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Abstract

Aggregate shocks a¤ect most households�and �rms�decisions. Using three stylized mod-

els we show that inference based on cross-sectional data alone generally fails to correctly

account for decision making of rational agents facing aggregate uncertainty. We propose

an econometric framework that overcomes these problems by explicitly parametrizing the

agents�inference problem relative to aggregate shocks. Our framework and examples illus-

trate that the cross-sectional and time-series aspects of the model are often interdependent.

Estimation of model parameters in the presence of aggregate shock requires, therefore, the

combined use of cross-sectional and time series data. We provide easy-to-use formulas for test

statistics and con�dence intervals that account for the interaction between the cross-sectional

and time-series variation.
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1 Introduction

An extensive body of economic research suggests that aggregate shocks have important e¤ects on

households�and �rms�decisions. Consider for instance the oil shock that hit developed countries

in 1973. A large literature has provided evidence that this aggregate shock triggered a recession

in the United States, where the demand and supply of non-durable and durable goods declined,

in�ation grew, the unemployment rate increased, and real wages dropped.

The profession has generally adopted one of the following three strategies to deal with aggre-

gate shocks. The most common strategy is to assume that aggregate shocks have no e¤ect on

households�and �rms�decisions and, hence, that aggregate shocks can be ignored. Almost all

papers estimating discrete choice dynamic models or dynamic games are based on this premise.

Examples include Keane and Wolpin (1997), Bajari, Bankard, and Levin (2007), and Eckstein and

Lifshitz (2011). We show that, if aggregate shocks are an important feature of the data, ignoring

them generally leads to inconsistent parameter estimates. The second approach is to add in a

linear fashion time dummies to the model in an attempt to capture the e¤ect of aggregate shocks

on the estimation of the parameters of interest, as was done for instance in Runkle (1991) and Shea

(1995). We clarify that, if the econometrician does not account properly for aggregate shocks, the

parameter estimates will generally be inconsistent even if the actual realizations of the aggregate

shocks are observed. The linear addition of time dummies, therefore, fails to solve the problem.1

The last strategy is to fully specify how aggregate shocks a¤ect individual decisions jointly with

the rest of the structure of the economic problem. Using this approach, the econometrician can

obtain consistent estimates of the parameters of interest. We are aware of only one paper that

uses this strategy, Lee and Wolpin (2010). Their paper is primarily focused on the estimation

of a speci�c empirical model, and they do not address the broader question of which statistical

assumptions and what type of data requirements are needed more generally to obtain consistent

estimators when aggregate shocks are present. Moreover, as we argue later on, in Lee and Wolpin�s

(2010) paper there are issues with statistical inference and e¢ ciency.

1In the Euler equation context, Chamberlain (1984) uses examples to argue that, when aggregate shocks are

present but disregarded, the estimated parameters are generally inconsistent. His examples make clear that gener-

ally time dummies do not solve the problems introduced by the presence of aggregate shocks.
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The previous discussion reveals that there is no generally agreed upon econometric framework

for statistical inference in models where aggregate shocks have an e¤ect on individual decisions.

The purpose of this paper is to provide such a general econometric framework. We show that

inference based on cross-sectional data alone generally fails to correctly account for decision mak-

ing of rational agents facing aggregate uncertainty. By parametrizing aggregate uncertainty and

explicitly accounting for it when solving for the agents decision problem, we are able to o¤er

an econometric framework that overcomes these problems. We advocate the combined use of

cross-sectional and time series data, and we develop simple-to-use formulas for test statistics and

con�dence intervals that enable the combined use of time series and cross-sectional data.

We proceed in three steps. In Section 2, we introduce the general identi�cation problem by

examining a general class of models with the following two features. First, each model in this

class is composed of two submodels. The �rst submodel includes all the cross-sectional features,

whereas the second submodel is composed of all the time-series aspects. As a consequence, the

parameters of the model can also be divided into two groups: the parameters that characterize

the cross-sectional submodel and the parameters that enter the time-series submodel. The second

feature is that the two submodels are linked by a vector of aggregates shocks and by the parameters

that govern their dynamics. Individual decision making thus depends on aggregate shocks.

Given the interplay between the two submodels, aggregate shocks have complicated e¤ects on

the estimation of the parameters of interest. To better understand those e¤ects, in the second

step, we present three examples of the general framework that illustrate the complexities generated

by the existence of the aggregate shocks. Section 3 considers a model of portfolio choices with

aggregate shocks and shows that, if only cross-sectional variation is used, the estimates of the

model parameters are biased and inconsistent. It also shows that to obtain unbiased and consistent

estimates it is necessary to combine cross-sectional and time-series variation.

In Section 4, as a second example, we study the estimation of �rms�production functions when

aggregate shocks a¤ect �rms�decisions. This example shows that there are exceptional cases in

which model parameters can be estimated using only repeated cross-sections if time dummies are

skillfully used and not simply added as time intercepts. Speci�cally, we show that the method

proposed by Olley and Pakes (1996) for the estimation of production functions can be modi�ed

with the proper inclusion of time dummies to account for the e¤ect of aggregate shocks. The
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results of Section 4 are of independent interest since the estimation of �rms�production functions

is an important topic in industrial organization and aggregate shocks have signi�cant e¤ects in

most markets.

In Section 5 we discuss as our last example a general equilibrium model of education and

labor supply decisions. The portfolio example has the quality of being simply. But, because

of its simplicity, it generates a one-directional relationship between the time-series and cross-

sectional submodels: the variables and parameters of the time-series model a¤ect the variables

and parameters of the cross-sectional submodel, but the opposite is not true. As a result, the

parameters of the time-series submodel can be estimated without knowing the cross-sectional

parameters. However, this is not generally the case. In the majority of situations, the link

between the two submodels is bi-directional. The advantage of the general-equilibrium example is

that it produces a bi-directional relationship we can use to illustrate the complexity of the e¤ect

of aggregate shocks on parameter estimation.

The examples make clear that generally the best approach to consistently estimate the pa-

rameters of the investigated models is to combine cross-sectional data with a long time-series of

aggregate variables.2 As the last step, in Section 6 we provide easy-to-use formulas that can be

employed to derive test statistics and con�dence intervals for parameters estimated by combining

those two data sources. The underlying asymptotic theory, which is presented in the compan-

ion paper Hahn, Kuersteiner, and Mazzocco (2016), is highly technical due to the complicated

interactions that exists between the two-submodels. It is therefore surprising that the formulas

necessary to perform inference take simple forms that are easy to adopt. We conclude the section,

by illustrating using the general equilibrium model discussed in Section 5 how the formulas can

be computed in concrete cases.

In addition to the econometric literature that deals with inferential issues, our paper also

contributes to a growing literature whose objective is the estimation of general equilibrium models.

Some examples of papers in this literature are Heckman and Sedlacek (1985), Heckman, Lochner,

and Taber (1998), Lee (2005), Lee and Wolpin (2006), Gemici and Wiswall (2011), Gillingham,

2An alternative method would be to combine cross-sectional and time-series variation by using panel data. Panel

data, however, are generally too short to achieve consistency, whereas long time-series data are easier to �nd for

most of the variables that are of interest to economists. More on this at the end of Section 5.
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Iskhakov, Munk-Nielsen, Rust, and Schjerning (2015). Aggregate shocks are a natural feature of

general equilibrium models. Without them those models have the unpleasant implication that all

aggregate variables can be fully explained by observables and, hence, that errors have no e¤ects

on those variables. Our general econometric framework makes this point clear by highlighting

the impact of aggregate shocks on parameter estimation and the variation required in the data

to estimate those models. More importantly, our results provide easy-to-use formulas that can be

used to perform statistical inference in a general equilibrium context.

2 The General Identi�cation Problem

This section introduces in a general form the identi�cation problem generated by the existence

of aggregate shocks. It follows closely Section 2 in our companion paper Hahn, Kuersteiner, and

Mazzocco (2016). We consider a class of models with four main features. First, the model can be

divided into two parts. The �rst part encompasses all the static aspects of the model and will be

denoted with the term cross-sectional submodel. The second part includes the dynamic aspects of

the aggregate variables and will be denoted with the term time-series submodel. Second, the two

submodels are linked by the presence of a vector of aggregate shocks �t and by the parameters

that govern their dynamics. Third, the vector of aggregate shocks may not be observed. If that

is the case, it is treated as a set of parameters to be estimated. Lastly, the parameters of the

model can be consistently estimated only if a combination of cross-sectional and time-series data

are available.

We now formally introduce the general model. The variables that characterize the model can

be divided into two vectors yi;t and zs. The �rst vector yi;t includes all the variables that charac-

terize the cross-sectional submodel, where i describes an individual decision-maker, a household

or a �rm, and t a time period in the cross-section.3 The second vector zs is composed of all

the variables associated with the time-series model. Accordingly, the parameters of the general

model can be divided into two sets, � and �. The �rst set of parameters � characterizes the

cross-sectional submodel, in the sense that, if the second set � was known, � and �t can be con-

3Even if the time subscript t is not necessary in this subsection, we keep it here for notational consistency

because later we consider the case where longitudinal data are collected.
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sistently estimated using exclusively variation in the cross-sectional variables yi;t. Similarly, the

vector � characterizes the time-series submodel meaning that, if � and �t were known, those para-

meters can be consistently estimated using exclusively the time series variables zs. There are two

functions that relate the cross-sectional and time-series variables to the parameters. The function

f (yi;tj �; �t; �) restricts the behavior of the cross-sectional variables conditional on a particular

value of the parameters. Analogously, the function g (zsj �; �) describes the behavior of the time-

series variables for a given value of the parameters. An example is a situation in which (i) the

variables yi;t for i = 1; : : : ; n are i.i.d. given the aggregate shock �t, (ii) the variables zs correspond

to (�s; �s�1), (iii) the cross-sectional function f (yi;tj �; �t; �) denotes the log likelihood of yi;t given

the aggregate shock �t, and (iv) the time-series function g (zsj �; �) = g (�sj �s�1; �) is the log of

the conditional probability density function of the aggregate shock �s given �s�1. In this special

case the time-series function g does not depend on the cross-sectional parameters �.

We assume that our cross-sectional data consist of fyi;t; i = 1; : : : ; ng, and our time series data

consist of fzs; s = �0 + 1; : : : ; �0 + �g. For simplicity, we assume that �0 = 0 in this section.

The parameters of the general model can be estimated by maximizing a well-speci�ed objective

function.4 Since in our case the general framework is composed of two submodels, a natural

approach is to estimate the parameters of interest by maximizing two separate objective functions,

one for the cross-sectional model and one for the time-series model. We denote these criterion

functions by Fn (�; �t; �) and G� (�; �) : In the case of maximum likelihood these functions are

simply Fn (�; �t; �) = 1
n

Pn
i=1 f (yi;tj �; �t; �) and G� (�; �) =

1
�

P�
s=1 g (zsj �; �). The use of two

separate objective functions is helpful in our context because it enables us to discuss which issues

arise if only cross-sectional variables or only time-series variables are used in the estimation.5

In the class of models we consider, the identi�cation of the parameters requires the joint use

of cross-sectional and time-series data. Speci�cally, the objective function F of the cross-sectional

model evaluated at the cross-sectional parameters � and aggregate shocks � takes the same value

for any feasible set of time-series parameters �. Similarly, the objective function G of the time-

4Our discussion is motivated by Newey and McFadden�s (1994) uni�ed treatment of maximum likelihood and

GMM as extremum estimators.
5Note that our framework covers the case where the joint distribution of (yit; zt) is modelled. Considering the

two components separately adds �exibility in that data is not required for all variables in the same period.
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series model evaluated at the time-series parameters and aggregate shocks takes the same value for

any feasible set of cross-sectional parameters. In our class of models, however, all the parameters

of interest can be consistently estimated if cross-sectional data are combined with time-series data.

The next three sections consider special cases of the type of models described above.

3 Example 1: Portfolio Choice

We now present a model of portfolio choices that illustrates the economic relevance of the general

class of models introduced in Section 2.

Consider an economy that, in each period t, is populated by n households. These households

are born at the beginning of period t, live for one period, and are replaced in the next period by

n new families. The households living in consecutive periods do not overlap and, hence, make

independent decisions. Each household is endowed with deterministic income and has preferences

over a non-durable consumption good ci;t. The preferences can be represented by Constant Ab-

solute Risk Aversion (CARA) utility functions which take the following form: U (ci;t) = �e��ci;t.

For simplicity, we normalize income to be equal to 1.

During the period in which households are alive, they can invest a share of their income in a

risky asset with return ui;t. The remaining share is automatically invested in a risk-free asset with

a return r that does not change over time. At the end of the period, the return on the investment

is realized and households consume the quantity of the non-durable good they can purchase with

the realized income. The return on the risky asset depends on aggregate shocks. Speci�cally,

it takes the following form: ui;t = �t + �i;t, where �t is the aggregate shock and �i;t is an i.i.d.

idiosyncratic shock. The idiosyncratic shock, and hence the heterogeneity in the return on the

risky asset, can be interpreted as di¤erences across households in transaction costs, in information

on the pro�tability of di¤erent stocks, or in marginal tax rates. We assume that �t � N (�; �2�),

�i;t � N (0; �2� ), and hence that ui;t � N (�; �2), where �2 = �2� + �2� .

Household i living in period t chooses the fraction of income to be allocated to the risk-free
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asset �i;t by maximizing its life-time expected utility:

maxe� E
�
�e��ci;t

�
s:t: ci;t = e� (1 + r) + (1� e�) (1 + ui;t) ; (1)

where the expectation is taken with respect to the return on the risky asset. It is straightforward

to show that the household�s optimal choice of �i;t is given by6

��i;t = � =
��2 + r � �

��2
: (2)

We will assume that the econometrician is mainly interested in estimating the risk aversion para-

meter �.

We now consider an estimator that takes the form of a population analog of (2), and study the

impact of aggregate shocks on the estimator�s consistency when an econometrician works only with

cross-sectional data. Our analysis reveals that such an estimator is inconsistent, due to the fact

that cross-sectional data do not contain information about aggregate uncertainty. Our analysis

makes explicit the dependence of the estimator on the probability distribution of the aggregate

shock and points to the following way of generating a consistent estimator of �. Using time series

variation, one can consistently estimate the parameters pertaining to aggregate uncertainty. Those

estimates can then be used in the cross-sectional model to estimate the remaining parameters.7

Without loss of generality, we assume that the cross-sectional data are observed in period

t = 1. The econometrician observes data on the return of the risky asset ui;t and on the return of

the risk-free asset r. We assume that in addition he also observes a noisy measure of the share of

resources invested in the risky assets �i;t = � + ei;t, where ei;t is a zero-mean measurement error.

We therefore have that yi = (ui1; �i1). We make the simplifying assumption that the aggregate

shock is observable to econometricians and that the time-series variables only include the aggregate

shock, i.e. zt = �t. Because � = E [ui1], �2 = Var (ui1), and � = E [�i1], if only cross-sectional

6See the appendix.
7Our model is a stylized version of many models considered in a large literature interested in estimating the

parameter � using cross-sectional variation. Estimators are often based on moment conditions derived from �rst

order conditions (FOC) related to optimal investment and consumption decisions. Such estimators have similar

problems, which we discuss in Appendix A.2.

8



variation is used for estimation, we would have the following method-of-moments estimators of

those parameters:

�̂ =
1

n

nX
i=1

ui1 = �u; �̂2 =
1

n

nX
i=1

(ui1 � �u)2 ; and �̂ =
1

n

nX
i=1

�i1:

The econometrician can then use equation (2) to write the risk aversion parameter as � =

(�� r)/ (�2 (1� �)) and estimate it using the sample analog �̂ = (�̂� r)/ (�̂2 (1� �̂)).

In the presence of the aggregate shock �t, those estimators can be written as

�̂ =
1

n

nX
i=1

ui1 = �1 +
1

n

nX
i=1

�i1 = �1 + op (1) ;

�̂2 =
1

n

nX
i=1

(ui1 � �u)2 =
1

n

nX
i=1

(�i1 � ��)2 = �2� + op (1) ;

�̂ = �+
1

n

nX
i=1

ei1 = �+ op (1) ;

which implies that � will be estimated to be

�̂ =
�1 + op (1)� r

(�2� + op (1)) (1� �+ op (1))
=

�1 � r

�2� (1� �)
+ op (1) : (3)

Using Equation (3), we can study the properties of the proposed estimator �̂. If there were

no aggregate shock in the model, we would have �1 = �, �2� = 0, �2� = �2 and, therefore, �̂

would converge to �, a nonstochastic constant, as n grows to in�nity. It is therefore a consistent

estimator of the risk aversion parameter. In the presence of the aggregate shock, however, the

proposed estimator has di¤erent properties. If one conditions on the realization of the aggregate

shock �, the estimator �̂ is inconsistent with probability 1, since it converges to �1�r
�2� (1��)

and not

to the true value ��r
(�2�+�

2
� )(1��)

. If one does not condition on the aggregate shock, as n grows to

in�nity, �̂ converges to a random variable with a mean that is di¤erent from the true value of

the risk aversion parameter. The estimator will therefore be biased and inconsistent. To see this,

remember that �1 � N (�; �2�). As a consequence, the unconditional asymptotic distribution of �̂

takes the following form:

�̂ ! N

 
�� r

�2� (1� �)
;

�
1

�2� (1� �)

�2
�2�

!
= N

�
� + �

�2�
�2�
;

�2�
(�2� (�� 1))

2

�
;

which is centered at � + �
�2�
�2�
and not at �, hence the bias.
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We are not the �rst to consider a case in which the estimator converges to a random variable.

Andrews (2005) and more recently Kuersteiner and Prucha (2013) discuss similar scenarios. Our

example is remarkable because the nature of the asymptotic randomness is such that the estimator

is not even asymptotically unbiased. This is not the case in Andrews (2005) or Kuersteiner and

Prucha (2013), where in spite of the asymptotic randomness the estimator is unbiased.8

As mentioned above, there is a simple explanation for our result: cross-sectional variation is

not su¢ cient for the consistent estimation of the risk aversion parameter if aggregate shocks a¤ect

individual decisions.9 To make this point transparent, observe that, conditional on the aggregate

shock, the assumptions of this section imply that yi has the following distribution

yij �1 � N

0B@
264 �1
� (�2� + �2� ) + r � �

� (�2� + �2� )

375 ;
24 �2� 0

0 �2e

35
1CA ; (4)

Using (4), it is straightforward to see that the cross-sectional likelihood is maximized for any

arbitrary choice of the time-series parameters � = (�; �2�), as long as one chooses � that satis�es

the following equation:
� (�2� + �2� ) + r � �

� (�2� + �2� )
= �:

As a result, the cross-sectional parameters � and �2� cannot be consistently estimated by max-

imizing the cross-sectional likelihood and, hence, � cannot be consistently estimated using only

cross-sectional data.

A solution to the problem discussed in this section is to combine cross-sectional variables with

time-series variables. In this case, one can consistently estimate (�; �2�) by using the time-series

8Kuersteiner and Prucha (2013) also consider cases where the estimator is random and inconsistent. However,

in their case this happens for di¤erent reasons: the endogeneity of the factors. The inconsistency considered here

occurs even when the factors (i.e., aggregate shocks) are strictly exogenous.
9As discussed in the introductory section, a common practice to account for the e¤ect of aggregate shocks is to

include time dummies in the model. The portfolio example clari�es that the addition of time dummies does not

solve the problem generated by the presence of aggregate shocks. The inclusion of time dummies is equivalent to

the assumption that the aggregate shocks are known. But the previous discussion indicates that, using exclusively

cross-sectional data, the estimator �̂ is biased and inconsistent even if the aggregate shocks are known. An unbiased

and consistent estimator of � can only be obtained if the distribution of the aggregate shocks is known, which is

feasible only by exploiting the variation contained in time-series data.
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of aggregate data fztg. Consistent estimation of (�; �2� ; �2e) can then be achieved by plugging the

consistent estimators of (�; �2�) in the correctly speci�ed cross-section likelihood (4).

The example presented in this section is a simpli�ed version of the general class of models in-

troduced in Section 2, since the relationship between the cross-sectional and time-series submodels

is simple and one-directional. The variables and parameters of the time-series submodel a¤ect the

cross-sectional submodel, but the cross-sectional variables and parameters have no impact on the

time-series submodel. As a consequence, the time-series parameters can be consistently estimated

without knowing the cross-sectional parameters. In more complicated situations, such as general

equilibrium models, where aggregate shocks are a natural feature, the relationship between the

two submodels is generally bi-directional. In Section 5, we present a general-equilibrium with that

type of relationship. But before considering that case, we study a situation in which the e¤ect of

aggregate shocks can be accounted for with the proper use of time dummies.

4 Example 2: Estimation of Production Function

In the previous section, we presented an example that illustrates the complicated nature of iden-

ti�cation in the presence of aggregate shocks. The example highlights that generally there is no

simple method for estimating the class of models considered in this paper. Estimation requires

a careful examination of the interplay between the cross-sectional and time-series submodels. In

this section, we consider an example showing that there are exceptions to this general rule. In the

case we analyze, identi�cation of a model with aggregate shocks can be achieved using only cross-

sectional data provided that time dummies are skillfully employed. We will show that the naive

practice of introducing additive time dummies is not su¢ cient to deal with the e¤ects generated

by aggregate shocks. But the solution is simpler than the general approach we adopted to identify

the parameters of the portfolio model.

The example we consider here is a simpli�ed version of the problem studied by Olley and

Pakes (1996) and deals with an important topic in industrial organization: the estimation of �rms�

production functions. A pro�t-maximizing �rm j produces in period t a product yj;t employing a

production function that depends on the logarithm of labor lj;t, the logarithm of capital kj;t, and
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a productivity shock !j;t. It takes the following functional form:

yj;t = �0 + �llj;t + �kkj;t + !j;t + �j;t (5)

where �i;t is a measurement error.

Capital and labor are optimally chosen by the �rm, jointly with the new investment in capital

ij;t, by maximizing a dynamic pro�t function subject to constraints that determine how capital

accumulated over time.10 In the model proposed by Olley and Pakes (1996), �rms are heteroge-

neous in their age and can choose to exit the market. In this section, we will abstract from age

heterogeneity and exit decisions because they make the model more complicated without adding

more insight on the e¤ect of aggregate shocks on the estimation of production functions.

A crucial feature of the model proposed by Olley and Pakes (1996) and of our example is that

the investment decision in period t is a function of the current stock of capital and productivity

shock, i.e.

ij;t = it (!j;t; kj;t) : (6)

Olley and Pakes (1996) do not allow for aggregate shocks, but in this example we consider a

situation in which the productivity shock at t is the sum of an aggregate shock �t and of an i.i.d.

idiosyncratic shock "j;t, i.e.

!j;t = �t + "j;t: (7)

We will assume that the �rm observes the realization of the aggregate shock and, separately, of

the i.i.d. shock.

We �rst describe how the production function (5) can be estimated when aggregate shocks are

not present, the method proposed by Olley and Pakes (1996). We then discuss how that method

has to be modi�ed with the appropriate use of time dummies if aggregate shocks a¤ect �rms�

decisions.

The main problem in the estimation of the production function (5) is that the productivity

shock is correlated with labor and capital, but not observed by the econometrician. To deal

with that issue, Olley and Pakes (1996) use the result that the investment decision (6) is strictly

increasing in the productivity shock for every value of capital to invert the corresponding function

10For details of the pro�t function and the accumulation equation for capital, see Olley and Pakes (1996).
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and solve for the productivity shock, which implies

!j;t = ht (ij;t; kj;t) : (8)

One can then replace the productivity shock in the production function using the equation (8) to

obtain

yj;t = �llj;t + �t (ij;t; kj;t) + �j;t; (9)

where

�t (ij;t; kj;t) = �0 + �kkj;t + ht (ij;t; kj;t) : (10)

The parameter �l and the function � can then be estimated by regressing yj;t on lj;t and a poly-

nomial in ij;t and kj;t. Equivalently, �l is identi�ed by

�l =
E [(lj;t � E [ lj;tj ij;t; kj;t]) (yj;t � E [yj;tj ij;t; kj;t])]

E
�
(lj;t � E [ lj;tj ij;t; kj;t])2

� : (11)

To identify the parameter on the logarithm of capital �k observe that

E [yi;t+1 � �llj;t+1j kj;t+1] = �0 + �kkj;t+1 + E [!j;t+1j!j;t] = �0 + �kkj;t+1 + g (!j;t) ; (12)

where the �rst equality follows from kj;t+1 being determined conditional on !j;t. The shock !j;t =

ht (ij;t; kj;t) is not observed but, using equation (10), can be written in the following form:

!j;t = �t (ij;t; kj;t)� �0 � �kkj;t; (13)

where �t is known from the �rst-step estimation. Substituting for !j;t into the function g (:) in

equation (12) and letting �j;t+1 = !j;t+1 � E [!j;t+1j!j;t], equation (12) can be written as follows:

yi;t+1 � �llj;t+1 = �kkj;t+1 + g (�t � �kkj;t) + �j;t+1 + �j;t: (14)

where �0 has been included in the function g (:). The parameter �k can then be estimated by

using the estimates of �l and �t obtained in the �rst step and by minimizing the sum of squared

residuals in the previous equation employing a kernel or a series estimator for the function g.

We now consider the case in which aggregate shocks a¤ect the �rm�s decisions and analyze how

the model parameters can be identi�ed using only cross-sectional variation. The introduction of

13



aggregate shocks changes the estimation method in two main ways. First, the investment decision

is a¤ected by the aggregate shock and takes the following form:

ij;t = it (�t; "j;t; kj;t) :

where �t and "j;t enter as independent arguments because the �rm observes them separately.

Second, all expectation are conditional on the realization of the aggregate shock since in the

cross-section there is no variation in that shock and only its realization is relevant.

It is straightforward to show that, if the investment function is strictly increasing in the pro-

ductivity shock !j;t for all capital levels, it is also strictly increasing in �t and "j;t for all kj;t. Using

this result, we can invert it (:) to derive "j;t as a function of the aggregate shock, investment, and

the stock of capital, i.e.

"j;t = ht (�t; ij;t; kj;t) :

The production function can therefore be rewritten in the following form:

yj;t = �0 + �llj;t + �kkj;t + �t + "j;t + �j;t (15)

= �llj;t + [�0 + �kkj;t + �t + ht (�t; ij;t; kj;t)] + �j;t

= �llj;t + �t (�t; ij;t; kj;t) + �j;t:

If �l is estimated using repeated cross-sections and the method developed for the case with no

aggregate shocks, the estimated coe¢ cient will generally be biased because the econometrician

does not account for the aggregate shock and its correlation with the �rm�s choice of labor. There

is, however, a small variation of the method proposed earlier that produces unbiased estimates

of �l, as long as "j;t is independent of �j;t. The econometrician should regress yj;t on lj;t and a

polynomial in ij;t and kj;t where the polynomial is interacted with time dummies. It is this atypical

use of time dummies that enables the econometrician to account for the e¤ect of aggregate shocks

on �rms�decisions. The �l can therefore be identi�ed by

�l =
E [(lj;t � E [ lj;tj ij;t; kj;t; �t = ��]) (yj;t � E [yj;tj ij;t; kj;t; �t = ��])]

E
�
(lj;t � E [ lj;tj ij;t; kj;t; �t = ��])2

� : (16)

Observe that the expectation operator in the previous equation is de�ned with respect to a proba-

bility distribution function that includes the randomness of the aggregate shock �t. But, when one

14



uses cross-sectional variation, �t is �xed at its realized value. As a consequence, the distribution

is only a¤ected by the randomness of "it.

For the estimation of �k, observe that

E [yi;t+1 � �llj;t+1j kj;t+1; �t+1 = �� 0] (17)

= �0 + �kkj;t+1 + E [�t+1 + "j;t+1j ; �t+1 = �� 0; �t = ��; "j;t]

= �0 + �kkj;t+1 + ��
0 + E ["j;t+1j �t = ��; "j;t]

= �0 + �kkj;t+1 + ��
0 + gt ("j;t)

where the �rst equality follows from kj;t+1 being known if �t and "j;t are known and the last equality

follows from the inclusion of the aggregate shock �t = �� in the function gt (:).

The only variable of equation (17) that is not observed is "j;t. But remember that

"j;t = ht (�t; ij;t; kj;t) = �t (�t; ij;t; kj;t)� �0 � �kkj;t � �t:

We can therefore use the above expression to substitute for "j;t in equation (17) and obtain

E [yi;t+1 � �llj;t+1j kj;t+1; �t+1 = �� 0]

= �0 + �kkj;t+1 + ��
0 + gt (�t (�t; ij;t; kj;t)� �0 � �kkj;t � ��)

= �kkj;t+1 + gt;t+1 (�t � �kkj;t) ;

where in the last equality �0, ��, and �� 0 have been included in the function gt;t+1 (:). Hence, if one

de�nes �j;t+1 = "j;t+1�E ["j;t+1j �t = ��; "j;t], the parameter �k can be estimated using the following

equation:

yi;t+1 � �llj;t+1 = �kkj;t+1 + gt;t+1 (�t � �kkj;t) + �j;t+1 + �j;t+1: (18)

But notice that the approach without aggregate shocks cannot be applied directly to equation (18)

because the function g (:) depends on time t and t+1 aggregate shocks. With aggregate shocks a

di¤erent function g (:) must be estimated for each period. This can be achieved by replacing g (:)

with a polynomial interacted with time dummies.

The previous discussion indicates that �rms�production functions can be estimated using only

cross-sectional data as long as the functions � and g are estimated period by period. In practice,

both functions are often estimated by low degree polynomials. Our analysis indicates that if the
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coe¢ cients of these polynomials are interacted with time dummies the estimation of production

functions will generally be robust to the presence of aggregate shocks.

We conclude by drawing attention to three important features of the example considered in

this section. First, in order to deal with the e¤ect of aggregate shocks, we had to carefully examine

the meaning of seemingly straightforward objects such as the expectation operator E. We also

had to impose assumptions on the information set of the �rms, namely that the �rm observes the

current aggregate shock. Lastly, the time dummies must be interacted with the polynomials. The

standard practice of simply adding time dummies as separate intercepts for each time period does

not solve the issues introduced by aggregate shocks.

5 Example 3: A General Equilibrium Model

In this section, we consider as a third example a general equilibrium model of education and labor

supply decisions in which aggregate shocks in�uence individual choices. This example provides

additional insight on the e¤ect of aggregate shocks on the estimation of model parameters because,

di¤erently from the portfolio example, it considers a case in which the relationship between the

cross-sectional and time-series models is bi-directional: the cross-sectional parameters cannot be

identi�ed without knowledge of the time-series parameters and the time-series parameters cannot

be identi�ed without knowing the cross-sectional parameters. In principle, we could have used as a

general example a model proposed in the general equilibrium literature such as the model developed

in Lee and Wolpin (2006). We decided against this alternative because in those models the e¤ect

of the aggregate shocks and the relationship between the cross-sectional and time-series submodels

is complicated and therefore di¢ cult to describe. Instead, we have decided to develop a model

that is su¢ ciently general to generate an interesting relationship between the two submodels, but

at the same time is su¢ ciently stylized for this relationship to be easy to describe and understand.

The main objective of the model we develop is to evaluate the e¤ect of aggregate shocks on the

education decisions of young individuals and on their subsequent labor supply decisions when of

working-age. For that purpose, we consider an economy in which in each period t 2 T a young and

a working-age generation overlap. Each generation is composed of a measure Nt of individuals who

are endowed with preferences over a non-durable consumption good and leisure. The preferences of
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individual i are represented by a Cobb-Douglas utility function U i (c; l) = (c�l1��)
1�
i
.
(1� 
i),

where the risk aversion parameter 
i is a function of the observable variables xi;t, the unobservable

variables �i;t, and a vector of parameters &, i.e. 
i = 
 (xi;t; �i;tj &). Both young and working-

age individuals are endowed with a number of hours T that can be allocated to leisure or to

a productive activity. In each period t, the economy is hit by an aggregate shock �t whose

conditional probability P (�t+1j �t) is given by log �t+1 = % log �t + �t. We will assume that �t is

normally distributed with mean 0 and variance !2. The aggregate shock a¤ects the labor market

in a way that will be established later on.

In each period t, young individuals are endowed with an exogenous income yi;t and choose the

type of education to acquire. They can choose either a �exible type of education F or a rigid

type of education R. Working-age individuals with �exible education are a¤ected less by adverse

aggregate shocks, but they have lower expected wages. The two types of education have identical

cost Ce < yi;t and need the same amount of time to acquire Te < T . Since young individuals

have typically limited �nancial wealth, we assume that there is no saving decision when young

and that any transfer from parents or relatives is included in non-labor income yi;t. We also

abstract from student loans and assume that all young individuals can a¤ord to buy one of the

two types of education. As a consequence, the part of income yi;t that is not spent on education

will be consumed. At each t, working-age individuals draw a wage o¤er wFi;t if they have chosen the

�exible education when young and a wage o¤er wRi;t otherwise. They also draw a productivity shock

"i;t which determines how productive their hours of work are in case they choose to supply labor.

We assume that the productivity shock is known to the individual, but not to the econometrician.

Given the wage o¤er and the productivity shock, working-age individuals choose how much to

work hi;t and how much to consume. If a working-age individual decides to supply hi;t hours of

work, the e¤ective amount of labor hours supplied is given by exp ("i;t)hi;t. We will also assume

that E [exp ("i;t)] = 1.

The economy is populated by two types of �rms to whom the working-age individuals supply

labor. The �rst type of �rm employs only workers with education F , whereas the second type of

�rm employs only workers with education R. Both use the same type of capital K. The labor
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demand functions of the two types of �rms are exogenously given and take the following form:

lnHD;F
t = �0 + �1 lnw

F
t ;

and

lnHD;R
t = �0 + �1 lnw

R
t + ln �t;

where HD;E is the total demand for e¤ective labor, with E = F;R, �0 > 0, and �1 < 0. We assume

that the two labor demands have identical slopes for simplicity. These two labor demand functions

allow us to introduce in the model the feature that workers with a more �exible education are

a¤ected less by aggregate shocks such as business cycle shocks. The wage for each education group

is determined by the equilibrium in the corresponding labor market. It will therefore generally

depend on the aggregate shock.

The description of the model implies that there is only one source of uncertainty in the econ-

omy, the aggregate shock, and two sources of heterogeneity across individuals, the risk aversion

parameter and the productivity shock.

We can now introduce the problem solved by an individual of the young generation. In period t,

young individual i chooses consumption, leisure, and the type of education that solve the following

problem:

max
ci;t;li;t;ci;t+1;li;t+1;S

�
c�i;tl

1��
i;t

�1�
i
1� 
i

+ �

Z �
c�i;t+1l

1��
i;t+1

�1�
i
1� 
i

dP (�t+1j �t) (19)

s:t: ci;t = yi;t � Ce and li;t = T � Te

ci;t+1 = wSi;t+1 (�t+1) exp ("i;t+1) (T � li;t+1) for every �t+1:

Here, wSi;t+1 (�t+1) denotes the wage rate of individual i in the second period, which depends on

the realization of the aggregate shock �t+1 and the education choice S = F;R. The wage rate is

per unit of the e¤ective amount of labor hours supplied and is determined in equilibrium. The

problem solved by a working-age individual takes a simpler form. Conditional on the realization of

the aggregate shock �t and on the type of education S chosen when young, in period t, individual

i of the working-age generation chooses consumption and leisure that solve the following problem:

max
ci;t;li;t

�
c�i;tl

1��
i;t

�1�
i
1� 
i

(20)

s:t: ci;t = wSi;t (�t) exp ("i;t) (T � li;t) :
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We will now solve the model starting from the problem of a working-age individual. Using

the �rst order conditions of problem (20), it is straightforward to show that the optimal choice

of consumption, leisure, and hence labor supply for a working-age individual takes the following

form:

c�i;t = �wt (�t; S) exp ("i;t) T ; (21)

l�i;t = (1� �) T ; (22)

h�i;t = T � li;t (�i;t) = �T :

The supply of e¤ective labor is therefore equal to � exp ("i;t) T . Given the optimal choice of

consumption and leisure, conditional on the aggregate shock, the value function of a working-age

individual with education S can be written as follows:

Vi;t (S; �t) =

��
�wSi;t (�t) exp ("i;t) T

��
((1� �) T )1��

�1�
i
1� 
i

; S = F, R:

Given the value functions of a working-age individual, we can now characterize the education

choice of a young individual. This individual will choose education F if the expectation taken over

the aggregate shocks of the corresponding value function is greater than the analogous expectation

conditional on choosing education R:Z
Vi;t (F; �t+1) dP (�t+1 j�t ) �

Z
Vi;t (R; �t+1) dP (�t+1 j�t ) : (23)

Before we can determine which factors a¤ect the education choice, we have to derive the

equilibrium in the labor market. We show in the appendix that the labor market equilibrium is

characterized by the following two wage equations:

lnwFi;t =
lnnFt + ln� + ln T � �0

�1
+ "i;t; (24)

lnwRi;t =
lnnRt + ln� + ln T � �0 � ln �t

�1
+ "i;t; (25)

where wFi;t and w
R
i;t are the individual wages observed in sectors F and R and nFt and n

R
t are the

measures of individuals that choose education F and R. We can now replace the equilibrium

wages inside inequality (23) and analyze the education decision of a young individual. To simplify

the discussion, we will assume that "i;t is independent of �i;t, thereby eliminating sample selection
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issues in the wage equations. In the appendix, we show that, if the risk aversion parameter 
 is

greater than or equal to 1, a young individual chooses the �exible type of education if the following

inequality is satis�ed:

�!2

2�1
� 1

1� 
 (xi;t; �i;tj &)
log

�
nFt
nRt

�
+

% log �t
1� 
 (xi;t; �i;tj &)

: (26)

If 
 < 1, the inequality is reversed and the young individual chooses the �exible education if

�!2

2�1
<

1

1� 
 (xi;t; �i;tj &)
log

�
nFt
nRt

�
+

% log �t
1� 
 (xi;t; �i;tj &)

: (27)

These inequalities provide some insight about the educational choice of young individuals.11 They

are more likely to choose the �exible education which insures them against aggregate shocks if the

variance of the aggregate shock is larger, if they are more risk averse, if the aggregate shock at

the time of the decision is lower as long as % > 0, and if the elasticity of the wage for the rigid

education with respect to the aggregate shock is less negative.

Similarly to the �rst example, we can classify some of the variables and some of the parame-

ters as belonging to the cross-sectional submodel and the remaining to the time-series submodel.

The cross-sectional variables include consumption ci;t, leisure li;t, individual wages wFi;t and w
R
i;t,

the variable determining the educational choice Di;t, the amount of time an individual can di-

vide between leisure and productive activities T , and the variables that enter the risk aversion

parameter xi;t. The time-series variables are composed of the aggregate shock �t, the measure of

young individuals choosing the two types of education nF and nR, and the aggregate equilibrium

wages in the two sectors wFt = E
�
wFit
�
and wRt = E

�
wFit
�
.12 We want to stress the di¤erence

between individual wages and aggregate wages. Individual wages are typically observed in panel

data or repeated cross-sections whose time dimension is generally short, whereas aggregate wages

are available in longer time-series of aggregate data. The cross-sectional parameters consist of the

relative taste for consumption � and the parameters of the wage equations �0 and �1, whereas the

time-series parameters include the two parameters governing the evolution of the aggregate shock

% and !2, the parameters de�ning the risk aversion &, and the discount factor �. The discount

11Equations (26) and (27) can also be used to illustrate the problems of achieving consistent estimation using

cross-sectional variation alone. See the appendix for details.
12The expectation operator E corresponds to the expectation taken over the distribution of cross sectional

variables.
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factor is notoriously di¢ cult to estimate. For this reason, in the rest of the section we will assume

it is known.

We can now consider the estimation of the parameters of interest. Parameters in this model

can be consistently estimated exploiting both cross-sectional and time-series data. We assume

that the (repeated) cross-sectional data include �n1 and �n2 i.i.d. observations
�
wFi;t; c

�
i;t; l

�
i;1

�
for

individuals with S = F;R from two periods t = 1; 2. We also assume that the time-series data

span t = 1; : : : ; � , and consists of
�
nFt ; w

F
t ; n

R
t ; w

R
t

�
.

We �rst discuss how �1 can be consistently estimated with a large number of individuals using

the wage equation for the �exible education (24). Using equation (24), we can consistently estimate

�1 by b�1 which solves
1

�n1

�n1X
i=1

lnwFi;1 �
1

�n2

�n2X
i=1

lnwFi;2 =
1b�1 �nF1 � nF2

�
:

Observe that this can be done because "t and 
 are assumed to be independent of each other,

which implies that there is no sample selectivity problem. Second, the consumption and leisure

choices of working-age individuals (21) and (22) can be used to consistently estimate � by b� which
solves

1

�n1

�n1X
i=1

c�i;1
l�i;1

= wF1
b�

1� b� :
Third, with �1 consistently estimated, it is straightforward to show that the aggregate shock in

period t can be consistently estimated for t = 1; : : : ; � using the following equation:

dln �t = b�1 �lnwFt � lnwRt �� �lnnFt � lnnRt � : (28)

The parameters % and !2 can then be consistently estimated by the time-series regression of the

following equation:

\log �t+1 = %[log �t + �t: (29)

This is the step where we use the time-series variation. The only parameters left to estimate are

the & de�ning the individual risk aversion 
 (xi;t; �i;tj &). If the distribution of � is parametrically

speci�ed, those parameters can be consistently estimated by MLE using cross-sectional variation

on the educational choices and inequalities (26) and (27). Note that we were able to consistently

estimate & only because % and !2 had been previously estimated using time-series variation. Hence,

the bi-directional relationship between the cross-sectional and time-series submodels.

21



The previous discussion illustrates the importance of combining cross-sectional data with a

long time-series of aggregate data. One alternative would be to exploit panel data in which the

time-series dimension of the panel is su¢ ciently long. This alternative has, however, a potential

drawback. In Appendix C, we argue that a �long panel�approach is mathematically equivalent to

time-series analysis where T goes to in�nity, while n stays �xed. The standard errors in the long

panel analysis should, therefore, be based exclusively on the time series variation. This discussion

has an implication for the standard errors computed in Lee and Wolpin�s (2006) (see their footnote

37). Donghoon Lee, in private communication, kindly informed us that their standard errors do not

account for the noise introduced by the estimation of the time series parameters, i.e. the standard

errors reported in the paper assume that the time-series parameters are known or, equivalently,

�xed at their estimated value. We also note that since almost all panel data sets have limited

time-series dimension, using this alternative approach would lead to imprecise estimates.

When cross-sectional data are combined with long time-series of aggregate data, the standard

formulas for the computation of test statistics and con�dence intervals are no longer valid. In the

next section, we provide new easy-to-use formulas that can be employed for coe¢ cients estimated

by combining those two data sources. The formal derivation of those formulas is contained in the

companion paper Hahn, Kuersteiner, and Mazzocco (2016).

6 Standard Errors

In this section, after the derivation of the formulas required for the computation of test statistics

and con�dence intervals of coe¢ cients estimated using a combination of time-series and cross-

sectional data, we will explain how they can be employed in concrete cases using, as an example,

the general equilibrium model developed in the previous section.

6.1 Formulas for Test Statistics and Con�dence Intervals

The asymptotic theory underlying the estimators obtained from the combination of the two data

sources considered in this paper is complex. It is based on a new central limit theorem that requires

a novel martingale representation. Given its complexity, the theory is presented in a separate

paper (Hahn, Kuersteiner and Mazzocco (2016)). However, the mechanical implementation of the
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formulas required for the computation of test statistics and con�dence intervals is straightforward.

In the rest of this subsection we provide the step-by-step description of how those formulas can

be calculated.

The computation starts with the explicit characterization of the �moments�that identify the

parameters. Let � = (�; �1; :::; �T ) and denote with f�;i (�; �) and g�;t (�; �) the i-th and t-th

moments used in the identi�cation of the cross-sectional and time-series parameters. Suppose

that our estimator can be written as the solution to the following system of equations:

nX
i=1

f�;i

�
�̂; �̂
�
= 0; (30)

�0+�X
t=�0+1

g�;t

�
�̂; �̂
�
= 0: (31)

Formulas can then be calculated using the following steps:

1. Let � = (�0; �0)0 be the vector of parameters.

2. Let

A =

24 Ây;� Ây;�

Â�;� Â�;�

35 ;
with

Ây;� = n�1
nX
i=1

@f�;i

�
�̂; �̂
�

@�0
; Ây;� = n�1

nX
i=1

@f�;i

�
�̂; �̂
�

@�0
;

Â�;� = ��1
�0+�X
t=�0+1

@g�;t

�
�̂; �̂
�

@�0
; Â�;� = ��1

�0+�X
t=�0+1

@g�;t

�
�̂; �̂
�

@�0
:

3. Let


̂y =
1

n

nX
i=1

f�;i

�
�̂; �̂
�
f�;i

�
�̂; �̂
�0

and


̂v =
1

n

nX
i=1

g�;t

�
�̂; �̂
�
g�;t

�
�̂; �̂
�0

4. Let

W =

24 1
n

̂y 0

0 1
�

̂�

35
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5. Calculate

V = A�1W (A0)
�1

and use it as the �variance�(not the asymptotic variance) of the estimator. For instance, if

one is interested in the 95% con�dence interval of the �rst component of �, it can be written

as �̂1 � 1:96
p
V1;1

6.2 Formulas Applied to the General Equilibrium Model

To apply the �ve steps described in the previous subsection to the general equilibrium model, we

only have to derive the moment conditions used in its estimation f�;i (�; �) and g�;t (�; �).

For simplicity of notation, we assume that �n1 = �n2 = n. Also, we denote by Fi;t a dummy

variable that takes the value 1 if the �exible type of education is chosen and 0 otherwise. From

the discussion in Section 5, it follows directly that the moments employed in the estimation of �1

and � take the following form:X
i

�
lnwFi;1 � lnwFi;2 �

1

�1

�
nF1 � nF2

��
= 0

and X
i

�
c�i;1
l�i;1

� wF1
�

1� �

�
= 0:

For the estimation of the parameters � and !2, equation (29) implies that the OLS estimator of %

and the corresponding estimator for !2 solve:

1

�

X
t

[log �t
�
\log �t+1 � b%[log �t� = 0

and
1

�

X
t

�
\log �t+1 � b%[log �t�2 = b!2:

Replacing for \log �t+1 and [log �t using equation(28), we obtain the following two moment condi-

tions:X
t

0@ �1
�
lnwFt � lnwRt

�
�
�
lnnFt � lnnRt

�
1A0@0@ �1

�
lnwFt+1 � lnwRt+1

�
�
�
lnnFt+1 � lnnRt+1

�
1A� %

0@ �1
�
lnwFt � lnwRt

�
�
�
lnnFt � lnnRt

�
1A1A = 0

X
t

0@0@0@ �1
�
lnwFt+1 � lnwRt+1

�
�
�
lnnFt+1 � lnnRt+1

�
1A� %

0@ �1
�
lnwFt � lnwRt

�
�
�
lnnFt � lnnRt

�
1A1A2

� !2

1A = 0
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To derive the moments employed in the estimation of the risk aversion parameters, we need an

exact expression for 
 (xi;t; �i;tj &) and select a distribution for �i;t, which require some assumptions.

We will consider the case 1 � 
 � 0. Similar arguments can be used if 1 � 
 < 0. To derive a

close-form for 
 (xi;t; �i;tj &), inequality (26) can alternatively be written as13


 (xi;t; �i;tj &) � 1�
2�1
�!2

�
log

�
nFt
nRt

�
+ % log �t

�
:

Suppose we consider the following parameterization for 
 (xi;t; �i;tj &):


 (xi;t; �i;tj &) = G
�
x0i;t& + �i;t

�
;

where G is some monotonically increasing function bounded above by 1 and �i;t � N (0; 1). We

can then conclude that an individual chooses the �exible education (Fi;t = 1) if and only if

x0i;t& + �i;t � G�1
�
1� 2�1

�!2

�
log

�
nFt
nRt

�
+ % log �t

��
or, equivalently,

�i;t � G�1
�
1� 2�1

�!2

�
log

�
nFt
nRt

�
+ % log �t

��
� x0i;t&:

The probability that Fi;t = 1 is therefore given by the following expression:

�

�
G�1

�
1� 2�1

�!2

�
log

�
nFt
nRt

�
+ % log �t

��
� x0i;t&

�
;

where � and � denote the CDF and PDF of a N (0; 1).

Despite the complicated nature of the probability, the whole expression is linear in & implying

that it is a special case of a textbook probit. The First Order Condition (FOC) derived from the

13For 1� 
 � 0, the inequality (26) can alternatively be written as

�!2

2�1
�
log
�
nFt
nRt

�
+ % log �t

1� 
 (xi;t; �i;tj &)

Using 1� 
 (xi;t; �i;tj &) � 0 , we get

1� 
 (xi;t; �i;tj &) �
2�1
�!2

�
log

�
nFt
nRt

�
+ % log �t

�
or


 (xi;t; �i;tj &) � 1�
2�1
�!2

�
log

�
nFt
nRt

�
+ % log �t

�
:
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maximization of that probability with respect to & takes the form

X
i

Fi;t � �
h
G�1

�
1� 2�1

�!2

�
log
�
nFt
nRt

�
+ % log �t

��
� x0i;t&

i
�
h
G�1

�
1� 2�1

�!2

�
log
�
nFt
nRt

�
+ % log �t

��
� x0i;t&

in
1� �

h
G�1

�
1� 2�1

�!2

�
log
�
nFt
nRt

�
+ % log �t

��
� x0i;t&

io�
��
�
G�1

�
1� 2�1

�!2

�
log

�
nFt
nRt

�
+ % log �t

��
� x0i;t&

�
xi;t = 0

Using the equation

ln �t = �1
�
lnwFt � lnwRt

�
�
�
lnnFt � lnnRt

�
;

and de�ning

Zt
�
�1; �; %; !

2
�
� G�1

0@1� 2�1
�!2

0@log�nFt
nRt

�
+ %

0@ �1
�
lnwFt � lnwRt

�
�
�
lnnFt � lnnRt

�
1A1A1A ;

we can rewrite the �rst order condition as follows:X
i

Fi;t � �
�
Zt (�1; �; %; !

2)� x0i;t&
�

�
�
Zt (�1; �; %; !2)� x0i;t&

� �
1� �

�
Zt (�1; �; %; !2)� x0i;t&

�	� �Zt ��1; �; %; !2�� x0i;t&
�
xi;t = 0;

which corresponds to the moments used in the estimation of the risk aversion parameters.

Assuming without loss of generality that only the cross sections at t = 1 and t = 2 are used in

the estimation, the previous discussion implies that the vectors of moments f�;i and g�;t take the

following form:

f�;i (�; �) =

266664
lnwFi;1 � lnwFi;2 �

1

�1

�
nFt � nFt�1

�
c�i;1
l�i;1
� wF1

�
1��

Fi;1��[Z1(�1;�;%;!2)�x0i;1&]
�[Z1(�1;�;%;!2)�x0i;1&]f1��[Z1(�1;�;%;!2)�x0i;1&]g�

�
Z1 (�1; �; %; !

2)� x0i;1&
�
xi;1

377775 ;
and

g�;t (�; �) =

26666664

0@ �1
�
lnwFt � lnwRt

�
�
�
lnnFt � lnnRt

�
1A0@0@ �1

�
lnwFt+1 � lnwRt+1

�
�
�
lnnFt+1 � lnnRt+1

�
1A� %

0@ �1
�
lnwFt � lnwRt

�
�
�
lnnFt � lnnRt

�
1A1A

0@0@ �1
�
lnwFt+1 � lnwRt+1

�
�
�
lnnFt+1 � lnnRt+1

�
1A� %

0@ �1
�
lnwFt � lnwRt

�
�
�
lnnFt � lnnRt

�
1A1A2

� !2

37777775 ;

and the parameter estimates of the general equilibrium model are the solution to the following
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system of equations:

n�1=2
nX
i=1

f�;i

�
�̂; �̂
�
= 0;

��1=2
�0+�X
t=�0+1

g�;t

�
�̂; �̂
�
= 0:

We are now ready to describe the �ve steps required in the computation of test statistics and

con�dence intervals for the general equilibrium model. As a �rst step, let � = � = (�1; �; &) and

� = (%; !2). Observe that the aggregate shock is not in the set of estimated parameters, since the

general equilibrium model implies that ln �t = �1
�
lnwFt � lnwRt

�
�
�
lnnFt � lnnRt

�
. In the second,

third, and fourth steps compute the matrices A, 
̂y, 
̂v, and W using the vectors of moments f�;i

and g�;t derived above. In the last step, calculate the variance matrix V = A�1W (A0)�1.

7 Summary

Using a general econometric framework and three examples we have shown that generally, when

aggregate shocks are present, model parameters cannot be identi�ed using cross-sectional variation

alone. Identi�cation of those parameters requires the combination of cross-sectional and time-series

data. When those two data sources are jointly used, standard formulas for the computation of

test statistics and con�dence intervals are no longer valid. We provide new easy-to-use formulas

that account for the interaction between the time-series and cross-sectional data. Our results

are expected to be helpful for the econometric analysis of rational expectations models involving

individual decision making as well general equilibrium models.
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Appendix �Available Upon Request

A Discussion for Section 3

A.1 Proof of (2)

The maximization problem is equivalent to

max
�

�e��(�(1+r)+(1��))E
�
e��(1��)ui;t

�
:

Since �� (1� �)ui;t � N
�
�� (1� �)�; �2 (1� �)2 �2

�
, we have

E
�
e��(1��)ui;t

�
= e��(1��)�+

�2(1��)2�2
2 ;

and the maximization problem can be rewritten as follows:

max
�

�e
��
�
�(1+r)+(1��)(1+�)� �(1��)2�2

2

�
:

Taking the �rst order condition, we have,

0 = ��
�
r � �+ �2� � ��2�

�
from which we obtain the solution

� =
1

�2�

�
r � �+ �2�

�
:

A.2 Euler Equation and Cross Section

Our model in Section 3 is a stylized version of many models considered in a large literature

interested in estimating the parameter � using cross-sectional variation. Estimators are often based

on moment conditions derived from �rst order conditions (FOC) related to optimal investment

and consumption decisions. We illustrate the problems facing such estimators.

Assume a researcher has a cross-section of observations for individual consumption and returns

ci;t and ui;t. The population FOC of our model14 takes the simple form E
�
e��ci;t (r � ui;t)

�
= 0. A

14We assume � 6= 0 and rescale the equation by ���1:
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just-identi�ed moment based estimator for � solves the sample analog n�1
Pn

i=1 e
��̂ci;t (r � ui;t) =

0. It turns out that the probability limit of �̂ is equal to (�t � r)/ ((1� �)�2� ), i.e., �̂ is inconsistent.

We now compare the population FOC a rational agent uses to form their optimal portfolio

with the empirical FOC an econometrician using cross-sectional data observes:

n�1
nX
i=1

e��ci;t (r � ui;t) = 0:

Noting that ui;t = �t + �i;t and substituting into the budget constraint

ci;t = 1 + �r + (1� �)ui;t = 1 + �r + (1� �) �t + (1� �) �i;t

we have

n�1
nX
i=1

e��ci;t (r � ui;t) = n�1
nX
i=1

e��(1+�r+(1��)�t)��(1��)�i;t (r � �t � �i;t) (32)

= e��(1+�r+(1��)�t)

 
(r � �t)n

�1
nX
i=1

e��(1��)�i;t � n�1
nX
i=1

e��(1��)�i;t�i;t

!
:

Under suitable regularity conditions including independence of �i;t in the cross-section it follows

that

n�1
nX
i=1

e��(1��)�i;t = E
�
e��(1��)�i;t

�
+ op (1) = e

�2(1��)2�2�
2 + op (1) (33)

and

n�1
nX
i=1

e��(1��)�i;t�i;t = E
�
e��(1��)�i;t�i;t

�
+ op (1) = �� (1� �)�2� e

�2(1��)2�2�
2 + op (1) : (34)

Taking limits as n ! 1 in (32) and substituting (33) and (34) then shows that the method of

moments estimator based on the empirical FOC asymptotically solves

�
(r � �t) + � (1� �)�2�

�
e
�2(1��)2�2�

2 = 0: (35)

Solving for � we obtain

plim �̂ =
�t � r

(1� �)�2�
:

This estimate is inconsistent because the cross-sectional data set lacks cross sectional ergodicity,

or in other words does not contain the same information about aggregate risk as is used by rational
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agents. Therefore, the empirical version of the FOC is unable to properly account for aggregate

risk and return characterizing the risky asset. The estimator based on the FOC takes the form of

an implicit solution to an empirical moment equation, which obscures the e¤ects of cross-sectional

non-ergodicity. A more illuminative approach uses our modelling strategy in Section 2.

On the other hand, it is easily shown using properties of the Gaussian moment generating

function that the population FOC is proportional to

E
�
e��(1��)ui;t (r � ui;t)

�
=
�
r � �+ � (1� �)�2

�
e��(1��)�+

�2(1��)2�2
2 = 0: (36)

The main di¤erence between (33) and (34) lies in the fact that �2v is estimated to be 0 in the

sample and that �t 6= � in general. Note that (36) implies that consistency may be achieved with

a large number of repeated cross sections, or a panel data set with a long time series dimension.

However, this raises other issues discussed later in Section C.

B Details of Section 5

B.1 Proof of Inequalities (26) and (27)

In the proof we will drop the i subscripts for notational purposes. We can rewrite (23) as follows:Z ��
�wFt+1 (�t+1) exp ("t+1)T

��
((1� �)T )1��

�1�

1� 


dP (�t+1 j�t )

�
Z ��

�wRt+1 (�t+1) exp ("t+1)T
��
((1� �)T )1��

�1�

1� 


dP (�t+1 j�t ) ;

As a consequence, education F is chosen if

 (
; �t) �
Z ��

wFt+1 (�t+1)
���1�


dP (�t+1 j�t )�
Z �

wRt+1 (�t+1)
��1�
 dP (�t+1 j�t ) � 0 (37)

We rewrite the value function of an old individual with education F

Vt (F; �t) =

" �
nF�T exp ("t)

e�0

�1=�1
�T

!�

((1� �)T )1��
#1�


1� 


Likewise, the value function of an old individual with education R takes a similar form:

Vt (R; �t) =

" �
nR�T exp ("t)

e�0�t

�1=�1
�T

!�

((1� �)T )1��
#1�


1� 
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We can now describe the solution to the problem of a young worker. Given the assumptions,

optimal consumption and leisure in the �rst period can be easily computed to be:

c�t = yt � Ce;

l�t = T � Te:

This implies that current consumption and leisure are independent of the education choice and

of the aggregate shock. As a consequence, the current utility will also be independent of the

education choice and of the aggregate shock. The education choice will therefore only depend on

the utility when old. Speci�cally, the individual will choose education F ifZ
Vt (F; �t+1) dP (�t+1 j�t ) �

Z
Vt (R; �t+1) dP (�t+1 j�t ) :

Write

Vt (F; �t+1) =

" �
nR�T

e�0

�1=�1
�T

!�

((1� �)T )1��
#1�


1� 

exp (� (1=�1) (1� 
) "t+1)

Vt (R; �t+1) =

" �
nR�T

e�0

�1=�1
�T

!�

((1� �)T )1��
#1�


1� 

exp (� (1=�1) (1� 
) "t+1)

�
�
��(1=�1)(1�
)
t+1

�
We see that education F is chosen if and only if" �

nF�T

e�0

�1=�1
�T

!�

((1� �)T )1��
#1�


1� 

exp (� (1=�1) (1� 
) "t+1) �" �

nR�T

e�0

�1=�1
�T

!�

((1� �)T )1��
#1�


1� 

exp (� (1=�1) (1� 
) "t+1)Et

h
�
��(1=�1)(1�
)
t+1

i
(We made use of the assumption that "t+1 is known to the workers.) This is equivalent to�

nF
��(1�
)=�1 � �nR��(1�
)=�1 Et h���(1�
)(1=�1)t+1

i
if 1� 
 � 0 (38)

and to �
nF
��(1�
)=�1

<
�
nR
��(1�
)=�1

Et

h
�
��(1�
)(1=�1)
t+1

i
if 1� 
 < 0 (39)
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Because log �t+1 = � log �t + �t, or

�t+1 = ��t exp (�t)

we can write

Et

h
�
��(1�
)(1=�1)
t+1

i
= E�

h
(��t exp (�t))

��(1�
)(1=�1)
i
= �

���(1�
)(1=�1)
t E [exp (�� (1� 
) (1=�1) �t)]

where E� [�] denotes the integral with respect to �t alone. The assumption that �t � N (0; !2)

allows us to write

E [exp (�� (1� 
) (1=�1) �t)] = exp

 
(�! (1� 
) (1=�1))

2

2

!
recognizing that the expectation on the left is nothing but the moment generating function of

N (0; !2) evaluated at �� (1� 
) (1=�1). Therefore, we have

Et

h
�
��(1�
)(1=�1)
t+1

i
= �

���(1�
)(1=�1)
t exp

 
(�! (1� 
) (1=�1))

2

2

!
(40)

Consider �rst the case 1� 
 � 0. Combining (38) and (40), we can rewrite the decision as

�
nF
��(1�
)=�1 � �nR��(1�
)=�1 ����(1�
)(1=�1)t exp

 
(�! (1� 
) (1=�1))

2

2

!
:

Taking logs, we obtain

� (1� 
)

�1
log nF � � (1� 
)

�1
log nR � �

� (1� 
)

�1
log �t +

(�! (1� 
))2

2�21

Dividing by � and multiplying by �1 < 0, we conclude that the decision is equivalent to

(1� 
) log nF � (1� 
) log nR � � (1� 
) log �t +
� (1� 
)2 !2

2�1

or

�� (1� 
) log �t +
� (1� 
)2 !2

2�1
� (1� 
) log

�
nF

nR

�
:

which proves inequality (26). If 1� 
 < 0, following the same steps, we have

�� (1� 
) log �t +
� (1� 
)2 !2

2�1
< (1� 
) log

�
nF

nR

�
;

which proves inequality (27).
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Remark 1 Equations 26 and 27 hints at the problem of identi�cation based on cross section

variation alone. This is because the cross section variation does not identify �, which implies that


 is not identi�ed as a consequence. Suppose that 
 has a multinomial distribution, i.e., it has a

�nite support 
�1 ; : : : ; 

�
M . Let �

� denote the true value of �. Let 
m (�) be de�ned by

�� log �t + (1� 
m (�))
�!2

2�1
= ��� log �t + (1� 
�m)

�!2

2�1

More precisely, let


m (�) = 1�
� log �t � �� log �t + (1� 
�m)

�!2

2�1
�!2

2�1

We then have

�� log �t + (1� 
m (�))
�!2

2�1
= ��� log �t + (1� 
�m)

�!2

2�1

for range of possible values of �, and the education choice implied by (�; 
1 (�) ; : : : ; 
M (�)) is

identical to the one implied by the true value (��; 
�1 ; : : : ; 

�
M) of the parameter. The parameter

(��; 
�1 ; : : : ; 

�
M) is not identi�ed.

B.2 Proof of (24) and (25)

Note that individual heterogeneity is completely summarized by the vector �t � ("t; 
), which

means that we can de�ne the labor supply hFt (�) and h
R
t (�) for each type � of workers. We assume

that the mass of individuals such that ("t; 
) 2 A for some A � R2 is given by Nt

R
A
G (d�), where

G is a joint CDF. For simplicity, we assume that G is such that the �rst and second components

are independent of each other. We also assume that
R
exp ("t)G (d�) = 1.

The labor markets for both types of education must be in equilibrium. To determine the equi-

librium, remember that the individual educational choice is summarized by the function  (
; �t�1),

which was de�ned in inequality (37) and describes the values of the risk aversion parameter and

of the aggregate shocks for which an individual chooses a particular education. Speci�cally, an

individual choose education F if  (
; �t�1) > 0. We can now introduce the equilibrium condition

for education F . It takes the following form:

HD;F
t = Nt

Z
E=F

hFt (�)G (d�) = Nt�T
Z
 (
;�t�1)�0

exp ("t)G (d�)

HD;R
t = Nt

Z
E=R

hFt (�)G (d�) = Nt�T
Z
 (
;�t�1)<0

exp ("t)G (d�)
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Using independence between 
 and " as well as
R
exp ("t)G (d�) = 1, we can writeZ

 (
;�t)�0
exp ("t)G (d�) =

�Z
 (
;�t�1)�0

G (d�)

��Z
exp ("t)G (d�)

�
=

Z
 (
;�t�1)�0

G (d�)

= Fraction of workers in Sector F

so we can write HD;F
t = nFt �T , where n

F is the mass/measure of individuals that chose education

F . Taking logs, we have:

lnHD;F
t = lnnFt + ln� + lnT;

Substituting for HD;F
t , we obtain the following equilibrium condition:

�0 + �1 lnw
F
t = lnn

F
t + ln� + lnT;

Solving for lnwFt , we have the log equilibrium wage:�
zFt �

�
lnwFt =

lnnFt + ln� + lnT � �0
�1

:

This wage is for the unit of e¤ective labor. Because the worker i provides � exp ("t)T of e¤ective

labor, his recorded earning is � exp ("t)T exp
�
lnnFt + ln� + lnT � �0

�1

�
. Because he works for

�T hours, his wage for the labor is exp ("t) exp
�
lnnFt + ln� + lnT � �0

�1

�
; we will assume that

the cross section �error�consist of n IID copies of "t, i.e.,the observed log equilibrium individual

wage follows:

lnwFit =
lnnFt + ln� + lnT � �0

�1
+ "it:

Similarly, the equilibrium condition for education R has the following form:

HD;R
t = nRt �T;

where nR is the mass/measure of individuals that chose education R. Substituting for HD;R
t and

solving for lnwRt , we obtain the following equilibrium wage for R:�
zRt �

�
lnwRt =

lnnRt + ln� + lnT � �0 � ln �t
�1

:

By the same reasoning, the observed log equilibrium wage would look like

lnwRit =
lnnRt + ln� + lnT � �0 � ln �t

�1
+ "it:
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C Long Panels?

Our proposal requires access to two data sets, a cross-section (or short panel) and a long time

series of aggregate variables. One may wonder whether we may obtain an estimator with similar

properties by exploiting panel data sets in which the time series dimension of the panel data is

large enough.

One obvious advantage of combining two sources of data is that time series data may contain

variables that are unavailable in typical panel data sets. For example the in�ation rate potentially

provides more information about aggregate shocks than is available in panel data. We argue with

a toy model that even without access to such variables, the estimator based on the two data sets is

expected to be more precise, which suggests that the advantage of data combination goes beyond

availability of more observable variables.

Consider the alternative method based on one long panel data set, in which both n and T go to

in�nity. Since the number of aggregate shocks �t increases as the time-series dimension T grows,

we expect that the long panel analysis can be executed with tedious yet straightforward arguments

by modifying ideas in Hahn and Kuersteiner (2002), Hahn and Newey (2004) and Gagliardini and

Gourieroux (2011), among others.

We will now illustrate potential problem with the long panel approach with a simple arti�cial

example. Suppose that the econometrician is interested in the estimation of a parameter 
 that

characterizes the following system of linear equations:

qi;t = xi;t



!
+ �t + "i;t i = 1; : : : ; n; t = 1; : : : ; T;

�t = !�t�1 + ut:

The variables qi;t and xi;t are observed and it is assumed that xi;t is strictly exogenous in the sense

that it is independent of the error term "i;t, including all leads and lags. For simplicity, we also

assume that ut and "i;t are normally distributed with zero mean and that "i;t is i.i.d. across both

i and t. We will denote by � the ratio 
/!.

In order to estimate 
 based on the panel data f(qi;t; xi;t) ; i = 1; : : : ; n; t = 1; : : : ; Tg, we can

adopt a simple two-step estimator of 
. In a �rst step, the parameter � and the aggregate shocks

�t are estimated using an Ordinary Least Square (OLS) regression of qi;t on xi;t and time dummies.
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In the second step, the time-series parameter ! is estimated by regressing b�t on b�t�1, where b�t,
t = 1; : : : ; T , are the aggregate shocks estimated in the �rst step using the time dummies. An

estimator of 
 can then be obtained as b�b!.
The following remarks are useful to understand the properties of the estimator b
 = b�b!. First,

even if �t were observed, for b! to be a consistent estimator of ! we would need T to go to in�nity,
under which assumption we have b! = !+Op

�
T�1=2

�
. This implies that it is theoretically necessary

to assume that our data source is a �long�panel, i.e., T !1. Similarly, �̂t is a consistent estimator

of �t only if n goes to in�nity. As a consequence, we have �̂t = �t +Op

�
n�1=2

�
. This implies that

it is in general theoretically necessary to assume that n!1.15 Moreover, if n and T both go to

in�nity, b� is a consistent estimator of � and b� = � +Op

�
n�1=2T�1=2

�
. All this implies that

b
 = b�b! = �� +Op

�
1p
nT

���
! +Op

�
1p
T

��
= �! +Op

�
1p
T

�
= 
 +Op

�
1p
T

�
:

The Op

�
n�1=2T�1=2

�
estimation noise of b�, which is dominated by the Op

�
T�1=2

�
, is the term

that would arise if ! were not estimated. The term re�ects typical �ndings in long panel analysis

(i.e., large n, large T ), where the standard errors are inversely proportional to the square root of

the number n�T of observations. The fact that it is dominated by the Op

�
T�1=2

�
term indicates

that the number of observations is e¤ectively equal to T , i.e., the long panel should be treated as

a time series problem for all practical purposes.

This conclusion has two interesting implications. First, the sampling noise due to cross-section

variation should be ignored and the �standard� asymptotic variance formulae should generally

be avoided in the panel data analysis when aggregate shocks are present. We note that Lee and

Wolpin�s (2006, 2010) standard errors use the standard formula that ignores the Op

�
T�1=2

�
term.

Second, since in most cases the time-series dimension T of a panel data set is relatively small,

despite the theoretical assumption that it grows to in�nity, estimators based on panel data will

generally be more imprecise than may be expected from the �large�number n�T of observations.16

15For b! to have the same distribution as if �t were observed, we need n to go to in�nity faster than T or

equivalently that T = o (n). See Heckman and Sedlacek (1985, p. 1088).
16This raises an interesting point. Suppose there is an aggregate time series data set available with which

consistent estimation of 
 is feasible at the standard rate of convergence. Also suppose that the number of

observations there, say � , is a lot larger than T . If this were the case, we should probably speculate that the panel

data analysis is strictly dominated by the time series analysis from the e¢ ciency point of view.
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1 Introduction

There is a long tradition in empirical economics of relying on information from a variety of data

sources to estimate model parameters. In this paper we focus on a situation where cross-sectional

and time-series data are combined. This may be done for a variety of reasons. Some parameters

may not be identified in the cross section or time series alone. Alternatively, parameters estimated

from one data source may be used as a first-step inputs in the estimation of a second set of

parameters based on a different data source. This may be done to reduce the dimension of the

parameter space or more generally for computational reasons.

Data combination generates theoretical challenges, even when only cross-sectional data sets

or time-series data sets are combined. See Ridder and Moffitt (2007) for example. We focus on

dependence between cross-sectional and time-series data produced by common aggregate factors.

Andrews (2005) demonstrates that even randomly sampled cross-sections lead to independently

distributed samples only conditionally on common factors, since the factors introduce a possible

correlation. This correlation extends inevitably to a time series sample that depends on the same

underlying factors.

The first contribution of this paper is to develop a central limit theory that explicitly accounts

for the dependence between the cross-sectional and time-series data by using the notion of stable

convergence. The second contribution is to use the corresponding central limit theorem to derive

the asymptotic distribution of parameter estimators obtained from combining the two data sources.

Our analysis is inspired by a number of applied papers and in particular by the discussion in Lee

and Wolpin (2006, 2010). Econometric estimation based on the combination of cross-sectional and

time-series data is an idea that dates back at least to Tobin (1950). More recently, Heckman and

Sedlacek (1985) and Heckman, Lochner, and Taber (1998) proposed to deal with the estimation

of equilibrium models by exploiting such data combination. It is, however, Lee and Wolpin (2006,

2010) who develop the most extensive equilibrium model and estimate it using a similar intuition

and panel data.

To derive the new central limit theorem and the asymptotic distribution of parameter estimates,

we extend the model developed in Lee and Wolpin (2016, 2010) to a general setting that involves

two submodels. The first submodel includes all the cross-sectional features, whereas the second
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submodel is composed of all the time-series aspects. The two submodels are linked by a vector

of aggregate shocks and by the parameters that govern their dynamics. Given the interplay

between the two submodels, the aggregate shocks have complicated effects on the estimation of

the parameters of interest.

With the objective of creating a framework to perform inference in our general model, we

first derive a joint functional stable central limit theorem for cross-sectional and time-series data.

The central limit theorem explicitly accounts for the factor-induced dependence between the two

samples even when the cross-sectional sample is obtained by random sampling, a special case

covered by our theory. We derive the central limit theorem under the condition that the dimension

of the cross-sectional data n as well as the dimension of the time series data τ go to infinity. Using

our central limit theorem we then derive the asymptotic distribution of the parameter estimators

that characterize our general model. To our knowledge, this is the first paper that derives an

asymptotic theory that combines cross sectional and time series data. In order to deal with

parameters estimated using two data sets of completely different nature, we adopt the notion

of stable convergence. Stable convergence dates back to Reyni (1963) and was recently used in

Kuersteiner and Prucha (2013) in a panel data context to establish joint limiting distributions.

Using this concept, we show that the asymptotic distributions of the parameter estimators are a

combination of asymptotic distributions from cross-sectional analysis and time-series analysis.

While the formal derivation of the asymptotic distribution may appear complicated, the asymp-

totic formulae that we produce are straightforward to implement and very similar to the standard

Murphy and Topel’s (1985) formula.

We also derive a novel result related to the unit root literature. We show that, when the

time-series data are characterized by unit roots, the asymptotic distribution is a combination

of a normal distribution and the distribution found in the unit root literature. Therefore, the

asymptotic distribution exhibits mathematical similarities to the inferential problem in predictive

regressions, as discussed by Campbell and Yogo (2006). However, the similarity is superficial in

that Campbell and Yogo’s (2006) result is about an estimator based on a single data source. But,

similarly to Campbell and Yogo’s analysis, we need to address problems of uniform inference.

Phillips (2014) proposes a method of uniform inference for predictive regressions, which we adopt

and modify to our own estimation problem in the unit root case.
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Our results should be of interest to both applied microecomists and macroeconomists. Data

combination is common practice in the macro calibration literature where typically a subset of

parameters is determined based on cross-sectional studies. It is also common in structural microe-

conomics where the focus is more directly on identification issues that cannot be resolved in the

cross-section alone. In a companion paper, Hahn, Kuersteiner, and Mazzocco (2016), we discuss

in detail specific examples from the micro literature. In the companion paper, we also provide a

more intuitive analysis of the joint use in estimation of cross-sectional and time-series data when

aggregate factors are present, whereas in this paper the analysis is more technical and abstract.

The remainder of the paper is organized as follows. In Section 2, we introduce the general

statistical model. In Section 3, we present the intuition underlying our main result, which is

presented in Section 4.

2 Model

We assume that our cross-sectional data consist of {yi,t, i = 1, . . . , n, t = 1, ..., T}, where the start
time of the cross-section or panel, t = 1, is an arbitrary normalization of time. Pure cross-sections

are handled by allowing for T = 1. Note that T is fixed and finite throughout our discussion while

our asymptotic approximations are based on n tending to infinity. Our time series data consist

of {zs, s = τ0 + 1, . . . , τ0 + τ} where the time series sample size τ tends to infinity jointly with

n. The start point of the time series sample is fixed at an arbitrary time τ0 ∈ (−∞,∞) . The

vector yi,t includes all information related to the cross-sectional submodel, where i is an index for

individuals, households or firms, and t denotes the time period when the cross-sectional unit is

observed. The second vector zs contains aggregate data.

The technical assumptions for our CLT, detailed in Section 4, do not directly restrict the data,

nor do they impose restrictions on how the data were sampled. For example, we do not assume

that the cross-sectional sample was obtained by randomized sampling, although this is a special

case that is covered by our assumptions. Rather than imposing restrictions directly on the data we

postulate that there are two parametrized models that implicitly restrict the data. The function

f (yi,t|β, νt, ρ) is used to model yi,t as a function of cross-sectional parameters β, common shocks

νt and time series parameters ρ. In the same way the function g (zs| β, ρ) restricts the behavior of
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some time series variables zs.
1

Depending on the exact form of the underlying economic model, the functions f and g may have

different interpretations. They could be the likelihoods of yi,t, conditional on νt, and zs respectively.

In a likelihood setting, f and g impose restrictions on yi,t and zs because of the implied martingale

properties of the score process. More generally, the functions f and g may be the basis for

method of moments (the exactly identified case) or GMM (the overidentified case) estimation.

In these situations parameters are identified from the conditions EC [f (yi,t| β, νt, ρ)] = 0 given

the shock νt and Eτ [g (zs|β, ρ)] = 0. The first expectation, EC , is understood as being over the

cross-section population distribution holding ν = (ν1, ..., νT ) fixed, while the second, Eτ , is over

the stationary distribution of the time-series data generating process. The moment conditions

follow from martingale assumptions we directly impose on f and g. In our companion paper we

discuss examples of economic models that rationalize these assumptions.

Whether we are dealing with likelihoods or moment functions, the central limit theorem is

directly formulated for the estimating functions that define the parameters. We use the nota-

tion Fn (β, νt, ρ) and Gτ (β, ρ) to denote the criterion function based on the cross-section and

time series respectively. When the model specifies a likelihood these functions are defined as

Fn (β, ν, ρ) = 1
n

∑T
t=1

∑n
i=1 f (yi,t|β, νt, ρ) and Gτ (β, ρ) = 1

τ

∑τ
s=1 g (zs|β, ρ) . When the model

specifies moment conditions we let hn (β, ν, ρ) = 1
n

∑T
t=1

∑n
i=1 f (yi,t|β, νt, ρ) and kτ (β, ρ) =

1
τ

∑τ
s=1 g (zs|β, ρ) . The GMM or moment based criterion functions are then given by Fn (β, ν, ρ) =

−hn (β, ν, ρ)′WC
n hn (β, ν, ρ) and Gτ (β, ρ) = −kτ (β, ρ)′W τ

τ kτ (β, ρ) with W
×
n and W T

τ two almost

surely positive definite weight matrices. The use of two separate objective functions is helpful in

our context because it enables us to discuss which issues arise if only cross-sectional variables or

only time-series variables are used in the estimation.2

We formally justify the use of two data sets by imposing restrictions on the identifiability of

1The function g may naturally arise if the νt is an unobserved component that can be estimated from the

aggregate time series once the parameters β and ρ are known, i.e., if νt ≡ νt (β, ρ) is a function of (zt, β, ρ) and

the behavior of νt is expressed in terms of ρ. Later, we allow for the possibility that g in fact is derived from the

conditional density of νt given νt−1, i.e., the possibility that g may depend on both the current and lagged values

of zt. For notational simplicity, we simply write g (zs|β, ρ) here for now.
2Note that our framework covers the case where the joint distribution of (yit, zt) is modelled. Considering the

two components separately adds flexibility in that data is not required for all variables in the same period.
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parameters through the cross-section and time series criterion functions alone. We denote the

probability limit of the objective functions by F (β, νt, ρ) and G (β, ρ) , in other words,

F (β, ν, ρ) = plim
n→∞

Fn (β, ν, ρ) ,

G (β, ρ) = plim
τ→∞

Gτ (β, ρ) .

The true or pseudo true parameters are defined as the maximizers of these probability limits

(β (ρ) , ν (ρ)) ≡ argmax
β,ν

F (β, ν, ρ) , (1)

ρ (β) ≡ argmax
ρ

G (β, ρ) , (2)

and we denote with β0 and ρ0 the solutions to (1) and (2). The idea that neither F nor G alone

are sufficient to identify both parameters is formalized as follows. If the function F is constant

in ρ at the parameter values β and ν that maximize it then ρ is not identified by the criterion F

alone. Formally we state that

max
β,νt

F (β, ν, ρ) = max
β,νt

F (β, ν, ρ0) for all ρ ∈ Θρ (3)

It is easy to see that (3) is not a sufficient condition to restrict identification in a desirable way.

For example (3) is satisfied in a setting where F does not depend at all on ρ. In that case the

maximizers in (1) also do not depend on ρ and by definition coincide with β0 and ν0. To rule out

this case we require that ρ0 is needed to identify β0 and ν0. Formally, we impose the condition

that

(β (ρ) , ν (ρ)) 6= (β0, ν0) for all ρ 6= ρ0. (4)

Similarly, we impose restrictions on the time series criterion functions that insure that the param-

eters β and ρ cannot be identified solely as the maximizers of G. Formally, we require that

max
ρ
G (β, ρ) = max

ρ
G (β0, ρ) for all β ∈ Θβ, (5)

ρ (β) 6= ρ0 for all β 6= β0.

To insure that the parameters can be identified from a combined cross-sectional and time-series

data set we impose the following condition. Define θ ≡ (β ′, ν ′)′ and assume that (i) there exists a
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unique solution to the system of equations:

[
∂F (β, ν, ρ)

∂θ′
,
∂G (β, ρ)

∂ρ′

]
= 0, (6)

and (ii) the solution is given by the true value of the parameters. In summary, our model is

characterized by the high level assumptions in (3), (4), (5) and (6).

3 Asymptotic Inference

Our asymptotic framework is such that standard textbook level analysis suffices for the discussion

of consistency of the estimators. In standard analysis with a single data source, one typically

restricts the moment equation to ensure identification, and imposes further restrictions such that

the sample analog of the moment function converges uniformly to the population counterpart.

Because these arguments are well known we simply impose as a high-level assumption that our

estimators are consistent. The purpose of this section is to provide an overview over our results

while a rigorous technical discussion is relegated to Section 4 which may be skipped by a less

technically oriented reader.

3.1 Stationary Models

For expositional purposes, suppose that the time series zt is such that its log of the conditional

probability density function given zt−1 is g (zt| zt−1, ρ). To simplify the exposition in this section

we assume that the time series model does not depend on the micro parameter β. Let ρ̃ denote a

consistent estimator.

We assume that the dimension of the time series data is τ , and that the influence function of

ρ̃ is such that

√
τ (ρ̃− ρ) =

1√
τ

τ0+τ∑

s=τ0+1

ϕs (7)

with E [ϕs] = 0. Here, τ0 + 1 denotes the beginning of the time series data, which is allowed

to differ from the beginning of the panel data. Using ρ̃ from the time series data, we can then

consider maximizing the criterion Fn (β, νt, ρ) with respect to θ = (β, ν1, . . . , νT ). Implicit in this

representation is the idea that we are given a short panel for estimation of θ = (β, ν1, . . . , νT ),
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where T denotes the time series dimension of the panel data. In order to emphasize that T is

small, we use the term ’cross-section’ for the short panel data set, and adopt asymptotics where

T is fixed. The moment equation then is

∂Fn

(
θ̂, ρ̃
)

∂θ
= 0

and the asymptotic distribution of θ̂ is characterized by

√
n
(
θ̂ − θ

)
≈ −

(
∂2F (θ, ρ̃)

∂θ∂θ′

)−1(√
n
∂Fn (θ, ρ̃)

∂θ

)
.

Because
√
n (∂Fn (θ, ρ̃) /∂θ − ∂Fn (θ, ρ) /∂θ) ≈ (∂2F (θ, ρ) /∂θ∂ρ′)

√
n√
τ

√
τ (ρ̃− ρ) we obtain

√
n
(
θ̂ − θ

)
≈ −A−1

√
n
∂Fn (θ, ρ)

∂θ
− A−1B

√
n√
τ

(
1√
τ

τ0+τ∑

s=τ0+1

ϕs

)
(8)

with

A ≡ ∂2F (θ, ρ)

∂θ∂θ′
, B ≡ ∂2F (θ, ρ)

∂θ∂ρ′

We adopt asymptotics where n, τ → ∞ at the same rate, but T is fixed. We stress that a tech-

nical difficulty arises because we are conditioning on the factors (ν1, . . . , νT ) . This is accounted for

in the limit theory we develop through a convergence concept by Renyi (1963) called stable con-

vergence, essentially a notion of joint convergence. It can be thought of as convergence conditional

on a specified σ-field, in our case the σ-field C generated by (ν1, . . . , νT ). In simple special cases,

and because T is fixed, the asymptotic distribution of 1√
τ

∑τ0+τ
s=τ0+1 ϕs conditional on (ν1, . . . , νT )

may be equal to the unconditional asymptotic distribution. However, as we show in Section 4,

this is not always the case, even when the model is stationary.

Renyi (1963) and Aldous and Eagleson (1978) show that the concepts of convergence of the dis-

tribution conditional on any positive probability event in C and the concept of stable convergence

are equivalent. Eagelson (1975) proves a stable CLT by establishing that the conditional character-

istic functions converge almost surely. Hall and Heyde’s (1980) proof of stable convergence on the

other hand is based on demonstrating that the characteristic function converges weakly in L1. As

pointed out in Kuersteiner and Prucha (2013), the Hall and Heyde (1980) approach lends itself to

proving the martingale CLT under slightly weaker conditions than what Eagleson (1975) requires.

While both approaches can be used to demonstrate very similar stable and thus conditional limit
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laws, neither simplifies to conventional marginal weak convergence except in trivial cases. For

this reason it is not possible to separate the cross-sectional inference problem from the time series

problem simply by ‘fixing’ the common shocks (ν1, . . . , νT ). Such an approach would only be valid

if the shocks (ν1, . . . , νT ) did not change in any state of the world, in other words if they were

constants in a probabilistic sense. Only in that scenario would stable or conditional convergence be

equivalent to marginal convergence. The inherent randomness of (ν1, . . . , νT ) , taken into account

by the rational agents in the models we discuss in our companion paper (Hahn, Kuersteiner and

Mazzocco, 2016) is at the heart of our examples and is the essence of the inference problems we

discuss in that paper. Thus, treating (ν1, . . . , νT ) as constants is not an option available to us.

This is also the reason why time dummies are no remedy for the problems we analyze. A related

idea might be to derive conditional (on C) limiting results separately for the cross-section and time

series dimension of our estimators. As noted before, such a result in fact amounts to demonstrat-

ing stable convergence, in this case for each dimension separately. Irrespective, this approach is

flawed because it does not deliver joint convergence of the two components. It is evident from (8)

that the continuous mapping theorem needs to be applied to derive the asymptotic distribution

of θ̂. Because both A and B are C-measurable random variables in the limit the continuous map-

ping theorem can only be applied if joint convergence of
√
n∂Fn (θ, ρ) /∂θ, τ

−1/2
∑τ0+τ

s=τ0+1 ϕs and

any C-measurable random variable is established. Joint stable convergence of both components

delivers exactly that. Finally, we point out that it is perfectly possible to consistently estimate

parameters, in our case (ν1, . . . , νT ), that remain random in the limit. For related results, see the

recent work of Kuersteiner and Prucha (2015).

Here, for the purpose of illustration we consider the simple case where the dependence of

the time series component on the factors (ν1, . . . , νT ) vanishes asymptotically. Let’s say that the

unconditional distribution is such that

1√
τ

τ0+τ∑

s=τ0+1

ϕs → N (0,Ων)

where Ων is a fixed constant that does not depend on (ν1, . . . , νT ) . Let’s also assume that

√
n
∂Fn (θ, ρ)

∂θ
→ N (0,Ωy)

conditional on (ν1, . . . , νT ). Unlike in the case of the time series sample, Ωy generally does depend

on (ν1, . . . , νT ) through the parameter θ.
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We note that ∂F (θ, ρ) /∂θ is a function of (ν1, . . . , νT ). If there is overlap between (1, . . . , T )

and (τ0 + 1, . . . , τ0 + τ), we need to worry about the asymptotic distribution of 1√
τ

∑τ0+τ
s=τ0+1 ϕs

conditional on (ν1, . . . , νT ). However, because in this example the only connection between y and

ϕ is assumed to be through θ and because T is assumed fixed, the two terms
√
n∂Fn (θ, ρ) /∂θ

and τ−1/2
∑τ0+τ

t=τ0+1 ϕt are expected to be asymptotically independent in the trend stationary case

and when Ων does not depend on (ν1, . . . , νT ). Even in this simple setting, independence between

the two samples does not hold, and asymptotic conditional or unconditional independence as well

as joint convergence with C-measurable random variables needs to be established formally. This

is achieved by establishing C-stable convergence in Section 4.2.

It follows that
√
n
(
θ̂ − θ

)
→ N

(
0, A−1ΩyA

−1 + κA−1BΩνB
′A−1

)
, (9)

where κ ≡ lim n/ τ . This means that a practitioner would use the square root of

1

n

(
A−1ΩyA

−1 +
n

τ
A−1BΩνB

′A−1
)
=

1

n
A−1ΩyA

−1 +
1

τ
A−1BΩνB

′A−1

as the standard error. This result looks similar to Murphy and Topel’s (1985) formula, except

that we need to make an adjustment to the second component to address the differences in sample

sizes.

The asymptotic variance formula is such that the noise of the time series estimator ρ̃ can make

quite a difference if κ is large, i.e., if the time series size τ is small relative to the cross section size

n. Obviously. this calls for long time series for accurate estimation of even the micro parameter

β. We also note that time series estimation has no impact on micro estimation if B = 0. This

confirms the intuition that if ρ does not appear as part of the micro moment f , which is the case in

Heckman and Sedlacek (1985), and Heckman, Lochner, and Taber (1998), cross section estimation

can be considered separate from time series estimation.

In the more general setting of Section 4, Ων may depend on (ν1, . . . , νT ) . In this case the limiting

distribution of the time series component is mixed Gaussian and dependent upon the limiting

distribution of the cross-sectional component. This dependence does not vanish asymptotically

even in stationary settings. As we show in Section 4 standard inference based on asymptotically

pivotal statistics is available even though the limiting distribution of θ̂ is no longer a sum of two

independent components.
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3.2 Unit Root Problems

When the simple trend stationary paradigm does not apply, the limiting distribution of our es-

timators may be more complicated. A general treatment is beyond the scope of this paper and

likely requires a case by case analysis. In this subsection we consider a simple unit root model

where initial conditions can be neglected. We use it to exemplify additional inferential difficulties

that arise even in this relatively simple setting. In Section 4.3 we consider a slightly more complex

version of the unit root model where initial conditions cannot be ignored. We show that more

complicated dependencies between the asymptotic distributions of the cross-section and time series

samples manifest. The result is a cautionary tale of the difficulties that may present themselves

when nonstationary time series data are combined with cross-sections. We leave the development

of inferential methods for this case to future work.

We again consider the model in the previous section, except with the twist that (i) ρ is the

AR(1) coefficient in the time series regression of zt on zt−1 with independent error; and (ii) ρ is at

(or near) unity. In the same way that led to (8), we obtain

√
n
(
θ̂ − θ

)
≈ −A−1

√
n
∂Fn (θ, ρ)

∂θ
− A−1B

√
n

τ
τ (ρ̃− ρ)

For simplicity, again assume that the two terms on the right are asymptotically independent. The

first term converges in distribution to a normal distribution N (0, A−1ΩyA
−1), but with ρ = 1 and

i.i.d. AR(1) errors the second term converges to

ξA−1B
W (1)2 − 1

2
∫ 1

0
W (r)2 dr

,

where ξ = lim
√
n/ τ and W (·) is the standard Wiener process, in contrast to the result in (9)

when ρ is away from unity. The result is formalized in Section 4.3.

The fact that the limiting distribution of θ̂ is no longer Gaussian complicates inference. This

discontinuity is mathematically similar to Campbell and Yogo’s (2006) observation, which leads

to a question of how uniform inference could be conducted. In principle, the problem here can

be analyzed by modifying the proposal in Phillips (2014, Section 4.3). First, construct the 1− α1

confidence interval for ρ using Mikusheva (2007). Call it [ρL, ρU ]. Second, compute θ̂ (ρ) ≡
argmaxθ Fn (θ, ρ) for ρ ∈ [ρL, ρU ]. Assuming that ρ is fixed, characterize the asymptotic variance
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Σ (ρ), say, of
√
n
(
θ̂ (ρ)− θ (ρ)

)
, which is asymptotically normal in general. Third, construct the

1 − α2 confidence region, say CI (α2; ρ), using asymptotic normality and Σ (ρ). Our confidence

interval for θ1 is then given by
⋃
ρ∈[ρL,ρU ]CI (α2; ρ). By Bonferroni, its asymptotic coverage rate

is expected to be at least 1− α1 − α2.

4 Joint Panel-Time Series Limit Theory

In this section we first establish a generic joint limiting result for a combined panel-time series

process and then specialize it to the limiting distributions of parameter estimates under stationarity

and non-stationarity. The process we analyze consists of a triangular array of panel data ψyn,it

observed for i = 1, ..., n and t = 1, . . . , T where n → ∞ while T is fixed and t = 1 is an

arbitrary normalization of time at the beginning of the cross-sectional sample. It also consists

of a separate triangular array of time series ψντ,t for t = τ0 + 1, . . . , τ0 + τ where τ0 is fixed with

−∞ < −K ≤ τ0 ≤ K < ∞ for some bounded K and τ → ∞. Typically, ψyn,itand ψντ,t are

the scores of a cross-section and time series criterion function based on observed data yit and zt.

We assume that T ≤ τ0 + τ . Throughout we assume that
(
ψyn,it, ψ

ν
τ,t

)
is a martingale difference

sequence relative to a filtration to be specified below. We derive the joint limiting distribution

and a related functional central limit theorem for 1√
n

∑T
t=1

∑n
i=1 ψ

y
n,it and

1√
τ

∑τ0+τ
t=τ0+1 ψ

ν
τ,t.

We now construct the triangular array of filtrations similarly to Kuersteiner and Prucha (2013).

We use the binary operator ∨ to denote the σ-field generated by the union of two σ-fields. Setting

C = σ (ν1, ..., νT ) we define

Gτn,0 = C (10)

Gτn,i = σ
(
zmin(1,τ0),

{
yj,min(1,τ0)

}i
j=1

)
∨ C

...

Gτn,n+i = σ
({
yj,min(1,τ0)

}n
j=1

,
{
zmin(1,τ0)+1, zmin(1,τ0)

}
,
{
yj,min(1,τ0)+1

}i
j=1

)
∨ C

...

Gτn,(t−min(1,τ0))n+i = σ
({
yj,t−1, yj,t−2, . . . , yj,min(1,τ0)

}n
j=1

,
{
zt, zt−1, . . . , zmin(1,τ0)

}
, {yj,t}ij=1

)
∨ C

We use the convention that Gτn,(t−min(1,τ0))n = Gτn,(t−min(1,τ0)−1)n+n. This implies that zt and y1t are
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added simultaneously to the filtration Gτn,(t−min(1,τ0))n+1. Also note that Gτn,i predates the time

series sample by at least one period, i.e. corresponds to the ‘time zero’ sigma field. To simplify

notation define the function qn (t, i) = (t−min(1, τ0))n + i that maps the two-dimensional index

(t, i) into the integers and note that for q = qn (t, i) it follows that q ∈ {0, . . . ,max(T, τ)n}. The

filtrations Gτn,q are increasing in the sense that Gτn,q ⊂ Gτn,q+1 for all q, τ and n. We note that

E
[
ψντ,t
∣∣Gτn,qn(t−1,i)

]
= 0 for all i is not guaranteed because we condition not only on zt−1, zt−2...

but also on ν1, ..., νT , where the latter may have non-trivial overlap with the former.

The central limit theorem we develop needs to establish joint convergence for terms involving

both ψyn,it and ψντ,t with both the time series and the cross-sectional dimension becoming large

simultaneously. Let [a] be the largest integer less than or equal a. Joint convergence is achieved

by stacking both moment vectors into a single sum that extends over both t and i. Let r ∈ [0, 1]

and define

ψ̃νit (r) =
ψντ,t√
τ
1 {τ0 + 1 ≤ t ≤ τ0 + [τr]} 1 {i = 1} , (11)

which depends on r in a non-trivial way. This dependence will be of particular interest when we

specialize our models to the near unit root case. For the cross-sectional data define

ψ̃yit =
ψyn,it√
n

(12)

where ψ̃yit is constant as a function of r ∈ [0, 1] . In turn, this implies that functional convergence

of the component (12) is the same as the finite dimensional limit. It also means that the limiting

process is degenerate (i.e. constant) when viewed as a function of r. However, this does not matter

in our applications as we are only interested in the sum

1√
n

T∑

t=1

n∑

i=1

ψyn,it =

max(T,τ0+τ)∑

t=min(1,τ0+1)

n∑

i=1

ψ̃yit ≡ Xy
nτ .

Define the stacked vector ψ̃it (r) =
(
ψ̃y′it , ψ̃

ν
it (r)

′
)′

∈ R
kφ and consider the stochastic process

Xnτ (r) =

max(T,τ0+τ)∑

t=min(1,τ0+1)

n∑

i=1

ψ̃it (r) , Xnτ (0) = (Xy′
nτ , 0)

′
. (13)

We derive a functional central limit theorem which establishes joint convergence between the

panel and time series portions of the process Xnτ (r). The result is useful in analyzing both trend
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stationary and unit root settings. In the latter, we specialize the model to a linear time series

setting. The functional CLT is then used to establish proper joint convergence between stochastic

integrals and the cross-sectional component of our model.

For the stationary case we are mostly interested in Xnτ (1) where in particular

1√
τ

τ0+τ∑

t=τ0+1

ψντ,t =

max(T,τ0+τ)∑

t=min(1,τ0+1)

n∑

i=1

ψ̃νit (1) .

The limiting distribution of Xnτ (1) is a simple corollary of the functional CLT for Xnτ (r) . We

note that our treatment differs from Phillips and Moon (1999), who develop functional CLT’s for

the time series dimension of the panel data set. In our case, since T is fixed and finite, a similar

treatment is not applicable.

We introduce the following general regularity conditions. In later sections these conditions will

be specialized to the particular models considered there.

Condition 1 Assume that

i) ψyn,it is measurable with respect to Gτn,(t−min(1,τ0))n+i.

ii) ψντ,t is measurable with respect to Gτn,(t−min(1,τ0))n+i for all i = 1, ..., n.

iii) for some δ > 0 and C <∞, supitE
[∥∥ψyn,it

∥∥2+δ
]
≤ C for all n ≥ 1.

iv) for some δ > 0 and C <∞, suptE
[∥∥ψντ,t

∥∥2+δ
]
≤ C for all τ ≥ 1.

v) E
[
ψyn,it

∣∣Gτn,(t−min(1,τ0))n+i−1

]
= 0.

vi) E
[
ψντ,t
∣∣Gτn,(t−min(1,τ0)−1)n+i

]
= 0 for t > T and all i = 1, ..., n.

Remark 1 Conditions 1(i), (iii) and (v) can be justified in a variety of ways. One is the sub-

ordinated process theory employed in Andrews (2005) which arises when yit are random draws

from a population of outcomes y. A sufficient condition for Conditions 1(v) to hold is that

E [ψ (y|θ, ρ, νt)| C] = 0 holds in the population. This would be the case, for example, if ψ were the

correctly specified score for the population distribution. See Andrews (2005, pp. 1573-1574).

Condition 2 Assume that:

i) for any s, r ∈ [0, 1] with r > s,

1

τ

τ0+[τr]∑

t=τ0+[τs]+1

ψντ,tψ
ν′
τ,t

p→ Ων (r)− Ων (s) as τ → ∞
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where Ων (r) − Ων (s) is positive definite a.s. and measurable with respect to σ (ν1, ..., νT ) for all

r ∈ (s, 1]. Normalize Ων (0) = 0.

ii) The elements of Ων (r) are bounded continuously differentiable functions of r > s ∈ [0, 1]. The

derivatives Ω̇ν (r) = ∂Ων (r) /∂r are positive definite almost surely.

iii) There is a fixed constant M <∞ such that sup‖λν‖=1,λν∈Rkρ supt λ
′
ν∂Ων (t) /∂tλν ≤M a.s.

Condition 2 is weaker than the conditions of Billingsley’s (1968) functional CLT for strictly

stationary martingale difference sequences (mds). We do not assume that E
[
ψντ,tψ

ν′
t

]
is constant.

Brown (1971) allows for time varying variances, but uses stopping times to achieve a standard

Brownian limit. Even more general treatments with random stopping times are possible - see

Gaenssler and Haeussler (1979). On the other hand, here convergence to a Gaussian process (not

a standard Wiener process) with the same methodology (i.e. establishing convergence of finite di-

mensional distributions and tightness) as in Billingsley, but without assuming homoskedasticity is

pursued. Heteroskedastic errors are explicitly used in Section 4.3 where ψντ,t = exp ((t− s) γ/τ) ηs.

Even if ηs is iid(0, σ
2) it follows that ψντ,t is a heteroskedastic triangular array that depends on τ .

It can be shown that the variance kernel Ων (r) is Ων (r) = σ2 (1− exp (−2rγ))/ 2γ in this case.

See equation (55).

Condition 3 Assume that
1

n

n∑

i=1

ψyn,itψ
y′
n,it

p→ Ωty

where Ωty is positive definite a.s. and measurable with respect to σ (ν1, ..., νT ) .

Condition 2 holds under a variety of conditions that imply some form of weak dependence of

the process ψντ,t. These include, in addition to Condition 1(ii) and (iv), mixing or near epoch

dependence assumptions on the temporal dependence properties of the process ψντ,t. Assumption

3 holds under appropriate moment bounds and random sampling in the cross-section even if

the underlying population distribution is not independent (see Andrews, 2005, for a detailed

treatment).
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4.1 Stable Functional CLT

This section details the probabilistic setting we use to accommodate the results that Jacod and

Shiryaev (2002) (shorthand notation JS) develop for general Polish spaces. Let (Ω′,F ′, P ′) be

a probability space with increasing filtrations Fn

t ⊂ F and Fn

t ⊂ Fn

t+1 for any t = 1, ..., kn

and an increasing sequence kn → ∞ as n → ∞. Let D
R
kθ×R

kρ [0, 1] be the space of functions

[0, 1] → R
kθ × R

kρ that are right continuous and have left limits (see Billingsley (1968, p.109)).

Let C be a sub-sigma field of F ′. Let (ζ, Zn (ω, t)) : Ω′×[0, 1] → R× R
kθ×R

kρ be random variables

or random elements in R and D
R
kθ×R

kρ [0, 1], respectively defined on the common probability space

(Ω′,F ′, P ′) and assume that ζ is bounded and measurable with respect to C. Equip D
R
kθ×R

kρ [0, 1]

with the Skorohod topology, see JS (p.328, Theorem 1.14). By Billingsley (1968), Theorem 15.5

the uniform metric can be used to establish tightness for certain processes that are continuous in

the limit.

We use the results of JS to define a precise notion of stable convergence on D
R
kθ×R

kρ [0, 1].

JS (p.512, Definition 5.28) define stable convergence for sequences Zn defined on a Polish space.

We adopt their definition to our setting, noting that by JS (p.328, Theorem 1.14), D
R
kθ×R

kρ [0, 1]

equipped with the Skorohod topology is a Polish space. Also following their Definition VI1.1 and

Theorem VI1.14 we define the σ-field generated by all coordinate projections as D
R
kθ×R

kρ .

Definition 1 The sequence Zn converges C-stably if for all bounded ζ measurable with respect to

C and for all bounded continuous functions f defined on D
R
kθ×R

kρ [0, 1] there exists a probability

measure µ on (Ω′ ×D
R
kθ×R

kρ [0, 1] , C × D
R
kθ×R

kρ ) such that

E [ζf (Zn)] →
∫

Ω′×D
R
kθ×R

kρ [0,1]

ζ (ω′) f (x)µ (dω′, dx) .

As in JS, letQ (ω′, dx) be a distribution conditional on C such that µ (dω′, dx) = P ′ (dω′)Q (ω′, dx)

and let Qn (ω
′, dx) be a version of the conditional (on C) distribution of Zn. Then we can de-

fine the joint probability space (Ω,F , P ) with Ω = Ω′ × D
R
kθ×R

kρ [0, 1] , F = F ′ × D
R
kθ×R

kρ and

P = P (dω, dx) = P ′ (dω′)Q (ω′, dx) . Let Z (ω′, x) = x be the canonical element onD
R
kθ×R

kρ [0, 1] .

It follows that
∫
ζ (ω′) f (x)µ (dω′, dx) = E [ζQf ] .We say that Zn converges C-stably to Z if for

all bounded, C-measurable ζ,

E [ζf (Zn)] → E [ζQf ] . (14)
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More specifically, if W (r) is standard Brownian motion, we say that Zn ⇒W (r) C-stably where

the notation means that (14) holds when Q is Wiener measure (for a definition and existence proof

see Billingsley (1968, ch.9)). By JS Proposition VIII5.33 it follows that Zn converges C-stably iff

Zn is tight and for all A ∈ C, E [1Af (Z
n)] converges.

The concept of stable convergence was introduced by Renyi (1963) and has found wide appli-

cation in probability and statistics. Most relevant to the discussion here are the stable central

limit theorem of Hall and Heyde (1980) and Kuersteiner and Prucha (2013) who extend the result

in Hall and Heyde (1980) to panel data with fixed T . Dedecker and Merlevede (2002) established

a related stable functional CLT for strictly stationary martingale differences.

Following Billingsley (1968, p. 120) let πr1,...,rkZ
n =

(
Zn
r1
, ..., Zn

rk

)
be the coordinate projections

of Zn. By JS VIII5.36 and by the proof of Theorems 5.7 and 5.14 on p. 509 of JS (see also, Rootzen

(1983), Feigin (1985), Dedecker and Merlevede (2002, p. 1057)), C-stable convergence for Zn to

Z follows if E
[
ζf
(
Zn
r1, ..., Z

n
rk

)]
→ E [ζf (Zr1, ..., Zrn)] and Z

n is tight under the measure P. We

note that the first condition is equivalent to stable convergence of the finite dimensional vector of

random variables Zn
r1, ..., Z

n
rk

defined on R
k and is established with a multivariate stable central

limit theorem.

Theorem 1 Assume that Conditions 1, 2 and 3 hold. Then it follows that for ψ̃it defined in (13),

and as τ, n→ ∞ and T fixed,

Xnτ (r) ⇒


 By (1)

Bν (r)


 (C-stably)

where By (r) = Ωy
1/2Wy(r), Bν (r) =

∫ r
0
Ω̇ν (s)

1/2 dWν(s) and Ω (r) = diag (Ωy,Ων (r)) is C-
measurable, Ω̇ν (s) = ∂Ων (s) /∂s and (Wy (r) ,Wν (r)) is a vector of standard kφ-dimensional

Brownian processes independent of Ω.

Proof. In Appendix A.

Remark 2 Note that the component Wy (1) of W (r) does not depend on r. Thus, Wy (1) is simply

a vector of standard Gaussian random variables, independent both of Wν (r) and any random

variable measurable w.r.t C.
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The limiting random variables By (r) and Bν (r) both depend on C and are thus mutually

dependent. The representation By (1) = Ωy
1/2Wy(1), where a stable limit is represented as the

product of an independent Gaussian random variable and a scale factor that depends on C, is com-

mon in the literature on stable convergence. Results similar to the one for Bν (r) were obtained by

Phillips (1987, 1988) for cases where Ω̇ν (s) is non-stochastic and has an explicitly functional form,

notably for near unit root processes and when convergence is marginal rather than stable. Rootzen

(1983) establishes stable convergence but gives a representation of the limiting process in terms

of standard Brownian motion obtained by a stopping time transformation. The representation of

Bν (r) in terms of a stochastic integral over the random scale process Ω̇ν (s) seems to be new. It

is obtained by utilizing a technique mentioned in Rootzen (1983, p. 10) but not utilized there,

namely establishing finite dimensional convergence using a stable martingale CLT. This technique

combined with a tightness argument establishes the characteristic function of the limiting process.

The representation for Bν (r) is then obtained by utilizing results for characteristic functions of

affine diffusions in Duffie, Pan and Singletion (2000). Rootzen (1983, p.13) similarly utilizes char-

acteristic functions to identify the limiting distribution in the case of standard Brownian motion, a

much simpler scenario than ours. Finally, the results of Dedecker and Merlevede (2002) differ from

ours in that they only consider asymptotically homoskedastic and strictly stationary processes. In

our case, heteroskedasticity is explicitly allowed because of Ω̇ν (s) . An important special case of

Theorem 1 is the near unit root model discussed in more detail in Section 4.3.

More importantly, our results innovate over the literature by establishing joint convergence

between cross-sectional and time series averages that are generally not independent and whose

limiting distributions are not independent. This result is obtained by a novel construction that

embeds both data sets in a random field. A careful construction of information filtrations Gτn,n+i
allows to map the field into a martingale array. Similar techniques were used in Kuersteiner

and Prucha (2013) for panels with fixed T. In this paper we extend their approach to handle an

additional and distinct time series data-set and by allowing for both n and τ to tend to infinity

jointly. In addition to the more complicated data-structure we extend Kuersteiner and Prucha

(2013) by considering functional central limit theorems.

The following corollary is useful for possibly non-linear but trend stationary models.
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Corollary 1 Assume that Conditions 1, 2 and 3 hold. Then it follows that for ψ̃it defined in (13),

and as τ, n→ ∞ and T fixed,

Xnτ (1)
d→ B := Ω1/2W (C-stably)

where Ω = diag (Ωy,Ων (1)) is C-measurable and W = (Wy (1) ,Wν (1)) is a vector of standard

d-dimensional Gaussian random variables independent of Ω. The variables Ωy,Ων (.) ,Wy (.) and

Wν (.) are as defined in Theorem 1.

Proof. In Appendix A.

The result of Corollary 1 is equivalent to the statement that Xnτ (1)
d→ N (0,Ω) conditional

on positive probability events in C. As noted earlier, no simplification of the technical arguments

are possible by conditioning on C except in the trivial case where Ω is a fixed constant. Eagleson

(1975, Corollary 3), see also Hall and Heyde (1980, p. 59), establishes a simpler result where

Xnτ (1)
d→ B weakly but not (C-stably). Such results could in principle be obtained here as

well, but they would not be useful for the analysis in Sections 4.2 and 4.3 because the limiting

distributions of our estimators not only depend on B but also on other C-measurable scaling

matrices. Since the continuous mapping theorem requires joint convergence, a weak limit for B

alone is not sufficient to establish the results we obtain below.

Theorem 1 establishes what Phillips and Moon (1999) call diagonal convergence, a special

form of joint convergence. To see that sequential convergence where first n or τ go to infinity,

followed by the other index, is generally not useful in our set up, consider the following example.

Assume that d = kφ is the dimension of the vector ψ̃it. This would hold for just identified moment

estimators and likelihood based procedures. Consider the double indexed process

Xnτ (1) =

max(T,τ0+τ)∑

t=min(1,τ0+1)

n∑

i=1

ψ̃it (1) . (15)

For each τ fixed, convergence in distribution of Xnτ as n → ∞ follows from the central limit

theorem in Kuersteiner and Prucha (2013). Let Xτ denote the “large n, fixed τ” limit. For each n

fixed, convergence in distribution ofXnτ as τ → ∞ follows from a standard martingale central limit

theorem for Markov processes. Let Xn be the “large τ , fixed n” limit. It is worth pointing out that

the distributions of both Xn and Xτ are unknown because the limits are trivial in one direction.
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For example, when τ is fixed and n tends to infinity, the component τ−1/2
∑τ0+τ

t=τ0+1 ψ
ν
τ,t trivially

converges in distribution (it does not change with n) but the distribution of τ−1/2
∑τ0+τ

t=τ0+1 ψ
ν
τ,t

is generally unknown. More importantly, application of a conventional CLT for the cross-section

alone will fail to account for the dependence between the time series and cross-sectional compo-

nents. Sequential convergence arguments thus are not recommended even as heuristic justifications

of limiting distributions in our setting.

4.2 Trend Stationary Models

Let θ = (β, ν1, ..., νT ) and define the shorthand notation fit (θ, ρ) = f (yit|θ, ρ), gt (β, ρ) = g (νt|νt−1, β, ρ) ,

fθ,it (θ, ρ) = ∂fit (θ, ρ) /∂θ and gρ,t (β, ρ) = ∂gt (β, ρ) /∂ρ. Also let fit = fit (θ0, ρ0) , fθ,it =

fθ,it (θ0, ρ0) , gt = gt (β0, ρ0) and gρ,t = gρ,t (β0, ρ0) . Depending on whether the estimator under

consideration is maximum likelihood or moment based we assume that either (fθ,it, gρ,t) or (fit, gt)

satisfy the same Assumptions as
(
ψyit, ψ

ν
τ,t

)
in Condition 1. We recall that νt (β, ρ) is a function

of (zt, β, ρ), where zt are observable macro variables. For the CLT, the process νt = νt (ρ0, β0)

is evaluated at the true parameter values and treated as observed. In applications, νt will be

replaced by an estimate which potentially affects the limiting distribution of ρ. This dependence

is analyzed in a step separate from the CLT.

The next step is to use Corollary 1 to derive the joint limiting distribution of estimators for

φ = (θ′, ρ′)′. Define sνML (β, ρ) = τ−1/2
∑τ0+τ

t=τ0+1 ∂g (νt (β, ρ) |νt−1 (β, ρ) , β, ρ) /∂ρ and syML (θ, ρ) =

n−1/2
∑T

t=1

∑n
i=1 ∂f (yit|θ, ρ) /∂θ for maximum likelihood, and

sνM (β, ρ) = − (∂kτ (β, ρ) /∂ρ)
′W τ

τ τ
−1/2

τ0+τ∑

t=τ0+1

g (νt (β, ρ) |νt−1 (β, ρ) , β, ρ)

and syM (θ, ρ) = − (∂hn (θ, ρ) /∂θ)
′WC

n n
−1/2

∑T
t=1

∑n
i=1 f (yit|θ, ρ) for moment based estimators.

We use sν (β, ρ) and sy (θ, ρ) generically for arguments that apply to both maximum likelihood

and moment based estimators. The estimator φ̂ jointly satisfies the moment restrictions using

time series data

sν
(
β̂, ρ̂
)
= 0. (16)

and cross-sectional data

sy
(
θ̂, ρ̂
)
= 0. (17)
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Defining s (φ) =
(
sy (φ)′ , sν (φ)′

)′
the estimator φ̂ satisfies s

(
φ̂
)
= 0. A first order Taylor series

expansion around φ0 is used to obtain the limiting distribution for φ̂. We impose the following

additional assumption.

Condition 4 Let φ = (θ′, ρ′)′ ∈ R
kφ, θ ∈ R

kθ , and ρ ∈ R
kρ . DefineDnτ = diag

(
n−1/2Iy, τ

−1/2Iν
)
,where

Iy is an identity matrix of dimension kθ and Iν is an identity matrix of dimension kρ. Let

WC = plimnW
C
n and W τ = plimτ W

τ
τ and assume the limits to be positive definite and C-

measurable. Define h (θ, ρ) = plimn hn (β, νt, ρ) and k (β, ρ) = plimτ kτ (β, ρ) . Assume that for

some ε > 0,

i) supφ:‖φ−φ0‖≤ε
∥∥(∂kτ (β, ρ) /∂ρ)′W τ

τ − ∂k (β, ρ)′ /∂ρW τ
∥∥ = op (1) ,

ii) supφ:‖φ−φ0‖≤ε
∥∥(∂hn (θ, ρ) /∂θ)′WC

n − (∂h (θ, ρ) /∂θ)′WC
∥∥ = op (1) ,

iii)s supφ:‖φ−φ0‖≤ε

∥∥∥∂s(φ)∂φ′
Dnτ − A (φ)

∥∥∥ = op (1) where A (φ) is C-measurable and A = A (φ0) is full

rank almost surely. Let κ = limn/τ,

A =


 Ay,θ

√
κAy,ρ

1√
κ
Aν,θ Aν,ρ




with Ay,θ = plim n−1∂sy (φ0) /∂θ
′, Ay,ρ = plim n−1∂sy (φ0) /∂ρ

′, Aν,θ = plim τ−1∂sν (φ0) /∂θ
′ and

Aν,ρ = plim τ−1∂sν (φ0) /∂ρ
′.

Condition 5 For maximum likelihood criteria the following holds:

i) for any s, r ∈ [0, 1] with r > s, 1
τ

∑τ0+[τr]
t=τ0+[τs]+1 gρ,tg

′
ρ,t

p→ Ων (r) − Ων (s) as τ → ∞ and where

Ων (r) satisfies the same regularity conditions as in Condition 2(ii).

ii) 1
n

∑n
i=1 fθ,itf

′
θ,it

p→ Ωty for all t ∈ [1, ..., T ] and where Ωty is positive definite a.s. and measurable

with respect to σ (ν1, ..., νT ) . Let Ωy =
∑T

t=1 Ωty.

Condition 6 For moment based criteria the following holds:

i) for any s, r ∈ [0, 1] with r > s, 1
τ

∑τ0+[τr]
t,q=τ0+[τs]+1 gtg

′
q

p→ Ωg (r) − Ωg (s) as τ → ∞ and where

Ωg (r) satisfies the same regularity conditions as in Condition 2(ii).

ii) 1
n

∑n
i=1 fitf

′
ir

p→ Ωt,rf for all t, s ∈ [1, ..., T ] Let Ωf =
∑T

t,r=1Ωt,sf . Assume that Ωf is positive

definite a.s. and measurable with respect to σ (ν1, ..., νT ).
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Condition 6 accounts for the possibility of misspecification of the model. In that case, the

martingale difference property of the moment conditions may not hold, necessitating the use of

robust standard errors through long run variances.

The following result establishes the joint limiting distribution of φ̂.

Theorem 2 Assume that Conditions 1, 4, and either 5 with
(
ψyit, ψ

ν
τ,t

)
= (fθ,it, gρ,t) in the case of

likelihood based estimators or 6 with
(
ψyit, ψ

ν
τ,t

)
= (fit, gt) in the case of moment based estimators

hold. Assume that φ̂− φ0 = op (1) and that (16) and (17) hold. Then,

D−1
nτ

(
φ̂− φ0

)
d→ −A−1Ω1/2W (C-stably)

where A is full rank almost surely, C-measurable and is defined in Condition 4. The distribution

of Ω1/2W is given in Corollary 1. In particular, Ω = diag (Ωy,Ων (1)). Then the criterion is

maximum likelihood Ωy and Ων (1) are given in Condition 5. When the criterion is moment based,

Ωy = ∂h(θ0,ρ0)
′

∂θ
WCΩfW

C′ ∂h(θ0,ρ0)
∂θ

and Ων (1) = ∂k(β0,ρ0)
′

∂ρ
W τΩg (1)W

τ ′ ∂k(β0,ρ0)
∂ρ

with Ωf and Ωg (1)

defined in Condition 6.

Proof. In Appendix A.

Corollary 2 Under the same conditions as in Theorem 2 it follows that

√
n
(
θ̂ − θ0

)
d→ −Ay,θΩ1/2

y Wy (1)−
√
κAy,ρΩ1/2

ν (1)Wν (1) (C-stably). (18)

where

Ay,θ = A−1
y,θ + A−1

y,θAy,ρ
(
Aν,ρ − Aν,θA

−1
y,θAy,ρ

)−1
Aν,θA

−1
y,θ

Ay,ρ = −A−1
y,θAy,ρ

(
Aν,ρ − Aν,θA

−1
y,θAy,ρ

)−1
.

For

Ωθ = Ay,θΩyA
y,θ′ + κAy,ρΩν (1)A

y,ρ′

it follows that
√
nΩ

−1/2
θ

(
θ̂ − θ0

)
d→ N (0, I) (C-stably). (19)
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Note that Ωθ, the asymptotic variance of
√
n
(
θ̂ − θ0

)
conditional on C, in general is a random

variable, and the asymptotic distribution of θ̂ is mixed normal. However, as in Andrews (2005), the

result in (19) can be used to construct an asymptotically pivotal test statistic. For a consistent

estimator Ω̂θ the statistic
√
nΩ̂

−1/2
θ

(
Rθ̂ − r

)
is asymptotically distribution free under the null

hypothesis Rθ − r = 0 where R is a conforming matrix of dimension q × kθ and and r a q × 1

vector.

4.3 Unit Root Time Series Models

In this section we consider the special case where νt follows an autoregressive process of the form

νt+1 = ρνt + ηt. As in Hansen (1992), Phillips (1987, 1988, 2014) we allow for nearly integrated

processes where ρ = exp (γ/ τ) is a scalar parameter localized to unity such that

ντ,t+1 = exp (γ/ τ) ντ,t + ηt+1 (20)

and the notation ντ,t emphasizes that ντ,t is a sequence of processes indexed by τ . We assume that

τ−1/2ντ,min(1,τ0) = ν0 = V (0) a.s.

where ν0 is a potentially nondegenerate random variable. In other words, the initial condition for

(20) is ντ,min(1,τ0) = τ 1/2ν0. We explicitly allow for the case where ν0 = 0, to model a situation

where the initial condition can be ignored. This assumption is similar, although more parametric

than, the specification considered in Kurtz and Protter (1991). We limit our analysis to the case

of maximum likelihood criterion functions. Results for moment based estimators can be developed

along the same lines as in Section 4.2 but for ease of exposition we omit the details. For the unit

root version of our model we assume that νt is observed in the data and that the only parameter to

be estimated from the time series data is ρ. Further assuming a Gaussian quasi-likelihood function

we note that the score function now is

gρ,t (β, ρ) = ντ,t−1 (ντ,t − ντ,t−1ρ) . (21)

The estimator ρ̂ solving sample moment conditions based on (21) is the conventional OLS estimator

given by

ρ̂ =

∑τ
t=τ0+1 ντ,t−1ντ,t∑τ
t=τ0+1 ν

2
τ,t−1

.
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We continue to use the definition for fθ,it (θ, ρ) in Section 4.2 but now consider the simplified case

where θ0 = (β, ν0). We note that in this section, ν0 rather than ντ,min(1,τ0) is the common shock

used in the cross-sectional model. The implicit scaling of ντ,min(1,τ0) by τ
−1/2 is necessary in the

cross-sectional specification to maintain a well defined model even as τ → ∞.

Consider the joint process (Vτn (r) , Yτn) where Vτn (r) = τ−1/2ντ [τr], and

Yτn =

T∑

t=1

n∑

i=1

fθ,it√
n
.

Note that ∫ r

0

VτndWτn = τ−1

τ0+[τr]∑

t=τ0+1

ντ,t−1ηt

with Wτn (r) = τ−1/2
∑τ0+[τr]

t=τ0+1 ηt. We define the limiting process for Vτn (r) as

Vγ,V (0) (r) = eγrV (0) +

∫ r

0

σeγ(r−s)dWν (s) (22)

whereWν is defined in Theorem 1. When ν0 = 0, Theorem 1 directly implies that e−γ[rτ ]/τVτn (r) ⇒
∫ r
0
σe−sγdWν (s) C-stably noting that in this case Ων (s) = σ2 (1− exp (−2sγ)) 2γ and Ω̇ν (s)

1/2 =

σe−sγ. The familiar result (cf. Phillips 1987) that Vτn (r) ⇒
∫ r
0
σeγ(r−s)dWν (s) then is a conse-

quence of the continuous mapping theorem. The case in (22) where ν0 is a C-measurable random

variable now follows from C-stable convergence of Vτn (r) . In this section we establish joint C-stable
convergence of the triple

(
Vτn (r) , Yτn,

∫ r
0
VτndWτn

)
.

Let φ = (θ′, ρ)′ ∈ R
kφ, θ ∈ R

kθ , and ρ ∈ R. The true parameters are denoted by θ0 and

ρτ0 = exp (γ0/τ) with γ0 ∈ R and both θ0 and γ0 bounded. We impose the following modified

assumptions to account for the the specific features of the unit root model.

Condition 7 Define C = σ (ν0). Define the σ-fields Gn,|min(1,τ0)|n+i in the same way as in (10)

except that here τ = κn such that dependence on τ is suppressed and that νt is replaced with ηt as

in

Gτn,(t−min(1,τ0))n+i = σ
({
yjt−1, yjt−2, . . . , yjmin(1,τ0)

}n
j=1

,
{
ηt, ηt−1, . . . , ηmin(1,τ0)

}
, (yj,t)

i
j=1

)
∨ C

Assume that

i) fθ,it is measurable with respect to Gτn,(t−min(1,τ0))n+i.
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ii) ηt is measurable with respect to Gτn,(t−min(1,τ0))n+i for all i = 1, ..., n

iii) for some δ > 0 and C <∞, supitE
[
‖fθ,it‖2+δ

]
≤ C

iv) for some δ > 0 and C <∞, suptE
[
‖ηt‖2+δ

]
≤ C

v) E
[
fθ,it|Gτn,(t−min(1,τ0))n+i−1

]
= 0

vi) E
[
ηt|Gτn,(t−min(1,τ0)−1)n+i

]
= 0 for t > T and all i = {1, ..., n}.

vii) For any 1 > r > s ≥ 0 fixed let Ωr,sτ,η = τ−1
∑τ0+[τr]

t=min(1,τ0)+[τs]+1E
[
η2t |Gτn,(t−min(1,τ0)−1)n+n

]
.

Then, Ωr,sτ,η →p (r − s) σ2.

viii) Assume that 1
n

∑n
i=1 fθ,itf

′
θ,it

p→ Ωty where Ωty is positive definite a.s. and measurable with

respect to C. Let Ωy =
∑T

t=1Ωty.

Conditions 7(i)-(vi) are the same as Conditions 1 (i)-(vi) adapted to the unit root model. Con-

dition 7(vii) replaces Condition 2. It is slightly more primitive in the sense that if η2t is homoskedas-

tic, Condition 7(vii) holds automatically and convergence of τ−1
∑τ0+[τr]

t=min(1,τ0)+[τs]+1 η
2
t → (r − s) σ2

follows from an argument given in the proofs rather than being assumed. On the other hand,

Condition 7(vii) is somewhat more restrictive than Condition 2 in the sense that it limits het-

eroskedasticity to be of a form that does not affect the limiting distribution. In other words,

we essentially assume τ−1
∑τ0+[τr]

t=min(1,τ0)+[τs]+1 η
2
t to be proportional to r − s asymptotically. This

assumption is stronger than needed but helps to compare the results with the existing unit root

literature.

For Condition 7(viii) we note that typically Ωty (φ) = E
[
fθ,itf

′
θ,it

]
and Ωty = Ωty (φ0) where

φ0 = (β ′
0, ν

′
0, ρτ0). Thus, even if Ωty (.) is non-stochastic, it follows that Ωty is random and mea-

surable with respect to C because it depends on ν0 which is a random variable measurable w.r.t

C.
The following results are established by modifying arguments in Phillips (1987) and Chan and

Wei (1987) to account for C-stable convergence and by applying Theorem 1.

Theorem 3 Assume that Conditions 7 hold. As τ, n → ∞ and T fixed with τ = κn for some

κ ∈ (0,∞) it follows that

(
Vτn (r) , Yτn,

∫ s

0

VτndWτn

)
⇒
(
Vγ,V (0) (r) ,Ω

1/2
y Wy (1) ,

∫ s

0

σVγ,V (0)dWν

)
(C-stably)

in the Skorohod topology on DRd [0, 1] .
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Proof. In Appendix A.

We now employ Theorem 3 to analyze the limiting behavior of θ̂ when the common factors are

generated from a linear unit root process. To derive a limiting distribution for φ̂ we impose the

following additional assumption.

Condition 8 Let θ̂ = argmax
∑T

t=1

∑n
i=1 f (yit|θ, ρ̂). Assume that

(
θ̂ − θ0

)
= Op

(
n−1/2

)
.

Condition 9 Let s̃yit (φ) = fθ,it (φ) /
√
n and s̃νit (φ) = 1 {i = 1} gρ,t (φ) /τ . Assume that s̃yit (φ) :

R
kθ→ R

kθ , s̃νit (φ) : R → R and define Dnτ = diag
(
n−1/2Iy, τ

−1
)
, where Iy is an identity matrix of

dimension kθ. Let κ = limn/τ 2. Let Ay,θ (φ) =
∑T

t=1E [∂syit (φ) /∂θ
′] ,

Ay,ρ (φ) =

T∑

t=1

E [∂syit (φ) /∂ρ]

and define Ay (φ) =
[
Ay,θ (φ)

√
κAy,ρ (φ)

]
where A (φ) is a kθ× kφ dimensional matrix of non-

random functions φ→ R. Assume that Ay,θ (φ0) is full rank almost surely. Assume that for some

ε > 0,

sup
φ:‖φ−φ0‖≤ε

∥∥∥∥∥∥

max(T,τ0+τ)∑

t=min(1,τ0+1)

n∑

i=1

∂s̃yit (φ)

∂φ′ Dnτ − Ay (φ)

∥∥∥∥∥∥
= op (1)

We make the possibly simplifying assumption that A (φ) only depends on the factors through

the parameter θ.

Theorem 4 Assume that Conditions 7, 8 and 9 hold. It follows that

√
n
(
θ̂ − θ0

)
d→ −A−1

y,θΩ
1/2
y Wy (1)−

√
κA−1

y,θAy,ρ

(∫ 1

0

V 2
γ,V (0)dr

)−1(∫ 1

0

σVγ,V (0)dWν

)
(C-stably).

Proof. In Appendix A.

The result in Theorem 4 is an example that shows how common factors affecting both time

series and cross-section data can lead to non-standard limiting distributions. In this case, the

initial condition of the unit root process in the time series dimension causes dependence between

the components of the asymptotic distribution of θ̂ because both Ωy and Vγ,V (0) in general depend

on ν0. Thus, the situation encountered here is generally more difficult than the one considered

in Stock and Yogo (2006) and Phillips (2014). In addition, because the limiting distribution of

θ̂ is not mixed asymptotically normal, simple pivotal test statistics as in Andrews (2005) are not

readily available contrary to the stationary case.
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5 Summary

We develop a new limit theory for combined cross-sectional and time-series data sets. We focus

on situations where the two data sets are interdependent because of common factors that affect

both. The concept of stable convergence is used to handle this dependence when proving a joint

Central Limit Theorem. Our analysis is cast in a generic framework of cross-section and time-

series based criterion functions that jointly, but not individually, identify the parameters. Within

this framework, we show how our limit theory can be used to derive asymptotic approximations to

the sampling distribution of estimators that are based on data from both samples. We explicitly

consider the unit root case as an example where particularly difficult to handle limiting expressions

arise. Our results are expected to be helpful for the econometric analysis of rational expectation

models involving individual decision making as well as general equilibrium settings. We investigate

these topics, and related implementation issues, in a companion paper.
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Appendix

A Proofs for Section 4

A.1 Proof of Theorem 1

To prove the functional central limit theorem we follow Billingsley (1968) and Dedecker and

Merlevede (2002). The proof involves establishing finite dimensional convergence and a tightness

argument. For finite dimensional convergence fix r1 < r2 < · · · < rk ∈ [0, 1]. Define the increment

∆Xnτ (ri) = Xnτ (ri)−Xnτ (ri−1) . (23)

Since there is a one to one mapping betweenXnτ (r1) , ..., Xnτ (rk) andXnτ (r1) ,∆Xnτ (r2) , ...,∆Xnτ (rk)

we establish joint convergence of the latter. The proof proceeds by checking that the conditions

of Theorem 1 in Kuersteiner and Prucha (2013) hold. Let kn = max(T, τ)n where both n → ∞
and τ → ∞ such that clearly kn → ∞ (this is a diagonal limit in the terminology of Phillips and

Moon, 1999). Let d = kθ + kρ. To handle the fact that Xnτ ∈ R
d we use Lemmas A.1 - A.3 in

Phillips and Durlauf (1986). Define λj =
(
λ′j,y, λ

′
j,ν

)′
and let λ = (λ1, . . . , λk) ∈ R

dk with ‖λ‖ = 1.

Define t∗ = t−min (1, τ0).

For each n and τ0 define the mapping q (t, i) : N2
+ → N+ as q (i, t) := t∗n+i and note that q (i, t)

is invertible, in particular for each q ∈ {1, ..., kn} there is a unique pair t, i such that q (i, t) = q.

We often use shorthand notation q for q (i, t). Let

ψ̈q(i,t) ≡
k∑

j=1

λ′j

(
∆ψ̃it (rj)− E

[
∆ψ̃it (rj) |Gτn,t∗n+i−1

])
(24)

where

∆ψ̃it (rj) = ψ̃it (rj)− ψ̃it (rj−1) ; ∆ψ̃it (r1) = ψ̃it (r1) . (25)

Note that ∆ψ̃it (rj) =
(
∆ψ̃yit (rj) ,∆ψ̃

ν
t (rj)

)′
with

∆ψ̃yit (rj) =





0 for j > 1

ψ̃yit for j = 1
(26)
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and

∆ψ̃νit (rj) =





ψ̃ντ,t (rj) if [τrj−1] < t ≤ [τrj ] and i = 1

0 otherwise
. (27)

Using this notation and noting that
∑max(T,τ0+τ)

t=min(1,τ0+1)

∑n
i=1 ψ̈q(i,t) =

∑kn
q=1 ψ̈q, we write

λ′1Xnτ (r1) +
k∑

j=2

λ′j∆Xnτ (rj)

=

kn∑

q=1

ψ̈q +

max(T,τ0+τ)∑

t=min(1,τ0+1)

n∑

i=1

k∑

j=1

λ′jE
[
∆ψ̃it (rj)

∣∣∣Gτn,t∗n+i−1

]
(28)

First analyze the term
∑kn

q=1 ψ̈q. Note that ψyn,it is measurable with respect to Gτn,t∗n+i by con-

struction. Note that by (24), (26) and (27) the individual components of ψ̈q are either 0 or equal

to ψ̃it (rj)−E
[
ψ̃it (rj) |Gτn,t∗n+i−1

]
respectively. This implies that ψ̈q is measurable with respect to

Gτn,q, noting in particular that E
[
ψ̃it (rj) |Gτn,t∗n+i−1

]
is measurable w.r.t Gτn,t∗n+i−1 by the prop-

erties of conditional expectations and Gτn,t∗n+i−1 ⊂ Gτn,q. By construction, E
[
ψ̈r|Gτn,q−1

]
= 0.

This establishes that for Snq =
∑q

s=1 ψ̈s,

{Snq,Gτn,q, 1 ≤ q ≤ kn, n ≥ 1}

is a mean zero martingale array with differences ψ̈q.

To establish finite dimensional convergence we follow Kuersteiner and Prucha (2013) in the

proof of their Theorem 2. Note that, for any fixed n and given q, and thus for a corresponding

unique vector (t, i) , there exists a unique j ∈ {1, . . . , k} such that τ0 + [τrj−1] < t ≤ τ0 + [τrj ] .

Then,

ψ̈q(i,t) =
k∑

l=1

λ′l

(
∆ψ̃it (rl)− E

[
∆ψ̃it (rl) |Gτn,t∗n+i−1

])

= λ′1,y

(
ψ̃yit − E

[
ψ̃yit|Gτn,t∗n+i−1

])
1 {j = 1}

+ λ′j,ν

(
ψ̃ντ,t (rj)− E

[
ψ̃ντ,t (rj) |Gτn,t∗n+i−1

])
1 {[τrj−1] < t ≤ [τrj ]} 1 { i = 1}

where all remaining terms in the sum are zero because of by (24), (26) and (27). For the subsequent

inequalities, fix q ∈ {1, ..., kn} (and the corresponding (t, i) and j) arbitrarily. Introduce the

shorthand notation 1j = 1 {j = 1} and 1ij = 1 {[τrj−1] < t ≤ [τrj]} 1 { i = 1} .
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First, note that for δ ≥ 0, and by Jensen’s inequality applied to the empirical measure 1
4

∑4
i=1 xi

we have that

∣∣∣ψ̈q
∣∣∣
2+δ

= 42+δ
∣∣∣∣
1

4
λ′1,y

(
ψ̃yit − E

[
ψ̃yit|Gτn,t∗n+i−1

])
1j +

1

4
λ′j,ν

(
ψ̃ντ,t (rj)−E

[
ψ̃ντ,t (rj) |Gτn,t∗n+i−1

])
1ij

∣∣∣∣
2+δ

≤ 42+δ
(
1

4
‖λ1,y‖2+δ

∥∥∥ψ̃yit
∥∥∥
2+δ

+
1

4
‖λ1,y‖2+δ

∥∥∥E
[
ψ̃yit|Gτn,t∗n+i−1

]∥∥∥
2+δ
)
1j

+ 42+δ
(
1

4
‖λj,ν‖2+δ

∥∥∥ψ̃ντ,t (rj)
∥∥∥
2+δ

+
1

4
‖λj,ν‖2+δ

∥∥∥E
[
ψ̃ντ,t (rj) |Gτn,t∗n+i−1

]∥∥∥
2+δ
)
1ij

= 22+2δ

(
‖λ1,y‖2+δ

∥∥∥ψ̃yit
∥∥∥
2+δ

+ ‖λ1,y‖2+δ
∥∥∥E
[
ψ̃yit|Gτn,t∗n+i−1

]∥∥∥
2+δ
)
1j

+ 22+2δ

(
‖λj,ν‖2+δ

∥∥∥ψ̃ντ,t (rj)
∥∥∥
2+δ

+ ‖λj,ν‖2+δ
∥∥∥E
[
ψ̃ντ,t (rj) |Gτn,t∗n+i−1

]∥∥∥
2+δ
)
1ij .

We further use the definitions in (11) such that by Jensen’s inequality and for i = 1 and t ∈
[τ0 + 1, τ0 + τ ]

∥∥∥ψ̃ντ,t (rj)
∥∥∥
2+δ

+
∥∥∥E
[
ψ̃ντ,t (rj) |Gτn,t∗n+i−1

]∥∥∥
2+δ

≤ 1

τ 1+δ/2

(∥∥ψντ,t
∥∥2+δ +

(
E
[∥∥ψντ,t

∥∥ |Gτn,t∗n+i−1

])2+δ)

≤ 1

τ 1+δ/2

(∥∥ψντ,t
∥∥2+δ + E

[∥∥ψντ,t
∥∥2+δ |Gτn,t∗n+i−1

])

while for i > 1 or t /∈ [τ0 + 1, τ0 + τ ] , ∥∥∥ψ̃νit
∥∥∥ = 0.

Similarly, for t ∈ [1, ..., T ]

∥∥∥ψ̃yit
∥∥∥
2+δ

+
∥∥∥E
[
ψ̃yit|Gτn,t∗n+i−1

]∥∥∥
2+δ

≤ 1

n1+δ/2

(
‖ψyit‖

2+δ + E
[
‖ψyit‖

2+δ |Gτn,t∗n+i−1

])

while for t /∈ [1, ..., T ] ∥∥∥ψ̃yit
∥∥∥ = 0.

Noting that ‖λj,y‖ ≤ 1 and ‖λj,ν‖ < 1,

E

[∣∣∣ψ̈q
∣∣∣
2+δ
∣∣∣∣Gτn,q−1

]
≤ 23+2δ1 {i = 1, t ∈ [τ0 + 1, τ0 + τ ]}

τ 1+δ/2
E
[∥∥ψντ,t

∥∥2+δ
∣∣∣Gτn,t∗n+i−1

]

+
23+2δ1 {t ∈ [1, ..., T ]}

n1+δ/2
E
[
‖ψyit‖

2+δ
∣∣∣Gτn,t∗n+i−1

]
, (29)
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where the inequality in (29) holds for δ ≥ 0. To establish the limiting distribution of
∑kn

q=1 ψ̈q we

check that
kn∑

q=1

E

[∣∣∣ψ̈q
∣∣∣
2+δ
]
→ 0, (30)

kn∑

q=1

ψ̈2
q

p→
∑

t∈{1,..,T}
λ′1,yΩytλ1,y +

k∑

j=1

λ′j,νΩν (rj − rj−1) λj,ν, (31)

and

sup
n
E



(

kn∑

q=1

E
[
ψ̈2
q

∣∣∣Gτn,q−1

])1+δ/2

 <∞, (32)

which are adapted to the current setting from Conditions (A.26), (A.27) and (A.28) in Kuersteiner

and Prucha (2013). These conditions in turn are related to conditions of Hall and Heyde (1980)

and are shown by Kuersteiner and Prucha (2013) to be sufficient for their Theorem 1.

To show that (30) holds note that from (29) and Condition 1 it follows that for some constant

C <∞,

kn∑

q=1

E

[∣∣∣ψ̈q
∣∣∣
2+δ
]
≤ 23+2δ

τ 1+δ/2

τ0+τ∑

t=τ0+1

E
[∥∥ψντ,t

∥∥2+δ
∣∣∣Gτn,t∗n

]

+
23+2δ

n1+δ/2

T∑

t=1

n∑

i=1

E
[
‖ψyit‖

2+δ
∣∣∣Gτn,t∗n

]

≤ 23+2δτC

τ 1+δ/2
+

23+2δnTC

n1+δ/2
=

23+2δC

τ δ/2
+

23+2δTC

nδ/2
→ 0

because 23+2δC and T are fixed as τ, n→ ∞.

Next, consider the probability limit of
∑kn

q=1 ψ̈
2
q . We have

kn∑

q=1

ψ̈2
q

=
1

τ

k∑

j=1

τ0+τ∑

t=τ0+1

(
λ′j,ν

(
ψντ,t −E

[
ψντ,t|Gτn,t∗n

]))2
1ij (33)

+
2√
τn

∑

t∈{τ0,...,τ0+τ}
∩{min(1,τ0),..,T}

λ′1,ν
(
ψντ,t − E

[
ψντ,t|Gτn,t∗n

])
(ψy1t − E [ψy1t|Gτn,t∗n])′ λ1,y1 {t ≤ τ0 + [τr1]} 1ij1j

(34)

+
1

n

∑

t∈{min(1,τ0),..,T}

n∑

i=1

(
λ′1,y

(
ψyn,it −E

[
ψyn,it|Gτn,t∗n+i−1

]))2
1j (35)

34



where for (33) we note that E
[
ψντ,t|Gτn,t∗n

]
= 0 when t > T . This implies that

1

τ

k∑

j=1

τ0+τ∑

t=τ0+1

(
λ′j,ν

(
ψντ,t −E

[
ψντ,t|Gτn,t∗n

]))2
1ij

=
1

τ

k∑

j=1

∑

t∈{τ0,...,τ0+τ}∩{min(1,τ0+1),..,T}

(
λ′j,ν

(
ψντ,t − E

[
ψντ,t|Gτn,t∗n

]))2
1ij

+
1

τ

k∑

j=1

τ0+τ∑

t=max{τ0,T}

(
λ′j,νψ

ν
τ,t

)2
1ij

where by Condition 2

1

τ

k∑

j=1

τ0+τ∑

t=max{τ0,T}

(
λ′j,νψ

ν
τ,t

)2
1 {τ0 + [τrj−1] < t ≤ τ0 + [τrj ]}

p→
k∑

j=1

λ′j,ν (Ων (rj)− Ων (rj−1)) λj,ν

and

E




∥∥∥∥∥∥∥∥

1

τ

k∑

j=1

∑

t∈{τ0,...,τ0+τ}
∩{min(1,τ0+1),..,T}

(
λ′jν
(
ψντ,t − E

[
ψντ,t|Gτn,t∗n

]))2
1ij

∥∥∥∥∥∥∥∥

1+δ/2

 (36)

=
1

τ 1+δ/2
E







k∑

j=1

∑

t∈{τ0,...,τ0+τ}
∩{min(1,τ0+1),..,T}

∥∥λ′ν
(
ψντ,t − E

[
ψντ,t|Gτn,t∗n

])∥∥2 1ij




1+δ/2



≤ (T + |τ0|)δ/2 kδ/2
τ 1+δ/2

k∑

j=1

∑

t∈{τ0,...,τ0+τ}∩{min(1,τ0+1),..,T}
E
[∥∥λ′ν

(
ψντ,t − E

[
ψντ,t|Gτn,t∗n

])∥∥2+δ
]

≤ 22+δ (T + |τ0|)1+δ/2 k1+δ/2
τ 1+δ/2

sup
t
E
[∥∥ψντ,t

∥∥2+δ
]
→ 0,

where the first inequality follows from noting that the set {τ0, ..., τ0 + τ} ∩ {min (1, τ0) , .., T} has

at most T + |τ0| elements and from using Jensen’s inequality on the counting measure. The second

inequality follows from Hölder’s inequality. Finally, we use the fact that (T + |τ0|) /τ → 0 and

suptE
[∥∥ψντ,t

∥∥2+δ
]
≤ C <∞ by Condition 1(iv).
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Next consider (34) where

E




∣∣∣∣∣∣∣∣

2√
τn

∑

t∈{τ0,...,τ0+τ}
∩{min(1,τ0),..,T}

λ′1,ν
(
ψντ,t − E

[
ψντ,t|Gτn,t∗n+i−1

])
(ψy1t − E [ψy1t|Gτn,t∗n])′ λ1,y1 {t ≤ τ0 + [τr1]}

∣∣∣∣∣∣∣∣




≤ 2√
τn

∑

t∈{τ0,...,τ0+τ}
∩{min(1,τ0),..,T}

{(
E
[∣∣λ′1ν

(
ψντ,t −E

[
ψντ,t|Gτn,t∗n

])∣∣2
])1/2

×
(
E
[∣∣(ψy1t − E [ψy1t|Gτn,t∗n])′ λ1y

∣∣2
])1/2}

1 {τ0 < t ≤ τ0 + [τrj ]} (37)

≤ 23√
τn

sup
t

(
E
[∥∥ψντ,t

∥∥])1/2 ∑

t∈{τ0,...,τ0+τ}
∩{min(1,τ0),..,T}

(
E
[∣∣(ψy1t − E [ψy1t|Gτn,t∗n])′ λ1,y

∣∣2
])1/2

(38)

≤ 24T + |τ0|√
τn

sup
t

(
E
[∥∥ψντ,t

∥∥])1/2
(
sup
i,t
E
[∥∥ψyn,it

∥∥2
])1/2

→ 0 (39)

where the first inequality in (37) follows from the Cauchy-Schwartz inequality, (38) uses Condition

1(iv), and the last inequality uses Condition 1(iii). Then we have in (38), by Condition 1(iii) and

the Hölder inequality that

E
[∣∣(ψy1t − E [ψy1t|Gτn,t∗n])′ λy

∣∣2
]
≤ 2E

[
‖ψy1t‖2

]

such that (39) follows.

We note that (39) goes to zero as long as T/
√
τn→ 0. Clearly, this condition holds as long as

T is held fixed, but holds under weaker conditions as well.

Next the limit of (35) is, by Condition 1(v) and Condition 3,

1

n

∑

t∈{1,..,T}

n∑

i=1

(
λ′1,y

(
ψyn,it − E

[
ψyn,it|Gτn,t∗n+i−1

]))2 p→
∑

t∈{1,..,T}
λ′1,yΩytλ1,y.

This verifies (31). Finally, for (32) we check that

sup
n
E



(

kn∑

q=1

E

[∣∣∣ψ̈q
∣∣∣
2
∣∣∣∣Gτn,q−1

])1+δ/2

 <∞. (40)

First, use (29) with δ = 0 to obtain

kn∑

q=1

E

[∣∣∣ψ̈q
∣∣∣
2
∣∣∣∣Gτn,q−1

]
≤ 23

τ

τ0+τ∑

t=τ0

E
[∥∥ψντ,t

∥∥2
∣∣∣Gτn,t∗n

]

+
23

n

∑

t∈{1,..,T}

n∑

i=1

E
[∥∥ψyn,it

∥∥2
∣∣∣Gτn,t∗n+i−1

]
. (41)
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Applying (41) to (40) and using the Hölder inequality implies

E



(

kn∑

q=1

E

[∣∣∣ψ̈q
∣∣∣
2
∣∣∣∣Gτn,q−1

])1+δ/2



≤ 2δ/2E



(
23

τ

τ0+τ∑

t=τ0+1

E
[∥∥ψντ,t

∥∥2
∣∣∣Gτn,t∗n+i−1

])1+δ/2



+ 2δ/2E





23

n

∑

t∈{τ0,...,τ0+τ}∩{1,..,T}

n∑

i=1

E
[∥∥ψyn,it

∥∥2
∣∣∣Gτn,t∗n+i−1

]



1+δ/2



By Jensen’s inequality, we have

(
1

τ

τ0+τ∑

t=τ0+1

E
[∥∥ψντ,t

∥∥2
∣∣∣Gτn,t∗n+i−1

])1+δ/2

≤ 1

τ

τ0+τ∑

t=τ0+1

E
[∥∥ψντ,t

∥∥2
∣∣∣Gτn,t∗n+i−1

]1+δ/2

and

E
[∥∥ψντ,t

∥∥2
∣∣∣Gτn,t∗n+i−1

]1+δ/2
≤ E

[∥∥ψντ,t
∥∥2+δ

∣∣∣Gτn,t∗n+i−1

]

so that

E



(
23

τ

τ0+τ∑

t=τ0+1

E
[∥∥ψντ,t

∥∥2
∣∣∣Gτn,t∗n+i−1

])1+δ/2

 ≤ 23+3δ/2

τ

τ0+τ∑

t=τ0+1

E
[
E
[∥∥ψντ,t

∥∥2+δ
∣∣∣Gτn,t∗n+i−1

]]

≤ 23+3δ/2 sup
t
E
[∥∥ψντ,t

∥∥2+δ
]
<∞. (42)

and similarly, for all τ > T (which holds eventually)

E





23

n

∑

t∈{1,..,T}

n∑

i=1

E
[∥∥ψyn,it

∥∥2 |Gτn,t∗n+i−1

]



1+δ/2

 (43)

≤ 23+3δ/2 (Tn)δ/2

n1+δ/2

T∑

t=1

n∑

i=1

E
[∥∥ψyn,it

∥∥2+δ
]

≤ 23+3δ/2T 1+δ/2 sup
i,t
E
[∥∥ψyn,it

∥∥2+δ
]
<∞

By combining (42) and (43) we obtain the following bound for (40),

E



(

kn∑

q=1

E

[∣∣∣ψ̈q
∣∣∣
2+δ

|Gτn,q−1

])1+δ/2



≤ 23+3δ/2 sup
t
E
[∥∥ψντ,t

∥∥2+δ
]
+ 23+3δ/2T 1+δ/2 sup

i,t
E
[∥∥ψyn,it

∥∥2+δ
]
<∞.
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This establishes that (30), (31) and (32) hold and thus establishes the CLT for
∑kn

q=1 ψ̈q.

It remains to be shown that the second term in (28) can be neglected. Consider

max(T,τ0+τ)∑

t=min(1,τ0+1)

n∑

i=1

k∑

j=1

λ′jE
[
∆ψ̃it (rj) |Gτn,t∗n+i−1

]

= τ−1/2
τ0+τ∑

t=τ0

k∑

j=1

λ′j,νE
[
ψντ,t|Gτn,t∗n+i−1

]
1 {τ0 + [τrj−1] < t ≤ τ0 + [τrj ]}

+ n−1/2

T∑

t=1

n∑

i=1

λ′1,yE
[
ψyn,it|Gτn,t∗n+i−1

]
.

Note that

E
[
ψντ,t|Gτn,t∗n+i−1

]
= 0 for t > T

and

E
[
ψyn,it|Gτn,t∗n+i−1

]
= 0.

This implies, using the convention that a term is zero if it is a sum over indices from a to b with

a > b, that

τ−1/2

τ0+τ∑

t=τ0

λ′νE
[
ψντ,t|Gτn,t∗n+i−1

]

= τ−1/2

T∑

t=τ0

k∑

j=1

λ′j,νE
[
ψντ,t|Gτn,t∗n+i−1

]
1 {τ0 + [τrj−1] < t ≤ τ0 + [τrj ]} .

By a similar argument used to show that (36) vanishes, and noting that T is fixed while τ → ∞,

it follows that

E



∥∥∥∥∥τ

−1/2

T∑

t=τ0

λ′j,νE
[
ψντ,t|Gτn,t∗n

]
∥∥∥∥∥

1+δ/2

→ 0

as τ → ∞. The Markov inequality then implies that

τ−1/2

τ0+τ∑

t=τ0

n∑

i=1

k∑

j=1

λ′jE
[
∆ψ̃it (rj) |Gτn,t∗n+i−1

]
= op (1) .

and consequently that

λ′1Xnτ (r1) +

k∑

j=2

λ′j∆Xnτ (rj) =

kn∑

q=1

ψ̈q + op (1) . (44)
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We have shown that the conditions of Theorem 1 of Kuersteiner and Prucha (2013) hold by

establishing (30), (31), (32) and (44). Applying the Cramer-Wold theorem to the vector

Ynt =
(
Xnτ (r1)

′ ,∆Xnτ (r2)
′ ...,∆Xnτ (rk)

′)′

it follows from Theorem 1 in Kuersteiner and Prucha (2013) that for all fixed r1, .., rk and using

the convention that r0 = 0,

E [exp (iλ′Ynt)] → E


exp


−1

2


 ∑

t∈{1,..,T}
λ′1,yΩytλ1,y +

k∑

j=1

λ′j,ν (Ων (rj)− Ων (rj−1))λj,ν






 .

(45)

When Ων (r) = rΩν for all r ∈ [0, 1] and some Ων positive definite and measurable w.r.t C this

result simplifies to

k∑

j=1

λ′j,ν (Ων (rj)− Ων (rj−1)) λj,ν =
k∑

j=1

λ′j,νΩνλj,ν (rj − rj−1) .

The second step in establishing the functional CLT involves proving tightness of the sequence

λ′Xnτ (r) . By Lemma A.3 of Phillips and Durlauf (1986) and Proposition 4.1 of Wooldridge and

White (1988), see also Billingsley (1968, p.41), it is enough to establish tightness componentwise.

This is implied by establishing tightness for λ′Xnτ (r) for all λ ∈ R
d such that λ′λ = 1. In the

following we make use of Theorems 8.3 and 15.5 in Billingsley (1968). We need to show that for

the ‘modulus of continuity’

ω (Xnτ , δ) = sup
|t−s|<δ

|λ′ (Xnτ (s)−Xnτ (t))| (46)

where t, s ∈ [0, 1] it follows that

lim
δ→0

lim sup
n,τ

P (ω (Xnτ , δ) ≥ ε) = 0.

Define

Xnτ,y (r) =
1√
n

T∑

t=1

n∑

i=1

ψyn,it, Xnτ,ν (r) =
1√
τ

τ0+[τr]∑

t=τ0+1

ψντ,t.

Since

|λ′ (Xnτ (s)−Xnτ (t))| ≤
∣∣λ′y (Xnτ,y (s)−Xnτ,y (t))

∣∣+ |λ′ν (Xnτ,ν (s)−Xnτ,ν (t))|
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and noting that
∣∣λ′y (Xnτ,y (s)−Xnτ,y (t))

∣∣ = 0 uniformly in t, s ∈ [0, 1] because of the initial

condition Xnτ (0) given in (13) and the fact that Xnτ,y (t) is constant as a function of t. It follows

that

ω (Xnτ , δ) ≤ sup
|s−t|<δ

|λ′ν (Xnτ,ν (s)−Xnτ,ν (t))| (47)

such that

P (ω (Xnτ , δ) ≥ 3ε) ≤ P (ω (Xnτ,ν , δ) ≥ 3ε) .

To analyze the term in (47) use Billingsley (1968, Theorem 8.4) and the comments in Billingsley

(1968, p. 59). Let Ss =
∑τ0+s

t=τ0+1λ
′
νψ

ν
τ,t. To establish tightness it is enough to show that for each

ε > 0 there exists c > 1 and τ ′ such that if τ > τ ′

P

(
max
s≤τ

|Sk+s − Sk| > cε
√
τ

)
≤ ε

c2
(48)

hold for all k. Note that for each k fixed, Ms = Ss+k−Sk and Fs = Gτn,(s+k−min(1,τ0)n+1), {Ms,Fs}
is a martingale. By a maximal inequality, see Hall and Heyde (1980, Corollary 2.1), it follows that

for each k

P

(
max
s≤τ

|Sk+s − Sk| > cε
√
τ

)
= P

(
max
s≤τ

|Sk+s − Sk|p > (cε)p τ p/2
)

≤ 1

(cε)p τ p/2
E
[∣∣∣
∑k+τ

t=k+1λ
′
νψ

ν
τ,t

∣∣∣
p]

≤ 2pτ p/2

(cε)p τ p/2
sup
t
E
[∥∥ψντ,t

∥∥p] = ε

c2
2p

cp−2ε1+p
sup
t
E
[∥∥ψντ,t

∥∥p] (49)

by an inequality similar to (36). Note that the bound for (49) does not depend on k. Now

choose c = 2p/(p−2)
(
suptE

[∥∥ψντ,t
∥∥p])1/(p−2)

/ε(1+p)/(p−2) such that (48) follows. We now identify

the limiting distribution using the technique of Rootzen (1983). Tightness together with finite

dimensional convergence in distribution in (45), Condition 2 and the fact that the partition r1, ..., rk

is arbitrary implies that for λ ∈ R
d with λ =

(
λ′y, λ

′
ν

)′

E [exp (iλ′Xnτ (r))] → E

[
exp

(
−1

2

(
λ′yΩyλy + λ′νΩν (r)λν

))]
(50)

with Ωy =
∑

t∈{1,..,T}Ωyt. Let W (r) = (Wy (r) ,Wν (r)) be a vector of mutually independent

standard Brownian motion processes in R
d, independent of any C-measurable random variable.

We note that the RHS of (50) is the same as

E

[
exp

(
−1

2

(
λ′yΩyλy + λ′νΩν (r)λν

))]
= E

[
exp

(
iλ′yΩ

1/2
y Wy (1) + i

∫ r

0

λ′ν

(
Ω̇ν (t)

)1/2
dWν (t)

)]
.

(51)
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The result in (51) can be deduced in the same way as in Duffie, Pan and Singleton (2000), in

particular p.1371 and their Proposition 1. Conjecture that Xt =
∫ t
0
(∂Ων (t) /∂t)

1/2 dWν (t). By

Condition 2(iii) and the fact that ∂Ων (t) /∂t does not depend on Xt it follows that the conditions

of Durrett (1996, Theorem 2.8, Chaper 5) are satisfied. This means that the stochastic differential

equation Xt =
∫ t
0
(∂Ων (t) /∂t)

1/2 dWν (s) with initial condition X0 = 0 has a strong solution
(
X,Wt,FW

t ∨ C
)
where FW

t is the filtration generated by Wν (t) . Then, Xt is a martingale (and

thus a local martingale) w.r.t the filtration FW
t . For C-measurable functions α (t) : [0, 1] → R and

β (t) : [0, 1] → R
kρ define the transformation

Ψr = exp
(
α (r) + β (r)′Xr

)
.

The terminal conditions α (r) = 0 and β (r) = iλν are imposed such that

Ψr = exp
(
α (r) + β (r)′Xr

)
= exp (iλ′νXr) .

The goal is now to show that

E [Ψr|C] = Ψ0 = exp
(
a (0) + β (0)′X0

)
= exp (a (0))

where the initial condition X0 = 0 was used. In other words, we need to find α (t) and β (t)

such that Ψr is a martingale. Following the proof of Proposition 1 in Duffie, Pan and Singleton

(2000) and letting ηt = Ψtβ (t)
′ σ (Xt), µψ (t) =

1
2
β (t)′ σ (Xt)σ (Xt)β (t)+ α̇ (t)+ β̇ (t)Xt use Ito’s

Lemma to obtain

Ψr = Ψ0 +

∫ r

0

Ψsµψ (s) ds+

∫ r

0

ηsdWs.

It follows that for Ψr to be a martingale we need µψ (t) = 0 which implies the differential equations

β̇ (t) = 0 and α̇ (t) = 1/2λ′ν (∂Ων (t) /∂t) λν . Using the terminal condition α (r) = 0 it follows that

α (r)− α (0) =

∫ r

0

α̇ (t) dt =

∫ r

0

1

2
λ′ν∂Ων (t) /∂tλνdt = λ′ν (Ων (r)− Ων (0)) λν =

1

2
λ′νΩν (r) λν

or α (0) = −1
2
λ′νΩν (r) λν and

E

[
exp

(
i

∫ r

0

λ′ν

(
Ω̇ν (t)

)1/2
dWν (t)

)∣∣∣∣ C
]
= exp

(
−1

2
λ′νΩν (r) λν

)
a.s. (52)

which implies (51) after taking expectations on both sides of (52). To check the regularity con-

ditions in Duffie et al (2000, Definition A) note that γt = 0 because λ (x) = 0. Thus, (i) holds
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automatically. For (ii) we have ηt = Ψtβ (t)
′ σ (Xt) such that

ηtη
′
t = −Ψ2

tλ
′
ν∂Ων (t) /∂tλν = exp

(
2α (t) + 2β (t)′Xt

)
λ′ν∂Ων (t) /∂tλν

and, noting that β (t) = iλν and therefore
∣∣exp

(
2β (t)′Xt

)∣∣ ≤ 1 it follows that

|ηtη′t| ≤ sup
‖λν‖=1,λν∈Rkρ

sup
t
λ′ν∂Ων (t) /∂tλν |exp (2α (t))|

∣∣exp
(
2β (t)′Xt

)∣∣

≤ sup
‖λν‖=1,λν∈Rkρ

sup
t
λ′ν∂Ων (t) /∂tλν |exp (2α (t))|

≤ sup
‖λν‖=1,λν∈Rkρ

sup
t
λ′ν∂Ων (t) /∂tλν

∣∣∣∣∣exp
(
2 sup
‖λν‖=1,λν∈Rkρ

sup
t
λ′ν∂Ων (t) /∂tλν

)∣∣∣∣∣

such that condition (ii) holds by Condition 2(iii) where sup‖λν‖=1,λν∈Rkρ supt λ
′
ν∂Ων (t) /∂tλν ≤M

a.s. Finally, for (iii) one obtains similarly that

|Ψt| ≤ |exp (α (t))|
∣∣exp

(
β (t)′Xt

)∣∣ ≤ |exp (α (t))| ≤ exp (M) a.s.

such that the inequality follows.

A.2 Proof of Corollary 1

We note that finite dimensional convergence established in the proof of Theorem 1 implies that

E [exp (iλ′Xnτ (1))] → E

[
exp

(
−1

2

(
λ′yΩyλy + λ′νΩν (1)λν

))]
.

We also note that because of (52) it follows that

E

[
exp

(
i

∫ 1

0

λ′ν

(
Ω̇ν (t)

)1/2
dWν (t)

)]
= E

[
exp

(
−1

2
λ′νΩν (1)λν

)]

which shows that
∫ 1

0

(
Ω̇ν (t)

)1/2
dWν (t) has the same distribution as Ων (1)

1/2Wν (1).

A.3 Proof of Theorem 2

Let syit (θ, ρ) = fθ,it (θ, ρ) and s
ν
t (ρ, β) = gρ,t (ρ, β) in the case of maximum likelihood estimation

and syit (θ, ρ) = fit (θ, ρ) and sνt (ρ, β) = gt (ρ, β) in the case of moment based estimation. Using

the notation developed before we define

s̃yit (θ, ρ) =





syit(θ,ρ)√
n

if t ∈ {1, ..., T}
0 otherwise
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analogously to (12) and

s̃νit (β, ρ) =





sνt (β,ρ)√
τ

if t ∈ {τ0 + 1, ..., τ0 + τ} and i = 1

0 otherwise

analogously to (11). Stack the moment vectors in

s̃it (φ) := s̃it (θ, ρ) =
(
s̃yit (θ, ρ)

′ , s̃νit (β, ρ)
′)′ (53)

and define the scaling matrix Dnτ = diag
(
n−1/2Iy, τ

−1/2Iν
)
where Iy is an identity matrix of

dimension kθ and Iν is an identity matrix of dimension kρ. For the maximum likelihood estimator,

the moment conditions (16) and (17) can be directly written as

max(T,τ0+τ)∑

t=min(1,τ0+1)

n∑

i=1

s̃it

(
θ̂, ρ̂
)
= 0.

For moment based estimators we have by Conditions 4(i) and (ii) that

sup
‖φ−φ0‖≤ε

∥∥∥∥∥∥
(
syM (θ, ρ)′ , sνM (β, ρ)′

)′ −
max(T,τ0+τ)∑

t=min(1,τ0+1)

n∑

i=1

s̃it (θ, ρ)

∥∥∥∥∥∥
= op (1) .

It then follows that for the moment based estimators

0 = s
(
φ̂
)
=

max(T,τ0+τ)∑

t=min(1,τ0+1)

n∑

i=1

s̃it

(
θ̂, ρ̂
)
+ op (1) .

A first order mean value expansion around φ0 where φ = (θ′, ρ′)′ and φ̂ =
(
θ̂′, ρ̂′

)′
leads to

op (1) =

max(T,τ0+τ)∑

t=min(1,τ0+1)

n∑

i=1

s̃it (φ0) +




max(T,τ0+τ)∑

t=min(1,τ0+1)

n∑

i=1

∂s̃it
(
φ̄
)

∂φ′ Dnτ


D−1

nτ

(
φ̂− φ0

)

or

D−1
nτ

(
φ̂− φ0

)
= −




max(T,τ0+τ)∑

t=min(1,τ0+1)

n∑

i=1

∂s̃it
(
φ̄
)

∂φ′ Dnτ




−1
max(T,τ0+τ)∑

t=min(1,τ0+1)

n∑

i=1

s̃it (φ0) + op (1)

where φ̄ satisfies
∥∥φ̄− φ0

∥∥ ≤
∥∥∥φ̂− φ0

∥∥∥ and we note that with some abuse of notation we implicitly

allow for φ̄ to differ across rows of ∂s̃it
(
φ̄
)
/∂φ′. Note that

∂s̃it
(
φ̄
)

∂φ′ =


 ∂s̃yit (θ, ρ) /∂θ

′ ∂s̃yit (θ, ρ) /∂ρ
′

∂s̃νit,ρ (β, ρ) /∂θ
′ ∂s̃νit,ρ (β, ρ) /∂ρ

′



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where s̃νit,ρ denotes moment conditions associated with ρ. From Condition 4(iii) and Theorem 1

it follows that (note that we make use of the continuous mapping theorem which is applicable

because Theorem 1 establishes stable and thus joint convergence)

D−1
nτ

(
φ̂− φ0

)
= −A (φ0)

−1

max(T,τ0+τ)∑

t=min(1,τ0+1)

n∑

i=1

s̃it (φ0) + op (1)

It now follows from the continuous mapping theorem and joint convergence in Corollary 1 that

D−1
nτ

(
φ̂− φ0

)
d→ −A (φ0)

−1Ω1/2W (C-stably)

A.4 Proof of Corollary 2

Partition

A (φ0) =


 Ay,θ

√
κAy,ρ

1√
κ
Aν,θ Aν,ρ




with inverse

A (φ0)
−1 =


 A−1

y,θ + A−1
y,θAy,ρ

(
Aν,ρ − Aν,θA

−1
y,θAy,ρ

)−1
Aν,θA

−1
y,θ −√

κA−1
y,θAy,ρ

(
Aν,ρ − Aν,θA

−1
y,θAy,ρ

)−1

− 1√
κ

(
Aν,ρ − Aν,θA

−1
y,θAy,ρ

)−1
Aν,θA

−1
y,θ

(
Aν,ρ −Aν,θA

−1
y,θAy,ρ

)−1




=


 Ay,θ

√
κAy,ρ

1√
κ
Aν,θ Aν,ρ


 .

It now follows from the continuous mapping theorem and joint convergence in Corollary 1 that

D−1
nτ

(
φ̂− φ0

)
d→ −A (φ0)

−1Ω1/2W (C-stably)

where the right hand side has a mixed normal distribution,

A (φ0)
−1Ω1/2W ∼MN

(
0, A (φ0)

−1ΩA (φ0)
′−1)

and

A (φ0)
−1ΩA (φ0)

′−1 =


 Ay,θΩyA

y,θ′ + κAy,ρΩν (1)A
y,ρ′ 1√

κ
Ay,θΩyA

ν,θ′ +
√
κAy,ρΩν (1)A

ν,ρ′

1√
κ
Aν,θΩyA

y,θ′ +
√
κAν,ρΩν (1)A

y,ρ′ 1
κ
Aν,θΩyA

ν,θ′ + Aν,ρΩν (1)A
ν,ρ′




The form of the matrices Ωy and Ων follow from Condition 5 in the case of the maximum likelihood

estimator. For the moment based estimator, Ωy and Ων follow from Condition 6, the definition of

syM (θ, ρ) and sνM (β, ρ) and Conditions 4(i) and (ii).
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A.5 Proof of Theorem 3

We first establish the joint stable convergence of (Vτn (r) , Yτn) . Recall that

τ−1/2ντ,t = exp ((t−min (1, τ0)) γ/τ) ν0 + 1 {t > min (1, τ0)} τ−1/2
t∑

s=min(1,τ0)

exp ((t− s) γ/τ) ηs

and Vτn (r) = τ−1/2ντ [τ0+τr]. Define Ṽτn (r) = τ−1/2
∑[τr]

s=min(1,τ0)
exp (−sγ/τ) ηs. It follows that

τ−1/2ντ [τr] = exp ((t−min (1, τ0)) γ/τ) ν0 + 1 {t > min (1, τ0)} exp ([τr] γ/τ) Ṽτn (r) .

We establish joint stable convergence of
(
Ṽτn (r) , Yτn

)
and use the continuous mapping theorem

to deal with the first term in τ−1/2ντ [τr]. By the continuous mapping theorem (see Billingsley

(1968, p.30)), the characterization of stable convergence on D [0, 1] (as given in JS, Theorem VIII

5.33(ii)) and an argument used in Kuersteiner and Prucha (2013, p.119), stable convergence of(
Ṽτn (r) , Yτn

)
implies that (

exp ([τr] γ/τ) Ṽτn (r) , Yτn

)

also converges jointly and C-stably. Subsequently, this argument will simply be referred to as

the ‘continuous mapping theorem’. In addition exp (([τr]−min (1, τ0)) γ/τ) ν0 →p exp (rγ) ν0

which is measurable with respect to C. Together these results imply joint stable convergence

of (Vτn (r) , Yτn). We thus turn to
(
Ṽτn (r) , Yτn

)
. To apply Theorem 1 we need to show that

ψτ,s = exp (−sγ/τ) ηs satisfies Conditions 1 iv) and 2. Since

|exp (−sγ/τ) ηs|2+δ = |exp (−s/τ)|γ(2+δ) |ηs|2+δ ≤ e|γ|(2+δ) |ηs|2+δ (54)

such that

E
[
|exp (−sγ/τ) ηs|2+δ

]
≤ C

and Condition 1 iv) holds. Note that E
[
|ηt|2+δ

]
≤ C holds since we impose Condition 7. Next,

note that E [exp (−2sγ/τ) η2s ] = σ2 exp (−2sγ/τ). Then, it follows from the proof of Chan and

Wei (1987, Equation 2.3)3 that

τ−1

τ0+[τr]∑

t=τ0+[τs]+1

(ψτ,s)
2 = τ−1

τ0+[τr]∑

t=τ0+[τs]+1

exp (−2γt/τ) η2t →p σ2

∫ r

s

exp (−2γs) dt. (55)

3See Appendix B for details.
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In this case, Ων (r) = σ2 (1− exp (−2rγ)) /2γ and
(
Ω̇ν (r)

)1/2
= σ exp (−γr). By the relationship

in (51) and Theorem 1 we have that

(
Ṽτn (r) , Yτn

)
⇒
(
σ

∫ r

0

e−sγdWν (s) ,ΩyWy (1)

)
C-stably

which implies, by the continuous mapping theorem and C-stable convergence that

(Vτn (r) , Yτn) ⇒
(
exp (rγ) ν0 + σ

∫ r

0

e(r−s)γdWν (s) ,ΩyWy (1)

)
C-stably. (56)

Note that σ
∫ r
0
e(r−s)γdWν (s) is the same term as in Phillips (1987) while the limit given in (56)

is the same as in Kurtz and Protter (1991,p.1043).

We now square (20) and sum both sides as in Chan and Wei (1987, Equation (2.8) or Phillips,

(1987) to write

τ−1
τ+τ0∑

s=τ0+1

ντs−1ηs =
e−γ/τ

2
τ−1

(
ν2τ,τ+τ0 − ν2τ,τ0

)
+
τe−γ/τ

2

(
1− e2γ/τ

)
τ−2

τ+τ0∑

s=τ0+1

ν2τs−1−
e−γ/τ

2
τ−1

τ+τ0∑

s=τ0+1

η2s .

(57)

We note that e−γ/τ → 1, τe−γ/τ
(
1− e2γ/τ

)
→ −2γ. Furthermore, note that for all α, ε > 0 it

follows by the Markov and triangular inequalities and Condition 7iv) that

P

(∣∣∣∣∣τ
−1

τ+τ0∑

t=τ0+1

E
[
η2s1
{
|ηt| > τ 1/2α

}
|Gτn,t∗n

]
∣∣∣∣∣ > ε

)

≤ 1

τε

τ+τ0∑

t=τ0+1

E
[
η2s1
{
|ηt| > τ 1/2α

}]
≤

suptE
[
|ηt|2+δ

]

αδτ δ/2
→ 0 as τ → ∞.

such that Condition 1.3 of Chan and Wei (1987) holds. Let U2
τ,k = τ−1

∑k+τ0
t=τ0+1E [η2s |Gτn,t∗n] .

Then, by Holder’s and Jensen’s inequality

E
[
|Uτ,τ |2+δ

]
≤ τ−1

τ+τ0∑

t=τ0+1

E
[∣∣E

[
η2s |Gτn,t∗n

]∣∣1+δ/2
]
≤ sup

t
E
[
|ηt|2+δ

]
<∞ (58)

such that U2
τ,τ is uniformly integrable. The bound in (58) also means that by Theorem 2.23 of

Hall and Heyde it follows that E
[∣∣U2

τ,τ − τ−1
∑τ+τ0

s=τ0+1 η
2
t

∣∣]→ 0 and thus by Condition 7 vii) and

by Markov’s inequality

τ−1

τ+τ0∑

s=τ0+1

η2t
p→ σ2.
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We also have

τ−1ν2τ,τ+τ0 = Vτn (1)
2 , (59)

τ−1ν2τ,τ0
p→ V (0)2

and

τ−2
τ+τ0∑

s=τ0+1

ν2τs−1 = τ−1
τ∑

s=1

V 2
τn

(s
τ

)
=

∫ 1

0

V 2
τn (r) dr

such that by the continuous mapping theorem and (56) it follows that

τ−1

τ+τ0∑

s=τ0+1

ντs−1ηs ⇒
1

2

(
Vγ,V (0) (1)

2 − V (0)2
)
− γ

∫ 1

0

Vγ,V (0) (r)
2 dr − σ2

2
. (60)

An application of Ito’s calculus to Vγ,V (0) (r)
2 /2 shows that the RHS of (60) is equal to σ

∫ 1

0
Vγ,V (0)dWν

which also appears in Kurtz and Protter (1991, Equation 3.10). However, note that the results in

Kurtz and Protter (1991) do not establish stable convergence and thus don’t directly apply here.

When V (0) = 0 these expressions are the same as in Phillips (1987, Equation 8). It then is a

further consequence of the continuous mapping theorem that

(
Vτn (r) , Yτn (r) , τ

−1

τ+τ0∑

s=τ0+1

ντs−1ηs

)
⇒
(
Vγ,V (0) (r) , Y (r) , σ

∫ 1

0

Vγ,V (0)dWν

)
(C-stably).

A.6 Proof of Theorem 4

For s̃it (φ) =
(
s̃yit (θ, ρ)

′ , s̃νit,ρ (ρ)
)′

we note that in the case of the unit root model

∂s̃it (φ)

∂φ′ =


 ∂s̃yit (θ, ρ) /∂θ

′ ∂s̃yit (θ, ρ) /∂ρ
′

0 ∂s̃νit,ρ (ρ) /∂ρ
′


 .

Defining

Ayτn (φ) =




max(T,τ0+τ)∑

t=min(1,τ0+1)

n∑

i=1

∂s̃yit (φ)

∂φ′ Dnτ




we have as before for some
∥∥∥φ̃− φ

∥∥∥ ≤
∥∥∥φ̂− φ

∥∥∥ that for

Aτn (φ) =


 Ayτn (φ)

0 −τ−2
∑τ0+τ

t=τ0
ν2τ,t


 ,
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we have

D−1
nτ

(
φ̂− φ0

)
= −Aτn

(
φ̃
)−1

max(T,τ0+τ)∑

t=min(1,τ0+1)

n∑

i=1

s̃it (φ0)

Using the representation

τ−2
τ0+τ∑

t=τ0

ν2τ,t =

∫ 1

0

Vτn (r)
2 dr,

it follows from the continuous mapping theorem and Theorem 3 that

(
Vτn (r) , Yτn, A

y
τn (φ0) ,

∫ 1

0

Vτn (r)
2 dr, τ−1

τ+τ0∑

s=τ0+1

ντs−1η

)
(61)

⇒
(
V (r) ,Ω1/2

y Wy (1) , A
y (φ0) ,

∫ 1

0

Vγ,V (0) (r)
2 dr,

∫ s

0

σVγ,V (0)dWν

)
(C-stably).

The partitioned inverse formula implies that

A (φ0)
−1 =


 A−1

y,θ A−1
y,θAy,ρ

(∫ 1

0
Vγ,V (0) (r)

2 dr
)−1

0 −
(∫ 1

0
Vγ,V (0) (r)

2 dr
)−1


 (62)

By Condition 9, (61) and the continuous mapping theorem it follows that

D−1
nτ

(
φ̂− φ0

)
⇒ −A (φ0)

−1


 Ω

1/2
y Wy (1)

∫ s
0
σVγ,V (0)dWν


 . (63)

The result now follows immediately from (62) and (63).

B Proof of (55)

Lemma 1 Assume that Conditions 7, 8 and 9 hold. For r, s ∈ [0, 1] fixed and as τ → ∞ it follows

that ∣∣∣∣∣∣
τ−1

τ0+[τr]∑

t=τ0+[τs]+1

(
(ψτ,s)

2 − e(−2γt/τ)E
[
η2t |Gτn,(t−min(1,τ0)−1)n

])
∣∣∣∣∣∣

p→ 0

Proof. By Hall and Heyde (1980, Theorem 2.23) we need to show that for all ε > 0

τ−1

τ0+[τr]∑

t=τ0+[τs]+1

e−2γt/τE
[
η2t 1
{∣∣τ−1/2e−γt/τηt

∣∣ > ε
}∣∣Gτn,(t−min(1,τ0)−1)n

] p→ 0. (64)
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By Condition 7iv) it follows that for some δ > 0

E


τ−1

τ0+[τr]∑

t=τ0+[τs]+1

e−2γt/τE
[
η2t 1

{∣∣τ−1/2e−γt/τηt
∣∣ > ε

}
|Gτn,(t−min(1,τ0)−1)n

]



≤ τ−(1+δ/2)

τ0+[τr]∑

t=τ0+[τs]+1

(
e−γt/τ

)2+δ

εδ
E
[
|ηt|2+δ

]

≤ sup
t
E
[
|ηt|2+δ

] [τr]− [τs]

τ 1+δ/2εδ
e(2+δ)|γ| → 0.

This establishes (64) by the Markov inequality. Since τ−1
∑τ0+[τr]

t=τ0+[τs]+1 e
(−2γt/τ)E

[
η2t |Gτn,(t−min(1,τ0)−1)n

]

is uniformly integrable by (54) and (58) it follows from Hall and Heyde (1980, Theorem 2.23, Eq

2.28) that

E



∣∣∣∣∣∣
τ−1

τ0+[τr]∑

t=τ0+[τs]+1

(
(ψτ,s)

2 − e(−2γt/τ)E
[
η2t |Gτn,(t−min(1,τ0)−1)n

])
∣∣∣∣∣∣


→ 0.

The result now follows from the Markov inequality.

Lemma 2 Assume that Conditions 7, 8 and 9 hold. For r, s ∈ [0, 1] fixed and as τ → ∞ it follows

that

τ−1

τ0+[τr]∑

t=τ0+[τs]+1

e(−2γt/τ)E
[
η2t |Gτn,(t−min(1,τ0)−1)n

]
→p σ2

∫ r

s

exp (−2γt) dt.

Proof. The proof closely follows Chan and Wei (1987, p. 1060-1062) with a few necessary

adjustments. Fix δ > 0 and choose s = t0 ≤ t1 ≤ ... ≤ tk = r such that

max
i≤k

∣∣e−2γti − e−2γti−1

∣∣ < δ.

This implies

∣∣∣∣∣

∫ r

s

e−2γtdt−
k∑

i=1

e−2γti (ti − ti−1)

∣∣∣∣∣ ≤
k∑

i=1

∫ ti

ti−1

∣∣e−2γt − e−2γti
∣∣ dt ≤ δ. (65)
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Let Ii = {l : [τti−1] < l ≤ [τti]} . Then,

τ−1

τ0+[τr]∑

t=τ0+[τs]+1

e−2γt/τE
[
η2t |Gτn,(t−min(1,τ0)−1)n

]
− σ2

∫ r

s

e−2γtdt

= τ−1

k∑

i=1

∑

l∈Ii

e−2γl/τE
[
η2l |Gτn,(l−min(1,τ0)−1)n

]
− σ2

∫ r

s

e−2γtdt

= τ−1
k∑

i=1

∑

l∈Ii

(
e−2γl/τ − e−2γ[τti−1]/τ

)
E
[
η2l |Gτn,(l−min(1,τ0)−1)n

]

+

k∑

i=1

e−2γ[τti−1]/τ

(
τ−1

∑

l∈Ii

E
[
η2l |Gτn,(l−min(1,τ0)−1)n

]
− σ2 (ti − ti−1)

)

+
k∑

i=1

e−2γ[τti−1]/τσ2 (ti − ti−1)− σ2

∫ r

s

e−2γtdt

= In + IIn + IIIn.

For IIIn we have that e−2γ[τti−1]/τ → e−2γti−1 as τ → ∞. In other words, there exists a τ ′ such

that for all τ ≥ τ ′,
∣∣e−2γ[τti−1]/τ − e−2γti−1

∣∣ ≤ δ and by (65)

|IIIn| ≤ 2δ.

We also have by Condition 7vii) that

τ−1
∑

l∈Ii

E
[
η2l |Gτn,(l−min(1,τ0)−1)n

]
→ σ2 (ti − ti−1)

as τ → ∞ such that by maxi≤k
∣∣e2γ[τti−1]/τ

∣∣ ≤ e2|γ|

|IIn| ≤ e2|γ|

∣∣∣∣∣τ
−1
∑

l∈Ii

E
[
η2l |Gτn,(l−min(1,τ0)−1)n

]
− σ2 (ti − ti−1)

∣∣∣∣∣ = op (1) .

Finally, there exists a τ ′ such that for all τ ≥ τ ′ it follows that

max
i≤k

max
l∈Ii

∣∣e−2γl/τ − e−2γ[τti−1]/τ
∣∣ ≤ max

i≤k

∣∣e−2γ[τti]/τ − e−2γ[τti−1]/τ
∣∣

≤ 2max
i≤k

∣∣e−2γ[τti]/τ − e−2γti
∣∣

+max
i≤k

∣∣e−2γti − e−2γti−1

∣∣

≤ 2δ + δ = 3δ.
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We conclude that

|In| ≤ 3δ

∣∣∣∣∣τ
−1

k∑

i=1

∑

l∈Ii

E
[
η2l |Gτn,(l−min(1,τ0)−1)n

]
∣∣∣∣∣ = 3δσ2 (1 + op (1)) .

The remainder of the proof is identical to Chan and Wei (1987, p. 1062).
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