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Abstract

I study e�cient multi-unit auction design when bidders have private values, multi-

unit demands, and non-quasilinear preferences. Without quasilinearity, the Vickrey

auction loses its desired incentive and e�ciency properties. Instead of assuming that

bidders have quasilinear preferences, I assume that bidders have positive wealth ef-

fects. This nests cases where bidders are risk averse, face financial constraints, or have

budgets.

With two bidders, I show that there is a mechanism that retains the desirable

properties of the Vickrey auction if and only if bidders have single dimensional types. If

bidders have multi-dimensional types, there is no mechanism that satisfies (1) individual

rationality, (2) dominant strategy incentive compatibility, (3) ex-post Pareto e�ciency,

and (4) weak budget balance. When there are more than two bidders, I show that there

is no mechanism with desirable incentive and e�ciency properties, even if bidders have

single dimensional types.
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1 Introduction

1.1 Motivation

Understanding how to design auctions with desirable incentive and e�ciency properties is a

central question in mechanism design. The Vickrey-Clarke-Groves (hereafter, VCG) mech-

anism is celebrated as a major achievement in the field because it performs well in both

respects - agents have a dominant strategy to truthfully report their private information and

the mechanism implements a Pareto e�cient allocation of resources. However, the VCG

mechanism loses its desired incentive and e�ciency properties without the quasilinearity re-

striction. Moreover, there are many well-studied cases where the quasilinearity restriction

is violated: bidders may be risk averse, have wealth e↵ects, face financing constraints or

be budget constrained. Indeed, observed violations of quasilinearity are frequently cited as

reasons for why we do not see multi-unit Vickrey auctions used in practice.1

In this paper, I study multi-unit auctions for indivisible homogenous goods when bid-

ders have private values, multi-unit demands, and non-quasilinear preferences. I provide

conditions under which we can construct an auction that retains the desired incentive and

e�ciency properties of the Vickrey auction. Instead of quasilinearity, I assume only that

bidders have positive wealth e↵ects; i.e. the goods being auctioned are normal goods. My

environment nests well-studied cases where bidders are risk averse, have budgets, or face

financing constraints. I show that there exists a mechanism that retains the desirable prop-

erties of the Vickrey auction if there are two bidders and bidders have single dimensional

types. However, I construct two impossibility theorems showing there is no mechanism that

retains the desired incentive and e�ciency properties of the Vickrey auction when bidders

have multi-dimensional types or when there are three or more bidders.

I begin by studying a setting with two bidders who have single dimensional types. I use

the taxation principle (see Rochet (1985)) to construct a mechanism that is ex-post Pareto

e�cient and dominant strategy incentive compatible. The taxation principle simplifies the

problem of finding an e�cient mechanism to a problem of finding an e�cient pricing rule

that ensures an ex-post Pareto e�cient allocation of resources. In my e�cient mechanism,

each bidder faces a pricing rule that states the price of acquiring additional units. The

price a bidder pays for additional units is determined by her rival’s reported type. I find

an e�cient price vector by defining a transformation that maps an arbitrary allocation rule

to a more e�cient allocation rule. I use Schauder’s fixed point theorem to show that this

1For example, Ausubel and Milgrom (2006), Rothkopf (2007), and Nisan et al. (2009) all cite budgets
and financing constraints as salient features of real-world auction settings that inhibits the use of the Vickrey
auctions. Che and Gale (1998) note that bidders often face increasing marginal costs of expenditures when
they have access to imperfect financial markets.
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transformation has a fixed point that defines an e�cient mechanism (Theorem 1).

I then construct two impossibility theorems showing that the positive result obtained in

Theorem 1 does not generalize beyond the two bidder single dimensional types case. My

first impossibility theorem (Theorem 2) is for a setting where bidders have multi-dimensional

types. I show there is no mechanism that satisfies: (1) individual rationality, (2) weak budget

balance, (3) dominant strategy incentive compatibility, and (4) ex-post Pareto e�ciency. To

prove this Theorem, it su�ces to consider a setting where two bidders compete for two units

and bidders have two-dimensional types. The first dimension of a bidder’s type describes her

willingness to pay for her first unit - I call this her intercept. The second dimension of a

bidder’s type is binary - it is either flat or steep. All else equal, a bidder with a flat demand

type has relatively greater demand for her second unit than a bidder with a steep demand

type.

I prove my first impossibility theorem by contradiction. If a mechanism satisfies the four

aforementioned properties, then I show that the price a bidder pays to win one unit must

vary with both dimensions of her rival’s reported type. However, wealth e↵ects imply that

a bidder’s demand for her second unit depends on how much she pays to win her first unit.

Thus, the solution to the e�cient design problem endogenously causes a bidder’s demand

for her second unit to vary with her rival’s reported type, even when bidders have private

values. The endogenous interdependence of bidder demands in the design problem without

quasilinearity yields an impossibility theorem that is similar to the well-known impossibility

theorems in interdependent value settings, when bidders have quasilinear preferences and

multi-dimensional types (see Dasgupta and Maskin (2000) and Jehiel and Moldovanu (2001)).

Because my proof shows that it is impossible to construct a mechanism that satisfies the

four properties with two-dimensional types (where the second dimension is binary), it follows

that there is no mechanism that satisfies the four properties on richer type spaces. The

increase in dimensionality only increases the number of incentive constraints that an e�cient

mechanism must satisfy.

I then return to the single dimensional types case and I consider a setting with three or

more bidders. To this end, my second impossibility theorem shows that there is no mechanism

that satisfies (a) individual rationality, (b) no subsides for bidders, (c) dominant strategy in-

centive compatibility, (d) ex-post Pareto e�cient, and (e) a monotonicity constraint on the

allocation rule. The monotonicity constraint states that a bidder wins a weakly greater num-

ber of units if her demand increases while her rivals’ reported demands decreases. While the

impossibility theorem holds in a general setting, it provides insights on the particular case of

bidders with private values and public budgets.2 The theorem shows that the clinching auc-

2This setting is studied by La↵ont and Robert (1996) and Maskin (2000) with a single good, and is one
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tion studied by Dobzinski, Lavi, and Nisan (2012) loses its desirable incentive and e�ciency

properties when assume bidders have strictly decreasing marginal values instead of constant

marginal values.

The rest of the paper proceeds as follows. The remainder of the introduction discusses

how my work relates to the existing literature in mechanism design. Section 2 describes

my model and mechanisms in the single dimensional types setting. Section 3 constructs an

e�cient mechanism for a setting with two bidders and two units. Section 4 considers the

e�cient auction design problem in a general setting with 2 bidders and k units. Section 5

then studies the multi-dimensional type setting, and section 6 studies the single dimensional

type setting with more than 2 bidders.

1.2 Related Literature

This paper studies a central question of mechanism design: how to design an auction that

allocates many homogenous goods to many di↵erent buyers? With quasilinearity, Holmström

(1979) shows that the Vickrey auction is the unique dominant strategy mechanism that im-

plements a Pareto e�cient allocation of goods. However, the Vickrey auction is not dominant

strategy implementable or e�cient without quasilinearity (see Ausubel and Milgrom (2006)).

There is a small literature that studies e�cient auction design without quasilinearity.

Most of this literature studies cases where bidders have hard budget constraints. In the

single unit context, Maskin (2000) and Pai and Vohra (2014) study the design of constrained

e�cient auctions that are Bayesian implementable. However, this paper studies e�cient

mechanisms that are dominant strategy implementable. Dobzinski, Lavi, and Nisan (2012)

is more similar to this paper. They study dominant strategy implementable auctions in a

setting where bidders have private values and multi-unit demands. They study the case

where bidders have hard budgets.

This paper is distinct from Dobzinski, Lavi, and Nisan in a few key respects. First, I give

necessary and su�cient conditions for e�cient auction design without making functional form

restrictions on bidder preferences. I only assume bidder preferences are such that goods are

normal, and hard budgets are nested as a special case. Second, my results show that the

privacy of bidder budgets do not necessarily inhibit e�cient auction design.3 In fact, Theorem

1 shows that if bidders’ private budget are perfectly correlated with their private values -

and hence bidder private information can be summarized by a single-dimensional type - then

of the cases studied by Dobzinski, Lavi, and Nisan (2012) a multi-unit setting.
3Dobzinski, Lavi, and Nisan (2012) show e�cient auction design is possible if and only if bidders have

private budgets.
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we can construct an e�cient auction for two bidders.4 In addition, Theorem 2 shows that it

is impossible to construct an e�cient auction if bidder types are multi-dimensional, even if

bidder budgets are public information.5

While most literature on auctions without quasilinearity focuses on the case of hard

budgets, there is a small literature that studies auction design without strong function form

restrictions on bidder preferences. The most notable paper in this literature is Maskin and

Riley (1984). Maskin and Riley study the design of revenue maximizing auctions in a general

setting where bidders are risk averse and have single dimensional types. More recently, Baisa

(2016a) studies the design of revenue maximizing auctions when bidders have positive wealth

e↵ects.

On e�ciency, Saitoh and Serizawa (2008) and Morimoto and Serizawa (2015) study the

auction design with non-quasilinear bidders, but in a single-unit demand settings. However,

this paper focuses on a multi-unit demand setting. Both of my impossibility theorems show

that the presence of multi-unit demands inhibits e�cient auction design. Hence, we get

results that are distinct from the positive results seen in the two aforementioned papers.

Most recently, Serizawa and Kazumura (2016) study the problem of selling heterogenous

goods to buyers with non-quasilinear preferences, but allow for multi-unit demands. They

show that there is no mechanism that is dominant strategy incentive compatible and Pareto

e�cient, even if only one bidder has multi-unit demands. In contrasts, this paper studies

the sale of homogenous goods. This is distinction is important for my results because an

impossibility result in a heterogenous good setting does not imply that e�cient design is

impossible with homogenous goods. In fact, Theorem 1 illustrates cases where e�cient

design is possible with multi-unit demand. In addition, I focus on how the dimensionality of

bidder types changes the auction design problem, while the above Serizawa and Kazumura

do not consider dimensionality restrictions on bidder types.

Outside of the auctions literature, Garratt and Pycia (2014) investigate a problem similar

to the one studied here. Garratt and Pycia study how positive wealth e↵ects influence the

possibility of e�cient bilateral trade in a Myerson and Satterthwaite (1983) setting. In

contrast to this paper, Garratt and Pycia show that the presence of wealth e↵ects and can

help to induce e�cient trade when there is two-sided private information.

4Bidders have perfectly correlated values and budgets in auctions where bidders endogenously determine
their budgets after observing their value (see, Baisa and Rabinovich (2016)).

5An example of a setting with public budgets and multi-dimensional types is setting where bidders de-
mands two units of the good, and the first dimension of a bidder’s type is her value for her first unit, and
the second dimension of a bidder’s type is her value for her second unit.
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2 Model

2.1 Bidder Preferences - The Single Dimensional Types Case

A seller has k units of an indivisible homogenous good. There are N bidders, who are vNM

expected utility maximizers. Bidders have private values and multi-unit demands. Bidder i’s

preferences are described by her type ✓
i

2 [0, ✓] := ⇥ ⇢ R+. If bidder i wins q 2 {0, 1, . . . , k}
units and receives m 2 R in monetary transfers, her utility is

u(q,m, ✓

i

) 2 R.

A bidder’s utility is continuous in her type ✓

i

and continuous and strictly increasing in

monetary transfers m.

If ✓
i

= 0, then bidder i has no demand for units,

u(q,m, 0) = u(q0,m, 0) 8q, q02{0, 1, . . . , k}, m 2 R.

If ✓
i

> 0, then bidder i has positive demand for units,

q

0
> q () u(q0,m, ✓

i

) > u(q,m, ✓

i

), 8✓
i

2 ⇥, m 2 R.

Without loss of generality, I assume that u(0, 0, ✓
i

) = 0 8✓
i

. Bidders have bounded demand

for units of the good. Thus, there exists a p > 0 such that

0 > u(q,�p, ✓

i

) 8q 2 {0, 1, . . . , k}, ✓

i

2 ⇥.

I make three additional assumptions on bidder preferences. First, I assume that bidder

preferences satisfy the law of demand. That is, if a bidder is unwilling to pay p for her qth

unit, then she is unwilling to pay p for her (q + 1)st unit. This implies that bidders have

downward sloping demand curves and generalizes the declining marginal values assumption

imposed in the benchmark quasilinear setting.

Assumption 1. (Law of Demand)

u(q�1,m, ✓

i

) � u(q,m�p, ✓

i

) =) u(q,m, ✓

i

) > u(q+1,m�p, ✓

i

), 8q 2 {1, . . . , k�1}, ✓
i

> 0.

Second, I assume that bidders have positive wealth e↵ects. This means a bidder’s demand

does not decrease as her wealth increases. To be more concrete, suppose that bidder i was

faced with the choice between two bundles of goods. The first bundle has x goods and
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costs p

x

total, and the second bundle has y goods and costs p

y

total, where we assume

x > y. If bidder i prefers the first bundle with more goods, then positive wealth e↵ects state

that she also prefers the first bundle with more goods if we increased her wealth prior to

her purchasing decision. This is a multi-unit generalization of Cook and Graham’s (1977)

definition of an indivisible, normal good. I define two versions of positive wealth e↵ects, weak

and strict. When constructing an e�cient mechanism, I assume the weak version, which nests

quasilinearity. When presenting my impossibility theorems, I assume the strict version that

rules out the quasilinear setting where the benchmark Vickrey auction is already known to

solve the e�cient auction design problem.

Assumption 2. (Positive wealth e↵ects)

Suppose x > y where x, y 2 {0, 1, . . . k}. Bidders have weakly positive wealth e↵ects if

u(x,�p

x

, ✓

i

) � u(y,�p

y

, ✓

i

) =) u(x,m� p

x

, ✓

i

) � u(y,m� p

y

, ✓

i

) 8m > 0, ✓

i

> 0,

and strictly positive wealth e↵ects if

u(x,�p

x

, ✓

i

) � u(y,�p

y

, ✓

i

) =) u(x,m� p

x

, ✓

i

) > u(y,m� p

y

, ✓

i

) 8m > 0, ✓

i

> 0.

Finally, I assume that bidders with higher types have greater demands.

Assumption 3. (Single-crossing)

Suppose x > y where x, y 2 {0, 1, . . . k}. Then,

u(x,�p

x

, ✓) � u(y,�p

y

, ✓) =) u(x,�p

x

, ✓

0) > u(y,m� p

y

, ✓

0) 8✓0 > ✓.

I let b1(✓i) be the amount that bidder i is willing to pay for her first unit of the good.

Thus, b1(✓i) implicitly solves

u(1,�b1(✓i), ✓i) = 0.

It is without loss of generality to assume types are such that b1(✓) = ✓ 8✓ 2 ⇥. Thus, ✓
i

parametrizes the intercept of bidder i’s demand curve.

I similarly define b

j

(✓
i

, x) as bidder i’s willingness to pay for her jth unit, conditional on

winning her first j�1 units for a cost of x 2 R. Thus, b
j

(✓
i

, x) is implicitly defined as solving,

u(j,�x� b

j

(✓
i

, x), ✓
i

) = u(j � 1,�x, ✓

i

).

I analogously define s
j

(✓
i

, x) as bidder i’s willingness to sell her jth unit, conditional on having

paid x in total. Thus, a bidder’s willingness to sell her j

th unit s

j

is implicitly defined as
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solving

u(j,�x, ✓

i

) = u(j � 1,�x+ s

j

, ✓

i

).

Note that by construction,

s

j

(✓
i

, x) = b

j

(✓
i

, x+ s

j

(✓
i,

x)).

Assumptions 1, 2, and 3 imply:

1. b

j

(✓, x) > b

j+1(✓, x) and s

j

(✓, x) > s

j+1(✓, x) for all ✓ 2 ⇥, x 2 R, j 2 {1, . . . , k}.

2. b

j

and s

j

are continuous and decreasing in the second argument.6

3. b

j

and s

j

are continuous and strictly increasing in the first argument.

The first point is implied by the law of demand. The second point is implied by positive

wealth e↵ects. The final point is implied by single crossing.

2.2 Mechanisms

By the revelation principle, it is without loss of generality to consider direct revelation mech-

anisms. A direct revelation mechanism maps the profile of reported types to an outcome.

An outcome specifies a feasible allocation of goods and payments. An allocation of goods

y 2 {0, 1, . . . , k}N is feasible if
P

N

i=1 yi  k. I let Y be the set of all feasible allocations. A

(deterministic) allocation rule q maps the profile of reported types to a feasible allocation

q : ⇥N ! Y . The payment rule maps the profile of reported types to payments x : ⇥N ! RN .

A direct revelation mechanism � consists of an allocation rule and a payment rule. For sim-

plicity, I let �
i

(✓
i

, ✓�i

) represent that allocation and payment for bidder i when she reports

type ✓

i

and her rivals report types ✓�i

.

I study direct revelation mechanisms that satisfy the following properties.

Definition 1. (Ex-post individual rationality)

A mechanism � is ex-post individually rational if

u(�
i

(✓
i

, ✓�i

), ✓
i

) � 0 8(✓
i

, ✓�i

) 2 ⇥N

.

Thus, a mechanism is ex-post individually rational (hereafter, individually rational) if a

bidder’s utility never decreases from participating in the mechanism.

6bj and sj are weakly decreasing under weakly positive wealth e↵ects and strictly decreasing under strictly
positive wealth e↵ects.
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Definition 2. (Weak budget balance)

A mechanism � satisfies weak budget balance if

NX

i=1

x

i

(✓
i

, ✓�i

) � 0 8(✓
i

, ✓�i

) 2 ⇥N

.

The weak budget balance condition is an individual rationality constraint on the auction-

eer. A mechanism that satisfies weak budget balance always yields weakly positive revenue.

When I study the single dimensional types setting with N � 3 bidders, I impose a stronger

but related requirement - no subsidies. A mechanism provides no subsidies if it never pays

a bidder a positive amount to participate. Morimoto and Serizawa (2015) impose the same

condition when studying e�cient auctions in a setting where bidders have unit demand.

Definition 3. (No subsidies)

A mechanism � gives no subsidies if x
i

(✓
i

, ✓�i

) � 0 8(✓
i

, ✓�i

) 2 ⇥N .

We study mechanisms that implement e�cient allocation of goods. With quasilinearity,

e�ciency implies that goods are assigned to bidders with the highest values. Yet, without

quasilinearity, there is no clear analog for a bidder’s value. In this paper, I look at mechanisms

that satisfy a weak notion of e�ciency, ex-post Pareto e�cient. Our notion of ex-post Pareto

e�ciency is the same notion used by Dobzinski, Lavi, and Nisan (2012) and Morimoto and

Serizawa (2015).

Definition 4. (ex-post Pareto e�cient)

An outcome (y, x) 2 Y ⇥ RN is ex-post Pareto e�cient if 8(ỹ, x̃) 2 Y ⇥ RN such that

u(ỹ
i

,�x̃

i

, ✓

i

) > u(y
i

,�x

i

, ✓

i

),

for some i 2 {1, . . . , N}, then either

NX

i=1

x

i

>

NX

i=1

x̃

i

,

or

u(y
j

,�x

j

, ✓

j

) > u(ỹ
j

,�x̃

j

, ✓

j

),

for some j 2 {1, . . . , N}.

Thus, an outcome is ex-post Pareto e�cient, if any reallocation of resources that makes

bidder i strictly better o↵ necessarily makes her rival strictly worse o↵, or strictly decreases
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revenue. We say that the mechanism � is an ex-post Pareto e�cient mechanism (here-

after, Pareto e�cient) if �(✓1, . . . , ✓N) 2 Y ⇥ RN is an ex-post Pareto e�cient allocation

8(✓1, . . . , ✓N) 2 ⇥N .

In addition, we study mechanisms that can be implemented in dominant strategies.

Definition 5. (Dominant strategy incentive compatibility)

A mechanism � is dominant strategy incentive compatible if

u(�
i

(✓
i

, ✓�i

), ✓
i

) � u(�
i

(✓0
i

, ✓�i

), ✓
i

) 8✓
i

, ✓

0
i

2 ⇥, ✓�i

2 ⇥N�1
.

Since we study mechanisms that are dominant strategy implementable (hereafter, incen-

tive compatible), there is no need to model bidder beliefs.

When I study the single dimensional types setting with N � 3 bidders, I also consider

mechanisms that satisfy a monotonicity condition on the allocation rule.

Definition 6. (Monotone allocation rule)

A mechanism � has a monotone allocation rule if ✓h
i

> ✓

`

i

and ✓

h

�i

� ✓

`

�i

in the coordinate

wise sense implies that

q

i

(✓h
i

, ✓

`

�i

) � q

i

(✓`
i

, ✓

h

�i

).

Thus, a mechanism has a monotone allocation rule if bidder i always wins a weakly

greater number of units when she increases her reported demand and her rivals decrease

their reported demands. Note that with two bidders, any incentive compatible mechanism

has a monotone allocation rule.

It will also be useful to note the taxation principle of Rochet (1985). The taxation

principle shows that if � is incentive compatible, then there exists a corresponding set of

pricing rules {p1, . . . , pN} where p

i

: ⇥N�1 ! Rk+1 that implements mechanism �. The

corresponding pricing rule that implements mechanism � is such that

q

i

(✓
i

, ✓�i

) = m =) x

i

(✓
i

, ✓�i

) =
mX

j=0

p

i,j

(✓�i

),

and

q

i

(✓
i

, ✓�i

) = m =) m 2 arg max
m2{0,1,...,k}

u(m,�
mX

j=0

p

i,j

(✓�i

), ✓
i

).

3 Single Dimensional Types - the 2x2 case

In order to motivate the construction of an e�cient mechanism in a general two bidder,

single dimensional type environment, I first construct a mechanism that retains the desired
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incentive and e�ciency properties of the Vickrey auction in the two bidder and two unit case.

The mechanism is symmetric and gives no subsidies.

The mechanism’s allocation function can be described (almost everywhere) by a cut-o↵

rule d, where d : ⇥ ! ⇥ is such that

✓

i

> d(✓
j

) =) q

i

(✓
i

, ✓

j

) � 1 and d(✓
j

) > ✓

i

=) q

i

(✓
i

, ✓

j

) = 0.

The cut-o↵ rule states the minimal type that bidder i must report to win at least one unit,

given her rival’s type. The rule divides the two-dimensional space of bidder reports into three

regions: a region where bidder 1 wins both units, a region where each bidder wins one unit,

and a region where bidder 2 wins both units. I construct a cut-o↵ rule that characterizes

a mechanism that is incentive compatible and e�cient. I assume that a bidder’s cut-o↵ is

strictly increasing and continuous in her rival’s type.7

d(θ�)

d(θ�)

q1 = q2 = 1q1 = 0; q2 = 2

q1 = 2; q2 = 0
θ1

θ2

Figure 1: Allocations implied by an arbitrary symmetric cut-o↵ rule d.

The corresponding (symmetric) pricing rule is such that p1(✓j) = d(✓
j

), because bidder i

wins at least one unit (✓
i

� d(✓
j

)) when her willingness to pay for her first unit ✓
i

exceeds

the amount she must pay for the first unit p1(✓j).8

My goal is to construct a cut-o↵ rule that implements a Pareto e�cient outcome. The

mechanism assigns units to bidders based upon a bidder’s willingness to pay for an additional

unit. More precisely, bidder i wins both units if and only if her willingness to pay for her last

unit, conditional on paying p1(✓j) for her first unit, exceeds her rival’s willingness to pay for

7Proposition 3 shows that a continuous and strictly increasing first unit cut-o↵ is a necessary condition
for any mechanism that satisfies individual rationality, budget balance, incentive compatibility, and Pareto
e�ciency.

8There is no bidder specific subscript in the description of the pricing rule and the cut-o↵ rule because we
construct a symmetric mechanism.
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her first unit. Thus, I construct a mechanism where the price a bidder pays for her second

unit equals her rival’s willingness to pay for her first unit,

p2(✓j) = ✓

j

.

Therefore, if bidder i’s conditional willingness to pay for her second unit b2(✓i, p1(✓j))

exceeds bidder j’s willingness to pay for her first unit ✓
j

, the cut-o↵ rule is such that bidder

i wins both units d(✓
i

) � ✓

j

. Thus, the cut-o↵ rule d is such that

0 � ✓

j

� b2(✓i, p1(✓j)) = ✓

j

� b2(✓i, d(✓j)) =) d(✓
i

) � ✓

j

,

and

✓

j

� b2(✓i, p1(✓j)) = ✓

j

� b2(✓i, d(✓j)) � 0 =) ✓

j

� d(✓
i

).

If the cut-o↵ rule d is continuous and increasing then ✓

j

� b2(✓i, d(✓j)) is continuous and

strictly increasing in ✓

j

.9 Then,

p1(✓i) = d(✓
i

) = ✓

j

() ✓

j

� b2(✓i, p1(✓j)) = ✓

j

� b2(✓i, d(✓j)) = 0.

In other words, if bidder j is indi↵erent between winning zero and one unit, then bidder j’s

willingness to pay for her first unit equals bidder i’s conditional willingness to pay for her

second unit. When we substitute d(✓
i

) for ✓

j

, the right hand side of the above expression

simplifies to,

d(✓
i

) = b2(✓i, d(d(✓i)). (1)

Lemma 1 shows that there exists a cut-o↵ d that satisfies the above equation for all ✓
i

2 [0, ✓].

Lemma 1. There exists a continuous and strictly increasing function d : [0, ✓] ! [0, ✓] such

that ✓ > d(✓) 8✓ > 0, and

d(✓) = b2(✓, d(d(✓)).

Proposition 1 confirms that a cut-o↵ rule that satisfies Equation (1) characterizes a mech-

anism which retains the desirable properties of the Vickrey auction. In particular, the cut-o↵

rule d defines a feasible mechanism that satisfies (1) individual rationality, (2) no subsidy,

(3) incentive compatibility, (3) no subsidies, and (4) Pareto e�ciency. The proof follows

from the construction of the cut-o↵ rule d. The associated pricing rule is such that bidder i

demands both units if and only if she was willingly to pay more for her final unit than her

rival was willing to pay for her first unit. Or in other words, the pricing rule associated with

d is such that the two highest conditional willingness to pays are winning bids.

9This is because b2 is decreasing in the second argument and d(✓j) is increasing in ✓j .
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Proposition 1. There exists a mechanism that satisfies (1) individual rationality, (2) no

subsidies, (3) incentive compatibility, and (4) Pareto e�ciency. The mechanism has cut-o↵

rule d that solves Equation (1) and pricing rule p, where

p1(✓j) = d(✓
j

), p2(✓j) = ✓

j

.

The proof of Proposition 1 is a Corollary to Proposition 2 in the k unit setting. Hence,

it is omitted.

4 The two bidder k unit case

In this section we show that there exists a mechanism that retains the desirable incentive and

e�ciency properties of the Vickrey auction when two bidders compete for k units. Just as

in the last section, we characterize the mechanism by constructing a symmetric cut-o↵ rule

d : ⇥ ! ⇥k. The m

th dimension of the cut-o↵ rule d

m

(✓
j

) gives the lowest type that bidder

i must report to win at least m units, given that her rival reports type ✓

j

.10 Therefore, a

mechanism � has cut-o↵ rule d if

✓

i

> d

m

(✓
j

) =) q

i

(✓
i

, ✓

j

) � m,

and

d

m

(✓
j

) > ✓

i

=) m > q

i

(✓
i

, ✓

j

).

Incentive compatibility implies q
i

(✓
i

, ✓

j

) is weakly increasing in ✓

i

and weakly decreasing

in ✓

j

.11 Thus, the cut-o↵ rule d

m

(✓) is weakly increasing in ✓ and weakly increasing in m.

We let D ⇢ {d|d : ⇥ ! ⇥k} be the set of all cut-o↵ rules that are weakly increasing in ✓ and

m. Note that a cut-o↵ rule d 2 D does not necessarily correspond to a feasible mechanism.

I prove that there exists an e�cient mechanism by constructing a transformation T that

maps an arbitrary cut-o↵ rule d to a more e�cient cut-o↵ rule T (d). I argue that the

fixed point of this transformation defines a feasible mechanism that satisfies (1) individual

rationality, (2) no subsidy, (3) incentive compatibility, and (4) Pareto e�ciency.

In order to define the transformation, I first define a pricing rule that corresponds to

a cut-o↵ rule d. The corresponding pricing rule ensures that bidder i demands at least m

units if and only if her type ✓

i

exceeds d
m

(✓
j

). Therefore, the price of bidder i’s first unit is

10Note that if a direct revelation mechanism is such that qi(✓i, ✓j) � m, then dominant strategy incentive
compatibility implies that qi(✓0i, ✓j) � m 8✓0i � ✓i.

11qi(✓i, ✓j) is weakly decreasing in ✓j because Pareto e�ciency implies qj(✓i, ✓j) = k�qi(✓i, ✓j) and qj(✓i, ✓j)
is weakly increasing in ✓j .

13



p1(✓j, d) = d1(✓j). This is because bidder i demands at least one unit if and only if her type

✓

i

exceeds the cut-o↵ for her first unit d1(✓j).12

I determine the price of bidder i’s mth unit inductively. If bidder i pays
P

m�1
n=1 p

n

(✓
j

, d)

to win m� 1 units, then she is willing to pay b

m

(✓
i

,

P
m�1
n=1 p

n

(✓
j

, d)) to win her mth unit. In

the pricing rule that corresponds to cut-o↵ rule d, bidder i demands her mth unit if and only

if her type is above the cut-o↵ for the m

th unit. Or equivalently,

b

m

(✓
i

,

m�1X

n=1

p

n

(✓
j

, d)) > p

m

(✓
j

, d) () ✓

i

> d

m

(✓
j

).

Thus, the price of the m

th unit is,

p

m

(✓
j

, d) = b

m

(d
m

(✓
j

),
m�1X

n=1

p

n

(✓
j

, d)).

Lemma 2 shows bidder i pays a higher total price for m units when bidder j has a higher

type.

Lemma 2.

P
m

n=1 pn(✓j, d) is weakly increasing in ✓

j

for all ✓
j

2 ⇥, m 2 {1, . . . , k}, d 2 D.

The transformed cut-o↵ rule is such that bidder i wins her m

th unit if and only if her

type ✓

i

is such that her willingness to pay for her mth unit exceeds her rival’s willingness to

pay for her k�m+1st unit. In other words, the transformed cut-o↵ rule is such that bidder

i wins at least m units if and only if her willingness to pay for her mth unit ranks among the

top k willingness to pays of the two bidders.

We calculate a bidder’s willingness to pay for her m

th unit under the untransformed

pricing rule that corresponds to cut-o↵ rule d. Thus, bidder i’s willingness to pay for her mth

unit is

b

m

(✓
i

,

m�1X

n=1

p

n

(✓
j

, d)).

And bidder j’s willingness to pay for her k �m+ 1st unit is

b

k�m+1(✓j,
k�mX

n=1

p

n

(✓
i

, d)).

Thus, the transformed cut-o↵ rule is such that

✓

i

> T (d
m

)(✓
j

) =) b

m

(✓
i

,

m�1X

n=1

p

n

(✓
j

, d)) > b

k�m+1(✓j,
k�mX

n=1

p

n

(✓
i

, d)).

12I show that there is a mechanism that satisfies the no subsidy condition. Hence, we assume p0(✓j) = 0.
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For ease of notation, we let

f(✓
i

, ✓

j

,m, d) := b

m

(✓
i

,

m�1X

n=1

p

n

(✓
j

, d))� b

k�m+1(✓j,
k�mX

n=1

p

n

(✓
i

, d)).

Thus, f(✓
i

, ✓

j

,m, d) represents the amount that bidder i’s willingness to pay for her mth unit

exceeds her rival’s willingness to pay for her k �m+ 1st unit, when we evaluate willingness

to pays under the pricing rule induced by cut-o↵ rule d.

Lemma 3. f is strictly increasing in the first argument, and strictly decreasing in the second

and third arguments.

Lemma 3 implies that if f(m, ✓, ✓

j

, d)  0, then bidder i’s willingness to pay for her mth

unit is always less than her rival’s willingness to pay for her k � m + 1st unit. Therefore,

the transformed cut-o↵ is such that bidder i wins less than m units for any reported type.

Hence, let T (d
m

)(✓
j

) = ✓.

If f(m, ✓, ✓

j

, d) > 0, then bidder i’s willingness to pay for her mth unit exceeds her rival’s

willingness to pay for her k �m+ 1st unit when ✓

i

is su�ciently large. Then, let T (d
m

)(✓
j

)

be the lowest type where bidder i’s willingness to pay for her m

th unit exceeds her rival’s

willingness to pay for her k �m+ 1st unit,

T (d
m

)(✓
j

) := inf{✓ 2 [0, ✓]|f(m, ✓, ✓

j

, d) � 0}.

Thus, the transformed cut-o↵ rule assigns bidder i at least m units if and only if her will-

ingness to pay for her m

th unit exceeds her rival’s willingness to pay for her k � m + 1st

unit. We calculate a bidder’s willingness to pay for her mth unit by assuming that the price

she paid for her first m � 1 units was determined by the pricing rule corresponding to the

(untransformed) cut-o↵ rule d. This is stated in the remark below.

Remark 1. If d 2 D, then

b

m

(✓
i

,

m�1X

n=1

p

n

(✓
j

, d)) � b

k�m+1(✓j,
k�mX

n=1

p

n

(✓
i

, d)) =) ✓

j

� T (d
m

)(✓
j

),

b

k�m+1(✓j,
k�mX

n=1

p

n

(✓
i

, d)) � b

m

(✓
i

,

m�1X

n=1

p

n

(✓
j

, d)) =) T (d
m

)(✓
j

) � ✓

i

.

A consequence of Remark 1 is that if T has a fixed point d

⇤ 2 D, then d

⇤ defines a

feasible mechanism that satisfies individual rationality, no subsidy, incentive compatibility,

and Pareto e�ciency. This is because the pricing rule corresponding to d

⇤ is such that (1)
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bidder i demands m units if and only if her rival demands k�m units, and (2) bidder i wins

her m

th unit if and only if that her willingness to pay for her m

th unit exceeds her rival’s

willingness to pay for her k�m+1st unit. Thus, there are no Pareto improving trades where

bidder i sells one of her units to bidder j.

Proposition 2. If d⇤ 2 D is a fixed point of the mapping T , then d

⇤ corresponds to a feasible

mechanism that satisfies (1) individual rationality, (2) no subsidy, (3) incentive compatibility,

and (4) Pareto e�ciency.

I use Schauder’s fixed point theorem to show that the mapping T has a fixed point d⇤ 2 D.

In particular, I argue that (1) if d 2 D, then T (d) 2 D; (2) T is a continuous mapping; and

(3) D is compact. These three conditions guarantee the existence of a fixed point according

to Schauder’s fixed point theorem (see Aliprantis and Border (2006, pg.. 583)).

Theorem 1. There exists a d

⇤ 2 D such that T (d⇤) = d

⇤.

Thus, Theorem 1 shows that in the 2 ⇥ k setting, there is a mechanism that retains

the desirable properties of the Vickrey auction. The mechanism satisfies (1) individually

rationality (2) no subsidy, (3) incentive compatibility, and (4) Pareto e�ciency.

5 Multi-dimensional Types and An Impossibility The-

orem

While we obtain a positive result with two bidders who have single dimensional types, in

this section I show that the positive result does not carry over to the multi-dimensional type

case. I study a setting where bidders have two-dimensional types, and the second dimension

of a bidder’s type is binary. I show that there is no mechanism that satisfies (1) individual

rationality (2) weak budget balance, (3) incentive compatibility, and (4) Pareto e�ciency (for

the remainder of this section, Properties (1)-(4)). Since there is no mechanism that satisfies

Properties (1)-(4) in the two-dimensional types, it follows that there is no mechanism that

satisfies Properties (1)-(4) when we have a richer type space - the increase in dimensionality

only adds to the number of incentive constraints that our mechanism must satisfy.

5.1 Setting with Multi-dimensional Types

We study a setting where there are two bidders who compete for two homogenous goods.

A bidder’s type is described by a two dimensional variable �

i

= (✓
i

, t

i

) 2 [0, ✓] ⇥ {f, s}. If

bidder i has type �

i

, wins q 2 {0, 1, 2} units, and receives transfer m 2 R, then her utility is
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u(q,m, �

i

) 2 R, where u is continuous and strictly increasing in m. Again, we assume that

bidder i has no demand for units if the first dimension of her type ✓

i

= 0,

u(q,�x, (0, t
i

)) = u(q0,�x, (0, t
i

)) 8q, q0 2 {0, 1, 2}, x 2 R, t

i

2 {s, f},

and a bidder has positive demand if ✓
i

> 0,

u(q,�x, (✓
i

, t

i

)) > u(q0,�x, (✓
i

, t

i

)) 8q > q

0 2 {0, 1, 2}, x 2 R, t

i

2 {s, f}.

The second dimension of bidder i’s type t

i

2 {f, s} represents the steepness of her demand

curve - it can either be flat (f) or steep (s). Bidders with steeper demand curves have

relatively lower demand for their second unit. Thus, if ✓
i

> 0,

u(2,�x� y, (✓
i

, s)) � u(1,�x, (✓
i

, s)) =) u(2,�x� y, (✓
i

, f)) > u(1,�x, (✓
i

, f)).

Hence, if b2(�i, x) is bidder i’s willingness to pay for her second unit when she has type �

i

and paid x for her first unit, then b2 is such that

b2((✓i, f), x) > b2((✓i, s), x) > 0 8✓
i

2 (0, ✓].

Again, we assume u is continuous in ✓

i

, and it is without loss of generality to assume

that ✓
i

represents bidder i’s willingness to pay for her first unit of the good. I refer to ✓

i

as

bidder i’s intercept. We assume bidder preferences satisfy (1) the law of demand, (2) strictly

positive wealth e↵ects, and (3) single-crossing in ✓ (Assumptions 1-3, as defined in Section

2). Thus,

1. ✓

i

> b2(�i, x) > 0, and s1(�i, x) � s2(�i, x), 8x � 0, �

i

= (✓
i

, t

i

) 2 (0, ✓]⇥ {f, s}.

2. b

n

(�
i

, x) and s

n

(�
i

, x) are continuous and strictly decreasing in x, 8x 2 R, �
i

2 (0, ✓]⇥
{f, s}.

3. b

n

((✓0
i

, t

i

), x) > b

n

((✓
i

, t

i

), x) and s

n

((✓0
i

, t

i

), x) > s

n

((✓
i

, t

i

), x) 8✓0
i

> ✓

i

, x 2 R, t

i

2
{f, s}.

Points 1, 2, and 3 above are direct implications of Assumptions 1, 2, and 3, respectively.

5.2 An impossibility theorem for the multi-dimensional type case

I prove the impossibility theorem in the multi-dimensional type setting by contradiction.

The proof proceeds roughly as follows. If a mechanism satisfies Properties (1)-(4), then the
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price a bidder pays to win her first unit depends on her rival’s demand for a second unit.

Thus, all else equal, bidder i faces a relatively higher price for her first unit when bidder j

reports a flatter demand curve.13Consequently, positive wealth e↵ects imply that bidder i has

lower demand for a second unit (conditional on buying her first unit) when her rival reports

a flatter demand curve (bidder i pays more for a first unit when bidder j reports a flatter

demand curve). Yet, if bidder i has lower demand for a second unit, then bidder j faces a

relatively lower price to win her first unit. This is because bidder i’s demand for a second

unit determines the price bidder j pays for a first unit. Thus, bidder j is able to pay a lower

price for her first unit by overstating her demand for her second unit. When she overstates

demand for her second unit, she is able to lower her rival’s demand for her second unit, and

thus lower the price she pays for her first unit. This violates incentive compatibility and

hence, we obtain a contradiction.

In order to formalize this line of argument, it is useful to invoke the taxation principle,

which states that changes in bidder i’s reported type change her payment only if they change

her allocation.

Remark 2. (Taxation principle) If � satisfies Properties (1)-(4), then there exists pricing rules

p

i,0, pi,1, and p

i,2 such that

x

i

(�
i

, �

j

) = p

i,0(�j) () q

i

(�
i

, �

j

) = 0,

x

i

(�
i

, �

j

) = p

i,0(�j) + p

i,1(�j) () q

i

(�
i

, �

j

) = 1,

and

x

i

(�
i

, �

j

) = p

i,0(�j) + p

i,1(�j) + p

i,2(�j) () q

i

(�
i

, �

j

) = 2.

Lemma 4 simplifies the proof further. It shows that any mechanism that satisfies Prop-

erties (1)-(4) also satisfies the no subsidy condition. Individual rationality ensures that

p

i,0(�j)  0, because a bidder never regrets participating in the mechanism, even if she wins

no units. In addition, I show that we violate weak budget balance if p
i,0(�j) < 0. This

is because e�ciency and incentive compatibility imply that bidder j wins both units for a

negligible payment when bidder i reports a su�ciently low intercept ✓
i

. Thus, bidder i must

be paid at most an arbitrarily small amount, or else we would violated weak budget balance.

Lemma 4. If � satisfies Properties (1)-(4), then

q

i

(�
i

, �

j

) = 0 =) x

i

(�
i

, �

j

) = 0.

13When bidder j reports flat demand, she is indicating that she has greater demand for her second unit of
the good relative to the case where she has steep demand.
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I form the proof by contradiction by placing necessary conditions on a mechanism’s allo-

cation rule. It is useful to describe a mechanism’s allocation rule by a cut-o↵ rules. The first

cut-o↵ rule specifies the minimal intercept a bidder must report to win at least one unit, for

a given reported steepness and her rival’s type,

d

ti
i,1(�j) :=

8
<

:
inf{✓ 2 ⇥|q

i

((✓, t
i

), �
j

) � 1} if 9✓ 2 ⇥ s.t. q

i

((✓, t
i

), �
j

) � 1

✓ else.

.

Therefore, given bidder j’s reported type �

j

, bidder i wins at least one unit if she reports

type �

i

= (✓
i

, t

i

), where ✓

i

> d

ti
i,1(�j). Similarly, the second cut-o↵ function that states the

minimal intercept a bidder must report in order to win both units,

d

ti
i,2(�j) =

8
<

:
inf{✓ 2 ⇥|q

i

((✓, t
i

), �
j

) = 2} if 9✓ 2 ⇥ s.t. q

i

((✓, t
i

), �
j

) � 2

✓ else.

.

Remark 3 gives necessary conditions on the cut-o↵ rules of mechanism that satisfy Properties

(1)-(4).

Remark 3. If � satisfies Properties (1)-(4), then

(1) q1(�1, �2) + q2(�1, �2) = 2 if ✓

i

> 0 for some i = 1, 2.

(2) d

ti
i,1(0, tj) = d

ti
i,2(0, tj) = 0.

(3) d

ti
i,2(✓j, tj), and d

ti
i,1(✓j, tj) are weakly increasing in ✓

j

.

(4) d

ti
i,2(�j) � d

ti
i,1(�j).

The first point states that both units are sold if at least one bidder has positive demand.

The second point states that a bidder wins both units if she reports positive demand and

her rival reports no demand. The third point states that a bidder faces a greater intercept

cut-o↵ when her rival reports greater demand. The final point states the cut-o↵ intercept

for winning both units is weakly greater than the cut-o↵ intercept for winning a single unit.

The first two points directly follow from Pareto e�ciency, and the latter two points follow

from incentive compatibility.

Proposition 3 places additional restrictions on the cut-o↵ rules. The Proposition shows

that a bidder’s first cut-o↵ is continuous and strictly increasing in her rival’s intercept. Thus,

it becomes continuously more di�cult for bidder i to win a single unit as her rival increases

her reported intercept. In addition, bidder i has a strictly greater cut-o↵ for her second unit
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than she does for her first unit. Or in other words, given bidder j’s reported type �

j

, there

is always an interval of reported intercepts for which bidder i wins exactly one unit.

Proposition 3. Fix t

i

, t

j

2 {s, f}. If � satisfies Properties (1)-(4), then d

ti
i,1(✓j, tj) is con-

tinuous and strictly increasing in ✓

j

, for all ✓
j

2 ⇥, and

d

ti
i,2(✓j, tj) > d

ti
i,1(✓j, tj) 8✓j 2 (0, ✓].

While the formal proof of Proposition 3 is long, the intuition behind the proof is straight-

forward. I first show that dti
i,2(✓j, tj) > d

ti
i,1(✓j, tj). The proof is by contradiction. If the two

cuto↵s are equal at a point, then there is a point where bidder i can increase her reported

intercept by an arbitrarily small amount and change her allocation from winning zero units

to winning both units. Yet, if it is the case that there is a Pareto e�cient outcome where

bidder i wins no units (and bidder j wins both units) when she reports the lower intercept,

then it must be the case that bidder i’s demand for her first unit is su�ciently low relative

to bidder j’s demand for her second unit. Declining demand then implies that her demand

for her second unit is non-negligibly lower than bidder j’s demand for her first unit. Thus, if

we increase bidder i’s intercept by an arbitrarily small amount, her demand for her second

unit remains lower than her rival’s demand for her first unit. Hence, it is Pareto ine�cient

to assign bidder i both units.

I then use a similar style of proof to show that a small increase in bidder j’s reported

intercept must lead to a small increase in bidder i’s first cut-o↵. Hence, the first cut-o↵ is

continuous and strictly increasing.

The taxation principle and Proposition 3 imply that a bidder’s first cut-o↵ is independent

of her steepness. This is intuitive, because a bidder demands at least one unit if and only if

her willingness to pay for her first unit ✓
i

exceeds the price of the first unit p
i,1(�j). Bidder

i’s demand for her first unit is independent of her steepness, thus her first intercept cut-o↵

is independent of her first unit.

Corollary 1. If � satisfies Properties (1)-(4)

p

i,1(�j) = d

f

i,1(�j) = d

s

i,1(�j) 8�j 2 {s, f}⇥⇥.

Given the Corollary 1, I drop the superscript on a bidder’s first cut-o↵ d

ti
i,1.

We also use Proposition 3 to get more precise information on the pricing rule. Corollary

2 shows that the price a bidder pays for her first unit equals her rival’s willingness to pay for

her second unit, conditional on having already won her first unit. In addition, the price a

bidder pays for her second unit equals her rival’s willingness to pay for her first unit. Thus,
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the mechanism assigns one bidder both units if and only if her willingness to pay for her

second unit, conditional on winning her first unit, exceeds her rival’s willingness to pay for

her first unit. To prove the Corollary, consider a case where bidder i intercept equals her

first cut-o↵ ✓

i

= d

i,1(�j) = p

i,1(�j). In this case, both bidders’ intercept reports are locally

pivotal. If bidder i increases her reported intercept by a negligible amount, then she wins one

unit. Similarly if bidder j increases her reported intercept by a negligible amount, she wins

both units. Incentive compatibility then implies that the pricing rule is such that bidder i is

indi↵erent between winning zero and one units and bidder j is indi↵erent between winning

one and two units. In addition, e�ciency implies bidder i’s willingness to pay for her first

unit equals bidder j’s willingness to pay for her second unit. If the two quantities were

unequal, then we could find a Pareto improving reallocation where the bidder with the lower

willingness to pay sells a unit to the bidder with the higher willingness to pay.

Corollary 2. If � satisfies Properties (1)-(4), then ✓

i

= d

i,1(�j), implies that

✓

i

= p

i,1(�j) = p

j,2(�i) = b2(�j, pj,1(�i)). (2)

A consequence of Corollary 2 is that bidder i pays more to win her first unit when her

rival has a flat demand curve. This is because her rival has a relatively higher willingness to

pay for her second unit when her demand curve is flat, and the price bidder i pays for her

first unit is her rival’s (conditional) willingness to pay for her second unit.

Corollary 3. If � satisfies Properties (1)-(4), then

p

i,1(✓j, f) = d

i,1(✓j, f) > d

i,1(✓j, s) = p

i,1(✓j, s) 8✓j 2 (0, ✓].

d 1,1(θ�,s) d 1,1(θ�,f)

d 2,1(θ�,t 1)

θ1

θ2

Figure 2: First Unit Cut-o↵ rules for a fixed t1.
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Thus, if bidder j reports a flat demand curve (as opposed to a steep demand curve), then

bidder i pays more to win her first unit. If bidder i pays more to win her first unit, then she

has lower demand for her second unit. If bidder i has lower demand for her second unit of

the good when bidder j reports a flat demand curve, then Corollary 3 implies bidder j pays

a lower price to win her first unit of the good. Thus, bidder j is able to lower the price that

she pays for her first unit by reporting a flat demand curve instead of a steep demand curve.

This violates incentive compatibility and yields a contradiction.

More formally, Corollary 2 states that if ✓
i

= d

i,1(�j), then Equation 2 implies that

✓

i

= b2(�j, pj,1(✓i, s)) = b2(�j, pj,1(✓i, f)).

Yet Corollary 3 shows that

p

j,1(✓i, f) = d

j,1(✓i, f) > d

j,1(✓i, s) = p

j,1(✓i, s) =) b2(�j, pj,1(✓i, s)) > b2(�j, pj,1(✓i, f)).

Hence, the final inequality above contradicts the implication of Equation 2. Thus, there is

no mechanism that satisfies Properties (1)-(4).

Theorem 2. There is no mechanism that satisfies Properties (1)-(4).

The proof of Theorem 2 illustrates how the presence of wealth e↵ects impedes e�cient

auction design. In the quasilinear setting, there are no wealth e↵ects and the Vickrey auction

satisfies Properties (1)-(4). In a 2⇥2 setting, the Vickrey auction is such that the price bidder

i pays for her first unit equals her rival’s willingness to pay for her second unit. Corollary

2 shows that this is a necessary condition in the non-quasilinear setting as well. Yet, in the

non-quasilinear setting, the presence of wealth e↵ects implies that the price a bidder pays for

her first unit a↵ects her demand for her second unit. This inhibits e�cient auction design

because a bidder can lower the price she pays for her first unit by misreporting her demand

for her second unit. By stating a high demand for her second unit, a bidder forces her rival to

pay more for her first unit. This benefits the bidder in a non-quasilinear setting because when

the bidder’s rival pays more for her first unit, her rival has lower demand for her second unit.

Moreover, a bidder pays less to win her first unit when her rival has lower demand for her

second unit. Thus, no mechanism can simultaneous satisfy (1)-(4) when we introduce wealth

e↵ects and multi-dimensional heterogeneity. A similar incentive to overreport demand for

later units is present when bidders with positive wealth e↵ects bid in the standard Vickrey

auction (see Baisa (2016b)).

The proofs of Theorems 1 and 2 also illustrate the connection between e�cient multi-unit

auction design problem with private values and non-quasilinear preferences, and e�cient
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single-unit auction design problem with interdependent values and quasilinear preferences.

In the latter setting, Dasgupta and Maskin (2000) and Jehiel and Moldovanu (2001) show

that e�cient design is possible if and only if bidders have single dimensional types. Theorems

1 and 2 combine to give similar result in my setting, because the presence of wealth e↵ects

endogenously causes interdependence of bidders’ demands. In the e�cient auction design

problem, wealth e↵ects imply that a bidder’s demand for her second unit is a function of

the price she pays for her first unit. In addition, the price of a bidder’s first unit depends

on her rival’s type. Thus, a bidder’s willingness to pay for her second unit depends on her

rival’s type. Thus, when types are multi-dimensional, a bidder’s demand for her second unit

depends on both dimensions of her rival’s type, and thus we can obtain an impossibility

result. We do not see similar impossibility results in single unit demand settings, because

the interdependence is only in the demand of later units.14

While Theorem 2 is obtained in a 2 bidders and 2 objects setting, the proof generalizes to

an n bidder k object case. To see this, consider a proof similar to the one presented above.

Suppose that there is a mechanism that satisfies Properties (1)-(4) in the n ⇥ k setting.

Furthermore, suppose that bidder 2 has a relatively high intercept and steepness t2 2 {s, f},
and bidders 3, . . . , n all have arbitrarily small intercepts. Then, the mechanism assigns no

units to bidder j where j � 3. If a bidder j won a positive number of units, there is a Pareto

improving trade where bidder j sells a unit to bidder 2.

I look at the decision problem of bidder 1. Incentive compatibility implies that the price

bidder 1 pays for her first unit p1,1(��1) is independent of her type. In addition, p1,1(��1)

is determined by bidder 2’s willingness to pay for her last unit. This is proved using same

argument given in Corollary 2. Bidder j’s report does not change the price bidder 1 pays for

a unit because bidder j’s demand for units is arbitrarily small.

Yet, then bidder 1 can lower bidder 2’s willingness to pay for her last unit, and hence the

price of her first unit, by reporting a flat demand versus a steep demand. When bidder 1

reports a flat demand and has greater demand for her later units, then bidder 2 pays more to

win her first k � 1 units. Positive wealth e↵ects then imply that bidder 2 has lower demand

for her final unit when she pays more for her first k�1 units. Thus, bidder 1 pays less for her

first unit when she reports a flat demand. Yet this contradicts with incentive compatibility

that requires that the price bidder 1 pays for her first unit is independent of her type.

14Morimoto and Serizawa (2015) show there is a mechanism that satisfies Properties (1)-(4) when bidders
have single unit demands.
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6 An impossibility theorem for the single dimensional

type case with N � 3 bidders.

In this section, we return to the single-dimensional type case. We show that there is no

mechanism that retains the desirable properties of the Vickrey auction, even in the single

dimensional type setting, when there are at least three bidders. In particular, we show that

there is no mechanism that satisfies (a) individual rationality, (b) no subsidies, (c) incentive

compatibility, (d) Pareto e�ciency, and (e) monotonicity (for the remainder of this section,

Properties (a)-(e)).

We consider a setting where there are three bidders who compete for two goods and N � 3

bidders. The proof is by contradiction. We begin by assuming that there is a mechanism

� that satisfies Properties (a)-(e). Let q
i

(✓
i

, ✓�i

) be the number of units won by bidder i in

mechanism �. Incentive compatibility implies that q
i

(✓
i

, ✓�i

) is weakly increasing in bidder

i’s type ✓

i

. In addition, Pareto e�ciency implies that

NX

i=1

q

i

(✓
i

, ✓�i

) = 2 if ✓

i

> 0 for some i 2 {1, . . . , N}.

Again, it is useful to define a cut-o↵ rule that corresponds to mechanism �. The cut-o↵

rule for bidder i’s first unit d
i,1 is

d

i,1(✓�i

) =

8
<

:
inf{✓ 2 ⇥|q

i

(✓, ✓�i

) � 1} if q

i

(✓, ✓�i

) � 1

✓ if q

i

(✓, ✓�i

) = 0
.

Similarly, the cut-o↵ rule for bidder i’s second unit d
i,2 is

d

i,2(✓�i

) =

8
<

:
inf{✓ 2 ⇥|q

i

(✓, ✓�i

) = 2} if q

i

(✓, ✓�i

) = 2

✓ if q

i

(✓, ✓�i

)  1
.

Incentive compatibility implies that d
i,2(✓�i

) � d

i,1(✓�i

) 8✓�i

2 ⇥2.

Again, Pareto e�ciency implies that if bidder i’s rivals report zero demand, then bidder

i wins both units if she reports positive demand.

Remark 4. d
i,1(✓�i

) = 0 () ✓

j

= 0 8j 6= i.

To condense notation, for the remainder of this section, I study the decision problem from

the perspective of bidder 1, and I assume that ✓2 � ✓3 � ✓

j

8j 6= 1, 2, 3.

Lemma 5 uses the implication of Pareto e�ciency to show that a bidder wins a positive

number of units only if her reported demand is among the two highest reports. If this
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property did not hold true, then there would be a Pareto improving trade where a bidder

with a lower type sells a unit to a bidder with a higher type who did not win any units.

Lemma 5. For any mechanism that satisfies, then

d1,1(✓�1) � ✓3.

The next Lemma shows that if a bidder’s two highest rivals have types that are su�ciently

close together, then bidder i wins at least one unit if and only if her report type is among

the two highest reported types. This follow from the law of demand.

To see the intuition, suppose ✓2 > ✓3. If bidders 2 and 3 have types that are su�ciently

close together, then declining demand implies that ✓3 � b2(✓2, 0). In other words, bidder 3

is willing to pay more for her first unit than bidder 2 is willing to pay for her second unit.

Thus if bidder 1 reports a type that is in the interval (✓3, ✓2), Lemma 5 implies that bidder 3

wins zero units, because her type is not among the two highest demands. Then, if bidder 1

wins no units, it means that bidder 2 must win both units. Yet, if bidder 2 wins both units,

there is a Pareto improving trade where bidder 1 buys one of bidder 2’s units. The trade is

Pareto improving because the law of demand implies that bidder 2’s demand for her second

unit is low relative to bidder 1’s demand for her first unit.

Lemma 6. For any mechanism that satisfies (1)-(5), if b2(✓2, 0) < ✓3  ✓2, then

d1,1(✓�1) = ✓3.

Thus, when bidders 2 and 3 have types that are su�ciently close together, bidder i wins

at least one unit if and only if her type ranks among the two highest types. This means that

if ✓2 and ✓3 are su�ciently close together, bidder 1 must pay ✓3 to win one unit of the good.

Furthermore, if we continue to assume bidder 1’s two highest rivals report demands that

are su�ciently close together, then Pareto e�ciency implies that bidder 1 wins both units

of the good if and only if her willingness to pay for her second unit (conditional on having

paid ✓3 for her first unit) exceeds her highest rival’s willingness to pay for her first unit of

the good ✓2. Or in other words, bidder 1 wins both units only if b2(✓1, ✓3) is greater than ✓2.

This is summarized in Lemma 7 below.

Lemma 7. For any mechanism that satisfies (1)-(5), if b2(✓2, 0) < ✓3 < ✓2, then

d1,2(✓�1) = ✓

⇤
1
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where ✓

⇤
1 is defined as solving

b2(✓
⇤
1, ✓3) = ✓2.

Lemmas 6 and 7 combine to yield a violation of the monotonicity constraint on the

allocation rule. Suppose that ✓1 > ✓2 > ✓3, and that ✓2 is su�ciently close to ✓3. Then if

✓3 increases slightly, Lemma 6 implies that it becomes more di�cult for bidder 1 to win a

second unit of the good, as the price she pays for her first unit increases. Thus, it becomes

relatively easier for bidder 2 to win her first unit of the good when bidder 3 increases her

reported type slightly.15 In fact, bidder 2 faces a lower first unit cut-o↵ when her rival bidder 3

stated a higher demand. This contradicts with the monotonicity constraint on the allocation

rule because monotonicity implies that a bidder faces a higher cut-o↵ when her rivals report

greater demands.

Theorem 3. There is no mechanism that satisfies properties (1)-(5).

Thus, to recap the argument, we see that if ✓1 > ✓2 > ✓3 � ✓

j

8j 6= 1, 2, 3, then Lemma

5 shows us that bidder 3 never wins any units. Yet, if bidder 3 reports a demand that is

su�ciently close to bidder 2, then bidder 3 can still change the allocation. This is because

the price bidder 1 pays to win her first unit equals bidder 3’s willingness to pay for her first

unit when ✓3 is su�ciently close to ✓2. Thus, by increasing her report, bidder 3 increases the

price that bidder 1 pays for her first unit, and lowers bidder 1’s demand for her second unit.

When bidder 1 has lower demand for her second unit, bidder 2 then faces a lower cut-o↵ for

her first unit. However, we have a violation of monotonicity if bidder 2’s first cut-o↵ is lower

when her rivals increase their demands.
15Indeed, bidder 2 faces a lower cut-o↵ for her first unit of the good, even if bidder 1 reports a slightly

higher type.
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7 Proofs

Proof of Lemma 1.

Proof. I show that there exists a solution d to Equation 1 by showing that for any n 2 N,
there exists a unique function d

n : [0, ✓] ! [0, ✓] such that

d

n(✓) = max{ 1
n

, b2(✓, d
n(dn(✓))}. (3)

Then I show that dn converges uniformly to a function d that solves Equation 1 .

Equation 3 uniquely defines a function over the interval [0, 1
n

] because

d

n(✓) =
1

n

= max{ 1
n

, b2(✓, d
n(dn(✓))} > b2(✓, 0) � b2(✓, d

n(dn(✓))).

Thus, there is an interval of the form [0, x], where x > 0, over which there exists unique

function d

n that satisfies Equation 3. Let x be the supremum x such that there is a function

that is uniquely defined by Equation 3 over the interval [0, x]. We know from the above

construction that x � 1
n

.

I show d

n is weakly increasing over (0, x) by contradiction. If dn was strictly decreasing,

then 9✓⇤ 2 (0, x) such that

✓

⇤ = inf{✓|9✓0 > ✓ s.t. d

n(✓0) < d

n(✓)}.

Thus, for any ✏ > 0 there exists a ✓

`

, ✓

h

such that ✓
`

 ✓

⇤  ✓

h

, ✓
h

, ✓

`

2 (✓⇤ � ✏, ✓

⇤ + ✏), and

d

n(✓
`

) > d

n(✓
h

) � 1
n

. Thus,

d

n(✓
`

) >
1

n

=) ✓

`

> d

n(✓
`

) = b2(✓`, d
n(dn(✓

`

))) >
1

n

.

In addition, dn(✓
`

) > d

n(✓
h

) implies that

b2(✓h, d
n(dn(✓

h

)) < b2(✓`, d
n(dn(✓

`

))).

Since b2 is increasing in the first argument and ✓

h

> ✓

`

, then we must have that

d

n(dn(✓
h

)) > d

n(dn(✓
`

)).

However, the above inequality can not hold because

d

n(✓
h

) < d

n(✓
`

) < ✓

`

 ✓

⇤ =) d

n(dn(✓
h

))  d

n(dn(✓
`

)),
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where the final inequality holds because dn is weakly increasing when ✓ < ✓

⇤. Thus, we have

a contradiction that shows dn is weakly increasing.

A similar proof shows that d

n is continuous over (0, x). Let ✓

⇤ be the point of the first

discontinuity. By construction d

n is continuous when ✓ is such that b2(✓,
1
n

) <

1
n

. Thus,

lim
✓!+

✓

⇤
d(✓) > 1

n

. Yet, when ✏ is small, dn(✓⇤ � ✏) ⇡ d

n(✓⇤ + ✏) because d

n(dn(✓⇤ � ✏)) ⇡
d

n(dn(✓⇤ + ✏))  d

n(✓⇤ � ✏). Since b2 is continuous in both arguments, this implies that

d

n(✓⇤ + ✏) ⇡ d

n(✓⇤ � ✏), which contradicts our assumption that dn is discontinuous at ✓⇤.

Next, I show that x = ✓ by contradiction. Suppose that x < ✓. Then, for any ✏ > 0,

there exists a ✓̃ 2 [x, x+ ✏) such that dn(✓̃) is not uniquely defined by Equation 3. Note that

b2(✓̃,
1
n

) > 1
n

. If not, then d

n(✓̃) would be uniquely defined by Equation 3.

If dn(✓̃ � ✏) = 1
n

, then

1

n

= d

n(✓̃ � ✏) � d

n(b2(✓̃,
1

n

)) � 1

n

=) d

n(b2(✓̃,
1

n

)) =
1

n

,

where the first inequality holds because ✓̃ � ✏ > b2(✓̃,
1
n

) when ✏ is su�ciently small by

declining demand, and the second inequality holds because dn is bounded below by 1
n

. Thus,

b2(✓̃,
1

n

) = b2(✓̃, d
n

✓
b2(✓̃,

1

n

)

◆
).

Thus, if we let dn(✓̃) = b2(✓̃,
1
n

), then

d

n(✓̃) = b2(✓̃, d
n(dn(✓̃)).

This is the unique solution to Equation 3 because x � b2(✓̃, dn(x)) is weakly increasing in x

as b2 is decreasing in the second argument and d

n is increasing in x. Thus, it can not be the

case that dn(✓̃ � ✏) = 1
n

.

Next suppose that dn(✓̃ � ✏) > 1
n

. Recall that x � b2(✓̃, dn(x)) is strictly increasing in x.

If x = 1
n

, then
1

n

� b2(✓̃, d
n(
1

n

)) < ✓̃ � ✏� b2(✓̃ � ✏, d

n(dn(✓̃ � ✏))) = 0,

where the inequality follows because (1) ✓̃ � ✏ >

1
n

because d

n(✓̃ � ✏) >

1
n

=) ✓̃ � ✏ >

b2(✓̃ � ✏,

1
n

) > 1
n

; and (2) b2 is decreasing in the second argument, while d

n is increasing and

d

n(✓̃ � ✏) > 1
n

.

In addition, if x = ✓̃ � ✏, then

0 < ✓̃ � ✏� b2(✓̃, d
n(✓̃ � ✏)).
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The above inequality holds because d

n(✓̃ � ✏) > 1
n

implies that

0 = ✓̃ � ✏� b2(✓̃ � ✏, d

n(dn(✓̃ � ✏))) < ✓̃ � ✏� b2(✓̃, d
n(✓̃ � ✏)),

where the final inequality holds because (1) dn(✓̃ � ✏) � d

n(dn(✓̃ � ✏)) by construction and

(2) b2 is increasing in the first argument and decreasing in the second market. Thus,

x� b2(✓̃, d
n(x))

is strictly increasing, less than zero when x = 1
n

and greater than zero when x = ✓̃� ✏. Since

d

n is continuous, then the above expression is continuous and there is a unique x that solves

x� b2(✓̃, d
n(x)) = 0.

Thus, if x = d

n(✓̃), then there is a unique solution defined by Equation 3. This contradicts

our assumption that dn is not uniquely defined by Equation 3 at ✓̃, and we have shown that

x = ✓.

The last step of the proof shows {dn}1
n=1 is uniformly Cauchy. I show that

m > n > N

⇤ =) max
✓2[0,✓]

|dn(✓)� d

m(✓)|  2

N

.

First, I show that the above property holds if ✓ is such that b2(✓,
1
N

)  1
N

.

b2(✓,
1

N

)  1

N

=) d

n(✓) = max{b2(✓, dn(dn(✓))),
1

n

}  max{b2(✓, 0),
1

N

},

because 1
n

>

1
N

and d

n(dn(✓)) > 0 and b2 is weakly decreasing in the second argument. In

addition the proof of Lemma 2 shows that

b2(✓, 0) < b2(✓,
1

N

) +
1

N

.

Thus, b2(✓,
1
N

)  1
N

=) b2(✓, 0) <
2
N

, and

d

n(✓)  max{b2(✓, 0),
1

N

}  max{ 2

N

,

1

N

} =
2

N

.

The same argument shows dm(✓)  2
N

when b2(✓,
1
N

)  1
N

. Since d

m(✓), dn(✓) 2 [0, 2
N

], then

b2(✓,
1

N

)  1

N

=) |dn(✓)� d

m(✓)| < 2

N

.
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Next, suppose that ✓ is such that b2(✓,
1
N

) > 1
N

. I first show d

n(✓) > 1
n

, by contradiction.

If dn(✓) = 1
n

, then by the construction of dn, then b2(✓, dn(
1
n

))  1
n

. But dn( 1
n

) = 1
n

, because

d

n(✓) � 1

n

8✓ =) d

n(
1

n

) = max{ 1
n

, b2(
1

n

,

1

n

)} =
1

n

,

since b2(
1
n

,

1
n

)  b2(
1
n

, 0) < 1
n

by declining demand. Therefore, b2(✓, dn(
1
n

)) = b2(✓,
1
n

)  1
n

.

Yet,

n > N =) b2(✓,
1

n

) � b2(✓,
1

N

) >
1

N

>

1

n

,

which contradicts, b2(✓,
1
n

)  1
n

. Thus, dn(✓) > 1
n

. I use this to show

b2(✓,
1

N

) >
1

N

=) |dn(✓)� d

m(✓)|  2

N

.

The proof is by contradiction. If there is a ✓ such that

|dn(✓)� d

m(✓)| > 2

N

,

then since both d

n and d

m are continuous in ✓, there exists a ✓

⇤,

✓

⇤ = min{✓⇤|dn(✓⇤)� d

m(✓⇤)| = 2

N

}.

We know that ✓⇤ > b2(✓⇤,
1
N

) because |dn(✓)�d

m(✓)| < 1
N

8✓ s.t. b2(✓,
1
N

)  1
N

. Without loss

of generality, assume d

n(✓⇤) > d

m(✓⇤). Since

✓

⇤
> b2(✓

⇤
,

1

N

) =) d

n(✓⇤) >
1

n

, d

m(✓⇤) >
1

m

,

then,

d

n(✓⇤) = b2(✓
⇤
, d

n(dn(✓⇤))) = b2(✓
⇤
, d

n(dm(✓)⇤+
2

N

)) = b2(✓
⇤
, d

m(dm(✓⇤)))+
2

N

= d

m(✓⇤)+
2

N

.

In addition, the proof of Lemma 2 implies

b2(✓
⇤
, d

n(dm(✓)⇤ +
2

N

)) = b2(✓
⇤
, d

m(dm(✓⇤))) +
2

N

=) d

m(dm(✓⇤)) > d

n(dm(✓⇤) +
2

N

) +
2

N

.

Since d

n is weakly increasing this implies

d

m(dm(✓⇤)) > d

n(dm(✓⇤)) +
2

N

.
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Yet, ✓̃ := d

m(✓⇤) = b2(✓⇤, dm(dm(✓⇤))) < ✓

⇤
. Thus,

d

m(✓̃)� d

n(✓̃) >
2

N

.

Since dm and d

n are continuous and d

m(0)� d

m(0) < 2
N

, then there exists a ✓

0
< ✓̃ such that

d

m(✓0)� d

n(✓0) =
2

N

.

Since ✓0 < ✓̃ < ✓

⇤, the above inequality contradicts the definition of ✓⇤. Thus, we have shown

that {dn} is uniformly Cauchy because

max
✓2[0,✓]

|dn(✓)� d

m(✓)|  2

N

.

Thus, there exists a function d such that d

n ! d uniformly. Since d

n is continuous and

increasing for all n 2 N, uniform convergence implies that d is continuous, increasing and

d(✓) = b2(✓, d(d(✓))).

In addition, d is strictly increasing because b2 is strictly increasing in the first argument.

Proof of Lemma 2.

Proof. The proof is by induction. When m = 1, p1(✓j, d) is weakly increasing in ✓

j

because

p1(✓j, d) = d1(✓j) and d1(✓j) is weakly increasing in ✓

j

for all d 2 D.

Before showing the inductive step, it is useful to note that

z � y � 0 =) b

m

(✓, z) + z � b

m

(✓, y)) + y 8m 2 {1, . . . , k}.

This is because

z � y � 0 =) u(m�1,�y�b

m

(✓, y), ✓) = u(m,�y, ✓) � u(m,�z, ✓) = u(m�1,�z�b

m

(✓, z), ✓).

Because u is increasing in the second argument, the final inequality shows

z � y � 0 =) z + b

m

(✓, z) � y + b

m

(✓, y) (4)

Returning to the proof, suppose that
P

m�1
n=1 p

n

(✓
j

, d) is weakly increasing in ✓

j

. Let
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✓

h

j

> ✓

`

j

. Then,

mX

n=1

p

n

(✓h
j

, d) =
m�1X

n=1

p

n

(✓h
j

, d)+b

m

(d
m

(✓h
j

),
m�1X

n=1

p

n

(✓h
j

, d)) �
m�1X

n=1

p

n

(✓h
j

, d)+b

m

(d
m

(✓`
j

),
m�1X

n=1

p

n

(✓h
j

, d)),

where the equality follows from the definition of p
m

, and the inequality follows because b
m

is

increasing in the first argument and d

m

(✓h
j

) � d

m

(✓`
j

). Then,

m�1X

n=1

p

n

(✓h
j

, d)+b

m

(d
m

(✓`
j

),
m�1X

n=1

p

n

(✓h
j

, d)) �
m�1X

n=1

p

n

(✓`
j

, d)+b

m

(d
m

(✓`
j

),
m�1X

n=1

p

n

(✓`
j

, d)) =
mX

n=1

p

n

(✓`
j

, d),

where the inequality holds by Equation 4 where we let z =
P

m�1
n=1 p

n

(✓h
j

, d) � y =
P

m�1
n=1 p

n

(✓`
j

, d) �
0. The final equality holds from the construction of p

m

.

Proof of Lemma 3

Proof. f is strictly increasing in ✓

i

because b

m

(✓
i

,

P
m�1
n=1 p

n

(✓
j

, d)) is strictly increasing in

✓

i

. In addition, b
k�m+1(✓j,

P
k�m

n=1 p

n

(✓
i

, d)) is decreasing in the second argument and Lemma

2 shows
P

k�m

n=1 p

n

(✓
i

, d) is increasing in ✓

i

. The same argument shows that f is strictly

decreasing in ✓

j

. The law of demand and positive wealth e↵ects imply that f is strictly

decreasing in m.

Proof of Proposition 2.

Proof. I construct a mechanism that follows from the symmetric cut-o↵ rule d

⇤
m

. I assume

ties (in terms of willingness to pays for additional units) are broken in favor of bidder 1.

Thus,

q1(✓1, ✓2) = max{m 2 {0, 1, . . . , k}|b
m

(✓1,
m�1X

n=1

p

n

(✓2, d
⇤)) � b

k�m+1(✓2,
k�mX

n=1

p

n

(✓1, d
⇤))},

and q2(✓1, ✓2) = k � q1(✓1, ✓2). We let x

i

(✓1, ✓2) =
P

qi(✓i,✓j)
n=1 p

n

(✓
j

, d

⇤). By construction, the

mechanism satisfies weak budget balance and individual rationality.

I show that mechanism is incentive compatible. If q
i

(✓
i

, ✓

j

) � m then the construction of

the mechanism implies that

b

m

(✓
i

,

m�1X

n=1

p

n

(✓
j

, d

⇤)) � b

k�m+1(✓j,
k�mX

n=1

p

n

(✓
i

, d

⇤) =) ✓

i

� d

⇤
m

(✓
j

),
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where the implication follows from Remark 1. And since b
m

is increasing in the first argument,

✓

i

� d

⇤
m

(✓
j

) implies that

b

m

(✓
i

,

m�1X

n=1

p

n

(✓
j

, d

⇤)) � b

m

(d⇤
m

(✓
j

),
m�1X

n=1

p

n

(✓
j

, d

⇤)) = p

m

(✓
j

, d

⇤).

In other words, the price of bidder i’s m

th unit is below her willingness to pay for her m

th

unit. Thus, bidder i has no incentive to deviate by reporting a lower type and winning fewer

units.

Similarly, m > q

i

(✓
i

, ✓

j

), then the construction of of mechanism implies that

b

k�m+1(✓j,
k�mX

n=1

p

n

(✓
i

, d

⇤) � b

m

(✓
i

,

m�1X

n=1

p

n

(✓
j

, d

⇤)) =) d

⇤
m

(✓
j

) � ✓

i

.

Thus, d⇤
m

(✓
j

) � ✓

i

implies that

p

m

(✓
j

, d

⇤) = b

m

(d⇤
m

(✓
j

),
m�1X

n=1

p

n

(✓
j

, d

⇤)) � b

m

(✓
i

,

m�1X

n=1

p

n

(✓
j

, d

⇤)).

Thus, the price of winning an m

th unit where m > q

i

(✓
i

, ✓

j

) exceeds bidder i’s willingness

to pay for her mth unit, conditional on having won m� 1 units under pricing rule p(✓
j

, d

⇤).

Therefore, bidder i does not increase her utility by reporting a type ✓0
i

that allows her to win

more units. Thus, the mechanism is incentive compatible.

Last, I show that the mechanism is Pareto e�cient. For ease of notation, let q
i

= q

i

(✓1, ✓2),

x

i

= x

i

(✓1, ✓2), and ⇢ be

⇢ := max{b
q1+1(✓1, x1), bq2+1(✓2, x2)}.

I show that the mechanism is Pareto e�cient by first showing that

u(q̃
i

,�x̃

i

, ✓

i

) � u(q
i

,�x

i

, ✓

i

) =) x

i

+ ⇢(q
i

� q̃

i

) � x̃

i

.

If q
i

= q̃

i

, the above inequality holds trivially. If q̃
i

< q

i

, and

u(q̃
i

,�x̃

i

, ✓

i

) � u(q
i

,�x

i

, ✓

i

).

Let y be such that,

u(q̃
i

,�x

i

+ y, ✓

i

) = u(q
i

,�x

i

, ✓

i

).
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Thus, y is bidder i’s willingness to sell q
i

� q̃

i

units when her initial allocation is having q

j

units and paying x

j

. I show that y � ⇢(q
j

� q̃

j

). That is, bidder i must be compensated by

at least ⇢ per unit to ensure that she is made no worse o↵. To show this, it is useful to note

that

b

n

(✓, x) = s

n

(✓, x+ b

n

(✓, x))  s

n

(✓, x+ c) 8c < b

n

(✓, x), (5)

where the first equality follows directly from the definitions of willingness to pay/sell, and

the final inequality follows from positive wealth e↵ects.

Next, note that bidder i’s willingness to pay for each of her first q

i

units when facing

pricing rule p(✓
j

, d

⇤) exceeds ⇢, because the willingness to pays associated with any winning

bids exceeds ⇢. Thus, bidder i pays an amount below her willingness to pay for each of her

first q
j

units when the pricing rule is p(✓
j

, d

⇤). Thus, Equation 5 implies that her willingness

to sell each unit exceeds ⇢, and

u(q̃
i

,�x̃

i

, ✓

i

) � u(q
i

,�x

i

, ✓

i

) = u(q̃
i

,�x

i

+y, ✓

i

) =) x

i

�y � x̃

i

=) x

i

�x̃

i

� y � ⇢(q
i

�q̃

i

).

Or equivalently

u(q̃
i

,�x̃

i

, ✓

i

) � u(q
i

,�x

i

, ✓

i

) =) x

i

+ (q̃
i

� q

i

)⇢ � x̃

i

.

If q̃
i

> q

i

, we show that

u(q̃
i

,�x̃

i

, ✓

i

) � u(q
i

,�x

i

, ✓

i

) =) x

i

+ ⇢(q̃
i

� q

i

) � x̃

i

.

This follows because declining demand and positive wealth e↵ects imply that b

m

(✓
i

, y) 
b

qi+1(✓i, xi

)  ⇢ for all m � q

i

+1, y � x

i

. Thus, if a bidder wins more than q

i

units, and her

utility increases, the marginal price of additional units must be less than ⇢,

u(q̃
i

,�x̃

i

, ✓

i

) � u(q
i

,�x

i

, ✓

i

) =) x

i

+ (q̃
i

� q

i

)⇢ � x̃

i

.

Thus, any reallocation that makes bidder i strictly better and bidder j no worse gives

strictly lower revenue. This is because

u(q̃
i

,�x̃

i

, ✓

i

) > u(q
i

,�x

i

, ✓

i

) =) x

i

+ (q̃
i

� q

i

)⇢ > x̃

i

,

and

u(q̃
j

,�x̃

j

, ✓

j

) � u(q
j

,�x

j

, ✓

j

) =) x

j

+ (q̃
j

� q

j

)⇢ � x̃

i

.
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Feasibility implies that q1 + q2 � q̃1 + q̃2. Thus,

x

i

+ x

j

� x

i

+ (q̃
i

� q

i

)⇢+ x

j

+ (q̃
j

� q

j

)⇢ > x1 + x2.

Similarly, any reallocation that makes both bidders no worse o↵, generates weakly lower

revenue. Thus, {q
i

, x

i

}2
i=1 is a Pareto e�cient allocation.

Proof of Theorem 1.

Proof. First, we show d 2 D =) T (d) 2 D. To do this, I show that T (d
m

)(✓) is weakly

increasing. If T (d
m

)(✓h
j

) = ✓, then T (d
m

)(✓`
j

)  ✓ because T (d
m

)(✓) 2 [0, ✓] 8✓ 2 ⇥. If

T (d
m

)(✓h
j

) < ✓, then

inf{✓|f(✓, ✓h
j

,m, d) > 0} � inf{✓|f(✓, ✓`
j

,m, d) > 0},

because Lemma 3 shows f is strictly increasing in the first argument and f(✓
i

, ✓

`

j

,m, d) >

f(✓
i

, ✓

h

j

,m, d) 8✓
i

2 ⇥. Thus, T (d
m

)(✓h
j

) � T (d
m

)(✓`
j

) 8✓h
j

> ✓

`

j

.

Next, we show that

T (d
m+1)(✓j) � T (d

m

)(✓
j

) 8m 2 {1, . . . , k � 1}.

If T (d
m+1)(✓j) = ✓, the condition holds because T (d

m

)(✓) 2 [0, ✓] 8✓ 2 ⇥. If T (d
m+1)(✓j) < ✓.

Note that Lemma 3 shows that

f(✓
i

, ✓

j

,m, d) > f(✓
i

, ✓

j

,m+ 1, d) 8✓
i

, ✓

j

2 ⇥, d 2 D.

In addition f is strictly increasing in the first argument. Therefore,

inf{✓|f(✓, ✓
j

,m+ 1, d) > 0} � inf{✓|f(✓, ✓
j

,m, d) > 0} =) T (d
m+1)(✓j) � T (d

m

)(✓
j

).

Thus, T (d) 2 D 8d 2 D, because T (d
m

)(✓) is weakly increasing in ✓ and T (d
m+1)(✓) �

T (d
m

)(✓).

Next, we show that T is a continuous mapping. Since D is a metric space (under the

uniform norm), it su�ces to show that if {dk}1
k=1 is such that dk 2 D 8k 2 N and lim d

k = d,

then limT (dk) = T (d) (see Aliprantis and Border (2006), pg. 36).

Fix ✓
j

. By assumption d

k(✓
j

) ! d(✓
j

). First, I show that
P

m

n=1 pn(✓j, d
k) !

P
m

n=1 pn(✓j, d) 8m 2
{1, . . . , k}. The proof is by induction. It holds when m = 1, because

p1(✓j, d
k) = d

k

1(✓j),
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thus, lim p1(✓j, dk) = lim d

k

1(✓j) = d1(✓j) = p1(✓j, d). Next, suppose that lim
P

m�1
n=1 p

n

(✓
j

, d

k) =
P

m�1
n=1 p

n

(✓
j

, d). Then,

mX

n=1

p

n

(✓
j

, d

k) = b

m

(dk
m

(✓
j

),
m�1X

n=1

p

n

(✓
j

, d

k)) +
m�1X

n=1

p

n

(✓
j

, d

k).

Since b
m

is continuous in both arguments, dk
m

(✓
j

) ! d

m

(✓
j

), and
P

m�1
n=1 p

n

(✓
j

, d

k) !
P

m�1
n=1 p

n

(✓
j

, d),

then

b

m

(dk
m

(✓
j

),
m�1X

n=1

p

n

(✓
j

, d

k))+
m�1X

n=1

p

n

(✓
j

, d

k) ! b

m

(d
m

(✓
j

),
m�1X

n=1

p

n

(✓
j

, d))+
m�1X

n=1

p

n

(✓
j

, d) =
mX

n=1

p

n

(✓
j

, d).

Recall that

f(✓
i

, ✓

j

,m, d) = b

m

(✓
i

,

m�1X

n=1

p

n

(✓
j

, d))� b

k�m+1(✓j,
k�mX

n=1

p

n

(✓
i

, d)).

Since
P

m

n=1 pn(✓j, d
k) !

P
m

n=1 pn(✓j, d) and b

n

is continuous in the second argument, it

follows that

f(✓
i

, ✓

j

,m, d

k) ! f(✓
i

, ✓

j

,m, d).

Thus, if lim f(✓, ✓
j

,m, d

k) = f(✓, ✓
j

,m, d)  0, then T (d
m

)(✓
j

) = ✓. In addition, for any

✏ > 0, there exists a k

⇤ such that for all k > k

⇤,

f(✓ � ✏, ✓

j

,m, d

k) < 0 =) T (dk
m

)(✓
j

) � ✓ � ✏.

Since ✏ > 0 is arbitrary, this implies that T (dk
m

)(✓
j

) ! ✓.

If f(✓, ✓
j

,m, d) > 0, then T (d
m

)(✓
j

) < ✓, and

limT (dk
m

)(✓
j

) = lim inf{✓|f(✓, ✓
j

,m, d

k) > 0} = inf{✓|f(✓, ✓
j

,m, d) > 0} = T (d
m

)(✓
j

)

because f(✓, ✓h
j

,m, d

k) ! f(✓, ✓h
j

,m, d) and f is strictly increasing in the second argument.

Since m and ✓

j

are arbitrary, it follows that T is a continuous mapping because

d

k ! d =) T (dk) ! T (d).

In order to show that D is compact, I show that it is complete and totally bounded. The

set D is complete because every Cauchy sequence {dn}1
n=1 converges to an element d 2 D

when we use the L

1 norm as our metric.
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In addition, D is totally bounded, as d 2 D ⇢ {d|d : [0, ✓] ! [0, ✓]k}. More formally, D
is totally bounded under the L

1 norm because any weakly increasing and bounded function

can be approximated by a series of simple functions. Thus, for any ✏ > 0, we can construct

a finite set of simple functions {d1, . . . , dn}, where d

i

2 D and for any d 2 D, there is an i

such that |d � d

i

| < ✏ according to the L

1 norm. Thus, D is compact (see Theorem 3.28 in

Aliprantis and Border (2006)).

Thus, we have shown that T : D ! D is a continuous mapping from a compact space D
into itself. Schauder’s fixed point theorem then states that the mapping T has a fixed point

d

⇤ 2 D.

Proof of Lemma 4.

Proof. Individual rationality implies that if q
i

(�
i

, �

j

) = 0, then x

i

(�
i

, �

j

) = p

i,0(�j)  0.

When q

j

(�
i

, �

j

) = 2, individual rationality implies that

u(2,�x

j

(�
i

, �

j

), �
j

) � u(0, 0, �
j

).

Thus, x
j

(�
i

, �

j

)  ✓

j

+ b2(�j, ✓j) because

u(0, 0, �
j

) = u(1,�✓

j

, �

j

) = u(2,�✓

j

� b2(�j, ✓j), �j)  u(2,�x

j

(�
i

, �

j

), �
j

).

If �
i

= (0, t
i

) and �

j

= (✓
j

, t

j

) where ✓
j

> 0 then q

j

(�
i

, �

j

) = 2. Thus, the above inequality

implies

x

j

(�
i

, �

j

) = p

j,0(�i) + p

j,1(�i) + p

j,2(�i)  ✓

j

+ b2(�j, ✓j).

The above inequality holds for all ✓
j

> 0. Taking the limit of this expression as ✓

j

!+ 0,

gives that

p

j,0(�i) + p

j,1(�i) + p

j,2(�i)  lim
✓j!+0

✓

j

+ b2(�j, ✓j) = 0.

Thus, if �
i

= (0, t
i

) and �

j

= (✓
j

, t

j

) where ✓

j

> 0, then weak budget balance implies

x

i

(�
i

, �

j

) + x

j

(�
i

, �

j

) = p

i,0(�j) + (p
j,0(�i) + p

j,1(�i) + p

j,2(�i)) � 0.

However we have already shown that (p
j,0(�i) + p

j,1(�i) + p

j,2(�i))  0 and p

i,0(�j)  0. Thus,

p

i,0(�j) + (p
j,0(�i) + p

j,1(�i) + p

j,2(�i)) � 0 =) p

i,0(�j) = 0 if ✓

j

> 0.
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This yields our result,

q

i

(�
i

, �

j

) = 0 =) x

i

(�
i

, �

j

) = p

i,0(�j) = 0.

Proof of Proposition 3.

I prove Proposition 3 by establishing Remarks 5-6 and proving Lemmas 8-9. In the proof I

take t

i

and t

j

as fixed, and thus I will proceed with the an abuse of notation by dropping

t

i

and t

j

from the description of bidder types. Thus, the functions dti
i,1 and d

ti
i,2 are written

as d
i,1 and d

i,2 to condense notation. Similarly, I will refer to bidder i0s type as ✓
i

assuming

that her steepness is fixed and is t
i

2 {s, f}.

Remark 5. Pareto e�ciency implies that

q

i

(✓
i

, ✓

j

) = 2 () s2(✓i, xi

(✓
i

, ✓

j

)) � ✓

j

,

and

q

i

(✓
i

, ✓

j

) = 1 () b2(✓i, xi

(✓
i

, ✓

j

))  s1(✓j, xj

(✓
i

, ✓

j

)).

If d
i,2(✓j) > d

i,1(✓j), then incentive compatibility implies,

p

i,1(✓j) = d

i,1(✓j)

and

d

i,1(✓j) = lim
✓i!�

di,1(✓j)
s1(✓i, pi,1(✓j)).

Lemma 8. If ✓
j

> 0, then

lim
✓i!+

di,2(✓j)
s2(✓i, xi

(✓
i

, ✓

j

)) = lim
✓i!�

di,2(✓j)
b2(✓i, di,1(✓j)).

Proof. Fix ✓

j

. Let ✓

⇤
1 := d

i,1(✓j), ✓⇤2 := d

i,2(✓j), and x

⇤
2 := x

i

(✓
i

, ✓

j

) if q
i

(✓
i

, ✓

j

) = 2, and

x

⇤
1 := x

i

(✓
i

, ✓

j

) if q
i

(✓
i

, ✓

j

) = 1.

If ✓⇤2 = ✓

⇤
1, then bidder i has utility u(2,�x

⇤
2, ✓i) if ✓i > ✓

⇤
2. If ✓

⇤
2 > ✓

i

, bidder i has utility

u(0, 0, ✓
i

). Incentive compatibility implies that bidder i utility is continuous and increasing

in her type ✓

i

. Thus,

u(2,�x

⇤
2, ✓

⇤
2) = lim

✓i!+
✓

⇤
2

u(2,�x

⇤
2, ✓i) = lim

✓i!�
✓

⇤
2

u(0, 0, ✓
i

) = u(0, 0, ✓⇤2).
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And, u(2,�x

⇤
2, ✓

⇤
2) = u(0, 0, ✓⇤2) implies that x⇤

2 = ✓

⇤
2 + b2(✓⇤2, ✓

⇤
2) because

u(0, 0, ✓⇤2) = u(1,�✓

⇤
1, ✓

⇤
2) = u(2,� (✓⇤1 + b2(✓

⇤
2, ✓

⇤
1)) , ✓

⇤
2).

Thus,

lim
✓i!+

di,2(✓j)
s2(✓i,�x

i

(✓
i

, ✓

j

)) = s2(✓
⇤
i

,�x

⇤
i

) = b2(✓
⇤
2, ✓

⇤
1) = lim

✓i!�
di,2(✓j)

b2(✓i, di,1(✓j)).

Next, suppose that ✓⇤2 > ✓

⇤
1. Recall, incentive compatibility implies that a bidder’s utility

is continuous in her type,

u(2,�x

⇤
2, ✓

⇤
2) = lim

✓i!+
di,2(✓j)

u(2,�x

i

(✓
i

, ✓

j

), ✓
i

) = lim
✓i!�

di,2(✓j)
u(1,�x

i

(✓
i

, ✓

j

), ✓
i

) = u(1,�x

⇤
1, ✓

⇤
2).

Thus,

u(2,�x

⇤
2, ✓

⇤
2) = u(1,�x

⇤
1, ✓

⇤
2) =) s2(✓

⇤
2, x

⇤
2) = x

⇤
2 � x

⇤
1 = b2(✓

⇤
2, x

⇤
1).

Remark 6. Remark 5 and Lemma 8 show

b2(di,2(✓j), di,1(✓j)) = lim
✓i!�

di,2(✓j)
b2(✓i, di,1(✓j)) = lim

✓i!+
di,2(✓j)

s2(✓i, xi

(✓
i

, ✓

j

)) � ✓

j

.

Lemma 9. If ✓
j

> 0, then

d

i,2(✓j) > d

i,1(✓j).

Proof. My proof is by contradiction. Suppose that d

i,2(✓0
j

) = d

i,1(✓0
j

) for some ✓

0
j

> 0. Let

✓̃

i

:= d

i,2(✓0
j

) = d

i,1(✓0
j

). Then,

q

i

(✓
i

, ✓

0
j

) =

8
<

:
2 if ✓

i

> ✓̃

i

0 if ✓

i

< ✓̃

i

.

Thus, Remark 6 implies

b2(✓̃i, ✓̃i) � ✓

0
j

8✓0
j

s.t. d

i,1(✓
0
j

) = d

i,2(✓
0
j

) = ✓̃

i

. (6)

Let ✓⇤
j

:= inf{✓
j

: d
i,1(✓j) = d

i,2(✓j) = ✓̃

i

}. Then, d
i,1(✓j) < ✓̃

i

for all ✓
j

< ✓

⇤
j

, because d

i,1
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and d

i,2 are weakly increasing. For a given ✏ > 0, then ✓

i

2 (d
i,1(✓⇤

j

� ✏), ✓̃
i

) implies

q

i

(✓
i

, ✓

j

) =

8
<

:
� 1 if ✓

j

< ✓

⇤
j

� ✏

0 if ✓

j

> ✓

⇤
j

.

Or equivalently if ✓
i

2 (d
i,1(✓⇤

j

� ✏), ✓̃
i

),

q

j

(✓
i

, ✓

j

) =

8
<

:
 1 if ✓

j

< ✓

⇤
j

� ✏

2 if ✓

j

> ✓

⇤
j

.

Thus, d
j,2(✓i) 2 [✓⇤

j

� ✏, ✓

⇤
j

] if ✓
i

2 (d
i,1(✓⇤

j

� ✏), ✓̃
i

), and Remark 6 implies

b2(dj,2(✓i), dj,1(✓i)) � ✓

i

.

Recall that Equation 6 implies that

b2(✓̃i, ✓̃i) � ✓

0
j

� ✓

⇤
j

8✓0
j

s.t. d

i,1(✓
0
j

) = d

i,2(✓
0
j

),

where the final inequality follows from the definition of ✓⇤
j

. Combining the above two expres-

sions gives

b2(✓̃i, ✓̃i) � ✓

⇤
j

� d

j,2(✓i) � b2(dj,2(✓i), dj,1(✓i)) � ✓

i

8✓
i

2 (d
i,1(✓

⇤
j

� ✏), ✓̃
i

),

where the second inequality holds because d

j,2(✓i) 2 [✓⇤
j

� ✏, ✓

⇤
j

] if ✓
i

2 (d
i,1(✓⇤

j

� ✏), ✓̃
i

), and

the third inequality holds because of declining demand. Thus,

b2(✓̃i, ✓̃i) � ✓

i

8✓
i

2 (d
i,1(✓

⇤
j

� ✏), ✓̃
i

) =) b2(✓̃i, ✓̃i) � ✓̃

i

.

Yet b2(✓̃i, ✓̃i) � ✓̃

i

, contradicting the law of demand assumption. Hence, d
i,2(✓j) > d

i,1(✓j).

Now that I have established Lemmas 8-9 and Remarks 5-6, I complete the proof of Proposition

3.

Proof. First, I show that d

i,1 is continuous in ✓

j

. The proof is by contradiction. Incentive

compatibility implies that d
i,1(✓j) is weakly increasing. Thus, if d

i,1(✓j) is discontinuous, then

there exists a ✓

⇤
j

> 0 such that

lim
✓j!�

✓

⇤
j

d

i,1(✓j) < lim
✓j!+

✓

⇤
j

d

i,1(✓j).
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Let ✓`
i

:= lim
✓j!�

✓

⇤
j
d

i,1(✓j) and ✓

h

i

:= lim
✓j!+

✓

⇤
j
d

i,1(✓j). Thus, ✓i 2 (✓`
i

, ✓

h

i

) implies that

q

j

(✓
i

, ✓

j

) = 2� q

i

(✓
i

, ✓

j

) =

8
<

:
 1 if ✓

j

< ✓

⇤
j

2 if ✓

j

> ✓

⇤
j

.

Therefore, d
j,2(✓i) = ✓

⇤
j

8✓
i

2 (✓`
i

, ✓

h

i

), and Remark 6 shows

b2(✓
⇤
j

, d

j,1(✓i)) � ✓

i

8✓
i

2 (✓`
i

, ✓

h

i

) =) lim
✓i!�

✓

h
i

b2(✓
⇤
j

, d

j,1(✓i)) � ✓

h

i

. (7)

Similarly, Lemmas 8 and Remark 5 show that,

lim
✓i!+

di,1(✓j)
b2(✓j, dj,1(✓i))  lim

✓i!+
di,1(✓j)

s1(✓i, di,1(✓j)) = d

i,1(✓j)  lim
✓j!�

✓

⇤
j

d

i,1(✓j) = ✓

`

i

8✓
j

< ✓

⇤
j

,

(8)

where the final inequality follows because d
i,1(✓j) is weakly increasing. Thus, positive wealth

e↵ects imply that

b2(✓j, dj,1(✓
`

i

))  lim
✓i!+

di,1(✓j)
b2(✓j, dj,1(✓i))  ✓

`

i

8✓
j

< ✓

⇤
j

, (9)

where the final inequality from Equation 8. Combining Equations 8 and 7 gives,

lim
✓i!�

✓

h
i

b2(✓
⇤
j

, d

j,1(✓i)) � ✓

h

i

> ✓

`

i

� b2(✓
⇤
j

, d

j,1(✓
`

i

)).

This yields a contradiction as lim
✓i!�

✓

h
i
d

j,1(✓i) � d

j,1(✓`
i

) and positive wealth e↵ects imply

b2(✓
⇤
j

, d

j,1(✓
`

i

)) � lim
✓i!�

✓

h
i

b2(✓
⇤
j

, d

j,1(✓i))

Thus, d
i,1 is continuous.

Next, I prove that d
i,1(✓j) is strictly increasing in ✓

j

by contradiction. Incentive compat-

ibility requires that d

i,1(✓j) is weakly increasing. If d
i,1(✓j) is not strictly increasing, there

exists an interval (✓`
j

, ✓

h

j

) such that d
i,1(✓0

j

) = d

i,1(✓00
j

) 8✓0
j

, ✓

00
j

2 (✓`
j

, ✓

h

j

). Let ✓̃
i

:= d

i,1(✓j) 8✓j 2
(✓`

j

, ✓

h

j

), ✓`
j

:= inf{✓
j

: ✓̃
i

= d

i,1(✓j)}, and ✓

h

j

:= sup{✓
j

: ✓̃
i

= d

i,1(✓j)}. If ✓j 2 (✓`
j

, ✓

h

j

)

✓̃

i

= d

i,1(✓j) = lim
✓i!+

di,1(✓j)
s1(✓i, di,1(✓j)) � lim

✓i!+
di,1(✓j)

b2(✓j, dj,1(✓i)) = b2(✓j, dj,1(✓̃i)),

where the second equality and the inequality holds from Remark 5, and final equality holds
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because we showed that d
j,1 is continuous. Using the above expression we see that

✓̃

i

� b2(✓j, dj,1(✓̃i)) 8✓j 2 (✓`
j

, ✓

h

j

) =) ✓̃

i

� b2(✓
h

j

, d

j,1(✓̃i)). (10)

In addition, if ✓
j

> ✓

`

j

, then d

i,1(✓j) � ✓̃. Thus, if ✓
j

> ✓

`

j

and ✓

i

< ✓̃

i

, then q

i

(✓
i

, ✓

j

) =

0 =) q

j

(✓
i

, ✓

j

) = 2. Thus, if ✓
i

< ✓̃

i

, then d

j,2(✓i)  ✓

`

j

and Remark 6 implies

b2(dj,2(✓i), dj,1(✓i)) � ✓

i

8✓
i

< ✓̃

i

=) lim
✓i!+

✓̃i

b2(dj,2(✓i), dj,1(✓i)) � lim
✓i!+

✓̃i

✓

i

.

Recall that d
j,1(✓i) is continuous and d

j,2(✓i)  ✓

`

j

8✓
i

< ✓̃

i

. As such,

lim
✓i!+

✓̃i

b2(dj,2(✓i), dj,1(✓i)) � lim
✓i!+

✓̃i

✓

i

=) b2(✓
`

j

, d

j,1(✓̃i)) � ✓̃

i

.

I combine this with Equation 10 to show that

b2(✓
`

j

, d

j,1(✓̃i)) � ✓̃

i

� b2(✓
h

j

, d

j,1(✓̃i)) =) ✓

`

j

� ✓

h

j

.

However, this contradicts the fact that ✓h
j

> ✓

`

j

. Hence, d
i,1(✓j) is strictly increasing.

Proof of Corollary 2.

Proof. Let �⇤
i

:= (✓⇤
i

, t

⇤
i

) and �

⇤
j

:= (✓⇤
j

, t

⇤
j

). Suppose that ✓⇤
i

= d

i,1(�⇤
j

). Then, d
i,1(✓j, t⇤

j

) >

✓

⇤
i

() ✓

j

> ✓

⇤
j

and if �
j

= (✓
j

, t

⇤
j

),

q

j

(�⇤
i

, �

j

) = 2� q

i

(�⇤
i

, �

j

) =

8
<

:
2 if ✓

j

> ✓

⇤
j

 1 if ✓

j

< ✓

⇤
j

.

The above expression implies that d
t

⇤
j

j,2(�
⇤
i

) = ✓

⇤
j

when ✓

⇤
i

= d

i,1(�⇤
j

). Thus, �⇤
i

:= (✓⇤
i

, t

⇤
i

) and

�

⇤
j

:= (✓⇤
j

, t

⇤
j

) implies both bidders’ intercept reports are locally pivotal. Incentive compati-

bility then implies

✓

⇤
j

= d

t

⇤
j

j,2(�
⇤
i

) =) p

j,2(�
⇤
i

) = b2(�
⇤
j

, p

j,,1(�
⇤
i

)) � ✓

⇤
i

= d

i,1(�
⇤
j

) = p

i,1(�
⇤
j

) (11)

where the final inequality follows from Remark 6. In addition,

✓

⇤
i

= lim
✓i!+

✓

⇤
i

s1((✓i, t
⇤
i

), p
i,1(�

⇤
j

)) � lim
✓i!+

✓

⇤
i

b2(�
⇤
j

, p

j,1(✓i, t
⇤
i

)) = b2(�
⇤
j

, p

j,1(�
⇤
i

)), (12)
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where the first inequality holds because q

i

(�
i

, �

⇤
j

) = 1 if �
i

= (✓
i

, t

⇤
i

) where ✓

i

> ✓

⇤
i

. The final

equality holds because p

j,1 is continuous in ✓

i

. Combining the above two 11 and 12 gives

b2(�
⇤
j

, p

j,1(�
⇤
i

)) � ✓

⇤
i

� b2(�
⇤
j

, p

j,1(�
⇤
i

)) =) ✓

⇤
i

= b2(�
⇤
j

, p

j,1(�
⇤
i

)).

This is our desired result because p

i,1(�⇤
j

) = ✓

⇤
i

and b2(�⇤
j

, p

j,1(�⇤
i

)) = p

j,2(�⇤
i

).

For the remaining proofs recall that we assume ✓2 � ✓3 � ✓

j

8j 6= 1, 2, 3.

Proof of Lemma 5.

Proof. I show that d1,1(✓�1) � ✓3. The proof is by contradiction. Suppose that there exists

✓2, ✓3 such that ✓3 > d1,1(✓�1). This implies that if ✓1 = d1,1(✓�1)+ ✏, then q1(✓1, ✓�1) � 1 and

if ✓1 = d1,1(✓�1)�✏, then q1(✓1, ✓�1) = 0. Thus, as ✓1 approaches d1,1(✓�1) from above, bidder

1 is willing to sell one of her units for at most ✓1 (if bidder 1 wins 2 units when ✓1 > d1,1(✓�1),

then her willingness to sell an additional unit is lower). Thus, there is a Pareto improving

trade where bidder 1 sells one unit to bidder 3 for a price in the interval (✓1, ✓3).

Proof of Lemma 6.

Proof. Lemma 5 shows that d1,1(✓�1) � ✓3. I show this holds with equality when ✓3 �
b2(✓2, 0). The proof is by contradiction. Suppose d1,1(✓�1) > ✓3. Let ✓1 be such that ✓1 2
(✓3, d1,1(✓�1)). Then q2(✓1, ✓2, ✓3, ✓�1,2,3) = 2. This holds because (1) q1(✓1, ✓�1) = 0 because

d1,1(✓�1) > ✓1 and (2) q
i

(✓
i

, ✓�i

) = 08i 6= 1, 2 because Lemma 5 shows d
i,1(✓�i

) � min{✓1, ✓2}
and min{✓1, ✓2} > ✓

i

. Thus,

✓2 � d2,2(✓�2) � d2,1(✓�2) � ✓3.

Let ✓̃2 = d2,2(✓�2)+✏, and ✓̂2 = d2,2(✓�2)�✏. Incentive compatibility and continuity of bidder

2’s preferences imply that when ✏ > 0 is su�ciently small,

s2(✓̃2, x2(✓1, ✓3)) ⇡ b2(✓̂2, d2,1(✓1, ✓3))  b2(✓2, 0) < ✓1.

Thus, s2(✓̃2, x2(✓1, ✓3) < ✓1. This implies that there is a Pareto improving trade when bidder 2

is type ✓̃2. Bidder 2 sells one unit to bidder 1 for a price in the interval (s2
⇣
✓̃2, x2(✓2, ✓�2)

⌘
, ✓1).
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Proof of Lemma 7.

Proof. The proof is by contradiction. First suppose d1,2(✓�1) > ✓

⇤
1. Then

q1(✓1, ✓�1) = 1 if ✓1 2 (✓⇤1, d1,2(✓�1)),

because ✓1 > ✓

⇤
1 > ✓2 > ✓3 = d1,1(✓�1) where the final equality holds because Lemma 6 shows

that ✓3 = d1,1(✓�1) if ✓3 2 (b2(✓2, 0), ✓2). In addition, q2(✓1, ✓2, ✓3, ✓�1,2,3) = 1 because both

units are sold and bidder i 6= 1, 2 wins zero units when her type is not among the two highest

types reported. Thus, ✓2 � d2,1(✓�2).

Let ✓̃2 = min{✓2, d2,1(✓�2)+✏} where ✏ > 0 is small. Note that ✓̃2 > ✓3 because d2,1(✓�1) �
✓3 and ✓2 > ✓3. Thus, ✓2 � ✓̃2 > ✓3 =) ✓3 2 (b2(✓̃2, 0), ✓̃2), which follows because we assume

✓3 2 (b2(✓2, 0), ✓2). Thus, Lemma 6 shows d1,1(✓̃2, ✓�1,2) = ✓3, and bidder 1 is willing to pay

b2(✓1, ✓3) for an additional unit. Note that

b2(✓1, ✓3) > b2(✓
⇤
1, ✓3) = ✓2 � ✓̃2.

Where the first inequality holds because ✓1 > ✓

⇤
1 and the equality holds from the definition

of ✓⇤1.

In addition, since ✓̃2 � 2✏ < d2,1(✓�2)  ✓̃2, where ✏ > 0 is arbitrarily small, incentive

compatibility implies that bidder s1(✓̃2, d2,1(✓�2)) ⇡ d2,1(✓�2) because ✓̃2 ⇡ d2,1(✓�2). Yet

q2(✓̃2, ✓�2) = 1 by construction. Thus, there is a Pareto improving trade where bidder 1 buys

the unit from bidder 2 for a price in the interval (✓̃2, b2(✓1, ✓3)). Thus, if d1,2(✓�1) > ✓

⇤
1, there

exists a Pareto improving trade and the mechanism does not satisfy Properties (a)-(e).

Next, suppose that ✓

⇤
1 > d1,2(✓�1). Then, d1,2(✓�1) � d1,1(✓�1) = ✓3, where the final

inequality holds by Lemma 6. Let ✓̃1 = d1,2(✓�1) + ✏, where ✏ > 0 is su�ciently small. Thus,

q1(✓̃1, ✓�1) = 2. Incentive compatibility implies that bidder 1 is approximately indi↵erent

between buying her second unit when her type is near d1,2(✓�1). Thus, bidder 1 is willing to

sell her second unit for approximately b2(✓̃1, ✓3) (this follows from Remark 6). In addition,

bidder 2 is willing to pay ✓2 for her first unit and ✓2 > b2(✓̃1, ✓3) because I assumed that

✓

⇤
1 > ✓̃1 ⇡ d1,2(✓�1). Thus, there is a Pareto improving trade where bidder 1 sells her second

unit to bidder 2 for a price in the interval
⇣
b2(✓̃1, ✓3), ✓2

⌘
.

Proof of Theorem 3.

Proof. Let ✓h2 and ✓

`

2 be such that ✓h2 = ✓

`

2 + ✏ where ✏ > 0 is su�ciently small. Then,

b2(✓
h

2 , 0) < ✓

`

2 < ✓

h

2 .
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Let ✓h3 , ✓
`

3 be such that ✓`3 < ✓

h

3 where

✓

`

3 = b2(✓
h

2 , 0) + ✏

and

✓

h

3 = ✓

`

2 � ✏,

where ✏ > 0 is su�ciently small.

Finally, let ✓`1, ✓
h

1 be such that ✓`1 < ✓

h

1 and

b2(✓
h

1 , ✓
h

3 ) < ✓

`

2 < ✓

`

2 + ✏ = ✓

h

2 < b2(✓
`

1, ✓
`

3).

We know such ✓

h

1 , ✓
`

1 exist when ✏ > 0 is su�ciently small, because ✓

h

3 > ✓

`

3 implies that

b2(✓1, ✓`3) > b2(✓1, ✓h3 ) 8✓1 > 0, and b2 is continuous in the first argument. Thus ✓

h

1 > ✓

`

1 >

✓

h

2 > ✓

`

2 > ✓

h

3 > ✓

`

3. In addition suppose ✓

i

< ✓

`

38i 6= 1, 2, 3.

Then,

q2(✓
h

1 , ✓
`

2, ✓
h

3 , ✓�1,2,3) � 1.

This is because q1(✓h1 , ✓
`

2, ✓
h

3 , ✓�1,2,3)  1, as ✓h1 < ✓

⇤
1 = d1,2(✓�1) where

b2(✓
⇤
1, ✓

h

3 ) = ✓

`

2 > b2(✓
h

1 , ✓
h

3 ).

In addition q

i

(✓h1 , ✓
`

2, ✓
h

3 , ✓�1,2,3) = 0 8i 6= 1, 2 by Lemma 5 because ✓

h

1 , ✓
`

2 > ✓

i

Yet, our assumptions also imply q1(✓`1, ✓
h

2 , ✓
`

3, ✓�1,2,3) = 2, because ✓

`

1 > ✓

⇤ where

b2(✓
⇤

1, ✓
`

3) = ✓

h

2 < b2(✓
`

1, ✓
`

3).

Thus, Lemma 7 implies q1(✓`1, ✓
h

2 , ✓
`

3, ✓�1,2,3) = 2 =) q2(✓`1, ✓
h

2 , ✓
`

3, ✓�1,2,3) = 0. Yet this

violates the monotonicity, because monotonicity implies

q2(✓
`

1, ✓
h

2 , ✓
`

3, ✓�1,2,3) � q2(✓
h

1 , ✓
`

2, ✓
h

3 , ✓�1,2,3) � 1.
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