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Abstract

We analyze the effect of technological change in a novel framework that integrates an
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further sort into a continuum of tasks (occupations) ranked by skill content. Our
theory dictates that faster technological progress for middle-skill tasks not only raises
the employment shares and relative wages of lower- and higher-skill occupations among
workers (horizontal polarization), but also raises those of managers over workers as a
whole (vertical polarization). Both dimensions of polarization are faster within sectors
that depend more on middle-skill tasks and less on managers. This endogenously leads
to faster TFP growth of such sectors, whose employment and value-added shares shrink
if sectoral goods are complementary (structural change). We present several novel
facts that support our model, followed by a quantitative analysis showing that task-
specific technological progress—which was fastest for occupations embodying routine-
manual tasks but not interpersonal skills—is important for understanding changes in
the sectoral, occupational, and organizational structure of the U.S. economy since 1980.
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1 Introduction

We develop a novel framework that integrates an economy’s distribution of individual

skills with its occupational and industrial structure. It enables an analysis of how

changes in wage and employment shares across occupations and industrial sectors are

interrelated, providing a comprehensive view on the economic forces that shape the

occupational, sectoral, and organizational structure of an economy.

In our model, individuals are heterogeneous in two dimensions of skill—managerial

talent and worker human capital—based on which they become a manager or a worker.

Workers then select into a continuum of tasks (or occupations) based on their human

capital.1 Managers organize the workers’ tasks, in addition to their own, to produce

sector-specific goods. Sectors differ in how intensively different tasks are used in pro-

duction. Individual skills are sector-neutral, so they only care about their occupation

and are indifferent about which sector they work in.

We characterize the equilibrium assignment of occupations and sectors theoreti-

cally, and prove a series of comparative statics in response to task-specific technolog-

ical progress that is sector- and factor-neutral. If different tasks are complementary

in production, faster technological progress among middle-skill tasks—more precisely,

those tasks chosen by middle-skill workers in equilibrium—leads to: (i) higher em-

ployment shares and wages for low- and high-skill occupations relative to middle-skill

occupations—i.e. job and wage polarization among workers—in all sectors; (ii) a higher

employment share and wage for managers relative to workers as a whole—which we dub

vertical polarization to distinguish from the horizontal polarization across workers—in

all sectors; (iii) faster horizontal and vertical polarization within sectors that depend

more on middle-skill tasks and less on managers; and (iv) faster endogenous total

factor productivity (TFP) growth of such sectors, shrinking their employment and

value-added shares if sectoral goods are complementary (i.e., structural change).

The last result merits further discussion. First, because sector-level TFP in our

model is endogenously determined by equilibrium occupational choices, task-specific

technological progress—which is sector neutral—has differential impact across sectors,

causing structural change. Second, as the employment share of sectors that rely less on

middle-skill workers and more on managers rises, the overall degree of horizontal and

vertical polarization is reinforced. Third, if all structural change is driven by sector-

neutral task-specific technological progress, those occupations with faster technological

progress may vanish asymptotically, but all sectors coexist: Once the employment

1Technically, a task is the technology used by a certain occupation. Nonetheless, we will use “task” and
“occupation” interchangeably throughout the paper.
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shares of the occupations with faster progress become negligible, structural change

ceases. This is in contrast to theories of structural change that rely on sector-specific

forces, in which the shift of production factors from one sector to another continues

until the shrinking sector vanishes.

Predictions (i) through (iv) are salient features of the U.S. economy since 1980: (i)

job and wage polarization is well-documented in the literature, e.g., Autor and Dorn

(2013), which we refer to as horizontal polarization; (ii) using the same data, we newly

document vertical polarization; and (iii) we empirically establish that manufacturing

is more reliant on middle-skill workers and less on managers than services, and also

that, while both sectors polarized, the two dimensions of polarization are indeed faster

within manufacturing than in services.2 Finally, (iv) it is well understood that the

faster growth of manufacturing TFP—which we show accelerated around 1980 in the

data—is an important driver of structural change from manufacturing to services.

Our model shows that one common cause is driving all of the above empirical facts:

faster technological progress for middle-skill tasks (which are more intensively used in

manufacturing).

The theoretical model has one managerial task and a continuum of worker tasks.

To quantify the model, we discretize the latter into 10 occupation categories. Our

analysis confirms that task-specific technological progress alone—without sector- or

factor-specific technological progress—can almost fully account for the changes in the

sectoral, occupational, and organizational structure in the U.S. economy since 1980.

The next natural question to ask is what can explain such differential productivity

improvements across tasks. Autor and Dorn (2013), Goos, Manning, and Salomons

(2014) and others have hypothesized that “routinization,” or faster technological ad-

vancement for tasks that are more routine in nature (which tend to be middle-skill

occupations in the data), led to (horizontal) polarization. They test this empirically

by constructing a routine-task intensity (RTI) index for each occupation from the Dic-

tionary of Occupation Titles (DOT) and its successor O*NET.

We follow a similar route, but use more disaggregated indices than RTI that con-

sider detailed characteristics of occupations. We find that the task-specific technologi-

cal progress we quantify from the changes in the occupational structure is much more

strongly correlated with the routine-manual index (a component of RTI) and with the

inverse of the manual-interpersonal index than with RTI. In other words, technological

2In addition, we provide evidence from establishment-level data that corroborates faster vertical polar-
ization in manufacturing: Manufacturing establishments on average shrank faster in terms of employment
and grew faster in terms of value-added than those in services, which is predicted by our model, if we assume
that the number of managers per establishment was stable over time.
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progress since 1980 is primarily embodied in those manual tasks that are repetitive in

nature and require few interpersonal skills. This strongly suggests that the relatively

easier automation of such tasks explains their faster productivity growth, which is con-

sistent with the routinization hypothesis. On the other hand, the fact that polarization

is observed even within the service sector suggests that trade may not have been the

main driver.

Related Literature The model we consider is of particular relevance for the U.S.

and other advanced economies. The 1980s marks a starting point of rising labor mar-

ket inequality, of which polarization is a salient feature. It coincided with the rise of

low-skill service jobs (Autor and Dorn, 2013) and also a clear rise in manufacturing

productivity. The latter was implicitly noted in Herrendorf, Rogerson, and Valentinyi

(2014) and is further corroborated in our empirical analysis. Our main finding in this

regard is that task-specific technological progress is of first-order importance for under-

standing the observed changes not only across occupations but also in the industrial

structure of the economy.

Costinot and Vogel (2010) presents a task-based model in which workers with a

continuum of one-dimensional skill sort into a continuum of tasks. The worker side of

our model is similar to theirs (except that we include capital), but we gain new insights

by incorporating two dimensional skills (managerial talent and worker human capital)

and multiple sectors.

The only other paper we know of with a structure in which individuals with different

skills sort into occupations, which are then used as production inputs in multiple

sectors, is Stokey (2016). The within-sector side of its model can be described as

a version of Costinot and Vogel (2010), in which skills are continuous but tasks are

discrete. The latter assumption enables an analytic characterization of the effect of

task-specific technological change, which is in turn used for demonstrating the broad

range of phenomena that can be explained by such a model.

We take the same approach in our quantitative section (i.e., tasks are discretized),

and use the U.S. data to quantify how relevant our model is for the employment and

relative wage trends across occupations and sectors between 1980 and 2010. In par-

ticular, we emphasize the differential pace of polarization across sectors and explicitly

relate polarization to structural change. In addition, since we treat managers as an

occupation that is qualitatively different from workers, the model has implications for

how production is organized in different sectors. We document several important new

facts along these dimensions that validate our modeling assumptions.
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The manager-level technology in our model extends the span-of-control model of

Lucas (1978), in which managers hire workers for production. Unlike all existing

variants of the span-of-control model, our managers organize tasks instead of workers.

That is, instead of deciding how many workers to hire, they decide on the quantities

of each task to use in production, and for each task, how much skill to hire. Moreover,

we assume a constant-elasticity-of-substitution (CES) technology between managerial

and worker tasks.3

Goos et al. (2014) empirically finds that relative price changes in task-specific capi-

tal have driven employment polarization in Europe. It decomposes employment polar-

ization into within- and between-industry components, but abstracts from changes in

equilibrium wages and aggregate quantities. Our analysis shows that general equilib-

rium considerations have important implications for the estimation of the elasticity of

substitution across tasks, a key parameter in such analyses. Dürnecker and Herrendorf

(2017) also considers occupations and industries, and show that structural change from

manufacturing to services can be represented by shifts at the occupation level in many

countries. Its conclusion is based on classifying occupations in the data as (mutually-

exclusive) manufacturing or service jobs. In contrast, we keep occupations and sectors

conceptually separate, and analyze the effect of task-specific and sector-specific tech-

nologies for employment and wage inequalities across the skill distribution.

There is a growing literature in international trade that uses assignment models

to explain inequality between occupations and/or industries (Burstein, Morales, and

Vogel, 2015; Lee, 2015). The majority of such models follow the tradition of Roy:

Workers have as many dimensions of skills as there are available industry-occupation

combinations, and select themselves into the job in which they have a comparative

advantage. To make the model tractable, a Fréchet distribution is utilized to collapse it

into an empirically testable set of equations for each industry and/or occupation pair.

The manager-worker division in our model is also due to Roy-selection (managerial

talent vs. worker human capital), but workers sort into a continuum of tasks based on

one-dimensional skill. Having only two skill dimensions facilitates mapping them to

individual characteristics observable in the data, so we can explore occupation choices

and (as an extension) skill formation using standard labor and macroeconomic models

of human capital.

Structural change in our model occurs because sectoral productivities evolve differ-

3While Lucas’s original model is based on a generic homogeneous-of-degree-one technology, virtually all
papers that followed assume a Cobb-Douglas technology. We incorporate (i) non-unitary elasticity between
managers and workers, (ii) heterogeneity in worker productivity as well as in managerial productivity, (iii)
multiple worker tasks (or occupations), and (iv) multiple sectors.

5



entially over time, as in Ngai and Pissarides (2007) and most other production-driven

models of structural change. What we add to this literature is a mechanism for sectoral

productivities to evolve endogenously : the changing equilibrium occupational choice

due to task-specific technological progress. Also related is Acemoglu and Guerrieri

(2008), in which the capital-intensive sector vanishes in the limiting balanced growth

path. In comparison, sectors in our model differ in how intensively they use different

tasks. By contrasting different types of labor, rather than capital and labor, we can

connect structural change across sectors to labor market inequality across occupations

and skills. Moreover, unlike these papers, ours implies that it is certain occupations

rather than broadly-defined sectors that may vanish in the limit.

Finally, we note that some recent papers consider the relationship between skill and

structural change. Buera and Kaboski (2012) and Buera, Kaboski, and Rogerson (2015)

feature multiple worker types as different inputs of production. Similarly, Bárány and

Siegel (2017) argues that polarization may be explained by structural change, in a

model where skills are occupation-specific and occupations are sector-specific. In these

models, task-specific technology is ruled out, so all change must be either skill- or

sector-specific. The addition of the task dimension in our model separates skills from

the occupation in which they are used, thereby permitting technological changes specific

to a task and also an analysis of their impact on the selection of skills into occupations.

It also allows us to exploit data on occupational employment and wages within sectors

as well as across sectors.4 Equally important, the sectoral TFPs in our model are

endogenously determined by equilibrium occupational choices.

The rest of the paper is organized as follows. In Section 2, we summarize the most

relevant empirical facts: horizontal and vertical polarization in the overall economy,

the faster speed of polarization within manufacturing than in services, and structural

change. In Section 3, we present the model and solve for its equilibrium. In Section 4,

we perform comparative statics showing that faster technological progress for middle-

skill tasks leads to horizontal and vertical polarization, and to structural change. In

Section 5 we calibrate a discrete-occupation version of the model, and in Section 6

quantify the importance of task-specific technological progress and map it to empirical

measures of task characteristics. Section 7 concludes, outlining the broader applicabil-

ity of our novel framework.

4Autor, Katz, and Kearney (2006), Acemoglu and Autor (2011) and Lee, Shin, and Lee (2015) show that
residual wage inequality controlling for education groups is much larger and has risen more since 1980 than
between-group inequality.
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Fig. 1: Structural Change, 1970-2013.
Source: BEA NIPA accounts. “Manufacturing” combines manufacturing, mining and construction, and
services subsumes service and government. Sectoral output is computed via cyclical expansion from the
industry accounts as in Herrendorf, Rogerson, and Valentinyi (2013). Employment is based on full-time
equivalent number of persons in production in NIPA Table 6. Further details are in Section 5.2.

2 Facts

In this section we summarize known facts on structural change and polarization, and

present novel evidence on how the two may be related. We also provide a new way of

looking at managerial occupations by considering them as qualtitatively different from

all other occupations, and relate them to establishments.

Structural change Figure 1 shows the (real) value-added output and employment

share trends of three broadly defined sectors: agriculture, manufacturing and services,

from 1970 to 2013. Following convention, e.g. Herrendorf et al. (2014), “manufac-

turing” is the aggregation of the manufacturing, mining and construction sectors and

“services” the sum of all service and government sectors. The data are from the Na-

tional Accounts published by the Bureau of Economic Analysis (BEA). In particular,

employment is based on National Income and Product Accounts (NIPA) Table 6 (per-

sons involved in production), counted in terms of full-time equivalent workers.5

Two facts are well documented in the literature. First, starting from even before

1970, agriculture was a negligible share of the U.S. economy. For the remainder of

this paper, we will drop the agricultural sector, and all moments will be computed

as if the aggregate economy consisted only of manufacturing and services (e.g. the

manufacturing and service shares sum up to one).

5Computing employment shares from the decennial census yields more or less the same trend.
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Fig. 2: Log Sectoral TFP, 1947–2013.
Source: BEA NIPA accounts. Sectoral output and capital are computed via cyclical expansion from the
industry accounts as in Herrendorf et al. (2013). Employment is based on full-time equivalent number of
persons in production in NIPA Table 6. Within each sector, TFP is measured as the Solow residual given a
capital income share of 0.361, and log-TFP’s are normalized to 0 in 1947.

Second, structural change—the shifting of GDP and employment from manufactur-

ing to services—exhibits a smooth trend starting from at least the 1970s, as noted in

Herrendorf et al. (2014). Moreover, either sector’s GDP share and employment share

are almost identical both in terms of levels and trends. This implies a nearly constant

input share of labor across the two sectors, which we will assume in our theoretical

model. Herrendorf et al. (2014) also notes that manufacturing’s relative TFP has grown

quicker than services post 1970s, but that such trends may not be stable over a longer

horizon.

In Figure 2, we show TFP growth in manufacturing and services from 1948 assuming

a capital income share of 0.361.6 Note that manufacturing’s TFP relative to services

was more or less constant prior to the early 1980s, after which it exhibits a widening

gap. In our quantitative model, we will relate this to faster task-specific technological

progress among middle-skill jobs, so the timing of this rise is important: According

to Autor and Dorn (2013), this is also the period in which such jobs began to show a

distinct declining trend.

Job and wage polarization Most of the rest of our empirical analysis is based

on the decennial U.S. Censuses 1980–2010, for which we closely follow Autor and

Dorn (2013). We restrict our sample to 16–65 year-old non-farm employment. Figure

6This is the longest time period allowed by the industry accounts, which we need to compute real
GDP and capital at the sector level. Herrendorf, Herrington, and Valentinyi (2015) argues that Cobb-
Douglas sectoral production functions with equal capital income shares can quantitatively capture the effect
of differentially evolving sectoral TFP’s. See Section 5.2 for details.
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Fig. 3: Job and Wage Polarization, 1980–2010.
Source: U.S. Census (5%), extends Autor and Dorn (2013), which ends in 2005. Occupations are ranked by
their 1980 mean wage for 11 one-digit groups and smoothed across 322 three-digit groups, separately. The
widths of the bars are the employment share (in percent) in 1980. The y-axis measures the 30-year changes,
of which units are in percentage points per percentile in panel (a). More details are in Appendix A.

3 plots employment and wage changes by occupation from 1980 to 2010, extending

Figure 1 in Autor and Dorn (2013) who considered changes up to 2005. Occupations

are sorted into employment share percentiles by skill along the x-axis, where skill is

proxied by the mean (log) hourly wage of each occupation in 1980. We follow the three-

digit occ1990dd occupation coding convention in Dorn (2009), which harmonizes the

occ1990 convention in Meyer and Osborne (2005). This results in 322 occupation

categories for which employment is positive in all 4 censuses. Employment is defined

as the product of weeks worked times usual weekly hours.

The data is presented in two ways. First, following Autor and Dorn (2013), each

dot in Figure 3 represents one percent of employment in 1980. The y-axis in Panel (a)

measures each skill percentile’s employment change from 1980 to 2010 in percentage

points, and in Panel (b) the change in its mean wage. The changes are smoothed

into percentiles across neighboring occupations using a locally weighted smoothing

regression. Despite the Great Recession happening between 2005 and 2010, the long-

run patterns are virtually the same as in their study: employment has shifted from the

middle toward both lower and higher skill jobs. Likewise, wages have risen the least in

the middle, and much more toward the top.

Second, we group all occupations into 11 broad categories, vaguely corresponding

to the one-digit Census Occupation Codes (COC). These groups are ordered by the

mean wage of each broadly defined group. To represent the groups in skill percentiles,
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Fig. 4: Polarization and Structural Change, 1980–2010.
Source: U.S. Census (5%). Left: Percentage point change in manufacturing employment share within
occupation. Right: Percentage point change in occupation employment by sector. Occupations are ranked
by their 1980 mean wage for 11 one-digit groups and smoothed across 322 three-digit groups, separately.
The x-axis units are 1980 employment shares (in percent). The y-axis measures the 30-year change, of which
units are in percentage points per percentile in Panel (b). Further details are in Appendix A.

the width of each group along the x-axis is set equal to its 1980 employment share.7 In

Figure 3(a), the percentage point change of a group’s employment share is represented

by the area of the bar,8 while the height of each bar in Panel (b) measures the change in

its mean wage. Except for sales and technician occupations, the patterns of polarization

emphasized by Acemoglu and Autor (2011) and Autor and Dorn (2013) are intact.9

Polarization and structural change We now ask whether polarization and

structural change are interrelated. In Figure 4, we plot the same data but along two

different dimensions. In Panel (a), occupations are ordered along the x-axis in the same

way as we did in Figure 3. For each occupation, we compute the employment share

of manufacturing in 1980 and 2010, and plot the difference.10 The bars measure the

percentage point change in the share of manufacturing employment within each COC

occupation group, and the dots the smoothed percentage point change for each skill

percentile. The entire plot is negative, which is structural change. More important,

7See Appendix A for more details on wage, employment, and occupation definitions. The three-digit
occupations in each group do not necessarily correspond to those used to generate the smooth graphs by
percentile.

8By construction, the area of all bars must add up to 0. The smoothed graph should also integrate to 0
in theory, but does not due to the locally weighted regression errors.

9The exact numbers behind these graphs are summarized in Appendix A Table 5, which also form the
basis for our calibration in Section 5.

10Appendix Figure 21(a) shows the share of manufacturing employment within each occupation in 1980,
which shows manufacturing’s reliance on middle-skill jobs.
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Fig. 5: Managers vs Workers
Source: U.S. Census (5%). Left: Relative wage and employment share of managers in aggregate. Right:
Employment share of managers within manufacturing and services. See Appendix A for how we define
managers in the census and Figure 20 for a detailed breakdown of the manager group.

manufacturing shrank the most in the middle (again, except technicians).11

In Panel (b) we plot the same changes as in Figure 3(a), but separate manufacturing

(in dark) and services (in light).12 Manufacturing lost employment across all jobs

(except managers), which is structural change. Note that this is mostly pronounced

in the middle, especially among machine operators and miners. In contrast, services

gained employment in all jobs, but mostly among extreme occupation-skill percentiles,

particularly among low-skill services and professionals.

What is important is that polarization is observed within both sectors, suggesting

the importance of task-specific forces that affect both: With sector-specific forces alone,

we would expect employment shifts across occupations to be flatter in both panels.

More important, Panel (b) shows that manufacturing polarized by more than services.

Vertical polarization In our model and quantitative analysis, we treat managers

as a special occupation that organizes all other occupations. While many studies

emphasize the organization of production (Garicano and Rossi-Hansberg, 2006), most

focused on top CEO’s of publicly traded companies (Tervio, 2008; Gabaix and Landier,

11Technicians include software engineers and programmers, paralegals, and health technicians, which
grew rapidly during this time period along with the service sector. Indeed, many of the smooth graphs are
flatten due to occupations in this group. However, they comprise a very small fraction of the U.S. economy
throughout the sample period.

12So the area of all bars for one sector represents structural change, while adding them across both sums to
0. Similarly the integrals of the smoothed graphs should sum to 0, subject to the locally weighted regression
errors.
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2008) or certain industries (Caliendo, Monte, and Rossi-Hansberg, 2015). We treat

managers as a broader group including CEOs, middle managers, and the self-employed,

and also connect them to a notion of establishment. Previous papers have shown top

CEO wages rising astronomically compared to the median worker’s, and Figure 5(a)

shows that even with our broader definition, the “manager wage premium” over all

other workers rose from 45 percent in 1980 to 90 percent in 2010. At the same time,

the employment share of managers has also risen from 11 to 13.5 percent, although

there is a small drop from 2000 to 2010.13 We refer to this phenomenon throughout the

paper as “vertical polarization,” to distinguish from the horizontal polarization across

workers discussed above.

More important for us, vertical polarization was faster in manufacturing: Man-

agers’ employment share rose mostly in manufacturing but barely at all in services;

Appendix Figure 22 shows that managers’ mean wages relative to workers’ also grew

much more quickly within manufacturing than in services. This again suggests task- or

occupation-specific forces, since sector-specific forces would not create such differences

across sectors.14

We now present a model which explains all these phenomena by a single force:

task-specific technological progress among middle-skill worker occupations (Sections 3

and 4). We then proceed with a quantitative assessment and empirical investigation

of where this progress stems from (Sections 5 and 6).

3 Model

There is a continuum of individuals endowed with two types of skill, (h, z) ∈ H×Z ⊂
R+ × R+. Worker human capital, h, is used to produce worker tasks. Managerial

talent, z, is a skill for organizing tasks. Without loss of generality, we assume that the

mass of individuals is 1, with associated cumulative distribution function µ(h, z).

There are two sectors i ∈ {m, s}.15 In each sector, goods are produced by teams. A

team is led by a manager who uses his managerial skill and physical capital to organize

a continuum of worker tasks j ∈ J = [0, J ], where J is finite.

13A separate analysis of the American Community Survey, not shown here, shows that managers’ em-
ployment share continued to rise up to 14.5 percent by 2005, but then dropped by more than a percentage
point, especially since the Great Recession.

14In Appendix Figure 23(a), we instead plot the manufacturing employment share among managers and
workers, which shows that structural change was much more prevalent among workers than managers. This
is further evidence against sector-specific forces.

15In our application, the two sectors indexed by m and s stand for “manufacturing” and “services,”
respectively. However, the analysis can be extended to any finite number N of sectors.
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We will refer to the managerial task as “task z,” which is vertically differentiated

(in a hierarchical sense) from tasks j ∈ J , which are horizontally differentiated among

workers. Each worker task requires both physical and worker human capital, and their

allocations are decided by the manager. Specifically, we assume that

yi(z) =

[
η

1
ω
i xz(z)

ω−1
ω + (1− ηi)

1
ω xh(z)

ω−1
ω

] ω
ω−1

, (1a)

xz(z) = M(z)kiz(z)
αz1−α, xh(z) =

[∫ J

j=0
νi(j)

1
σ τi(j; z)

σ−1
σ dj

] σ
σ−1

, (1b)

τi(j; z) = M(j)kih(j; z)α

[∫
hi(j;z)

b(h, j)dµ

]1−α

, (1c)

with {νi(j), ηi} ∈ (0, 1) for all i ∈ {m, s} and j ∈ J z ≡ J ∪{z}, and
∫
j νi(j)dj = 1.16 It

is important to note that sectors are different in terms of how intensively they use each

task in production—i.e., ν and η have subscript i. The quantity τi(j; z) is the amount

of task j output produced for a manager of skill z in sector i. This manager uses

physical capital kiz(z) for himself, and allocates capital kih(j; z) and a set of workers

hi(j; z) to task j. The function b(h, j) is the productivity of a worker with human

capital h assigned to task j.

Assumption 1 (Log-supermodularity) The function b : H × J 7→ R+ is strictly

positive and twice-differentiable, and is log-supermodular. That is, for all h′ > h and

j′ > j:

log b(h′, j′) + log b(h, j) > log b(h′, j) + log b(h, j′). (2)

Assumption 1 ensures that high-h workers sort into high-j tasks in equilibrium. Inte-

grating b(h, j) over h of the workers in the set hi(j; z) yields the total productivity of

all workers assigned to task j by a manager of skill z in sector i.

The elasticity parameter σ captures substitutability among tasks, while ω captures

the elasticity between the composite worker task xh and the managerial task xz. The

M(j)’s, j ∈ J z, are task-specific TFP’s, which are sector-neutral.

Let Zi denote the set of individuals working as managers in sector i. Aggregating

over the output from all managers in sector i yields sectoral output

Yi = Ai

∫
Zi
yi(z)dµ, i ∈ {m, s}, (3)

where Ai is an exogenous, sector-level productivity parameter. Final goods are pro-

duced by combining output from both sectors according to a CES aggregator:

Y =

[
γ

1
ε
mY

ε−1
ε

m + γ
1
ε
s Y

ε−1
ε

s

] ε
ε−1

, (4)

16A useful mnemonic is index i for industry (sector) and j for job (task).
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Fig. 6: Model

Individuals sort into managers and workers according to their skill (z, h), and workers further sort into
tasks. While the model has a continuum of skills and tasks, in the figure we depict the latter as three
discrete groups. Tasks are complementary with each other according to σ, and worker task composites are
complementary with managers’ according to ω. Each team is led by a manager, and the collection of team
output is sectoral output. The sectoral outputs form final output according to an elasticity parameter ε.
The shaded areas show that sectors differ in how intensively they use each task in production.

where γm + γs = 1. We will assume ε < 1.17

The setup of our model is schematically visualized in Figure 6.18

3.1 Planner’s Problem

We start by solving a static planner’s problem. In this model, the planner allocation

and the competitive equilibrium allocation coincide.19 A planner allocates aggregate

capital K and all individuals into sectors i ∈ {m, s} and tasks j ∈ J z. Formally, define

hi(j; z) as the amount of human capital the planner allocates to task j in sector i under

a manager with z. Also define lih(s, j) as the number of individuals with skill s = (h, z)

that the planner assigns to task j, and liz(s) the number of individuals with skill s the

planner assigns as managers, in sector i. Then the planner’s problem is to choose

factor allocation rules {kiz(z), kih(j; z), hi(j; z)} and assignment rules {lih(s, j), liz(s)}
17The estimated ε between the manufacturing and the service sectors (broadly defined) is close to 0, as

we show in section 5.2.
18Except Costinot and Vogel (2010), most task-based models assume that either tasks or skills are a

continuum, but not both (Acemoglu and Autor, 2011; Stokey, 2016). The worker side of our model is similar
to theirs, but includes capital as a production factor and is extended to multiple sectors. In contrast to
all existing models, we add two-dimensional skills and consider managers as a special occupation, which
generates additional insights both theoretically and quantitatively.

19Nancy Stokey shared with us the insight that solving for the competitive equilibrium would be more
intuitive than solving for the planner’s problem. Although the two are equivalent, the equilibrium approach
would simplify the proofs. We are working out the details, to be included in the next iteration of the paper.
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to maximize current output (4) subject to

Yi = Ai

∫
yi(z)liz(s)ds, ∀i ∈ {m, s},

K = Km +Ks ≡
∑

i∈{m,s}

∫ {[
kiz(z) +

∫
j
kih(j; z)dj

]
· liz(s)

}
ds

Hi(j) ≡
∫
b(h, j)lih(s, j)ds =

∫ [∫
hi(j;z)

b(h, j)dµ

]
· liz(s)ds ∀i and ∀j ∈ J ,

dµ(s) =
∑

i∈{m,s}

[∫
lih(s, j)dj + liz(s)

]
ds, ∀s ∈ H ×Z, (5)

where Ki is the capital allocated to sector i, and Hi(j) the total productivity of workers

allocated to task j in sector i.

For existence of a solution, we assume that

Assumption 2 There exists a strictly positive mass of jobs such that b(0, j) > 0 and

individuals such that b(h, J) > 0.

The following assumption is needed for uniqueness:

Assumption 3 The domain of skills H×Z = [0, hM ]× [0,∞), where hM <∞ is the

upper bound of h. The measure µ(h, z) is differentiable and dµ(h, z) > 0 is continuous

on H×Z.

Assumption 3 implies that we can write

µ(h̃, z̃) =

∫ h̃ ∫ z̃

dF (z|h)dG(h) =

∫ h̃ [∫ z̃

f(z|h)dz

]
g(h)dh,

where (G, g), the marginal c.d.f. and p.d.f. of h, and (F, f), the c.d.f and p.d.f. of z

conditional on h, are continuous.

The optimal factor allocation rules across managers, {kiz(z), kih(j; z), hi(j; z)}, are

straightforward: They must equalize marginal products across managers with different

z’s. Since we assume a constant returns to scale technology at the level of managers,

we can aggregate over managers in (1) to write sectoral output as

Yi = Ai

[
η

1
ω
i X

ω−1
ω

iz + (1− ηi)
1
ωX

ω−1
ω

ih

] ω
ω−1

, (6a)

Xiz = M(z)Kα
izZ

1−α
i , Xih =

[∫
j
νi(j)

1
σTi(j)

σ−1
σ dj

] σ
σ−1

, (6b)

where Kiz is the total amount of capital allocated to managers and Zi ≡
∫
zliz(s)ds.

Similarly, the sectoral task composite Xih combines sectoral task aggregates

Ti(j) = M(j)Kih(j)αHi(j)
1−α, (7)
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where Kih(j) is the total amount of capital allocated to task j in sector i.

In the remainder of this section, we characterize the solution to the planner’s prob-

lem in the following order:

1. Optimal physical capital allocations across tasks within a sector.

2. Optimal worker assignment across tasks within a sector.

3. Optimal allocation of managers vs. workers within a sector.

We then solve for the within-sector solution in Section 3.2, which allows us to express

the sectoral production function (3) only in terms of the optimal assignment rules and

sectoral aggregates. Given this, we show in Section 3.3 that the two-sector equilibrium

is unique, which enables comparative statics in Section 4. In what follows, most

algebraic derivations are relegated to the appendix.

Capital allocation within sectors For any level of sectoral capital Ki, the

planner equalizes the marginal product of capital across tasks. Given the technologies

in (6)-(7), this means that all capital decisions can be expressed as a linear function of

the capital used in task 0. Specifically, capital input ratios across worker tasks must

satisfy

πih(j) ≡ Kih(j)

Kih(0)
=

[
νi(j)

νi(0)

] 1
σ

·
[
Ti(j)

Ti(0)

]σ−1
σ

, (8)

with which we can express the worker task composite Xih in (7) as

Xih = νi(0)
1

σ−1 Π
σ
σ−1

ih Ti0, where Πih ≡
∫
j
πih(j)dj. (9)

Of course, marginal products must also be equalized across the managerial task and

the rest: Using (9) we can define

πiz ≡
Kiz

Kih(0)
=

(
ηi

1− ηi

) 1
ω

·
(
Xiz

Xih

)ω−1
ω

·Πih, (10)

which does not vary with j. Equations (8) and (10) subsume the capital allocation

decisions into the labor allocation rules through πih(j) and πiz.

Sorting workers across tasks within sectors Since we assume b(h, j) is

strictly log-supermodular, Assumptions 1-3 imply that there exists a continuous as-

signment function ĵ : [0, hM ] 7→ J s.t. ĵ′(h) > 0, and ĵ(0) = 0, ĵ(hM ) = J .20 That

20For a more formal proof, refer to Lemma 1 in Costinot and Vogel (2010).
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is, there is positive sorting of workers into tasks, and workers of skill h are assigned to

job ĵ(h). Since ĵ′(h) > 0, we can also define its inverse ĥ : J 7→ [0, hM ].

It should be clear that ĵ(h) and ĥ(j) are identical across sectors, and hence not

indexed by i. Otherwise, the planner would be able to reallocate h across sectors and

increase output. So the planner’s problem of choosing lih(s, j) has two parts: One of

choosing lh(s, j), the number of individuals with skill s assigned to task j regardless of

sector, and the other of choosing qih(j), the fraction of task j workers allocated to sector

i, which satisfies
∑

i∈{m,s} qih(j) = 1. That is, we can write lih(s, j) = qih(j) · lh(s, j).

Sorting managers vs. workers within a sector Since individuals are het-

erogeneous in two dimensions, standard Roy selection implies a cutoff rule z̃(h) such

that, for every h, individuals with z above z̃(h) become managers and the rest be-

come workers. Since we know that workers sort positively into j, we can also define

ẑ(j) = z̃(ĥ(j)). Then the planner’s problem is to get this implied rule ẑ(j) for all

j ∈ J . As was the case with workers, the manager selection rule must be identical

across sectors.

Similar to Lucas (1978), ẑ(j) is chosen so that the marginal product of the threshold

manager is equalized between tasks z and task j, so

ẑ(j)
/
b(ĥ(j), j) = πih(j)Zi

/
πizHi(j), ∀j ∈ J . (11)

Without loss of generality, we normalize b(0, 0) = 1 to obtain

ẑ ≡ ẑ(0) = z̃(0) = Zi
/
πizHi(0) (12)

which is the worker counterpart of (10): the total productivity of managers in sector

i is normalized in terms of the task-0 productivity, Hi(0). In the next subsection, we

normalize all other workers’ productivities by the task-0 productivity as well.

3.2 Within-Sector Solution

First consider the rule liz(s). Since the rule z̃(h) = ẑ(ĵ(h)) does not depend on sector,

we have∫
liz(s)ds = qiz

∫
[1− F (z̃(h)|h)] dG(h), (13)

where qiz is a sectoral weight that satisfies
∑

i∈{m,s} qiz = 1. Note that any solution

that satisfies (13) such that liz(s) = 0 iff z ≤ ẑ(j) is optimal. Hence, the planner’s

choices of ẑ(j) and qiz are unique, but not the rule liz(s): The planner does not care
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how managers are allocated between sectors for any particular s ∈ S, and only about

how the total Z is divided between sectors, where

Z ≡
∫ ∫ ∞

z̃(h)
zdF (z|h)dG(h) =

∑
i∈{m,s}

qizZi.

Next consider the planner’s choice of lh(s, j). The characterization is similar to

Costinot and Vogel (2010) and summarized in Lemma 1.

Lemma 1 Define

Bj(j; ĥ) ≡ exp

[∫ j

0

∂ log b(ĥ(j′), j′)

∂j′
dj′

]
. (14)

At the planner’s solution, the productivity of all workers assigned to task j can be

expressed as

H(j) = b(ĥ(j), j) · F (ẑ(j)|ĥ(j))g(ĥ(j)) · ĥ′(j), ∀j ∈ J , (15)

and their ratios across tasks in sector i must satisfy

qih(j)H(j) = Hi(j) = πih(j)Hi(0)Bj(j; ĥ), (16)

Proof See Appendix B.1.

The lemma expresses all other worker allocation decisions in terms of Hi(0)—just as

we could normalize all other capital allocation by Ki(0) in (8) and (10). Equation (15)

simply states that total worker productivity in task j is the product of the infinitesimal

mass of individuals assigned to task j, times their effective productivity. Equation (16)

is the counterpart of (8): the marginal products of labor are equated at every point

along J . Similarly, all manager allocations can also be normalized by ẑ.

Corollary 1 Define the counterpart of Bj in (14):

Bh(h; ĵ) ≡ exp

[∫ h

0

∂ log b(h′, ĵ(h′))

∂h′
dh′

]
. (17)

At the planner’s solution, the productivity of the cutoff rules ẑ(j) and z̃(h) can be

expressed as

ẑ(j) = ẑ · b(ĥ(j), j)
/
Bj(j; ĥ) = ẑ ·Bh(ĥ(j); ĵ) ⇔ z̃(h) = ẑ ·Bh(h; ĵ). (18)

Proof See Appendix B.1.
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The corollary makes all manager cutoff rules except ẑ (the threshold at h = 0) redun-

dant, since they can be expressed only in terms of ẑ in (12) and ĥ(j). In what follows,

we suppress the dependence of Bj and Bh on ĥ and ĵ unless necessary.

So far we have normalized all allocations only in terms of the task-0 capital and

worker input, Ki(0) and Hi(0). Now we show that given a sectoral allocation rule

for each task, qih(j) and qiz, the within-sector equilibrium is unique and completely

independent of the aggregate level of capital and labor within a sector. This admits a

sectoral production function in which sectoral TFP is solely determined by the optimal

allocation rules.

Proposition 1 Suppose qih(j) and qiz are given. Under Assumptions 1-3, the within-

sector solution to the planner’s problem
{

[ĥ(j)]Jj=0, ẑ
}

exists, is unique, and is inde-

pendent of sectoral aggregates Ki and Li.

Proof See Appendix B.2.

Corollary 2 At the planner’s optimum, sectoral output can be expressed as

Yi = Φi ·Kα
i L

1−α
i , where Φi ≡M(0) · ψi ·Π

σ−ω
(σ−1)(1−ω)
ih Π

ω
ω−1
−α

Ki
Πα−1
Li

(19)

is the sectoral TFP, endogenously determined by the optimal allocation rules. Sectoral

TFP can be decomposed into 3 parts:

1. M(0), which is common across both sectors and exogenous;

2. ψi ≡ Ai(1− ηi)
1

ω−1 ν
1

σ−1

i0 , which is also exogenous but sector-specific;

3. the part determined by (Πih,ΠKi ,ΠLi), which is sector-specific and endogenously

determined by the allocation rules ĥ(j) and ẑ, where

ΠKi ≡ Πih + πiz = Ki/Ki(0) and ΠLi ≡ Πil + (ẑ/z̄)πiz = Li/Hi(0) (20)

are the total amounts of capital and labor in sector i in units of the task-0 capital

and labor allocated to sector i, respectively, and Πil ≡
∫ [

πih(j)/Bh(ĥ(j))
]
dj.

Proof See Appendix B.2.

Sectoral TFP’s are independent of sectoral capital and labor shares because the

rules ĥ(j) and ẑ depend only on the relative masses of individuals across tasks within

a sector, and not on the employment shares across sectors). In fact, it is the sectoral

TFP’s that determine sectoral input shares. Since sectors only differ in how intensively
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they use each task, employment shares are determined so that the marginal products

of capital and labor are equalized across sectors:

κ ≡ Ks

Km
=

Ls
Lm

=

(
γs
γm

) 1
ε
(
Ys
Ym

) ε−1
ε

=
γs
γm
·
(

Φs

Φm

)ε−1

(21)

where κ is the capital input ratio between sector s and m. Hence relative employment

between sectors is completely determined by the relative endogenous TFP ratio between

the two sectors. Since the Φi’s are just functions of ĥ(j) and ẑ, so are κ and sectoral

employment shares Li:

Lm = 1/(1 + κ), Ls = κ/(1 + κ). (22)

Consequently, the aggregate levels of K or L have no impact whatsoever on the as-

signment rules and employment shares.

3.3 Existence and Uniqueness of Full Solution

A solution to the planner’s problem coincides with an equilibrium in our economy, so

existence and uniqueness of an equilibrium is equivalent to a unique solution to the

planner’s problem. As a final step, the planner needs to ensure that the within-sector

allocations are consistent with the between-sector allocations. That is, the weights used

to split the distribution µ between sectors, qih(j) and qiz, must be consistent with (21).

These are equivalent to the the labor market clearing conditions for an equilibrium.

For ease of notation, let qh(j) and qz denote the service share of employment in tasks

j and z, respectively; so qmh(j) = 1− qh(j) and qmz = 1− qz. Since ĥ(j) and ẑ must

be equal across sectors, we can use the within-sector solutions from Proposition 1 to

find the qh(j) and qz that ensure this. The proposition already showed that the within-

sector solution is unique, but for the uniqueness of the full solution we need additional

assumptions on µ and b(h, j) that will serve as sufficient conditions: Assumption 4.1

guarantees that the within-sector equilibrium is unique, and Assumptions 4.2-4.3 and

5.2 that the between-sector equilibrium is unique.

Assumption 4 For all (h, z) ∈ H ×Z,

1. g′(h) ≤ 0 and f ′(z|h) ≤ 0,

2. F (z|h)/ [1− F (z|h)] ≤ z
/ [∫∞

z z′f(z′|h)dz′
]
, and

3. zf(z|h)
/
F (z|h) ≥ (1− α)(1− ω).

Assumption 4.1 means that there are fewer people at higher levels of skill, which is a

common assumption and also consistent with empirical evidence. Assumptions 4.2-4.3
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Fig. 7: Equilibrium

mean that the conditional distribution of z is declining but not too much, in the sense

that it still has fat tails beyond any value of h.

Assumption 5 For all (h, j) ∈ H × J ,

1. ∂b(h, j)
/
∂h > 0

2. for all ε > 0, 0 < ∂2 log b(h, j)/∂h∂j < ε.

Assumption 5.1 captures the notion that higher-h workers perform better in any task;

in particular, under this assumption, z̃(h) in (18) is a strictly increasing function. That

the cross partial is larger than 0 is already in Assumption 1. Assumption 5.2 means

that there is just enough log-supermodularity so that workers positively sort into tasks.

Theorem 1 Under Assumptions 1-5, the solution to the planner’s problem,

[ĥ(j), qh(j)]Jj=0 and (ẑ, qz), exists and is unique.

Proof See Appendix B.3.

For illustrative purposes, the equilibrium skill allocation with a uniform µ(z, h) is

depicted in Figure 7. Those in Z are managers, and those in H are workers, where

the subscripts s and m denote services and manufacturing. Workers sort into tasks

indexed by j according to ĥ(j). The different masses of sectoral employment across

tasks are due to the task intensity parameters νi(j) and ηi.

3.4 Equilibrium Wages and Prices

The solution ĥ(j) and ẑ give all the information needed to derive equilibrium prices

(which are unique). The price of the final good can be normalized to 1:

P = 1 =
[
γmp

1−ε
m + γsp

1−ε
s

] 1
1−ε , pi = [Yi/γiY ]−

1
ε
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and sectoral output prices pi is obtained by plugging in the sectoral production function

(19). Let R denote the rental rate of capital and wh(h) the wage of a worker with skill

h. Since capital and labor input ratios are equalized across sectors, wh(0) can be found

from either sector:

wh(0) =
1− α
α
· RKi(0)

Hi(0) · b(0, 0)
=

1− α
α
· ΠLi

ΠKi

·RK,

where the second equality follows from (19)-(21), and also from our normalization of

both b(0, 0) and the population size to 1. Similarly, all workers earn their marginal

product, so we can write

wh(h) = wh(0) ·Bh(h). (23)

Assumption 5.1 implies that w(h) is strictly increasing in h.

For all h ∈ H, threshold managers with skill z = z̃(h) are indifferent between

becoming a worker or manager, so we can determine a managerial wage rate or rental

rate of z (i.e., wz) that satisfies

wz z̃(h) = wh(h) ⇒ wz = wh(0)/ẑ, (24)

and (18) and (23) guarantee that the first equality holds for all h.

4 Comparative Statics

We now explore the implications of changes in task-specific TFP or M(j).21 In partic-

ular, we are interested in the effect of routinization, which we model as an increase in

M(j) for all j ∈ J1 ≡ [j, j], where 0 < j < j < J ; that is, as an increase in the TFP

of middle-skill tasks (or, more precisely, those tasks that are chosen by workers in the

middle of the h distribution). We refer to this group of tasks as “routine jobs,” which

will be justified in Section 6. The impact of such task-specific technological progress is

illustrated in a series of comparative statics in this section, which is possible since the

skill distribution is assumed to be continuous.

4.1 Wage and Job Polarization

First, we focus on the comparative statics for ĥ(j) and ẑ within a sector i, ignoring

sectoral reallocation. Our exercise assumes that there is an increase in the exogenous

productivity, M(j), of middle-skill j-tasks.22

21A change in factor-neutral task-TFP, M(j), is different from an increase in the amount of skill working in
any given task. Since we model worker skill as human capital, the qualitative effect of a change in task-TFP
is the same as if it were only capital-augmenting—e.g., a fall in the price of task-specific capital.

22This within-sector exercise is similar to Lemma 6 in Costinot and Vogel (2010), except that we have
capital and, more important, the vertically differentiated manager.
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Proposition 2 (Routinization and Polarization) Let J 1 ≡ (j, j) ⊂ J , where

0 < j < j < J . Suppose qh(j) and qz are held constant, and that M(j) uniformly

grows to M1(j) = M(j)em̃ for all j ∈ J 1, where m̃ > 0. Then under Assumptions 1-4,

1. if σ < 1, there exists j∗ ∈ J 1 such that ĥ1(j) > ĥ(j) for all j ∈ (0, j∗) and

ĥ1(j) < ĥ(j) for all j ∈ (j∗, J), and

2. if ω < σ < 1 and Assumption 5.2 holds, there exists some ε > 0 s.t. z̃1(h) < z̃(h)

for all 0 < m̃ < ε and h ∈ H.

Proof See Appendix B.4.

Part 1 implies that among worker tasks, capital and labor flow out of middle-skill tasks

into the extremes (horizontal job polarization). The relative wages of the middle-skill

tasks decline (horizontal wage polarization), since from (23),

log

[
w1(h)

w1(h∗)

]
− log

[
w(h)

w(h∗)

]
=

∫ h

h∗

[
∂ log b(h, ĵ1(h))

∂h
− ∂ log b(h, ĵ(h))

∂h

]
dh

is positive for all j 6= j∗ ∈ J 1. Part 2 implies that capital and labor flow into

management from all worker tasks, and (24) means that each manager earns a higher

wage per managerial skill (vertical polarization). The within-sector comparative static

for employment shares is depicted in Figure 8, and are consistent with the data we saw

in Figures 3 and 5(a).

The mechanism for part 1 is the same as in Goos et al. (2014): when σ < 1, the

exogenous rise in productivity causes factors to flow out to other tasks since tasks are

complementary, and we get employment polarization. As in Costinot and Vogel (2010),

this also leads to wage polarization in the presence of positive sorting. What is new

in our model is that this happens even in the presence of the vertically differentiated

management task, and that with stronger complementarity between workers and man-

agers than among workers (i.e., ω < σ < 1), similar forces drive vertical polarization

in terms of both wages and employment. Another novel feature is the impact of this

task-specific technological progress on sectoral allocation, which we now explain.

4.2 Structural Change

Previous models of structural change either rely on a non-homogeneous form of demand

(rise in income shifting demand toward service products) or relative technology differ-

ences across sectors (rise in manufacturing productivity relative to services, combined

with complementarity between the two, shifting production factors toward services).

Our model is also technology driven, but structural change arises from a skill- and
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ĥ(j) ĥ(j)

ẑ
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Fig. 8: Comparative Static, Within-Sector.

sector-neutral increase in task productivities that endogenously determines sectoral

TFP’s. In contrast to recent papers arguing that sectoral productivity differences can

generate broadly-measured skill premia or polarization (Buera et al., 2015; Bárány and

Siegel, 2017), we argue that routinization explains not only job and wage polarization

but also structural change. In addition, those papers cannot address within-sector

changes.

Decomposing Polarization Define the “unnormalized” total worker productivity

VLi = (1− ηi)νi(0)M(0)σ−1ΠLi = Vil + Vi(z), where Vil =

∫
Vi(j)dj (25)

and the weights Vi(j) for each task j ∈ J z are

Vi(j) = (1− ηi)νi(j)
[
Mh(j)Bj(j)

1−α]σ−1 /
Bh(ĥ(j)) (26a)

Vi(z) = ηiM
ω−1
z · V

σ−ω
σ−1

ih · ẑα+ω(1−α)
/
z̄, (26b)

Vih ≡ νi(0)M(0)σ−1Πih =

∫ {
νi(j) ·

[
M̃(j) ·Bj(j)1−α

]σ−1
}
dj. (27)

These are simply the marginal products of task j unnormalized by Hi(0), so we know

that taking the ratio between any pair yields the labor input ratio between the two

tasks; (27) is the unnormalized counterpart of Πih in (9). So the definition of ΠLi in

(20) implies that the amount of labor (or worker human capital) in each task across
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both sectors can be expressed as

L(j) =
∑

i∈{m,s}

Li(j)

Li
· Li =

∑
i∈{m,s}

Vi(j)

VLi
· Li.

We consider the same exercise as in Proposition 2, that M(j) grows to M1(j) =

exp{m̃}M(j) for m̃ > 0 and all j ∈ J 1 ≡ (j, j). Let ∆X denote the log-derivative of

X w.r.t. m̃, then

∆L(j) =
∑

i∈{m,s}

Li(j)

L(j)
·
[
∆Vi(j) −∆VLi

+ ∆Li

]

=
∑

i∈{m,s}

Li(j)

L(j)
·

{
∆Vi(j) −

∫
J z

[
Vi(j

′)

VLi
·∆Vi(j′)

]
dj′︸ ︷︷ ︸

Wij

+∆Li

}
. (28)

A change in the Vi(j)’s occurs even holding Li’s constant, shifting the term Wij . This

leads to within-sector polarization, as we saw in Proposition 2 that intermediate tasks

shrink and management expands. To compare the sectoral differences in its impact,

we compare the ∆Vil and ∆Vi(z) across the two sectors, which represent, respectively,

the change in workers and managers. Then we can sign ∆VLi
, the change in sectoral

employment shares which determines structural change.

Lemma 2 Suppose ω < σ < 1 in Proposition 2, so that we get both horizontal and

vertical polarization within sectors. Then both horizontal and vertical polarization is

faster in manufacturing in the sense that ∆Vml < ∆Vsl < 0 and ∆Vm(z) > ∆Vs(z) > 0 if

Lm(j)/Lm > Ls(j)/Ls.

Proof See Appendix B.5.

When the lemma holds, both horizontal and vertical polarization is faster in manu-

facturing, as we saw in the data in Figures 4 and 5. The assumptions in the lemma

mean that the manufacturing sector is more dependent on middle-skill or routine jobs

(j ∈ J 1) relative to services, and services more on managers relative to manufactur-

ing, which is evident in the data shown in Figures 5(b) and 21(a). Of course, these

are assumptions on endogenous variables: Because we do not know the value of task

productivities M(j), ĥ(j) and ẑ, this holds in general if there exists ν̄ ∈ (0, 1) such

that νm(j)− νs(j) ≥ ν̄ for all j ∈ J 1.

Note that the lemma holds regardless of the value of qh(0), which determines the

between-sector equilibrium. So Wij in (28) gives the equilibrium change in within-

sector employment shares coming only from a change in the selection rules ĥ(j) and
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ẑ. Clearly, a change in the rules will also alter the last term, ∆Li , which captures

between-sector allocation, or structural change. Lemma 3 summarizes when structural

change is in the direction of shifting capital and labor from manufacturing to services.

Lemma 3 (Structural Change) Suppose ω < σ < 1 in Proposition 2, so that rou-

tinization causes both horizontal and vertical polarization within both sectors. Further

suppose that ε < 1. Then there exists (ν̄, η̄) ∈ (0, 1) such that for all νm(j)−νs(j) ≥ ν̄,

j ∈ J 1, and ηs − ηm ≥ η̄,

(∆VLs
= ∆ΠLs

) > (∆VLm
= ∆ΠLm

), ∆ΠKs
> ∆ΠKm

, and ∆Ls > 0

where the equalities follow from (25).

Proof See Appendix B.5.

The additional assumption on ηi ensures that Lemma 2 holds even as the within-sector

share of managers increase and routine jobs decrease, as the sectoral employment share

of manufacturing declines.

It is subtle but structural change in fact has two parts. As a task becomes more

productive than others, selection on skills ensures that less resources are allocated to it

when we have complementarity across tasks (Proposition 2). If one sector uses the task

that has become more productive more intensively, resources reallocate across sectors

even holding fixed the sectoral allocation rule (Lemma 2). This is the first part.

The second part is that, as the manufacturing sector becomes more productive—

endogenously because it uses the task that has become more productive more inten-

sively than services—the equilibrium price of its output falls relative to services. The

strength of this force is governed by the elasticity between manufacturing and service

outputs, and with complementarity (ε < 1), more resources are allocated to services,

as in Ngai and Pissarides (2007). These two forces are formalized in Appendix B.5.

The appendix also formalizes that structural change depends differently on the pro-

ductivity of capital and labor, as is apparent from (19)-(20). In contrast to both Ngai

and Pissarides (2007) and Goos et al. (2014), capital is homogenous in our model but

labor is not, which is measured in two different types of skills. Since labor productivity

is determined by the sorting of individuals on skill, how task-specific TFP changes sec-

toral capital and labor input ratios depends not only on the task intensity of sectors,

but also on changes in the selection rules.
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Of course from (28), it is clear that structural change (change in ∆Li) also con-

tributes to polarization. To see this more precisely, rewrite (28) using (22) as

∆L(j) = ∆Vi(j) −
∑

i∈{m,s}

Li(j)

L(j)
·∆VLi

+

[
Ls(j)

L(j)
· Lm −

Lm(j)

L(j)
· Ls

]
∆κ (29)

⇒ L(j)
(
∆L(j) −∆Vi(j)

)
= −

∑
i∈{m,s}

Li(j)∆VLi
+

[
Vs(j)

Vs
− Vm(j)

Vm

]
LmLs∆κ.

Lemma 4 Suppose Lemma 2 holds. Then structural change also contributes to polar-

ization.

Proof Under Lemma 2, the term in the square brackets in (29) is negative for j ∈ J 1,

and positive for j = z.

This is intuitive. If manufacturing is more reliant on middle-skill tasks (that is, if it is

more routine-intense), and shrinks as a result of polarization, this leads to even more

horizontal polarization in the aggregate economy. The fact that manufacturing is less

reliant on managers at the same time implies even more vertical polarization in the

aggregate economy.

Lemmas 2-4 are depicted in the first 3 subplots of Figure 9. In Panel (a), man-

ufacturing is depicted as having a higher share in intermediate tasks, and services in

managers. As we move from (a) to (b), sectoral employment shares are held fixed,

and intermediate tasks shrink in both sectors. The change in employment shares is

larger in manufacturing due to Lemma 2. This leads to structural change in (c), ac-

cording to Lemma 3. Because manufacturing uses intermediate tasks more intensively

and managerial tasks less intensively than services, shrinking its size contributes to the

horizontal and vertical polarization for the overall economy (not separately depicted).

In the model, task-specific technological progress—changes in M(j)—shifts relative

employment shares as if the weights νi(j) and ηi were changing, so the two are not sep-

arately identified in our comparative statics. However, since the model is constructed

so that the time-invariant weights capture an initial distribution of employment shares

while task-specific TFP’s drive the changes over time, the assumptions we made in the

lemmas are valid insofar as they hold throughout our observation period in the data.23

23When we calibrate the model to the 1980 data—for which we assume that M(j) = M for all j—
the calibration naturally admits that ηm < ηs and νm(j) > νs(j) for a wide range of middle-skill jobs.
Furthermore, since occupational employment ratios between sectors are never flipped for most occupations
up to 2010, the quantitative analysis is robust to the choice of normalization year.
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Fig. 9: Comparative Statics, Across Sectors.

4.3 Polarization or Structural Change?

One may wonder if it is not task-specific productivities that lead to structural change,

but advances in sector-specific productivities that lead to polarization, considering

Lemma 4 in isolation.

One important fact is that, in the context of our model, sector-specific productivity

changes do not lead to polarization within sectors. To see this, consider a change in the

manufacturing sector’s exogenous productivity, Am. As in Ngai and Pissarides (2007),

a rise in Am changes κ at a rate of 1 − ε > 0; that is, manufacturing shrinks. It can

easily be seen that none of the thresholds change, and hence neither do the Φi’s (the

endogenous sectoral TFP’s). So polarization in the overall economy can only arise by

the reallocation of labor across sectors but while preserving their ratios within each

sector. To be precise, from (28),

d logL(j)

d logAm
= (1− ε) · d logL(j)

d log κ
= (1− ε)

[
Ls(j)

L(j)
Lm −

Lm(j)

L(j)
Ls

]
< 0. (30)

Note that d logL(j)/d log κ is equal to the term in square brackets in (29), and negative

for j ∈ J 1. Hence, there is no within-sector polarization. The reason is that, in our

model, tasks are aggregated up to sectoral output, not the other way around.

Even if one were to ignore within-sector polarization, our model—specifically (30)—

provides an upper bound on how much job polarization can be accounted for by struc-

tural change. For example, in the data, the manufacturing employment share fell from

33 percent to 19 percent between 1980 and 2010. If this were solely due to an exogenous

change in Am, denoting empirical values with hats:

d log κ̂

d logAm
≈ 0.14

0.67
+

0.14

0.33
≈ 0.63.

28



Now denote all routine jobs as j = 1, then we can approximate

dL̂1

d logAm
≈ 0.63 ·

[
L̂s1L̂m − L̂m1L̂s

]
= 0.63 ·

[
L̂s1

L̂1

· 0.33− L̂m1

L̂1

· 0.67

]
.

In Appendix Table 5, we measure the share of routine jobs in manufacturing and in

services as a share of total employment—that is, L̂m1 and L̂s1—to be 26 and 33 percent

in 1980, respectively. So

dL̂1

d logAm
≈ 0.63 [0.33 · 0.33− 0.26 · 0.67] = −0.04,

which means that a change in Am alone implies a 4-percentage-point drop in routine

jobs from 1980 to 2010 in the overall economy. As shown in Table 5, the actual drop is

13 percentage points. In other words, an exogenous structural change can explain at

best 30 percent of the polarization in the overall economy—and none within sectors.

5 Calibration

In our quantitative analysis, we will find out how much of the observed changes in

employment and wage shares of occupations and sectors from 1980 to 2010 can be

explained by task-level productivity growth, and relate such productivity growth to

empirically measurable sources. Whenever possible, we fix parameters to their empir-

ical counterparts, and separately estimate the aggregate technology (4) from the time

series of sectoral price and output ratios. Then we choose most model parameters to

fit the 1980 data exactly, including a parametric skill distribution of (h, z). The rest

of the model parameters, which include the between-task elasticity parameters σ and

ω, are calibrated to empirical trends from 1980 to 2010, without any sector-specific

moments.

5.1 Parametrization

Discrete log-supermodularity In the quantitative analysis, we collapse the con-

tinuum of horizontally differentiated worker tasks into 10 groups, corresponding to the

one-digit occupation groups in the census in Section 2 and Appendix A Table 5. (There

is still only one management task.) The 10 worker occupation groups are further cate-

gorized into low/medium/high skill tasks, or manual/routine/abstract jobs, according

to the mean wages of each occupation group.

To discretize the model, we index occupations by j = 0, . . . , 9 and assume the

following log-supermodular technology:

b(h, j) =

{
h̄ = 1 for j = 0,
h− χj for j ∈ {1, . . . , 9}, 0 = χ1 < χ2 < . . . < χ9.
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Fig. 10: Calibrated Skill Distribution
We use a type IV bivariate Pareto distribution to model the distribution over worker and manager skills
(h, z). The figure depicts the marginal distributions of each skill, and also their mean below the x-axis.

The characterization of the equilibrium is exactly the same, but we now obtain closed-

form solutions. This technology implies that, for the lowest-skill task 0, the worker’s

skill does not matter and everyone performs the task with equal efficiency. All skills are

used in task 1, but for tasks j ∈ {2, . . . , 9} there is a “skill loss,” which increases with

higher-order tasks.24 With 10 discrete tasks, we only need to solve for 10 manager-

worker thresholds ĥj , as opposed to Proposition 1 in which we have to solve a differential

equation—(35) in the appendix.25

Bidimensional skill distribution For the quantitative analysis, we assume a

skill distribution that is type IV bivariate Pareto (Arnold, 2014), with the c.d.f.

µ(h, z) = 1−
[
1 + h1/γh + z1/γz

]−a
.

We normalize γz = 1, since we cannot separately identify both skills from the skill-

specific TFP’s. This distribution is consistent with an establishment size distribution

that is Pareto, and a wage distribution that is hump-shaped and has a thinner tail.

Figure 10 shows the marginal distributions of h and z.

5.2 Aggregate Production Function

The aggregate production function (4) is estimated outside of the model. For the

estimation, we only look at manufacturing (inclusive of mining and construction) and

24This can be interpreted as low-order skills not being used in high-order tasks, or high-order tasks
requiring a fixed cost of preparation to perform the task, resulting in less skills utilized. By assuming task 0
productivity to be constant, we can normalize all other tasks by task 0, as we did for the continuous model.

25Characterization of the discrete model is summarized in Appendix C.
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(1) (2) (3)

γm 0.371
∗∗

0.346
∗∗

0.258
∗∗

(0.003) (0.005) (0.004)

ε 0.003
∗∗

0.002
∗∗

0.003
(0.000) (0.000) (0.004)

AIC -550.175 -551.264 -550.866
RMSE1 0.106 0.106 0.106
RMSE2 0.039 0.039 0.039

Standard errors in parentheses
†
p < 0.10,

∗
p < 0.05,

∗∗
p < 0.01

Table 1: Aggregate Production Function
The manufacturing share parameter γm and the manufacturing-services elasticity parameter ε are estimated
from the time series of output and price ratios from 1947 to 2013, from the National Industry Accounts. For
details of the estimation, we closely follow Herrendorf et al. (2013).

services (inclusive of government). We estimate the parameters γm and ε from:

log

(
pmYm
PY

)
= log γm + (1− ε) log pm − log

[
γmp

1−ε
m + γsp

1−ε
s

]
+ u1

log(Y ) = c+
ε

ε− 1
log

[
γ

1
ε
mY

ε−1
ε

m + γ
1
ε
s Y

ε−1
ε

s

]
+ u2

where γs ≡ 1 − γm, using non-linear seemingly unrelated regression on all years of

real and nominal sectoral output observed in the BEA Industry Accounts.26 Real

production by sector is computed by a cyclical expansion procedure as in Herrendorf

et al. (2013) using production value-added to merge lower-digit industries (as opposed

to consumption value-added in their analysis).

Sectoral prices are implied from nominal versus real sectoral quantities, which may

depend on the choice of base year. For robustness, we check results using three different

base years, corresponding to columns (1)-(3) in Table 1. For each column, respectively,

1947 is the first year the required data is available, 1980 is the first year in our model,

and 2005 is chosen as a year close to the present but before the Great Recession. The

values are in a similar range as in Herrendorf et al. (2013). For the calibration, we use

the values of (γm, ε) in column (1).

The capital income share α is computed as the average of 1-(labor income/total

income), and fixed at 0.361, and assumed to be equal across sectors.27 Total income is

26The constant c is included since it is not levels but relative changes that identify ε.
27The difference between the α’s when we let them differ between the two sectors was negligible. Herren-

dorf et al. (2015) compares this assumption against sectoral production functions that are CES in capital
and labor, and finds that both specifications capture the effect of differential productivity growth across
sectors equally well.
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Parameter Value Target

(A)
Fixed
from
data

K1980 2.895
Computed from BEA NIPA dataK2010 4.235

α 0.361

γ 0.371
Estimated in Section 5.2

ε 0.003

Mj ≡M 0.985 Output per worker, normalization
Am 1.112 Manufacturing employment share
As 1.000 Normalization
νij (18)

Table 3
Witin-sector employment shares by occupation

(B)
Fit to
1980

ηi (2) Within-sector manager share

χj (8) Table 3
Relative wages by occupationa 10.087

γh 0.216

γz 1.000 Normalizations;
h̄ 1.000 Not separately identified from Mj

(C)
Fit to
2010

σ 0.704
Witin-sector employment shares by occupation

ω 0.341

mj Table 3
Output per worker growth and

within-sector employment shares by occupation

Table 2: Parameters
The population size is normalized, so Kt is capital per capita. All employment share and relative wage
targets are from the census, tabulated in Appendix A Table 5.

GDI net of Mixed Income and Value-Added Tax from NIPA and Industry Accounts,

and labor income is from NIPA. For the calibration we also need total capital stock

(for manufacturing and services) for each decade, which we take from the Fixed Assets

Account Table 3 and directly plug into the model.28 Since we do not model population

growth, in practice we normalize output per worker in 1980, y1980, to one, and plug in

Kt = kt/y1980 for t ∈ {1980, 1990, 2000, 2010}, where kt is capital per worker in year t.

5.3 Setting Parameters

All parameters are in Table 2, except for the skill loss parameters χj , task intensity

parameters (ηi, νij), and task-TFP growth rates mj , which are tabulated in Table 3.

Below, we explain how these parameters are recovered. Appendix C has more detail.

Calibrating the distribution For given γh, a, and {χj}9j=2, we can numerically

compute the thresholds {ĥj}9j=1 and ẑ that exactly match observed employment shares

28Real capital stock is aggregated using the same cyclical expansion procedure used for value-added.
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Ranked by mean wage χj
Emp Wgts (νij , ηi) mj (%)
Manu. Serv.

Low Skill Services - 0.016 0.136 -0.731

Middle Skill 0.816 0.524
Administrative Support - 0.088 0.173 2.930
Machine Operators 0.001 0.256 0.015 9.122
Transportation 0.002 0.119 0.081 4.348
Sales 0.003 0.026 0.123 0.012
Technicians 0.005 0.034 0.040 -1.144
Mechanics & Construction 0.006 0.159 0.065 2.315
Miners & Precision Workers 0.007 0.134 0.027 6.328

High Skill 0.168 0.340
Professionals 0.009 0.070 0.195 -2.248
Management Support 0.010 0.098 0.146 -0.489

Management - 0.076 0.130 -0.017

Table 3: Calibrated Employment Weights and Growth Rates

by occupation in 1980, by integrating over the skill distribution. With these thresholds,

we can compute model-implied relative wages using the discrete version of (23), which

is (54) in Appendix C:

w1h̄1

w0
=
h̄1

ĥ1

,
wz z̄

w0
=
z̄

ẑ
, and

wj+1(h̄j+1 − χj+1)

wj(h̄j − χj)
=

h̄j+1 − χj+1

h̄j(1− χj+1/ĥj+1)
.

Here, h̄j and z̄ denote the mean skills in each task. The left-hand side is the ratio of

mean wages by occupation, which we observe in the data. The right-hand side is a

function only of the thresholds, which themselves are functions of (γh, a, χj). Hence,

we iterate over γh, a, and {χj}9j=2 so that the model-implied ratios match observed

mean wage ratios exactly, while at the same time computing the implied thresholds

{ĥj}9j=1 and ẑ that exactly fit 1980 employment shares by occupation.29

Similarly, once the skill distribution is fixed, we can compute the implied thresholds

that fit 2010 employment shares by occupation. Denote these two sets of thresholds

as x1980 and x2010, respectively. These thresholds are determined solely by the exoge-

nously assumed skill distribution and the data, independently of our model equilibria,

so they are fixed for the rest of the calibration. We then calibrate the other parameters

so that the implied thresholds x1980 and x2010 are consistent with the 1980 and 2010

equilibria, respectively.

29The calibration yields a near linear increase in the skill loss parameters χj with j.
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Calibrated within the model We have already normalized (γz, h̄) = 1 and

χ1 = 0. We also normalize As = 1, since the model only implies a relative TFP

between sectors, and Mj ≡ M for all j ∈ {0, 1, . . . , z} for 1980, since they are not

separately identified from (ηi, νij) in a static equilibrium. This follows from the pro-

duction technology we assume in (6)-(7). We denote the 1980 levels of the TFP’s by

(M,Ai) and their 2010 levels by multiplying them by their respective growth rates.

For example, the manager-task TFP in 2010 is M(1 + mz)
30 and similarly sector i’s

TFP in 2010 is Ai(1 + ai)
30.

This leaves us with 35 parameters to be calibrated: the elasticity parameters (σ, ω),

TFP parameters (M,Am), task intensities ηi and {νij}9j=1 for i ∈ {m, s}, and the task-

TFP growth rates {mj}9j=z,0.30 Since we can solve for the discrete version of the model

equilibrium in closed form, most parameters are chosen so that our 1980 equilibrium

exactly fits the 1980 data moments in Appendix Table 5 exactly.

Then except for capital per worker, which we plug in from the data, all other

parameters are held fixed and only Mj , the exogenous task-TFP’s, grow from 1980 to

2010 at rate mj . In particular, our benchmark scenario assumes that am = as = 0.

The 11 constant task-TFP growth rates {mj}9j=z,0 and elasticity parameters (σ, ω)

are chosen to fit the time trends of aggregate output per worker growth and employment

shares within sectors from 1980 to 2010 (13 parameter, 21 moments).31 All resulting

parameters are tabulated in Tables 2-3.

Discussion As implied by the data in Figure 21(a) and Appendix Table 5, the

manufacturing sector has higher intensity parameters among middle skill jobs and a

lower intensity in managers.32 Since the estimated elasticity between manufacturing

and services is less than one, for structural change to occur, productivity needs to rise

by relatively more in those occupations used more intensively by manufacturing, which

are the middle-skill jobs. This is evident from the last column in Table 3.

The calibrated values for ω = 0.34 < σ = 0.70 < 1 are important both for Section 4

and our quantitative results to follow. While this was a sufficient condition in Section

4, it is validated by the data. The only other paper we know of that recovers the

elasticity across tasks is Goos et al. (2014). Their point estimate for σ is around 0.9,

which is much closer to 1 than ours.33 However, theirs is an empirical framework that

30There are only 9 horizontal intensity parameters to calibrate per sector, since
∑9
j=0 νij = 1.

31We target the linear trend from 1980 to 2010 rather than their exact values. However, since most trends
are in fact linear, using the exact values barely change our results.

32Since we normalize Mj ≡M in 1980, the parameters correspond to skill-adjusted employment weights.
33Since manager is not a special occupation in that paper, it lacks a counter part to our ω.
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does not take into account general equilibrium or aggregate effects. Both in their model

and ours, the employment share change of occupation j is determined by (1 − σ)mj

(Appendix B.4). If we were to set σ = ω = 0.9, we would recover much higher values

for mj to explain the employment share changes in the data. This would result in

sectoral and aggregate TFP growth rates that are unrealistically high.

6 Quantitative Analysis

We first assess how well the model fits empirical trends in within-sector occupation

employment shares, which were targeted, and then its performance in terms of occu-

pation employment shares in aggregate (i.e., manufacturing and services combined),

which were not targeted. We also explore the model’s predictions in other untargeted

dimensions (time trends in relative wages, within-occupation wage dispersion, and

average establishment size by sector). Then, to contrast task-specific against sector-

specific technological changes, we compare the benchmark model against versions that

also allow exogenous growth in sectoral TFP’s. Finally, we relate the task-specific

TFP growth rates quantified from our model to empirical measures of occupational

characteristics.

6.1 Model Fit

Employment shares Figure 11 plots the model implied trends in employment

shares across tasks, in aggregate and by sector, against the data. When computing the

simulated paths for 1990 and 2000, we plug in the empirical values of Kt = kt/y1980

and the task-specific TFP’s implied by the calibrated growth rates, and solve for the

respective equilibrium allocations. For ease of graphical representation, the figure

groups the 10 worker occupations ranked by their 1980 mean wage into 3 broader

categories summarized in Table 3: manual, routine, and abstract.

At first glance, it may not be so surprising that we obtain a more or less exact

fit as seen in Figure 11(c)-(d), since the discrete model equilibrium can be solved in

closed form for any given year, as we explain in Appendix C. However, while we target

the starting points for all the shares (services employment share, and within-sector

employment shares by task), we calibrated 21 trends using only 13 parameters: the 2

elasticity parameters (σ, ω) and 11 task-specific (and sector-neutral) growth rates, as

shown in Panel (C) of Table 2. The quantitative model predicts that both horizontal

and vertical polarization are faster in the manufacturing sector, as we saw in the data

and as implied by our theory: The routine employment share falls by 13 percentage
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(d) Services Share By Task

Fig. 11: Data vs. Model, Employment Shares by Task.
The quantitative model has 11 one-digit occupation groups. For graphical representation only, we re-group
the 10 worker occupations into the 3 broader categories of manual, routine, and abstract as in Table 3. The
vertical axes in (a)-(c) are employment shares for each occupation group, routine on the left and the rest on
the right. The vertical axes in (d) are the fraction working in services for each occupation group.

points in manufacturing vs. 8 in services, while the manager employment share rises

by 6 percentage points in manufacturing vs. 1 in services.

Furthermore, we did not target any aggregate or sectoral employment shares, so the

fact that aggregate occupation shares and structural change by occupation (i.e., the

rise in service share for each occupation group) are almost exactly replicated, as seen

in Figure 11(c)-(d), is also a success of the quantitative model. This suggests that the

consequences of task-specific TFP growth implied by Lemmas 2-4 should be sufficient

for explaining structural change.

6.2 Implications for Moments Not Targeted
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Fig. 12: Data vs. Model, Relative Wages by Task.
The quantitative model has 11 one-digit occupation groups. For graphical representation only, we re-group
the 10 worker occupations into the 3 broader categories of manual, routine, and abstract as in Table 3. The
vertical axes are the ratios between the average wages of occupation groups, manual-to-routine on the left
and all the others on the right.

Relative wages Although we target the 1980 average wages of the 11 occupation

groups in our calibration, we do not exploit any other wage-related moments. Before

we further discuss the model’s implications for wage moments, two clarifications are

in order. First, in our model, individuals’ earnings depends only on their skills and

occupation, not on sectors. In the data, the average wage even for a narrowly-defined

occupation is somewhat higher in manufacturing than in services—for example, see

Appendix Figure 23(b).34 We do not directly address this fact, and the average wages

of broad occupation groups (e.g., workers as a whole or the manual, routine, abstract

categories) are different between the two sectors only to the extent that they differ in

how intensely they use the 10 underlying worker occupations in Table 3.35

Second, Proposition 2 leads to polarization cast in terms of wage per skill (wz and

wh). Our unit of observation is now wages, which equal (wage per skill)×(amount of

skill). Accordingly, the average wage of an occupation changes not only because of

changes in its per-skill wage, but also because of selection on skill by occupation.

Figure 12 plots the relative mean wages of occupations (in aggregate). Manual

and abstract wages are relative to routine jobs, and manager wages are relative to

all workers. While the model trends are qualitatively consistent with the data, i.e.,

horizontal and vertical wage polarization, the quantitative fit is not tight. In particular,

the rise in the relative wage of the manager and abstract occupations is more muted

34However, the sectoral difference in the average wage of an occupation is stable throughout the observa-
tion period, so we consider the indifference assumption to be valid up to a constant.

35In this version of the model with discretized worker occupations, we only consider those equilibria in
which mean skill levels within occupations are equal across sectors.
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Fig. 13: Establishment Size by Sector
Source: BDS and NIPA. Left: Average number of workers per establishment, in aggregate and by sector.
Right: Real value-added output by establishment (millions of 2010 USD), in aggregate and by sector.

than in the data, which is explained by negative selection. As shown by Proposition

2 and Figure 8, barring a change in the underlying distributions of skills, vertical

polarization dictates that new managers have less managerial skill z than existing ones.

This brings down the mean skill level of managers, countering the positive impact on

the average wage of managers coming from the rise in wage per managerial skill wz.

Likewise, horizontal polarization necessarily implies lower-h workers in the highest-

paying abstract jobs, attenuating the positive impact on their average wage from the

higher wage per skill (wj for j = 8, 9).36

Average size of establishments In our model, the production technology has

constant returns to scale, and the size distribution of establishments is not pinned down.

However, because we model managers as a special occupation qualitatively separate

from workers, the model does have implications on the average size of establishments

as long as we assume a stable relationship between managers and establishments. With

such an assumption, e.g., a constant number of managers per establishment over time,

the faster vertical polarization in manufacturing, Figure 5(b), implies that the number

of workers per establishment should fall faster in manufacturing than in services. This is

confirmed in Figure 13(a), which plots the average number of workers per establishment

in the Business Dynamics Statistics (BDS) from the U.S. Census Bureau.

Furthermore, since the model generates vertical polarization by faster productivity

36Such selection does not matter for manual jobs (j = 0), because our discretized model assumes that all
workers contribute h̄ = 1 toward task-0 production regardless of their h. The increase in the manual job
wage is entirely due to the higher wage per effective skill, w0.
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Fig. 14: Within-Occupation Wage Inequality
Log wage variance within the 4 occupation groups in the data and the model. Left scale for managers and
right scale for the rest.

growth of routine jobs, which are more intensively used in manufacturing, the faster ver-

tical polarization in manufacturing is accompanied by higher productivity and output

growth among manufacturing establishments. In Figure 13(b), we divide value-added

in the NIPA by the number of establishments in the BDS, which confirms the model

prediction.

An inconsistency is that, while the employment share of managers has grown in

the data, the number of employees per establishment overall has stayed more or less

constant throughout the observation period. This suggests a need for modeling dif-

ferentiated managerial occupations and hierarchies of management, which can capture

the rise of middle managers since 1980.

Within-group wage inequality Because our quantitative model has a contin-

uum of skills and discrete occupations, it has implications for wage inequality within

occupation groups as well. As shown in Figure 14(a), log wage variances rose sub-

stantially among managers, slightly among abstract workers, dropped among routine

workers and remained more or less constant among manual workers.

These qualitative patterns are replicated in our model, but the magnitudes of the

changes are too small compared to the data. One way to address this is to increase

the variance of the underlying skill distribution over time, which we decided against

in order to isolate task specific forces: We would be unable to separate the change in

the skill distribution that is task-specific as opposed to task-neutral, without further

assumptions on how skill is accumulated.
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6.3 Polarization, Structural Change and TFP’s

The preceding subsections show that the model targeted only to within-sector employ-

ment shares delivers a good fit in terms of employment shares in the overall economy,

albeit less in terms of relative wages. Other non-targeted moments such as establish-

ment size and wage inequality within occupations are also qualitatively consistent with

the data. We now focus on sectoral employment shares and TFP’s.

To be more specific, we analyze the role of task-specific TFP’s on structural change

in relation to two counterfactuals.

(1) We restrict all task-specific TFP growth to be equal, mj = m for all j, and

instead let the exogenous sector-specific TFPs (Am, As) grow at rates am and as,

respectively. We jointly recalibrate m, am, and as to match the empirical growth

rate of the aggregate and sectoral TFP’s from 1980 to 2010. This version only

has exogenous sector-specific TFP growth but no task-specific TFP growth.37

(2) We allow both exogenous task- and sector-specific TFP growth, and recalibrate

{mj}9j=z,0, am, and as to match the change in employment shares and the empir-

ical growth rates of the aggregate and sectoral TFP’s from 1980 to 2010. Recall

that our benchmark calibration of Section 5 restricted am and as to be 0 but did

not target sectoral TFPs.

In both cases, we keep all other parameters at their benchmark values of Tables 2-3,

and only recalibrate the TFP growth rates.

We focus on sectoral TFP’s since in our model structural change results from the

differential TFP growth between sectors—expressed in closed form in (19)—whether it

is exogenous (caused by am and as) or endogenous (as in Section 4.2). The recalibrated

parameters for the counterfactual exercises are in Appendix Table 6.

TFP and output growth Figure 15 shows the paths of sectoral log TFP’s in the

data, in our benchmark calibration, and in the two counterfactuals. By construction,

all four match aggregate TFP and GDP growth over time (Appendix Figure 24).38

Instead, we focus on the evolution of sectoral TFP’s. Note that the calibrated task-

specific TFP growth rates are higher among routine jobs, on which manufacturing

is more reliant. Since the elasticity between sectors (ε) is less than 1, we know from

37Sectoral TFP is constructed from the NIPA accounts. Real value-added and capital are computed
via cyclical expansion from the industry accounts, labor is computed from full-time equivalent persons in
production in NIPA Table 6, and TFP is the Solow residual by sector.

38Denoting aggregate TFP as Zt, since Yt = ZtK
α
t (labor is normalized to one) and we plug in the

empirical values of Kt for all calibrations, it is the same whether we match aggregate TFP or GDP.
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Fig. 15: Benchmark vs. Counterfactuals, Sectoral TFP.
Data: NIPA. Log 1980 levels are normalized to 0, so the slopes of the lines are the growth rates.

Lemma 3 that the higher endogenous TFP growth in manufacturing leads to structural

change. However, our benchmark calibration did not target sectoral TFP’s, so the

question is whether their growth can be explained by our benchmark with only task-

specific TFP growth.

In our benchmark, we overshoot the growth rate of manufacturing TFP by about

half a percentage point per annum, while undershooting the services TFP growth rate

by the same magnitude. However, when we look at the growth rates of sectoral output

(Figure 25), these gaps nearly disappear. This is because while the model assumes that

capital and labor input ratios are equal across sectors, as shown in (21), in the data

they are not. In fact, counterfactuals (1) and (2) in Appendix Figure 25 show that when

sectoral TFP growth is matched exactly, manufacturing output grows more slowly, and

services output more quickly, than in the data. This implies that the capital input ratio

between manufacturing and services grew faster than the labor input ratio, although

the differences are small. Consequently, once we include exogenous sector-specific TFP

growth and target the empirical sectoral TFP’s, both counterfactuals under-predict

manufacturing output and over-predict services output.

Structural change and polarization Since structural change from manufactur-

ing to services is solely determined by sectoral TFP ratios (Lemma 3), the fact that

endogenous sectoral TFP growth in our benchmark closely tracks the data implies

that our model will also explain structural change in terms of employment shares. As

shown in Figure 16, our benchmark overshoots the 13-percentage-point rise in the ser-

vice employment share in the data by 1 percentage point, while both counterfactuals
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Fig. 16: Benchmark vs. Counterfactuals, Service Employment Share.
Vertical axis is the services share of overall employment.

(1) and (2) undershoot by 3 percentage points. Moreover, Appendix Figure 26 shows

that when we look at structural change within occupation groups, the benchmark out-

performs both counterfactuals (1) and (2), especially for managers.

The benchmark better fits employment shares than the counterfactuals, despite

overshooting manufacturing’s relative TFP growth, because it has a better fit to sec-

toral output growth. As explained above, in the counterfactuals, sectoral output growth

is too low in manufacturing and too high in services. To the extent that all structural

change in our model is due to differential growth in sectoral TFP’s, we do not intend

to emphasize too much that the benchmark explains employment shares better than

the counterfactuals that explicitly target sectoral TFP’s.

We do emphasize that exogenous changes in sectoral TFP’s cannot cause within-

sector polarization. We still investigate their effect on aggregate employment shares

by occupation (Lemma 4). In Figure 17, we see that sectoral forces alone can account

for 15-20 percent of horizontal and vertical polarization in aggregate. This is slightly

smaller than the back-of-the-envelope calculation in Section 4.3, which showed that

the effect of sector-specific TFP’s on polarization is modest because both sectors use

routine jobs.

In contrast, task-specific TFP’s (mj ’s) can account for almost all of the changes

in both occupational and sectoral employment shares. At first glance, it may seem

that the effect of task-specific TFP growth on sectoral TFP’s—which drive structural

change—should also be modest since services also benefits from the faster TFP growth

of routine tasks. However, differential task-specific TFP growth is accompanied by

a reallocation of heterogeneous individuals across occupations, which endogenously
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Fig. 17: Benchmark vs. Counterfactuals, Polarization
Vertical axes are the routine occupation share of total employment (left) and the manager share of total
employment (right). The declining routine share represents horizontal polarization and the rising manger
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reinforces the exogenous shifts.39

To summarize, task-specific TFP growth can more or less fully account for sectoral

TFP growth and hence structural change observed between 1980 and 2010. Due to

the vertical and horizontal polarization induced by task-specific TFP growth, employ-

ment shifts to the sector that relies less on routine tasks and more on management.

Conversely, sector-specific productivities can only account for 15-20 percent of polar-

ization in the overall economy; more important, we have shown both analytically and

quantitatively that they cannot cause polarization within sectors, contrary to the data.

6.4 What Explains Task-Specific Productivity Growth?

Even with skill selection, horizontally and vertically differentiated occupations, and

multiple sectors, Figure 18(a) shows that the bulk of the changes in occupational em-

ployment shares are directly accounted for by task-specific TFP’s, with a correlation

coefficient of -0.97. This is also confirmed by the regression in the top panel of Ap-

pendix Table 7. This leads us to conclude that in order to understand changes in the

employment structure, it is important to identify what these task-TFP’s represent.

How much of the variation in the task-specific TFP growth rates can be explained

by the widely-accepted routinization hypothesis—that routine jobs were more easily

automated and hence now employ fewer workers? As a first pass, in Figure 18(b)

39In Lemma 3, this is shown as the faster growth rates of the endogenous TFP components (ΠKi ,ΠLi) in
services, which implies faster TFP growth in manufacturing, given the expression for TFP (19) and assumed
values of elasticities. Details are in Appendix B.5.
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Fig. 18: Employment Shares, Task TFP Growth and Routinization Index
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percent per year. Panel (b): RTI indices (Acemoglu and Autor, 2011; Autor and Dorn, 2013); and task-TFP
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we correlate the task-TFP growth rates with the RTI index used in Autor and Dorn

(2013), which aggregates indices used in Autor, Levy, and Murnane (2003), which in

turn were constructed by aggregating over task requirements for specific jobs in the

DOT.40 We also correlate them with the RTI index from Acemoglu and Autor (2011),

which was constructed similarly but instead using O*NET, the successor to DOT.

While the task-TFP growth rates are positively correlated with both RTI indices

across occupations, and more strongly with the latter, there is much left to be explained.

Both the correlation and R2’s are still quite low, as shown in Appendix Table 7.

What about variables related to college education? The skill-biased technological

change (SBTC) literature proxies skill by a (four-year) college degree—see Acemoglu

(2002) for a review. As is evident from Figure 19(a), neither the fraction of college

graduates within each occupation in 1980, nor the change in this fraction from 1980 to

2010, has much of a relationship with the task-specific TFP growth rates. Although

not shown here, the level in 1980 and the growth between 1980 and 2010 of within-

occupation college wage premium are not correlated with the task-specific TFP growth

either. Moreover, as shown in Appendix Table 7, the correlation between task-specific

productivity growth and college-related variables is negative across occupations; that is,

those occupations with more college graduates or those in which the college graduate

40Figure 21(b), replicated from Autor and Dorn (2013), shows where the top employment-weighted third
of occupations in terms of RTI are along the skill percentiles. Because most routine jobs are found in the
middle, it is hypothesized and then formally tested that routinization causes (horizontal) job polarization.
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shows occupation-level routine-manual and manual-interpersonal indices in O*NET.

share grew the fastest in fact became relatively less productive. We conclude that

college-related variables do not explain the employment shifts across occupations and

sectors between 1980 and 2010. This is in contrast to the preceding period: Katz and

Murphy (1992) finds that college variables can account for the changes in occupational

employment shares from the early 1960s to mid-1980s, which our own empirical analysis

affirms (not reported here).

What we do find, however, is that the task-specific TFP growth rates correlate

strongly with sub-indices constructed by Acemoglu and Autor (2011) using O*NET,

rather than the RTI index which aggregates over them. In particular, as shown in

Figure 19(b), the correlation of the task-TFP growth rates with routine-manual and

manual-interpersonal indices of occupations, the latter of which is not in RTI, is 0.80

and -0.77 respectively. Appendix Table 7 shows that the R2 of the respective regressions

is high at 0.64 and 0.59.

We conclude that the technological progress since 1980 has predominantly enhanced

the productivity of those occupations that are heavy on routine-manual tasks but light

on interpersonal skills, shrinking their employment shares and relative wages. Since

routine physical activities are easy to automate but tasks requiring interpersonal skills

are not, this finding points to automation as the channel of task-specific technological

progress.41 In this context, our findings are consistent with the routinization hypoth-

41As discussed at the beginning of Section 4, the effect of a change in factor-neutral task-TFP is quali-
tatively similar to that of a capital-augmenting change, which for example could have been modeled as the
fall in the price of task-specific capital (Goos et al., 2014) and directly interpreted as automation.
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esis. The unexplained part of task-specific TFP growth may also come from endoge-

nous changes in the distribution of manager and worker skills, heterogeneous degrees of

capital-labor substitutability across tasks,42 and offshoring in an open economy setting,

all of which we have abstracted from.43

7 Conclusion

We presented a multi-sector task-based model in which individuals with heterogeneous

skills select into managers or workers, and workers further positively sort into differ-

entiated tasks. It is a tractable yet powerful framework for studying the occupational,

industrial and organizational structure of an economy. We fully characterize the equi-

librium and prove that task-specific technological progress for middle-skill jobs leads

to horizontal polarization, vertical polarization, and structural change. Quantitatively,

we show that task-specific technological progress fully accounts for all of the above

phenomena in the data, unaided by sector- or factor-specific technological changes.

Consistent with the model, we document empirically that polarization is prevalent

within all sectors, including services, which suggests that trade is not the main driver

of polarization. Both in the model and in the data, horizontal and vertical polariza-

tion is faster in manufacturing than in services, causing structural change. We also

show that task-specific technological changes since 1980 are fastest in occupations that

intensively use routine-manual tasks but not interpersonal skills.

Our model admits many useful extensions that have not been pursued here. For in-

stance, one could embed individual skill dynamics to separate task productivity growth

from human capital accumulation, or include differentiated managerial tasks for a more

in-depth study of the organization of production by sector. The latter will be espe-

cially useful for understanding assortative matching between managers and workers,

as well as for studying between- and within-firm inequality. A quantitative analysis

with more than two sectors would facilitate a sharper decomposition of occupation-

and industry-specific changes, as would an empirical analysis at a higher frequency

(e.g., annual rather than decadal). A multi-country extension is feasible, which will

help analyze trade, offshoring, and foreign direct investment. We are actively exploring

some of these exciting topics.

42That is, the elasticity of substitution between capital and workers’ human capital may vary across tasks.
This would be related but distinct from typical models of capital-skill complementarity in which the elasticity
varies directly by skill, e.g. low- vs. high-skill as in Krusell, Ohanian, Ŕıos-Rull, and Violante (2000).

43In an open economy setting, cheaper foreign labor would be qualitatively similar to higher productivity
at the task level. We note that, although not shown here, the task-TFP growth rates are only weakly
correlated with occupations’ offshorability index constructed by Firpo, Fortin, and Lemieux (2011).
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Appendices

A Census Employment/Wages/Occupations

Occupation Group occ1990dd

Managers self-employment+ 4– 19
Management Support 22– 37
Professionals 43–199
Technicians 203–235
Sales 243–283
Administrative Support 303–389
Low Skill Services 405–472
Mechanics and Construction 503–599
Miners and Precision 614–699
Machine Operators 703–799
Transportation Workers 803–899

Table 4: Census Occupation Groups
322 non-farm occupations according occ1990dd (Dorn, 2009), itself harmonized from occ1990 (Meyer and
Osborne, 2005), are grouped into 11 occupation groups in order of their occ1990dd code. All self-employed
workers are classified as managers. All other occupation groups correspond to their 1-digit census occupation
group except for management support, technicians and sales. Groups are presented in their (contiguous),
ascending order of their codes, excluding agricultural occupations 473–498 which are dropped. In the main
text, occupation groups are presented in ascending order of skill (mean hourly wage).

We use the 5% census samples from IPUMS USA. We drop military, unpaid family

workers, and individuals who were in correctional or mental facilities. We also drop

workers who work either in an agricultural occupation or industry.

For each individual, (annual) employment is defined as the product of weeks

worked times usual weekly hours, weighted by census sampling weights. Missing

usual weekly hours are imputed by hours worked last week when possible. Missing

observations are imputed from workers in the same year-occupation-education cell

with 322 occupations×6 hierarchical education categories: less than high school, some

high school, high school, some college, college, and more than college.

Hourly wages are computed as annual labor income divided by annual employment

at the individual level. Hence while employment shares include the self-employed,

hourly wages do not include self-employment income.44 We correct for top-coded

44While we have only considered labor income in the paper, we have conducted robustness checks by
including business income as well. Hourly business income is defined similarly as hourly wages. We also
separately corrected for top-coding (the top-codes for labor and business income differ) and bottom-coded
in a similar fashion.
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Fig. 20: Managers in the Census
Source: U.S. Census (5%). Top managers are coded 4 in occ1990dd while broad managers include code 22
which are not-elsewhere-classified managers, or manager occupations that do not exist across all 4 censuses.

incomes by multiplying them by 1.5, and hourly wages are set to not exceed this

value divided by 50 weeks × 35 hours (full-time, full-year work). Low incomes are

bottom-coded to first percentile of each year’s wage distribution.

For the line graphs in Figures 3–4, we ranked occupations by their hourly wages

defined as above, and smoothed across skill percentiles using a bandwidth of 0.75 for

employment and 0.4 for wages; these are the same values used in Autor and Dorn

(2013). For the bar graphs in Figures 3–4, 18–19 and 21, we grouped the 322 occu-

pations vaguely up to their 1-digit Census Occupation Codes, resulting with the 11

categories summarized in Table 4 and used for our quantitative analysis. In the figures

and in Tables 5–6, these groups are then ranked by the mean wage of the entire group.

In particular, in Figures 3–4, 18(a) and 21, the horizontal length of a bar is set to equal

the corresponding group’s 1980 employment share, which does not necessarily coincide

with the 3-digit occupations used to generate the smooth graphs by percentile.

Throughout the paper, we subsume all self-employed workers into the manager

group. While the size of the group varies excluding them does not affect any of

our results qualitatively because while the employment share of non-managerial self-

employed workers was more or less constant throughout the observation period, as

shown in Figure 20. There, we decompose managers into 9 subgroups. Our benchmark

definition includes all 3 self-employed groups, top managers and narrow managers, but

excludes broad managers. Top managers are coded 4 according to occ1990dd and

includes CEO’s, public administrators and legislators. Broad managers are coded 22

and are either not-elsewhere-classified or manager occupations that do not exist across

all 4 censuses.
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B Proofs

B.1 Proof of Lemma 1 and Corollary 1

The feasibility constraint (5) and the existence of ĥ(j) and ẑ(j) imply that the number

of people with skill s assigned to task j is

lh(s, j)ds = δ(j − ĵ(h)) · I [z ≤ z̃(h)] dµ

where δ(·) is the Dirac delta function and I the indicator function. Hence the allocation

rule is completely determined by the assignment functions ĥ(j) and ẑ(j), and the

productivity of all workers assigned to task j = ĵ(h) is

H(j) =

∫
b(h, ĵ(h′)) · δ(j − ĵ(h′)) · F (z̃(h′)|h′)dG(h′).

With the change of variables j′ = ĵ(h′), we can instead integrate over j′:

H(j) =

∫
b(ĥ(j′), j′) · δ(j − j′) · F (ẑ(j′)|ĥ(j′))g(ĥ(j′)) · ĥ′(j′)dj′

= b(ĥ(j), j) · F (ẑ(j)|ĥ(j))g(ĥ(j)) · ĥ′(j),

which is (15).

For the optimal allocation, there can be no marginal gain from switching any

worker’s assignment. So for any j′ = j + dj,

MPTi(j) · Ti(j)
Hi(j)

· b(ĥ(j), j) ≥MPTi(j
′) · Ti(j′)

Hi(j′)
· b(ĥ(j), j′),

MPTi(j
′) · Ti(j′)

Hi(j′)
· b(ĥ(j′), j′) ≥MPTi(j) · Ti(j)

Hi(j)
· b(ĥ(j′), j),

with equality if |dj| = 0. Substituting for Hi(j) = H(j)
/
qih(j) using (15), we obtain

b(ĥ(j′), j′)

b(ĥ(j), j′)
≥ πih(j′)

πih(j)
· qih(j)F (ẑ(j)|ĥ(j))g(ĥ(j))ĥ′(j)

qih(j′)F (ẑ(j′)|ĥ(j′))g(ĥ(j′))ĥ′(j′)
≥ b(ĥ(j′), j)

b(ĥ(j), j)
,

and as |dj| → 0,[
∂ log b(ĥ(j), j)

/
∂h
]
· ĥ′(j) = d log

{
πih(j)

/[
qih(j)F (ẑ(j)|ĥ(j))g(ĥ(j))ĥ′(j)

]}/
dj.

Now using the total derivative of b(ĥ(j), j):

d log b(ĥ(j), j)
/
dj =

[
∂ log b(ĥ(j), j)

/
∂h
]
· ĥ′(j) + ∂ log b(ĥ(j), j)

/
∂j, (31)

and applying πih(0) = 1, we obtain (16):

Hi(j)
/
πih(j)Hi(0) = exp

[∫ j

0

∂ log b(ĥ(j′), j′)

∂j′
dj′

]
≡ Bj(j; ĥ). (32)

Plugging (12) and (16) into (11) yields the first equality in (18) in the corollary, and

note that (31) implies that b(h, ĵ(h)) = Bh(h; ĵ) · Bj(ĵ(h); ĥ), which yields the second

equality.
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B.2 Proof of Proposition 1 and Corollary 2

First, we re-express all capital input ratios only in terms of the thresholds [ĥ(j), ẑ].

Plugging (16) into (8), and applying the task production function (7) we obtain

πih(j) = vih(j)
/[

M̃(j)Bj(j; ĥ)1−α
]1−σ

, where vih(j) ≡ νi(j)

νi(0)
(33)

and M̃(j) ≡M(j)/M(0). Similarly, plugging (9) and (12) in (10) we obtain

πiz = viz ·
(
M̃(z) · ẑ1−α

)ω−1
·Π

σ−ω
σ−1

ih , where viz ≡
ηiνi(0)

1−ω
σ−1

1− ηi
(34)

and M̃(z) ≡M(z)/M(0).

Now given a between-sector allocation rule [qih(j), qiz], the optimal within-sector

allocation is described by [ĥ(j)]Jj=0 that solves a fixed point defined by (15)-(16) in

Lemma 1, and ẑ that solves the fixed point defined by (12) and (34):

ĥ′(j) =
Hi(0) · vih(j)

qih(j)

/{
[M̃(j)Bj(j)

1−α]1−σBh(ĥ(j))F (ẑ(j)|ĥ(j))g(ĥ(j))
}

(35a)

ẑα+ω(1−α) =
qiz

Hi(0) · viz
·Π

σ−ω
1−σ
ih · M̃(z)1−ω · Z (35b)

where the boundary conditions for the ODE in (35a) are ĥ(0) = 0 and ĥ(J) = hM ,

which implies

Hi(0) ·
∫
vih(j)

{
qih(j) · [M̃(j)Bj(j)

1−α]1−σBh(ĥ(j))F (ẑ(j)|ĥ(j))g(ĥ(j))
}−1

dj

= hM . (35c)

The functions [Bj(j), Bh(h), ẑ(j), z̃(h)], which represent relative wages in equilibrium,

are defined in (14), (17) and (18); in particular, the first two are functions of [ĥ(j), ĵ(h)]

only. That is, system (35) is a fixed point only in terms of the thresholds, so their

determination is independent of the total amount of physical capital and labor in

either sector. All that matters is relative masses across tasks.

Existence of a fixed point is straightforward. For an arbitrary guess of ẑ(j), As-

sumptions 1-3 imply existence of a solution to the differential equation (35a) by Picard-

Lindelöf’s existence theorem. Similarly, a solution to (35b) exists by Brouwer’s fixed

point theorem once we apply a minimum value for ẑ ≥ z > 0 such that the denominator

does not converge to zero.

To show that the within-sector solution is unique, we need the following lemma:

Lemma 5 Suppose [qh(j), qz] are fixed and that [ĥ(j), ẑ] and [ĥ1(j), ẑ1] are both an

equilibrium for one sector. For any connected subset J 1 ⊆ J , ĥ and ĥ1 can never

coincide more than once on J 1.
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Proof We proceed by contradiction as in Lemmas 3-6 in Costinot and Vogel (2010).

Suppose (i) ĥ(ja) = ĥ1(ja) and ĥ(jb) = ĥ1(jb) such that both (ja, jb) ∈ J 1. Without

loss of generality, we assume that ja < jb are two adjacent crossing points. Then, since

[ĥ, ĥ1] are Lipschitz continuous and strictly monotone in j, it must be the case that

1. (ii) ĥ1′(ja) ≥ ĥ′(ja) and ĥ1′(jb) ≤ ĥ′(jb); and (iii) ĥ1(j) > ĥ(j) for all j ∈ (ja, jb);

or

2. (ii) ĥ1′(ja) ≤ ĥ′(ja) and ĥ1′(jb) ≥ ĥ′(jb); and (iii) ĥ1(j) < ĥ(j) for all j ∈ (ja, jb).

Consider case 1. Condition (ii) implies

ĥ1′(jb)
/
ĥ1′(ja) ≤ ĥ′(jb)

/
ĥ′(ja)

so using (31)-(32) and (35a), and applying ĥ1(j) = ĥ(j) for j ∈ {ja, jb} we obtain

0 < [α+ σ(1− α)] ·

[∫ jb

ja

∂ log b(ĥ1(j′), j′)

∂j′
dj′ −

∫ jb

ja

∂ log b(ĥ(j′), j′)

∂j′
dj′

]
(36)

≤ log
[
F (ẑ1(jb)|ĥ(jb))/F (ẑ(jb)|ĥ(jb))

]
− log

[
F (ẑ1(ja)|ĥ(ja))/F (ẑ(ja)|ĥ(ja))

]
where the first inequality follows since (2), the log-supermodularity of b, implies

∂ log b(h1, j)
/
∂j > ∂ log b(h, j)

/
∂j ∀h1 > h, (37)

and applying (iii). Next, since (18) and Assumption 5.1 implies that ẑ′(j) =

z̃′(h)ĥ′(j) > 0, Assumption 4.1 implies that the strict inequality in (36) holds only if

ẑ1(jb)/ẑ(jb) > ẑ1(ja)/ẑ(ja) ⇔ log
[
z̃1(hb)/z̃

1(ha)
]
> log [z̃(hb)/z̃(ha)]

where we have written hx ≡ ĥ(jx) for x ∈ {a, b}. Plugging in for z̃(·) using (18) we

obtain∫ hb

ha

∂ log b(h′, ĵ1(h′))

∂h′
dh′ >

∫ hb

ha

∂ log b(h′, ĵ(h′))

∂h′
dh′

and since ĵ(h) is the inverse of ĥ(j), (iii) implies that ĵ1(h) < ĵ(h) for all h ∈ (ha, hb).

But (2), the log-supermodularity of b, implies

∂ log b(h, j1)
/
∂h < ∂ log b(h, j)

/
∂h, ∀j1 < j. (38)

a contradiction. Case 2 is symmetric.

Lemma 5 implies, in particular, that any within-sector equilibria must have identical

ĥ(j), since ĥ(0) = 0 and ĥ(J) = hM in all equilibria. Moreover, the lemma also implies

that ĥ(j) is determined independently of ẑ, which is uniquely determined by ĥ(j) given

(35). Hence, the within-sector equilibrium is unique.
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Sectoral production function The corollary expresses sectoral output only in

terms of sectoral capital and labor, and the optimal assignment rules. To derive this,

first note that using (8)-(10), sectoral capital can be written as Ki = Ki(0)ΠKi , which

is the first equation in (20). Next, from (12), we know that Zi is linear in Hi(0):

Zi = qizLz z̄ = Liz z̄ = Hi(0) · ẑπiz, where Lz ≡
∫
z>z̃(h)

dµ, z̄ = Z/Lz,

and using Lemma 1 and (33), so is total worker productivity:∫ [
Hi(j)

/
b(ĥ(j), j)

]
dj =

∫
qih(ĵ(h))F (z̃(h)|h)g(h)dh

= Hi(0) ·
∫ [

πih(j)/Bh(ĥ(j))
]
dj = Li − Liz.

So rearranging, we can represent sectoral labor input as Li = Hi(0)ΠLi , which is the

second equation in 20. Finally, use (7)-(10) to rewrite (6) as

Yi = ψi ·Π
ω
ω−1

Ki
Π

σ−ω
(σ−1)(1−ω)
ih M(0)Ki(0)αHi(0)1−α,

and replacing [Ki(0), Hi(0)] with the expressions in (20) yields (19).

B.3 Proof of Theorem 1

Since Proposition 1 showed that the within-sector solution (and hence equilibrium)

is unique, we only need to show that the sectoral allocation rules {[qh(j)]Jj=0, qz} are

unique. In equilibrium, the allocation rules [ĥ(j), ẑ] must be equal across sectors.

Applying this to (35a) yields

qh(j) = 1

/[
1 +

1− qh(0)

qh(0)
· νs(0)

νm(0)
· νm(j)

νs(j)

]
(39)

and qh(0) must solve (35c), so the dependence of the between-sector allocation rule

on the within-sector rule comes only through qh(0). Likewise, the rule for splitting

individuals between managers and workers, (35b), implies

qz = 1

/[
1 +

1− qh(0)

qh(0)
· νs(0)

νm(0)
· ηm(1− ηs)

(1− ηm)ηs
·
(
Vsh
Vmh

)σ−ω
1−σ
]

(40)

where Vih is defined in (27) and depends on the within-sector allocation rule through

Bj . But note that given qh(0), the other qh(j) only depend on the task intensity

parameters νi(j) and are uniquely fixed by (39). Then we know from Proposition 1

that all ĥ(j) are uniquely determined, as well as ẑ. Hence, qz also only depends on the

manager intensity parameters ηi, and are uniquely determined by (40) given qh(0).
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So in equilibrium, qh(0) alone must solve the implied sectoral shares in (21) given

(19):

qh(0)

1− qh(0)
≡ Q(qh(0)) (41)

=
γs
γm
·
(
ψs
ψm

)ε−1

·
(

Πsh

Πmh

) (σ−ω)(1−ε)
(1−σ)(1−ω)

·
(

ΠKs

ΠKm

)(α+ ω
1−ω )(1−ε)

·
(

ΠLs

ΠLm

)−[α+ε(1−α)]

.

Existence of a solution is straightforward, since the LHS of (41) increases smoothly

from 0 to ∞ as qh(0) varies from 0 to 1, while the RHS is always positive and strictly

bounded regardless of the value of qh(0). To show uniqueness then, it suffices to show

that the RHS cannot cross LHS more than once. We will consider the log derivatives

of the RHS of (41) term by term.

Let ∆x denote the log-derivative of x w.r.t. qh(0). Since Assumption 5.2 implies

that

∆Bj(j) =

∫ j

0

∂2 log b(ĥ(j′), j′)

∂h∂j′
· d̂
′h(j′)

dj′
· dj′ < ε (42)

for all ε > 0, we obtain from (33) that

∆πih = (1− α)(σ − 1) ·∆Bj(j) ≈ 0

so ∆Πih ≈ 0. Likewise, Assumption 5.2 also implies that

∆Bh(h) =

∫ h

0

∂2 log b(h′, ĵ(h′))

∂h′∂j
· dĵ(h

′)

dh′
· dh′ < ε (43)

for all ε > 0. This implies that ĥ(j) is not affected by the choice of qh(0), and it is

independent of the determination of ẑ by Lemma 5. Intuitively, Assumption 5.2 makes

the model behave as if there were no log-supermodularity. Then since we assume a

constant returns technology, all worker allocations approach constant multiples of H0

and does not depend on its particular value. So ∆Πih ≈ 0, and ∆ΠKi
only depends on

∆ẑ since from the definition of ΠKi in (20) and (34),

∆πiz = (1− α)(ω − 1)∆ẑ ⇒ ∆ΠKi
ΠKi = πiz · (1− α)(ω − 1)∆ẑ,

Similarly, ∆ΠLi
only depends on ∆ẑ as well, since from (18) and (43) we obtain

∆z̃(h) = ∆ẑ + ∆Bh(h) ≈ ∆ẑ. (44)

so using Leibniz’ rule,

∆Z · Z = −∆ẑ ·
∫ [

z̃(h)2 · f(z̃(h)|h)
]
g(h)dh, (45)
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∆Lz · Lz = −∆ẑ ·
∫

[z̃(h) · f(z̃(h)|h)] g(h)dh,

⇒ ∆z̄ = ∆Z −∆Lz = ∆ẑ ·
∫
{z̃(h) [1/Lz − z̃(h)/Z] · f(z̃(h)|h)} g(h)dh︸ ︷︷ ︸

≡Λ∈(0,1)

where the inequality follows from selection and Assumption 4.2, so using this and (43),

from the definition of ΠLi in (20) we obtain

∆ΠLi
ΠLi = (ẑ/z̄)πiz · [α+ ω(1− α)− Λ] ∆ẑ.

Now rearranging (35b), plugging in (45), and using (35a) at j = 0 we obtain{
α+ ω(1− α) + ẑf(ẑ|0)

/
F (ẑ|0) +

∫ [
z̃(h)2 · f(z̃(h)|h)

]
g(h)dh

}
∆ẑ

= ∆qz − 1 ≡ Γ(X),

since Hs(0) = qh(0)H(0), ∆ĥ′(0) = 0 as it does not vary with qh(0), and Γ(X) is defined

from (40):

Γ(X) = qh(0)(X − 1)/ [qh(0) + (1− qh(0))X] ,

where X ≡ νs(0)

νm(0)
· ηm(1− ηs)

(1− ηm)ηs
·
(
Vsh
Vmh

)σ−ω
1−σ

.

So it follows that the log-slope of the RHS in (41) is

−

{
(1− ε)(1− α)[α+ ω(1− α)] ·

[
πsz
ΠKs

− πmz
ΠKm

]

+ (ẑ/z̄)[α+ ε(1− α)][α+ ω(1− α)− Λ] ·
[
πsz
ΠLs

− πmz
ΠLm

]}

× Γ(X)

α+ ω(1− α) + ẑf(ẑ|0)
/
F (ẑ|0) +

∫
[z̃(h)2 · f(z̃(h)|h)] g(h)dh

.

The log-slope of the LHS in (41) is 1/ [1− qh(0)], which increases from 1 to∞ as qh(0)

increases from 0 to 1, and is larger than Γ(X) for all X > 0. Hence it suffices to show

that the absolute value of all terms multiplying Γ(X) are less than 1, which is true in

particular due to Assumption 4.3.

Intuitively, what the planner cares about is the marginal products of Z and H in

total. So when the distribution of z has a fat tail, the response of ẑ to the choice of

qh(0) is minimal as it changes Z smoothly along its entire support.

B.4 Proof of Proposition 2

Part 1. By Lemma 5, we know that no crossing can occur on (0, j) or (j, J), since

ĥ and ĥ1 already coincide at the boundaries 0 and J . Similarly, we also know from
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Theorem 1 that it can never be the case that there is no crossing (ĥ1(j) > ĥ(j) or

ĥ1(j) < ĥ(j) for all j ∈ J \ {0, J}). Hence, there must be a single crossing in J 1 since

Lemma 5 also rules out multiple crossings.

At this point, the only possibility for j∗ not to exist is if instead, there exists a

single crossing j∗∗ such that (i) ĥ1(j) < ĥ(j) for all j ∈ (0, j∗∗) and (ii) ĥ1(j) > ĥ(j)

for all j ∈ (j∗∗, J). If so, since [ĥ, ĥ1] are Lipschitz continuous and strictly monotone

in j, it must be the case that ĥ1′(0) < ĥ′(0), ĥ1′(j∗∗) > ĥ′(j∗∗) and ĥ1′(J) < ĥ′(J).

This implies

ĥ1′(j∗∗)
/
ĥ1′(0) ≥ ĥ′(j∗∗)

/
ĥ′(0), ĥ1′(J)

/
ĥ1′(j∗∗) ≤ ĥ′(J)

/
ĥ′(j∗∗). (46)

Let us focus on the first inequality. Using (32) and (35a) we obtain

0 > [α+ σ(1− α)] ·

[∫ j∗∗

0

∂ log b(ĥ1(j), j)

∂j
dj −

∫ j∗∗

0

∂ log b(ĥ(j), j)

∂j
dj

]
(47)

≥(1− σ)m+ log
[
F (ẑ1(j∗∗)|ĥ(j∗∗))/F (ẑ(j∗∗)|ĥ(j∗∗))

]
− log

[
F (ẑ1(0)|ĥ(0))/F (ẑ(0)|ĥ(0))

]
.

where the first inequality follows from (37), and applying (i). Since m > 0, if σ ∈ (0, 1),

Assumptions 4.1 and 5.1 imply that the strict inequality in (47) holds only if∫ h∗∗

0

∂ log b(h′, ĵ1(h′))

∂h′
dh′ <

∫ h∗∗

0

∂ log b(h′, ĵ(h′))

∂h′
dh′

where we have written h∗∗ ≡ ĥ(j∗∗). And since ĵ(h) is the inverse of ĥ(j), (i) implies

that ĵ1(h) > ĵ(h) for all h ∈ (0, h∗∗). But this violates (38), the log-supermodularity

of b. The case for the second inequality in (46) is symmetric.

Part 2. Let ∆x denote the log-derivative of x w.r.t. m̃. Applying (33) into the

definition of Πih in (9), we obtain

∆Πih ·Πih = (σ − 1)

∫ j

j
πih(j)dj +

∫ {
πih(j) · (1− α)(σ − 1) ·∆Bj(j)

}
dj

≈ (σ − 1)

∫ j

j
πih(j)dj (48)

where the approximation follows from Assumption 5.2 and (42). Hence ∆Πih < 0 if

σ < 1. Rearranging (35b) and using (35a) at j = 0 we obtain

0 >
σ − ω
1− σ

·∆Πih −∆ĥ′(0) =
[
α+ ω(1− α) + ẑf(ẑ|0)

/
F (ẑ|0)

]
∆ẑ −∆Z (49)

where the inequality holds if ω < σ < 1, and since we know from part 1 that ∆ĥ′(0) ≥ 0.

Now suppose ∆ẑ ≥ 0. Then for (49) to hold it must be the case that ∆Z > 0, but from

(45), ∆Z ≤ 0 if ∆ẑ ≥ 0, a contradiction. Hence, ẑ1 < ẑ, and z̃1(h) < z̃(h) for all h by

(44).
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B.5 Proof of Lemmas 2 and 3

From (26), the ∆Vi(j)’s are sector-neutral and common across sectors, except for ∆Vi(z).

Under Assumption 5.2, (42)-(43) imply

∆Vi(j) = σ − 1 < 0 ∀j ∈ J 1 and 0 otherwise. (50a)

So for workers, any difference in how the share of task j employment evolves differen-

tially across sectors depends only on ∆VLi
, the sum of within-sector employment shifts,

weighted by the employment shares of all tasks within a sector Vi(j)/VLi = Li(j)/Li.

Since we know that intermediate jobs are the ones that are declining, from the defini-

tion of ΠLi in (20) a measure of the speed of polarization among workers is the total

change in their employment:

∆VilVil =

∫
J
Vi(j) ·∆Vi(j)dj = (σ − 1) ·

∫ j

j
Vi(j)dj

and we have used (50a). So we can compare the speeds of polarization across the two

sectors from

∆Vml −∆Vsl = (σ − 1) ·
∫ j

j

{[
νm(j)

Vml
− νs(j)

Vsl

]
·
[
M(j)Bj(j)

1−α]σ−1
/
Bh(ĥ(j))

}
dj.

(50b)

Manager employment has sector-differential effects through Vih: Under Assumption

5.2 and using (48), we obtain

∆Vm(z) −∆Vs(z) = (σ − ω) ·
∫ j

j

{[
νm(j)

Vmh
− νs(j)

Vsh

]
·
[
M(j)Bj(j)

1−α]σ−1
}
dj.

(50c)

Equations (50b) and (50c) imply that a sufficient condition for both horizontal and

vertical polarization to be faster in manufacturing, as in the data, is ω < σ < 1 and

νmh(j)� νsh(j) for all j ∈ J 1, which is Lemma 2.

Structural change From (22) and (41) we obtain

∆Ls = Lm ·
{

∆VLs
−∆VLm

+ ∆Q

}
. (51a)

The term ∆Ls − ∆Lm is the first-order force of structural change that comes only

from the change in selection rules. However, since this takes us off the between-

sector equilibrium, qh(0) must shift to satisfy the equilibrium condition (41). The net

amount of structural change will depend on whether the selection effect is overturned

or reinforced by the change in qh(0).
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Since Q(qh(0)) in (41) changes monotonically from 0 to ∞ in qh(0), we only need

to consider the direction of the change of the RHS off equilibrium. Using (50), the

log-derivative of the RHS of (41) can be written as

(1− ε)
{

σ − ω
(1− σ)(1− ω)

· (∆Vsh −∆Vmh) +

(
α+

ω

1− ω

)(
∆ΠKs

−∆ΠKm

)}
− [α+ ε(1− α)]

(
∆VLs

−∆VLm

)
. (51b)

Under Lemma 2, the part with ∆Vih ’s is positive from (50b). The part with ∆ΠKi
is

determined by

∆ΠKi
ΠKi = Πih∆Vih + πiz∆πiz , (51c)

∆πsz −∆πmz =
σ − ω
1− σ

(∆Vsh −∆Vmh) . (51d)

Clearly, capital polarizes along with labor, both horizontally and vertically; and the

speed is faster in manufacturing if the assumptions in Lemma 3 holds.

Why structural change cannot be overturned, as explained in the text, is also

formalized here: Even if there is a decline in qh(0) due to the negative effect coming from

last term in (51b) dominating the positive effect from the first two terms, it can never

overturn the direction of structural change in (51a) as long as ε < 1. Equations (50)-

(51) also make it clear that structural change depends differently on the productivities

of capital and labor.

C Quantitative Model and Numerical Details

With discrete tasks, it must be that the marginal product of the threshold worker is

equalized between tasks:

MPTi0 ·
(1− α)Ti0

Li0
= MPTi1 ·

(1− α)Ti1
h̄1Li1

· ĥ1,

MPTij ·
(1− α)Tij

(h̄j − χj)Lij
· (ĥj+1 − χj) = MPTij+1 ·

(1− α)Ti,j+1

(h̄j+1 − χj+1)Li,j+1
· (ĥj+1 − χj+1)

using Assumption 3, and Lij is the measure of workers in sector i, task j and h̄j ≡
Hij/Lij . Thus, we are assuming that the means of skills in task j are equal across

sectors i ∈ {m, s}, which is true when tasks are a continuum. Then

ĥ1 =
h̄1Li1
πi1Li0

,
ĥj+1 − χj+1

ĥj+1 − χj
=
πij(h̄j+1 − χj+1)Li2

πi,j+1(h̄j − χj)Li1
, (52)

where πij is the discrete version of (8), and can be expressed using (52) as

πi1 =
νi1
νi0
·
(
M1

M0
· ĥ1−α

1

)σ−1

,
πi,j+1

πij
=
νi2
νi1
·

Mj+1

Mj

(
ĥj+1 − χj+1

ĥj+1 − χj

)1−α
σ−1

.

(53)
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In equilibrium, indifference across tasks for threshold workers imply

w0 = wz ẑ = w1ĥ1, wj(ĥj+1 − χj) = wj+1(ĥj+1 − χj+1)

⇒ wz/w0 = 1/ẑ, w1/w0 = 1/ĥ1, wj+1/wj =
ĥj+1 − χj+1

ĥj+1 − χj
. (54)

which is used to calibrate the distribution of skills in Section 5.3. The rest of the

parameters are calibrated as follows:

1. Guess (σ, ω).

2. Given elasticities, first fit 1980 moments:

(a) Guess (M,Am).

(b) Plug in the threshold values x1980 implied by the skill distribution, along

with the empirical values of (Liz, Li0, . . . , Li9), the employment shares of

each occupation in sector i ∈ {m, s} from Table 5, into (12) and (52). Then

we recover all the νij ’s from (52)-(53), and the ηi’s from (12) and (34) in

closed form (since Mj = M are assumed to be equal for all j). This ensures

that the 1980 equilibrium exactly fits within-sector employment shares by

occupation (20 parameters, 20 moments).

(c) Repeat from (a) until we exactly fit the manufacturing employment share in

1980, and output per worker of 1.45 Since (19) and (21) are monotone in

(M,Am), the solution is unique (2 parameters, 2 moments).

3. Given elasticities and all parameters, calibrate growth rates to 2010 moments:

(a) Guess m0.

(b) Guess {mj}9j=z,1. Plug in threshold values x2010 and new TFP’s into (12)

and (52), which yields equilibrium employment shares by occupation, within

each sector. Then use (19)-(21) to solve for the 2010 equilibrium, which

yields equilibrium employment shares between sectors.

(c) Repeat from (a) until we exactly exactly fit aggregate GDP (or equivalently

TFP) in 2010. (1 parameter, 1 moment).

4. Repeat from 1. to minimize the distance between the within-sector employment

shares by occupation (but not necessarily by sector) implied by the 2010 model

equilibrium and the data (13 parameters, 21 moments).

45The latter must be matched since the value of K1980 we plug in from the data was normalized by 1980’s
output.
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For (σ, ω), we first search globally by setting a 100×100 grid that covers the box

[0, 2] × [0, 2], then locally search from the best point using a Nelder-Meade simplex

algorithm.

D Tables and Figures Not in Text

Ranked by mean wage COC Employment Shares (%) Rel. Wages
(except management) Group 1980 2010 Manufacturing 1980 2010

Low Skill Services 400 10.44 13.92 0.59 0.23 0.65 0.55

Middle Skill 59.09 46.48 25.86 12.93 0.90 0.77
Administrative Support 300 16.57 14.13 3.47 1.53 0.78 0.68
Machine Operators 700 9.81 3.75 8.79 3.02 0.84 0.64
Transportation 800 8.73 6.64 3.80 2.28 0.89 0.63
Sales 240 7.87 9.37 0.79 0.62 0.94 0.90
Technicians 200 3.23 3.86 1.00 0.57 1.04 1.12
Mechanics & Construction 500 7.91 6.02 4.44 3.19 1.06 0.81
Miners & Precision Workers 600 4.97 2.71 3.58 1.73 1.09 0.77

High Skill 19.22 26.16 3.87 3.64 1.26 1.30
Professionals 40 11.02 16.51 1.73 1.45 1.21 1.26
Management Support 20 8.20 9.65 2.14 2.20 1.32 1.37

Management 1 11.26 13.44 2.47 2.59 0.00 0.00

Table 5: Occupation×Sector Employment and Relative Wages
Source: US Census (5%), 1980 and 2010. All employment shares are in percent of aggregate employment.
The first two columns show the employment share of each occupation for each year. The “Manufacturing”
columns show manufacturing employment of each occupation for each year (so the sum across all occupations
is the manufacturing employment share). Relative wages are normalized so that the mean wage across all
occupations is 1.
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Ranked by mean wage (1) (2) BM Data
(except management) m (%) mj (%) mj (%)

Low Skill Services 1.973 -2.726 -0.731

Middle Skill
Administrative Support 1.973 1.252 2.930
Machine Operators 1.973 10.018 9.122
Transportation 1.973 3.326 4.348
Sales 1.973 -1.895 0.012
Technicians 1.973 -2.484 -1.144
Mechanics & Construction 1.973 1.742 2.315
Miners & Precision Workers 1.973 6.367 6.328

High Skill
Professionals 1.973 -3.973 -2.248
Management Support 1.973 -1.973 -0.489

Management 1.973 -1.438 -0.017

Aggregate TFP growth (%) 1.030 1.030 1.030 1.030
am (Manu TFP growth, %) 0.252 0.252 2.943 2.229
as (Serv TFP growth, %) -1.205 2.021 0.308 0.743

Table 6: Recalibrated TFP Growth Rates for Counterfactuals
Column (1) stands for the counterfactual in which we set mj = m and calibrate (am, as) to match sectoral
TFP’s, and (2) for when we let ({mj}9j=z,0, am, as) all vary simultaneously. “BM” stands for the benchmark
calibration. For all scenarios, aggregate GDP growth (and consequently TFP growth) is matched exactly,
shown in the first row of the bottom panel. For the “BM” and “Data” columns, the am and as rows show
the empirical growth rates of the manufacturing and services sectors’ TFP’s, respectively.
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∆Lj

TFP - 9.584 ∗∗∗

R2 0.939

RTI (DOT) 0.429
(0.268)

Routine manual 0.797∗∗ 0.618
(0.206) (0.527)

Manual interpersonal -0.767∗∗ -0.192
(0.192) (0.549)

College share 1980 -11.142∗ -7.994∗∗

(3.599) (2.269)

∆College share 1980-2010 -33.673∗ -20.295∗

(17.410) (13.547)

Constant 1.061 0.377 3.281∗∗ 1.065 4.035∗ 4.818∗ 5.204∗

(0.941) (0.738) (0.970) (2.339) (1.401) (1.674) (1.759)

R2 0.184 0.635 0.588 0.640 0.439 0.372 0.539

Standard errors in parentheses, †p < 0.10, ∗p < 0.05, ∗∗p < 0.01

Table 7: Task-Specific TFP Growth, Employment, and Empirical Measures
The first panel shows the results from regressing employment share changes on the calibrated task-specific
TFP growth rates, mj . The second panel shows the results from regressing the TFP growth rates on various
occupation-level empirical measures.
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(b) Routinization

Fig. 21: Manufacturing Employment Shares and Routine Job Shares
Source: U.S. Census (5%). Left: Manufacturing employment share by occupation-skill percentile in 1980.
Right: Share of top employment-weighted third of occupations in terms of RTI by skill percentile, replicates
Autor and Dorn (2013) who construct RTI from detailed task requirements by occupation in DOT. Occupa-
tions are ranked by their 1980 mean wage for 11 one-digit groups and smoothed across 322 three-digit groups,
separately. The x-axis units are in percent share of employment. Further details in text and Appendix A.
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(b) Manager Wage by Sector

Fig. 22: Relative Manager Wages
Source: U.S. Census (5%). Left: levels and ratio of mean wages or managers and all other workers in
aggregate. Right: relative mean wage of managers over all other workers within manufacturing and services.
“Manufacturing” combines manufacturing, mining and construction, and services subsumes service and
government. See Appendix A for how we define management in the census and Figure 20 for a detailed
breakdown of the manager group.
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(a) Manufacturing Employment Share
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(b) Manufacturing-Services Average Wage Ratio

Fig. 23: Manufacturing vs. Services by Occuaption
Source: U.S. Census (5%). Left: manufacturing employment share within the manager occupation group
and all other workers. Right: mean wage of manufacturing employment relative to services employment
within the manager occupation group and all other workers. “Manufacturing” combines manufacturing,
mining and construction, and services subsumes service and government. See Appendix A for how we define
management in the census and Figure 20 for a detailed breakdown of the manager group.
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(b) Log GDP per Worker Growth

Fig. 24: Aggregate Output and TFP Growth
Data: NIPA. Log 1980 levels are normalized to 0, so the slopes of the lines are the growth rates.
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(a) Log GDP per Worker, Manufacturing
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(b) Log GDP per Worker, Services

Fig. 25: Benchmark vs. Counterfactuals, GDP per Worker
Data: NIPA. “Manufacturing” combines manufacturing, mining and construction, and services subsumes
service and government. Log 1980 levels are normalized to 0, so the slopes of the lines are the growth rates.
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(a) Services Employment Share, Routine Jobs
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(b) Services Employment Share, Managers

Fig. 26: Benchmark vs. Counterfactuals, Structural Change
Vertical axes are the fractions of routine jobs (left) and mangers (right) in services.
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