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Abstract

Empirical evidence from sequential auctions shows that prices of identical goods tend to

decline between rounds. In this paper, I show how expectations-based reference-dependent

preferences and loss aversion can rationalize this phenomenon. I analyze two-round sealed-bid

auctions with symmetric bidders having independent private values and unit demand. Equi-

librium bids in the second round are history-dependent and subject to a “discouragement

effect”: the higher the winning bid in the first auction is, the less aggressive the behavior of

the remaining bidders in the second auction. When choosing his strategy in the first round,

however, a bidder conditions his bid on being pivotal and hence underestimates the discour-

agement effect. Equilibrium behavior, therefore, leads the first-round winner to overestimate

the next-round price so that in equilibrium prices decline. Moreover, I show that sequential

and simultaneous auctions are not bidder-payoff equivalent nor revenue equivalent.
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1 Introduction

Sequential auctions are often used to sell multiple lots of identical or similar goods. How should

one expect prices to vary from one round to the next? Weber (1983) and Milgrom and Weber

(2000) showed that with symmetric, risk-neutral, unit-demand bidders having independent private

values, the law of one price should hold and on average prices should be the same across different

rounds. Intuitively, if they were not, then demand from the rounds with a higher expected price

would shift towards those rounds with a lower expected price, due to arbitrage opportunities. The

intuition for this result is very general and does not depend on the specific type of auction.1

However, this neat theoretical result does not seem to be supported by the data. Ashenfelter

(1989), McAfee and Vincent (1993) and Ginsburgh (1998) document a puzzling declining price

anomaly or afternoon effect (reflecting that later auctions often take place in the afternoon whereas

earlier ones are in the morning) in sequential second-price and English auctions for identical bottles

of wine. Declining prices have been also found by Beggs and Graddy (1997) in English auctions for

artwork, Ashenfelter and Genesove (1992) in first-price auctions for identical condominium units,

Van den Berg et al. (2001) in Dutch auctions for flowers and Lambson and Thurston (2006) in

English auctions for fur. There is also experimental evidence of declining prices; see, for instance,

Keser and Olson (1996), Février et al. (2007), and Neugebauer and Pezanis-Christou (2007).

Moreover, while declining prices are more frequent, increasing prices have also been documented

by Chanel et al. (1996), Gandal (1997), and Deltas and Kosmopoulou (2004).2 Overall, declining

prices have been documented in more instances than rising prices have (Ashenfelter and Graddy,

2003). Declining prices do not occur in every auction, but they seem to be an empirically robust

feature of sequential auctions.

In this paper, I study two-round sealed-bid auctions with symmetric bidders having independent

private values and unit demand and I argue that reference-dependent preferences and loss aversion

provide an explanation for the afternoon effect. More generally, I show that reference-dependent

preferences with expectations as the reference point induce an endogenous form of interdependence

in the bidders’payoffs even though values are private and independent. Indeed, the derivation of the

equilibrium strategies resembles the standard reference-free model with interdependent (common)

values. The reason is that even though a bidder’s valuation does not depend directly on his

competitors’types, these affect his likelihood of winning the auction and hence his reference point.

Moreover, I also show that if bidders have expectations-based reference-dependent preferences,

sequential and simultaneous auctions are not revenue equivalent anymore.

1Technically, with independent private values, the price sequence of any standard auction is a martingale, so
that the expected price in round k + 1, conditional on pk, the price in round k, is equal to pk.

2Milgrom and Weber (2000) showed that if bidders’signals are affi liated and values are interdependent, then
the equilibrium price sequence is a submartingale and the expected value of pk+1, conditional on pk, is higher
than pk. Mezzetti (2011) showed that affi liated signals are not necessary to explain increasing-price sequences:
interdependent values with informational externalities – that is, when a bidder’s value is increasing in all bidders’
private signals – even with independent signals, push prices to increase between rounds.
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Section 2 introduces the model of bidders’preferences and the solution concept. Following

Köszegi and Rabin (2006), I assume that in addition to classical consumption utility, a bidder also

derives gain-loss utility from the comparison of his consumption to a reference point equal to his

lagged expectations regarding the same outcomes, with losses being more painful than equal-sized

gains are pleasant. To account for the intrinsic dynamic nature of sequential auctions, I develop a

dynamic version of the Choice Acclimating Personal Equilibrium (CPE) introduced in Köszegi and

Rabin (2007) that I call Sequential Choice Acclimating Personal Equilibrium (SCPE). In a SCPE,

a decision maker uses backward induction to correctly predict his (possibly stochastic) strategy at

each point in the future and then applies the same (static) CPE as in Köszegi and Rabin (2007)

at every stage of the game, with his reference point in a given stage being his beliefs over final

outcomes conditional on the information available at that stage.3

Sections 3 analyzes sequential first-price and second-price auctions. First, I show that loss

aversion creates an informational externality that renders equilibrium bids history-dependent, even

if bidders have independent private values. Intuitively, learning the outcome of the previous auction

modifies a bidder’s expectations about how likely he is to win in the current one. Since expectations

are the reference point, the optimal bid in the second auction depends also on what a bidder learns

from the first one as this modifies his reference point. More precisely, I identify what I call the

discouragement effect : the higher the winning bid in the first auction is, the less aggressive the

bidding strategy of the remaining bidders in the second auction. The intuition is that, from the

point of view of a bidder who lost the first auction, the higher the type of the winner is, the less

likely he is to win in the second one; this in turn lowers the bidder’s reference point who does not

feel a strong attachment to the item and therefore reduces his equilibrium bid.

Notice that the history dependence arising in my model has the opposite effect of the one

stemming from interdependent (common) values. With interdependent values, since in equilibrium

he conditions his bid on himself having the highest signal, if a bidder loses the current round he

learns that the winner had a higher signal than his; this in turn makes a losing bidder revise his

estimate of the value of the good upward and therefore he will bid more aggressively in subsequent

rounds. The discouragement effect instead goes in the opposite direction by pushing bidders to

bid less aggressively in later rounds.

In equilibrium, bidders are indifferent between winning in the first round or in the second one.

In order for a bidder to be indifferent between winning in the current round or the next one, in the

current round he must bid the expectation of the next-round price as though he was tied with his

closest competitor. By conditioning on being tied with his closest competitor, however, a bidder

underestimates the discouragement effect which will lower his competitors’bids in the next round.

Equilibrium behavior, therefore, leads the winner of the first round to overestimate the next-round

3The original notion of CPE in Köszegi and Rabin (2007) is related to the models of “disappointment aversion”
of Bell (1985), Loomes and Sugden (1986), and Gul (1991), where outcomes are also evaluated relative to a reference
lottery that is identical to the chosen lottery; likewise the notion of SCPE introduced in this paper is related to the
notion of dynamic disappointment aversion proposed in Artstein-Avidan and Dillenberger (2015).

2



price so that equilibrium prices tend to decline.

With risk-neutral bidders having independent private values, sequential and simultaneous auc-

tions are revenue equivalent for the seller and payoff-equivalent for the bidders. In Section 4 I

show that these equivalences break down if bidders are expectations-based loss-averse. The key

difference between sequential and simultaneous auctions is the timing of information. Sequential

auctions provide bidders, in between rounds, with the opportunity to update their beliefs about

the intensity of competition. Such feedback, however, is absent in simultaneous auctions. In

the classical model this difference is irrelevant since bidding strategies in sequential auctions are

history-independent. Loss-averse bidders, instead, update their reference point based on the out-

come of the previous round. I show that bidders with high (resp. low) values prefer sequential

(simultaneous) auctions and that sequential auctions generate a higher (resp. lower) revenue than

simultaneous ones when the number of bidders is large (small). It is well known that sequential

auctions are more vulnerable to collusion than simultaneous ones; see, for instance, Cramton and

Schwartz (2000), Klemperer (2002), and Sherstyuk and Dulatre (2008). As collusion among bid-

ders tends to reduce the seller’s revenue, we would expect sellers to prefer simultaneous auctions

over sequential ones. Yet, loss aversion provides a novel reason why in some situations sequential

auctions are better for the seller.

For most of the paper, when studying sequential auctions, I assume that the winning bid in

the first round is publicly announced by the seller prior to the second round. This assumption is

inconsequential in the classical reference-free model when bidders have independent private values,

but it is not if bidders have reference-dependent preferences. Therefore, in Section 5 I analyze

sequential auctions under two alternative disclosure policies. First, I consider sequential auctions

with no bid announcement and I show that the equilibrium strategies are radically different. If

the winning bid from the first round is not publicly revealed, a losing bidder must use his own

past bid to update his expectations about how likely he is to win in the second one. As auctions

without bid announcement provide them with a noisier feedback mechanism, thus exposing them

to greater risk, loss-averse bidders react by bidding less aggressively so that the seller’s expected

revenue decreases. Nevertheless, the afternoon effect still arises in equilibrium. Next, I discuss

sequential second-price auctions with announcement of the first-round winning price and I show

via an example that in this case existence of a symmetric equilibrium in increasing strategies is

not guaranteed. The reason is that, just like in the classical model with interdependent values,

revealing the winning price makes the game in the second round highly asymmetric as one of the

remaining bidders would have his exact bid known to the others.

Section 6 presents two extensions of the main model. In Section 6.1 I consider sequential

common-value auctions. It is well-known that with risk-neutral bidders and common values, the

equilibrium price sequence is a submartingale so that prices drift upward. I show that if bidders

are loss-averse, however, the equilibrium price sequence can be either increasing or decreasing

depending on the magnitude of the loss aversion coeffi cient.
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For tractability, as well as to make the contrast with the previous literature as stark as possible,

for most of the paper I assume that bidders are loss-averse with respect to consumption but risk-

neutral over money. In Section 6.2 I relax this assumption and analyze sequential first-price

auctions with bidders who are loss-averse over both consumption and money. The effect of loss

aversion over money on the equilibrium price path can either go in the same direction as that of

loss aversion over consumption, or in the opposite one, depending on the number of bidders and

the shape of the distribution of values. Yet, I show that if money loss aversion is not too strong,

the afternoon effect still arises in equilibrium.

Many different explanations for the afternoon effect have been proposed. Ashenfelter (1989)

hypothesized risk aversion as a plausible explanation. Yet, McAfee and Vincent (1993) argue that

risk aversion is not a convincing explanation. They study two-round first-price and second-price

auctions with independent private values, and show that equilibrium prices decline only if bidders

display increasing absolute risk aversion. Under the more plausible assumption of decreasing

absolute risk aversion, a monotone symmetric pure-strategy equilibrium fails to exist and prices

need not decline. Black and De Meza (1992) and Février et al. (2005) argue that declining prices

are no anomaly if the winner in one round is allowed to purchase subsequent lots at the same

price.4 Bernhardt and Scoones (1994), Engelbrecht-Wiggans (1994) and Gale and Hausch (1994)

consider sequential auctions of “stochastically equivalent”objects – that is, when bidders’values

are identically distributed across the objects, but are not perfectly correlated – and show that in

this case equilibrium prices decline. Eyster (2002) models the behavior of an agent who has a taste

for rationalizing past actions by taking current actions for which those past actions were optimal.

He shows that this taste for consistency gives rise to an “unsunk-cost fallacy”that can rationalize

declining prices in sequential auctions. Other studies have emphasized demand complementarity

(Menezes and Monteiro, 2003), supply uncertainty (Jeitschko, 1999), asymmetric bidders (Gale and

Stegeman, 2001), order-of-sale effects (Chakraborty et al., 2006) and budget constraints (Pitchik

and Schotter, 1988; Ghosh and Liu, 2016) in accounting for the declining price anomaly.

More recently, Mezzetti (2011) introduced a special case of risk aversion, called aversion to

price risk, according to which a bidder prefers to win an object at a certain price rather than

at a random price with the same expected value.5 Under this different notion of risk aversion,

in sequential auctions with independent private values a monotone equilibrium in pure strategies

always exists and in equilibrium prices decline.6 Although aversion to price risk and loss aversion

are both able to explain the afternoon effect, the intuition behind the result is quite different. In

Mezzetti (2011), the afternoon effect is due to the bidders’dislike of uncertainty over money; in my

model, instead, the afternoon effect arises because bidders dislike uncertainty over consumption.

4However, Ashenfelter (1989) finds declining prices also for the case of bidders with unit demand.
5Similarly to the model of Köszegi and Rabin (2006), Mezzetti’s notion also assumes separability of a bidder’s

payoff between the utility from winning the object and the disutility from paying the price.
6Hu and Zou (2015) generalize the analysis in Mezzetti (2011) by considering bidders who are heterogeneous in

exposure to background risk.
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The different intuition translates also into different testable predictions. When bidders are averse

to price risk, the equilibrium bids do not depend on the history of the game and therefore the

seller’s information revelation policy does not affect revenue; with loss aversion, instead, bidders’

strategies are history-dependent and the seller is always better offby committing to publicly reveal

the history of the winning bids.

Section 7 concludes the paper by recapping the results of the model and pointing out some of

its limitations as well as possible avenues for future research.

2 Model

2.1 Environment

Suppose 2 identical items are sold to N > 2 bidders via a series of sealed-bid auctions. More

specifically, one item is sold using a sealed-bid auction and the winning bid is publicly announced;

then, the remaining item is sold using another sealed-bid auction (of the same kind). Announc-

ing the winning bid from former auctions prior to the current one is in accord with government

procurement statutes and with actual practice in some auctions.

I assume bidders want at most one unit and have independent private values. Each bidder’s

valuation (type) θi, i = 1, ..., n, is drawn independently from the same continuous and strictly

increasing distribution F which admits a continuous and positive density f everywhere on the

support
[
0, θ

]
. I will consider two types of games. In the first one, the goods are sold sequentially

via a series of first-price auctions. In the second one, the goods are sold sequentially via a series of

second-price auctions. Both auctions have a zero reserve price.7 Throughout the paper, I restrict

attention to symmetric equilibria in pure and (strictly) monotone strategies. It is convenient to

think of the auctions as being held in different periods of the day, the first one in the morning and

the second one in the afternoon; however I assume the auctions are held over a short enough time

so that bidders do not discount payoffs from the second auction.

2.2 Bidders’Preferences

Bidders have expectations-based reference-dependent preferences as formulated by Köszegi and

Rabin (2006). In this formulation, a bidder’s utility function has two components:

U [cg, cp|rg, rp, θ] = θcg + cp︸ ︷︷ ︸
consumption utility

+ µ (θ (cg − rg)) + µ (cp − rp)︸ ︷︷ ︸
gain-loss utility

(1)

where cg, rg ∈ {0, 1} capture the good dimension and cp, rp ∈ R capture the money dimension.
First, if he wins the auction at price p, a type-θ bidder experiences consumption utility θ−p, which

7See Rosenkranz and Schmitz (2007) for an analysis of reserve prices in auctions as reference points.
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represents the classical notion of outcome-based utility. Second, the bidder also derives gain-loss

utility from the comparison of his actual consumption to a reference point given by his recent

expectations (probabilistic beliefs).8 I assume µ is two-piece linear with a slope of η > 0 for gains

and a slope of ηλ > η for losses. The parameter η captures the relative weight a consumer attaches

to gain-loss utility while λ is the coeffi cient of loss aversion.

Because in many situations expectations are stochastic, Köszegi and Rabin (2006) extend the

utility function in (1) to allow for the reference point to be a pair of probability distributions

H := (Hg, Hp). In this case a bidder’s utility can be written as

U [(cg, cp) |Hg, Hp, θ] = θcg + cp +
∫
rg
µ (θ (cg − rg)) dHg +

∫
rp
µ (cp − rp) dHp (2)

In words, a bidder compares the realized consumption outcome with each possible outcome

in the reference lottery. For example, if he expected to win the auction with probability q, then

winning the auction entails a gain of θ (1− q) while losing the auction results in a loss of θq. Thus,
the weight on the loss (gain) in the overall experience is equal to the probability with which he

was expecting to win (lose) the auction. Slightly departing from the original model of Köszegi

and Rabin (2006), for most of the paper I will assume that bidders have reference-dependent

preferences only with respect to their value for the item, but not with respect to the price they

might pay; in other words, bidders are risk neutral over money. This assumption is reasonable

if bidders’ income is already subject to large background risk as argued by Köszegi and Rabin

(2009). Relatedly, Novemsky and Kahneman (2005) propose that money given up in purchases is

not generally subject to loss aversion.9

2.3 Solution Concept

Each bidder learns his type before submitting his bids and, therefore, maximizes his interim

expected utility. If the distribution of the reference point is H and the distribution of consumption

outcomes is G := (Gg, Gp), a type-θ bidder’s interim expected utility is given by

EU [G|H, θ] =
∫
{cg ,cp}

∫
{rg ,rp}

U [(cg, cp) |Hg, Hp, θ] dHdG.

For each auction in which he participates, after placing a bid, a bidder basically faces a lottery

between winning or losing the auction and the probabilities and potential payoffs depend on his

8Recent experimental evidence lends support to Köszegi and Rabin’s (2006) expectations-based model of
reference-dependent preferences and loss aversion; see Abeler et al. (2011), Ericson and Fuster (2011), Gill and
Prowse (2012), Banerji and Gupta (2014), Karle et al. (2015), Sprenger (2015) and Rosato and Tymula (2016).

9One advantage of assuming reference-dependence only over consumption is that it preserves revenue equivalence
between first-price and second-price auctions. Moreover, by assuming that bidders are risk neutral over money I am
shutting down risk in payments as a possible explanation for the afternoon effect. Indeed, differently from the works
of Eyster (2002), Mezzetti (2011) and Hu and Zou (2015), all the results in my paper will be due to uncertainty
and information updating over consumption.
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own as well as other players’ bids. The final outcome is then evaluated with respect to any

possible outcome from this lottery as a reference point. As laid out in Köszegi and Rabin (2007),

Choice Acclimating Personal Equilibrium (CPE) is the most appropriate solution concept for such

decisions under risk when uncertainty is resolved after the decision is made so that the decision

maker’s strategy determines the distribution of the reference point as well as the distribution of

final consumption outcomes; that is, H = G.

A strategy for bidder i is a pair of bidding functions βi = (β1, β2), one for each auction. Fixing

all other bidders’strategies, β−i, bidder i’s strategy βi induces a distribution over the set of final

consumption outcomes, A := {0, 1} × R. For k = 1, 2, let Γk
(
A|βi,β−i

)
denote the distribution

over final (i.e., after the second auction) consumption outcomes from auction k point of view

conditional on all available information.10 Similarly, let EUk denote a bidder expected utility from

auction k point of view. To account for the intrinsic dynamic nature of sequential auctions, I

introduce a slightly modified version of CPE.

Definition 1. A strategy profile β∗ constitutes a Sequential Choice Acclimating Personal Equilib-
rium (SCPE) if for all i, and for k = 1, 2:

EUk
[
Γk
(
A|β∗i , β∗−i

)
|Γk

(
A|β∗i , β∗−i

)
, θ
]
≥ EUk

[
Γk
(
A|β̃i, β∗−i

)
|Γk

(
A|β̃i, β∗−i

)
, θ
]

for any β̃i 6= β∗i .

In words, in a SCPE a bidder correctly predicts his (possibly stochastic) strategy in the future

using backward induction and applies the same (static) CPE as in Köszegi and Rabin (2007) at

every stage of the game. The interpretation of SCPE is that each bidder understands that once

consumption occurs, i.e. once all the auctions are over, he evaluates the realized outcome against

the reference lottery. Notice that in round k, a bidder’s reference point is given by his round-k

expectations, Γk
(
A|β∗i , β∗−i

)
, about his final consumption outcomes. Hence, in the second round

bidders update their reference point based on the outcome of the first round.11 The following

assumption, maintained for the remainder of the paper, guarantees that all bidders participate

in the auction for any realization of their own type, and that the equilibrium bidding functions

derived in the next sections are strictly increasing:

Assumption 1 (No dominance of gain-loss utility) Λ ≡ η (λ− 1) ≤ 1.

10Hence, Γ2 is the distribution over final allocations conditional on the outcome of the first auction.
11The concept of SCPE differs from the dynamic version of Preferred Personal Equilibrium (PPE ) introduced

by Köszegi and Rabin (2009) on two main aspects. First, in their dynamic model, agents have a reference point
for every period in which they expect to consume – so that consumption levels in different periods are treated like
different dimensions. Second, agents are loss-averse over changes in beliefs about present as well future consumption
and experience paper gains or paper losses by comparing old beliefs to new ones even when no actual consumption
takes place. In my model, instead, an agent’s reference point is given by his beliefs about final consumption in the
last period, and while he updates his reference point, gains and losses are only felt in the last period by comparing
his most recent beliefs with his actual consumption.
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This assumption places, for a given η (λ), an upper bound on λ (η) and ensures that a bidder’s

expected utility is increasing in his type by imposing that the weight a bidder places on expected

gain-loss utility does not (strictly) exceed the weight he puts on consumption utility.12 Finally,

notice that risk neutrality is embedded in the model as a special case (for either η = 0 or λ = 1).

3 Sequential Auctions

3.1 First-price Auctions

Suppose two identical items are sold sequentially via first-price auctions. In this case, a symmet-

ric equilibrium consists of two bidding functions (β1, β2), one for each auction. I assume that both

functions are strictly increasing and differentiable. The first-round bidding strategy is a function

β1 :
[
0, θ

]
→ R+ that depends only on the bidder’s type. The bid in the second auction, instead,

might depend also on the price paid in the first auction. Since we are focusing on a symmetric

equilibrium, it is useful to take the point of view of one of the bidders, say bidder i with type θi,

and to consider the order statistics associated with the types of the other bidders. Let Y (N−1)
1 ≡ Y1

be the highest of N − 1 values, Y (N−1)
2 ≡ Y2 be the second-highest and so on. Also, let F1 and

F2 be the distributions of Y1 and Y2 respectively, with corresponding densities f1 and f2. As the

first-round bidding function β1 is assumed to be invertible, after the first auction is over, and its

winning bid is revealed, the type of the winning bidder is commonly known to be y1 = β−1
1 (p1).

Thus, the second-period strategy can be described as a function β2 :
[
0, θ

]
×
[
0, θ

]
→ R+ so that a

bidder with value θ bids β2 (θ, y1) if Y1 = y1. To find an equilibrium that is sequentially rational,

I start by solving the bidder’s problem in the last auction.

Consider a bidder with type θ who plans to bid as if his type were θ̃ > θ when all other N − 2

remaining bidders follow the equilibrium strategy β2 (·, y1).13 His expected payoff is

EU2

(
θ̃, θ; y1

)
= F2

(
θ̃|y1

) [
θ − β2

(
θ̃, y1

)]
+ F2

(
θ̃|y1

)
η
{

(θ − 0)
[
1− F2

(
θ̃|y1

)]}
(3)

+
[
1− F2

(
θ̃|y1

)]
ηλ
{

(0− θ)F2

(
θ̃|y1

)}
where F2

(
θ̃|y1

)
is the probability that Y2, the second highest valuation among N − 1, is less

than θ̃ conditional on Y1 = y1 being the highest. The first term on the right-hand-side of (3),

F2

(
θ̃|y1

) [
θ − β2

(
θ̃, y1

)]
, is standard expected consumption utility. The other terms capture ex-

12Herweg et al. (2010) first introduced Assumption 1 and referred to it as “no dominance of gain-loss utility”.
This assumption, which has been used also by Lange and Ratan (2010) and Eisenhuth (2012) in the context of
single-unit sealed-bid auctions, ensures that a loss-averse agent does not select first-order stochastically-dominated
options. Using data from first-price and all-pay auctions, Eisenhuth and Ewers (2012) obtain an estimate for Λ
of 0.42 (with a standard error of 0.16), which is statistically different from 0 and 1 at all conventional significance
levels; similarly, using data from a BDM-like auction, Banerji and Gupta (2014) obtain an estimate for Λ of 0.283
(with a standard error of 0.08), also statistically different from 0 and 1 at all conventional significance levels.
13The analysis is virtually identical for the case θ̃ < θ.
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pected gain-loss utility and are derived as follows. A bidder of type θ who bids as if his type

were θ̃ expects to win the auction with probability F2

(
θ̃|y1

)
and if he wins he gets consumption

utility θ; thus, winning the auction feels like a gain of η (θ − 0) compared to the outcome of losing

the auction and getting 0, which the bidder expected to happen with probability
[
1− F2

(
θ̃|y1

)]
.

Similarly, with probability
[
1− F2

(
θ̃|y1

)]
the bidder loses the auction and gets 0; thus, losing

the auction entails a loss of ηλ (0− θ) compared to winning the auction and getting θ, which the
bidder expected to happen with probability F2

(
θ̃|y1

)
. Collecting terms we can re-write (3) as

EU2

(
θ̃, θ; y1

)
= F2

(
θ̃|y1

) [
θ − β2

(
θ̃, y1

)]
− ΛθF2

(
θ̃|y1

) [
1− F2

(
θ̃|y1

)]
where Λ ≡ η (λ− 1) is the weight on expected gain-loss utility. Notice that expected gain-loss

utility is always negative as, since λ > 1, losses are felt more heavily than equal-size gains.

Differentiating EU2

(
θ̃, θ; y1

)
with respect to θ̃ yields the first-order condition:

β′2
(
θ̃, y1

)
F2

(
θ̃|y1

)
= f2

(
θ̃|y1

) [
θ − β2

(
θ̃, y1

)]
− Λθf2

(
θ̃|y1

) [
1− 2F2

(
θ̃|y1

)]
(4)

where β′2 is the derivative of β2 with respect to its first argument. It is useful to compare condition

(4) with its risk-neutral analog. The term on the left-hand-side of (4) captures the bidder’s cost

from raising his bid (i.e., paying a higher price when winning) which at the margin, without loss

aversion (Λ = 0), must equal the gain from raising his bid (i.e., winning more often) which is

captured by the first term on the right-hand-side of (4). With loss aversion, however, there is an

additional term on the right-hand-side of (4) which captures how raising his bid affects a bidder’s

reference point and expected gain-loss utility. In particular, the term−Λθf2

(
θ̃|y1

) [
1− 2F2

(
θ̃|y1

)]
is positive if and only if F2

(
θ̃|y1

)
> 1

2
which follows from the fact that expected gain-loss utility is

proportional to the variance of the Bernoulli distributed outcome of winning or losing the auction.

Substituting θ = θ̃ into (4) and re-arranging yields the following differential equation

∂

∂θ
{β2 (θ, y1)F2 (θ|y1)} = f2 (θ|y1) θ {1− Λ [1− 2F2 (θ|y1)]} (5)

together with the boundary condition that β2 (0, y1) = 0. Because the different values are drawn

independently, we have that

F2 (θ|y1) =
F (θ)N−2

F (y1)N−2

and substituting into (5) yields

β∗2 (θ, y1) =

∫ θ

0
x
{

1− Λ
[
1− 2F (x)N−2

F (y1)N−2

]}
dF (x)N−2

F (θ)N−2 . (6)

9



In order to verify that β∗2 (θ, y1) is indeed an equilibrium notice that since
dEU2(θ̃,θ;y1)

d̃θ
|̃
θ=θ

= 0

must hold for all types, it must also hold for type θ̃; that is

0 =
dEU2

(
θ̃, θ̃; y1

)
dθ̃

= f2

(
θ̃|y1

) [
θ̃ − β2

(
θ̃, y1

)]
−β′2

(
θ̃, y1

)
F2

(
θ̃|y1

)
−f2

(
θ̃|y1

) [
1− 2F2

(
θ̃|y1

)]
θ̃Λ.

Hence, we have that

dEU2

(
θ̃, θ; y1

)
dθ̃

=
dEU2

(
θ̃, θ; y1

)
dθ̃

−
dEU2

(
θ̃, θ̃; y1

)
dθ̃

= f2

(
θ̃|y1

) (
θ − θ̃

) {
1− Λ

[
1− 2F2

(
θ̃|y1

)]}
.

Since Λ ≤ 1 it follows that
dEU2(θ̃,θ;y1)

d̃θ
> 0 when θ̃ < θ and

dEU2(θ̃,θ;y1)
d̃θ

< 0 when θ̃ > θ and

therefore EU2

(
θ̃, θ; y1

)
is maximized at θ̃ = θ.

The complete bidding strategy for a type-θ bidder is to bid β∗2 (θ, y1) if θ < y1 and to bid

β∗2 (y1, y1) if θ ≥ y1. The latter might occur if a bidder of type θ ≥ y1 underbid in the first round

causing a lower type to win. (Of course this is an off-equilibrium event.)

The bidding function in expression (6) can be re-written as:

β∗2 (θ, y1) = (1− Λ)

∫ θ

0
xdF (x)N−2

F (θ)N−2 + Λ

∫ θ

0

2xF (x)N−2

F (y1)N−2
dF (x)N−2

F (θ)N−2 .

Thus, the bid under loss aversion is a convex combination of the risk-neutral bid and a term

that depends on the bidder’s expectations about how likely he is to win the auction. It is worth

noticing is that, even if bidders have independent private values, with expectations-based reference-

dependent preferences the equilibrium bidding strategy in the second period is history-dependent,

as it is a function of y1; with risk-neutral preferences (Λ = 0), instead, this is not the case:

βRN2 (θ) =

∫ θ

0
xdF (x)N−2

F (θ)N−2 = E [Y2|Y2 ≤ θ] .

Under risk neutrality, a bidder submits a bid equal to his estimation of the highest valuation

of his opponents, conditional on his own valuation being the highest. Because of this conditioning,

bids are independent of the prior history of the game. Similarly, previous winning bids have no

influence on the remaining active bidders’strategies if bidders are risk-averse, as in the models by

McAfee and Vincent (1993), Mezzetti (2011) and Hu and Zou (2015). With reference-dependent

preferences, instead, the second-round equilibrium bid is decreasing in the first-round winning bid,

as shown by the following lemma.14

14All proofs are relegated to Appendix A.
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Lemma 1. (Discouragement Effect) If Λ > 0, then ∂β∗2(θ,y1)

∂y1
< 0. Furthermore, ∂β

∗
2(θ,y1)

∂y1
is decreas-

ing in N .

According to the result in Lemma 1, the higher is the type of the winner in the first round

– and hence his bid – the less aggressively the remaining bidders will bid in the second round.

The rationale for this negative effect, which I call the discouragement effect, is as follows. From

the perspective of a bidder who lost the first auction, the higher is the type of the winner, the less

likely he is to win in the second auction; with expectations-based reference-dependent preferences

a bidder who thinks that most likely he is not going to win does not feel a strong attachment to

the item and this pushes him to bid more conservatively. Thus, revealing the first-period win-

ner’s bid creates an informational externality. However, notice that the effect of this informational

externality on the second-period bids is exactly the opposite of the one that arises with interde-

pendent (or common) values. Indeed, with interdependent values the higher is the type of the

first-round winner, the higher is the value of the object to all remaining bidders who in turn bid

more aggressively in the second auction. Furthermore, Lemma 1 also says that the more bidders

take part in the auction, the stronger the discouragement effect. Intuitively, fixing the type of the

first-round winner, a bidder gets more pessimistic about his chances of winning the second auction

the more competitors he faces. Hence, by analyzing the distribution of bids in the second auction,

one can use the discouragement effect to empirically test the implications of loss aversion against

the implications of the classical risk-neutral model with either independent private values (where

there is no history dependence) or with common values (where the higher is the winning price in

the first auction, the more aggressively the remaining bidders behave in the second auction).

Figure 1 displays the bidding strategy β∗2 (θ, y1) for two different values of y1 assuming θ
U∼ [0, 1],

Λ = 1
2
and N = 4: the dashed curve is for the case y1 = 1

2
while the solid one is for the case y1 = 3

4
.

As we would expect from Lemma 1, for θ ≤ 1
2
β∗2
(
θ, 3

4

)
is always below β∗2

(
θ, 1

2

)
.

Next, I turn to analyzing the bidder’s problem in the first round. Consider a bidder with type

θ who plans to bid as if his type were θ̃ > θ when all other N −1 bidders follow the strategy β1 (·).
Furthermore, suppose that all bidders expect to follow the equilibrium strategy β∗2 (θ, y1) in the

second auction, regardless of what happens in the first one (sequential rationality). The bidder’s

expected total utility at the beginning of the first round is

EU1

(
θ̃, θ

)
= F1

(
θ̃
) [
θ − β1

(
θ̃
)]

+
∫ θ

θ̃
F2 (θ|y1) [θ − β∗2 (θ, y1)] f1 (y1) dy1 (7)

−Λθ

[
F1

(
θ̃
)

+
∫ θ

θ̃
F2 (θ|y1) f1 (y1) dy1

] [
1− F1

(
θ̃
)
−
∫ θ

θ̃
F2 (θ|y1) f1 (y1) dy1

]

where F1

(
θ̃
)
is the probability that Y1, the highest valuation among N − 1, is less than θ̃, and

F2 (θ|y1) and Λ are defined as before. The first line on the right-hand-side of (7) is the sum of

expected consumption utility in periods 1 and 2. The second line captures expected gain-loss

11
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Figure 1: The effect of y1 on β
∗
2 (θ, y1) for N = 4 and Λ = 1

2
with θ distributed uniformly on [0, 1].

utility. Indeed, F1

(
θ̃
)

+
∫ θ

θ̃
F2 (θ|y1) f1 (y1) dy1 is the sum of the probability with which a bidder

of type θ expects to win the first auction if he pretends to be of type θ̃ and of his expectation,

in the first round, of the probability of winning the second auction given that he pretends to be

of type θ̃ in the first auction but expects to behave as his real type in the second one. Hence, in

accordance with the definition of SCPE in Section 2, a bidder’s reference point in the first round

is given by his overall probability of consumption in both rounds.

Differentiating EU1

(
θ̃, θ; y1

)
with respect to θ̃ yields the following first-order condition:

β′1
(
θ̃
)
F1

(
θ̃
)

= f1

(
θ̃
) [
θ − β1

(
θ̃
)]
− F2

(
θ|θ̃
) [
θ − β∗2

(
θ, θ̃

)]
f1

(
θ̃
)

(8)

−Λθ
[
f1

(
θ̃
)
− F2

(
θ|θ̃
)
f1

(
θ̃
)]{

1− 2

[
F1

(
θ̃
)

+
∫ θ

θ̃
F2 (θ|y1) f1 (y1) dy1

]}
.

Substituting θ = θ̃ into (8) results in the following differential equation

F1 (θ) β′1 (θ) = f1 (θ) [β∗2 (θ, θ)− β1 (θ)] (9)

together with the boundary condition that β1 (0) = 0. In expression (9), the term on the left-hand-

side represents the bidder’s cost from raising his bid (i.e., paying a higher price when winning)

while the term on the right-hand-side represents the bidder’s gain from raising his bid which, at

the margin, is simply the difference between winning in the current round or in the next one.15

15If a bidder deviates from the symmetric equilibrium strategy by slightly overbidding, there are only two possible
consequences. First, if he was already going to win then he still wins, but pays a slightly higher price. Second, his
deviation might make him win the current round when he was otherwise going to lose. In this case, however, it
must be that the type of his closest competitor is so close that the bidder was almost certain to win the next round.
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Moreover, notice that the last term on the right-hand-side of (8) vanishes when θ = θ̃. Indeed,

with a marginal increase in his first-round bid, because such a change only matters he is close

to winning in either round, a bidder is not modifying his overall probability of consumption but

simply reallocating it between the two rounds. Re-arranging condition (9) yields

d

dθ
{β1 (θ)F1 (θ)} = f1 (θ) β∗2 (θ, θ)

whose solution is

β∗1 (θ) =

∫ θ

0
β∗2 (s, s) f1 (s) ds

F1 (θ)
= E [β∗2 (Y1, Y1) |Y1 ≤ θ] .16 (10)

The first thing worth noticing is that the bidding function in (10) resembles the one of the

classical reference-free model with interdependent values. That is, in the first round bidder i with

type θ submits a bid equal to the expectation of the second-round bid of his closest competitor

conditional on winning and on the closest competitor assuming that he has the same type as bidder

i. To see the intuition, suppose bidder i wins in the first round if he bids as type θ; that is, suppose

Y1 ≤ θ. Bidder i also has the option to bid as low as to lose in the first round and discover the value

of Y1; then, he can win for sure in the second round by bidding β
∗
2 (Y1, Y1) (i.e., by bidding as if his

type were Y1). Hence, in order to be indifferent between winning in the current round or the next

one, in the first round bidder i must bid the expectation of the second-round price as though he

was tied with his closest competitor. Furthermore, notice that β∗1 (θ) depends on Λ only indirectly,

through β∗2 (s, s). Indeed, just like in the standard model, in the first round a bidder chooses his

optimal bid by conditioning on himself having the highest type. This is because a small change in

his bid only matters when the bidder wins or is close to winning. When conditioning on having

the highest type, however, a bidder expects that if he were to lose the current auction, he would

win the next one for sure and this is why Λ does not directly appear into the first-period bidding

function. Finally, it is easy to see that for Λ = 0 we get back to the risk-neutral benchmark:

βRN1 (θ) =

∫ θ

0
βRN2 (s) f1 (s) ds

F1 (θ)
= E

[
βRN2 (Y1) |Y1 ≤ θ

]
where βRN2 (s) does not depend of the type of the winner of the first auction.

16Notice that

dβ∗1 (θ)

dθ
=

[
F1 (θ)β∗2 (θ, θ)−

∫ θ

0

β∗2 (s, s) f1 (s) ds

]
f1 (θ)

[F1 (θ)]
2 > 0

since

F1 (θ)β∗2 (θ, θ) >

∫ θ

0

β∗2 (s, s) f1 (s) ds = F1 (θ)β∗2 (θ, θ)−
∫ θ

0

F1 (s)β∗2 (s, s)
′
ds.

where the equality follows from integration by parts. Hence, β∗1 (θ) is increasing.
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Let y1 = β−1
1 (p1). Then, the expected equilibrium price in the second auction conditional on

the price of the first auction is

E [p2|p1] = E [p2|β1 (y1)] = E [β∗2 (Y1, y1) |Y1 ≤ y1] =

∫ y1

0
β∗2 (θ, y1) f1 (θ) dθ

F1 (y1)
.

The following proposition delivers the first main result of the paper.

Proposition 1. (Afternoon Effect) If Λ > 0, then the price sequence in a two-round sequential

first-price auction is a supermartingale and the afternoon effect arises in equilibrium. That is,

p1 = β∗1 (y1) > E [p2|β∗1 (y1)] = E [p2|p1] .

The intuition behind Proposition 1 is that, just like in the reference-independent case, in

equilibrium bidders must be indifferent between winning in the first round or in the second one.

Hence, in the first round a bidder bids the expectation of the second-round price conditional on

himself having the highest type. Recall from (10) that bidder i’s expectation of the second-round

price is equal to the expectation of the second-round bid of his closest competitor computed as

if he was tied with his closest competitor. Yet, by conditioning on being tied with his closest

competitor, a bidder underestimates the discouragement effect which will lower his competitors’

bids in the next round. In essence, optimal equilibrium behavior leads the current-round price

setter to overestimate the next-round bid of his closest opponent and hence the next-round price.

Example 1 illustrates the afternoon effect for the case of uniformly-distributed types.

Example 1. Suppose that θ U∼ [0, 1]. The first-round equilibrium bid and price are

β∗1 (θ) = (1− Λ)
(
N − 2

N

)
θ + Λ

(
2N − 4

2N − 3

)(
N − 1

N

)
θ

and

p1 = β∗1 (y1) = (1− Λ)
(
N − 2

N

)
y1 + Λ

(
2N − 4

2N − 3

)(
N − 1

N

)
y1.

The conditional second-round expected price is

E [p2|p1] = E [p2|β∗1 (y1)] = (1− Λ)
(
N − 2

N

)
y1 + Λ

(
N − 2

2N − 3

)
y1.

Hence,

E [p2|p1]− p1 = Λ
[(

N − 2

2N − 3

)
−
(

2N − 4

2N − 3

)(
N − 1

N

)]
y1

and

E [p2|p1] < p1 ⇔
(
N − 2

2N − 3

)
<
(

2N − 4

2N − 3

)(
N − 1

N

)
⇔ N > 2.
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Figure 2: E [p2|p1]− p1 as a function of y1 for three different values of Λ (0, 1
2
, 1) when N = 4 and

θ is distributed uniformly on [0, 1]

In Figure 2, I plot the difference E [p2|p1] − p1 as a function of y1 for three different values of

Λ when N = 4 and θ is distributed uniformly on [0, 1]: Λ = 0 (solid), Λ = 1
2
(dashed), and Λ = 1

(dotted). From the plot, we notice: (i) for a given y1, the higher Λ the stronger the afternoon

effect, and (ii) for a fixed strictly positive Λ, the higher y1 the stronger the afternoon effect.

It is useful to compare the logic behind the afternoon effect in my model with the learning effect

that arises in common-value auctions. In the symmetric equilibrium of a common-value auction,

a bidder conditions his estimate of the value of the item (and hence his bid) on his strongest

rival having a (weakly) lower signal than his. In this case, since a bidder revises his estimate of

the value of the good upward after losing the first auction, the equilibrium price sequence drifts

upward. Conversely, with the informational externalities that arise in a private-value auction with

expectations-based loss aversion, after losing the first auction a bidder becomes more pessimistic

about how likely he is to win the second one (compared to his first-round expectations); this creates

a discouragement effect that pushes bidders to behave less aggressively and, in turn, generates a

declining price path in equilibrium.

3.2 Second-price Auctions

In this section I assume that two identical items are sold using a sequence of second-price

sealed-bid auctions. I continue to focus on symmetric strategies (b1, b2) that are strictly increasing

and to assume that the winning bid of the first round is publicly disclosed by the seller prior to

the second one.17 As before, I begin by analyzing the bidder’s problem in the second round.

17Notice that in a second-price auction the winning bid is not the price the winner actually ends up paying.
While restrictive, this assumption is common in the literature for tractability reasons (McAfee and Vincent, 1993;
Milgrom and Weber, 2000; Mezzetti, 2011; Hu and Zhou, 2015). See also the discussion in Section 5.
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Fixing the strategies of the other bidders, let Φ (b2|y1) denote the probability with which a

bidder of type θ expects to win with a bid equal to b2 conditional on y1 being the type of the

first-round winner. The payment he has to make if he wins the auction is given by the second

largest bid and follows the distribution Φ (·|y1). Then, the bidder’s expected utility is

EU2 (b2, θ; y1) =
∫ b2

0
(θ − p) dΦ (p|y1)− θΛΦ (b2|y1) [1− Φ (b2|y1)] (11)

Differentiating (11) with respect to b2 yields the first-order condition:

θ − b2 − θΛ [1− 2Φ (b2|y1)] = 0.

In a symmetric equilibrium, Φ (b2|y1) = F2 (θ|y1) and hence we obtain:

b∗2 (θ, y1) = θ

{
1− Λ

[
1− 2F (θ)N−2

F (y1)N−2

]}
. (12)

While it is well known that without loss aversion (Λ = 0) in a symmetric equilibrium a bidder

submits a bid equal to his own valuation, the above expression shows that this is not the case with

reference-dependent preferences. Indeed, we have:

∂b∗2 (θ, y1)

∂Λ
=

[
2F (θ)N−2

F (y1)N−2 − 1

]
θ > 0⇔ F (θ)

F (y1)
>
(

1

2

) 1
N−2

.

Therefore, higher (lower) types bid higher (lower) than their valuation. Furthermore, it is easy

to verify that the right-hand-side of (12) is decreasing in N so that when competition gets fiercer,

bidders respond by decreasing their bids. This is another testable implication of my model: in

the risk-neutral benchmark as well as in the risk-averse models of McAfee and Vincent (1993),

Mezzetti (2011) and Hu and Zou (2015) equilibrium bids in the last round do not vary with the

intensity of competition. Finally, as for first-price auctions, we have the following result about the

effect of the first-round winning bid on second-round bids:

Lemma 2. (Discouragement Effect II) If Λ > 0, then ∂b∗2(θ,y1)

∂y1
< 0 ∀θ.

The intuition is like in Lemma 1: the higher the type of the winner in the first auction, the

less likely a remaining bidder is to win in the second one and, therefore, he bids less aggressively.

As shown by Lange and Ratan (2010) for the case of single-unit auctions, if bidders are not

loss-averse over money, first-price and second-price auctions are revenue equivalent. The reason

is that, when bidders are risk-neutral over money expected gain-loss utility depends only on the

probability with which a bidder expects to win the auction and this is the same in both formats.

It is easy to see that the same intuition applies also to multi-unit auctions. Hence, we can use the

revenue equivalence theorem to derive the first-round equilibrium bidding function.
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In the first auction a type-θ bidder wins with probability F1 (θ) and, if he wins, the price he

pays is b∗1 (y1), the highest among his rivals’bids. Thus, his expected first-round payment is

F1 (θ)
∫ θ

0
b∗1 (y1) f1 (y1|θ) dy1.

In a first-price auction, instead, the winning bidder pays his own bid and therefore his expected

payment in the first round is:

F1 (θ) β∗1 (θ) = F1 (θ)


∫ θ

0
β∗2 (s, s) f1 (s) ds

F1 (θ)


where the equality follows from (10). From revenue equivalence it follows that

∫ θ

0
b∗1 (y1) f1 (y1|θ) dy1 =

∫ θ

0
β∗2 (s, s) f1 (s) ds

F1 (θ)

and differentiating both sides of the equality with respect to θ yields

b∗1 (θ) = β∗2 (θ, θ) . (13)

Therefore, the equilibrium bid in the first of two sequential second-price auctions is equal to

the second round’s bid of a sequential first-price auction where, in the latter, the bidder conditions

his bid on himself having the highest type. The following proposition shows that the afternoon

effect arises in equilibrium.

Proposition 2. (Afternoon Effect II) If Λ > 0, then the price sequence in a two-round sequential

second-price auction is a supermartingale and the afternoon effect arises in equilibrium.

The intuition for the afternoon effect is essentially the same in a first-price and a second-price

sequential auction, with just one (minor) difference. In both types of auction, in the first round a

bidder bids the expectation of the second-round price conditional on having the highest type and

being the price setter, and hence expects not to be discouraged in the second round. In a sequential

first-price auction, if a bidder has the highest type and he bids according to the equilibrium bidding

function, then he is automatically the price setter. In a sequential second-price auction, however,

the winner is also the price setter only if his type is tied with the type of another bidder (cf. (13)).

4 Sequential vs. Simultaneous Auctions

In this section, I analyze simultaneous auctions; that is, auctions in which all the items are

allocated after only one round of bidding. I derive the equilibrium bidding strategy in a two-unit
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discriminatory (pay-your-bid) auction. In a discriminatory auction, bidders submit sealed bids and

the highest bidders each receive one object and each pays his own bid. This procedure generalizes

the single-object first-price auction.18 As before, I focus on symmetric monotone strategies.

Consider a bidder with type θ who plans to bid as if his type were θ̃ 6= θ when all other N − 1

bidders follow the strategy β (·). His expected utility is

EU
(
θ, θ̃

)
= F2

(
θ̃
) [
θ − β

(
θ̃
)]
− ΛθF2

(
θ̃
) [

1− F2

(
θ̃
)]

(14)

where F2

(
θ̃
)
≡ F1

(
θ̃
)
+(N − 1)

[
1− F

(
θ̃
)]
F
(
θ̃
)N−2

is the probability that Y2, the second highest

valuation among N − 1, is less than θ̃ and Λ is defined as before. Notice that it is not necessary

for a bidder to outbid all his competitors in order to be awarded an object; it is enough to outbid

N − 2 of them. Differentiating (14) with respect to θ̃ yields the first-order condition:

β′
(
θ̃
)
F2

(
θ̃
)

= f2

(
θ̃
) [
θ − β

(
θ̃
)]
− Λθf2

(
θ̃
) [

1− 2F2

(
θ̃
)]
.

Substituting θ = θ̃ and re-arranging results in the following differential equation

d

dθ
{β (θ)F2 (θ)} = f2 (θ) θ {1− Λ [1− 2F2 (θ)]}

together with the boundary condition that β (0) = 0. Solving the differential equation yields

β∗ (θ) =

∫ θ

0
s {1− Λ [1− 2F2 (s)]} f2 (s) ds

F2 (θ)

= (1− Λ)

∫ θ

0
sf2 (s) ds

F2 (θ)
+ Λ

∫ θ

0
2sF2 (s) f2 (s) ds

F2 (θ)
.

Again, the equilibrium bidding function can be re-written as a convex combination of the risk-

neutral bid and a term that depends on the bidder’s expectations (reference point). Similarly, it

is easy to verify that the symmetric equilibrium in a uniform-price auction is

b∗ (θ) = (1− Λ) θ + Λ2θF2 (θ) .

Now I compare the bidders’equilibrium utility and the seller’s expected revenue under simulta-

neous and sequential auctions.19 Let V sim (θ) and V seq (θ) denote a bidder’s equilibrium expected

utility in a simultaneous and sequential auction, respectively. With independent private values

and risk neutrality (Λ = 0), it is well known that a bidder’s equilibrium expected utility in a

18An alternative procedure is the uniform-price auction, where bidders submit sealed bids and the winners all pay
the same price, equal to the highest rejected bid. This procedure generalizes the single-object second-price auction.
19I do the comparison for first-price (sequential) auctions and discriminatory (simultaneous) auctions, but the

same results apply for second-price (sequential) and uniform-price (simultaneous) auctions by revenue equivalence.
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simultaneous auction is the same as in a sequential auction. Under loss aversion, instead, we have:

Proposition 3. (Bidder-payoff Equivalence) If Λ > 0, then there exists a cutoff type θ∗ such that

V seq (θ) ≥ V sim (θ) if and only if θ ≥ θ∗.

According to Proposition 3, bidders with higher types prefer sequential auctions while bidders

with lower types prefer simultaneous ones. This is a strategic consequence of the discouragement

effect. To understand the intuition behind the result in Proposition 3 notice that in equilibrium a

bidder’s ex-ante probability of obtaining an item is the same under both formats and this implies,

trivially, that a bidder’s expected gain-loss utility is also the same under both formats. Hence, the

difference between V seq (θ) and V sim (θ) is simply given by the difference in the expected payments.

When bidders are risk-neutral, a bidder’s expected payment in either a simultaneous or sequential

auction is equal to E [Y2|Y2 ≤ θ]; that is, the expected value of the valuation of his second-highest

competitor. With reference-dependent preferences, however, expected payments in the two formats

depend also on the bidders’beliefs about how likely they are to win since these determine their

reference point. More precisely, a loss-averse bidder’s expected payment equals the expectation of

a convex combination of the valuation and the reference point of his second-highest competitor. In

a sequential auction, losing the first round is bad news for a high-type bidder but it is even worse

news for his competitors with lower types who are even more discouraged than he is. This is the

strategic aspect of the discouragement effect. Hence, conditional on winning an item, high-type

bidders expect to pay a lower price in a sequential auction than in a simultaneous one. Figure 3

shows how V seq (θ)− V sim (θ) varies with θ for five different values of N when the bidders’types

are uniformly distributed on [0, 1] (a darker color corresponds to a higher value for N). For a given

N there is a cutoff type θ∗ who is indifferent between the two formats. Furthermore, the value of

this cutoff is increasing in N .

Next, I compare the seller’s expected revenue between the two formats. It is convenient to

take the point of view of the seller and consider the order statistics of the values of all N bidders.

Let Z(N)
1 ≡ Z1 be the highest of N values, Z(N)

2 ≡ Z2 be the second-highest and so on. Under

risk neutrality (Λ = 0), the two auction formats are revenue-equivalent, both yielding an expected

revenue equal to 2E [Z3] (Milgrom and Weber, 2000). Under loss aversion, instead, we have:

Proposition 4. (Revenue non-Equivalence) If Λ > 0, then simultaneous and sequential auctions

are not revenue-equivalent. Furthermore, there exists a N∗ ≥ 3 such that sequential auctions yield

a higher expected revenue than simultaneous ones if and only if N ≥ N∗.

Therefore, which format yields a higher revenue depends on the number of bidders. The

intuition for this result relies on how loss aversion with expectations as the reference point modifies

the notion of a bidder’s “type”. In the classical, risk-neutral model a bidder’s type coincides with

his intrinsic value, θ; and the expected revenue for the seller depends on the expected value of the

type of the marginal bidder, the bidder with the third-highest value. With reference-dependent
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Figure 3: V seq (θ)− V sim (θ) for N = 3, 4, 5, 10 and 20 with θ distributed uniformly on [0, 1].

preferences, however, a bidder’s “modified” type is a convex combination of his intrinsic value

and his reference point which, in equilibrium, is given by his probability of obtaining an item.

In a simultaneous auction the marginal bidder is the bidder with the third-highest (1− Λ) θ +

Λ2θF2 (θ). In a sequential auction, instead, the marginal bidder is the one with the third-highest

(1− Λ) θ + Λ2θF2 (θ|y1). The difference is due to the different timing of information in the two

auction formats. In both formats, ex ante a bidder’s reference point is to get an item if he is

one of the two highest types (and not getting an item otherwise). In a simultaneous auction, all

uncertainty is resolved at once and so a bidder learns only whether he is among the two highest

types. In a sequential auction, on the other hand, a bidder first learns in the first round whether

he is the highest type; if not, he then updates his reference point which, entering the second round,

becomes the probability of being the second-highest type given that he is not the highest. Hence,

the “modified”type of the marginal bidder in a simultaneous auction differs from the “modified”

type of the marginal bidder in a sequential auction as the two bidders have different reference points

despite having the same intrinsic value. When the number of bidders is large, y1 approaches θ, in

which case F2 (θ|y1) first-order stochastically dominates F2 (θ). For the case of a power distribution

function, the threshold N∗ can be computed explicitly, as the following example shows.

Example 2. Let θ = 1 and F (θ) = θα with α > 0. Then, it can be easily verified that

N∗ = max

{
3,

3α +
√

8α + α2 + 7 + 1

2α

}
.

When α = 1, the distribution of types is uniform and N∗ = 4 so that simultaneous auctions

yield a higher expected revenue than sequential ones for N = 3 whereas for N = 4 the two formats

yield exactly the same expected revenue. For N ≥ 5 sequential auctions yield a higher expected
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revenue than simultaneous ones. If α >
√

97+7
8
, so that the right-hand tail gets thicker, then N∗ = 3;

that is, sequential auctions always yield a higher expected revenue than simultaneous ones. On the

other hand, when the right-hand tail gets thinner, then limα→0+

(
3α+
√

8α+α2+7+1
2α

)
= ∞; in this

case, simultaneous auctions always yield a higher expected revenue than sequential ones.

The result that sequential auctions yield a higher revenue when the number of bidders is

large is reminiscent of a similar result in models analyzing information revelation in simultaneous

auctions with risk-neutral bidders who are uncertain about their values as in Board (2009) and

Ganuza (2004).20 In such models, bidders have only an estimate of their values, and the seller can

reveal additional information that would allow the bidders to refine their prior beliefs. Providing

additional information entails a trade off for the seller. On one hand, more information improves

the match between bidders’preferences and the object for sale and, by doing so, it increases the

willingness to pay of the winning bidder and hence the seller’s revenue. On the other hand, more

information about the object increases the informational rent of the winning bidder, and this lowers

the seller’s revenue. When the number of bidders is large enough, the seller finds it optimal to

reveal additional information to the bidders.21 One important difference between these models and

mine is the following. In models of information revelation in auctions where bidder have uncertain

(private) values, the seller’s decision of whether to reveal information or not (and how much) also

has consequences for the final allocation and its effi ciency. Indeed, as argued by Ganuza (2004)

and Board (2009), without information revelation the bidder who is awarded the object might

not be the one with the highest valuation ex post. Hence, there is a trade off between revenue

and effi ciency. In my model, instead, the choice between sequential and simultaneous auctions

does not affect the final allocation, which is effi cient in both formats. The reason is that in my

model bidders know their values perfectly and the information that the seller can reveal them via

a sequential auction is not about their own values but rather about the intensity of competition.

Gathering the results from this section and the previous one, we obtain the following corollary:

Corollary 1. (Comparison of Different Auction Formats) If Λ > 0, revenue equivalence holds

within formats but not between. That is, sequential first-price auctions are revenue-equivalent to

sequential second-price auctions and discriminatory auctions are revenue-equivalent to uniform-

price auctions. Yet, sequential first-price auctions are not revenue-equivalent to discriminatory

auctions and sequential second-price auctions are not revenue-equivalent to uniform-price auctions.

Recall that in equilibrium a bidder’s expected probability of consumption and expected gain-

loss utility are the same under all four types of auctions considered in this paper. Thus, the

non-equivalence result in Corollary 1 is due to the effect that sequential (partial) information

revelation has on the expected payments of a loss-averse bidder.
20See also Eső and Szentes (2007), Ganuza and Penalva (2010) and Schweizer and Szech (2015).
21This result holds as long as the additional information provided by the seller makes the posterior distribution

(i.e., based on the additional information) of the bidders’values more dispersed than the prior distribution (i.e.,
without information revelation).
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5 Alternative Information Revelation Policies

A delicate issue in sequential auctions is what information should the auctioneer reveal from

one round to the next. Following most of the literature, in Section 3 I have assumed that the

seller publicly reveals the first-round winning bid. Yet, other information revelation policies are

possible. A natural candidate is to reveal the winning price in each round; that is, to reveal

the highest bid in the case of a first-price auction and the second-highest bid in the case of a

second-price auction. Yet, revealing the current round’s winning price in second-price sequential

auctions entails revealing the offer of a bidder who will take part in the next round. Hence, if the

auctioneer is concerned with protecting bidders’privacy, she might decide against such disclosure

policy. An alternative option for the seller is to reveal no information at all in between rounds.

Milgrom and Weber (2000) showed that with risk-neutral bidders having independent private

values, the seller’s information revelation policy is inconsequential and equilibrium bids are the

same no matter what information (if any) the seller discloses in between rounds. In this section

I show that if bidders are expectations-based loss-averse, different information revelation policies

result in different equilibrium bids.

5.1 Sequential Auctions without Announcement of the Winning Bid

In the classical reference-free model with independent private values, the optimal bidding strat-

egy does not depend on the (public) history of the winning bids. However, this is no longer the

case with expectations-based reference-dependent preferences. Hence, some questions naturally

arise: Is equilibrium bidding different if the seller commits to not revealing the history of winning

bids? Does the rationale for the afternoon effect with expectations-based reference-dependent

preferences rely on the history of winning bids being publicly available? And, finally, would the

seller be better off by not disclosing the history of winning bids? I answer these questions in the

context of sequential first-price auctions but the same results also apply for the case of sequential

second-price auctions via revenue equivalence. To find an equilibrium that is sequentially rational,

I start by solving the bidder’s problem in the last auction.

Consider a type-θ bidder who bids as type θ̃ > θ when all other N −2 remaining bidders follow

the strategy β2. Let σ be the type that the bidder pretended to be in the first auction. If he lost

the first auction, he knows that y1 > σ. Then his expected second-round payoff is

EU2

(
θ̃, θ;σ

)
= ϕ (σ)F

(
θ̃
)N−2 [

θ − β2

(
θ̃, σ

)]
− Λθϕ (σ)F

(
θ̃
)N−2

[
1− ϕ (σ)F

(
θ̃
)N−2

]
(15)

where ϕ (σ) = (N−1)[1−F (σ)]

1−F (σ)N−1
. Thus, ϕ (σ)F

(
θ̃
)N−2

denotes the probability that the second highest

of N − 1 draws is below θ̃ given that the highest is above σ; or, in other words, the probability

that a bidder who pretends to be of type θ̃ in the second auction wins this auction given that he
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pretended to be of type σ in the first auction and lost it.22 Notice that, crucially, the second-round

bid might, in principle, depend also on σ.

As first conjectured by Milgrom and Weber (2000) and later shown by Mezzetti et al. (2008),

with no bid announcement and interdependent values it is optimal for a bidder of type θ to behave

according to his type in the second auction if and only if he behaved as type σ ≤ θ in the first

auction. By contrast, if a bidder of type θ behaved as if his type were higher than θ in the first

auction, he might want to over-bid in the second auction as well.23 Recall that, with interdependent

values, a better estimate of the winning bid is also a better estimate of the value of the object for

sale. In our case, however, values are private and independent; hence, it is optimal for a bidder in

the second auction to bid according to his true type, no matter what he did in the first one.

Differentiating EU2

(
θ̃, θ;σ

)
with respect to θ̃ yields the first-order condition:

0 =
[
θ − β2

(
θ̃, σ

)]
(N − 2)F

(
θ̃
)N−3

f
(
θ̃
)
−
∂β2

(
θ̃, σ

)
∂θ̃

F
(
θ̃
)N−2

−θ (N − 2)F
(
θ̃
)N−3

f
(
θ̃
)

Λ
[
1− 2ϕ (σ)F

(
θ̃
)N−2

]
.

Hence, ϕ (σ) enters the FOC only through the reference point, but it does not affect the

“direct”part of a bidder’s payoff and since Λ ≤ 1 the “direct”part carries a higher weight than

the reference-dependent part. Substituting θ = θ̃ into the FOC and re-arranging results in the

following differential equation

∂

∂θ

{
β2 (θ, σ)F (θ)N−2

}
= θ

{
1− Λ

[
1− 2ϕ (σ)F (θ)N−2

]}
(N − 2)F (θ)N−3 f (θ)

with the boundary condition that β2 (0, σ) = 0. Thus, the equilibrium bidding function is

β̂2 (θ, σ) =

∫ θ

0
x
{

1− Λ
[
1− 2(N−1)(1−F (σ))F (x)N−2

1−F (σ)N−1

]}
dF (x)N−2

F (θ)N−2 .

The equilibrium bidding strategy is a function of the type that the bidder mimicked in the

previous auction since, if the seller does not publicly reveal the first-round winning bid, a bidder

who lost the first auction must use his own bid from the previous round to infer where he stands

in the ranking of the remaining bidders’ values. Hence, the equilibrium strategy depends on

22Technically, we have that

(N − 1) [1− F (σ)]F
(
θ̃
)N−2

1− F (σ)
N−1 =

∫ θ
σ

∫ θ̃
0
h (y1, y2) dy2dy1∫ θ

σ

∫ ỹ1
0
h (ỹ1, ỹ2) dỹ2dỹ1

where h (y1, y2) = (N − 1) (N − 2) f (y1) f (y2)F (y2)
N−3 is the joint density of Y1 and Y2.

23This happens because, as Milgrom and Weber (2000) pointed out, “a bidder might choose a bid a bit higher in
the first round in order to have a better estimate of the winning bid, should he lose”.
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the (private) history of the game and, as the following lemma shows, a slightly different form of

discouragement effect arises in equilibrium.

Lemma 3. (Discouragement Effect III) If Λ > 0, then ∂β̂2(θ,σ)
∂σ

< 0 ∀θ.

The intuition for this result slightly differs from the one behind lemmas 1 and 2. When the

winning bid from the first auction is not publicly revealed, a bidder can only use his own first-round

bid to assess how likely he is to win in the second one. The higher the type he pretended to be

in the first auction, the less likely he feels to win in the current one since not winning the first

auction, given that he pretended to have a high type, is bad news about how fierce competition is.

This, in turn, implies that the higher is the type a bidder pretended to be in the first auction, the

less aggressive his bidding will be in the second auction. Comparing the second-round equilibrium

strategies with and without bid announcement yields the following result.

Lemma 4. (Effect of information I) Equilibrium bidding in the second auction is more aggressive

when the seller does not reveal the winning bid of the first auction if and only if

(N − 1) [1− F (σ)]

1− F (σ)N−1 >
1

F (y1)N−2 . (16)

First, notice that condition (16) can hold only if y1 > σ. The term on the left-hand-side

of (16) represents what a bidder learns from losing in the first round without revelation of the

winning bid: he knows that the first-round winner’s type is above σ. Similarly, the term on the

right-hand-side of (16) represents what a bidder learns from losing in the first round when the

winning bid is announced: he knows that all remaining bidders’types are below y1. Hence, with

no bid announcement, bidders are asymmetrically informed about the intensity of competition in

the second round whereas with bid announcement they all have the same information. It is easy

to see that the right-hand-side of condition (16) is decreasing in y1 implying that, for a fixed σ,

the higher is the type of the winner in the first auction, the more aggressive second-round bidding

behavior is when the winning bid is not revealed. Similarly, the left-hand-side of condition (16)

is decreasing in σ implying that, for a fixed y1 a bidder who pretended to be a low type in the

first auction behaves more aggressively in the second one when the winning bid is not revealed.

Of course, as I am about to show next, in equilibrium a bidder will behave according to his type

in both auctions so that σ = θ.

Consider a bidder of type θ who plans to bid in the first round as if his type were θ̃ > θ

when all other N − 1 bidders follow the strategy β1. Suppose that all bidders expect to follow the

equilibrium strategy β̂2 in the second auction. Then, the bidder will solve the following problem:
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EU1

(
θ̃, θ

)
= F1

(
θ̃
) [
θ − β1

(
θ̃
)]

+
∫ θ

θ̃
F2 (θ|y1)

[
θ − β̂2

(
θ, θ̃

)]
f1 (y1) dy1

−Λθ

[
F1

(
θ̃
)

+
∫ θ

θ̃
F2 (θ|y1) f1 (y1) dy1

] [
1− F1

(
θ̃
)
−
∫ θ

θ̃
F2 (θ|y1) f1 (y1) dy1

]

Differentiating EU1

(
θ̃, θ

)
with respect to θ̃ yields the following first-order-condition:

0 = f1

(
θ̃
) [
θ − β1

(
θ̃
)]
− β ′1

(
θ̃
)
F1

(
θ̃
)

−F2

(
θ|θ̃
)
f1

(
θ̃
) [
θ − β2

(
θ, θ̃

)]
−
∂β2

(
θ, θ̃

)
∂θ̃

(N − 1)
[
1− F

(
θ̃
)]
F (θ)N−2

−Λθ
[
f1

(
θ̃
)
− F2

(
θ|θ̃
)
f1

(
θ̃
)]{

1− 2

[
F1

(
θ̃
)

+
∫ θ

θ̃
F2 (θ|y1) f1 (y1) dy1

]}
.

Substituting θ = θ̃ and re-arranging results in the following differential equation

f1 (θ) β2 (θ, θ)− (N − 1) [1− F (θ)]F (θ)N−2
∂β2

(
θ, θ̃

)
∂θ̃

∣∣∣∣∣∣̃
θ=θ

=
d

dθ
{β1 (θ)F1 (θ)} (17)

together with the boundary condition that β1 (0) = 0. Notice that, crucially,
∂β2(θ,̃θ)

∂θ̃
6= 0. That

is, by mimicking another type in the first auction, a bidder is not just affecting the probability of

getting to the second auction – like in the classical reference-free model – but he is also affecting

his own future bid in the second auction. This occurs because, with no bid announcement between

auctions, a player’s bid in the current round affects his reference point in the next one. Solving

the differential equation in (17) yields

β̂1 (θ) =

∫ θ

0
β̂2 (s, s) f1 (s) ds

F1 (θ)
−

∫ θ

0

{
∂β̂2(s,̃θ)

∂θ̃

∣∣∣∣̃
θ=s

1−F (s)
f(s)

}
f1 (s) ds

F1 (θ)
. (18)

The following lemma shows that, compared to the case analyzed in Section 3, bidders behave

less aggressively in the first auction when the seller commits to not revealing the winning bid.

Lemma 5. (Effect of information II) Equilibrium bidding in the first round is more aggressive

when the seller commits to publicly reveal the winning bid prior to the second round; that is,

β∗1 (θ)− β̂1 (θ) ≥ 0 ∀θ and the inequality is strict if θ < θ.

The intuition behind Lemma 5 is the following. When anticipating that the seller will not

reveal the winning bid of the first auction prior to the second one, a bidder knows that his bid in

the first auction – in case he does not win– will determine his reference point in the second one.

A high bid in the first auction, hence, implies also a high reference point in the second auction.
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Having a high reference point in the second auction, however, exposes the bidder to a greater

disappointment in case he were to lose the second auction as well. Therefore, if the seller commits

to not revealing the first-round winning price, bidders bid less aggressively in the first auction.

Furthermore, the seller’s total expected revenue is higher when she commits to revealing the first

round’s winning bid.

Proposition 5. (Revenue) The seller’s expected revenue is higher when she commits to disclose
the winning bid from the first auction prior to the second one.

From an ex-ante perspective, bidders going into the second round without knowing the type of

the winner in the first round are exposed to much more uncertainty about competition compared

to bidders who know the type of the first-round winner. Indeed, in the latter case every bidder

going into the second auction knows that all of his competitors’types are below a certain cutoff

type while in the former a bidder only knows that the winner has a higher type than his. An

expectations-based loss-averse bidder dislikes uncertainty in his consumption outcomes because he

dislikes the possibility of a resulting loss more than he likes the possibility of a resulting gain (so he

is “first-order”risk averse; see Köszegi and Rabin, 2007). As auctions without bid announcements

expose bidders to greater risk, they react by bidding less aggressively. Therefore, compared to the

analysis in Section 3, if the seller does not reveal the winning bid of the first auction prior to the

second one, her expected revenue decreases.24

Mezzetti et al. (2008) show that, under the assumption of affi liated private values, the seller’s

expected revenue in a sequential auction with winning-bid announcement is the same as in a

sequential auction with no bid announcement, and is lower than in a simultaneous auction. By

contrast, if bidders have independent private values and expectations-based reference-dependent

preferences, sequential auctions with winning-bid announcement always yield a higher revenue than

sequential auctions with no bid announcement (Proposition 5) and might yield a higher revenue

than simultaneous auctions (Proposition 4). The following proposition shows that even with no

bid announcement, however, the afternoon effect still arises in equilibrium.

Proposition 6. (Afternoon Effect III) If Λ > 0, then the price sequence in a two-round first-

price auction without bid announcement is a supermartingale and the afternoon effect arises in

equilibrium.

Like in Section 3 in equilibrium prices decline because of the discouragement effect, but the

intuition is slightly different. When the seller commits to not disclosing the winning bid, in the

first round bidders are willing to pay a positive premium – equal to the second term on the right-

hand-side of (18) – in order to avoid having to go to the second round and being discouraged.

Summing up, with expectations-based reference-dependent preferences the equilibrium bidding

strategy changes depending on whether the seller commits to publicly reveal the winning bids from
24This result is akin to the famous “Linkage Principle” of Milgrom and Weber (1982): auctioneers have an

incentive to pre-commit to revealing all available information.
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the previous rounds. With winning-bid announcement first-round bids are always higher whereas

bids in the second round can be higher or lower than without bid announcement. Furthermore,

the seller’s expected revenue is higher when she commits to disclose the previous round’s winning

bid. In either case, however, equilibrium prices follow a declining path.

5.2 Revealing the Winning Price in Sequential Second-Price Auctions

Unlike in a first-price auction, announcing the winning price in a second-price auction amounts

to revealing the type of the highest loser, a bidder who will be present in the next round. As a

consequence, existence of a symmetric equilibrium with increasing bidding functions is problematic.

Indeed, for the case of risk-neutral bidders De Frutos and Rosenthal (1998) and Mezzetti (2011)

showed that with interdependent values a symmetric equilibrium in which in the first auction

bidders use the same strictly increasing bidding function cannot exist.25

For the case of private values Mezzetti (2011) also showed that increasing equilibrium bidding

functions exist and coincide with the ones under the policy of revealing the bid of the winner.

The reason is that with private values in the last round it is a (weakly) dominant strategy for

all remaining bidders to bid their valuations. The bids in earlier rounds are then determined

recursively via the usual indifference condition and history does not matter because in each round

a bidder bids as if he were pivotal. If bidders are expectations-based loss averse, however, bidding

one’s own value in the last round is not a dominant strategy anymore. Hence, existence of a

symmetric equilibrium in monotone strategies is not warranted as the following example shows.

Example 3. Let θ U∼ [0, 1] and N = 3. Let p1 denote the first-round price and let bidder i

be the price setter. Suppose bidders use symmetric increasing strategies, b̂1 (·) and b̂2 (·). Then,
announcing the first-round winning price reveals the type of price setter: z2 = b̂−1

1 (p1). Therefore,

bidder j, j 6= i, participating in the second round does not face any risk as he knows that he will

not win the auction. Hence, in the second round it is a weakly-dominant strategy for him to submit

a bid equal to his valuation, i.e. b̂2 (θj) = θj. Now consider the behavior of bidder i. If θi ≥ z2,

that is if he pretended to be a (weakly) lower type in the first round, then he knows he will win for

sure by bidding b̂2 (θi) = θi in the second round and it is optimal for him to do so. However, if

θi < z2 then the situation is more intricate. In this case, bidder i has two options: (i) he can win

for sure by keeping pretending of being of type z2 and bidding z2; or, (ii) since he knows that bidder

j’s type must be lower than z2, he can choose to imitate another type ρ2 by solving the following

maximization program:

max
ρ2

∫ ρ2

0
(θi − y2) dF2 (y2|z2)− ΛθiF2 (ρ2|z2) [1− F2 (ρ2|z2)] . (19)

25De Frutos and Rosenthal (1998) focused on two-round sequential auctions with pure common values. Mezzetti
(2011) showed that the result extends to the more general case of sequential auctions with interdependent values
and more than two rounds.
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where F2 (y2|z2) denotes the CDF of the second-highest order statistic (among N − 1), conditional

on it being lower than z2. With F uniform and N = 3, the solution to the program is

ρ∗2 =
θi (1− Λ)

1− 2Λθi
z2

.26

It is easy to verify that it is optimal for bidder i to bid z2 if z2θi ≤ 1 + Λ and to bid ρ∗2 otherwise.

The intuition is as follows. By bidding z2 bidder i is guaranteed to win the second auction; yet,

as z2 is higher than θi, he risks paying a price higher than his value. By bidding ρ∗2 < z2, instead,

bidder i lowers his chances of winning which reduces his chances of paying a price higher than his

value, but also increases his gain-loss disutility. Hence, when the ratio z2
θi
is relatively low, bidder i

prefers to bid z2 and win for sure, whereas when the ratio z2
θi
is relatively high, he prefers to lower

his bid. Either way, however, if the price setter mimicked a higher type in the first auction, he will

not bid truthfully in the second auction either. Hence, bidding one’s own value is not a dominant

strategy in the last round.

When would a bidder mimic a higher type in the first round? Again, suppose all bidders other

than bidder i follow symmetric strategies. It is easy to verify that if bidder j, j 6= i, expects to play

b̂2 (θj) = θj in the second round, then in the first round he bids according to b̂1 (θj) =

∫ θj
0

xdF (x)N−2

F (θj)
N−2

which with F uniform and N = 3 simplifies to b̂1 (θj) = θj
2
. Suppose bidder i plans to bid as if his

type were θ̃ > θi. He will choose the θ̃ that solves the following program:

max
θ̃

∫ θ̃

0

(
θi −

y

2

)
(3− 1) y3−2dy +

∫ 1

θ̃

(∫ θ̃

0
(θi − t)

(3− 2) t3−3

y3−2
dt

)
(3− 1) y3−2dy

− Λθi

[
θ̃

3−1
+ (3− 1)

(
1− θ̃

)
θ̃

3−2
] [

1− θ̃3−1 − (3− 1)
(
1− θ̃

)
θ̃

3−2
]
.

Taking FOC and re-arranging yields

θ̃ =
4θiΛ− 1 +

√
8θ2

iΛ
2 − 8θiΛ + 8θ2

iΛ + 1

4θiΛ
.

Notice that for bidder i to be willing to bid as type θ̃ in the second round if he is the first-round

price setter, it must be that z2
θi
≤ 1 + Λ. Letting θ̃ = z2 and re-arranging yields

−16θ2
iΛ

2 (θi + θiΛ− 1)2 < 0

which is trivially satisfied. Finally, notice that θ̃ ≥ θi ⇔ θi ≥ 1 −
√

2
2
. Therefore, if his type is

greater than 1 −
√

2
2
, bidder i will deviate from the posited symmetric equilibrium and mimic type

θ̃ instead. But why would a bid prefer to bid more aggressively in the first round by pretending to

have a higher type? By increasing his bid, the bidder increases his chance of winning. This, in

26Notice that ρ∗2 ≥ θi ⇔ z2
θi
≤ 2.
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turn, has two effects on the bidder’s expected utility. On one hand, he expects to pay a higher price

which, with some probability, might even exceed his intrinsic value. On the other hand, a higher

probability of winning lowers his expected gain-loss disutility as he now is less likely to lose the

auction and be disappointed. If the bidder’s type is relatively high, the second effect dominates.

Example 3 shows that there cannot be a symmetric equilibrium in monotone strategies in

sequential second-price auctions with winning-price announcement. The reason is that the situation

that the remaining bidders face in the second round is highly asymmetric, as one of the bidders

would have his exact bid known to the others. It is worthwhile to highlight that the incentives to

deviate for loss-averse bidders with private values are exactly opposite to the incentives of risk-

neutral bidders with interdependent values. Indeed, when values are interdependent, those bidders

with relatively low private signals have an incentive to deviate by decreasing their bids in the first

round in order to pay a lower price in the second round in the unlikely (but germane) event

that they were to be the price setter. Conversely, with private values and reference-dependent

preferences it is the bidders with relatively high values who have incentive to deviate by bidding

more aggressively in the first round in order to reduce their gain-loss disutility in the unlikely (but

germane) event that they were to be the price setter.

6 Extensions and Robustness

In this section, I analyze two extensions and discuss further predictions of the model.27

6.1 Common Values

In this section, I consider common-value sequential auctions. I use the simplest possible model

to make the point that the afternoon affect can still arise with loss-averse bidders even with

common values. Suppose each bidder i observes a private signal ti independently and identically

distributed on the support [0, t] according to the distribution function F (ti), i = 1, 2, ..., n. Assume

F (·) admits a continuous, positive density f everywhere on its support. The common value of
the objects for sale is given by V =

∑n
i=1 ti. This structure of value and signals is known as the

“Wallet Game” (see Klemperer, 1998 and Bulow and Klemperer, 2002).28 I focus on sequential

first-price auctions with announcement of the winning bids, but the same analysis applies also to

second-price auctions via revenue equivalence.

27Proofs of the results in this section are relegated to a Web Appendix which also gathers further technical details.
28One advantage of this formulation of the common value is that it preserves revenue equivalence. An alternative

formulation for modeling common-value auctions is one where the common value has some known prior distribution
and bidders’signals are draws conditional on the particular realization of V . It is important to point out that both
formulations have the same qualitative features. First, the object for sale is worth the same to all bidders. Second,
in both formulations bidders should realize that winning means that their signal is likely to be too optimistic; hence,
in order not to fall prey to a “winner’s curse”, bidders must shade their bids accordingly.
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Notice that at the time of the sale, buyers can only estimate the value of the good and they are

well aware that the true value to them will be revealed only some time after the sale. Hence, as the

value of the good for sale is subject to ex post risk, a loss-averse bidder can derive feelings of loss

and/or gain from comparing the actual realized value of the good (if he gets it) with all the possible

values the good could have taken with positive probability. In order to keep the analysis tractable,

however, henceforth I shall assume that a bidder’s reference point is given by the expected value

of the good for sale rather than the full probabilistic distribution of its possible values.29

Let y1 denote the signal of the first-round winner. Then, as shown in Web Appendix B, the

equilibrium bidding strategy in the second auction is given by:

β∗2 (t, y1) =
(1− Λ)

∫ t
0

[
2s+ y1 +

(N−3)
∫ s
0
xf(x)dx

F (s)

]
dF (s)N−2

F (t)N−2 (20)

+
Λ
∫ t
0

[
3s+ 2y1 +

(2N−5)
∫ s
0
xf(x)dx

F (s)

]
F2 (s|y1) dF (s)N−2

F (t)N−2 .

Notice that for Λ = 0, the above expression reduces to the well-known risk-neutral bid:

βRN2 (t, y1) =

∫ t
0

[
2s+ y1 +

(N−3)
∫ s
0
xf(x)dx

F (s)

]
dF (s)N−2

F (t)N−2 = E [V (Y2, Y2, y1) |Y1 = y1, t, Y2 ≤ t < y1]

where V (Y2, Y2, y1) denotes the expected value of bidder i’s closest competitor conditional on the

closest competitor assuming he has the same type as i and on y1 being the type of first-round

winner.30 It is easy to verify that βRN2 (t, y1) is increasing in y1. Intuitively, the higher the signal

of the first-round winner is the more valuable the good is to all bidders who, in turn, will bid more

aggressively. Yet, when bidders are loss-averse, the affect of y1 on second-round bidding is more

subtle as the following lemma shows.

Lemma 6. (Discouragement Effect IV) For Λ > 0, there exists a threshold N̂ ≥ 3 such that if

N ≥ N̂ then there exists a threshold Λ̂ such that ∂β∗2(t,y1)

∂y1
< 0 if and only if Λ > Λ̂.

While the statement of the Lemma is quite cumbersome, the intuition behind it is straightfor-

ward. By looking at the expression on the right-hand side of (20), it is easy to see that y1 has three

effects on the second-round bidding function. The first one, which is captured by the first term of

29If the reference point were given by the full distribution of the good’s possible values, then a precautionary
bidding effect similar to the one in the model of Esö and White (2004) would arise. Yet, while making the analysis
more intricated, this additional effect would not modify this section’s main result about the equilibrium price path.
30To understand the risk-neutral bidding function, recall that in a standard, single-item, first-price auction with

risk-neutral bidders and private values, the bid of player i is equal to the expectation, conditional on winning, of the
item’s value to his closest competitor, the competitor with the next-highest signal. Yet, with interdependent values,
the expected value of i’s closest competitor j must be computed as if i’s signal were equal to j’s signal. Finally, for
type t of bidder i conditioning on winning in the second round amounts to conditioning that Y2 ≤ t < Y1.
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(20) and is always positive, is the standard effect that arises also in the risk-neutral benchmark:

the higher y1 is, the more valuable the good is. The other two effects, instead, appear in the

second term on the right-hand side of (20) and pertain to how y1 affects the bidders’reference

point in the second round. On the one hand, a higher y1 tends to raise a bidder’s reference point

conditional on winning by making the value of the item go up; on the other hand, a higher y1 also

tends to lower the bidder’s reference point by reducing the bidder’s likelihood of winning in the

second round. When N is relatively large, the third effect dominates the second one, making the

second term on the right-hand side of (20) decreasing in y1. The reason is that when the number

of bidders is large, the signal of just one bidder, the first-round winner, has a relatively small

impact on the value of the good V ; on the other hand, the larger is N , the less likely a bidder is

to win in the current round when y1 increases. Hence, when N is large the direct effect of y1 on

β∗2 (t, y1) is positive whereas the effect via the reference point is negative. As β∗2 (t, y1) is a convex

combination between the risk-neutral bid and a term that captures the bidder’s reference point, if

Λ is large enough, the negative effect via the reference point outweighs the positive direct effect so

that β∗2 (t, y1) declines with y1.

As shown in Web Appendix B, the equilibrium bidding strategy in the first round is given by:

β∗1 (t) =

∫ t
0 β
∗
2 (s, s) f1 (s) ds

F1 (t)
.

As the next proposition shows, the equilibrium price path of a sequential auction with loss-

averse bidders having interdependent values can be either increasing or decreasing depending on

the strength of loss aversion.

Proposition 7. (Afternoon Effect IV) The price sequence in a two-round sequential first-price
auction with common values is a supermartingale if ∂β

∗
2(t,y1)

∂y1
< 0 and a submartingale otherwise.

Intuitively, if ∂β
∗
2(t,y1)

∂y1
< 0 the discouragement effect outweighs the standard positive informa-

tional externality of interdependent values so that equilibrium prices follow a declining path. Vice

versa, if ∂β
∗
2(t,y1)

∂y1
> 0, equilibrium prices follow an increasing path.

6.2 Loss Aversion over Money

In this section, I consider again sequential first-price auctions with private values and winning-

bid announcement. The analysis mirrors the one carried out in Section 3; the only, crucial, dif-

ference is that now I allow for the bidders to be loss-averse over money as well as consumption.

Let ηm > 0 and λm > 1 be the the relative weight a consumer attaches to gain-loss utility and

the coeffi cient of loss aversion for the money dimension, respectively. Similarly, let ηg > 0 and

λg > 1 be the the relative weight a consumer attaches to gain-loss utility and the coeffi cient of loss

aversion over the consumption dimension, respectively. Finally, let Λl = ηl
(
λl − 1

)
and assume

Λl ≤ 1, for l ∈ {g,m} .
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As shown in Web Appendix C, when bidders are loss-averse over consumption as well as money

the equilibrium bidding strategy in the second auction is given by:

β∗2 (θ, y1; Λg,Λm) =

∫ θ
0 x

{
1− Λg

[
1− 2 F (x)N−2

F (y1)N−2

]}
dF (x)N−2

F (θ)N−2
{

1 + Λm

[
1− F (θ)N−2

F (y1)N−2

]} . (21)

It is easy to see that ∂β∗2(θ,y1;Λg ,Λm)

∂Λm
< 0, implying that money loss aversion pushes all bidders

to behave less aggressively compared to to the case in Section 3 as well as to the risk-neutral case.

Notice, therefore, that while risk aversion and aversion to price risk as in Mezzetti (2011) and Hu

and Zou (2015) induce bidders to behave more aggressively than their risk-neutral counterparts,

loss aversion over money has the exact opposite effect. Moreover, as the following Lemma shows,

loss aversion over money does not invalidate the (negative) effect that y1 has on the second-round

bidding function; that is, there still is a discouragement effect.

Lemma 7. (Discouragement Effect V) If Λg ≤ 1, then ∂β∗2(θ,y1;Λg ,Λm)

∂y1
< 0.

The intuition for Lemma 7 is the same as for Lemma 1 and the proof is only slightly different.

Hence, money loss aversion does not introduce substantial modifications in the second auction.

Yet, money loss aversion makes the analysis of the first auction somewhat intricate for the

following reasons. First, as bidders now dislike uncertainty over money, they experience gain-

loss utility from comparing the price they would pay by winning in the first round with the one

they would pay by winning in the second round. Moreover, as the strategy in (21) is history

dependent, in the first round bidders face a distribution of possible second-round prices they could

pay (conditional on winning) and should assess potential gains and/or losses by comparing the

actual realized price with all the possible prices they could have paid. As shown in Web Appendix

C, the equilibrium bidding strategy in the first auction is given by:

β∗1 (θ; Λg,Λm) =

∫ θ
0 β
∗
2 (s, s) {1 + Λm [1− 2F1 (s)]} f1 (s) ds

F1 (θ) {1 + Λm [1− F1 (θ)]} .

It is easy to see that Λm ≤ 1 is a suffi cient condition for β∗1 to be strictly increasing in θ.

Moreover, notice that, like in Section 3, β∗1 depends on Λg only indirectly, through β2 (s, s). On

the other hand, β∗1 depends directly on Λm – but not indirectly as β∗2 (s, s) is independent of Λm (cf.

(21)). This renders the comparison between the first-round price and the (conditional) expected

second-round price somewhat more involved. Indeed, as the term Λm [1− 2F1 (s)] becomes negative

when N is relatively small and s is close to θ, the effect of money loss aversion on the price path

can either go in the same direction as that of loss aversion over consumption, or in the opposite

one. In particular, if Λg = 0 equilibrium prices can either increase or decline depending on the

number of bidders and how high the first-round price is.31 Yet, as the following Proposition shows,

31Figure 4 in Web Appendix C shows that with θ U∼ [0, 1], Λg = 0 and Λm = 1 the afternoon effect arises for
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for Λg > 0 loss aversion over money does not eliminate the afternoon effect.

Proposition 8. (Afternoon Effect V) If Λg > 0, then there exists a threshold Λ̃m such that if

Λm < Λ̃m the price sequence in a two-round sequential first-price auction is a supermartingale and

the afternoon effect arises in equilibrium.

Intuitively, we know from Section 3 that with Λg > 0 and Λm = 0 equilibrium prices decline;

therefore, if Λm is not too large, the afternoon effect continues to arise.32 Finally, notice that the

results in this section do not immediately extend to sequential second-price auctions because with

loss aversion over money first-price and second-price auctions are not revenue equivalent anymore.

7 Conclusions

Sequential auctions are often used to sell identical or similar goods such as bottles of wine,

condominiums, flowers and stamps. Similarly, online auctions for identical goods that have different

closing times can also be viewed as sequential auctions. In this paper I have proposed a novel,

preference-based explanation for the afternoon effect commonly observed in sequential auctions

by positing that bidders are expectations-based loss-averse. Reference-dependent preferences with

expectations as the reference point create an informational externality, the discouragement effect,

that renders the equilibrium strategy history-dependent: the higher is the type of the winner in

the first auction, the less aggressively the remaining bidders will bid in the second one. Therefore,

one can use the discouragement effect to empirically test the implications of loss aversion against

the implications of the classical risk-neutral model with either private values or common values.

In equilibrium a bidder must be indifferent between winning in the first auction or in the second

one. Hence, in the first auction he chooses the optimal bid conditional on having the highest type

and being pivotal. By conditioning his bid in the first auction on being pivotal, however, a bidder

underestimates the discouragement effect in the second auction. Thus, in equilibrium bidders bid

more aggressively in the first auction and prices decline.

In addition to rationalizing the afternoon effect, loss aversion delivers new testable implications

for the design of multi-unit auctions that are of independent interest for theorists and practitioners

alike. For example, if bidders are expectations-based loss-averse simultaneous and sequential auc-

tions are not revenue-equivalent nor bidder-payoff equivalent. Furthermore, in sequential auctions

a seller always achieves a higher expected revenue by committing to reveal the previous round’s

winning bid.

There are several directions left for future research. For example, in some of the auctions

discussed in the Introduction the goods up for sale are not sought after by the bidders for their

N > 3. When N = 3, however, whether prices increase or decline depends on how high the first-round price is.
32Notice that in Proposition 8 Λm < Λ̃m is a suffi cient condition. Hence, the afternoon effect can still arise for

Λm ≥ Λ̃m as well. For further details, see Web Appendix C.
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consumption value, but rather for commercial purposes (i.e., a production or a resale motive). In

this case what bidders care about is the monetary value of the goods and a model of reference-

dependent preferences where gains and losses are evaluated with respect to the overall gains from

trade (θ − p) might be more appropriate.
Moreover, a model of sequential auctions with loss-averse bidders who demand more than one

unit has the potential to yield new interesting results, as bidders’reference point would change

during the game depending (also) on how many units they have already acquired. However, it is

well known that, even in the risk-neutral case, relaxing the assumption of unit demand introduces

several additional effects that complicate the analysis substantially. For instance, when bidders

demand more than one unit, revenue equivalence between sequential and simultaneous auctions

does not hold anymore even if bidders are risk neutral and have independent private values.

Finally, another interesting direction for future research would be to study sequential dynamic

(open) auctions, like English and Dutch auctions. If bidders are risk-neutral and have independent

private values, it is well-known that the English (resp. Dutch) auction is strategically equivalent

to the second-price (resp. first-price) sealed-bid auction. This equivalence, however, is unlikely to

hold if bidders are expectations-based loss-averse.33

33See Ehrhart and Ott (2014) for a first analysis of single-object dynamic auctions with expectations-based
loss-averse bidders.
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A Proofs

A.1 Proofs of Section 3
Proof of Lemma 1: We have

∂β∗2 (θ, y1)

∂y1

= −
2Λ (N − 2)2 F (y1)N−3 f (y1)

∫ θ

0
xF (x)2N−5 f (x) dx

[F (y1)F (θ)]2(N−2)

= −f (y1) Λ


(N − 2)

∫ θ

0
1−

[
F (x)
F (θ)

]2N−4
dx

F (y1)N−1

 < 0.

where the second equality follows by integration by parts. Furthermore, notice that F (y1)N−1 is

decreasing in N whereas 1−
[
F (x)
F (θ)

]2N−4
is increasing in N . Hence, ∂β

∗
2(θ,y1)

∂y1
is decreasing in N. �

Proof of Proposition 1: We have

β∗1 (y1) =

∫ y1

0
β∗2 (θ, θ) f1 (θ) dθ

F1 (y1)

>

∫ y1

0
β∗2 (θ, y1) f1 (θ) dθ

F1 (y1)
= E [p2|p1]

where the inequality follows from Lemma 1. �
Proof of Lemma 2: We have

∂b∗2 (θ, y1)

∂y1

= −2Λ (N − 2) θF (θ)N−2

F (y1)N−1 < 0. �

Proof of Proposition 2: Let y1 denote the value of the first-round winner. As the winner pays
the second-highest bid, let y2 be the type of the first-round price setter; that is, y2 = b−1

1 (p1).
Hence, we have

p1 = b∗1 (y2)

=

∫ y2

0
θ
{

1− Λ
[
1− 2 F (θ)N−2

F (y2)N−2

]}
dF (θ)N−2

F (y2)N−2

>
∫ y2

0
θ

{
1− Λ

[
1− 2

F (θ)N−2

F (y1)N−2

]}
dF2 (θ|y2)

=
∫ y2

0
b∗2 (θ, y1) f2 (θ|y2) dθ = E [p2|p1]

where f2 (θ|y2) denotes the density of Y2, the second-highest value among N − 1, conditional on
Y2 ≤ y2. The inequality follows since y1 > y2. �
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A.2 Proofs of Section 4
Proof of Proposition 3: We have that

V sim (θ) = F2 (θ) [θ − β∗ (θ)]− ΛθF2 (θ) [1− F2 (θ)]

and

V seq (θ) = F1 (θ) [θ − β∗1 (θ)] +
∫ θ

θ
F2 (θ|y1) [θ − β∗2 (θ, y1)] f1 (y1) dy1

−Λθ

[
F1 (θ) +

∫ θ

θ
F2 (θ|y1) f1 (y1) dy1

] [
1− F1 (θ)−

∫ θ

θ
F2 (θ|y1) f1 (y1) dy1

]
.

Hence,

V seq (θ)− V sim (θ) = F2 (θ) β∗ (θ)− F1 (θ) β∗1 (θ)−
∫ θ

θ
F2 (θ|y1) β∗2 (θ, y1) f1 (y1) dy1

= (1− Λ)
∫ θ

0
sf2 (s) ds+ Λ

∫ θ

0
2F2 (s) sf2 (s) ds

− (1− Λ)
∫ θ

0

∫ x

0
sf2 (s|x) dsf1 (x) dx− Λ

∫ θ

0

∫ x

0
2F2 (s|x) sf2 (s|x) dsf1 (x) dx

− (1− Λ)
∫ θ

θ

∫ θ

0
sf2 (s|x) dsf1 (x) dx− Λ

∫ θ

θ

∫ θ

0
2F2 (s|x) sf2 (s|x) dsf1 (x) dx.

Notice that

∫ θ

0
sf2 (s) ds =

∫ θ

0

∫ x

0
sf2 (s|x) dsf1 (x) dx+

∫ θ

θ

∫ θ

0
sf2 (s|x) dsf1 (x) dx

implying that
V seq (θ)− V sim (θ) ≥ 0 ⇔∫ θ

0
F2 (s) sf 2 (s) ds ≥

∫ θ

0

∫ x

0
F2 (s|x) sf 2 (s|x) dsf 1 (x) dx+

∫ θ

θ

∫ θ

0
F2 (s|x) sf2 (s|x) dsf1 (x) dx.

Furthermore, using integration by parts, we have that

∫ θ

0
F2 (s) sf2 (s) ds =

θF2 (θ)2

2
−
∫ θ

0

[
F2 (s)2

2

]
ds

and ∫ θ

0

∫ x

0
F2 (s|x) sf2 (s|x) dsf1 (x) dx+

∫ θ

θ

∫ θ

0
F2 (s|x) sf2 (s|x) dsf1 (x) dx =

θ

[
N − 2

N − 3
F1 (θ)− N − 1

2 (N − 3)
F (θ)2(N−2)

]
−
∫ θ

0

[
N − 2

N − 3
F1 (s)− N − 1

2 (N − 3)
F (s)2(N−2)

]
ds.
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Therefore,

V seq (θ)− V sim (θ) ≥ 0 ⇔ L (θ) ≡ θπ (θ)−
∫ θ

0
π (s) ds ≥ 0

where

π (s) = F2 (s)2 − 2 (N − 2)

N − 3
F1 (s) +

N − 1

N − 3
F (s)2(N−2) .

To conclude the proof we need to show that there exists a unique θ∗ such that L (θ) ≥ 0 ⇔
θ ≥ θ∗. First, notice that L (0) = 0 = π (0) = π

(
θ
)
and that L′ (θ) = θπ′ (θ), where

π′ (θ) = 2F2 (θ) f2 (θ)− 2 (N − 2)

N − 3
f1 (θ) +

2 (N − 1) (N − 2)

N − 3
F (θ)2N−5 f (θ)

=
2 (N − 2) f1 (θ)

N − 3

{
(N − 3) [1− F (θ)]F (θ)N−3 [N − 1− (N − 2)F (θ)]−

[
1− F (θ)N−3

]}
.

Hence,

sign (L′ (θ)) = sign (π′ (θ))

= sign
{

(N − 3) [1− F (θ)]F (θ)N−3 [N − 1− (N − 2)F (θ)]−
[
1− F (θ)N−3

]}
and we have

(N − 3) [1− F (θ)]F (θ)N−3 [N − 1− (N − 2)F (θ)]−
[
1− F (θ)N−3

]
|θ=0 = −1

implying that limθ↓0 π′ (θ) < 0. Since N − 1− (N − 2)F (θ) ≥ 0 and −
[
1− F (θ)N−3

]
≤ 0, there

is a unique value of θ ∈
(
0, θ

)
for which π′ (θ) = 0. Therefore, since π (θ) is a continuous function,

we have that π (θ) ≤ 0, and the inequality is strict for θ ∈
(
0, θ

)
. This, in turn, implies that

L
(
θ
)

= −
∫ θ

0 π (s) ds > 0.

Summing up: L (θ) is continuous with L (0) = 0 and L
(
θ
)
> 0. Furthermore, since limθ↓0 L

′ (θ) <

0 and L′ (θ) changes sign only once for θ ∈
(
0, θ

)
, there exists a unique θ∗ ∈

(
0, θ

)
such that

L (θ) ≥ 0⇔ θ ≥ θ∗. �

Proof of Proposition 4: Let Z(N)
1 ≡ Z1 be the highest of N values, Z(N)

2 ≡ Z2 be the second-
highest and so on. Also, let M1 and M2 be the distributions of Z1 and Z2 respectively, with
corresponding densities m1 and m2. If Λ > 0, revenue non-equivalence between sequential and
simultaneous auctions follows immediately from Proposition 1 and the supermartingale property.
Next, we have that

E [Rseq] =
∫ θ

0
β∗1 (θ)m1 (θ) dθ +

∫ θ

0

∫ x

0

β∗2 (θ, x) f1 (θ)

F1 (x)
dθm1 (x) dx

and

E
[
Rsim

]
=
∫ θ

0
β∗ (θ) [m1 (θ) +m2 (θ)] dθ.

Hence,
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E [Rsim]− E [Rseq] =

∫ θ

0


(1− Λ)

∫ θ

0
sf2 (s) ds+ Λ

∫ θ

0
2F2 (s) sf2 (s) ds

F2 (θ)

 [m1 (θ) +m2 (θ)] dθ

−
∫ θ

0


(1− Λ)

∫ θ

0

∫ x

0
sf 2 (s|x) dsf 1 (x) dx+ Λ

∫ θ

0

∫ x

0
2F 2 (s|x) sf 2 (s|x) dxf 1 (x) dx

F1 (θ)

m1 (θ) dθ

−
∫ θ

0


(1− Λ)

∫ x

0

∫ θ

0

sf2(s|x)
F2(θ|x)

dsf 1 (θ) dθ + Λ
∫ x

0

∫ θ

0
2F 2 (s|x) sf2(s|x)

F2(θ|x)
dsf 1 (θ) dθ

F1 (x)

m1 (x) dx.

Notice that

∫ θ

0

∫ θ

0

sf2 (s)

F2 (θ)
ds [m1 (θ) +m2 (θ)] dθ = 2E [Z3]

=
∫ θ

0

∫ θ

0

∫ x

0

sf2 (s|x)

F1 (θ)
dsf1 (x) dxm1 (θ) dθ

+
∫ θ

0

∫ x

0

∫ θ

0

sf2 (s|x)

F2 (θ|x)
ds
f1 (θ)

F1 (x)
dθm1 (x) dx

implying that
E
[
Rsim

]
− E [Rseq] ≤ 0 ⇔

∫ θ

0

∫ θ

0

F2 (s) sf2 (s)

F2 (θ)
ds [m1 (θ) +m2 (θ)] dθ ≤

∫ θ

0

∫ θ

0

∫ x

0

F2 (s|x) sf2 (s|x)

F1 (θ)
dsf1 (x) dxm1 (θ) dθ

+
∫ θ

0

∫ x

0

∫ θ

0

F2 (s|x) sf2 (s|x)

F2 (θ|x)
ds
f1 (θ)

F1 (x)
dθm1 (x) dx.

Simplifying and re-arranging yields

E
[
Rsim

]
− E [Rseq] ≤ 0⇔

N (N − 1) (N − 2)
∫ θ

0

∫ θ

0
[F2 (x)− F2 (x|θ)] [1− F (x)]xF (x)N−3 f (x) dxf (θ) dθ ≤ 0⇔

N (N − 1) (N − 2)
∫ θ

0
θF (θ)2N−5 [1− F (θ)]

{
[1− F (θ)] [N − 1− (N − 2)F (θ)]− F (θ)3−N − 1

N − 3

}
f (θ) dθ ≤ 0.

where the last expression obtains by changing the order of integration.34

34Notice that limN→3

[
F (θ)3−N−1

N−3

]
= − ln [F (θ)] .
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Let F (θ) = p ∈ [0, 1]. Then, we can re-write the above expression as

N (N − 1) (N − 2)
∫ 1

0
F−1 (p) p2N−5 (1− p)

{
(1− p) [N − 1− (N − 2) p]− p3−N − 1

N − 3

}
dp ≤ 0 (22)

where F−1 (p) = inf {x ∈ R : F (x) ≥ p} is the generalized inverse distribution function and is non-
decreasing. Notice that the sign of the expression on the left-hand-side of (22) depends on the
sign of

{
(1− p) [N − 1− (N − 2) p]− p3−N−1

N−3

}
. It’s easy to see that this term can change sign at

most once for p ∈ [0, 1). Hence, the desired result follows since p3−N−1
N−3

grows faster with N than
(1− p) [N − 1− (N − 2) p] . �

A.3 Proofs of Section 5
Proof of Lemma 3: We have

∂β̂2 (θ, σ)

∂σ
= −

2 (N − 1) Λf (σ) [1− F2 (σ)]
∫ θ

0
xF (x)N−2 dF (x)N−2

[
1− F (σ)N−1

]2
F (θ)N−2

< 0

where F2 (σ) = F (σ)N−1 + (N − 1) [1− F (σ)]F (σ)N−2 . �
Proof of Lemma 4: Immediate by inspection. �
Proof of Lemma 5: We have

β∗1 (θ)− β̂1 (θ) =

∫ θ

0

[
β∗2 (s, s)− β̂2 (s, s) +

∂β̂2(s,̃θ)
∂θ̃

∣∣∣∣̃
θ=s

1−F (s)
f(s)

]
f1 (s) ds

F1 (θ)
.

A suffi cient condition for the above expression to be non-negative is

β∗2 (s, s)− β̂2 (s, s) ≥ −
∂β̂2

(
s, θ̃

)
∂θ̃

∣∣∣∣∣∣̃
θ=s

1− F (s)

f (s)

⇔
2Λ

{
1

F (s)N−2
− (N−1)[1−F (s)]

1−F (s)N−1

} ∫ s

0
xF (x)N−2 dF (x)N−2

F (s)N−2 ≥

2Λ (N − 1) [1− F (s)] [1− F2 (s)]
∫ s

0
xF (x)N−2 dF (x)N−2

[
1− F (s)N−1

]2
F (s)N−2

⇔ 1

F (s)N−2 −
(N − 1) [1− F (s)]

1− F (s)N−1 ≥ (N − 1) [1− F (s)] [1− F2 (s)][
1− F (s)N−1

]2
⇔ 1− F2 (s)

(N − 1) [1− F (s)]F (s)N−2 ≥
1− F2 (s)

1− F (s)N−1

⇔ 1 ≥ F2 (s)

and this concludes the proof. �
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Proof of Proposition 5: Let m1 and m2 be defined as in the proof of Proposition 4. We
know from Lemma 5 that first-round bidding is more aggressive with price announcement and this
implies, trivially, that the first-round expected revenue is higher with price announcement. Hence,
it suffi ces to show that the second-round expected revenue is also higher with price announcement;
that is:

∫ θ

0

∫ y1

0

β∗2 (θ, y1) f1 (θ) dθ

F1 (y1)
m1 (y1) dy1 ≥

∫ θ

0
β̂2 (θ, θ)m2 (θ) dθ.

Substituting and re-arranging yields:

(1− Λ)
∫ θ

0

∫ y1

0

X (θ) f1 (θ) dθ

F1 (y1)
m1 (y1) dy1 + Λ

∫ θ

0

∫ y1

0

2X̂ (θ) f1 (θ) dθ

F (y1)N−2 F1 (y1)
m1 (y1) dy1 ≥

(1− Λ)
∫ θ

0
X (θ)m2 (θ) dθ + Λ

∫ θ

0

2 (N − 1) [1− F (θ)]

1− F (θ)N−1 X̂ (θ)m2 (θ) dθ

where X (θ) =

∫ θ

0
xdF (x)N−2

F (θ)N−2
and X̂ (θ) =

∫ θ

0
xF (x)N−2dF (x)N−2

F (θ)N−2
.

Notice that ∫ θ

0

∫ y1

0

X (θ) f1 (θ) dθ

F1 (y1)
m1 (y1) dy1 =

∫ θ

0
X (θ)m2 (θ) dθ

which further implies that

∫ θ

0

∫ y1

0

X̂ (θ) f1 (θ) dθ

F1 (y1)︸ ︷︷ ︸
Ω(y1)

m1 (y1) dy1 =
∫ θ

0
X̂ (θ)m2 (θ) dθ.

The result then follows since

∫ θ

0

2Ω (y1)

F (y1)N−2m1 (y1) dy1 ≥
∫ θ

0

2 (N − 1) [1− F (θ)]

1− F (θ)N−1 X̂ (θ)m2 (θ) dθ

as
1

F (s)N−2 ≥
(N − 1) [1− F (s)]

1− F (s)N−1 ⇔ 1 ≥ F2 (s)

which holds ∀s ∈
[
0, θ

]
. �

Proof of Proposition 6: We have

β̂1 (y1) =

∫ y1

0
β̂2 (θ, θ) f1 (θ) dθ

F1 (y1)
−

∫ y1

0

{
∂β̂2(θ,̃θ)

∂θ̃

∣∣∣∣̃
θ=θ

1−F (θ)
f(θ)

}
f1 (θ) dθ

F1 (y1)

>

∫ y1

0
β̂2 (θ, θ) f1 (θ) dθ

F1 (y1)
= E [p2|p1]

where the inequality follows from Lemma 3. �
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Web Appendix (not for publication)

This appendix collects extensions the main model and related proofs omitted from the main
text. Section B analyzes a model with common values and loss aversion over consumption only.
Section C, instead, deals with loss aversion over both consumption and money in a model with
independent private values.

B Common Values
In this section, I consider common-value sequential auctions. Suppose each bidder i observes

a private signal ti independently and identically distributed on the support [0, t] according to the
distribution function F (ti), i = 1, 2, ..., n. Assume F (·) admits a continuous, positive density f
everywhere on its support. The common value of the objects for sale is given by V =

∑n
i=1 ti.

I focus on sequential first-price auctions with announcement of the winning bids, but the same
analysis applies also to second-price auctions via revenue equivalence.
Notice that at the time of the sale, buyers can only estimate the value of the good and they are

well aware that the true value to them will be revealed only some time after the sale. Hence, as the
value of the good for sale is subject to ex post risk, a loss-averse bidder can derive feelings of loss
and/or gain from comparing the actual realized value of the good (if he gets it) with all the possible
values the good could have taken with positive probability. In order to keep the analysis tractable,
however, henceforth I shall assume that a bidder’s reference point is given by the expected value
of the good for sale rather than the full probabilistic distribution of its possible values.
Consider a bidder of type t who plans to bid as if his type were t̃ 6= t when all other N − 2

remaining bidders follow the posited equilibrium strategy β2 (·, y1). His expected payoff is

EU2

(
t̃, t; y1

)
= F2

(
t̃|y1

) t+ y1 +
(N − 2)

∫ t̃
0 xf (x) dx

F
(
t̃
) − β2

(
t̃, y1

) (23)

−ΛF2

(
t̃|y1

) [
1− F2

(
t̃|y1

)] t+ y1 +
(N − 2)

∫ t̃
0 xf (x) dx

F
(
t̃
)

 .
The first term on the right-hand side of (23) captures classical expected consumption utility.

The second term, instead, captures expected gain-loss utility. Notice that t + y1 +
(N−2)

∫ t̃
0
xf(x)dx

F(t̃)
denotes the expected value of the item for a bidder with type t, conditional on the signal of the
first-round winner being y1 and on winning in the current round – that is, on all other N − 2
remaining bidders having signals lower than t̃.

1



Taking the FOC with respect to t̃ yields

0 = f2

(
t̃|y1

) t+ y1 +
(N − 2)

∫ t̃
0 xf (x) dx

F
(
t̃
) − β2

(
t̃, y1

)

+F2

(
t̃|y1

) (N − 2) t̃f
(
t̃
)
F
(
t̃
)
− f

(
t̃
)

(N − 2)
∫ t̃

0 xf (x) dx[
F
(
t̃
)]2 −

∂β2

(
t̃, y1

)
∂t̃


−Λf2

(
t̃|y1

) [
1− F2

(
t̃|y1

)] t+ y1 +
(N − 2)

∫ t̃
0 xf (x) dx

F
(
t̃
)


+ΛF2

(
t̃|y1

)
f2

(
t̃|y1

) t+ y1 +
(N − 2)

∫ t̃
0 xf (x) dx

F
(
t̃
)



−ΛF2

(
t̃|y1

) [
1− F2

(
t̃|y1

)] (N − 2) t̃f
(
t̃
)
F
(
t̃
)
− f

(
t̃
)

(N − 2)
∫ t̃

0 xf (x) dx[
F
(
t̃
)]2

 .
Substituting t = t̃ and re-arranging results in the following differential equation

∂

∂t
{F2 (t|y1) β2 (t, y1)} = f2 (t|y1)

[
t+ y1 +

(n− 2)
∫ t

0 xf (x) dx

F (t)

]
{1− Λ [1− 2F2 (t|y1)]}

+f2 (t|y1)

[
t−

∫ t
0 xf (x) dx

F (t)

]
{1− Λ [1− F2 (θ|y1)]}

whose solution is

β∗2 (t, y1) =
(1− Λ)

∫ t
0

[
2s+ y1 +

(N−3)
∫ s
0
xf(x)dx

F (s)

]
dF (s)N−2

F (t)N−2

+
Λ
∫ t
0

[
3s+ 2y1 +

(2N−5)
∫ s
0
xf(x)dx

F (s)

]
F2 (s|y1) dF (s)N−2

F (t)N−2 .

The next Lemma describes the effect that y1 has on the second-round bidding function.

Lemma 6. (Discouragement Effect IV) For Λ > 0, there exists a threshold N̂ ≥ 3 such that if
N ≥ N̂ then there exists a threshold Λ̂ such that ∂β∗2(t,y1)

∂y1
< 0 if and only if Λ > Λ̂.

Proof of Lemma 6: We have

∂β∗2 (t, y1)

∂y1

=
(1− Λ)

∫ t
0 dF (s)N−2

F (t)N−2 (24)

+
Λ
∫ t

0

{
2F2 (s|y1)− (N−2)F (s)N−2f(y1)

F (y1)N−1

[
3s+ 2y1 +

(2N−5)
∫ s
0
xf(x)dx

F (s)

]}
dF (s)N−2

F (t)N−2 .

It’s easy to see that the first term on the right-hand side of (24) simplifies to 1 − Λ, which is
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always positive. On the other hand, it is easy to verify that for N high enough the second term
on the right-hand side of (24) is negative and decreasing in N . Let N̂ be the value such that

N ≥ N̂ ⇒
Λ
∫ t

0

{
2F2 (s|y1)− (N−2)F (s)N−2f(y1)

F (y1)N−1

[
3s+ 2y1 +

(2N−5)
∫ s
0
xf(x)dx

F (s)

]}
dF (s)N−2

F (t)N−2 < 0.

Then, the result follows since ∂β∗2(t,y1)

∂y1
is continuous in Λ. �

Next, I derive the equilibrium bidding function in the first round. Consider a bidder with type
t who plans to bid as if his type were t̃ 6= t when all other bidders follow the strategy β1. His
expected total utility is

EU1

(
t, t̃
)

= F1

(
t̃
)
t+

(N − 1)
∫ t̃

0 xf (x) dx

F
(
t̃
)

︸ ︷︷ ︸
V (t,̃t)

− β1

(
t̃
)


+
∫ θ

t̃
F2 (t|y1)

t+ y1 +
(N − 2)

∫ t
0 xf (x) dx

F (t)︸ ︷︷ ︸
V (t,y1)

− β∗2 (t, y1)

 f1 (y1) dy1

−Λ

[
1− F1

(
t̃
)
−
∫ t

t̃
F2 (t|y1) f1 (y1) dy1

] [
F1

(
t̃
)
V
(
t, t̃
)

+
∫ t

t̃
F2 (t|y1)V (t, y1) f1 (y1) dy1

]
.

Taking FOC with respect to t̃ yields

0 = f1

(
t̃
) [
V
(
t, t̃
)
− β1

(
t̃
)]

+ F1

(
t̃
) ∂V

(
t, t̃
)

∂t̃
− β1

(
t̃
)′− F2

(
t|t̃
) [
V
(
t, t̃
)
− β∗2

(
t, t̃
)]
f1

(
t̃
)

−Λ
[
−f1

(
t̃
)

+ F2

(
t|t̃
)
f1

(
t̃
)] [

F1

(
t̃
)
V
(
t, t̃
)

+
∫ t

t̃
F2 (t|y1)V (t, y1) f1 (y1) dy1

]

−Λ

[
1− F1

(
t̃
)
−
∫ t

t̃
F2 (t|y1) f1 (y1) dy1

] f1

(
t̃
)
V
(
t, t̃
)

+ F1

(
t̃
) ∂V (t, t̃)

∂t̃
− F2

(
t|t̃
)
V
(
t, t̃
)
f1

(
t̃
) .

Setting t = t̃ results in the following differential equation

{F1 (t) β1 (t)}′ = β∗2 (t, t) f1 (t)

whose solution is

β∗1 (t) =

∫ t
0 β
∗
2 (s, s) f1 (s) ds

F1 (t)
.

Then, we have the following result about the equilibrium price path:

Proposition 7. (Afternoon Effect IV) The price sequence in a two-round sequential first-price
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auction with common values is a supermartingale if ∂β∗2(t,y1)

∂y1
< 0 and a submartingale otherwise.

Proof of Proposition 7: We have

p1 = β∗1 (y1) =

∫ y1
0 β∗2 (t, t) f1 (t) dt

F1 (y1)

and

E [p2|p1] =

∫ y1
0 β∗2 (t, y1) f1 (t) dt

F1 (y1)
.

Hence,

p1 − E [p2|p1] > 0⇔ ∂β∗2 (t, y1)

∂y1

< 0. �

C Loss Aversion over Money
In this section, I consider sequential first-price auctions with price announcement. The analysis

mirrors the one carried out in Section 3; the only, crucial, difference is that now I allow for the
bidders to be loss-averse over money as well as consumption. Let ηm > 0 and λm > 1 be the
the relative weight a consumer attaches to gain-loss utility and the coeffi cient of loss aversion for
the money dimension, respectively. Similarly, let ηg > 0 and λg > 1 be the the relative weight
a consumer attaches to gain-loss utility and the coeffi cient of loss aversion over the consumption
dimension, respectively. Finally, let Λl = ηl

(
λl − 1

)
and assume Λl ≤ 1, for l ∈ {g,m} .

Consider a bidder of type θ who plans to bid as if his type were θ̃ 6= θ when all other N − 2
remaining bidders follow the posited equilibrium strategy β2 (·, y1). His expected payoff is

EU2

(
θ̃, θ; y1

)
= F2

(
θ̃|y1

) [
θ − β2

(
θ̃, y1

)]
(25)

−F2

(
θ̃|y1

) [
1− F2

(
θ̃|y1

)]
θΛg

−F2

(
θ̃|y1

) [
1− F2

(
θ̃|y1

)]
β2

(
θ̃, y1

)
Λm

where F2

(
θ̃|y1

)
is the probability that the second highest valuation, among N − 1, is less than

θ̃ conditional on Y1 = y1 being the highest. Compared to expression (3) in the main text,
there is an additional term, −F2

(
θ̃|y1

) [
1− F2

(
θ̃|y1

)]
β2

(
θ̃, y1

)
Λm, in expression (25). This

term captures the comparison, in the money dimension, between losing and winning the auc-
tion. Indeed, with probability F2

(
θ̃|y1

)
the bidder will win the auction and asses this as a loss

of −ηmλmβ2

(
θ̃, y1

) [
1− F2

(
θ̃|y1

)]
given that he was expecting to lose the auction and hence pay

nothing with probability 1−F2

(
θ̃|y1

)
; similarly, with probability 1−F2

(
θ̃|y1

)
the bidder will lose

the auction and asses this as a gain of ηmβ2

(
θ̃, y1

)
F2

(
θ̃|y1

)
given that he was expecting to win

the auction and pay β2

(
θ̃, y1

)
with probability F2

(
θ̃|y1

)
.
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Taking FOC of (25) with respect to θ̃ yields

0 = f2

(
θ̃|y1

) (
θ − β2

(
θ̃, y1

))
− β′2

(
θ̃, y1

)
F2

(
θ̃|y1

)
−f2

(
θ̃|y1

) [
1− 2F2

(
θ̃|y1

)]
θΛg

−f2

(
θ̃|y1

) [
1− 2F2

(
θ̃|y1

)]
β2

(
θ̃, y1

)
Λm

−F2

(
θ̃|y1

) [
1− F2

(
θ̃|y1

)]
β′2
(
θ̃, y1

)
Λm

where β′2 is the derivative of β2 with respect to its first argument.
Substituting θ = θ̃ and re-arranging results in the following differential equation

∂

∂θ
{β2 (θ, y1)F2 (θ|y1) [1 + Λm (1− F2 (θ|y1))]}= f 2 (θ|y1) θ {1− Λg [1− 2F2 (θ|y1)]} (26)

together with the boundary condition that β2 (0, y1) = 0.
Because the different values are drawn independently, we have that

F2 (θ|y1) =
F (θ)N−2

F (y1)N−2

and substituting into (26) yields

β∗2 (θ, y1; Λg,Λm) =

∫ θ
0 x

{
1− Λg

[
1− 2 F (x)N−2

F (y1)N−2

]}
dF (x)N−2

F (θ)N−2
{

1 + Λm

[
1− F (θ)N−2

F (y1)N−2

]} . (27)

It is easy to see that ∂β∗2(θ,y1;Λg ,Λm)

∂Λm
< 0, implying that loss aversion on the money dimension

pushes all bidders to behave less aggressively compared to the risk-neutral case. Furthermore, loss
aversion over money does not affect does not invalidate the (negative) effect that y1 has on the
second-round bidding function:

Lemma 7. (Discouragement Effect V) If Λg ≤ 1, then ∂β∗2(θ,y1;Λg ,Λm)

∂y1
< 0 ∀θ.

Proof of Lemma 7: We have

∂β∗2 (θ, y1; Λg,Λm)

∂y1

=
−
[
2Λg

(
1 + Λm−Λm

(
F (θ)
F (y1)

)N−2
) ∫ θ

0 F (x)
2N−5

f (x)xdx
]
f (y1) (N − 2)2

F (y1)N−1 F (θ)N−2
[
1 + Λm

(
1−

(
F (θ)
F (y1)

)N−2
)]2 +

−
[
ΛmF (θ)N−2 ∫ θ

0 F (x)N−3 f (x)x
(

1− Λg+2Λg
(
F (x)
F (y1)

)N−2
)
dx
]
f (y1) (N − 2)2

F (y1)N−1 F (θ)N−2
[
1 + Λm

(
1−

(
F (θ)
F (y1)

)N−2
)]2

< 0. �

Next, I derive the equilibrium bidding function in the first round. Consider a particular bidder
with type θ who plans to bid as if his type were θ̃ 6= θ when all other N − 1 bidders follow
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the equilibrium strategy β1. Suppose that all bidders expect to follow strategy the equilibrium
β∗2 (θ, y1) in the second auction, regardless of what happens in the first one (sequential rationality).
His expected total utility is

EU1

(
θ, θ̃

)
= F1

(
θ̃
) [
θ − β1

(
θ̃
)]

+
∫ θ

θ̃
F2 (θ|y1) [θ − β∗2 (θ, y1)] f1 (y1) dy1 (28)

−Λgθ

[
F1

(
θ̃
)

+
∫ θ

θ̃
F2 (θ|y1) f1 (y1) dy1

] [
1− F1

(
θ̃
)
−
∫ θ

θ̃
F2 (θ|y1) f1 (y1) dy1

]

−Λmβ1

(
θ̃
)
F1

(
θ̃
) [

1− F1

(
θ̃
)
−
∫ θ

θ̃
F2 (θ|y1) f1 (y1) dy1

]

−Λm

θ∫
θ̃

F2 (θ|y1) β∗2 (θ, y1) f1 (y1) dy1

[
1− F1

(
θ̃
)
−
∫ θ

θ̃
F2 (θ|y1) f1 (y1) dy1

]

−ΛmF1

(
θ̃
) ∫ θ

θ̃

[
β1

(
θ̃
)
− β∗2 (θ, y1)

]
F2 (θ|y1) f1 (y1) dy1

−Λm
∫ θ

θ̃

∫ y1

θ̃
[β∗2 (θ, x)− β∗2 (θ, y1)]F2 (θ|x) f1 (x) dxF2 (θ|y1) f1 (y1) dy1

where F1

(
θ̃
)
is the probability that the highest valuation, among N − 1, is less than θ̃, and

F2 (θ|y1), Λg and Λm are defined as before. The first line in (28) is the sum of expected consumption
utilities. The second line captures expected gain-loss utility on the product dimension: F1

(
θ̃
)

+∫ θ
θ̃
F2 (θ|y1) f1 (y1) dy1 is the sum of the probability with which a bidder of type θ expects to win the

first auction given that he pretends to be of type θ̃ and the period-1 expectation of the probability
with which he expects to win in the second auction given that he he pretends to be of type θ̃ in the
first auction but expects to behave as his real type in the second one. Similarly, the third and fourth
lines in (28) are expected gain-loss utility on the payment dimension: he expects to pay β1

(
θ̃
)
with

probability F1

(
θ̃
)
(that is, if he wins the first auction), to pay

∫ θ
θ̃
F2 (θ|y1) β∗2 (θ, y1) f1 (y1) dy1 if he

wins the second auction and to pay nothing otherwise. The fifth line captures the expected gain-
loss utility from the comparison between winning the first auction at price β1

(
θ̃
)
and expecting

to win the second auction at price β∗2 (θ, y1). Finally, the sixth and last line captures expected
gain-loss utility from the comparison between all possible prices that the bidder expects to pay
with positive probability if he wins the second auction.35

35Notice that this last term would be equal to zero if the second-round strategy were history-independent.
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Taking FOC of (28) with respect to θ̃ yields

0 = f1

(
θ̃
) [
θ − β1

(
θ̃
)]
− β′1

(
θ̃
)
F1

(
θ̃
)
− F2

(
θ|θ̃
) [
θ − β∗2

(
θ, θ̃

)]
f1

(
θ̃
)

−Λgθ
[
f1

(
θ̃
)
− F2

(
θ|θ̃
)
f1

(
θ̃
)] [

1− F1

(
θ̃
)
−
∫ θ

θ̃
F2 (θ|y1) f1 (y1) dy1

]

−Λgθ

[
F1

(
θ̃
)

+
∫ θ

θ̃
F2 (θ|y1) f1 (y1) dy1

] [
−f1

(
θ̃
)

+ F2

(
θ|θ̃
)
f1

(
θ̃
)]

−Λmβ′1
(
θ̃
)
F1

(
θ̃
) [

1− F1

(
θ̃
)
−
∫ θ

θ̃
F2 (θ|y1) f1 (y1) dy1

]

−Λmβ1

(
θ̃
)
f1

(
θ̃
) [

1− F1

(
θ̃
)
−
∫ θ

θ̃
F2 (θ|y1) f1 (y1) dy1

]
−Λmβ1

(
θ̃
)
F1

(
θ̃
) [
−f1

(
θ̃
)

+ F2

(
θ|θ̃
)
f1

(
θ̃
)]

+ΛmF2

(
θ|θ̃
)
β∗2
(
θ, θ̃

)
f1

(
θ̃
) [

1− F1

(
θ̃
)
−
∫ θ

θ̃
F2 (θ|y1) f1 (y1) dy1

]

−Λm
∫ θ

θ̃
F2 (θ|y1) β∗2 (θ, y1) f1 (y1) dy1

[
−f1

(
θ̃
)

+ F2

(
θ|θ̃
)
f1

(
θ̃
)]

−Λmf1

(
θ̃
) ∫ θ

θ̃

[
β1

(
θ̃
)
− β∗2 (θ, y1)

]
F2 (θ|y1) f1 (y1) dy1

−ΛmF1

(
θ̃
){
−
[
β1

(
θ̃
)
− β∗2

(
θ, θ̃

)]
F2

(
θ|θ̃
)
f1

(
θ̃
)

+
∫ θ

θ̃
β′1
(
θ̃
)
F2 (θ|y1) f1 (y1) dy1

}

−Λm
∫ θ

θ̃

[
β∗2 (θ, y1)− β∗2

(
θ, θ̃

)]
F2

(
θ|θ̃
)
f1

(
θ̃
)
F2 (θ|y1) f1 (y1) dy1.

Substituting θ = θ̃ and re-arranging results in the following differential equation

d

dθ
{β1 (θ)F1 (θ) [1 + Λm (1− F1 (θ))]} = f1 (θ) β2 (θ, θ) + Λmβ2 (θ, θ) f1 (θ) [1− 2F1 (θ)]

together with the boundary condition that β1 (0) = 0. Solving the differential equation yields

β∗1 (θ; Λg,Λm) =

∫ θ
0 β
∗
2 (s, s) {1 + Λm [1− 2F1 (s)]} f1 (s) ds

F1 (θ) {1 + Λm [1− F1 (θ)]} . (29)

It is easy to see that Λm ≤ 1 is a suffi cient condition for β∗1 to be strictly increasing in θ.
Moreover, notice that β∗1 depends on Λg only indirectly, through β2 (s, s). On the other hand, β∗1
depends directly on Λm. This renders the comparison between the first-round price and the (condi-
tional) expected second-round price somewhat more involved. Indeed, as the term Λm [1− 2F1 (s)]
becomes negative when N is relatively small and s is close to θ, the effect of loss aversion over
money on the price path can either go in the same direction as that of loss aversion over con-
sumption, or in the opposite one. In particular, if Λg = 0 equilibrium prices can either increase or
decline depending on the number of bidders and how high the first-round price is.
Let y1 = β−1

1 (p1). Figure 4 displays the difference E [p2|p1] − p1 as a function of y1 for three
different values of N when Λg = 0, Λm = 1 and θ is distributed uniformly on [0, 1]: N = 3 (solid),
N = 4 (dashed), and N = 5 (dotted). For N ≥ 4, the difference E [p2|p1]− p1 is always negative.
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Figure 4: E [p2|p1] − p1 as a function of y1 for three different values of N (3, 4, 5) when Λg = 0,
Λm = 1 and θ is distributed uniformly on [0, 1] .

Yet, for N = 3, equilibrium prices decline if and only if y1 ≤
√

30

(√
960 ln2 2−1376 ln 2+493

)
87−120(ln 2)

' 0.976.

As the following Proposition shows, for Λg > 0 loss aversion over money does not eliminate the
afternoon effect.

Proposition 8. (Afternoon Effect V) If Λg > 0, then there exists a threshold Λ̃m such that if
Λm < Λ̃m the price sequence in a two-round sequential first-price auction is a supermartingale and
the afternoon effect arises in equilibrium.

Proof of Proposition 8: We have

p1 = β∗1 (y1) =

∫ y1
0 β∗2 (θ, θ) {1 + Λm [1− 2F1 (θ)]} f1 (θ) dθ

F1 (y1) {1 + Λm [1− F1 (y1)]}

and

E [p2|p1] =

∫ y1
0 β∗2 (θ, y1) f1 (θ) dθ

F1 (y1)
.

Hence,

p1 − E [p2|p1] =

∫ y1
0

{
β∗2 (θ, θ) 1+Λm[1−2F1(θ)]

1+Λm[1−F1(y1)]
− β∗2 (θ, y1)

}
f1 (θ) dθ

F1 (y1)
. (30)

If Λg > 0, we know that the term on the right-hand-side of (30) is positive for Λm = 0. By
continuity, then, there exists a threshold Λ̃m such that p1 − E [p2|p1] > 0 if Λm < Λ̃m. �

8


