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Abstract

Experimental evidence suggests that the process of choosing between lotteries

(risky prospects) is stochastic and is better described through choice probabilities

than preference relations. Binary choice probabilities admit a Fechner representa-

tion if there exists a utility function u such that the probability of choosing a over b is

a non-decreasing function of the utility difference u (a)−u (b). The representation is
strict if u (a) ≥ u (b) precisely when the decision-maker is at least as likely to choose
a from {a, b} as to choose b. Blavatskyy (2008) obtained necessary and suffi cient
conditions for a strict Fechner representation in which u has the expected utility

form. One of these is the Common Consequence Independence (CCI) axiom (ibid.,

Axiom 4), which is a stochastic analogue of the mixture independence condition on

preferences. Blavatskyy also conjectured that by weakening CCI to a condition we

call Stochastic Betweenness —a stochastic analogue of the betweenness condition

on preferences (Chew (1983)) —one obtains necessary and suffi cient conditions for a

strict Fechner representation in which u has the implicit expected utility form (Dekel

(1986)). We show that Blavatskyy’s conjecture is false, and provide a valid set of

necessary and suffi cient conditions for the desired representation.

∗An abbreviated version of this paper is forthcoming in the Journal of Mathematical Economics. I’m

grateful to Pavlo Blavatskyy, Simon Grant and two anonymous referees for very helpful comments on

an earlier draft. Special thanks to John Hillas for “stress testing” the paper, which has significantly

improved both the exposition and my understanding of the results. Remaining deficiencies are, of course,

entirely my own responsibility.
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1 Introduction

Experimentalists have long observed that subjects often make different choices in succes-

sive presentations of the same choice problem.1 Loomes (2005) notes that “[t]his phenom-

enon has most frequently been reported for pairwise choices between lotteries, where as

many as 30% of respondents may choose differently on each occasion”(ibid., p.301). It is

implausible to dismiss such a high level of variability as a manifestation of indifference.

Decision theorists have taken two different approaches to accommodating such evi-

dence. One is to treat it as evidence of a preference to randomise. This approach is

advocated most famously by Machina (1985). Given two lotteries from which to choose,

an individual whose lottery preferences are represented by a utility function that is “qua-

siconcave in probabilities”may strictly prefer a particular mixture of the two lotteries over

either lottery individually, or indeed over any other mixture of the two (ibid., Figure 2).

The other approach, which is typical in mathematical psychology, is to suppose that an

individual’s preferences over lotteries are revealed by choices in a noisy fashion. Random-

ness is a manifestation of the psychophysical process that intervenes between “preference”

and choice.

One might summarise these two approaches by saying that the first treats choice

as “purposely noisy”while the second treats choice as “noisily purposeful”. The latter

approach is dominant in the literature —especially the experimental literature —and will

also be taken here. (We make further comments on this modelling choice later in the

paper.)

Since the mid-1990s, experimental evidence on expected utility (EU) has been in-

creasingly viewed through the lens of these psychophysical models of probabilistic choice.

Most commonly, this lens has been some variant on the classic Fechner model (Falmagne

(2002)). A Fechner model is characterised by a utility function over some set, A, of al-

ternatives together with an auxiliary function that converts utility differences into choice

probabilities. If P (a, b) denotes the probability with which the decision-maker chooses

alternative a ∈ A over alternative b ∈ A in a binary choice problem, then P has a Fech-

ner model if there is a utility function u : A → R such that P (a, b) is a non-decreasing

function of u (a)− u (b), with P (a, b) = 1
2
whenever u (a) = u (b).

It is natural to interpret u (in a Fechner model) as a representation of the decision-

maker’s “preferences”. These preferences are expressed through choice but in a noisy

fashion. If u (a) > u (b), then the decision maker chooses a over b with probability at least

1Mosteller and Nogee (1951) is an early example.

2



1
2
. This probability is non-decreasing in u (a)− u (b), so the greater the utility difference

the more likely it is that the “more preferred” alternative is chosen. A Fechner model

therefore describes a process of noisy utility maximisation. If the alternatives in A are

lotteries, and u has the expected utility form, then we have a model of noisy expected utility

maximisation —a model of random binary choice guided by EU preferences, or “EU with

Fechnerian noise”. Blavatskyy (2008, Theorem 1) and Dagsvik (2008, Theorem 4) provide

axiomatic foundations for this model —conditions on P that are suffi cient for the existence

of a Fechner representation with u of the EU form (and necessary under some additional

restrictions on the representation).2 These two representation theorems are important

benchmarks in the literature on binary stochastic choice. We discuss Blavatskyy’s theorem

in Section 2.2.

One can likewise imagine Fechner models in which u is not linear in probabilities (i.e.,

u is not within the EU class). For example, P might admit a Fechner model in which

u has the rank-dependent expected utility form —a model of “rank-dependent expected

utility with Fechnerian noise”. A substantial body of experimental literature studies

the descriptive merits of these various Fechnerian models of lottery choice.3 Currently,

however, axiomatic foundations are lacking for Fechner models in which u is restricted to

some class of functions broader —or different —than the set of EU functions.

A rare exception is the implicit expected utility (IEU) class, which was introduced by

Dekel (1986). Preferences described by an IEU function satisfy the betweenness property

(Chew (1983)) but need not satisfy the more familiar mixture independence condition.

Betweenness is, in fact, a restricted form mixture independence (see Proposition 1). It

requires that the mixture independence condition holds only when all of the lotteries

appearing in the condition are collinear —that is, they all sit on a common line when

visualised in the probability simplex.

Given this fact, Blavatskyy (2008, pp.1052-3) conjectures that an axiomatisation of

“IEU with Fechnerian noise”—necessary and suffi cient conditions for P to possess a Fech-

ner representation with u of the IEU form —can be obtained by a similar modification of

his axioms for the “EU with Fechnerian noise model”. Blavatskyy’s conjectured axioma-

tisation involves restricting his stochastic analogue of the mixture independence property,

which he calls Common Consequence Independence (CCI), to collinear lotteries. We call

this restricted form of CCI, Stochastic Betweenness.4

2See Section 2 for more precise statements of Blavatskyy’s and Dagsvik’s results.
3Hey (2014) is an excellent recent survey.
4Blavatskyy (2008) uses the term Betweenness, but this invites confusion with the betweenness prop-
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Despite its plausibility, Blavatskyy’s conjecture is false. As we show in Section 3, there

exist Fechner models with u of the IEU form that violate Stochastic Betweenness. In this

sense, the Stochastic Betweenness axiom is too strong for the desired representation —

Stochastic Betweenness is not necessary for P to be represented as “IEU with Fechnerian

noise”. In particular, the Stochastic Betweenness axiom cannot be used to test this

model. In Section 4 we present a representation theorem for the “IEU with Fechnerian

noise”model by suitably weakening Stochastic Betweenness (Theorem 3).

In preparation for our main results, we next recall some basic concepts from the theory

of stochastic binary choice between lotteries, then review Dekel’s (1986) implicit expected

utility theory (Section 2.1) and Blavatskyy’s (2008) conjecture (Section 2.2).

2 Stochastic IEU

We adopt the framework of Blavatskyy (2008) and Dagsvik (2008). Let A be the unit

simplex in Rn. Points in A will be interpreted as lotteries over a given set X = {x1, ..., xn}
of (pure) outcomes. If a ∈ A then ai is the probability with which lottery a delivers the
outcome xi. Hence ai ∈ [0, 1] for each i ∈ {1, 2, ..., n} and

∑n
i=1 ai = 1. We use δi ∈ A to

denote the lottery that delivers outcome xi with certainty. That is: δ
i
i = 1 and δij = 0 for

any j 6= i. Following standard convention, if a, b ∈ A and λ ∈ [0, 1] then we use aλb to

denote the convex combination λa+ (1− λ) b.

Consider binary choice problems in which pairs of alternatives are drawn from the set

A. Choice behaviour may exhibit randomness, so each decision-maker will be characterised

by a collection of choice probabilities which describe his or her stochastic choice function

over binary choice (or “budget”) sets. A binary choice probability is a mapping P :

A×A→ [0, 1]. If a 6= b, the quantity P (a, b) is the probability (or, in behavioural terms,

the frequency) with which the decision-maker selects a from the binary choice set {a, b}.5

No behavioural interpretation is given to P (a, b) when a = b, but it is conventional to

define binary choice probabilities on the entire Cartesian product A×A for convenience.
It is also conventional to set P (a, a) = 1

2
for all a ∈ A.

erty of preference relations.
5In Machina’s (1985) notation, if C denotes the decision-maker’s stochastic choice function over sets

of lotteries, then

C ({a, b}) = (P (a, b) , P (b, a)) .

Machina’s definition of a stochastic choice function also requires that P (b, a) = 1− P (a, b). This is the
Completeness condition on P —see Axiom 1 in Section 2.2.
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Given a binary choice probability, P , we define the following binary relation on A:

a %P b ⇔ P (a, b) ≥ 1

2
(1)

The binary relations �P and ∼P are determined from %P in the usual way. We call %P

the decision-maker’s weak stochastic preference relation. Thus, a is weakly stochastically

preferred to b if the probability of choosing a from the binary choice set {a, b} is at least
1
2
. This is a slight abuse of terminology, since %P need not be transitive without further
restrictions on P , though it is complete by construction. However, we will later introduce

an axiom that ensures the transitivity of %P (Axiom 2).

Blavatskyy (2008) and Dagsvik (2008) study the conditions under which P possesses

a particular type of Fechner representation.

Definition 1. A Fechner representation for P is a pair (u, F ), where u : A → R is a

utility function and F : R→ R is a non-decreasing function satisfying F (x)+F (−x) = 1

for all x ∈ R, such that
P (a, b) = F (u (a)− u (b)) (2)

for any a, b ∈ A.6

Definition 2. A strict Fechner representation for P is a Fechner representation (u, F )

such that

u (a) ≥ u (b) ⇔ P (a, b) ≥ 1

2
(3)

for any a, b ∈ A.

The notion of a strict Fechner representation is due to Ryan (2015).7 Condition (3)

requires that u represents —in the usual sense —the weak stochastic preference relation

%P . If (u, F ) is a Fechner representation for P , then F (0) = 1
2
(since F (x) +F (−x) = 1

for all x ∈ R) and hence

u (a) ≥ u (b) ⇒ P (a, b) ≥ 1

2

6The concept of a Fechner representation (or Fechner model), as we define it here, follows (inter alia)

the terminology in Becker, DeGroot and Marschak (1963). However, some authors use slightly different

definitions of a Fechner model; for example, by restricting the range of P to (0, 1), as in Luce and Suppes

(1965, Definition 17), or by requiring F to be strictly increasing, at least for points in the domain of F

whose image is outside the set {0, 1}, as in Fishburn (1998, p.285) and Falmagne (2002, Definition 4.10).
7It should not be confused with a “strict utility model”which is commonly used to refer to a Luce

model for binary choice probabilities (Luce and Suppes, 1965, Definition 18).
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for all a, b ∈ A. The converse holds iff the representation is strict. In other words, if

(u, F ) is a non-strict Fechner representation for P , then there exist a, b ∈ A such that

u (a) > u (b) but P (a, b) = 1
2
; there are utility differences that are not directly detectable

from observation of choice probabilities.

Definition 3. A strong Fechner representation for P is a Fechner representation (u, F )

such that F is strictly increasing on {u (a)− u (b) | a, b ∈ A} ⊆ R.

Ryan (2015) shows that a Fechner representation (u, F ) is strict iff u (A) is a singleton

or F is non-constant on any open neighbourhood of zero. It follows that any strong

Fechner representation is strict.

Blavatskyy (2008, Theorem 1) gives necessary and suffi cient conditions for P to pos-

sess a strict Fechner representation (u, F ) in which u : A → R is linear (i.e., an EU

function).8 Dagsvik (2008, Theorem 4) gives an alternative set of axioms, which are nec-

essary and suffi cient for a strong Fechner representation (u, F ) in which u is linear and F

is continuous.

We focus on strict Fechner representations in the present paper. To avoid lengthy

strings of qualifiers, we henceforth use “stochastic” as a synonym for “strict Fechner”

when referring to representations of binary choice probabilities. For example, we say that

P has a stochastic EU representation if it has a strict Fechner representation (u, F ) in

which u is linear. We likewise say that P has a stochastic IEU representation if it has

a strict Fechner representation (u, F ) in which u is an implicit expected utility function.

The next subsection describes this latter class of functions.

2.1 Implicit Expected Utility

Let us briefly review Dekel’s (1986) implicit expected utility theory.9

Consider a preference relation, %, over the lotteries in A. We assume throughout this
subsection that % is complete and transitive (i.e., a weak order on A). Define � and ∼
from % in the usual way. The %-ordering of

{
δ1, ..., δn

}
⊆ A induces a weak order on X

in the obvious fashion. (Recall that δi ∈ A is the degenerate lottery that gives outcome xi
8In fact, Blavatskyy’s theorem states that his axioms are necessary and suffi cient for a Fechner rep-

resentation with linear utility. As shown in Ryan (2015), they are in fact necessary and suffi cient for a

strict Fechner representation.
9Dekel’s theory is actually more general than the one presented here since it requires only that the

outcome set X be a compact metric space. Dekel’s representation theorem (ibid., Proposition 1) applies

to preferences over all simple probability measures on the Borel subsets of this space.
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with certainty.) We use % to denote this latter weak ordering also. Finally, let x, x ∈ X
be such that x % xi % x for all i ∈ {1, 2, ..., n}. That is, outcome x is weakly preferred to
any other outcome in X, and any outcome in X is weakly preferred to x.

Definition 4 (Dekel (1986)). The function u : A→ [0, 1] is an implicit expected utility

function (or implicit expected utility representation) for % if there exists a function

v : X × [0, 1]→ [0, 1]

that is continuous in its second argument, with v (·, z) strictly increasing in the %-ordering
of X for any z ∈ (0, 1),10 such that u (a) is the unique solution (in z) to

zv (x, z) + (1− z) v (x, z) =
n∑
i=1

aiv (xi, z) (4)

for any a ∈ A.

To understand this definition, suppose that v (x, z) is constant in z for any x ∈ X,

and let w (x) = v (x, z) for each x. Then u (a) satisfies

u (a)w (x) + (1− u (a))w (x) =
n∑
i=1

aiw (xi)

⇔ u (a) =
n∑
i=1

aiŵ (xi)

where

ŵ (xi) =
w (xi)− w (x)

w (x)− w (x)

and we have used the fact that
∑n

i=1 ai = 1. Since ai is the probability that lottery a ∈ A
delivers outcome xi ∈ X, we see that u has the expected utility form with associated

Bernoulli utility function ŵ : X → R. When v (x, z) is not constant in z for every x ∈ X,
the mapping v̂ (·, u (a)) : X → R defined by

v̂ (xi, u (a)) =
v (xi, u (a))− v (x, u (a))

v (x, u (a))− v (x, u (a))

10Dekel’s (1986) definition actually requires v (·, z) to be strictly increasing in the %-ordering of X
for any z ∈ [0, 1]. However, his axioms only entail the weaker property, as a careful reading of Dekel’s
argument on p.313 reveals. (See also Dekel’s intuitive discussion of his proof on p.309.) In our Example

1, which is easily seen to satisfy all of Dekel’s axioms, v (·, 0) and v (·, 1) are not strictly increasing in
the %-ordering of X. It would be impossible to represent the preferences in Example 1 in the form (5)

if we require v (·, 0) and v (·, 1) to be strictly increasing in the %-ordering of X and also require v to be

continuous in its second argument.
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is a local Bernoulli utility function associated with the %-indifference curve containing
a ∈ A. That is, the %-indifference curve through a ∈ A is a contour of the EU function
with associated Bernoulli utility function v̂ (·, u (a)). It follows that each contour of an

IEU function is linear, but these contours need not be parallel.

An IEU representation is unique up to transformations of v of the form α (z) v (x, z)+

β (z) for some continuous functions α and β with α (a) > 0 for all z —see Dekel (1986,

pp.306-7). In particular, if an IEU representation exists, we can always find one with

v (x, z) = 1− v (x, z) = 1 for all z ∈ [0, 1], so that v̂ = v and

u (a) =
n∑
i=1

aiv (xi, u (a)) (5)

for all a ∈ A. Hence the “implicit expected utility”terminology.
Since the contours of an IEU function are linear but not necessarily parallel, preferences

with an IEU representation must satisfy a betweenness property (Axiom A4 in Dekel

(1986)) but need not satisfy mixture independence.

Definition 5. Preferences % satisfy betweenness if a � b (respectively, a ∼ b) implies

a � aλb � b (respectively, a ∼ aλb ∼ b) for any a, b ∈ A and any λ ∈ (0, 1).

To see that betweenness is a restricted form of mixture independence, it is useful to

introduce some notation for linear segments (or intervals) in the probability simplex. For

any e, f ∈ A, the closed interval with end points e and f is

[e, f ] ≡ {eλf | λ ∈ [0, 1]} .

The open and half-open intervals (e, f), (e, f ] and [e, f) are defined analogously.11 The fol-

lowing is well known but we give a proof in Appendix A to keep the paper self-contained.12

Proposition 1. The preferences % satisfy betweenness iff the following holds for any

e, f ∈ A, any a, b, c ∈ [e, f ] and any λ ∈ (0, 1):

a % b ⇔ aλc % bλc (6)

Preferences satisfy mixture independence if (6) holds for all a, b, c ∈ A. Betweenness
requires only that (6) holds when a, b, c ∈ A are collinear —when all lie on a common

linear segment in the simplex. In other words, betweenness is the requirement that mixture

independence is satisfied by the restriction of % to any linear segment of A.
11Note that [e, f ] = [f, e], (e, f) = (f, e) and (e, f ] = [f, e).
12The proof makes use of the assumed completeness of %, but not transitivity.
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Figure 1: Preferences with an IEU representation

Example 1. Suppose X = {x1, x2, x3}. Let % satisfy

δ3 � δ2 � δ1

(i.e., x3 � x2 � x1) and have indifference classes as illustrated in the Machina Tri-

angle of Figure 1, where one lottery is preferred to another if the former lies on an

indifference curve obtained by a clockwise rotation —about the point (1, 1) —of the indif-

ference curve containing the latter. The point (a1, a3) in Figure 1 represents the lottery

(a1, 1− a1 − a3, a3) ∈ A. An IEU representation for % may be constructed as follows. Let
v (x1, z) = 0, v (x2, z) = 1− z, v (x3, z) = 1 and

u (a) =

{
(1 + x (a))−1 if a1 < 1

0 if a1 = 1

for all a ∈ A, where
x (a) =

1− a3
1− a1

is the slope of the indifference curve through the point (a1, a3) in Figure 1. Since

u (a) ≥ u (a′) ⇔ x (a) ≤ x (a′)

it is obvious that u represents %. To verify that u has the IEU form we check that z = u (a)

solves (4) for any a. This is obvious if a1 = 1. If a1 < 1 we have:

zv (x3, z) + (1− z) v (x1, z) = a1v (x1, z) + a2v (x2, z) + a3v (x3, z)

9



⇔ z = a2 (1− z) + a3

⇔ z =
a2 + a3
1 + a2

=
1− a1
1 + a2

=
1

1 + x (a)

It follows that u is an IEU representation for %.

It is important to note that not all utility representations for the preferences in Ex-

ample 1 are IEU functions, just as there exist non-linear representations for expected

utility preferences. An IEU representation requires that u satisfies the restricted form

of linearity embodied in (4). In particular, if u is an IEU representation for % and the
elements of X are indexed such that x1 = x and xn = x, with x � x, then we must have

u
(
δnλδ1

)
= λ for any λ ∈ [0, 1], as is easily verified using (4).13 In other words, if u is

an IEU representation for %, then u (a) can be elicited as the value of λ that satisfies

a ∼ δnλδ1. (It follows, in particular, that any IEU function is continuous.)

2.2 Blavatskyy (2008)

When does a binary choice probability possess a stochastic EU representation? When

does it have a stochastic IEU representation? Both of these questions are addressed by

Blavatskyy (2008). He shows that the following axioms are suffi cient for the existence of

a stochastic EU representation:14

Axiom 1 (Completeness). For all a, b ∈ A,

P (a, b) + P (b, a) = 1 (7)

Axiom 2 (Strong Stochastic Transitivity). For all a, b, c ∈ A, if

min {P (a, b) , P (b, c)} ≥ 1

2

then

P (a, c) ≥ max {P (a, b) , P (b, c)} .
13See Dekel (1986, p.313).
14The Completeness axiom is also known as the Balance condition (see, for example, Definition 4.9 in

Falmagne, 2002). It implies that the decision-maker never abstains from making a choice. It also enforces

the convention that P (a, a) = 1
2 for any a ∈ A. (Recall, however, that these “diagonal” terms are not

given any behavioural interpretation in the binary choice model.)
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Axiom 3 (Continuity). For any a, b, c ∈ A the sets{
λ ∈ [0, 1]

∣∣∣∣ P (aλb, c) ≥ 1

2

}
and {

λ ∈ [0, 1]

∣∣∣∣ P (aλb, c) ≤ 1

2

}
are closed.

Axiom 4 (Common Consequence Independence (CCI)). For any a, b, c, d ∈ A and
any λ ∈ [0, 1]

P (aλc, bλc) = P (aλd, bλd) (8)

In fact, Blavatskyy claims that these axioms, plus one other that he calls Interchange-

ability, are necessary and suffi cient for a Fechner representation with linear utility. His

proof, however, establishes that his axioms suffi ce for a strict Fechner representation with

linear utility (i.e., a stochastic EU representation). Ryan (2015) shows that the Inter-

changeability axiom is redundant —it is implied by the other axioms —and also verifies

that Axioms 1-4 are necessary for a stochastic EU representation.

Theorem 1 (Blavatskyy (2008); Ryan (2015)). Let P be a binary choice probability.
Then P has a stochastic EU representation iff it satisfies Axioms 1-4.

Note that CCI (Axiom 4) expresses the idea that choice probabilities respect a type

of mixture independence property: the probability P (aλc, aλc) is independent of the

“common”lottery c —this probability would be unaffected by replacing c with some other

lottery d. In particular, aλc %P aλc iff aλd %P aλd.
Blavatskyy therefore makes the natural conjecture (ibid., pp.1052-3) that P possess

a stochastic IEU representation if (and only if) it satisfies Axioms 1-3 plus the following

weakening of CCI:

Axiom 5 (Stochastic Betweenness). For any e, f ∈ A and any α, β, γ, µ ∈ [0, 1] with

α− β = γ − µ (9)

we have P (eαf, eβf) = P (eγf, eµf).

The fact that Stochastic Betweenness is weaker than CCI is not immediately obvious.

We shortly re-state the Stochastic Betweenness condition in an equivalent form which
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makes this relationship more apparent (Lemma 1). First, however, let us clarify the role

of condition (9) in Axiom 5. Observe that

(eαf)− (eβf) = (α− β) (e− f)

for any α, β ∈ [0, 1] and any e, f ∈ A. Thus, if condition (9) holds, then

(eαf)− (eβf) = (eγf)− (eµf) .

Axiom 5 therefore says that for any e, f ∈ A and any a, b, a′, b′ ∈ [e, f ] with

b− a = b′ − a′,

we must have P (a, b) = P (a′, b′). In other words, if a, b, a′, b′ are collinear (i.e., all

contained in some linear segment [e, f ] ⊆ A) and b − a = b′ − a′, then the probability

of choosing a over b is the same as the probability of choosing a′ over b′ as Figure 2

illustrates.

Figure 2: The red arrows have the same length

Lemma 1. Let P be a binary choice probability. Then P satisfies Axiom 5 iff it satisfies

the following for any e, f ∈ A, any a, b, c, d ∈ [e, f ] and any λ ∈ [0, 1]:

P (aλc, bλc) = P (aλd, bλd) (10)
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Proof: Suppose P satisfies Axiom 5. Let a, b, c, d ∈ [e, f ] and λ ∈ [0, 1]. Since

aλc− bλc = λ (a− b) = aλd− bλd

we have P (aλc, bλc) = P (aλd, bλd) by the argument above (just prior to the statement

of the lemma).

Conversely, suppose P satisfies (10) for any e, f ∈ A, any a, b, c, d ∈ [e, f ] and any

λ ∈ [0, 1]. Let α, β, γ, µ ∈ [0, 1] with

α− β = γ − µ = k (11)

It is without loss of generality to assume k ≥ 0 and β ≤ µ. We must show that

P (eαf, eβf) = P (eγf, eµf) (12)

If k = 0 this is immediate: set λ = 0, c = eαf and d = eγf in (10). If β = µ, then (11)

implies α = γ and (12) holds trivially. Therefore, suppose that k > 0 and β < µ. Since

γ ≤ 1, we have k ≤ 1− µ from (11), so [β + k, β + 1− µ] is a non-empty subset of (0, 1).

Fix some λ ∈ [β + k, β + 1− µ] and define

ηa =
β + k

λ

ηb =
β

λ

ηc = 0

ηd =
µ− β
1− λ .

Then ηx ∈ [0, 1] for all x ∈ {a, b, c, d} and it is easily verified that

α = ληa + (1− λ) ηc

β = ληb + (1− λ) ηc

γ = ληa + (1− λ) ηd

µ = ληb + (1− λ) ηd

Let x = e (ηx) f for each x ∈ {a, b, c, d}. Then, using (10) we have:

P (eαf, eβf) = P (aλc, bλc) = P (aλd, bλd) = P (eγf, eµf) .

�
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Stochastic Betweenness imposes the CCI condition (8) within linear segments of the

simplex, just as the betweenness property of preferences imposes mixture independence

within linear segments (Proposition 1). This observation lends credence to Blavatskyy’s

conjecture. Nevertheless, the conjecture is false. In particular, Stochastic Betweenness is

not necessary for a stochastic IEU representation.

3 Violating Stochastic Betweenness

Let u be the IEU function from Example 1 and define F : [−1, 1]→ [0, 1] as follows:

F (x) =
1

2
(1 + x) .

Note that F is strictly increasing and satisfies F (x) + F (−x) = 1. (Its domain can be

extended to R without disturbing these properties, but [−1, 1] is the relevant domain for

our purposes.) Now construct P from u and F using (2). Then (u, F ) is a strong Fechner

representation for P by construction, and u has the IEU form. It is therefore a stochastic

IEU representation for P (since any strong Fechner model is strict). We will show that P

violates Stochastic Betweenness.

Figure 3: Constructing a violation of Stochastic Betweenness

Consider Figure 3. In this figure b′ = b1
2
c and a′ = a1

2
c. Suppose, contrary to our

14



claim, that P satisfies Stochastic Betweenness. Then we have:

F (u (b)− u (b′)) = P (b, b′)

= P (b′, c) (by Axiom 5)

= F (u (b′)− u (c))

< F (u (a′)− u (c)) (since u (a′) > u (b′))

= P (a′, c)

= P (a, a′) (by Axiom 5)

= F (u (a)− u (a′))

= F (u (b)− u (a′)) (since u (a) = u (b))

< F (u (b)− u (b′)) (since u (a′) > u (b′))

which is the desired contradiction.

In this example, the decision maker’s choice probabilities have a stochastic IEU rep-

resentation but it is impossible that both P (a, a′) = P (a′, c) and P (b, b′) = P (b′, c).

Choice probabilities must violate Stochastic Betweenness.

It is clear that there is nothing special about this example. If P̂ is a binary choice

probability and
(
û, F̂

)
is a stochastic IEU representation for P̂ , then we can construct a

similar violation of Stochastic Betweenness provided F̂ is strictly increasing and %P̂ does
not have an EU representation. In fact, with a more elaborate argument, one can obtain a

violation of Stochastic Betweenness provided F̂ is strictly increasing in a neighbourhood of

0. Given the strictness of the representation, this is equivalent to F̂ being continuous at 0.

Moreover, as the example suggests, we can detect violations of SB even when restricting

attention to lotteries with no more than three outcomes, as in the experiments of Loomes

and Sugden (1998).

Definition 6. The support of a ∈ A is the set {i | ai > 0}.

Axiom 6. A stochastic choice function P satisfiesRestricted Stochastic Betweenness
if, for any e, f ∈ A such that the union of the supports of e and f contains no more than
three elements, any a, b, c, d ∈ [e, f ] and any λ ∈ [0, 1]:

P (aλc, bλc) = P (aλd, bλd) .

The proof of the following result may be found in Appendix B.
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Theorem 2. Let P be a binary choice probability that possesses a stochastic IEU repre-

sentation (u, F ) with F continuous at 0. If P satisfies Restricted Stochastic Betweenness

then u has the EU form.

Theorem 2 reveals the surprising strength of Stochastic Betweenness. Evidence that

a decision-maker’s choices violate Stochastic Betweenness does not imply that her choice

behaviour is incompatible with a stochastic IEU representation. If P possesses a sto-

chastic IEU representation with F continuous at 0, but does not possess a stochastic EU

representation, then violations of Stochastic Betweenness are inevitable and such viola-

tions can (in principle) be detected even if experimental attention is restricted to lotteries

whose outcomes are drawn from the same three-element set. In short, Stochastic Between-

ness is unsuitable for testing the stochastic IEU model since it is not necessary for the

existence of a stochastic IEU representation. The next section provides a set of necessary

and suffi cient conditions for P to possess such a representation.

However, before leaving the present section, it is important to observe that Theorem

2 would be false if we dropped the requirement that F be continuous at 0.

Example 2. Let u be the utility function from Example 1 and define F as follows:

F (x) =


1 if x > 0
1
2
if x = 0

0 if x < 0

Consider the binary choice probability function P obtained from u and F using (2). Note

that (u, F ) is a stochastic IEU representation for P .

In this example, the decision-maker always makes a utility-maximising choice. She

only chooses randomly when the two options have the same utility, choosing each option

with probability 1
2
in such cases. It is easily checked that P satisfies Axiom 6, using the fact

that the preferences % satisfy the betweenness property. Since %P=% it is immediate that
%P does not have a linear representation and hence that P does not possess a stochastic

EU representation.

4 A representation theorem

Consider the following pair of axioms:15

15When reading Axiom 8 recall that δi ∈ A is the degenerate lottery that gives outcome xi with

certainty.
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Axiom 7. For any a, b ∈ A and any λ ∈ (0, 1),

P (a, bλa) ≥ 1

2
⇔ P (aλb, b) ≥ 1

2

and

P (a, bλa) ≤ 1

2
⇔ P (aλb, b) ≤ 1

2

Axiom 8. If δ, δ ∈
{
δ1, ..., δn

}
are such that δi %P δ and δ %P δi for all i, then

P
(
δαδ, δβδ

)
= P

(
δλδ, δµδ

)
for any α, β, λ, µ ∈ [0, 1] with α− β = λ− µ.

Axiom 7 says that whenever mixing a with b produces a lottery that is no more

(respectively, no less) stochastically desirable than a, then the complementary mixing of

a with b produces a lottery that is no less (respectively, no more) stochastically desirable

than b. Together with Axioms 1-3, Axiom 7 implies that %P satisfies Dekel’s (1986)
Betweenness property —see Lemma 4 in Appendix C.

Axiom 8 says that if δ and δ are %P -worst and %P -best (respectively) amongst the
degenerate lotteries, and if [a, b] and [c, d] are sub-intervals of

[
δ, δ
]
with a − b = c − d,

then the probability of choosing a over b is the same as the probability of choosing c over

d. (Note that if P satisfies Axiom 2 —Strong Stochastic Transitivity —then %P is a weak
order so %P -worst and %P -best degenerate lotteries will exist.)
Axioms 7 and 8 are both implied by Stochastic Betweenness (Axiom 5). This is obvious

in the case of Axiom 8. To see that Axiom 7 is also weaker than Stochastic Betweenness,

note that the latter implies

P (aλa, bλa) = P (aλb, bλb)

for any a, b ∈ A.
Axioms 1-3, 7 and 8 do not yet suffi ce for a stochastic IEU representation, since they

permit %P to violate Dekel’s (1986) Monotonicity axiom. In particular, it is possible
that b �P a even if lottery a dominates lottery b in the sense of first-order stochastic

dominance.16

Example 3. Suppose X = {x1, x2, x3}. Let % satisfy

δ3 � δ2 � δ1

16These axioms do, however, suffi ce for the existence of a strict Fechner model with utility of the form

described by Dekel’s (1986) Proposition A.1. This is easily shown by adapting the proof of Theorem 3.
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(i.e., x3 � x2 � x1) and have indifference classes as illustrated in the Machina Triangle

of Figure 4, where one lottery is preferred to another if the former lies on an indifference

curve obtained by a clockwise rotation —about the point
(
2
3
, 2
3

)
—of the indifference curve

containing the latter. These preferences clearly satisfy Betweenness (Dekel, 1986, Axiom

A4). Let u : A → [0, 1] be the representation for % that satisfies u
(
δ3λδ1

)
= λ for each

λ ∈ [0, 1]. (That is, label each indifference curve in Figure 4 with the probability on x3 at

the point where the indifference curve intersects the hypotenuse of the triangle.) Now let

P be the binary choice probability obtained by combining u with some strictly increasing

F satisfying F (x) + F (−x) = 1 for all x. Hence %=%P . Then Axioms 1-3, 7 and 8 will
all be satisfied, as is easily verified. However, the illustrated preferences violate Dekel’s

(1986) Monotonicity axiom, since δ2 � δ1 and b � a. (Note that a dominates b in the

sense of first-order stochastic dominance.) It follows that these preferences do not have

an IEU representation.

Figure 4: Preferences that violate FOSD-dominance

To avoid this problem we add the following stochastic version of the Monotonicity

axiom from Dekel (1986).

Axiom 9 (Stochastic Monotonicity). If δ, δ ∈
{
δ1, ..., δn

}
are such that δi %P δ and

δ %P δi for all i, then for any δ ∈
{
δ, δ
}
, any λ ∈ (0, 1) and any δ′, δ′′ ∈

{
δ1, ..., δn

}
P (δ′, δ′′) >

1

2
⇒ P (δλδ′, δλδ′′) >

1

2
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and

P (δ′, δ′′) =
1

2
⇒ P (δλδ′, δλδ′′) =

1

2

Theorem 3. Let P be a binary choice probability. Then P has a stochastic IEU repre-

sentation iff it satisfies Axioms 1-3 and 7-9.

Theorem 3 is proved in Appendix C.

At this point, the reader may be wondering why Axiom 8 does not create problems

like those illustrated in Section 3. Axiom 8 imposes the CCI condition (8) along the edge[
δ, δ
]
of the simplex A. Suppose P has a stochastic IEU representation (u, F ) and let P ∗

be the restriction of P to ∆×∆, where ∆ ⊆ A is a sub-simplex. It follows that (u∗, F ) is a

strict Fechner representation for P ∗ when u∗ is the restriction of u to ∆. Provided u∗ is an

IEU representation for %P ∗, Theorem 3 then implies that P ∗ satisfies the CCI condition

along an edge of ∆ joining “%P ∗-best”and “%P ∗-worst”vertices. If this logic holds for
any sub-simplex, we deduce that the CCI condition holds along any edge of A, thereby

creating the potential for the contradiction illustrated in Figure 3. However, to evade

this apparent contradiction it suffi ces to observe that u∗ will not, in general, be an IEU

representation for %P ∗ (though it will, of course, represent these preferences). For an IEU
representation, the utility along an edge joining a “%P ∗-best” vertex to a “%P ∗-worst”
vertex must coincide with the weight on the “%P ∗-best” vertex — recall the discussion
following Example 1. This will certainly be the case if all %P -indifference surfaces are
parallel, but may not be so otherwise.

5 Discussion

Blavatskyy (2008) provides an important axiomatisation of the “EU plus Fechnerian

noise”model. He further conjectures that weakening CCI to Stochastic Betweenness will

provide an axiomatisation of the more general “IEU plus Fechnerian noise”model. As we

have shown, this conjecture is false. A valid axiomatisation of the “IEU plus Fechnerian

noise”model is obtained by replacing Stochastic Betweenness with the (regrettably, less

elegant) triumvirate of Axioms 7-9 (Theorem 3).

We end with some remarks about the interpretation of our results.

The axiomatic characterisation of a particular type of Fechner model may be useful for

two reasons. First, the necessity of the axioms means that they are testable implications

of the model. If Blavatskyy’s (2008) conjecture were correct, then Stochastic Betweenness

could be used to test the stochastic IEU model. Indeed, this axiom is readily testable
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along the lines of Loomes and Sugden (1998), though we are not aware of such tests having

been conducted. Since Blavatskyy (2006) has argued that there is prima facie evidence

in favour of the stochastic IEU model, such tests would be an attractive prospect for

future research. Unfortunately, however, our results prove that Stochastic Betweenness is

not necessary for the existence of a stochastic IEU representation, and hence Stochastic

Betweenness cannot be used to test this model. On the other hand, Axioms 7 and 8 are

necessary for the model and hence could be used for testing.

Second, the suffi ciency of the axioms means that they may be used to assess the

normative appeal, or perhaps the a priori “plausibility”, of the model. For models of

stochastic choice, this second role of an axiomatisation is less prominent. In models based

on psychophysical theories, such as the ones considered here, it is not obvious how to

articulate appropriate normative constraints on random choice behaviour. The underly-

ing stochastic preferences, %P , could reasonably be assessed against standard normative
criteria, but the randomness in the process of choice is “noise”. One may nevertheless

have reasons to think that the fitness of the decision-making organism demands (or at

least is favoured by) certain structure to this noise. Fechner-type structures imply that

noise varies inversely with the difference between two stimuli in a binary comparison. The

axioms of Theorem 3 reduce the joint hypothesis that choice is based on IEU preferences

expressed with Fechnerian noise to manageable properties of P that may be tested against

our intuition.

The alternative approach to stochastic choice —that advocated by Machina (1985) —

treats randomness as the purposeful outcome of choice: the decision-maker chooses to

randomise if this maximises her deterministic utility function. This approach effectively

treats the binary choice set {a, b} ⊆ A as if it were the set [a, b] ⊆ A. Since utility is

deterministic in this model, the axiomatic foundations of the model —were they to be

ascertained —could be subjected to normative scrutiny in the usual fashion.17 However,

Machina’s approach would not be useful for our purposes, since randomisation can only be

17Whatever their appeal might be, such axioms would certainly imply very different properties of P

than those of Theorem 3. For example, adapting property (III) in Machina (1985, p.580) to our notation,

if randomisation arises from the maximisation of a deterministic utility function, whatever its form, then

the associated binary choice probability must satisfy the following condition: for all a, b ∈ A and all

λ, λ ∈ [0, 1] with λ < λ, if P (a, b) ∈
[
λ, λ

]
then

P
(
aλb, aλb

)
=

P (a, b)− λ
λ− λ

.
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optimal if the deterministic utility function is at least somewhere strictly quasiconcave (in

probabilities). Our purpose, following Blavatskyy (2006, 2008), is to consider conditions

under which stochastic choice behaviour might be guided by underlying preferences that

satisfy a betweenness property. The utility representations of such preferences are nowhere

strictly quasiconcave.

Appendices

These Appendices contain proofs omitted from the text.

A Proof of Proposition 1

Proposition 1 is straightforward corollary of the following:

Lemma 2. Suppose that % satisfies betweenness. If e, f ∈ A and ê, f̂ ∈ [e, f ] are such

that ê− f̂ = k (e− f) for some k > 0, then ê % f̂ iff e % f .

Proof: If e = f the result is trivial so assume otherwise. Let α, β ∈ [0, 1] be such that

ê = eαf and f̂ = eβf . It follows that α > β, since ê − f̂ = (α− β) (e− f). In other

words, ê ∈
[
e, f̂
)
and f̂ ∈ (ê, f ].

Suppose e % f . Then betweenness implies e % ê % f . Applying betweenness to the

preference ê % f , we deduce ê % f̂ .

For the converse, we invoke the assumed completeness of % and prove the contrapos-
itive. Therefore, let us suppose that f � e. If f̂ = f then we have f̂ � e; otherwise,

the same conclusion follows from betweenness, since f̂ ∈ (ê, f ]. If ê = e we have f̂ � ê

as required; otherwise, apply betweenness and the fact that ê ∈
[
e, f̂
)
to reach the same

conclusion. �

Let % satisfy betweenness. Suppose e, f ∈ A and a, b, c ∈ [e, f ]. If e = f or a = b then

(6) is trivial. If e 6= f , a 6= b and λ ∈ (0, 1) then aλc, bλc ∈ [e, f ] and

aλc− bλc = λ (a− b) .

Hence (6) follows by Lemma 2.
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For the converse, let a, b ∈ A and suppose a � b (respectively a ∼ b). By considering

c = a and c = b in (6) we deduce that a � aλb � b (respectively a ∼ aλb ∼ b) for any

λ ∈ (0, 1). (Note that a, b, c ∈ [a, b] in this argument.)

This completes the proof of Proposition 1.

B Proof of Theorem 2

We will need the following useful result:

Lemma 3 (Davidson and Marschak, 1959). Let P be a binary choice probability that

satisfies Axiom 1. Then P satisfies Strong Stochastic Transitivity (Axiom 2) iff

P (a, b) ≥ 1

2
⇒ P (a, c) ≥ P (b, c) (13)

for any a, b, c ∈ A.

Condition (13) is called the Weak Substitutability property.

Turning to the proof of Theorem 2, let P be a binary choice probability that satisfies

Restricted Stochastic Betweenness and has a stochastic IEU representation (u, F ) with

F continuous at 0. Hence, the indifference classes for %P are linear and u is an implicit
expected utility representation for %P . In particular, u is continuous. We must show that
(u, F ) is a stochastic expected utility representation for P . The result is obvious if u is

constant, so assume otherwise henceforth.

Our argument is rather lengthy, so we break it into several steps.

Step 1. P satisfies Axiom 2 (Strong Stochastic Transitivity).

This follows from the facts that u represents %P and F is non-decreasing: the former
ensures u (a) ≥ u (b) whenever P (a, b) ≥ 1

2
, and the latter implies

F (x+ y) ≥ max {F (x) , F (y)}

for all x ≥ 0 and y ≥ 0. Thus, if u (a)− u (b) ≥ 0 and u (b)− u (c) ≥ 0 then

P (a, c) = F ([u (a)− u (b)] + [u (b)− u (c)])

≥ max {F (u (a)− u (b)) , F (u (b)− u (c))}
= max {P (a, b) , P (b, c)} .

22



Figure 5: The Machina Triangle for ∆i

Before proceeding to Step 2, we need some additional notation and definitions.

Since P satisfies completeness and SST, it is easy to see that %P is complete and
transitive. We therefore assume, without loss of generality, that the elements of X are

indexed such that

δn %P δn−1 %P · · · %P δ1.

Since u is non-constant we must have

δn �P δ1.

Given any i ∈ {2, 3, ..., n− 1} let ∆i ⊆ A denote the set of lotteries with outcomes in

{x1, xi, xn}. The Machina Triangle in Figure 5 depicts the set ∆i. Let %Pi ⊆ ∆i × ∆i

denote the restriction of %P to ∆i, with symmetric and asymmetric parts ∼Pi and �Pi
respectively. By the betweenness property of %P (Dekel (1986, Axiom A4)), every %Pi -
indifference curve in the Machina Triangle (Figure 5) has a unique intersection with the

hypotenuse. The collection of %Pi -indifference curves will also include at least one of the
two singletons

{
δ1
}
and {δn}, since δn �P δ1.

Finally, given any i ∈ {2, 3, ..., n− 1} and any b ∈ ∆i we define the binary relation

%bi⊆ ∆i ×∆i as follows:

a %bi c ⇔ P (a, b) ≥ P (c, b) .
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Figure 6: Points in the shaded region are squeezed by b

Since P satisfies Axiom 2, it follows from Lemma 3 that

∼Pi ⊆∼bi (14)

where ∼bi is the symmetric part of %bi .
Given a point b = δ1λδn on the hypotenuse of the Machina Triangle in Figure 5 with

λ ≥ 1
2
(respectively, λ < 1

2
), and its associated %Pi -indifference curve I = [b, b∗], we

say that a ∈ ∆i is “squeezed by b”if a is contained some segment [c, c′] parallel to I,18

with point c on the hypotenuse no further from b than is δ1 (respectively, δn). Figure

6 illustrates the case λ ≥ 1
2
. Any point in the shaded region of Figure 6 (including the

boundaries of this region) is squeezed by b.

Step 2. Let i ∈ {2, 3, ..., n− 1} and let b be a point on the hypotenuse of ∆i with asso-

ciated %Pi -indifference curve I = [b, b∗]. If a′ and a′′ are distinct points squeezed by

b, with [a′, a′′] parallel to I, then a′ ∼bi a′′.

If [a′, a′′] ⊆ I the claim follows from (14), so assume otherwise. Consider Figure 7.

Points a′ and a′′ are squeezed by b and [a′, a′′] is parallel to I. The remaining points

in Figure 7 are constructed from a′, a′′ and I as follows:

• Point a is where the line through a′ and a′′ hits the hypotenuse of the triangle.
18We treat singletons as parallel to any segment.
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Figure 7: Construction to prove the Claim

• Point c is the point on the hypotenuse such that b is the mid-point of [a, c].

(Point c exists because a is squeezed by b.)

• Point b′ is where the line joining a′ to c intersects I, and b′′ is the point where
the line joining a′′ to c intersects I.

By construction,

b′ − c = a′ − b′

and

b′′ − c = a′′ − b′′.

Hence, using Restricted Stochastic Betweenness:

P (a′, b′) = P (b′, c) (15)

and

P (a′′, b′′) = P (b′′, c) (16)

Since P (b′, b′′) = 1
2
, the Weak Substitutability condition (13) implies

P (b′, c) = P (b′′, c) (17)

Using (15)-(17) we have

P (a′, b′) = P (a′′, b′′) (18)
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Since P (b′, b) = P (b′′, b) = 1
2
, Weak Substitutability and Completeness allow us to

replace b′ and b′′ with b in (18), which gives:

P (a′, b) = P (a′′, b) ⇔ a′ ∼bi a′′.

Figure 8: All points in the blue shaded area are %b-indifferent

Step 3. Let i ∈ {2, 3, ..., n− 1} and let b and e be points on the hypotenuse of ∆i with

non-parallel %Pi -indifference curves I = [b, b∗] and I∗ = [e, e∗] respectively. If a

non-degenerate sub-interval [e, e∗∗] ⊆ I∗ is squeezed by b, then f is constant on an

open neighbourhood of u (e)− u (b).

From (14) and the fact established in Step 2, there must be some %bi -indifference
class that contains a non-degenerate interval [e, e′] ⊆

[
δ1, δn

]
. This is illustrated

in Figure 8, where e′ = d and the blue shaded region is contained within a single

%bi -indifference class. It follows that

P (ê, b) = F (u (ê)− u (b))

is constant for all ê ∈ [e, e′]. Since u is an implicit expected utility representation

for %P , and therefore u
(
δ1λδn

)
is strictly increasing in λ (Dekel (1986, Axiom A4)),

we deduce that F must be constant on the non-degenerate interval

[u (e)− u (b) , u (e′)− u (b)] .
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Moreover, since u is continuous (and represents %P ) points on the hypotenuse that
are close enough to e will also occupy %Pi -indifference curves that are not parallel
to I. It follows that F is constant on an open neighbourhood of u (e)− u (b).

Step 4. For any i ∈ {2, 3, ..., n− 1}, the binary relation %Pi ⊆ ∆i × ∆i possesses an

expected utility representation.

Recall that F is non-decreasing, satisfies F (x) + F (−x) = 1 for any x, and is

continuous at 0. Hence F must either be constant in some neighbourhood of 0 or else

strictly increasing in some neighbourhood of 0.19 The former scenario contradicts

the assumption that u represents %P (i.e., that the Fechner representation (u, F ) is

strict), so F must be strictly increasing in some neighbourhood of 0. Using this fact,

together with the italicised observation in the previous paragraph, we will prove that

all the non-singleton %Pi -indifference curves are parallel.

To do so, given any λ ∈ (0, 1), let us define hi (λ) to be the slope of the %Pi -
indifference curve through the point δ1λδn ∈ ∆i in the Machina Triangle. Note that

h : (0, 1) → R is a continuous function, since u is continuous. We must prove that
it is constant. Suppose, to the contrary, that h is non-constant on (0, 1). From

the continuity of h, it follows that there exists some λ̂ ∈ (0, 1) and some sequence

{λm}∞m=1 ⊆ (0, 1) such that λm → λ̂ as m → ∞ and h (λm) 6= h
(
λ̂
)
for each

m.20 For m suffi ciently large, the %Pi -indifference curve through δ1λmδ3 will have a
19Let ε = inf {ε > 0 | F (ε) = F (ε′) for some ε′ > ε}. If ε > 0 then F must be strictly increasing on

(−ε, ε). If ε = 0 then continuity of F at 0 implies that F (0) = F (ε′) for some ε′ > 0, and hence F is

constant on [−ε′, ε′].
20Let λ∗, λ∗∗ ∈ (0, 1) with h (λ∗) < h (λ∗∗). We assume λ∗ < λ∗∗. (The argument for the other case is

symmetric.) Now define

λ = max {λ ∈ [λ∗, λ∗∗] | h (λ) ≤ h (λ∗)} .

Note that λ exists and h
(
λ
)
= h (λ∗) by the continuity of h. For each ε ∈

[
0, 1− λ

)
, let

x (ε) = sup
{
h (λ)

∣∣ λ ≤ λ < λ+ ε
}
.

Thus, x (ε) ≥ h
(
λ
)
for all ε and x (ε) is non-decreasing in ε. If x (ε) = h

(
λ
)
for some ε > 0 we obtain

a contradiction to the definition of λ. Thus, x (ε) > h
(
λ
)
= h (λ∗) for all ε > 0. Thus, we can choose

λ̂ = λ and for every m ∈ {1, 2, ...} choose some

λm ∈
(
λ̂, λ̂+

(
1− λ̂
m+ 1

))

with h (λm) > h
(
λ̂
)
.
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non-degenerate portion that is squeezed by δ1λ̂δ3. For any such m, the function f

is constant in some open neighbourhood of

zm ≡ u
(
δ1λmδ3

)
− u

(
δ1λ̂δ3

)
.

Since zm → 0 as m → ∞ it follows that F cannot be strictly increasing in any

neighbourhood of 0. This is the desired contradiction. We therefore conclude that

h is constant on (0, 1). By the continuity of u, it follows that all non-singleton

%Pi -indifference curves in the Machine Triangle are parallel. This completes Step 2.

Step 5. The pair (u, F ) is a SEUR for P .

We must show that u is an expected utility representation for %P . Since u is a
continuous representation for %P of the implicit expected utility form (4), it suffi ces
to prove that v (xi, z) is constant in z ∈ (0, 1) for every i ∈ {2, 3, ..., n− 1}. Fix
some i ∈ {2, 3, ..., n− 1} and consider the Machina Triangle in Figure 5. For any
z ∈ (0, 1), the %Pi -indifference curve through the point δ1zδn is a non-singleton with
normal vector

(1− v (xi, z) , −v (xi, z)) .

By Step 2, these normal vectors must be colinear in z. This is only possible if

v (xi, z) is the same for every z ∈ (0, 1):

(1− v (xi, z) , −v (xi, z)) = (α− αv (xi, z
′) , −αv (xi, z

′)) ⇒ α = 1.

This completes the proof of Theorem 2.

C Proof of Theorem 3

Suppose that P satisfies Axioms 1-3 and 7-9. We start by showing that %P has an IEU
representation.

Axiom 2 ensures that %P is a weak order. Since X is finite, %P must satisfy Dekel’s
(1986) Axiom A1. We assume (without loss of generality) that δn %P δn−1 %P · · · %P δ1.
If δ1 ∼ δn the result is trivial, so we further assume that δ

n �P δ1. Our Axiom 9, and

the fact that the set
{
δ1, ..., δn

}
is weakly ordered by %P , implies that %P also satisfies

Dekel’s Axiom A3. The following two lemmata establish that %P satisfies Dekel’s (1986)
Axioms A4 and A2 respectively.
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Lemma 4. For any a, b ∈ A and any λ, µ ∈ [0, 1] with λ > µ,

a ∼P b ⇒ aλb ∼P b (19)

and

a �P b ⇒ aλb �P aµb (20)

Proof. Suppose a ∼P b. The following argument proves that a ∼P a
(
1
2

)
b.

If a �P a
(
1
2

)
b, then Axiom 7 gives a

(
1
2

)
b �P b, so a �P b by the transitivity of %P .

This contradicts a ∼P b. If a
(
1
2

)
b �P a, then b �P a by a similar argument, which also

contradicts a ∼P b. Hence, a ∼P a
(
1
2

)
b by the completeness of %P .

We may iterate this logic by continuing to subdivide the segment [a, b]. Thus, a ∼P b
implies a ∼P aλb for any dyadic fraction λ (i.e., any λ of the form k/2n for some n ∈
{1, 2, ...} and some k ∈ {0, 1, ..., 2n}). From Axiom 3 we know that the sets{

λ ∈ [0, 1]
∣∣ aλb �P a}

and {
λ ∈ [0, 1]

∣∣ a �P aλb}
are open. It follows that each set is empty. This proves (19).

We now prove (20). If a �P b then, by an argument similar to the one above, we can
use Axioms 2 and 7 to rule out the possibility that

b %P a
(

1

2

)
b

or

a

(
1

2

)
b %P a.

Hence:

a �P a
(

1

2

)
b �P b.

By iteration we have aλb �P aµb for any dyadic fractions λ, µ ∈ [0, 1] with λ > µ. The

following argument extends this to any λ, µ ∈ [0, 1] with λ > µ.

Let λ, µ ∈ [0, 1] with λ > µ. Since the dyadic fractions are dense in [0, 1], we may

obtain λ as the limit of a sequence {xm}∞m=1 ⊆ ((λ+ µ) /2, 1) of dyadic fractions, and

likewise obtain µ as the limit of a sequence {ys}∞m=1 ⊆ (0, (λ+ µ) /2) of dyadic fractions.

Then

a (xm) b �P a (ys) b
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for all m and all s. By Axiom 3, aλb %P a (ys) b for all s, and hence, applying Axiom

3 once more, aλb %P aµb. If aλb ∼P aµb then aλb ∼P aγb for any γ ∈ [µ, λ] by (19).

But this is impossible, since we can find two distinct dyadic fractions in [µ, λ]. Hence

aλb �P aµb. �

Lemma 5. If a, b ∈ A with a �P b, then for any c ∈ A such that a %P c %P b there exists
a unique α ∈ [0, 1] such that c ∼P aαb.

Proof. Since a �P b, (20) implies that

a %P aλb %P b

for any λ ∈ [0, 1]. By standard arguments, Axioms 2-3 imply that the set

S =
{
λ ∈ [0, 1]

∣∣ aλb %P c} ∩ {λ ∈ [0, 1]
∣∣ aλb %P c}

is closed and non-empty. Lemma 4 implies that S must be a singleton. �

We have therefore shown that %P satisfies Axioms A1-A4 of Dekel (1986). It follows
that there exists an IEU representation for %P with v (x1, z) = 1 and v (xn, z) = 0 for all

z ∈ [0, 1] (Dekel, 1986, Proposition 1). In particular, if a ∈ A with u (a) = u
(
δ1αδn

)
then

u (a) = α. Moreover, by Lemma 5, for every a ∈ A there is a unique α ∈ [0, 1] satisfying

u (a) = u
(
δ1αδn

)
.

We next use u to construct a suitable Fechner representation for P .

For any a, b, c ∈ A we have

u (a) = u (b) ⇔ P (a, b) =
1

2
⇒ P (a, c) = P (b, c) ⇔ P (c, a) = P (c, b)

where the first equivalence uses the fact that u represents %P , the middle implication
uses weak substitutability (Lemma 3), and the final equivalence uses completeness of

P . It follows that P is scalable: there exists a function π : [0, 1]2 → [0, 1] such that

P (a, b) = π (u (a) , u (b)) for any a, b ∈ A. Weak Substitutability and Completeness

further imply that π is non-decreasing in its first argument, non-increasing in its second

and satisfies π (x, y) = 1− π (y, x).

We claim that π (x, y) depends only on x− y. Suppose x− y = x′ − y′. Let

a = xδ1 + (1− x) δn

b = yδ1 + (1− y) δn
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a′ = x′δ1 + (1− x′) δn
b′ = y′δ1 + (1− y′) δn

so that π (x, y) = P (a, b) and π (x′, y′) = P (a′, b′). Axiom 8 implies that P (a, b) =

P (a′, b′) as required.

Thus, we may define F : [−1, 1] → [0, 1] by setting F (k) = π (x, y) for any (x, y) ∈
[0, 1]2 with x− y = k. Note that F is non-decreasing in k since π is non-decreasing in its

first argument and non-increasing in its second. Now extend F to R in any fashion that
ensures F is non-decreasing and satisfies F (x) + F (−x) = 1. Then (u, F ) is a stochastic

IEU representation for P .

To prove the converse part of the Theorem, suppose that (u, F ) is a stochastic IEU

representation for P . Since F (x) + F (−x) = 1, it follows that Axiom 1 is satisfied. To

see that P satisfies Strong Stochastic Transitivity (Axiom 2), recall Step 1 in the proof

of Theorem 2. To verify Axiom 3 we use the fact that u represents %P to deduce

P (aλb, c) ≥ 1

2
⇔ u (aλb) ≥ u (c)

and

P (aλb, c) ≤ 1

2
⇔ u (aλb) ≤ u (c) .

Axiom 3 therefore follows from the continuity of u. We next verify Axioms 7 and 9. Since u

is an IEU representation for %P it follows that %P satisfies Dekel’s Axioms A1-A4 (Dekel,
1986, Proposition 1): Axiom 9 follows directly from Dekel’s Axiom A3 (and the fact that{
δ1, ..., δn

}
is weakly ordered by %P ) while Axiom 7 is implied by the completeness of

%P and Dekel’s Axiom A4 (Betweenness). Finally, we deduce Axiom 8 from the Fechner

representation and the fact that u
(
δαδ
)

= α for any α ∈ [0, 1] —recall the discussion

following Example 1.

This completes the proof of Theorem 3.
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