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Abstract

Aggregate shocks affect most households’ and firms’ decisions. Using three stylized mod-
els we show that inference based on cross-sectional data alone generally fails to correctly
account for decision making of rational agents facing aggregate uncertainty. We propose
an econometric framework that overcomes these problems by explicitly parametrizing the
agents’ inference problem relative to aggregate shocks. Our framework and examples illus-
trate that the cross-sectional and time-series aspects of the model are often interdependent.
Estimation of model parameters in the presence of aggregate shock requires, therefore, the
combined use of cross-sectional and time series data. We provide easy-to-use formulas for test
statistics and confidence intervals that account for the interaction between the cross-sectional

and time-series variation.
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1 Introduction

An extensive body of economic research suggests that aggregate shocks have important effects on
households’ and firms’ decisions. Consider for instance the oil shock that hit developed countries
in 1973. A large literature has provided evidence that this aggregate shock triggered a recession
in the United States, where the demand and supply of non-durable and durable goods declined,
inflation grew, the unemployment rate increased, and real wages dropped.

The profession has generally adopted one of the following three strategies to deal with aggre-
gate shocks. The most common strategy is to assume that aggregate shocks have no effect on
households’ and firms’ decisions and, hence, that aggregate shocks can be ignored. Almost all
papers estimating discrete choice dynamic models or dynamic games are based on this premise.
Examples include Keane and Wolpin (1997), Bajari, Bankard, and Levin (2007), and Eckstein and
Lifshitz (2011). We show that, if aggregate shocks are an important feature of the data, ignoring
them generally leads to inconsistent parameter estimates. The second approach is to add in a
linear fashion time dummies to the model in an attempt to capture the effect of aggregate shocks
on the estimation of the parameters of interest, as was done for instance in Runkle (1991) and Shea
(1995). We clarify that, if the econometrician does not account properly for aggregate shocks, the
parameter estimates will generally be inconsistent even if the actual realizations of the aggregate
shocks are observed. The linear addition of time dummies, therefore, fails to solve the problem.’
The last strategy is to fully specify how aggregate shocks affect individual decisions jointly with
the rest of the structure of the economic problem. Using this approach, the econometrician can
obtain consistent estimates of the parameters of interest. We are aware of only one paper that
uses this strategy, Lee and Wolpin (2010). Their paper is primarily focused on the estimation
of a specific empirical model, and they do not address the broader question of which statistical
assumptions and what type of data requirements are needed more generally to obtain consistent
estimators when aggregate shocks are present. Moreover, as we argue later on, in Lee and Wolpin’s

(2010) paper there are issues with statistical inference and efficiency.

'In the Euler equation context, Chamberlain (1984) uses examples to argue that, when aggregate shocks are
present but disregarded, the estimated parameters are generally inconsistent. His examples make clear that gener-

ally time dummies do not solve the problems introduced by the presence of aggregate shocks.



The previous discussion reveals that there is no generally agreed upon econometric framework
for statistical inference in models where aggregate shocks have an effect on individual decisions.
The purpose of this paper is to provide such a general econometric framework. We show that
inference based on cross-sectional data alone generally fails to correctly account for decision mak-
ing of rational agents facing aggregate uncertainty. By parametrizing aggregate uncertainty and
explicitly accounting for it when solving for the agents decision problem, we are able to offer
an econometric framework that overcomes these problems. We advocate the combined use of
cross-sectional and time series data, and we develop simple-to-use formulas for test statistics and
confidence intervals that enable the combined use of time series and cross-sectional data.

We proceed in three steps. In Section [2| we introduce the general identification problem by
examining a general class of models with the following two features. First, each model in this
class is composed of two submodels. The first submodel includes all the cross-sectional features,
whereas the second submodel is composed of all the time-series aspects. As a consequence, the
parameters of the model can also be divided into two groups: the parameters that characterize
the cross-sectional submodel and the parameters that enter the time-series submodel. The second
feature is that the two submodels are linked by a vector of aggregates shocks and by the parameters
that govern their dynamics. Individual decision making thus depends on aggregate shocks.

Given the interplay between the two submodels, aggregate shocks have complicated effects on
the estimation of the parameters of interest. To better understand those effects, in the second
step, we present three examples of the general framework that illustrate the complexities generated
by the existence of the aggregate shocks. Section |3| considers a model of portfolio choices with
aggregate shocks and shows that, if only cross-sectional variation is used, the estimates of the
model parameters are biased and inconsistent. It also shows that to obtain unbiased and consistent
estimates it is necessary to combine cross-sectional and time-series variation.

In Section 4] as a second example, we study the estimation of firms’ production functions when
aggregate shocks affect firms’ decisions. This example shows that there are exceptional cases in
which model parameters can be estimated using only repeated cross-sections if time dummies are
skillfully used and not simply added as time intercepts. Specifically, we show that the method
proposed by Olley and Pakes (1996) for the estimation of production functions can be modified

with the proper inclusion of time dummies to account for the effect of aggregate shocks. The



results of Section [4] are of independent interest since the estimation of firms’ production functions
is an important topic in industrial organization and aggregate shocks have significant effects in
most markets.

In Section [5| we discuss as our last example a general equilibrium model of education and
labor supply decisions. The portfolio example has the quality of being simply. But, because
of its simplicity, it generates a one-directional relationship between the time-series and cross-
sectional submodels: the variables and parameters of the time-series model affect the variables
and parameters of the cross-sectional submodel, but the opposite is not true. As a result, the
parameters of the time-series submodel can be estimated without knowing the cross-sectional
parameters. However, this is not generally the case. In the majority of situations, the link
between the two submodels is bi-directional. The advantage of the general-equilibrium example is
that it produces a bi-directional relationship we can use to illustrate the complexity of the effect
of aggregate shocks on parameter estimation.

The examples make clear that generally the best approach to consistently estimate the pa-
rameters of the investigated models is to combine cross-sectional data with a long time-series of
aggregate variables.? As the last step, in Section [6] we provide easy-to-use formulas that can be
employed to derive test statistics and confidence intervals for parameters estimated by combining
those two data sources. The underlying asymptotic theory, which is presented in the compan-
ion paper Hahn, Kuersteiner, and Mazzocco (2016), is highly technical due to the complicated
interactions that exists between the two-submodels. It is therefore surprising that the formulas
necessary to perform inference take simple forms that are easy to adopt. We conclude the section,
by illustrating using the general equilibrium model discussed in Section [5| how the formulas can
be computed in concrete cases.

In addition to the econometric literature that deals with inferential issues, our paper also
contributes to a growing literature whose objective is the estimation of general equilibrium models.
Some examples of papers in this literature are Heckman and Sedlacek (1985), Heckman, Lochner,

and Taber (1998), Lee (2005), Lee and Wolpin (2006), Gemici and Wiswall (2011), Gillingham,

2 An alternative method would be to combine cross-sectional and time-series variation by using panel data. Panel
data, however, are generally too short to achieve consistency, whereas long time-series data are easier to find for

most of the variables that are of interest to economists. More on this at the end of Section



Iskhakov, Munk-Nielsen, Rust, and Schjerning (2015). Aggregate shocks are a natural feature of
general equilibrium models. Without them those models have the unpleasant implication that all
aggregate variables can be fully explained by observables and, hence, that errors have no effects
on those variables. Our general econometric framework makes this point clear by highlighting
the impact of aggregate shocks on parameter estimation and the variation required in the data
to estimate those models. More importantly, our results provide easy-to-use formulas that can be

used to perform statistical inference in a general equilibrium context.

2 The General Identification Problem

This section introduces in a general form the identification problem generated by the existence
of aggregate shocks. It follows closely Section 2 in our companion paper Hahn, Kuersteiner, and
Mazzocco (2016). We consider a class of models with four main features. First, the model can be
divided into two parts. The first part encompasses all the static aspects of the model and will be
denoted with the term cross-sectional submodel. The second part includes the dynamic aspects of
the aggregate variables and will be denoted with the term time-series submodel. Second, the two
submodels are linked by the presence of a vector of aggregate shocks v, and by the parameters
that govern their dynamics. Third, the vector of aggregate shocks may not be observed. If that
is the case, it is treated as a set of parameters to be estimated. Lastly, the parameters of the
model can be consistently estimated only if a combination of cross-sectional and time-series data
are available.

We now formally introduce the general model. The variables that characterize the model can
be divided into two vectors y;; and z,. The first vector y;, includes all the variables that charac-
terize the cross-sectional submodel, where ¢ describes an individual decision-maker, a household
or a firm, and ¢ a time period in the cross-section.® The second vector z; is composed of all
the variables associated with the time-series model. Accordingly, the parameters of the general

model can be divided into two sets, § and p. The first set of parameters 3 characterizes the

cross-sectional submodel, in the sense that, if the second set p was known, 8 and v; can be con-

3Even if the time subscript ¢ is not necessary in this subsection, we keep it here for notational consistency

because later we consider the case where longitudinal data are collected.



sistently estimated using exclusively variation in the cross-sectional variables y; . Similarly, the
vector p characterizes the time-series submodel meaning that, if 5 and v, were known, those para-
meters can be consistently estimated using exclusively the time series variables z,. There are two
functions that relate the cross-sectional and time-series variables to the parameters. The function

I (Yis

value of the parameters. Analogously, the function g (zs| 3, p) describes the behavior of the time-

B, v, p) restricts the behavior of the cross-sectional variables conditional on a particular

series variables for a given value of the parameters. An example is a situation in which (i) the
variables y;; for i = 1,...,n are i.i.d. given the aggregate shock 14, (ii) the variables z, correspond
to (vs, Vs—1), (iii) the cross-sectional function f (y;+| 3, v+, p) denotes the log likelihood of y; ; given
the aggregate shock v, and (iv) the time-series function g (zs| 5, p) = g (vs|vs—1, p) is the log of
the conditional probability density function of the aggregate shock v, given v, ;. In this special
case the time-series function g does not depend on the cross-sectional parameters (5.

We assume that our cross-sectional data consist of {y;+, i = 1,...,n}, and our time series data
consist of {z5, s =71+ 1,...,79 + 7}. For simplicity, we assume that 7o = 0 in this section.

The parameters of the general model can be estimated by maximizing a well-specified objective

4 Since in our case the general framework is composed of two submodels, a natural

function.
approach is to estimate the parameters of interest by maximizing two separate objective functions,
one for the cross-sectional model and one for the time-series model. We denote these criterion
functions by F, (8,1, p) and G, (5, p). In the case of maximum likelihood these functions are
simply F, (8,01, 0) = 2301 f (yisl 8,00, p) and G (8,p) = £3°7_, g (2| B,p). The use of two
separate objective functions is helpful in our context because it enables us to discuss which issues
arise if only cross-sectional variables or only time-series variables are used in the estimation.’

In the class of models we consider, the identification of the parameters requires the joint use
of cross-sectional and time-series data. Specifically, the objective function F' of the cross-sectional

model evaluated at the cross-sectional parameters § and aggregate shocks v takes the same value

for any feasible set of time-series parameters p. Similarly, the objective function G of the time-

4QOur discussion is motivated by Newey and McFadden’s (1994) unified treatment of maximum likelihood and

GMM as extremum estimators.
5Note that our framework covers the case where the joint distribution of (y;, 2¢) is modelled. Considering the

two components separately adds flexibility in that data is not required for all variables in the same period.



series model evaluated at the time-series parameters and aggregate shocks takes the same value for
any feasible set of cross-sectional parameters. In our class of models, however, all the parameters
of interest can be consistently estimated if cross-sectional data are combined with time-series data.

The next three sections consider special cases of the type of models described above.

3 Example 1: Portfolio Choice

We now present a model of portfolio choices that illustrates the economic relevance of the general
class of models introduced in Section 21

Consider an economy that, in each period ¢, is populated by n households. These households
are born at the beginning of period ¢, live for one period, and are replaced in the next period by
n new families. The households living in consecutive periods do not overlap and, hence, make
independent decisions. Each household is endowed with deterministic income and has preferences
over a non-durable consumption good ¢;;. The preferences can be represented by Constant Ab-
solute Risk Aversion (CARA) utility functions which take the following form: U (c;;) = —e ™%,
For simplicity, we normalize income to be equal to 1.

During the period in which households are alive, they can invest a share of their income in a
risky asset with return u;;. The remaining share is automatically invested in a risk-free asset with
a return r that does not change over time. At the end of the period, the return on the investment
is realized and households consume the quantity of the non-durable good they can purchase with
the realized income. The return on the risky asset depends on aggregate shocks. Specifically,
it takes the following form: w;; = 14 + €;;, where 14 is the aggregate shock and ¢;; is an i.i.d.
idiosyncratic shock. The idiosyncratic shock, and hence the heterogeneity in the return on the
risky asset, can be interpreted as differences across households in transaction costs, in information
on the profitability of different stocks, or in marginal tax rates. We assume that v, ~ N (u,0?),
€ir ~ N (0,02), and hence that u;; ~ N (u,0?), where 0 = 02 + 2.

Household i living in period t chooses the fraction of income to be allocated to the risk-free



asset o, ; by maximizing its life-time expected utility:

—be;,
mgx F [—e ¢ t}

st. cp=a(l+r)+(1—a)(l+uy), (1)

where the expectation is taken with respect to the return on the risky asset. It is straightforward

to show that the household’s optimal choice of «;; is given by®

2
== 50;_%. (2)
We will assume that the econometrician is mainly interested in estimating the risk aversion para-
meter 9.

We now consider an estimator that takes the form of a population analog of , and study the
impact of aggregate shocks on the estimator’s consistency when an econometrician works only with
cross-sectional data. Our analysis reveals that such an estimator is inconsistent, due to the fact
that cross-sectional data do not contain information about aggregate uncertainty. Our analysis
makes explicit the dependence of the estimator on the probability distribution of the aggregate
shock and points to the following way of generating a consistent estimator of 4. Using time series
variation, one can consistently estimate the parameters pertaining to aggregate uncertainty. Those
estimates can then be used in the cross-sectional model to estimate the remaining parameters.”

Without loss of generality, we assume that the cross-sectional data are observed in period
t = 1. The econometrician observes data on the return of the risky asset u;; and on the return of
the risk-free asset r. We assume that in addition he also observes a noisy measure of the share of
resources invested in the risky assets o;; = o + €;+, where ¢, is a zero-mean measurement error.
We therefore have that y; = (u;1,;1). We make the simplifying assumption that the aggregate
shock is observable to econometricians and that the time-series variables only include the aggregate

shock, i.e. 2z = 1. Because u = E [u;1], 02 = Var (u;1), and a = F [ay], if only cross-sectional

6See the appendix.
"Our model is a stylized version of many models considered in a large literature interested in estimating the

parameter § using cross-sectional variation. Estimators are often based on moment conditions derived from first
order conditions (FOC) related to optimal investment and consumption decisions. Such estimators have similar

problems, which we discuss in Appendix



variation is used for estimation, we would have the following method-of-moments estimators of

those parameters:

n

1 1

~ — ~2 —\2 A

o= — U1 = U, 0° =~ E (up —a)”, and o= — ;1.
=1 i=1 =1

The econometrician can then use equation to write the risk aversion parameter as 6 =
(u—1)/ (0% (1 — a)) and estimate it using the sample analog 6 = (i — )/ (62 (1 — &)).

In the presence of the aggregate shock v;, those estimators can be written as

1 & 1 &
1 = — i1 = — i1 = 17
il R;UI V1—|—n;€1 v+ 0, (1)

1 - 1
) —\2 -\ 2 2
(9 nil(ul U) nil(El 6) Oe—i-Op()

1 n
S —_ i1 = 1’
& oz+n;:161 a+o,(1)

which implies that § will be estimated to be

- V1+Op(1)—r R )
= oM (—arom) ~ a=a "W 5

Using Equation , we can study the properties of the proposed estimator 5. If there were

2
v

2 and, therefore, &

no aggregate shock in the model, we would have vy = pu, 02 = 0, 02 = o
would converge to , a nonstochastic constant, as n grows to infinity. It is therefore a consistent
estimator of the risk aversion parameter. In the presence of the aggregate shock, however, the

proposed estimator has different properties. If one conditions on the realization of the aggregate

shock v, the estimator 0 is inconsistent with probability 1, since it converges to 02”(11:”a) and not

to the true value If one does not condition on the aggregate shock, as n grows to

u—r

(o2+02)(1—a)”
infinity, & converges to a random variable with a mean that is different from the true value of
the risk aversion parameter. The estimator will therefore be biased and inconsistent. To see this,
remember that v, ~ N (u,02). As a consequence, the unconditional asymptotic distribution of 5

takes the following form:

2 2 2
~ ILL—T ]. 2 0-1/ Ul/
N =N v
o (azu—a)’(az(l—a)) “”) (5”0—2’(0—2(@—1»2)’

2
o
which is centered at § +J— and not at d, hence the bias.

€




We are not the first to consider a case in which the estimator converges to a random variable.
Andrews (2005) and more recently Kuersteiner and Prucha (2013) discuss similar scenarios. Our
example is remarkable because the nature of the asymptotic randomness is such that the estimator
is not even asymptotically unbiased. This is not the case in Andrews (2005) or Kuersteiner and
Prucha (2013), where in spite of the asymptotic randomness the estimator is unbiased.®

As mentioned above, there is a simple explanation for our result: cross-sectional variation is
not sufficient for the consistent estimation of the risk aversion parameter if aggregate shocks affect
individual decisions.” To make this point transparent, observe that, conditional on the aggregate

shock, the assumptions of this section imply that y; has the following distribution

V1 o 0
s N o2 vot) br—p || | ] (4)
3 (02 + 02) Te

Using , it is straightforward to see that the cross-sectional likelihood is maximized for any
arbitrary choice of the time-series parameters p = (i, 02), as long as one chooses ¢ that satisfies

the following equation:
d(op+od)+r—p _
0(c2+02)

As a result, the cross-sectional parameters p and o

2

2 cannot be consistently estimated by max-

imizing the cross-sectional likelihood and, hence, d cannot be consistently estimated using only
cross-sectional data.
A solution to the problem discussed in this section is to combine cross-sectional variables with

time-series variables. In this case, one can consistently estimate (i, 02) by using the time-series

8Kuersteiner and Prucha (2013) also consider cases where the estimator is random and inconsistent. However,
in their case this happens for different reasons: the endogeneity of the factors. The inconsistency considered here

occurs even when the factors (i.e., aggregate shocks) are strictly exogenous.
9 As discussed in the introductory section, a common practice to account for the effect of aggregate shocks is to

include time dummies in the model. The portfolio example clarifies that the addition of time dummies does not
solve the problem generated by the presence of aggregate shocks. The inclusion of time dummies is equivalent to
the assumption that the aggregate shocks are known. But the previous discussion indicates that, using exclusively
cross-sectional data, the estimator § is biased and inconsistent even if the aggregate shocks are known. An unbiased
and consistent estimator of § can only be obtained if the distribution of the aggregate shocks is known, which is

feasible only by exploiting the variation contained in time-series data.

10



of aggregate data {z;}. Consistent estimation of (4,02, 0?) can then be achieved by plugging the
consistent estimators of (1, 02) in the correctly specified cross-section likelihood .

The example presented in this section is a simplified version of the general class of models in-
troduced in Section [2] since the relationship between the cross-sectional and time-series submodels
is simple and one-directional. The variables and parameters of the time-series submodel affect the
cross-sectional submodel, but the cross-sectional variables and parameters have no impact on the
time-series submodel. As a consequence, the time-series parameters can be consistently estimated
without knowing the cross-sectional parameters. In more complicated situations, such as general
equilibrium models, where aggregate shocks are a natural feature, the relationship between the
two submodels is generally bi-directional. In Section [5], we present a general-equilibrium with that
type of relationship. But before considering that case, we study a situation in which the effect of

aggregate shocks can be accounted for with the proper use of time dummies.

4 Example 2: Estimation of Production Function

In the previous section, we presented an example that illustrates the complicated nature of iden-
tification in the presence of aggregate shocks. The example highlights that generally there is no
simple method for estimating the class of models considered in this paper. Estimation requires
a careful examination of the interplay between the cross-sectional and time-series submodels. In
this section, we consider an example showing that there are exceptions to this general rule. In the
case we analyze, identification of a model with aggregate shocks can be achieved using only cross-
sectional data provided that time dummies are skillfully employed. We will show that the naive
practice of introducing additive time dummies is not sufficient to deal with the effects generated
by aggregate shocks. But the solution is simpler than the general approach we adopted to identify
the parameters of the portfolio model.

The example we consider here is a simplified version of the problem studied by Olley and
Pakes (1996) and deals with an important topic in industrial organization: the estimation of firms’
production functions. A profit-maximizing firm j produces in period ¢ a product y;,; employing a

production function that depends on the logarithm of labor [;;, the logarithm of capital &;;, and

11



a productivity shock w;;. It takes the following functional form:

Yit = Bo + Biljs + Bekjs + wjs + ;s (5)

where 7;; is a measurement error.

Capital and labor are optimally chosen by the firm, jointly with the new investment in capital
i+, by maximizing a dynamic profit function subject to constraints that determine how capital
accumulated over time.!” In the model proposed by Olley and Pakes (1996), firms are heteroge-
neous in their age and can choose to exit the market. In this section, we will abstract from age
heterogeneity and exit decisions because they make the model more complicated without adding
more insight on the effect of aggregate shocks on the estimation of production functions.

A crucial feature of the model proposed by Olley and Pakes (1996) and of our example is that
the investment decision in period ¢ is a function of the current stock of capital and productivity
shock, i.e.

ije = it (Wie, Kjie) - (6)

Olley and Pakes (1996) do not allow for aggregate shocks, but in this example we consider a
situation in which the productivity shock at ¢ is the sum of an aggregate shock 14 and of an i.i.d.
idiosyncratic shock ¢;,, i.e.

Wit = + Ejt (7)

We will assume that the firm observes the realization of the aggregate shock and, separately, of
the i.i.d. shock.

We first describe how the production function can be estimated when aggregate shocks are
not present, the method proposed by Olley and Pakes (1996). We then discuss how that method
has to be modified with the appropriate use of time dummies if aggregate shocks affect firms’
decisions.

The main problem in the estimation of the production function is that the productivity
shock is correlated with labor and capital, but not observed by the econometrician. To deal
with that issue, Olley and Pakes (1996) use the result that the investment decision (6] is strictly

increasing in the productivity shock for every value of capital to invert the corresponding function

0For details of the profit function and the accumulation equation for capital, see Olley and Pakes (1996).
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and solve for the productivity shock, which implies
wip = hu (50, kja) - (8)

One can then replace the productivity shock in the production function using the equation to

obtain
Vit = Bilie + Or (G54, kje) + 1jes 9)
where

b1 (15,05 ki) = Bo + Brkje + he (50, Kje) - (10)
The parameter 3; and the function ¢ can then be estimated by regressing y;, on /;; and a poly-
nomial in 4;; and k;;. Equivalently, 5; is identified by

E(Lie — E Ll ije kiel) W0 — Byl s, kj,t])]'
E [(Ljs — E (14| i, kj])?]

B = (11)

To identify the parameter on the logarithm of capital [, observe that
EYist1 — Biljasa| kjasa] = Bo + Brkjusr + E [wjsg1| wie] = Bo + Brkjrr + 9 (wje) (12)

where the first equality follows from k;;y being determined conditional on w;;. The shock w;; =

hi (ij4, kj.) is not observed but, using equation (10), can be written in the following form:
Wit = ¢ (1, ki) — Bo — Bk, (13)

where ¢; is known from the first-step estimation. Substituting for w;, into the function ¢ (.) in

equation and letting &; ;11 = w11 — F [wj41]| wje], equation can be written as follows:

Yiar1 — Bilje1 = Brekjarr + g (dr — Brkje) + &uvr + it (14)

where [y has been included in the function ¢ (.). The parameter [, can then be estimated by
using the estimates of 3, and ¢, obtained in the first step and by minimizing the sum of squared
residuals in the previous equation employing a kernel or a series estimator for the function g.

We now consider the case in which aggregate shocks affect the firm’s decisions and analyze how

the model parameters can be identified using only cross-sectional variation. The introduction of

13



aggregate shocks changes the estimation method in two main ways. First, the investment decision

is affected by the aggregate shock and takes the following form:
ije = br (e, €5, Kjit) -

where 1, and €;; enter as independent arguments because the firm observes them separately.
Second, all expectation are conditional on the realization of the aggregate shock since in the
cross-section there is no variation in that shock and only its realization is relevant.

It is straightforward to show that, if the investment function is strictly increasing in the pro-
ductivity shock w;, for all capital levels, it is also strictly increasing in 14 and €, for all £;;. Using
this result, we can invert i, (.) to derive ¢;, as a function of the aggregate shock, investment, and
the stock of capital, i.e.

Ejt = hy (Vt7 Ujits k‘j,t) .

The production function can therefore be rewritten in the following form:

Yix = Bo + Biljs + Bekjy + v + €4 + s (15)
= Bilj+ + [Bo + Brkje + ve + he (Ve, 454, kjt)] + 1t

= Biljr + & (054, ko) + 0t

If 5; is estimated using repeated cross-sections and the method developed for the case with no
aggregate shocks, the estimated coefficient will generally be biased because the econometrician
does not account for the aggregate shock and its correlation with the firm’s choice of labor. There
is, however, a small variation of the method proposed earlier that produces unbiased estimates
of 3, as long as ¢;; is independent of 7;;. The econometrician should regress y;; on [;; and a
polynomial in 4;, and k;, where the polynomial is interacted with time dummies. It is this atypical
use of time dummies that enables the econometrician to account for the effect of aggregate shocks
on firms’ decisions. The (; can therefore be identified by

El(lie = Ellil i, ki ve = ) (50 — Elyial e, kje, ve = 7])]
E [(l4 = E [lial ij4, Ky v = 7])°]

b= (16)

Observe that the expectation operator in the previous equation is defined with respect to a proba-

bility distribution function that includes the randomness of the aggregate shock ;. But, when one

14



uses cross-sectional variation, v; is fixed at its realized value. As a consequence, the distribution
is only affected by the randomness of ¢;;.

For the estimation of (3, observe that

E Wirt1 — Biljsa| kjss Vg1 = 7] (17)
= Bo + Bikji1 + E (Vi1 + €011, vig1 = /! vy =1, €.l
= fo + Brkju1 + 7 + Eleju| v = 0,65,

= Bo + Brkjii1 + 7 + gt (€j1)

where the first equality follows from £;,,; being known if 1, and €, are known and the last equality
follows from the inclusion of the aggregate shock v, = ¥ in the function g, (.).

The only variable of equation that is not observed is €;;. But remember that
i = he (W, 450, kje) = O (U, 054, k) — Bo — Brkje — v
We can therefore use the above expression to substitute for €, in equation and obtain

Elyitr — Biljsr| Kjer1, v = V']
= BO + Bkkj,tJrl + ﬂ/ -+ gt ((bt (Vt, ij,t; kj,t) — BO — ﬁkkj,t _ D)
= Bikjir1 + grer1 (D — Bikis) ,

where in the last equality o, 7, and 7’ have been included in the function g;+41 (.). Hence, if one
defines &; 111 = €441 — E [€j441| e = U, €4, the parameter 3, can be estimated using the following
equation:

Yigr1 — Biljr1 = Brkjorr + Gravr (00 — Brkje) + &ar +0jps1 (18)

But notice that the approach without aggregate shocks cannot be applied directly to equation (18])
because the function g (.) depends on time ¢ and ¢ + 1 aggregate shocks. With aggregate shocks a
different function ¢ (.) must be estimated for each period. This can be achieved by replacing g (.)
with a polynomial interacted with time dummies.

The previous discussion indicates that firms’ production functions can be estimated using only
cross-sectional data as long as the functions ¢ and g are estimated period by period. In practice,

both functions are often estimated by low degree polynomials. Our analysis indicates that if the
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coefficients of these polynomials are interacted with time dummies the estimation of production
functions will generally be robust to the presence of aggregate shocks.

We conclude by drawing attention to three important features of the example considered in
this section. First, in order to deal with the effect of aggregate shocks, we had to carefully examine
the meaning of seemingly straightforward objects such as the expectation operator £. We also
had to impose assumptions on the information set of the firms, namely that the firm observes the
current aggregate shock. Lastly, the time dummies must be interacted with the polynomials. The
standard practice of simply adding time dummies as separate intercepts for each time period does

not solve the issues introduced by aggregate shocks.

5 Example 3: A General Equilibrium Model

In this section, we consider as a third example a general equilibrium model of education and labor
supply decisions in which aggregate shocks influence individual choices. This example provides
additional insight on the effect of aggregate shocks on the estimation of model parameters because,
differently from the portfolio example, it considers a case in which the relationship between the
cross-sectional and time-series models is bi-directional: the cross-sectional parameters cannot be
identified without knowledge of the time-series parameters and the time-series parameters cannot
be identified without knowing the cross-sectional parameters. In principle, we could have used as a
general example a model proposed in the general equilibrium literature such as the model developed
in Lee and Wolpin (2006). We decided against this alternative because in those models the effect
of the aggregate shocks and the relationship between the cross-sectional and time-series submodels
is complicated and therefore difficult to describe. Instead, we have decided to develop a model
that is sufficiently general to generate an interesting relationship between the two submodels, but
at the same time is sufficiently stylized for this relationship to be easy to describe and understand.

The main objective of the model we develop is to evaluate the effect of aggregate shocks on the
education decisions of young individuals and on their subsequent labor supply decisions when of
working-age. For that purpose, we consider an economy in which in each period ¢ € T" a young and
a working-age generation overlap. Each generation is composed of a measure N, of individuals who

are endowed with preferences over a non-durable consumption good and leisure. The preferences of
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individual i are represented by a Cobb-Douglas utility function U’ (¢, 1) = (¢71t=)' ™" / (1—7),
where the risk aversion parameter ; is a function of the observable variables z; ;, the unobservable
variables &;;, and a vector of parameters ¢, i.e. 7; = v (2, &e|<). Both young and working-
age individuals are endowed with a number of hours 7 that can be allocated to leisure or to
a productive activity. In each period ¢, the economy is hit by an aggregate shock v, whose
conditional probability P (v4,1|v;) is given by logvyy1 = ologvy + n;. We will assume that 7, is
normally distributed with mean 0 and variance w?. The aggregate shock affects the labor market
in a way that will be established later on.

In each period ¢, young individuals are endowed with an exogenous income ¥, ; and choose the
type of education to acquire. They can choose either a flexible type of education F' or a rigid
type of education R. Working-age individuals with flexible education are affected less by adverse
aggregate shocks, but they have lower expected wages. The two types of education have identical
cost C. < y;; and need the same amount of time to acquire 7. < 7. Since young individuals
have typically limited financial wealth, we assume that there is no saving decision when young
and that any transfer from parents or relatives is included in non-labor income y,;;. We also
abstract from student loans and assume that all young individuals can afford to buy one of the
two types of education. As a consequence, the part of income y;, that is not spent on education
will be consumed. At each ¢, working-age individuals draw a wage offer wf,t if they have chosen the
flexible education when young and a wage offer wft otherwise. They also draw a productivity shock
€;+ which determines how productive their hours of work are in case they choose to supply labor.
We assume that the productivity shock is known to the individual, but not to the econometrician.
Given the wage offer and the productivity shock, working-age individuals choose how much to
work h;; and how much to consume. If a working-age individual decides to supply h;; hours of
work, the effective amount of labor hours supplied is given by exp (g;+) h; ;. We will also assume
that E'[exp (g,4)] = 1.

The economy is populated by two types of firms to whom the working-age individuals supply
labor. The first type of firm employs only workers with education F', whereas the second type of

firm employs only workers with education R. Both use the same type of capital K. The labor
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demand functions of the two types of firms are exogenously given and take the following form:
In H”F = ag + a3 Inw/,

and

lnHtD’R = oy +a11nth+lnyt,

where H?'F is the total demand for effective labor, with E = F, R, oy > 0, and o < 0. We assume
that the two labor demands have identical slopes for simplicity. These two labor demand functions
allow us to introduce in the model the feature that workers with a more flexible education are
affected less by aggregate shocks such as business cycle shocks. The wage for each education group
is determined by the equilibrium in the corresponding labor market. It will therefore generally
depend on the aggregate shock.

The description of the model implies that there is only one source of uncertainty in the econ-
omy, the aggregate shock, and two sources of heterogeneity across individuals, the risk aversion
parameter and the productivity shock.

We can now introduce the problem solved by an individual of the young generation. In period ¢,
young individual ¢ chooses consumption, leisure, and the type of education that solve the following

problem:

(0101% 1%

Citlit / zt+1 zt+l
max dP (viq1|v 19
ci,t’li,tvci,t+17li,t+1,s 1 — Y /6 1 — ( t+1‘ t) ( )

s.t. Cit = Yix — C., and li,t =7 -1,

Cit+1 = wft+1 (Ves1) exp (€i441) (T — ligg1) for every vy,

Here, wft +1 (Ve41) denotes the wage rate of individual 4 in the second period, which depends on

the realization of the aggregate shock 14,7 and the education choice S = F, R. The wage rate is

per unit of the effective amount of labor hours supplied and is determined in equilibrium. The

problem solved by a working-age individual takes a simpler form. Conditional on the realization of

the aggregate shock 1, and on the type of education S chosen when young, in period ¢, individual

1 of the working-age generation chooses consumption and leisure that solve the following problem:
(Cgtlilt_g) o

max ————>—— 20
Citrlit 1-— Yi ( )

s.t. Cit = w'ft (Vt> exp (gi,t) (T - li,t) :
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We will now solve the model starting from the problem of a working-age individual. Using
the first order conditions of problem , it is straightforward to show that the optimal choice
of consumption, leisure, and hence labor supply for a working-age individual takes the following

form:

Cip = owy (1, S)exp (i) T, (21)
iy, =01-0)T, (22)
h‘;:t =7 — li,t (V’i,t> = O'T.

The supply of effective labor is therefore equal to oexp(e;;) 7. Given the optimal choice of
consumption and leisure, conditional on the aggregate shock, the value function of a working-age

individual with education S can be written as follows:

Vi (S,1,) = [(wat (1) exp (Ezt)ltz;);((l —0) T)lig] } i’ S—F. R

Given the value functions of a working-age individual, we can now characterize the education
choice of a young individual. This individual will choose education F' if the expectation taken over
the aggregate shocks of the corresponding value function is greater than the analogous expectation

conditional on choosing education R:

/Vz’,t (F,viq1) dP (Vegr |1y) > /V},t (R, vp41) dP (v |v) - (23)

Before we can determine which factors affect the education choice, we have to derive the
equilibrium in the labor market. We show in the appendix that the labor market equilibrium is

characterized by the following two wage equations:

r Innf4+Ino+In7 —ap

Inw;, = - + Eits (24)
1
lnwﬁzlnnﬁ+lna+ln7_a0_lnyt—1—5”, (25)
b al

where wft and wﬁ are the individual wages observed in sectors F' and R and n!" and nf are the
measures of individuals that choose education F' and R. We can now replace the equilibrium
wages inside inequality and analyze the education decision of a young individual. To simplify

the discussion, we will assume that ¢, is independent of §; , thereby eliminating sample selection
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issues in the wage equations. In the appendix, we show that, if the risk aversion parameter v is
greater than or equal to 1, a young individual chooses the flexible type of education if the following
inequality is satisfied:

ow? 1 (nF) olog v,
> log | —% ) + : 26
200 — 1=y (wig, &it] ©) nk L=y (@ig &l S) (26)

If v < 1, the inequality is reversed and the young individual chooses the flexible education if

ow? 1 <nF olog v,
< log —t> + . 27
200 1=y (@ig, il <) nft 1= (mig, el <) 27)

These inequalities provide some insight about the educational choice of young individuals.!! They

are more likely to choose the flexible education which insures them against aggregate shocks if the
variance of the aggregate shock is larger, if they are more risk averse, if the aggregate shock at
the time of the decision is lower as long as ¢ > 0, and if the elasticity of the wage for the rigid
education with respect to the aggregate shock is less negative.

Similarly to the first example, we can classify some of the variables and some of the parame-
ters as belonging to the cross-sectional submodel and the remaining to the time-series submodel.
The cross-sectional variables include consumption c¢;;, leisure [;;, individual wages wf , and wft,
the variable determining the educational choice D;;, the amount of time an individual can di-
vide between leisure and productive activities 7, and the variables that enter the risk aversion
parameter x;,. The time-series variables are composed of the aggregate shock 14, the measure of
young individuals choosing the two types of education nf" and n¥, and the aggregate equilibrium
wages in the two sectors w/ = E [w}] and wf® = F [w]].'> We want to stress the difference
between individual wages and aggregate wages. Individual wages are typically observed in panel
data or repeated cross-sections whose time dimension is generally short, whereas aggregate wages
are available in longer time-series of aggregate data. The cross-sectional parameters consist of the
relative taste for consumption ¢ and the parameters of the wage equations oy and o4, whereas the
time-series parameters include the two parameters governing the evolution of the aggregate shock

o and w?, the parameters defining the risk aversion ¢, and the discount factor 5. The discount

' Equations and can also be used to illustrate the problems of achieving consistent estimation using

cross-sectional variation alone. See the appendix for details.
12The expectation operator E corresponds to the expectation taken over the distribution of cross sectional

variables.
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factor is notoriously difficult to estimate. For this reason, in the rest of the section we will assume
it is known.

We can now consider the estimation of the parameters of interest. Parameters in this model
can be consistently estimated exploiting both cross-sectional and time-series data. We assume
that the (repeated) cross-sectional data include 7 and 79 i.i.d. observations (wft,c;‘yt,lfyl) for
individuals with S = F, R from two periods t = 1,2. We also assume that the time-series data
span t = 1,...,7, and consists of (n}", w/, nf, wft).

We first discuss how oy can be consistently estimated with a large number of individuals using
the wage equation for the flexible education . Using equation , we can consistently estimate

oy by a; which solves

1 & 1 & 1
— Inwf, — — E lnwg:A—(nf—ng).
ny “ ’ No £ ’ a1
=1 =1

Observe that this can be done because ¢; and v are assumed to be independent of each other,
which implies that there is no sample selectivity problem. Second, the consumption and leisure
choices of working-age individuals and can be used to consistently estimate o by & which

solves

* ~

n1
— Zl =w
n
Lz

4 —
* 1 =~
i1 l-o

Third, with a4 consistently estimated, it is straightforward to show that the aggregate shock in

period ¢ can be consistently estimated for ¢ = 1,..., 7 using the following equation:
v =& (Inw; —Inw) — (Inn; —Innf?). (28)

The parameters ¢ and w? can then be consistently estimated by the time-series regression of the

following equation:

—

log V441 = olog v + ;. (29)
This is the step where we use the time-series variation. The only parameters left to estimate are
the ¢ defining the individual risk aversion v (z;4, &¢| ). If the distribution of ¢ is parametrically
specified, those parameters can be consistently estimated by MLE using cross-sectional variation
on the educational choices and inequalities and (27). Note that we were able to consistently
estimate ¢ only because ¢ and w? had been previously estimated using time-series variation. Hence,

the bi-directional relationship between the cross-sectional and time-series submodels.
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The previous discussion illustrates the importance of combining cross-sectional data with a
long time-series of aggregate data. One alternative would be to exploit panel data in which the
time-series dimension of the panel is sufficiently long. This alternative has, however, a potential
drawback. In Appendix[C] we argue that a “long panel” approach is mathematically equivalent to
time-series analysis where T' goes to infinity, while n stays fixed. The standard errors in the long
panel analysis should, therefore, be based exclusively on the time series variation. This discussion
has an implication for the standard errors computed in Lee and Wolpin’s (2006) (see their footnote
37). Donghoon Lee, in private communication, kindly informed us that their standard errors do not
account for the noise introduced by the estimation of the time series parameters, i.e. the standard
errors reported in the paper assume that the time-series parameters are known or, equivalently,
fixed at their estimated value. We also note that since almost all panel data sets have limited
time-series dimension, using this alternative approach would lead to imprecise estimates.

When cross-sectional data are combined with long time-series of aggregate data, the standard
formulas for the computation of test statistics and confidence intervals are no longer valid. In the
next section, we provide new easy-to-use formulas that can be employed for coefficients estimated
by combining those two data sources. The formal derivation of those formulas is contained in the

companion paper Hahn, Kuersteiner, and Mazzocco (2016).

6 Standard Errors

In this section, after the derivation of the formulas required for the computation of test statistics
and confidence intervals of coefficients estimated using a combination of time-series and cross-
sectional data, we will explain how they can be employed in concrete cases using, as an example,

the general equilibrium model developed in the previous section.

6.1 Formulas for Test Statistics and Confidence Intervals

The asymptotic theory underlying the estimators obtained from the combination of the two data
sources considered in this paper is complex. It is based on a new central limit theorem that requires
a novel martingale representation. Given its complexity, the theory is presented in a separate

paper (Hahn, Kuersteiner and Mazzocco (2016)). However, the mechanical implementation of the
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formulas required for the computation of test statistics and confidence intervals is straightforward.
In the rest of this subsection we provide the step-by-step description of how those formulas can
be calculated.

The computation starts with the explicit characterization of the “moments”that identify the
parameters. Let 6 = (5,v1,...,vr) and denote with fp, (6, p) and g¢,. (5, p) the i-th and ¢-th
moments used in the identification of the cross-sectional and time-series parameters. Suppose

that our estimator can be written as the solution to the following system of equations:

i foi (0.9) =0, (30)
=1
T0+T

> G (Bﬁ) = 0. (31)

t=710+1

Formulas can then be calculated using the following steps:

1. Let ¢ = (¢, p')’ be the vector of parameters.

2. Let
A — Ayﬂ Aym
Al/70 Al/,p
with
n afﬁz (@ﬁ) n 8f91 (é,ﬁ)
A~ . 1 ) A . -1 )
Ayﬂ_n ;T’ Ay,p_” 1218—p,7
N To+T agpt (Ba ﬁ) TotT agpt <B>ﬁ>
-1 ’ A -1 ’
Ay,9 =T th_l o6' > Ay7p =T tz;_l —8p/ .
T0 70
3. Let
R 1 <& . A\
Oy == foi (0.) fos (8.5)
=1
and
. 1 <& .~ N
Q’U = 5 ng,t <97 P) 9t <97p>
=1
4. Let
N
0 10,



5. Calculate
V=A"'W(AN"
and use it as the “variance” (not the asymptotic variance) of the estimator. For instance, if

one is interested in the 95% confidence interval of the first component of ¢, it can be written

as ¢1 &+ 1.96,/V1,

6.2 Formulas Applied to the General Equilibrium Model

To apply the five steps described in the previous subsection to the general equilibrium model, we
only have to derive the moment conditions used in its estimation fy; (6, p) and g, (5, p).

For simplicity of notation, we assume that 7y = 7, = n. Also, we denote by F;; a dummy
variable that takes the value 1 if the flexible type of education is chosen and 0 otherwise. From
the discussion in Section 5], it follows directly that the moments employed in the estimation of ay

and o take the following form:

and

CZl F O
=~ — — | =0.
Z(ZZI wll_a)

7

For the estimation of the parameters p and w?, equation implies that the OLS estimator of p

and the corresponding estimator for w? solve:
1 — —
- Z log vy (log Viy1 — olog Vt> =0
-
t
and

1 _ — N2
—§ (IOthH—@Oth) =
-

t

—

Replacing for 1@1 and log v, using equation, we obtain the following two moment condi-

tions:
Z o (ln wl —1n wﬁ) o%) (ln wi, —In wﬁH) o%) (ln wl —1In wﬁ) _ 0
: — (Innf —Innf) — (Innfy, —Innf,) — (Innf —Innf)
2
Z (o7 (ln wf; —In wﬁrl) (o7 (ln wl —1n th) N 0
—0 —W2 ] =
¢ — (Innf,; —Innf,) — (Inn{ — InnfY)
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To derive the moments employed in the estimation of the risk aversion parameters, we need an
exact expression for v (x;+, & ¢| <) and select a distribution for ¢; ;, which require some assumptions.
We will consider the case 1 —~« > 0. Similar arguments can be used if 1 — vy < 0. To derive a

close-form for 7y (x;4,&4| <), inequality can alternatively be written as'?

2 F
Y (@i, &l s) 1T ——5 (1 og ( ) + Qloth> .
aw t

Suppose we consider the following parameterization for v (x4, & ¢|<):

Y(Tig, &inl <) =G (l‘;,tg + fi,t) )

where G is some monotonically increasing function bounded above by 1 and &;; ~ N (0,1). We

can then conclude that an individual chooses the flexible education (F;; = 1) if and only if

2 F
6+ & < G (1 — _Oz; <log (n—tR) + olog I/t)>
’ ow ny
2 F
L <G (1 — % (log (n—tR) + olog Vt>) — 7} .
ow ny ’

The probability that F;; = 1 is therefore given by the following expression:

2 F
CI)[G (1——<1g( >+Q10th)>—I;t§},
ow? nk '

where ® and ¢ denote the CDF and PDF of a N (0,1).

Despite the complicated nature of the probability, the whole expression is linear in ¢ implying

or, equivalently,

that it is a special case of a textbook probit. The First Order Condition (FOC) derived from the

BFor 1 — v > 0, the inequality can alternatively be written as

L"ﬂ y log( ) + olog vy
2051 - 1- (:Cz,tagi,t‘g)

Using 1 — v (246, &it]s) > 0, we get

2001 nf
1 _7(33i,ta€i,t‘§) > ﬁ <log <n§ + Qlogut
or
2001 nf
’Y(l’tt,fttk) 1—0w2(10g (nf + ologuy | .
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maximization of that probability with respect to ¢ takes the form

Fz-t—é[(;*l( 20, (10g< ) Qlogl/t>>—xt§]
R (Y 4 FrTy e (o e o 4 o) sy

2
X ¢ [G (1 — ilz <10g (%) + QIOth)> - l‘éﬁ] zip =0
ow ny ’

Using the equation

X

Iny, =o (ln wi — Inw! ) (ln n, —lnn, )
and defining
F | —1
Zt <&1707Q7w2) EG_l 1_2;.[12 IOg (n_tR) +Q (nwt nwt) )
ow T — (Innf —Innf)
we can rewrite the first order condition as follows:
E,t - [Zt (al) g, 0, WQ) - xé,tg} 2 ! _

Z d [Zt (al,a, Q,wz) _ x;,td {1 — P [Zt (041,0, Q,wQ) _ x;,tg} }Qb [Zt (041,07 0, w ) - $i7t§] iy =0,

i

which corresponds to the moments used in the estimation of the risk aversion parameters.
Assuming without loss of generality that only the cross sections at ¢ = 1 and ¢t = 2 are used in

the estimation, the previous discussion implies that the vectors of moments fy; and g, take the

following form:

lnwfl—lnwfz—ail(nt nf_l)
o1 (0,p) = (1311 —wi % ’
F; —<I>[Z1 (al,a,g,w2)— i, §7]
@[Zl(al,a,g,w;)—m;J(]{l—fb[Zl(al,a,lg,w2)—m;71§]}¢ [Zl (051, g, 0, w2) _ x;,lg} T
and
[ (ln wl — Inw! ) o (ln wf, —In wﬁl) (ln wl — Inw! ) ]
— (ln ni" —Inn] ) — (ln ny, —In an) — (lnnt —Inn; )
9ot (B, p) = 2
o (Inwf,, — Inwf,) a1 (Inwf — Inwf) oy
i — (ln ni, —In nﬁl) (ln nf" —1Inn! )

and the parameter estimates of the general equilibrium model are the solution to the following
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system of equations:

w23 g (0.0) =0,
=1
TO+T

7123 g (59) =0

t=To+1

We are now ready to describe the five steps required in the computation of test statistics and
confidence intervals for the general equilibrium model. As a first step, let § = 8 = (a1, 0,¢) and
p = (0,w?). Observe that the aggregate shock is not in the set of estimated parameters, since the
general equilibrium model implies that Inv; = oy (Inw!” — Inwf) — (Innf” — Innf). In the second,
third, and fourth steps compute the matrices A, fly, Q,, and W using the vectors of moments fy;

and g, derived above. In the last step, calculate the variance matrix V = A~'WW (A’)~".

7 Summary

Using a general econometric framework and three examples we have shown that generally, when
aggregate shocks are present, model parameters cannot be identified using cross-sectional variation
alone. Identification of those parameters requires the combination of cross-sectional and time-series
data. When those two data sources are jointly used, standard formulas for the computation of
test statistics and confidence intervals are no longer valid. We provide new easy-to-use formulas
that account for the interaction between the time-series and cross-sectional data. Our results
are expected to be helpful for the econometric analysis of rational expectations models involving

individual decision making as well general equilibrium models.
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Appendix — Available Upon Request

A Discussion for Section 3

A.1 Proof of

The maximization problem is equivalent to

max _67(5(04(1+T)+(1*Ol))E [676(1701)1”7,5] )
@

Since —6 (1 — a)uzy ~ N (=0 (1 — @) 1,02 (1 — @) 62), we have

52(1-a)?0?
2

)

E [6*5(1704)%,1:] — ¢ 0(1-a)ut

and the maximization problem can be rewritten as follows:

6(17a)20'2
—5((a(1r)+(1-a) (1) - F0=2
max —e .
[e%

Taking the first order condition, we have,
0= —5(r—u+025—a025)

from which we obtain the solution

1
0420—25(7”—#‘*‘025)-

A.2 Euler Equation and Cross Section

Our model in Section [3| is a stylized version of many models considered in a large literature

interested in estimating the parameter § using cross-sectional variation. Estimators are often based

on moment conditions derived from first order conditions (FOC) related to optimal investment

and consumption decisions. We illustrate the problems facing such estimators.

Assume a researcher has a cross-section of observations for individual consumption and returns

¢ip and u; ;. The population FOC of our model'* takes the simple form E [e“s% (r — u”)} =0. A

14We assume & # 0 and rescale the equation by —§~!.
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just-identified moment based estimator for § solves the sample analog n='> """ | e—dci (r—u;) =
0. It turns out that the probability limit of ¢ is equal to (v, — r)/ (1 — ) 02), i.e.,  is inconsistent.
We now compare the population FOC a rational agent uses to form their optimal portfolio

with the empirical FOC an econometrician using cross-sectional data observes:

n
n! Z et (r — ;) = 0.
i=1

Noting that u;; = 14 + €;; and substituting into the budget constraint

cr=1l+ar+(1—a)uy=1+ar+(1—a)v,+ (1 —a)ey

we have
nl Z o0t (7’ _ ui,t) —n! e~ 0(tart(l—ajr)—5(1-a)e (r — v — Ei,t) (32)

i=1 i=1

_ 6—6(1+ar+(l—a)ut) ((7“ _ Vt) n—l Z 6—5(1—01)5.;,,5 . Z 6_6(1_a)€i’t€i,t> )
i=1 i=1
Under suitable regularity conditions including independence of €;; in the cross-section it follows
that
n! e~ (1-a)ar _ p [6—5(1—04)6“} +o (1) — 652(1_;)202 +o0 (1) (33)
p p
i=1
and
INC (e s(1—a)e; g S20-o)?of
n- e 0mte, = B e % ¢ ] +0,(1) == (1—a)o?e 2 +0,(1). (34)

i=1
Taking limits as n — oo in and substituting and then shows that the method of
moments estimator based on the empirical FOC asymptotically solves

62(1704)20'62

(r—w)+dé(l—a)o2)e =z ~=0. (35)
Solving for ¢ we obtain
oA Vp—T
limé = ——.
T a2

This estimate is inconsistent because the cross-sectional data set lacks cross sectional ergodicity,

or in other words does not contain the same information about aggregate risk as is used by rational
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agents. Therefore, the empirical version of the FOC is unable to properly account for aggregate
risk and return characterizing the risky asset. The estimator based on the FOC takes the form of
an implicit solution to an empirical moment equation, which obscures the effects of cross-sectional
non-ergodicity. A more illuminative approach uses our modelling strategy in Section

On the other hand, it is easily shown using properties of the Gaussian moment generating

function that the population FOC is proportional to

52(17a)2cr2
2

E [67(5(17&)'&71,15 (7, _ u”)] — (7” —u+ 5 (1 . a) 02) 676(1704)#+ = 0. (36)

The main difference between (33)) and lies in the fact that o2 is estimated to be 0 in the
sample and that v, # p in general. Note that implies that consistency may be achieved with
a large number of repeated cross sections, or a panel data set with a long time series dimension.

However, this raises other issues discussed later in Section [C|

B Details of Section [5

B.1 Proof of Inequalities (26)) and ((27))

In the proof we will drop the ¢ subscripts for notational purposes. We can rewrite as follows:

aw 1 Vt+1 E::I t+1 1 ' 1 +

As a consequence, education F' is chosen if

Y (v, ) = / [(wiiy (Vt+1>)a]lﬂ dP (Vi i) — / [wity (Vrerl)U]li7 dP (Vi1 |n) 20 (37)

We rewrite the value function of an old individual with education F’

K(W) . UT) U (1=0)T)°
Vi (F,v) =

I—7

Likewise, the value function of an old individual with education R takes a similar form:

K(%}Z)(&)) . UT) U (1=o)T)°
Vi (R,v) =

L—v
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We can now describe the solution to the problem of a young worker. Given the assumptions,

optimal consumption and leisure in the first period can be easily computed to be:

c; =y — Ce,

Iy =T-T..
This implies that current consumption and leisure are independent of the education choice and
of the aggregate shock. As a consequence, the current utility will also be independent of the

education choice and of the aggregate shock. The education choice will therefore only depend on

the utility when old. Specifically, the individual will choose education F' if

/W(R Vt+1)dP(Vt+1’Vt) > /Vt(R> Vt+1)dp (Vt+1"/t)-

Write
- R T 1/0&1 o T 1—’)/
((” > ) 0T> (1—0)T)°
60&
Vi (F i) = © s L exp (o (1) (1= 7))
r o 91—y
R T 1/a1
((” 4 ) oT | (1—0)T)
eOé
Vi (R, Vi) = = = = exp (o (1/a1) (1 — ) e441) <V;71(1/a1)(1*7)

We see that education F' is chosen if and only if

n’ol R N
()
(=)

(We made use of the assumption that ;. is known to the workers.) This is equivalent to

1=y

exp (0 (1/a1) (1 =)&) >

1—y

exp (o (1/a1) (1 =) et11) Bt [V;ﬂ(l/o‘l)(lﬂ)

(nF)U(l—’Y)/Oq >

(nR)O'(l—’Y)/Cll E, [V;i(lf'y)(l/al)] if 1—~v>0 (38)

and to

(nF)U(l—V)/Oél < (nR)U(l—v)/al E, [

(=)o)
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1—-v<0
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Because logv11 = plog vy + ny, or
Vir1 = v{ exp (1)
we can write
E, vt | = By (0 exp () 00 | <yt E fexp (<o (1= ) (1) )]

where E, || denotes the integral with respect to 7; alone. The assumption that 7, ~ N (0,w?)

allows us to write

(0w (1 — ) <1/a1>>2)
2

Elexp (=0 (1 =7) (1/ar) ne)] = exp (

recognizing that the expectation on the left is nothing but the moment generating function of

N (0,w?) evaluated at —o (1 —7) (1/c). Therefore, we have

—o(1— _ _ 1 — 1 2
B, [y 0/ = om0 g ((aw( 1) (1/an)) ) w0)

2

Consider first the case 1 — v > 0. Combining and , we can rewrite the decision as

2
()7 5 (g ) ((aw 1= (/o) ) |

Taking logs, we obtain
(1—7) (ow(1—7))*

1— 1—-
u log nF 2 g log nR — pu log Vg —+ 5
031 5] oy 209

Dividing by ¢ and multiplying by «; < 0, we conclude that the decision is equivalent to

1—~)w?
(1—7)logn" < <1—v>logn’*—p<1—v>10gyt+%
1

or

o(1—7)°w? nt
—p(l—v)logyﬁ—% > (1—7)log (n_R :

which proves inequality . If 1 — v < 0, following the same steps, we have

o(1—7)w? nt
—p(1—=7)1 —— < (1=l —
p(1—~)logy + 2o (I=7)log (%)
which proves inequality .
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Remark 1 Equations [26] and hints at the problem of identification based on cross section
variation alone. This is because the cross section variation does not identify p, which implies that
v 15 not identified as a consequence. Suppose that v has a multinomial distribution, i.e., it has a

finite support 5, ..., vi;. Let p* denote the true value of p. Let v, (p) be defined by

ow? ow?
—pl 11—, — = —p*1 1—~")—
plogvi + (1 —vm (p)) 2o p*logv; + (1 —1y,) 20,
More precisely, let
* * UUJ2
plogv, — p*log vy + (1 — ) 52
Tm (p) =1— w2
201
We then have
ow? ow?
—pl 11— — = —p"1 1—~")—
plogvi + (1 —vm (p)) 2o p"logvy + (1 —,) 20,

for range of possible values of p, and the education choice implied by (p,v1 (p),..., v (p)) is
identical to the one implied by the true value (p*,7i,...,7+;) of the parameter. The parameter

(p*, 75, -+ 7%) is not identified.

B.2 Proof of (24]) and (25)

Note that individual heterogeneity is completely summarized by the vector y; = (&¢,7), which
means that we can define the labor supply AL () and hf () for each type y of workers. We assume
that the mass of individuals such that (;,7) € A for some A C R? is given by NV, [, G (dx), where
G is a joint CDF. For simplicity, we assume that G is such that the first and second components
are independent of each other. We also assume that [ exp (¢;) G (dx) = 1.

The labor markets for both types of education must be in equilibrium. To determine the equi-
librium, remember that the individual educational choice is summarized by the function ¢ (v, 4_1),
which was defined in inequality and describes the values of the risk aversion parameter and
of the aggregate shocks for which an individual chooses a particular education. Specifically, an
individual choose education F' if ¢ (7, 4_1) > 0. We can now introduce the equilibrium condition

for education F'. It takes the following form:

=N [ WG =NeT [ )Gl
E=F P(y,v4-1)>0

HPR Z N, / hE (x) G (dy) = NyoT exp (1) G (dx)
E=R

P(y,ve—1)<0
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Using independence between v and € as well as [ exp (¢;) G (dx) = 1, we can write

/ el - ( / I @0) ( [ewecian)

- / G (dy)
P(y,vt-1)>0

= Fraction of workers in Sector F

so we can write HF = nl'oT, where n’ is the mass/measure of individuals that chose education
F. Taking logs, we have:
In " =Innf +Ino +1nT,

Substituting for HtD ¥ we obtain the following equilibrium condition:
ao+arlnw =lnn +Inc+InT,

Solving for Inw!’, we have the log equilibrium wage:

Innf +Ino+InT —

(2 =) hw = o

This wage is for the unit of effective labor. Because the worker i provides o exp (;) T" of effective
Innf +Ino+1InT — ag
aq
Innf +Inoc+InT —
g
the cross section “error” consist of n IID copies of &;, i.e.,the observed log equilibrium individual

. Because he works for

labor, his recorded earning is o exp (g;) T exp

oT hours, his wage for the labor is exp (¢;) exp ; we will assume that

wage follows:
Inwf = Innf +Ino+InT — Le,
a1

Similarly, the equilibrium condition for education R has the following form:
HPR = nfoT,

where nf! is the mass/measure of individuals that chose education R. Substituting for HP® and

solving for In w{*, we obtain the following equilibrium wage for R:

R _ . Inf4+no+InT —a—Iny
(zt :) Inw,* = o .

By the same reasoning, the observed log equilibrium wage would look like

Inwff = Innf+Ino+InT —ay —Iny Le,
i
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C Long Panels?

Our proposal requires access to two data sets, a cross-section (or short panel) and a long time
series of aggregate variables. One may wonder whether we may obtain an estimator with similar
properties by exploiting panel data sets in which the time series dimension of the panel data is
large enough.

One obvious advantage of combining two sources of data is that time series data may contain
variables that are unavailable in typical panel data sets. For example the inflation rate potentially
provides more information about aggregate shocks than is available in panel data. We argue with
a toy model that even without access to such variables, the estimator based on the two data sets is
expected to be more precise, which suggests that the advantage of data combination goes beyond
availability of more observable variables.

Consider the alternative method based on one long panel data set, in which both n and T go to
infinity. Since the number of aggregate shocks 14 increases as the time-series dimension 71" grows,
we expect that the long panel analysis can be executed with tedious yet straightforward arguments
by modifying ideas in Hahn and Kuersteiner (2002), Hahn and Newey (2004) and Gagliardini and
Gourieroux (2011), among others.

We will now illustrate potential problem with the long panel approach with a simple artificial
example. Suppose that the econometrician is interested in the estimation of a parameter v that

characterizes the following system of linear equations:

qi,t:a:i,t1+ut+5i7t izl,...,n;tzl,...,T,
w

Vi = WVy_1 + Uy.

The variables ¢; ; and z;; are observed and it is assumed that z;; is strictly exogenous in the sense
that it is independent of the error term ¢;,, including all leads and lags. For simplicity, we also
assume that u, and €;; are normally distributed with zero mean and that ¢, is i.i.d. across both
i and t. We will denote by ¢ the ratio v/ w.

In order to estimate v based on the panel data {(¢; ¢, zis),i=1,...,n; t=1,..., T}, we can
adopt a simple two-step estimator of v. In a first step, the parameter ¢ and the aggregate shocks

v, are estimated using an Ordinary Least Square (OLS) regression of ¢;; on ;; and time dummies.
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In the second step, the time-series parameter w is estimated by regressing 7; on V;_;, where 7,
t =1,...,T, are the aggregate shocks estimated in the first step using the time dummies. An
estimator of 7y can then be obtained as 55

The following remarks are useful to understand the properties of the estimator 7 = 50. First,
even if v; were observed, for @ to be a consistent estimator of w we would need T to go to infinity,
under which assumption we have W = w+0, (T -1/ 2) . This implies that it is theoretically necessary
to assume that our data source is a “long” panel, i.e., T' — oco. Similarly, 7 is a consistent estimator
of v, only if n goes to infinity. As a consequence, we have i, = v, + O, (n’l/ 2). This implies that
it is in general theoretically necessary to assume that n — o0o.!> Moreover, if n and T both go to

infinity, 0 is a consistent estimator of § and § = & + O, (n~*2T=1/2) All this implies that

o= (540, (L)) (00, (L)) =ss 0, (1) v 0, (L).

The O, (n~/*T~1/?) estimation noise of 5, which is dominated by the O, (T~1/?), is the term
that would arise if w were not estimated. The term reflects typical findings in long panel analysis
(i.e., large n, large T'), where the standard errors are inversely proportional to the square root of
the number n x T of observations. The fact that it is dominated by the O, (T~'/?) term indicates
that the number of observations is effectively equal to 7', i.e., the long panel should be treated as
a time series problem for all practical purposes.

This conclusion has two interesting implications. First, the sampling noise due to cross-section
variation should be ignored and the “standard” asymptotic variance formulae should generally
be avoided in the panel data analysis when aggregate shocks are present. We note that Lee and
Wolpin’s (2006, 2010) standard errors use the standard formula that ignores the O, (T~'/?) term.
Second, since in most cases the time-series dimension 7' of a panel data set is relatively small,
despite the theoretical assumption that it grows to infinity, estimators based on panel data will

generally be more imprecise than may be expected from the “large” number n x T" of observations.!®

5For @ to have the same distribution as if v, were observed, we need n to go to infinity faster than T or

equivalently that 7' = o (n). See Heckman and Sedlacek (1985, p. 1088).
16This raises an interesting point. Suppose there is an aggregate time series data set available with which

consistent estimation of v is feasible at the standard rate of convergence. Also suppose that the number of
observations there, say 7, is a lot larger than T'. If this were the case, we should probably speculate that the panel

data analysis is strictly dominated by the time series analysis from the efficiency point of view.
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1 Introduction

There is a long tradition in empirical economics of relying on information from a variety of data
sources to estimate model parameters. In this paper we focus on a situation where cross-sectional
and time-series data are combined. This may be done for a variety of reasons. Some parameters
may not be identified in the cross section or time series alone. Alternatively, parameters estimated
from one data source may be used as a first-step inputs in the estimation of a second set of
parameters based on a different data source. This may be done to reduce the dimension of the
parameter space or more generally for computational reasons.

Data combination generates theoretical challenges, even when only cross-sectional data sets
or time-series data sets are combined. See Ridder and Moffitt (2007) for example. We focus on
dependence between cross-sectional and time-series data produced by common aggregate factors.
Andrews (2005) demonstrates that even randomly sampled cross-sections lead to independently
distributed samples only conditionally on common factors, since the factors introduce a possible
correlation. This correlation extends inevitably to a time series sample that depends on the same
underlying factors.

The first contribution of this paper is to develop a central limit theory that explicitly accounts
for the dependence between the cross-sectional and time-series data by using the notion of stable
convergence. The second contribution is to use the corresponding central limit theorem to derive
the asymptotic distribution of parameter estimators obtained from combining the two data sources.

Our analysis is inspired by a number of applied papers and in particular by the discussion in Lee
and Wolpin (2006, 2010). Econometric estimation based on the combination of cross-sectional and
time-series data is an idea that dates back at least to Tobin (1950). More recently, Heckman and
Sedlacek (1985) and Heckman, Lochner, and Taber (1998) proposed to deal with the estimation
of equilibrium models by exploiting such data combination. It is, however, Lee and Wolpin (2006,
2010) who develop the most extensive equilibrium model and estimate it using a similar intuition
and panel data.

To derive the new central limit theorem and the asymptotic distribution of parameter estimates,
we extend the model developed in Lee and Wolpin (2016, 2010) to a general setting that involves

two submodels. The first submodel includes all the cross-sectional features, whereas the second



submodel is composed of all the time-series aspects. The two submodels are linked by a vector
of aggregate shocks and by the parameters that govern their dynamics. Given the interplay
between the two submodels, the aggregate shocks have complicated effects on the estimation of
the parameters of interest.

With the objective of creating a framework to perform inference in our general model, we
first derive a joint functional stable central limit theorem for cross-sectional and time-series data.
The central limit theorem explicitly accounts for the factor-induced dependence between the two
samples even when the cross-sectional sample is obtained by random sampling, a special case
covered by our theory. We derive the central limit theorem under the condition that the dimension
of the cross-sectional data n as well as the dimension of the time series data 7 go to infinity. Using
our central limit theorem we then derive the asymptotic distribution of the parameter estimators
that characterize our general model. To our knowledge, this is the first paper that derives an
asymptotic theory that combines cross sectional and time series data. In order to deal with
parameters estimated using two data sets of completely different nature, we adopt the notion
of stable convergence. Stable convergence dates back to Reyni (1963) and was recently used in
Kuersteiner and Prucha (2013) in a panel data context to establish joint limiting distributions.
Using this concept, we show that the asymptotic distributions of the parameter estimators are a
combination of asymptotic distributions from cross-sectional analysis and time-series analysis.

While the formal derivation of the asymptotic distribution may appear complicated, the asymp-
totic formulae that we produce are straightforward to implement and very similar to the standard
Murphy and Topel’s (1985) formula.

We also derive a novel result related to the unit root literature. We show that, when the
time-series data are characterized by unit roots, the asymptotic distribution is a combination
of a normal distribution and the distribution found in the unit root literature. Therefore, the
asymptotic distribution exhibits mathematical similarities to the inferential problem in predictive
regressions, as discussed by Campbell and Yogo (2006). However, the similarity is superficial in
that Campbell and Yogo’s (2006) result is about an estimator based on a single data source. But,
similarly to Campbell and Yogo’s analysis, we need to address problems of uniform inference.
Phillips (2014) proposes a method of uniform inference for predictive regressions, which we adopt

and modify to our own estimation problem in the unit root case.



Our results should be of interest to both applied microecomists and macroeconomists. Data
combination is common practice in the macro calibration literature where typically a subset of
parameters is determined based on cross-sectional studies. It is also common in structural microe-
conomics where the focus is more directly on identification issues that cannot be resolved in the
cross-section alone. In a companion paper, Hahn, Kuersteiner, and Mazzocco (2016), we discuss
in detail specific examples from the micro literature. In the companion paper, we also provide a
more intuitive analysis of the joint use in estimation of cross-sectional and time-series data when
aggregate factors are present, whereas in this paper the analysis is more technical and abstract.

The remainder of the paper is organized as follows. In Section Bl we introduce the general
statistical model. In Section [B] we present the intuition underlying our main result, which is

presented in Section [Fl

2 Model

We assume that our cross-sectional data consist of {y;;, i =1,...,n,t =1,...,T}, where the start
time of the cross-section or panel, t = 1, is an arbitrary normalization of time. Pure cross-sections
are handled by allowing for T" = 1. Note that T is fixed and finite throughout our discussion while
our asymptotic approximations are based on n tending to infinity. Our time series data consist
of {z5, s=70+1,...,79+ 7} where the time series sample size 7 tends to infinity jointly with
n. The start point of the time series sample is fixed at an arbitrary time 75 € (—00,00). The
vector y; ; includes all information related to the cross-sectional submodel, where ¢ is an index for
individuals, households or firms, and ¢ denotes the time period when the cross-sectional unit is
observed. The second vector z, contains aggregate data.

The technical assumptions for our CLT, detailed in Section M, do not directly restrict the data,
nor do they impose restrictions on how the data were sampled. For example, we do not assume
that the cross-sectional sample was obtained by randomized sampling, although this is a special
case that is covered by our assumptions. Rather than imposing restrictions directly on the data we
postulate that there are two parametrized models that implicitly restrict the data. The function
I (yit] B, v, p) is used to model y;, as a function of cross-sectional parameters 3, common shocks

v; and time series parameters p. In the same way the function g (z,| 3, p) restricts the behavior of



some time series variables zs

Depending on the exact form of the underlying economic model, the functions f and g may have
different interpretations. They could be the likelihoods of y; +, conditional on 14, and z, respectively.
In a likelihood setting, f and g impose restrictions on y;; and 2, because of the implied martingale
properties of the score process. More generally, the functions f and g may be the basis for
method of moments (the exactly identified case) or GMM (the overidentified case) estimation.
In these situations parameters are identified from the conditions E¢ [f (vi¢| 5,1, p)] = 0 given
the shock v, and E. [g (2|8, p)] = 0. The first expectation, E¢, is understood as being over the
cross-section population distribution holding v = (v, ..., vr) fixed, while the second, E,, is over
the stationary distribution of the time-series data generating process. The moment conditions
follow from martingale assumptions we directly impose on f and g. In our companion paper we
discuss examples of economic models that rationalize these assumptions.

Whether we are dealing with likelihoods or moment functions, the central limit theorem is
directly formulated for the estimating functions that define the parameters. We use the nota-
tion F, (8,1, p) and G, (5, p) to denote the criterion function based on the cross-section and
time series respectively. When the model specifies a likelihood these functions are defined as
Fo(B.v,p) = 230 520 f (yidl Bove p) and G- (8,p) = 137, (%] B,p). When the model
specifies moment conditions we let h, (5,v,p) = %23:1 S f(yiel B, p) and k. (B,p) =
23 19 (2] B, p). The GMM or moment based criterion functions are then given by F, (8, v, p) =
—hy (B,v, p) WEhR, (B,v, p) and G (B, p) = —k- (B, p) Wk, (B, p) with WX and W two almost
surely positive definite weight matrices. The use of two separate objective functions is helpful in
our context because it enables us to discuss which issues arise if only cross-sectional variables or
only time-series variables are used in the estimation

We formally justify the use of two data sets by imposing restrictions on the identifiability of

IThe function g may naturally arise if the 14 is an unobserved component that can be estimated from the
aggregate time series once the parameters 8 and p are known, i.e., if v; = vy (5, p) is a function of (z, 3, p) and
the behavior of v, is expressed in terms of p. Later, we allow for the possibility that g in fact is derived from the
conditional density of 14 given v4_1, i.e., the possibility that ¢ may depend on both the current and lagged values

of z;. For notational simplicity, we simply write g (zs| 8, p) here for now.
ZNote that our framework covers the case where the joint distribution of (y;, 2¢) is modelled. Considering the

two components separately adds flexibility in that data is not required for all variables in the same period.



parameters through the cross-section and time series criterion functions alone. We denote the
probability limit of the objective functions by F (53,14, p) and G (f3, p) , in other words,

F(B,v,p) =plim I, (B,v, p),

n—o0

G (8,p) = plim G, (8, p) .

T—00

The true or pseudo true parameters are defined as the maximizers of these probability limits

(5(6) (7)) = avgmax F (3,0,p), )
p(B) = arginaXG (B,p), (2)

and we denote with By and py the solutions to (Il) and (2)). The idea that neither F' nor G alone
are sufficient to identify both parameters is formalized as follows. If the function F' is constant
in p at the parameter values § and v that maximize it then p is not identified by the criterion F'

alone. Formally we state that
max F (8,,p) = max F (3,v.p0) forall p € O, 3)

It is easy to see that (3]) is not a sufficient condition to restrict identification in a desirable way.
For example (3]) is satisfied in a setting where F' does not depend at all on p. In that case the
maximizers in ({I]) also do not depend on p and by definition coincide with 3y and 1. To rule out

this case we require that pg is needed to identify £, and v4. Formally, we impose the condition

that
(B(p),v(p) # (Bo, o) forall p+# po. (4)

Similarly, we impose restrictions on the time series criterion functions that insure that the param-

eters 0 and p cannot be identified solely as the maximizers of G. Formally, we require that

max G (3, p) = max G (fy, p) for all § € O, (5)
p p

p(B) # po forall § 7 bo.

To insure that the parameters can be identified from a combined cross-sectional and time-series

data set we impose the following condition. Define § = (5,2/)" and assume that (i) there exists a



unique solution to the system of equations:

OF (B,v,p) 0G (B, p)

o0 oy =0 (6)

and (ii) the solution is given by the true value of the parameters. In summary, our model is

characterized by the high level assumptions in (3), (), (&) and (@).

3 Asymptotic Inference

Our asymptotic framework is such that standard textbook level analysis suffices for the discussion
of consistency of the estimators. In standard analysis with a single data source, one typically
restricts the moment equation to ensure identification, and imposes further restrictions such that
the sample analog of the moment function converges uniformly to the population counterpart.
Because these arguments are well known we simply impose as a high-level assumption that our
estimators are consistent. The purpose of this section is to provide an overview over our results
while a rigorous technical discussion is relegated to Section Ml which may be skipped by a less

technically oriented reader.

3.1 Stationary Models

For expositional purposes, suppose that the time series z; is such that its log of the conditional
probability density function given z;_; is g (2| z_1, p). To simplify the exposition in this section
we assume that the time series model does not depend on the micro parameter 5. Let p denote a
consistent estimator.

We assume that the dimension of the time series data is 7, and that the influence function of

p is such that

TO+T

ﬁ(ﬁ—m:% S o (7)

s=71o+1

with E[¢ps] = 0. Here, 70 + 1 denotes the beginning of the time series data, which is allowed
to differ from the beginning of the panel data. Using p from the time series data, we can then
consider maximizing the criterion F,, (5, vy, p) with respect to 6 = (8, v1, ..., vp). Implicit in this

representation is the idea that we are given a short panel for estimation of 6 = (8, v1,...,vr),



where 1" denotes the time series dimension of the panel data. In order to emphasize that T is
small, we use the term ’cross-section’ for the short panel data set, and adopt asymptotics where
T is fixed. The moment equation then is
aa(@@
N J
00

and the asymptotic distribution of 0 is characterized by

i) == () ()

Because /n (OF, (0, p) /00 — OF,, (0, p) /00) =~ (0*F (0, p) /000p) %\/? (p— p) we obtain

5 L SO0F(0,p) V[ 1RR
VG{(@ 9) AT AT Y o (8)
with
O*F (9, p) 0*F (0, p)
9006 900,

We adopt asymptotics where n, 7 — oo at the same rate, but T is fixed. We stress that a tech-

A B

nical difficulty arises because we are conditioning on the factors (v, ..., vr). This is accounted for
in the limit theory we develop through a convergence concept by Renyi (1963) called stable con-
vergence, essentially a notion of joint convergence. It can be thought of as convergence conditional

on a specified o-field, in our case the o-field C generated by (v4,...,vr). In simple special cases,

T0+T
$=To+

and because T is fixed, the asymptotic distribution of % > 1 s conditional on (v4,...,vp)
may be equal to the unconditional asymptotic distribution. However, as we show in Section [,
this is not always the case, even when the model is stationary.

Renyi (1963) and Aldous and Eagleson (1978) show that the concepts of convergence of the dis-
tribution conditional on any positive probability event in C and the concept of stable convergence
are equivalent. Eagelson (1975) proves a stable CLT by establishing that the conditional character-
istic functions converge almost surely. Hall and Heyde’s (1980) proof of stable convergence on the
other hand is based on demonstrating that the characteristic function converges weakly in L;. As
pointed out in Kuersteiner and Prucha (2013), the Hall and Heyde (1980) approach lends itself to
proving the martingale CLT under slightly weaker conditions than what Eagleson (1975) requires.

While both approaches can be used to demonstrate very similar stable and thus conditional limit

8



laws, neither simplifies to conventional marginal weak convergence except in trivial cases. For
this reason it is not possible to separate the cross-sectional inference problem from the time series
problem simply by ‘fixing’ the common shocks (v, ..., vr). Such an approach would only be valid
if the shocks (v4,...,vr) did not change in any state of the world, in other words if they were
constants in a probabilistic sense. Only in that scenario would stable or conditional convergence be
equivalent to marginal convergence. The inherent randomness of (v1,...,vr), taken into account
by the rational agents in the models we discuss in our companion paper (Hahn, Kuersteiner and
Mazzocco, 2016) is at the heart of our examples and is the essence of the inference problems we
discuss in that paper. Thus, treating (v1,...,vr) as constants is not an option available to us.
This is also the reason why time dummies are no remedy for the problems we analyze. A related
idea might be to derive conditional (on C) limiting results separately for the cross-section and time
series dimension of our estimators. As noted before, such a result in fact amounts to demonstrat-
ing stable convergence, in this case for each dimension separately. Irrespective, this approach is
flawed because it does not deliver joint convergence of the two components. It is evident from (8]
that the continuous mapping theorem needs to be applied to derive the asymptotic distribution
of 0. Because both A and B are C-measurable random variables in the limit the continuous map-
ping theorem can only be applied if joint convergence of \/ndFE, (6, p) /00, 7'/? Zzoztg 1 s and
any C-measurable random variable is established. Joint stable convergence of both components
delivers exactly that. Finally, we point out that it is perfectly possible to consistently estimate
parameters, in our case (vy, ..., r), that remain random in the limit. For related results, see the
recent work of Kuersteiner and Prucha (2015).

Here, for the purpose of illustration we consider the simple case where the dependence of
the time series component on the factors (vy, ..., vr) vanishes asymptotically. Let’s say that the

unconditional distribution is such that
1 T0+T

— > p. = N(0,Q)
ﬁ s=10+1

where €, is a fixed constant that does not depend on (v4,...,vr). Let’s also assume that
oF, (0,
6.0 (0,9,)
00
conditional on (v, ..., vr). Unlike in the case of the time series sample, 2, generally does depend

on (vy,...,vy) through the parameter 6.



We note that OF (6, p) /06 is a function of (vq,...,vp). If there is overlap between (1,...,7T)
and (1o +1,...,70 + 7), we need to worry about the asymptotic distribution of \% Z?:tg 1 Ps
conditional on (v, ...,vr). However, because in this example the only connection between y and
@ is assumed to be through 6 and because T is assumed fixed, the two terms /ndF, (6, p) /00
and 771/2 ZZ:;OTH p; are expected to be asymptotically independent in the trend stationary case
and when €, does not depend on (v4,...,vr). Even in this simple setting, independence between
the two samples does not hold, and asymptotic conditional or unconditional independence as well
as joint convergence with C-measurable random variables needs to be established formally. This
is achieved by establishing C-stable convergence in Section 4.2l

It follows that

Vi (0-6) = N (0,470,47 + kAT BQ,BATY), (9)
where £ = lim n/ 7. This means that a practitioner would use the square root of
1

- (a4t 4 2an B, BATY) = Lagat 1 Lapa,pra
n T n T

as the standard error. This result looks similar to Murphy and Topel’s (1985) formula, except
that we need to make an adjustment to the second component to address the differences in sample
sizes.

The asymptotic variance formula is such that the noise of the time series estimator p can make
quite a difference if k is large, i.e., if the time series size 7 is small relative to the cross section size
n. Obviously. this calls for long time series for accurate estimation of even the micro parameter
B. We also note that time series estimation has no impact on micro estimation if B = 0. This
confirms the intuition that if p does not appear as part of the micro moment f, which is the case in
Heckman and Sedlacek (1985), and Heckman, Lochner, and Taber (1998), cross section estimation
can be considered separate from time series estimation.

In the more general setting of Section[], 2, may depend on (v, ..., vr) . In this case the limiting
distribution of the time series component is mixed Gaussian and dependent upon the limiting
distribution of the cross-sectional component. This dependence does not vanish asymptotically
even in stationary settings. As we show in Section [ standard inference based on asymptotically
pivotal statistics is available even though the limiting distribution of 9 is no longer a sum of two

independent components.
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3.2 Unit Root Problems

When the simple trend stationary paradigm does not apply, the limiting distribution of our es-
timators may be more complicated. A general treatment is beyond the scope of this paper and
likely requires a case by case analysis. In this subsection we consider a simple unit root model
where initial conditions can be neglected. We use it to exemplify additional inferential difficulties
that arise even in this relatively simple setting. In Section [4.3] we consider a slightly more complex
version of the unit root model where initial conditions cannot be ignored. We show that more
complicated dependencies between the asymptotic distributions of the cross-section and time series
samples manifest. The result is a cautionary tale of the difficulties that may present themselves
when nonstationary time series data are combined with cross-sections. We leave the development
of inferential methods for this case to future work.

We again consider the model in the previous section, except with the twist that (i) p is the
AR(1) coefficient in the time series regression of z; on z,_; with independent error; and (ii) p is at
(or near) unity. In the same way that led to (8]), we obtain

vn (5— 9) ~ —A—l\/ﬁ% - A_IB@T (P —p)

For simplicity, again assume that the two terms on the right are asymptotically independent. The
first term converges in distribution to a normal distribution N (0, A~'Q,A™"), but with p = 1 and
i.i.d. AR(1) errors the second term converges to

eap W1

2 fo W (r)"dr

where £ = lim y/n/7 and W (-) is the standard Wiener process, in contrast to the result in ()
when p is away from unity. The result is formalized in Section [4.3]

The fact that the limiting distribution of g is no longer Gaussian complicates inference. This
discontinuity is mathematically similar to Campbell and Yogo’s (2006) observation, which leads
to a question of how uniform inference could be conducted. In principle, the problem here can
be analyzed by modifying the proposal in Phillips (2014, Section 4.3). First, construct the 1 — a4
confidence interval for p using Mikusheva (2007). Call it [p.,py]. Second, compute 8 (p) =

argmax, F, (0, p) for p € [pr, pv]. Assuming that p is fixed, characterize the asymptotic variance
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¥ (p), say, of v/n <9A(p) —0 (p)), which is asymptotically normal in general. Third, construct the
1 — ay confidence region, say CT (as9;p), using asymptotic normality and ¥ (p). Our confidence

interval for #; is then given by J C1 (aw; p). By Bonferroni, its asymptotic coverage rate

pElpL,pu]

is expected to be at least 1 — a; — ao.

4 Joint Panel-Time Series Limit Theory

In this section we first establish a generic joint limiting result for a combined panel-time series

process and then specialize it to the limiting distributions of parameter estimates under stationarity

y
n,it

and non-stationarity. The process we analyze consists of a triangular array of panel data
observed for ¢ = 1,...,n and t = 1,...,T where n — oo while T is fixed and t = 1 is an
arbitrary normalization of time at the beginning of the cross-sectional sample. It also consists
of a separate triangular array of time series ¢, for ¢ = 70+ 1,..., 70 + 7 where 79 is fixed with
—00 < =K < 19 < K < oo for some bounded K and 7 — oo. Typically, ¢, ,and ¢¥, are

the scores of a cross-section and time series criterion function based on observed data y;; and z;.

Yy
n,it?

We assume that T < 75 + 7. Throughout we assume that ( ¢¥,) is a martingale difference

sequence relative to a filtration to be specified below. We derive the joint limiting distribution
and a related functional central limit theorem for ﬁ ST v.ir and \% ST Y,

We now construct the triangular array of filtrations similarly to Kuersteiner and Prucha (2013).
We use the binary operator V to denote the o-field generated by the union of two o-fields. Setting

C =0 (v1,...,vr) we define

ng,O =C (10)

ng,i =0 (Zmin(l,T0)7 {yj,min(l,ﬂ-o)}j-zl) Ve
grn,n—l—i =0 ({yj,min(l,ro)};zl ) {Zmin(l,m)—l—lu Zmin(l,ro)} ) {yj,min(l,ro)+1 };:1) Ve

grn,(t—min(l,ro))n—l—i =0 <{yj7t—1a Yjt—25- - - ayj,min(l,To)};Lzl ) {Zt, s P Zmin(l,ro)} ) {yj,t};zl) vC
We use the convention that Gy, (t—min(1,70))n = Grn,(t—min(1,70)—1)n+n- Lhis implies that z and y;, are
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added simultaneously to the filtration Gy, 4—min(1,7))n+1- Also note that G, ; predates the time
series sample by at least one period, i.e. corresponds to the ‘time zero’ sigma field. To simplify
notation define the function g, (¢,7) = (¢ — min(1, 79))n + ¢ that maps the two-dimensional index
(t,7) into the integers and note that for ¢ = g, (¢,1) it follows that ¢ € {0, ..., max(T,7)n}. The
filtrations G, , are increasing in the sense that G, , C Grn 441 for all ¢, 7 and n. We note that
E [w;t} ng,qn(t—l,i)] = 0 for all 7 is not guaranteed because we condition not only on z;_1, z;_o...
but also on vy, ..., vy, where the latter may have non-trivial overlap with the former.

The central limit theorem we develop needs to establish joint convergence for terms involving
both v} ;; and 97, with both the time series and the cross-sectional dimension becoming large
simultaneously. Let [a] be the largest integer less than or equal a. Joint convergence is achieved
by stacking both moment vectors into a single sum that extends over both ¢ and i. Let r € [0, 1]

and define

~i”t(r):\/i’_fl{mjtl§t§7'0+[7‘7“]}1{i:1}, (11)

which depends on r in a non-trivial way. This dependence will be of particular interest when we
specialize our models to the near unit root case. For the cross-sectional data define
Yy

Yy _ n,it 12
it \/ﬁ ( )

where @Eft is constant as a function of r € [0,1]. In turn, this implies that functional convergence

of the component (I2]) is the same as the finite dimensional limit. It also means that the limiting
process is degenerate (i.e. constant) when viewed as a function of r. However, this does not matter
in our applications as we are only interested in the sum

max(T,70+7) n

ZZ% 2. 2 Ui=X

t 1 i=1 t=min(1,79+1) =1

~ ~ ~ /
Define the stacked vector ¢ (1) = ( Y ;(r)/> € R and consider the stochastic process

max(T,70+7) n

Xor (T) = Z Z 7vbzt Xnr (O) (Xg;—7 0)/ (13)

t=min(1,790+1) =1

We derive a functional central limit theorem which establishes joint convergence between the

panel and time series portions of the process X, (r). The result is useful in analyzing both trend
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stationary and unit root settings. In the latter, we specialize the model to a linear time series
setting. The functional CLT is then used to establish proper joint convergence between stochastic
integrals and the cross-sectional component of our model.

For the stationary case we are mostly interested in X,,, (1) where in particular

T0+7 max(T,70+7) n
E th E § wzt
t To+1 t=min(1,79+1) =

The limiting distribution of X, (1) is a simple corollary of the functional CLT for X,,, (r). We
note that our treatment differs from Phillips and Moon (1999), who develop functional CLT’s for
the time series dimension of the panel data set. In our case, since T is fixed and finite, a similar
treatment is not applicable.

We introduce the following general regularity conditions. In later sections these conditions will

be specialized to the particular models considered there.

Condition 1 Assume that

i) Yy ;4 s measurable with respect 10 Grp (t—min(1,70))n-+i-

ii) Y2, 1is measurable with respect t0 Grp (t—min(1,70))n+s Jor all i =1,...n
i11) for some 6 > 0 and C' < oo, sup;,; F [ng,itH%&] < C foralln>1.
iv) for some § >0 and C' < oo, sup, E [HwZ’tHHJ} < C forallT>1.
v) B W%it‘ Grn (t—min(1,70)nri—1] = 0.

vi) E [?M,t‘ gq—n7(t_min(177—0)_1)n+ij| =0 fort>T and alli=1,...,n

Remark 1 Conditions [1(i), (iii) and (v) can be justified in a variety of ways. One is the sub-
ordinated process theory employed in Andrews (2005) which arises when y; are random draws
from a population of outcomes y. A sufficient condition for Conditions [Ql(v) to hold is that
E [ (yl0, p, )| C] = 0 holds in the population. This would be the case, for example, if 1) were the
correctly specified score for the population distribution. See Andrews (2005, pp. 1573-1574).

Condition 2 Assume that:

i) for any s,r € [0, 1] with r > s,

TO+ TT

% Z (0 Q,(r)—Q,(s) as T —

t=1o+[7s]+1
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where Q, (1) — Q, (s) is positive definite a.s. and measurable with respect to o (vy,...,vr) for all
r € (s,1]. Normalize Q, (0) = 0.

it) The elements of Q, () are bounded continuously differentiable functions of r > s € [0,1]. The
derivatives Q, (1) = 09, (1) /Or are positive definite almost surely.

iii) There is a fived constant M < 0o such that sup|y _y x,egrks SUD; A0S, (1) /OtA, < M a.s.

Condition [2] is weaker than the conditions of Billingsley’s (1968) functional CLT for strictly
stationary martingale difference sequences (mds). We do not assume that E | Rl | is constant.
Brown (1971) allows for time varying variances, but uses stopping times to achieve a standard
Brownian limit. Even more general treatments with random stopping times are possible - see
Gaenssler and Haeussler (1979). On the other hand, here convergence to a Gaussian process (not
a standard Wiener process) with the same methodology (i.e. establishing convergence of finite di-
mensional distributions and tightness) as in Billingsley, but without assuming homoskedasticity is
pursued. Heteroskedastic errors are explicitly used in Section d.3]where 92, = exp ((t — 5) 7/7) 1.
Even if 7, is iid(0, 0?) it follows that Y7, is a heteroskedastic triangular array that depends on 7.

It can be shown that the variance kernel 2, (r) is Q, (r) = 02 (1 — exp (—2r7))/ 27y in this case.
See equation (53)).

Condition 3 Assume that
1 n
E Z w;yth Z'n = Qty
i=1

where §,, is positive definite a.s. and measurable with respect to o (v1, ..., v7) .

Condition 2] holds under a variety of conditions that imply some form of weak dependence of
the process ¢7,. These include, in addition to Condition [Il(ii) and (iv), mixing or near epoch
dependence assumptions on the temporal dependence properties of the process 97 ,. Assumption
holds under appropriate moment bounds and random sampling in the cross-section even if
the underlying population distribution is not independent (see Andrews, 2005, for a detailed

treatment).
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4.1 Stable Functional CLT

This section details the probabilistic setting we use to accommodate the results that Jacod and
Shiryaev (2002) (shorthand notation JS) develop for general Polish spaces. Let (€, F’, P’) be
a probability space with increasing filtrations F* C F and F; C Fp, for any t = 1,... k,
and an increasing sequence k, — oo as n — 00. Let Dgry g, [0, 1] be the space of functions
[0,1] — R* x R* that are right continuous and have left limits (see Billingsley (1968, p.109)).
Let C be a sub-sigma field of F'. Let (¢, Z" (w,t)) : &' x[0,1] = R x R* xR* be random variables
or random elements in R and Dgr, g, [0, 1], respectively defined on the common probability space
(@, F', P') and assume that ( is bounded and measurable with respect to C. Equip Dgrg gk [0, 1]
with the Skorohod topology, see JS (p.328, Theorem 1.14). By Billingsley (1968), Theorem 15.5
the uniform metric can be used to establish tightness for certain processes that are continuous in
the limit.

We use the results of JS to define a precise notion of stable convergence on Dgiyygio [0, 1].
JS (p.512, Definition 5.28) define stable convergence for sequences Z™ defined on a Polish space.
We adopt their definition to our setting, noting that by JS (p.328, Theorem 1.14), Dgry, gk, [0, 1]
equipped with the Skorohod topology is a Polish space. Also following their Definition VI1.1 and

Theorem VI1.14 we define the o-field generated by all coordinate projections as Dyry gy -

Definition 1 The sequence Z™ converges C-stably if for all bounded ( measurable with respect to
C and for all bounded continuous functions f defined on Dy, gk, [0, 1] there exists a probability
measure p on (€ X Dgrgyrre [0, 1] ,C X Dgrgygkp) sSuch that

ECf(Z2")] = ¢ (W) f (2) p(do', de) .

Q/XDng XRkP [0,1]

Asin JS, let @ (W', dzx) be a distribution conditional on C such that p (dw’, dz) = P (dw') Q (W', dx)
and let @, (w',dx) be a version of the conditional (on C) distribution of Z". Then we can de-
fine the joint probability space (2, F, P) with Q = Q' X Dgrgygre [0,1], F = F' X Dgrgy gk, and
P = P(dw,dz) = P’ (d') Q (W', dx) . Let Z (W', x) = x be the canonical element on Dgk, gk, [0, 1].
It follows that [ ¢ (w') f (z) p(dw'’,dz) = E[CQf].We say that Z™ converges C-stably to Z if for

all bounded, C-measurable (,
EICf(Z2")] = ECQf]. (14)
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More specifically, if W (r) is standard Brownian motion, we say that Z" = W (r) C-stably where
the notation means that (I4]) holds when @ is Wiener measure (for a definition and existence proof
see Billingsley (1968, ch.9)). By JS Proposition VIII5.33 it follows that Z" converges C-stably iff
Z" is tight and for all A € C, E'[14f (Z™)] converges.

The concept of stable convergence was introduced by Renyi (1963) and has found wide appli-
cation in probability and statistics. Most relevant to the discussion here are the stable central
limit theorem of Hall and Heyde (1980) and Kuersteiner and Prucha (2013) who extend the result
in Hall and Heyde (1980) to panel data with fixed T". Dedecker and Merlevede (2002) established
a related stable functional CLT for strictly stationary martingale differences.

Following Billingsley (1968, p. 120) let 7., Z" = (Zﬁl, vy Z;;) be the coordinate projections
of Z™. By JS VIII5.36 and by the proof of Theorems 5.7 and 5.14 on p. 509 of JS (see also, Rootzen
(1983), Feigin (1985), Dedecker and Merlevede (2002, p. 1057)), C-stable convergence for Z™ to
Z follows if £ [Cf (Zfl, s Zﬁk)} — ECf(Zy, ..., Zy,)] and Z™ is tight under the measure P. We

7777 Tk

note that the first condition is equivalent to stable convergence of the finite dimensional vector of

random variables Z"

s Zy defined on R* and is established with a multivariate stable central

limit theorem.

Theorem 1 Assume that Conditions[l, [ and[3 hold. Then it follows that for iy defined in (I3),

and as T,n — oo and T fized,
B, (1)
Xor (1) = (C-stably)
B

where By (r) = Q,Y2W,(r), B, (r) = [7 ()2 dW,(s) and Q(r) = diag (9, (r)) is C-

measurable, €, (s) = 08, (s) /0s and (W, (r),W, (r)) is a vector of standard k,-dimensional

Brownian processes independent of Q.
Proof. In Appendix [Al =

Remark 2 Note that the component W, (1) of W (r) does not depend on r. Thus, W, (1) is simply
a vector of standard Gaussian random variables, independent both of W, (r) and any random

variable measurable w.r.t C.
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The limiting random variables B, (r) and B, (r) both depend on C and are thus mutually
dependent. The representation B, (1) = Q,'/2W, (1), where a stable limit is represented as the
product of an independent Gaussian random variable and a scale factor that depends on C, is com-
mon in the literature on stable convergence. Results similar to the one for B, (r) were obtained by
Phillips (1987, 1988) for cases where €, (s) is non-stochastic and has an explicitly functional form,
notably for near unit root processes and when convergence is marginal rather than stable. Rootzen
(1983) establishes stable convergence but gives a representation of the limiting process in terms
of standard Brownian motion obtained by a stopping time transformation. The representation of
B, (r) in terms of a stochastic integral over the random scale process €2, (s) seems to be new. It
is obtained by utilizing a technique mentioned in Rootzen (1983, p. 10) but not utilized there,
namely establishing finite dimensional convergence using a stable martingale CLT. This technique
combined with a tightness argument establishes the characteristic function of the limiting process.
The representation for B, (r) is then obtained by utilizing results for characteristic functions of
affine diffusions in Duffie, Pan and Singletion (2000). Rootzen (1983, p.13) similarly utilizes char-
acteristic functions to identify the limiting distribution in the case of standard Brownian motion, a
much simpler scenario than ours. Finally, the results of Dedecker and Merlevede (2002) differ from
ours in that they only consider asymptotically homoskedastic and strictly stationary processes. In
our case, heteroskedasticity is explicitly allowed because of €2, (s). An important special case of
Theorem [l is the near unit root model discussed in more detail in Section 4.3

More importantly, our results innovate over the literature by establishing joint convergence
between cross-sectional and time series averages that are generally not independent and whose
limiting distributions are not independent. This result is obtained by a novel construction that
embeds both data sets in a random field. A careful construction of information filtrations G, 1
allows to map the field into a martingale array. Similar techniques were used in Kuersteiner
and Prucha (2013) for panels with fixed 7. In this paper we extend their approach to handle an
additional and distinct time series data-set and by allowing for both n and 7 to tend to infinity
jointly. In addition to the more complicated data-structure we extend Kuersteiner and Prucha
(2013) by considering functional central limit theorems.

The following corollary is useful for possibly non-linear but trend stationary models.
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Corollary 1 Assume that Conditions(d, @ and[3 hold. Then it follows that for 1\ defined in (I3),

and as 7,n — oo and T fixed,
Xnr (1) 4 B = QYW (C-stably)

where 0 = diag (Q,,Q, (1)) is C-measurable and W = (W, (1), W, (1)) is a vector of standard
d-dimensional Gaussian random variables independent of Q. The variables Q,, €, (.), W, (.) and

W, (.) are as defined in Theorem [l

Proof. In Appendix [Al m

The result of Corollary [lis equivalent to the statement that X, (1) 4N (0,€) conditional
on positive probability events in C. As noted earlier, no simplification of the technical arguments
are possible by conditioning on C except in the trivial case where €2 is a fixed constant. Eagleson
(1975, Corollary 3), see also Hall and Heyde (1980, p. 59), establishes a simpler result where
Xor (1) % B weakly but not (C-stably). Such results could in principle be obtained here as
well, but they would not be useful for the analysis in Sections and 3] because the limiting
distributions of our estimators not only depend on B but also on other C-measurable scaling
matrices. Since the continuous mapping theorem requires joint convergence, a weak limit for B
alone is not sufficient to establish the results we obtain below.

Theorem [I] establishes what Phillips and Moon (1999) call diagonal convergence, a special
form of joint convergence. To see that sequential convergence where first n or 7 go to infinity,
followed by the other index, is generally not useful in our set up, consider the following example.
Assume that d = k, is the dimension of the vector zzit. This would hold for just identified moment
estimators and likelihood based procedures. Consider the double indexed process

max(T,70+7) n

Xnr (1) = Z it (1) (15)

t=min(1,70+1) i=
For each 7 fixed, convergence in distribution of X,, as n — oo follows from the central limit
theorem in Kuersteiner and Prucha (2013). Let X, denote the “large n, fixed 77 limit. For each n
fixed, convergence in distribution of X, as 7 — oo follows from a standard martingale central limit
theorem for Markov processes. Let X,, be the “large 7, fixed n” limit. It is worth pointing out that

the distributions of both X,, and X, are unknown because the limits are trivial in one direction.
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TO+T v

For example, when 7 is fixed and n tends to infinity, the component 71/2 Do WY

, trivially

TO+T v

converges in distribution (it does not change with n) but the distribution of 7=/2 %" ¥,

is generally unknown. More importantly, application of a conventional CLT for the cross-section
alone will fail to account for the dependence between the time series and cross-sectional compo-
nents. Sequential convergence arguments thus are not recommended even as heuristic justifications

of limiting distributions in our setting.

4.2 Trend Stationary Models

Let 0 = (8,1, ..., vr) and define the shorthand notation fi; (0, p) = f (yul0, p), 9: (B, p) = g (v|vei—1, B, p) ,
Jo.it (0,p) = Ofu(0,p) /00 and Gp,t (B,p) = 0g:(B,p) /0p. Also let fix = fit (6o, o), foit =
fo.it (6o, p0), 9t = 9¢ (Bo, po) and g, = gpt (Bo, po) . Depending on whether the estimator under
consideration is maximum likelihood or moment based we assume that either (fyit, g,+) or (fit, 9t)
satisfy the same Assumptions as ( g, Z,t) in Condition [II We recall that v, (3, p) is a function
of (2, B3, p), where z; are observable macro variables. For the CLT, the process v; = v (po, Bo)
is evaluated at the true parameter values and treated as observed. In applications, v; will be
replaced by an estimate which potentially affects the limiting distribution of p. This dependence
is analyzed in a step separate from the CLT.

The next step is to use Corollary [I] to derive the joint limiting distribution of estimators for
¢ = (¢, p)). Define st (8,p) = 7723707 0g (vi (B, p) [V (B, ), B: p) [Op and 53, (6, p) =
n~V2S T ST OF (yalf, p) /06 for maximum likelihood, and

TO+T

s (B,p) = = (ks (B,p) JOp) WIT™* 3" g (1 (B, p) [veer (B, p) B p)

t=70+1
and sY; (0,p) = — (0hn (0,p) /00) WERV2ST 5™ | f (4|6, p) for moment based estimators.
We use s” (8, p) and s¥ (0, p) generically for arguments that apply to both maximum likelihood
and moment based estimators. The estimator quS jointly satisfies the moment restrictions using

time series data
s (8.p) =0, (16)
and cross-sectional data

sV (é,ﬁ) —0. (17)



Defining s (¢) = (s¥ (¢)’, s (qb)/)/ the estimator ¢ satisfies s ((ﬁ) = 0. A first order Taylor series
expansion around ¢q is used to obtain the limiting distribution for qg We impose the following

additional assumption.

Condition 4 Let¢ = (¢, p) € R¥, 0 € R, and p € R*. Define D, = diag (n~"/21,,77'/?1,) ,where
I, is an identity matriz of dimension kg and I, is an identity matriz of dimension k,. Let
W€ = plim, WS and W™ = plim, W7 and assume the limits to be positive definite and C-
measurable. Define h (0, p) = plim, h, (8,4, p) and k (B, p) = plim_k, (3, p). Assume that for
some € > 0,

i) SUD )16 —go | < H(ﬁkT (8,p) /Op) W] — Ok (570),/8PWTH =0, (1)

1) SUD | o | < |0k, (0, p) J06) WS — (Oh (6, p) /06) WEC|| = 0, (1)

11)8 SUD 415 go | <e aff Dy, — A(9) (1) where A (@) is C-measurable and A = A (¢o) 1s full

rank almost surely. Let k = limn/T,

A — Ayﬂ \/EAy,p
ﬁAI/,G Au,p

with A, g = plimn=19s¥ (¢o) /00, A, , = plimn~'0sY (¢o) /Op', Avp = pim T 1Is” (¢) /00" and
A, , =plim7719s" (¢o) /Op'.

Condition 5 For mazimum likelihood criteria the following holds:
i) for any s,r € [0,1] with r > s, = ZZOJ;O::TS]HQMQM = Q,(r) —Q,(s) as T — oo and where
Q, (r) satisfies the same regularity conditions as in Condition [2(i1).
i) LS foiSba B Quy for allt € (1, ..., T] and where Q, is positive definite a.s. and measurable

with respect to o (v, ...,vp) . Let Q, = 371 Q.

Condition 6 For moment based criteria the following holds:

i) for any s,r € [0,1] with r > s, —Zzo;r:(i irsl 1 9t9g L, (r) — Q, (s) as T — oo and where
Q, (r) satisfies the same reqularity conditions as in Condition[3(i1).

i) 230 fufh B Quep for allt,s € [1,...,T] Let Qf = ZZTZI Oy 55. Assume that Qy is positive

definite a.s. and measurable with respect to o (v, ...,vr).

21



Condition [0l accounts for the possibility of misspecification of the model. In that case, the
martingale difference property of the moment conditions may not hold, necessitating the use of
robust standard errors through long run variances.

The following result establishes the joint limiting distribution of .

Theorem 2 Assume that Conditions[, [f, and either B with (%, V%,) = (fo, gps) in the case of

T,t

likelihood based estimators or[@ with (¢, Z,t) = (fit, gt) in the case of moment based estimators

hold. Assume that ¢ — ¢g = o0, (1) and that ({I8) and (T7) hold. Then,
Dl (é . ¢0> A ATIQUW (C-stably)

where A is full rank almost surely, C-measurable and is defined in Condition[4l The distribution
of QY2W is given in Corollary [. In particular, Q = diag (€,,Q, (1)). Then the criterion is
mazimum likelihood 0, and €2, (1) are given in Condition[d. When the criterion is moment based,
Q, = 2ol yyoq,werdhleem gnq q, (1) = Ll g (1) W 2Cew) with p and O, (1)
defined in Condition [

Proof. In Appendix [Al m

Corollary 2 Under the same conditions as in Theorem [2 it follows that

Vi (60— 80) % —AWQUW, (1) — /RAWQY? (1) W, (1) (C-stably). (18)
where
AVY = Ay_,é + A;éAy,p (Av,p - AVﬂA;éAW)_I A"’(’Ay_vé
A% = — ATV (A — A A A, )T
For

Qg = APIQ, AV 1 g AVPQ, (1) AV

it follows that
\/ﬁQe_l/2 <é - 90) 4N (0,1) (C-stably). (19)
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Note that g, the asymptotic variance of y/n (é — 90> conditional on C, in general is a random
variable, and the asymptotic distribution of 6 is mixed normal. However, as in Andrews (2005), the
result in (I9) can be used to construct an asymptotically pivotal test statistic. For a consistent
estimator €y the statistic \/ﬁfle_l/ 2 (Ré — 7’) is asymptotically distribution free under the null
hypothesis R§ — r = 0 where R is a conforming matrix of dimension ¢ X kg and and r a ¢ x 1

vector.

4.3 Unit Root Time Series Models

In this section we consider the special case where v; follows an autoregressive process of the form
Vir1 = pvy + mp. As in Hansen (1992), Phillips (1987, 1988, 2014) we allow for nearly integrated

processes where p = exp (7/ 7) is a scalar parameter localized to unity such that

Vrt+1 = €Xp (7/ 7) Vet + M1 (20)

and the notation v,; emphasizes that v, is a sequence of processes indexed by 7. We assume that

7-_1/21/7',min(1,70) =1y = V (0) a.s.

where 14 is a potentially nondegenerate random variable. In other words, the initial condition for
20) is vrmin(1,70) = 721y, We explicitly allow for the case where vy = 0, to model a situation
where the initial condition can be ignored. This assumption is similar, although more parametric
than, the specification considered in Kurtz and Protter (1991). We limit our analysis to the case
of maximum likelihood criterion functions. Results for moment based estimators can be developed
along the same lines as in Section [4.2] but for ease of exposition we omit the details. For the unit
root version of our model we assume that 1, is observed in the data and that the only parameter to
be estimated from the time series data is p. Further assuming a Gaussian quasi-likelihood function

we note that the score function now is

gp,t (ﬁ7 p) = VT,t—l (VT,t - VT,t—lp) . (21)

The estimator p solving sample moment conditions based on (21]) is the conventional OLS estimator

given by
-
Zt:‘ro-i-l Vr,t—ll/r,t

p= Szt
Zt:‘ro—i-l VT,t—l
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We continue to use the definition for fp;; (0, p) in Section but now consider the simplified case
where 6y = (3, 10). We note that in this section, vy rather than Vrmin(1,-0) 18 the common shock

used in the cross-sectional model. The implicit scaling of vr min(1,7,) by 12

is necessary in the
cross-sectional specification to maintain a well defined model even as 7 — oo.
Consider the joint process (V,, (r),Y;,) where V., (r) = 77/%v,,,, and

T n

Jo,it
eyl

t=1 i=1

Note that
r To+[77]
/ ‘/TndWTn = 7-_1 Z Vri—1Th
0 t=70+1

with W, (r) = 771/2 Z;:;Eﬂ ne. We define the limiting process for V,, (r) as
Vv () = eV (0) +/ o’ "W, (s) (22)
0

where W, is defined in Theorem[I. When v, = 0, Theorem [ directly implies that e "7/7V/,, (r) =
[; oe™7dW, (s) C-stably noting that in this case 2, (s) = 0 (1 — exp (—257)) 2y and , (s)? =
oe™7. The familiar result (cf. Phillips 1987) that V., (r) = [ 0e?"=9dW, (s) then is a conse-
quence of the continuous mapping theorem. The case in (22)) where v is a C-measurable random
variable now follows from C-stable convergence of V., (r) . In this section we establish joint C-stable
convergence of the triple (Vm (r), Yo, for deWm) )

Let ¢ = (¢,p) € R, § € R¥, and p € R. The true parameters are denoted by 6, and
pro = exp (v/7) with 79 € R and both 6, and vy bounded. We impose the following modified

assumptions to account for the the specific features of the unit root model.

Condition 7 Define C = o (vy). Define the o-fields Gy min(1,7)n+i in the same way as in (I0)
except that here T = kn such that dependence on T is suppressed and that v, is replaced with n; as
m

grn,(t—min(l,ro))n+i =0 <{yjt—17 Yjt—2, - - - 7yjmin(1,7—o)}j:1 ) {Ut, M—1,--- 777min(1,7—0)} ) (yj,t);-zl) v

Assume that

i) foit is measurable with respect t0 Grrn (t—min(1,m0))n+i-
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i) n, is measurable with respect to Gy (t—min(1,70))nts for all i =1,...,n

iii) for some 6 >0 and C' < oo, sup,; F [||f97it||2+6] <C

iv) for some § >0 and C < oo, sup, F [||77t||2+6] <C

v) E [.f@,it|g7—n,(t—min(1,7-o))n+i—1] =0

vi) E [m\Qm7(t_min(1m)_1)n+,~] =0 fort>T and alli ={1,...,n}.

vii) For any 1 > r > s > 0 fized let Q5 = 77 ZZO;[;THO Vel E 102G, (t—min(1,7)~1)ntn) -
Then, Q% =, (1 —s) 0”.

viii) Assume that %Z?:l fo.itfo.it LN Qyy, where Qy,, is positive definite a.s. and measurable with

respect to C. Let Q= Y1 Q.

Conditions [7[(i)-(vi) are the same as Conditions[I] (i)-(vi) adapted to the unit root model. Con-

dition [7(vii) replaces Condition2l It is slightly more primitive in the sense that if n? is homoskedas-

To+[77] 2
t=min(1,79)+[7s]+1 T

tic, Condition [7(vii) holds automatically and convergence of 7713 — (r—s)o?
follows from an argument given in the proofs rather than being assumed. On the other hand,
Condition [7(vii) is somewhat more restrictive than Condition [2 in the sense that it limits het-
eroskedasticity to be of a form that does not affect the limiting distribution. In other words,

mo+[rr] 2 to be proportional to r — s asymptotically. This

we essentially assume 7717 min(L70){rs+1 T

assumption is stronger than needed but helps to compare the results with the existing unit root
literature.

For Condition [7((viii) we note that typically Q, (¢) = E [ fo.it fé’it} and €y, = Q, (¢po) where
®o = (B4, V), pro). Thus, even if Qy, (.) is non-stochastic, it follows that €, is random and mea-
surable with respect to C because it depends on vy which is a random variable measurable w.r.t
C.

The following results are established by modifying arguments in Phillips (1987) and Chan and
Wei (1987) to account for C-stable convergence and by applying Theorem [II

Theorem 3 Assume that Conditions [7] hold. As T,n — oo and T fized with 7 = kn for some

k € (0,00) it follows that

<‘/'rn (7’) ,Y:rn, / V;-ndWTn) = (V%\/(Q) (7’) , Q}mey (1) s / O'V%\/(())dWV) (C-stably)
0 0
in the Skorohod topology on Dga [0, 1].
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Proof. In Appendix [Al =
We now employ Theorem 3] to analyze the limiting behavior of 6 when the common factors are
generated from a linear unit root process. To derive a limiting distribution for quS we impose the

following additional assumption.
Condition 8 Let § = argmax Y. S | f (yal6, p). Assume that (é — 90> =0, (n7?).

Condition 9 Let 8}, (¢) = fou (¢) //n and 5%, (¢) = 1{i =1} g0 (¢) /7. Assume that 8, (¢) :
RFe— R* 3% (¢) : R — R and define D,,, = diag (n~V/21,,771), where 1, is an identity matriz of
dimension ky. Let k =limn/7%. Let Ay, (¢) = Zle E[0s, (¢) /0¢'],

T

Ay (9) =) E[0s},(9) /0p]

t=1
and define AY (¢) = | Ao (¢) VEA,,(9) ] where A (@) is a kg X ky dimensional matriz of non-
random functions ¢ — R. Assume that A, g (¢o) ts full rank almost surely. Assume that for some

e >0,

max(T,7o+7

) o
sup Z Z 885;,@ Dy — AY ()| = 0, (1)

¢||¢_¢0||S5 t:mln(l,T()-‘rl) i=1

We make the possibly simplifying assumption that A (¢) only depends on the factors through

the parameter 6.

Theorem 4 Assume that Conditions[7, [8 and[9 hold. It follows that

1 -1 1
Vi (6= 00) 5 —A, 502, (1) - VEAL LA, < /0 V,Y%V(O)dr) ( /0 UV%V(O)dW,,) (C-stably).

Proof. In Appendix [Al =

The result in Theorem [4] is an example that shows how common factors affecting both time
series and cross-section data can lead to non-standard limiting distributions. In this case, the
initial condition of the unit root process in the time series dimension causes dependence between
the components of the asymptotic distribution of 0 because both Q, and V,, y (o) in general depend
on vy. Thus, the situation encountered here is generally more difficult than the one considered
in Stock and Yogo (2006) and Phillips (2014). In addition, because the limiting distribution of
0 is not mixed asymptotically normal, simple pivotal test statistics as in Andrews (2005) are not

readily available contrary to the stationary case.
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5 Summary

We develop a new limit theory for combined cross-sectional and time-series data sets. We focus
on situations where the two data sets are interdependent because of common factors that affect
both. The concept of stable convergence is used to handle this dependence when proving a joint
Central Limit Theorem. Our analysis is cast in a generic framework of cross-section and time-
series based criterion functions that jointly, but not individually, identify the parameters. Within
this framework, we show how our limit theory can be used to derive asymptotic approximations to
the sampling distribution of estimators that are based on data from both samples. We explicitly
consider the unit root case as an example where particularly difficult to handle limiting expressions
arise. Our results are expected to be helpful for the econometric analysis of rational expectation
models involving individual decision making as well as general equilibrium settings. We investigate

these topics, and related implementation issues, in a companion paper.
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Appendix

A Proofs for Section 4

A.1 Proof of Theorem (1

To prove the functional central limit theorem we follow Billingsley (1968) and Dedecker and
Merlevede (2002). The proof involves establishing finite dimensional convergence and a tightness

argument. For finite dimensional convergence fix r; < ry < --- < ry € [0,1]. Define the increment
AXm— (7"2) = XnT (Tz) - Xm— (7"2'_1> . (23)

Since there is a one to one mapping between X,,; (1) , ..., Xpr (1) and X7 (r1) , AX 7 (r2) 5 ooy AXr (15)
we establish joint convergence of the latter. The proof proceeds by checking that the conditions
of Theorem 1 in Kuersteiner and Prucha (2013) hold. Let k, = max(T, 7)n where both n — oo
and 7 — oo such that clearly k, — oo (this is a diagonal limit in the terminology of Phillips and
Moon, 1999). Let d = kg + k,. To handle the fact that X,,, € R¢ we use Lemmas A.1 - A.3 in
Phillips and Durlauf (1986). Define A; = (X, )\;7V),and let A= (Aq,...,\) € R¥* with ||\|| = 1.
Define t* =t — min (1, 7).

For each n and 79 define the mapping ¢ (¢, 1) : N2 — N as ¢ (i,t) := t*n+1 and note that ¢ (i, t)
is invertible, in particular for each ¢ € {1, ..., k,} there is a unique pair ¢,7 such that ¢ (i,t) = q.

We often use shorthand notation ¢ for ¢ (i,t). Let
.. k ~ ~
Ja = 30X (B (1) = B [ At (1) |Grngensic ) (24)
j=1
where

quit (Tj) = QZit (Tj) - QZit (Tj—l) ) quit (7’1) = QZit (7’1) . (25)

Note that Agy, () = (ng (r;), AgY (rj)>/with

- 0 forj>1
A (ry) = (26)

Y forj=1
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and

vo(ry) it [rrj] <t <[rry] andi=1

Agf(r)=9q , (27)
0 otherwise
Using this notation and noting that Ztmanif(?:gll S 1¢q(,t = Z’;Zl Qﬁq, we write
k
N Xonr (r1) + > N AX,, ()
=2
kn ) max(T,70+7) n k
=S det Y S NE A ()| G (28)
g=1 t=min(1,70+1) =1 j=1

First analyze the term Zzil Qﬁq. Note that wZ,it is measurable with respect to Gy, 4+ 4i by con-
struction. Note that by (24]), ([26) and (27) the individual components of ﬁq are either 0 or equal
to @it (rj)—F [@Zt (1) |Grn e +Z-_1] respectively. This implies that ﬂq is measurable with respect to
Grn g, DoOting in particular that £ [@E,t (r5) |gm7t*n+i_1] is measurable w.r.t G, 4«n4+;—1 by the prop-
erties of conditional expectations and Gy, ¢*nti—1 C Grng. By construction, F [%Wﬂ%q_l} = 0.

This establishes that for S,, = > .7, ﬁs,
{an, gT’rL,q71 S q S k'l’l?” Z 1}

is a mean zero martingale array with differences ﬁq.

To establish finite dimensional convergence we follow Kuersteiner and Prucha (2013) in the
proof of their Theorem 2. Note that, for any fixed n and given ¢, and thus for a corresponding
unique vector (¢,1), there exists a unique j € {1,...,k} such that 7o + [7r;_1] <t < 70+ [77].
Then,

k

Jur = 2N (Db (m) = B [ A (1) [Grniensica )
=1
= )‘ ( [%lgm t*nti— 1}) 1{J = 1}
+ >\;7V <7WZ:,1€ (Tj) —F [&:,t (Tj) |ng,t*n+i—1:|> 1{[77’j_1] <t < [T’/‘j]} 1 { 1= 1}

where all remaining terms in the sum are zero because of by (24)), (26]) and (27)). For the subsequent
inequalities, fix ¢ € {1,...,k,} (and the corresponding (¢,7) and j) arbitrarily. Introduce the
shorthand notation 1, =1{j =1} and 1;; = 1 {[rr;_1] <t < [rr;]} 1{i=1}.
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First, note that for 6 > 0, and by Jensen’s inequality applied to the empirical measure i Z?Zl T

we have that

. 1246
Uq

246
— 42—1—5

1 T T 1 v v
o (9 = B [BGrmnsia | ) 15+ 3850 (92 (1) = B [0, (1) 1Gensraica | ) 1

4 v
1 _ 246
S 42—1—5 < H>‘ y||2+6 ‘ —+ Z ||)\1’y’|2+6 HE [ Z|g7—n,t*n+i—1} H ) 1j

244

it

#27 (LINIP i ()

1 5 ~, 245
Il 2 32, 00 Gmmaemsia] ) 1

2+4
)b

I8 [ 0) Grmneic] [ 16

+9 ~
= 2202 (Il [ 4 Il B [

it

(T]) "

+ 22+26 (H)\] V||2+5

We further use the definitions in (II)) such that by Jensen’s inequality and for ¢ = 1 and ¢ €
[7_0 + ]-7 To + 7_]

2448 H2+5

||+ ||E [ 03) 1G]
1

< cris (98l (2 19 o))

1
S 7—1+6/2 (Hqﬁ;{,tH}i_é + E |:H¢:,t”2+6 |g7'n,t*n+i—1:|>

while for i > 1 ort & [+ 1,70 + 7],

v
it

= 0.

Similarly, for ¢t € [1,...,T]

246

’ Vi + HE [@E?Agfn,t*n—i-i—l}
< ez (027 + B 12 1G]

H2+5

while for ¢ ¢ [1,...,T]

]| <.
Noting that ||A;,]| <1 and ||\, | <1,
. |2+0 23+261 {’L: 1,t - [T()"—l,T(]—'—T]} v o|12+0
E |i wq ng,q—1:| < F146/2 E |:H¢T,tH ’g'rn,t*n+i—1:|
23+ {t € [1,...,T]} 5
+ B [ Grnenica (29)
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where the inequality in (29) holds for 6 > 0. To establish the limiting distribution of Z';Zl U, we

check that
kn 246
ZE[wq ]ao, (30)
q=1
kn ..
PR Z N, t>\1y+z>\ —751) Ajus (31)
q=1 te{l,..
and

ko 146/2
sup I <Z B | gl}) < o0, (32)
n g=1

which are adapted to the current setting from Conditions (A.26), (A.27) and (A.28) in Kuersteiner

and Prucha (2013). These conditions in turn are related to conditions of Hall and Heyde (1980)
and are shown by Kuersteiner and Prucha (2013) to be sufficient for their Theorem 1.

To show that (B0) holds note that from (29)) and Condition [ it follows that for some constant

C < o0,

kn 246 93+28  TOHT )

.. v +5
ZE |i ¢l1 :| S T1+6/2 Z E |:Hw'r,tH ‘ng,t*n]
q=1 t=10+1
23+25 T ors
Y B[ G
t=1 i=1
240,00 BPRTC RO PNTC
T = + — 0
F1+5/2 ni+d/2 6/2 no/2
because 23+ C and T are fixed as 7,n — 00.
Next, consider the probability limit of Z';Zl ¢3 We have
k7L ..
2%
T0O+T )
=7 Z > (N (W = B [0741Gmea])) L (33)
] 1 t=m0+1
2 14 14

+ ﬁ Z )‘ll,u ( Tt E [ r,t|grn,t*nD (w%t - E [w%t|g'rn7t*n])/ )‘17y1 {t <7+ [7‘7“1]} 1ij1j

te{ro,...,To+7}
N{min(1,79),..,T}

(34)

1
T Z Z it — B¢ z,zt|gm,t*n+i—1]))2 1; (35)

te{min(1,70),..,T'} i=1
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where for ([B3) we note that E [¢/Y,|G ] = 0 when ¢ > T. This implies that
1 / v v 2
LS S (= B [02400,0]))°

1< o )
=22 > (N (02 = B [0 ) Gonion]))” L

1 te{ro,...,7o+7}N{min(1,70+1),..,T}
1 L2
+ ; Z ()\;,V T,t) ]‘U

where by Condition

k TO+T k
1
T STON (e Mmoo+ o] <t <o+ ]y BTN (0 (r) = Qu (r21) A
Jj=1 t=max{7,T} j=1

and

146/2

k

1

BIIEY. X (N (W~ E[eGmen]) L (36)
j=1  te{ro,...,7o+7}
N{min(1,790+1),..,T}

14+6/2

1 - v v
- 7—1+6/2E Z Z H)\L ( Tt E [wq—,t‘gﬂ-n,t*n}) H2 1ij

=1 te{r,...,70+7}
M{min(1,70+1),..,T}

8/2 1.6/2 k
o (4l K < 3 B{I1%, (4% — B [lGrne]) ]

= 1+8/2

Jj=1 te{ro,...,7o+7}"{min(1,70+1),..,T}

ois 14+6/2 11+6/2
270 (T + |7o]) k sl;pE [Hw:,tHQM] =0,

= 14872

where the first inequality follows from noting that the set {7, ...,70 + 7} N {min (1, 7),.., 7'} has
at most 1"+ | 7| elements and from using Jensen’s inequality on the counting measure. The second
inequality follows from Holder’s inequality. Finally, we use the fact that (T'+ |m9|) /7 — 0 and
sup, B [Hw;tHQH] < C < oo by Condition [|(iv).
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Next consider (B4]) where

2

E
VTN

Xl,u ( :,t - F W:,t‘gm,t*nﬂ—l]) (wi - F W%t‘gm,t*n])/ >‘1,y1 {t < 7o+ [7'7"1]}

te{ro,...,To+7}
M{min(1,79),..,T}

<2 % {Ew- e e

te{r0,..,T0+7}
N{min(1,70),..,T}

< (B 102 - EltiGonea) Mf]) 10 <t <0k ) 37)
< Zsw (@[l X (B[l Bt 2ul]) (38)

te{ro,...,To+7}
M{min(1,79),..,T}

< 20y e o) (swp 2 [loalF]) =0 !

where the first inequality in (B7) follows from the Cauchy-Schwartz inequality, (38) uses Condition
M(iv), and the last inequality uses Condition [I|(iii). Then we have in (B8], by Condition [If(iii) and
the Holder inequality that

2
B |04 = BGrmamal) N[] < 2 |44
such that (39)) follows.
We note that ([39) goes to zero as long as T'/y/Tn — 0. Clearly, this condition holds as long as

T is held fixed, but holds under weaker conditions as well.

Next the limit of (3H) is, by Condition [l(v) and Condition [3]

1 n , ,
n Z Z ()‘l,y ( Z{it - B [¢Z,it|g‘rn,t*n+i—l}))2 RS Z A1yl Ay-

te{1,..T} i=1 te{1,..T}

This verifies (3I]). Finally, for (32) we check that

. , 146/2
sup F <Z E { Uy gm,q_lD < 0. (40)
n —1
First, use (29) with 6 = 0 to obtain
kn .2 93 T0tT
Z E |i wq ng,q—1:| S ? Z E |:Hw71{7tH2‘ g‘rn,t*n:|
q=1 t=7o
23 . y 12
+ E Z Z E |:Hwn,th ’ grn,t*n+i—1:| . (41)
te{l1,..,T} i=1
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Applying ([T to ([#0) and using the Holder inequality implies

el

5 08 TOHT ) 1+6/2
< 22E — > E[Hw;tH Qm,t*nﬂ-_l]

t=710+1
1+4/2
gﬂ-n,t*n—l—i—l] )

2

¥y

2 23 - y |2
+ 202 (n > > B | [lwbal

te{ro,...,ro+7}N{1,..,T} i=1

By Jensen’s inequality, we have

1 Yl o/ 1 T 146/2
(— > B{llvsl 9+1}> S S of | [ p A

T T

and
B (2P| Grmensia] < B[] G
so that
o+ 1+8/2 o+
: [( 3 o[l o] ) } T S Il .
t=ro+1 toro b1
< 2% sup [llw2]7*] < oo (42)

and similarly, for all 7 > 7" (which holds eventually)

, . 1+6/2
E (?n[ Z ZE [‘}wz,ltHz ng,t*n+i1:|> (43)

te{1,..,T} i=1

93+33/2 (Tn)5/2 T n

) S S B[]

t=1 i=1

< QFI2 2 g [Hlpg il
it ’

240
+]<oo

By combining (42) and (3] we obtain the following bound for (0),

. 1+8/2
n 246
(Sefof o) ]
q=1

< 93+38/2 sup E [sz,tHHé} 4 93+306/21+6/2 sup E [“¢27it}}2+6] < o0
t it

E by
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This establishes that (30), (BI) and ([32) hold and thus establishes the CLT for Z';Zl WUy

It remains to be shown that the second term in (28) can be neglected. Consider

max(T,70+7)

Z Z Z X [A¢zt (1) 1Grnpenti- 1}

t=min(1l,70+1) =1 j=1

o+ k
— +1/2 Z Z A;.’VE [¢:,t|gm,t*n+,._1} T{ro+ [trj—1] <t <7+ [174]}
t;m jnzl
+n /2 Z Z YV N (U eA——
t=1 i=1
Note that
E [ |Grngontio1] =0 for t > T
and

E [wz,it‘gﬂ'n,t*n-i-i—l} == O

This implies, using the convention that a term is zero if it is a sum over indices from a to b with
a > b, that

TO+T

,7-_1/2 Z )\LE [ :7t|ng,t*7L+i—l]

t=T10

T ok
712 Z Z N B [0 G aentiot] 1{mo + [Trj1] <t < 710+ [175]} .

t=m0 j=1

By a similar argument used to show that (Bl vanishes, and noting that 7" is fixed while 7 — o0,

it follows that
146/2

— 0

T
712 Z )\;7VE [ :7t|g7"»t*"]

t=T10

as 7 — 00. The Markov inequality then implies that

TO+T N

333 S g (A (1) |Gononsia | = 0, (1)

t=70 i=1 j=1

and consequently that

N Xy (11 +ZXAXM ;) Zzpq +o,(1 (44)

=2
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We have shown that the conditions of Theorem 1 of Kuersteiner and Prucha (2013) hold by
establishing (30), (31]), (32) and (@4)). Applying the Cramer-Wold theorem to the vector

Ynt = (Xm— (Tl)/ ) AXHT (T2)/ ) AX”T (Tk)/)/

it follows from Theorem 1 in Kuersteiner and Prucha (2013) that for all fixed ry, .., 7, and using

the convention that r¢ = 0,

k
<\ / ]‘ / !/
Blexp (iNYu)) = B fexp [ =5 [ D0 M@y + 20X (9 (1) = (1)) M
te{1,..,T} j=
(45)

When Q, (r) = rQ, for all » € [0, 1] and some (2, positive definite and measurable w.r.t C this

result simplifies to

k
S 00 0 D 3 )
7=1

The second step in establishing the functional CLT involves proving tightness of the sequence
NX,; (r). By Lemma A.3 of Phillips and Durlauf (1986) and Proposition 4.1 of Wooldridge and
White (1988), see also Billingsley (1968, p.41), it is enough to establish tightness componentwise.
This is implied by establishing tightness for X' X,,, (r) for all A € R? such that X\ = 1. In the
following we make use of Theorems 8.3 and 15.5 in Billingsley (1968). We need to show that for
the ‘modulus of continuity’

w (Xpr, 0) = ol N (Xor (8) = Xar ()] (46)
—s|<

where ¢, s € [0, 1] it follows that

lim lim supP (w (X, 6) > ¢) = 0.

§—0 n,T
Define
1 T n 1 To+[77]
XnTy(T):—Z Uity Xnrw (1) = —= Z (G
n t=1 i=1 \/Ft:m-‘rl
Since



and noting that |X (X7, (s) — Xpry (¢))| = 0 uniformly in ¢,s € [0,1] because of the initial
condition X,,; (0) given in (I3]) and the fact that X, , (¢) is constant as a function of ¢. It follows
that

w (X7, 0) < sup [, (Xnry (5) = Xnrw (1)) (47)

|s—t|<d
such that
P(w(Xp:,0) >3e) < P(w(Xprp,0) > 3¢).
To analyze the term in ([47]) use Billingsley (1968, Theorem 8.4) and the comments in Billingsley
(1968, p. 59). Let S; = Zitj LAWY, To establish tightness it is enough to show that for each

e > 0 there exists ¢ > 1 and 7 such that if 7 > 7/

P (max|5k+s — Si| > cef) <= (48)

c
hold for all k. Note that for each k fixed, M, = Sy, — Sk and Fy = Grpy (stk—min(1,70)n+1)> 1 Ms, Fs}
is a martingale. By a maximal inequality, see Hall and Heyde (1980, Corollary 2.1), it follows that

for each &
P <m<ax | Skts — Sk| > c&?\/?) =P <max |Skas — S| > (ce)? 7.10/2)
k+1 p

= (ce) Tp/z HZt k+1)‘/ ]

P 7p/2
02 = 261—1—1)

< o B 105 = sup I [[|v7,|["] (49)
by an inequality similar to (36). Note that the bound for (9) does not depend on k. Now
choose ¢ = 27/®=2) (sup, E [||v%,||" ])l/p ?) e049)/3-2) quch that @8) follows. We now identify

the limiting distribution using the technique of Rootzen (1983). Tightness together with finite
dimensional convergence in distribution in ([43]), Condition2land the fact that the partition r, ..., ¢

is arbitrary implies that for A € R? with \ = (X Y )

Yy v
Eexp (iNX,,, (r))] = F {exp (—5 ()\lyQy)\y + N Q, (r) )\V))} (50)
with @, = 37,0 7y Que. Let W(r) = (W, (r), W, (r)) be a vector of mutually independent
standard Brownian motion processes in R?, independent of any C-measurable random variable.

We note that the RHS of (50) is the same as

E [exp <—% (XA, + A0, (r) Ay))] —F [exp <¢A;Q;/2Wy (1) +3 /0 Y (Q (z&))l/2 aw, (t))} .
(51)
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The result in (BI) can be deduced in the same way as in Duffie, Pan and Singleton (2000), in
particular p.1371 and their Proposition 1. Conjecture that X; = f(f (89, (t) /o) /2 dW,, (t). By
Condition [2[(iii) and the fact that 0€2, (t) /Ot does not depend on X; it follows that the conditions
of Durrett (1996, Theorem 2.8, Chaper 5) are satisfied. This means that the stochastic differential
equation X; = f(f (89, (t) /0t)"/* AW, (s) with initial condition X, = 0 has a strong solution
(X, W, F}¥ v C) where F}V is the filtration generated by W, (t). Then, X, is a martingale (and
thus a local martingale) w.r.t the filtration FV'. For C-measurable functions « (¢) : [0,1] — R and

B(t) : [0,1] — R* define the transformation
U, =exp (a(r)+8(r) X,).
The terminal conditions a (r) = 0 and § (r) = i), are imposed such that
U, =exp (a(r)+ B (r) X,) = exp (iX,X,).
The goal is now to show that
E[¥,|C] = ¥y = exp (a (0) + (0) Xo) = exp (a (0))

where the initial condition Xy = 0 was used. In other words, we need to find « (t) and S ()
such that ¥, is a martingale. Following the proof of Proposition 1 in Duffie, Pan and Singleton
(2000) and letting 1, = W, 8 (t) o (Xy), puy (t) = 3B (t) 0 (Xs) 0 (X)) B () +a (t) + B (t) X, use Ito's

Lemma to obtain
T

\Ifr:\If0+/ Uy (5) d8+/ NsdW.
0 0

It follows that for W, to be a martingale we need fi,, (¢) = 0 which implies the differential equations
B(t) = 0and & (t) = 1/2X, (9, (t) /dt) \,. Using the terminal condition a (1) = 0 it follows that

a()=al0) = [ adr= [ 5000, (@) 0rrdt =, (2, () - 2, O) A = 3A0 (1)

or a(0) = —1A,Q, (r) A, and

E {exp (z /0 Y (2 (t))l/ Saw, (t))H — exp (—%XUQV r) )\l,) 0. (52)

which implies (B1I) after taking expectations on both sides of (B2). To check the regularity con-
ditions in Duffie et al (2000, Definition A) note that 74 = 0 because A () = 0. Thus, (i) holds
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automatically. For (i) we have n, = ¥,3 ()’ o (X;) such that
m = —WiN,00, (t) JOtA, = exp (2a (t) + 28 (1) X;) N, 00, (t) /OtA,
and, noting that 3 (¢) = i), and therefore |exp (25 (t)' X;)| < 1 it follows that
el < sup sup ALOQ, (1) /0N, lexp (2a (1))] [exp (25 (1) Xo)|

IAv||=1,A, €RFp t

< sup  sup AL IQ, (t) /Ot |exp (2a (t))]

Ivll=1 A €RRe

< sup  sup\,9Q, (t) /OtA,

X l|=1,M, €RFP E

such that condition (ii) holds by Condition [(iii) where supy =1, erke SUP; A, OSY, (1) /OtA, < M

exp (2 sup sup X\, o9, (t) /015)\,,)

M l|=1,A, €RFe  t

a.s. Finally, for (iii) one obtains similarly that
| W] < lexp (a (t))] ‘exp (ﬁ (t)'Xt)‘ < lexp (« (t))] < exp (M) a.s.

such that the inequality follows.

A.2 Proof of Corollary [l

We note that finite dimensional convergence established in the proof of Theorem [l implies that
1
Elexp (iNX,, (1))] = F {exp <—§ (AN, + A0, (1) )\V))} :

We also note that because of (52)) it follows that

E {exp <z /0 Y (2 (t))l/ S aw, (t))] _E {exp (-%xy@y (1) A)}

) 1/2
which shows that [ Q, (t dW, (t) has the same distribution as €2, (1 1/2 W, (1).
0

A.3 Proof of Theorem

Let s%,(0,p) = foi (0,p) and s} (p, B) = g+ (p, B) in the case of maximum likelihood estimation
and s% (0, p) = fi (0,p) and s¥ (p, ) = g: (p, B) in the case of moment based estimation. Using

the notation developed before we define

sy (€7p) 3
B o ifte {1, T}
szi/t (eap) = \g

otherwise
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analogously to (I2) and

sY(B,p) s o
& (8,p) = {20 ifte{r+1,...m+7} andi=1
0 otherwise

analogously to (II]). Stack the moment vectors in

S () = 5 (0,p) = (8%, (0,0), 5 (B.p)) (53)

and define the scaling matrix D,, = diag (n~'/?I,,77"/21,) where I, is an identity matrix of
dimension kg and I, is an identity matrix of dimension £,. For the maximum likelihood estimator,
the moment conditions (I6) and (I7) can be directly written as

max(T,70+7)

Z Z$’t<9 ,0)—0

t=min(1,790+1)
For moment based estimators we have by Conditions [4{(i) and (ii) that

max(T,70+7)

Sup (8%/[ (97 p), ) SK/I (ﬁv p)/)/ - Z Z Sit (97 p) = 0p (1> :

ll¢=oll<e t=min(1,79+1) i=1

It then follows that for the moment based estimators

) E S0 e

t=min(1,70+1)

~ ~ /
A first order mean value expansion around ¢, where ¢ = (¢',p')' and ¢ = (9’ 0 ) leads to

max(T,70+7) max(T,70+7) 93
zt

OP (1) = Z Z Sit ¢0 Z Z a(b/ nT D;'rl <¢; - (b(])
t=min(1,70+1) t=min(1,70+1)
or 1
max(T,70+7) n aglt (Q;) max(T,70+7) n

D(o=00) == > X 55 D S S s (d0) + o, (1)

t=min(1,790+1) =1 t=min(1,70+1) =1

where ¢ satisfies Hq?) — (]bOH < Hq?) — o H and we note that with some abuse of notation we implicitly

allow for ¢ to differ across rows of 93; (gz;) /0¢'. Note that

D54 (6) | 03,(0.p) /00  034(6,p) 00

¢/ 03, , (8,p) /00 93, (5, p) |Op'
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where 8}, denotes moment conditions associated with p. From Condition Hl(iii) and Theorem [I]
it follows that (note that we make use of the continuous mapping theorem which is applicable

because Theorem [I] establishes stable and thus joint convergence)

max(T,70+7)

D;} (& - ¢0> =—A(¢o)”" Z Zslt $o) +0p (1)

t=min(1,70+1)

It now follows from the continuous mapping theorem and joint convergence in Corollary [ that

Dy, (Gg - ¢0> % —A(gy) " QYA (C-stably)

A.4 Proof of Corollary

Partition
A KA
Algo) = | o VEAy,
ﬁAu,G AV7P
with inverse
4 v v, _ -1
A (¢0)_1 = Ay7é _'_ Ay’éAy7p (Al/,p N AV,GAy7éAy’p> VGA \/_A ( - Ay,@AyéAy,P)
_ -1 B "
L _% (Au,p - AvaAy,éAy,p) AVveAy,G (AV,p _ AuﬂAy’éA%p)
[ AY?Y VEAYP
= ﬁAyﬂ AP

It now follows from the continuous mapping theorem and joint convergence in Corollary [ that
Dy, ((E) - ¢0> S —A(gy) " QYA (C-stably)

where the right hand side has a mixed normal distribution,
A (o)™ QAW ~ MN (0, A (¢0) " QA (60) )

and

B 3 AvIQ, AV 1 g AYPQ,, (1) AV = AvIQ, AW 1\ [k AYPQ,, (1) AW
A(¢O) 1QA(¢O)/ 1: 1 v,0 ’ or v / \/El u@y v,0/ v, v,pl
WA 0, AV + \[RAVPQ,, (1) AVP S AVPQ AT 4 APQY, (1) AVP
The form of the matrices (2, and €, follow from Condition[blin the case of the maximum likelihood

estimator. For the moment based estimator, 2, and €2, follow from Condition [6] the definition of

sty (0, p) and s%, (B, p) and Conditions (i) and (ii).
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A.5 Proof of Theorem

We first establish the joint stable convergence of (V,, (1), Y;,) . Recall that

72y, = exp ((t — min (1, 7)) v/7) vo + 1 {t > min (1, 7))} 7~/ Z exp ((t — $)v/7) ns

s=min(1,70)

and Vi, (r) = 7720, 7 4. Define Vi (r) = 771/2 Z[”] exp (—sv/7) n,. It follows that

s=min(1,79)

7'_1/2VT[T,,} =exp ((t —min (1,79))v/7) vo + 1 {t > min (1, 79) } exp ([77] v/7T) Vin (r).

We establish joint stable convergence of (f/}n (r) ,Ym) and use the continuous mapping theorem

to deal with the first term in 71/2

Vrir]- By the continuous mapping theorem (see Billingsley
(1968, p.30)), the characterization of stable convergence on D [0, 1] (as given in JS, Theorem VIII
5.33(ii)) and an argument used in Kuersteiner and Prucha (2013, p.119), stable convergence of
(f/}n (r) ,Ym) implies that

(exp (f77)9/7) Ve (1) Yo

also converges jointly and C-stably. Subsequently, this argument will simply be referred to as
the ‘continuous mapping theorem’. In addition exp (([7r] — min (1,79))v/7)ve —P exp (ry) vy
which is measurable with respect to C. Together these results imply joint stable convergence
of (Vi (r),Yr). We thus turn to (ffm (r) ,Ym>. To apply Theorem [I] we need to show that
s = exp (—sv/7) ns satisfies Conditions [[liv) and 2l Since

‘24—6

Joxp (—s7/7) ms |77 = [exp (=s/7)[" @ |70 < DI I 750 (54)

such that
B |Jexp (=s7/m)n**] < ©

and Condition [1iv) holds. Note that E [|m\2+6] < C holds since we impose Condition [7l Next,
note that E [exp (—287/@ n?] = o%exp (—2sy/7). Then, it follows from the proof of Chan and

Wei (1987, Equation 2.3)4 that
To+[77] To+[77] r
S gt —2 ;=P o” —27s)d 55
Y @ =rt Y exp(-2/n) o o? [ exp(-2ys)dt. (55)
t=T1o+[7s]+1 t=1o+[7s]+1 s

3See Appendix [B] for details.
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: 1/2
In this case, 2, (r) = 02 (1 — exp (—2r7)) /27 and (QV (7’)) = oexp (—r). By the relationship

in (1) and Theorem [I] we have that

(Vou (1) Vi) = (0 /0 AW, (), 1, (1)) C-stably

which implies, by the continuous mapping theorem and C-stable convergence that
Ve (r),Y) = (exp (rvy) vo + O’/ er=AW, (s) Q,w, (1)) C-stably. (56)
0

Note that o [ e"=97dW, (s) is the same term as in Phillips (1987) while the limit given in (56)
is the same as in Kurtz and Protter (1991,p.1043).

We now square (20) and sum both sides as in Chan and Wei (1987, Equation (2.8) or Phillips,
(1987) to write

T+T0 — — T+T0 — T+T0
—1 _ € K —1( 2 2 )+T€ K (1 _ 2'y/7') -2 2 € Wt 2
T Vrs—11s = 2 T Vrr+7o Vrro 2 € T Vrs—1 92 T MNs-
s=T1o+1 s=T10+1 s=1o+1
(57)

We note that e?/7 — 1, 7e /7 (1 — 62'7/7) — —2~. Furthermore, note that for all a,e > 0 it

follows by the Markov and triangular inequalities and Condition [Tiv) that

T+70
P < 7'_1 Z E [7]31 {\m| > Tl/2a} |th*n] > 5)
t=710+1
=, o sup, 17 | **’|
S?Et:%;rlE[nsl{|77t|>7’ CYH < 502 — 0 as 7 — o0.

such that Condition 1.3 of Chan and Wei (1987) holds. Let U2, = 77! ST B [102Grnen] -

t=10+1

Then, by Holder’s and Jensen’s inequality

T+70

(U] <770 32 BB (1G]] < sup B [Inf**"] < o (58)

t=70+1

such that U?_ is uniformly integrable. The bound in (58) also means that by Theorem 2.23 of
Hall and Heyde it follows that E [|[U2. — 77" 3277 n2|] — 0 and thus by Condition [T vii) and

s=71o+1

by Markov’s inequality

T+70

_ p
1 Z n 5 ol

s=T1o+1
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We also have

T 11/72'7'4-7'0 = V;'n (1) ’ (59)
TV B V(0
and
T+T0 T s 1
r Y A=t Y (2) = [ v
s=1o+1 s=1 T 0
such that by the continuous mapping theorem and (B4l it follows that
= 2 2 ! 2 o’
Y v = (V'y v (1)° =V (0)) —7/ Vaw) () dr — —-. (60)
s=1o+1 0

An application of Ito’s calculus to V, v (o (r)? /2 shows that the RHS of (60) is equal to & fol Vo vy dW,
which also appears in Kurtz and Protter (1991, Equation 3.10). However, note that the results in
Kurtz and Protter (1991) do not establish stable convergence and thus don’t directly apply here.
When V (0) = 0 these expressions are the same as in Phillips (1987, Equation 8). It then is a

further consequence of the continuous mapping theorem that

T+70 1
(Vm (1), Yo (r), 771 Z VTs—ﬂIs) = (V%V(O) (r),Y (r) ,U/ V%V(O)dW,,> (C-stably).
0

s=1o+1
A.6 Proof of Theorem (4

For 8 (¢) = (5% (0, p), 3, (p))/ we note that in the case of the unit root model

05t (¢) _ 85%& (0, p) /00" 85%& (0,p) /0p'
¢/ 0 3., (p) /0

Defining

max(T,70+7)

A2, (6) =

t=min(1,70+1)

we have as before for some HQE — ng < HQAS — QSH that for

AY, ()

T2 TO+T 12
Zt 0 Tt

Ay (¢) =
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we have
max(T,70+7) n

D (d-an)=-4.(3) % > o0

t=min(1,70+1) ¢

Using the representation
TO+T

*}:m,—/ Ve (1) dr,

t=T10

it follows from the continuous mapping theorem and Theorem [3] that

1 T+T0
(V;n (T) 7Y7n7 Ag— (¢0) /0 ™ d?" T Z Vrs— 177) (61)

s=1o+1

1 s
= (V (T),Q;/2Wy(1),Ay (¢0),/ Vv (r )2 dr, / UV%V(O)dW,,) (C-stably).
0

0

The partitioned inverse formula implies that

A;}) A_lAyp<fol 7:V(0) (7’)2d7"

A(go)™' = (62)
0 (fo 7,V(0 dr)
By Condition [0 (6I]) and the continuous mapping theorem it follows that
A B 0w, (1)
D (d—0) = —Aloo) | . (63)
fo Vi v dW,

The result now follows immediately from (62]) and (G3]).

B Proof of (53]

Lemma 1 Assume that Conditions[7, [8 and[9 hold. Forr,s € [0,1] fizred and as T — oo it follows
that

To+[77]

T_l Z ((w7,8>2 - e(_%{t/q—)E [ntz‘gﬂ-n,(t—min(l,m)—l)n]) £> 0

t=1o+[rs]+1

Proof. By Hall and Heyde (1980, Theorem 2.23) we need to show that for all ¢ > 0

To+[77]

Y e B {7 e ] > e} Grn (t-min(1m)-1n] 2 0. (64)

t=1o+[7s]+1
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By Condition [7iv) it follows that for some § > 0

To+[77]

E ’7'_1 Z 6_2’yt/TE [771521 {‘7_1/26_Fyt/7—7h‘ > 5} |grn,(t—min(1,'ro)—l)n}
t=T1o+[7s]+1

To—i-[ﬂ“] (6_,\/15/7_)2-1-5

< 7 (145/2) Z 5 E [|m‘2+5]

t=T1o+[7s]+1

Tr
S Sl;elpE |:|77t|2+5:| [ 1]+6/2[€5]6(2+5)’y SN 0

_ TO+|TT T
This establishes (64)) by the Markov inequality. Since 77! Y"1 i +]Ts 1 NN E [77? |gm,(t_min(1,m)—1)n]
is uniformly integrable by (54]) and (58) it follows from Hall and Heyde (1980, Theorem 2.23, Eq
2.28) that

To+[77]

Ellrt Y () = €D E [01Grm, -min(rmy-1a]) | | = 0.

t=1o+[rs]+1

The result now follows from the Markov inequality. m

Lemma 2 Assume that Conditions[7, [8 and[9 hold. Forr,s € [0,1] fizred and as T — oo it follows
that

To+[77]

7'_1 Z 6(_2%/7—)E [nf|g7'n,(t—min(l,7'o)—1)n} —P 02/ CeXp (_270 dt.

t=T1o+[7s]+1

Proof. The proof closely follows Chan and Wei (1987, p. 1060-1062) with a few necessary

adjustments. Fix 6 > 0 and choose s =ty < t; < ... < t; = r such that

max ‘e ki 6_2“’“*1‘ < 0.
i<k

This implies

k

/e_wdt—z =2t — 1)

s i=1

SN
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Let I, = {l : [Tti_l] <l < [Ttl]} . Then,

To+[77]

7_—1 Z 2ﬁ/t/TE [7715 ‘grn (t—min(1,79) -0 / _2Wtdt
t—To—l—[TSH'l
_1 Z Z —2’Yl/TE ’/] ‘gq_n (I—min(1,70) — 0 / _27tdt
=1 lel;
—1 Z Z -2/ —2’y[7'ti71]/7') E [/)712|g7—n,(l_min(1,7'o)—1)n:|
=1 lel;
+ Z e ( h ZE m |grn I—min(1,70)—1)n } —0’ (t: - ti_l))
lel;

+ Z e~ 2rtial/7 ;2 (t; —tiig) — 02/ o~ 21t gt

i=1

=I,+1I,+111,.

For III, we have that e~ 2lmti-1l/7 5 ¢=27%1 a5 7 — o00. In other words, there exists a 7 such

that for all 7 > 7/, ‘6_27[”1'*1]/7 — 6_2'7“*1} < § and by (65)
111,| < 26.

We also have by Condition [fvii) that
7-_1 Z E [nl2|g7'n,(l—min(1,'ro)—1)n} — 0'2 (tz — ti—l)
lel;
as T — oo such that by max;<y, ‘62“*[”1’*1]”} < e2hl
‘[In‘ < €2|ﬁ/| 7-_1 Z E [7712|grn,(l—min(l,7'0)—1)n} - 02 (tz - ti—l) = 0p (1) :
lel;

Finally, there exists a 7" such that for all 7 > 7’ it follows that

maxmax}e Dl _ o= nlrti- 1/7‘ < max}e_%’[” i/ _ 6—2“/[”1'—1}/7‘
i<k lel; i<k
< 2max |e™* Tt/ _ o=
i<k

+ max ‘6 29t 6—27"»1’71 }
i<k

<2049 = 30.

20



We conclude that

k
Lal <38 |771Y 0 E [11Grm 0-min(1.m)-1n] | = 3007 (140, (1)

i=1 l€l;

The remainder of the proof is identical to Chan and Wei (1987, p. 1062). =

o1
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