.922 1.000 1.000

Moranet 0.488 0.976 1.000 0.923 1.000 1.000

Heteroskedastic case

R2 = 0.8 PTgmm 0.196 0.550 0.915 0.348 0.932 1.000

PTel 0.270 0.631 0.927 0.384 0.932 1.000

PTet 0.245 0.625 0.933 0.385 0.939 1.000

OTgmm 0.127 0.480 0.881 0.296 0.904 1.000

OTel 0.133 0.477 0.874 0.294 0.887 1.000

OTet 0.133 0.498 0.886 0.304 0.904 1.000

Moran 0.122 0.457 0.873 0.285 0.898 1.000

Moranel 0.131 0.469 0.872 0.287 0.887 1.000

Moranet 0.136 0.489 0.885 0.302 0.901 1.000

R2 = 0.4 PTgmm 0.186 0.586 0.930 0.371 0.916 1.000

PTel 0.267 0.654 0.944 0.394 0.926 1.000

PTet 0.249 0.651 0.952 0.399 0.927 1.000

OTgmm 0.119 0.496 0.903 0.294 0.869 0.999

OTel 0.134 0.489 0.887 0.297 0.864 0.999

OTet 0.134 0.512 0.901 0.300 0.873 0.999

Moran 0.114 0.476 0.900 0.289 0.865 0.999

Moranel 0.131 0.479 0.885 0.295 0.861 0.999

Moranet 0.131 0.502 0.902 0.299 0.871 0.999

“PTgmm”, “PTel” and “PTet” denote, respectively, the GMM, EL and ET parameter restriction
tests; “OTgmm”, “OTel” and “OTet” denote, respectively, the GMM, EL and ET overidenti-
fication tests; and “Moran”, “Moranel ” and “Moranel ” denote, respectively, the robust, EL
and ET Moran’s I tests.
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Table 6: Empirical sizes of tests for τ0 = 0 in the SARAR model (1)

n = 144 n = 400

R2 = 0.8 R2 = 0.4 R2 = 0.8 R2 = 0.4

κ0 = 0.2 κ0 = 0.4 κ0 = 0.2 κ0 = 0.4 κ0 = 0.2 κ0 = 0.4 κ0 = 0.2 κ0 = 0.4

Homoskedastic case

PTgmm 0.049 0.049 0.043 0.048 0.055 0.047 0.048 0.045

PTel 0.083 0.089 0.067 0.066 0.065 0.050 0.058 0.053

PTet 0.072 0.079 0.057 0.064 0.068 0.054 0.057 0.056

OTgmm 0.047 0.048 0.048 0.052 0.052 0.050 0.050 0.053

OTel 0.071 0.070 0.066 0.075 0.065 0.055 0.056 0.061

OTet 0.068 0.070 0.063 0.066 0.061 0.055 0.057 0.061

Moran 0.054 0.047 0.041 0.052 0.051 0.048 0.059 0.043

Moranel 0.060 0.059 0.054 0.060 0.056 0.052 0.061 0.046

Moranet 0.059 0.059 0.053 0.060 0.056 0.053 0.062 0.046

Heteroskedastic case

PTgmm 0.054 0.069 0.092 0.067 0.052 0.042 0.063 0.051

PTel 0.105 0.123 0.127 0.125 0.068 0.060 0.076 0.073

PTet 0.093 0.103 0.117 0.104 0.062 0.056 0.071 0.069

OTgmm 0.032 0.049 0.040 0.035 0.056 0.045 0.055 0.049

OTel 0.075 0.093 0.073 0.086 0.065 0.055 0.078 0.064

OTet 0.064 0.081 0.070 0.075 0.064 0.056 0.072 0.066

Moran 0.043 0.058 0.040 0.048 0.047 0.037 0.048 0.053

Moranel 0.061 0.079 0.063 0.060 0.056 0.044 0.061 0.061

Moranet 0.056 0.071 0.056 0.058 0.055 0.041 0.059 0.062

“PTgmm”, “PTel” and “PTet” denote, respectively, the GMM, EL and ET parameter restriction
tests; “OTgmm”, “OTel” and “OTet” denote, respectively, the GMM, EL and ET overidenti-
fication tests; and “Moran”, “Moranel ” and “Moranel ” denote, respectively, the robust, EL
and ET Moran’s I tests. The nominal size is 5%.

Table 7: Powers of tests for τ0 = 0 in the SARAR model (1)

n = 144, κ0 = 0.2 n = 144, κ0 = 0.4 n = 400, κ0 = 0.2 n = 400, κ0 = 0.4

τ0 = 0.2 τ0 = 0.4 τ0 = 0.6 τ0 = 0.2 τ0 = 0.4 τ0 = 0.6 τ0 = 0.2 τ0 = 0.4 τ0 = 0.6 τ0 = 0.2 τ0 = 0.4 τ0 = 0.6

Homoskedastic case
R2 = 0.8 PTgmm 0.301 0.825 0.986 0.297 0.819 0.985 0.758 0.998 1.000 0.735 1.000 1.000

PTel 0.399 0.895 0.997 0.390 0.881 0.998 0.790 0.999 1.000 0.777 1.000 1.000
PTet 0.392 0.883 0.996 0.381 0.874 0.998 0.791 0.999 1.000 0.778 1.000 1.000
OTgmm 0.207 0.762 0.979 0.238 0.755 0.989 0.668 0.998 1.000 0.681 0.999 1.000
OTel 0.276 0.811 0.986 0.299 0.809 0.991 0.682 0.999 1.000 0.702 0.999 1.000
OTet 0.272 0.807 0.986 0.287 0.805 0.991 0.682 0.998 1.000 0.705 0.999 1.000
Moran 0.282 0.828 0.988 0.253 0.808 0.992 0.746 0.998 1.000 0.737 1.000 1.000
Moranel 0.308 0.841 0.991 0.280 0.818 0.990 0.753 0.998 1.000 0.744 1.000 1.000
Moranet 0.315 0.846 0.993 0.279 0.829 0.994 0.752 0.998 1.000 0.745 1.000 1.000

R2 = 0.4 PTgmm 0.147 0.488 0.833 0.176 0.506 0.820 0.362 0.912 0.997 0.432 0.928 1.000
PTel 0.207 0.572 0.868 0.236 0.574 0.860 0.382 0.916 0.996 0.438 0.936 1.000
PTet 0.188 0.552 0.861 0.232 0.561 0.858 0.394 0.921 0.997 0.442 0.939 1.000
OTgmm 0.105 0.350 0.679 0.145 0.380 0.672 0.265 0.840 0.991 0.328 0.880 0.999
OTel 0.137 0.412 0.728 0.173 0.422 0.731 0.292 0.852 0.990 0.339 0.881 0.999
OTet 0.132 0.404 0.718 0.174 0.417 0.725 0.287 0.853 0.991 0.342 0.887 0.999
Moran 0.048 0.125 0.097 0.025 0.033 0.045 0.259 0.828 0.978 0.214 0.761 0.920
Moranel 0.060 0.159 0.138 0.040 0.046 0.056 0.271 0.831 0.979 0.227 0.778 0.929
Moranet 0.061 0.154 0.137 0.038 0.048 0.056 0.269 0.834 0.982 0.228 0.778 0.927

Heteroskedastic case
R2 = 0.8 PTgmm 0.202 0.545 0.919 0.188 0.553 0.926 0.369 0.908 1.000 0.366 0.914 0.999

PTel 0.278 0.590 0.921 0.249 0.617 0.938 0.390 0.910 1.000 0.378 0.911 0.999
PTet 0.255 0.595 0.926 0.239 0.610 0.946 0.403 0.919 1.000 0.387 0.922 0.999
OTgmm 0.136 0.439 0.862 0.137 0.451 0.872 0.307 0.857 0.999 0.273 0.863 0.999
OTel 0.174 0.478 0.856 0.172 0.468 0.875 0.310 0.852 0.999 0.277 0.856 0.999
OTet 0.171 0.490 0.872 0.166 0.477 0.890 0.317 0.864 0.999 0.288 0.865 0.999
Moran 0.116 0.382 0.842 0.087 0.393 0.838 0.283 0.846 0.999 0.250 0.843 0.998
Moranel 0.129 0.400 0.822 0.105 0.404 0.820 0.286 0.837 0.999 0.246 0.834 0.997
Moranet 0.133 0.414 0.849 0.104 0.422 0.848 0.296 0.850 0.999 0.257 0.847 0.998

R2 = 0.4 PTgmm 0.202 0.516 0.871 0.186 0.495 0.845 0.339 0.891 1.000 0.308 0.892 0.999
PTel 0.242 0.515 0.868 0.224 0.500 0.839 0.322 0.878 0.996 0.291 0.872 0.995
PTet 0.224 0.509 0.878 0.210 0.501 0.849 0.336 0.889 0.998 0.302 0.882 0.997
OTgmm 0.116 0.341 0.695 0.111 0.323 0.633 0.244 0.789 0.987 0.221 0.739 0.983
OTel 0.145 0.362 0.709 0.141 0.351 0.656 0.226 0.763 0.982 0.222 0.729 0.976
OTet 0.142 0.377 0.723 0.129 0.356 0.666 0.233 0.783 0.985 0.223 0.749 0.982
Moran 0.052 0.232 0.589 0.037 0.165 0.411 0.190 0.753 0.989 0.158 0.690 0.981
Moranel 0.073 0.276 0.604 0.052 0.192 0.432 0.204 0.747 0.981 0.167 0.687 0.974
Moranet 0.070 0.276 0.621 0.051 0.196 0.448 0.206 0.759 0.988 0.171 0.699 0.982

“PTgmm”, “PTel” and “PTet” denote, respectively, the GMM, EL and ET parameter restriction tests; “OTgmm”, “OTel” and “OTet” denote,
respectively, the GMM, EL and ET overidentification tests; and “Moran”, “Moranel ” and “Moranel ” denote, respectively, the robust, EL
and ET Moran’s I tests.
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Table 8: Empirical sizes of spatial J tests for the SARAR model (1)

n = 144 n = 400

GMM1 EL1 ET1 GMM2 EL2 ET2 GMM1 EL1 ET1 GMM2 EL2 ET2

Circular vs Queen: Homoskedastic case

R2 = 0.8, κ0 = 0.2, τ0 = 0.2 0.048 0.068 0.064 0.055 0.063 0.062 0.049 0.059 0.058 0.054 0.060 0.060

R2 = 0.8, κ0 = 0.2, τ0 = 0.4 0.054 0.076 0.075 0.057 0.068 0.062 0.044 0.055 0.055 0.044 0.051 0.050

R2 = 0.8, κ0 = 0.4, τ0 = 0.2 0.054 0.081 0.081 0.058 0.076 0.064 0.057 0.065 0.067 0.056 0.063 0.062

R2 = 0.8, κ0 = 0.4, τ0 = 0.4 0.060 0.094 0.084 0.059 0.076 0.071 0.049 0.056 0.057 0.045 0.054 0.053

R2 = 0.4, κ0 = 0.2, τ0 = 0.2 0.063 0.114 0.105 0.060 0.074 0.071 0.051 0.065 0.064 0.056 0.060 0.060

R2 = 0.4, κ0 = 0.2, τ0 = 0.4 0.080 0.111 0.109 0.062 0.072 0.072 0.065 0.072 0.077 0.049 0.058 0.056

R2 = 0.4, κ0 = 0.4, τ0 = 0.2 0.070 0.103 0.093 0.055 0.081 0.074 0.052 0.063 0.060 0.038 0.047 0.044

R2 = 0.4, κ0 = 0.4, τ0 = 0.4 0.070 0.122 0.113 0.056 0.067 0.063 0.056 0.064 0.064 0.057 0.061 0.057

Circular vs Queen: Heteroskedastic case

R2 = 0.8, κ0 = 0.2, τ0 = 0.2 0.052 0.129 0.104 0.051 0.106 0.084 0.057 0.086 0.077 0.053 0.079 0.073

R2 = 0.8, κ0 = 0.2, τ0 = 0.4 0.046 0.108 0.085 0.047 0.089 0.076 0.060 0.084 0.080 0.053 0.074 0.065

R2 = 0.8, κ0 = 0.4, τ0 = 0.2 0.052 0.147 0.117 0.063 0.122 0.100 0.056 0.087 0.082 0.056 0.082 0.079

R2 = 0.8, κ0 = 0.4, τ0 = 0.4 0.056 0.117 0.098 0.063 0.095 0.084 0.050 0.078 0.066 0.056 0.074 0.071

R2 = 0.4, κ0 = 0.2, τ0 = 0.2 0.069 0.140 0.115 0.066 0.101 0.089 0.054 0.078 0.076 0.058 0.075 0.077

R2 = 0.4, κ0 = 0.2, τ0 = 0.4 0.060 0.142 0.121 0.068 0.113 0.096 0.051 0.081 0.069 0.052 0.071 0.068

R2 = 0.4, κ0 = 0.4, τ0 = 0.2 0.064 0.151 0.123 0.061 0.110 0.100 0.053 0.079 0.071 0.061 0.076 0.069

R2 = 0.4, κ0 = 0.4, τ0 = 0.4 0.076 0.155 0.120 0.066 0.115 0.092 0.067 0.102 0.092 0.061 0.069 0.066

Queen vs Circular: Homoskedastic case

R2 = 0.8, κ0 = 0.2, τ0 = 0.2 0.048 0.087 0.074 0.049 0.073 0.068 0.055 0.068 0.065 0.059 0.067 0.069

R2 = 0.8, κ0 = 0.2, τ0 = 0.4 0.055 0.085 0.082 0.054 0.089 0.081 0.049 0.060 0.057 0.051 0.062 0.064

R2 = 0.8, κ0 = 0.4, τ0 = 0.2 0.047 0.077 0.075 0.045 0.059 0.059 0.049 0.054 0.059 0.043 0.051 0.051

R2 = 0.8, κ0 = 0.4, τ0 = 0.4 0.046 0.078 0.070 0.043 0.069 0.058 0.036 0.044 0.044 0.034 0.040 0.041

R2 = 0.4, κ0 = 0.2, τ0 = 0.2 0.059 0.089 0.079 0.044 0.071 0.064 0.048 0.052 0.055 0.043 0.050 0.053

R2 = 0.4, κ0 = 0.2, τ0 = 0.4 0.066 0.097 0.090 0.060 0.073 0.068 0.047 0.058 0.055 0.050 0.056 0.056

R2 = 0.4, κ0 = 0.4, τ0 = 0.2 0.072 0.112 0.093 0.068 0.093 0.080 0.055 0.062 0.056 0.060 0.060 0.060

R2 = 0.4, κ0 = 0.4, τ0 = 0.4 0.076 0.117 0.104 0.069 0.080 0.075 0.058 0.068 0.069 0.057 0.057 0.059

Queen vs Circular: Heteroskedastic case

R2 = 0.8, κ0 = 0.2, τ0 = 0.2 0.050 0.081 0.075 0.054 0.082 0.074 0.045 0.050 0.051 0.043 0.047 0.048

R2 = 0.8, κ0 = 0.2, τ0 = 0.4 0.063 0.094 0.087 0.064 0.090 0.090 0.050 0.062 0.063 0.054 0.062 0.060

R2 = 0.8, κ0 = 0.4, τ0 = 0.2 0.047 0.082 0.073 0.041 0.067 0.062 0.046 0.054 0.055 0.049 0.056 0.056

R2 = 0.8, κ0 = 0.4, τ0 = 0.4 0.046 0.076 0.069 0.044 0.072 0.067 0.042 0.055 0.051 0.053 0.061 0.060

R2 = 0.4, κ0 = 0.2, τ0 = 0.2 0.059 0.092 0.082 0.043 0.069 0.064 0.059 0.075 0.072 0.062 0.068 0.068

R2 = 0.4, κ0 = 0.2, τ0 = 0.4 0.052 0.081 0.076 0.056 0.059 0.056 0.049 0.055 0.054 0.055 0.058 0.060

R2 = 0.4, κ0 = 0.4, τ0 = 0.2 0.063 0.103 0.090 0.061 0.091 0.082 0.054 0.060 0.061 0.049 0.064 0.063

R2 = 0.4, κ0 = 0.4, τ0 = 0.4 0.066 0.101 0.096 0.062 0.073 0.071 0.062 0.064 0.067 0.066 0.070 0.071

”GMM1” denotes the spatial J test implemented with the GMM distance difference test using the predictor Ŷn = κ̂1nW1nYn + X1nβ̂1n, and

”GMM2” uses Ŷn = (In − κ̂1n)−1X1nβ̂1n. Correspondingly, we have EL and ET ratio tests “EL1”, “EL2”, “ET1” and “ET2”. “Circular vs
Queen” means that an SARAR model with the circular world matrix is tested against one with the queen matrix. “Queen vs Circular” has a
similar meaning. The nominal size is 5%.
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Table 9: Powers of spatial J tests for the SARAR model (1)

n = 144 n = 400

GMM1 EL1 ET1 GMM2 EL2 ET2 GMM1 EL1 ET1 GMM2 EL2 ET2

Circular vs Queen: Homoskedastic case

R2 = 0.8, κ0 = 0.2, τ0 = 0.2 0.361 0.449 0.431 0.367 0.426 0.413 0.731 0.760 0.755 0.732 0.745 0.747

R2 = 0.8, κ0 = 0.2, τ0 = 0.4 0.334 0.426 0.403 0.330 0.391 0.370 0.680 0.710 0.713 0.669 0.693 0.696

R2 = 0.8, κ0 = 0.4, τ0 = 0.2 0.840 0.898 0.890 0.853 0.893 0.882 1.000 1.000 1.000 0.998 0.999 0.999

R2 = 0.8, κ0 = 0.4, τ0 = 0.4 0.758 0.823 0.812 0.728 0.786 0.771 0.990 0.993 0.992 0.987 0.989 0.990

R2 = 0.4, κ0 = 0.2, τ0 = 0.2 0.127 0.188 0.176 0.126 0.146 0.135 0.210 0.223 0.224 0.200 0.216 0.214

R2 = 0.4, κ0 = 0.2, τ0 = 0.4 0.173 0.237 0.225 0.168 0.191 0.180 0.244 0.265 0.261 0.230 0.232 0.235

R2 = 0.4, κ0 = 0.4, τ0 = 0.2 0.363 0.421 0.411 0.325 0.382 0.369 0.586 0.608 0.608 0.570 0.572 0.573

R2 = 0.4, κ0 = 0.4, τ0 = 0.4 0.331 0.418 0.398 0.286 0.325 0.314 0.555 0.591 0.589 0.520 0.526 0.528

Circular vs Queen: Heteroskedastic case

R2 = 0.8, κ0 = 0.2, τ0 = 0.2 0.414 0.508 0.493 0.414 0.477 0.468 0.747 0.753 0.766 0.742 0.745 0.757

R2 = 0.8, κ0 = 0.2, τ0 = 0.4 0.404 0.492 0.480 0.405 0.445 0.443 0.699 0.710 0.726 0.683 0.695 0.706

R2 = 0.8, κ0 = 0.4, τ0 = 0.2 0.886 0.917 0.918 0.888 0.901 0.905 0.998 0.997 0.998 0.998 0.996 0.997

R2 = 0.8, κ0 = 0.4, τ0 = 0.4 0.774 0.832 0.831 0.765 0.807 0.806 0.991 0.992 0.993 0.989 0.991 0.991

R2 = 0.4, κ0 = 0.2, τ0 = 0.2 0.162 0.248 0.220 0.167 0.200 0.184 0.237 0.266 0.268 0.231 0.248 0.253

R2 = 0.4, κ0 = 0.2, τ0 = 0.4 0.188 0.289 0.251 0.176 0.237 0.218 0.255 0.283 0.292 0.225 0.252 0.252

R2 = 0.4, κ0 = 0.4, τ0 = 0.2 0.365 0.471 0.458 0.339 0.411 0.397 0.636 0.651 0.665 0.617 0.633 0.642

R2 = 0.4, κ0 = 0.4, τ0 = 0.4 0.364 0.444 0.440 0.337 0.408 0.393 0.576 0.581 0.598 0.540 0.547 0.558

Queen vs Circular: Homoskedastic case

R2 = 0.8, κ0 = 0.2, τ0 = 0.2 0.634 0.736 0.712 0.632 0.711 0.694 0.981 0.984 0.984 0.969 0.976 0.976

R2 = 0.8, κ0 = 0.2, τ0 = 0.4 0.579 0.670 0.654 0.538 0.614 0.599 0.955 0.964 0.966 0.930 0.936 0.940

R2 = 0.8, κ0 = 0.4, τ0 = 0.2 0.975 0.986 0.987 0.965 0.979 0.978 1.000 1.000 1.000 1.000 1.000 1.000

R2 = 0.8, κ0 = 0.4, τ0 = 0.4 0.945 0.974 0.963 0.903 0.944 0.940 1.000 1.000 1.000 0.997 1.000 1.000

R2 = 0.4, κ0 = 0.2, τ0 = 0.2 0.243 0.290 0.276 0.219 0.270 0.261 0.498 0.520 0.518 0.410 0.441 0.444

R2 = 0.4, κ0 = 0.2, τ0 = 0.4 0.251 0.293 0.278 0.211 0.237 0.231 0.539 0.565 0.571 0.376 0.412 0.403

R2 = 0.4, κ0 = 0.4, τ0 = 0.2 0.539 0.605 0.591 0.461 0.528 0.521 0.932 0.934 0.936 0.806 0.829 0.831

R2 = 0.4, κ0 = 0.4, τ0 = 0.4 0.536 0.578 0.554 0.385 0.448 0.435 0.882 0.878 0.877 0.636 0.689 0.683

Queen vs Circular: Heteroskedastic case

R2 = 0.8, κ0 = 0.2, τ0 = 0.2 0.696 0.757 0.757 0.675 0.711 0.717 0.977 0.978 0.979 0.964 0.968 0.972

R2 = 0.8, κ0 = 0.2, τ0 = 0.4 0.618 0.689 0.682 0.558 0.633 0.620 0.959 0.953 0.959 0.896 0.894 0.906

R2 = 0.8, κ0 = 0.4, τ0 = 0.2 0.983 0.987 0.990 0.972 0.980 0.982 1.000 1.000 1.000 1.000 1.000 1.000

R2 = 0.8, κ0 = 0.4, τ0 = 0.4 0.953 0.977 0.976 0.914 0.942 0.946 1.000 1.000 1.000 0.998 0.996 0.997

R2 = 0.4, κ0 = 0.2, τ0 = 0.2 0.297 0.348 0.341 0.252 0.322 0.300 0.540 0.555 0.560 0.456 0.476 0.484

R2 = 0.4, κ0 = 0.2, τ0 = 0.4 0.283 0.343 0.316 0.199 0.265 0.242 0.541 0.557 0.560 0.389 0.422 0.417

R2 = 0.4, κ0 = 0.4, τ0 = 0.2 0.600 0.634 0.627 0.507 0.576 0.573 0.909 0.901 0.911 0.779 0.796 0.811

R2 = 0.4, κ0 = 0.4, τ0 = 0.4 0.563 0.600 0.591 0.412 0.499 0.481 0.885 0.873 0.882 0.646 0.682 0.705

”GMM1” denotes the spatial J test implemented with the GMM distance difference test using the predictor Ŷn = κ̂1nW1nYn + X1nβ̂1n, and

”GMM2” uses Ŷn = (In − κ̂1n)−1X1nβ̂1n. Correspondingly, we have EL and ET ratio tests “EL1”, “EL2”, “ET1” and “ET2”. “Circular vs
Queen” means that an SARAR model with the circular world matrix is tested against one with the queen matrix. “Queen vs Circular” has a
similar meaning.
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