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Abstract

We study optimal two-stage mechanisms in an auction environment where bidders are endowed

with original estimates (“types”) about their private values and can further learn their true values of

the object for sale by incurring an entry cost. We first derive an integral form of the envelope formula

as required by incentive compatible two-stage mechanisms, based on which we demonstrate that the

optimality of the generalized Myerson allocation rule is robust to our setting with costly information

acquisition. Optimal entry is thus to admit the set of bidders that maximizes expected virtual surplus

adjusted by both the second-stage signal and entry cost. We show that our optimal entry and allocation

rules are both IR and IC implementable. Our analytical framework is general enough to encompass

many existing models in the literature on auctions with costly entry.

Keywords: Two-stage auctions, entry, information acquisition, sequential screening, handicap auc-

tions, optimal mechanisms.

JEL Classification: D44, D80, D82.

1 INTRODUCTION

In high-valued asset sales, buyers often need to go through a due diligence process before developing final

bids. Due diligence is usually a process to update or acquire information about the value of the asset for

sale or to prepare for the bidding process (e.g., to establish qualifications to bid). This process is costly

and is usually modeled as entry as it is closely monitored by the auctioneer. For a sale of an asset worth

billions of dollars, the entry cost can run from tens of thousands to millions of dollars.1

Given the substantial entry cost, it is unrealistic to assume that whoever is interested would neces-

sarily go through the costly entry process. The success of a sale thus very much relies on whether the
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1A more detailed description of a typical due diligence process is provided in Section 4.
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most qualified bidders would commit to the due diligence process and participate in the final sale. Mainly

motivated by the need for entry screening, variants of two-stage selling mechanisms have emerged in the

real world. A leading example of the two-stage auction procedure is known as indicative bidding, which

is commonly used in sales of complicated business assets with very high values. It works as follows: the

auctioneer actively markets the assets to a large group of potentially interested buyers. The potential

buyers are then asked to submit non-binding bids, based on which a final set of bidders is shortlisted to

advance to the second stage. The auctioneer then communicates only with these final bidders, providing

them with extensive access to information about the assets,2 and finally runs the auction (typically using

binding sealed bids). The use of this two-stage auction procedure is quite widespread. For example, in

response to the restructuring of the electric power industry in the U.S. – which was designed to separate

power generation from transmission and distribution – billions of dollars of electrical generating assets

were divested through this two-stage auction procedure over the last two decades.3 This two-stage auc-

tion procedure is also commonly used in privatization, takeover, and merger and acquisition contests.4

Finally, it is commonly used in the institutional real estate market, which has an annual sales volume in

the order of $60 to $100 billion.5

Ye (2007) was the first study of indicative bidding based on the assumption of costly information

acquisition.6 Ye’s analysis suggests that the current design of indicative bidding cannot reliably select

the most qualified bidders for the final sale, as there does not exist a symmetric, strictly increasing

equilibrium bid function in the indicative bidding stage. In a more recent paper, by restricting indicative

bids to a finite discrete domain, Quint and Hendricks (2013) show that a symmetric equilibrium exists

in weakly-monotone strategies. But again, the highest-value bidders are not always selected, as bidder

types “pool” over a finite number of bids. Without safely selecting the most qualified bidders for the

final sale, the mechanism is less likely to be optimal in maximizing expected revenue. What the optimal

mechanism is in this two-stage auction environment remains an open question in the literature, and this

paper seeks to provide an answer.

We model the two-stage auction environment as follows. Before entry, each potential bidder is en-

dowed with a private signal, αi, which can be regarded as her pre-entry “type.” After entry (by incurring

a common entry cost, c), each bidder i fully observes her (private) value vi, which is positively correlated

with her pre-entry type. Given costly entry, it is not feasible for all potential bidders to be included in

the final sale. As such, a general mechanism must consist of an entry-right allocation stage to shortlist

bidders into the sale. Mainly for the tractability of our analysis, we assume that shortlisting occurs si-

multaneously in a single round. So in effect, we restrict our search of optimal mechanisms to the class

2Data rooms, which are described in Section 4, are typically set up to facilitate bidders’ due diligence process.
3A list of industry examples using this two-stage auction design can be found in Ye (2007).
4Leading examples include the privatization of the Italian Oil and Energy Corporation (ENI), the acquisition of Ireland’s

largest cable television provider Cablelink Limited, and the takeover contest for South Korea’s second largest conglomerate

Daewoo Motors.
5See Foley (2003) for a detailed account.
6Boone and Goeree (2009) provide an analysis of pre-qualifying auctions, which are similar to indicative bidding.
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of two-stage mechanisms, with the first stage allocating entry rights and the second stage allocating the

asset. The focus on two-stage mechanisms should be regarded as a constraint, which is fully discussed in

Section 4.7

Despite the potential complication due to both sequential screening and costly information acquisi-

tion, we are able to completely characterize the optimal revenue-maximizing two-stage mechanisms. Our

analysis benefits greatly from recent developments in the literature of sequential screening (e.g., Courty

and Li, 2000; Esö and Szentes, 2007; Pavan, Segal, and Toikka, 2014; and Bergemann and Wambach,

2015).8 In particular, our analysis follows Esö and Szentes closely, and our technical contribution is to

extend their analysis to dynamic auctions with costly information acquisition. We first derive an integral

form of the envelope formula as a necessary condition for incentive compatibility for our two-stage mech-

anisms, which extends the validity of the envelope theorem to dynamic auctions with costly information

acquisition. Based on this derived envelope formula, we are able to show that the optimal allocation

rule of the asset in our second stage is the same as that identified by Esö and Szentes, which requires

that, among the shortlisted bidders, the asset be allocated to the bidder with the highest virtual value

adjusted by the second-stage signal. Our analysis thus suggests that the optimality of the generalized

Myerson optimal allocation rule (adjusted by second-round signals) is robust to the dynamic auction set-

ting with costly entry. The first-stage entry right allocation mechanism is new to the original Esö-Szentes

framework, and we show that the optimal entry rule is to admit the set of bidders that gives rise to the

maximum expected virtual surplus (adjusted by both the second-stage signal and entry cost). Alterna-

tively, given the regularity assumption and that buyers are ex ante symmetric in our model, the optimal

entry rule is to admit the bidders in descending order of their pre-entry “types”, the highest type first,

the second highest type second, etc., provided that their marginal contribution to the expected virtual

surplus is positive. Therefore, the optimal number of shortlisted bidders typically depends on the report-

ed type profile from the potential bidders, which is endogenously determined. We then show that specific

payment rules can be constructed in each stage to implement both optimal entry and allocation rules

truthfully.

For an important setting where one’s value is linear in her first signal, Esö and Szentes show that

their optimal mechanism can be implemented over two rounds via a so-called handicap auction: in the

first round (before observing the second-stage signal), each buyer selects a “price premium” by paying a

fee according to a pre-announced schedule. In the second round (after observing the second-stage signals),

buyers compete in a second-price or English auction, where the winner obtains the object at a price equal

to the second-highest bid plus the price premium selected from the first round. In our setting with entry,

the implementation is presumably more complicated, as optimal entry needs to be implemented prior to

the final auction. Indeed, now the implementation requires that an (optimal) entry rule be augmented

7In Appendix B, we consider the model with two potential bidders; we are able to fully characterize optimal mechanisms

allowing for sequential shortlisting.
8Early work on dynamic contracting with a single agent are due to Baron and Besanko (1984) and Riordan and Sappington

(1987).
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to the handicap auction. So in our case the optimal mechanism is implemented via a two-stage auction,

with the first stage being an auction for entry rights (as well as the price premia) and the second stage

being a second-price or English auction for the asset.

Other than the connection with sequential screening and dynamic auctions mentioned above, our

paper is related to the literature on information acquisition in auctions (see, for example, Persico, 2000;

Compte and Jehiel, 2001; and Rezende, 2013). These papers focus on bidders’ incentives to acquire

information in different auction formats. Our paper differs from theirs in that we follow the normative

approach to identify optimal mechanisms with information acquisition.

To the extent that information acquisition is modeled as entry, our paper is closely related to the

growing literature on auctions with costly entry.9 This literature can be summarized into three branch-

es. In the first branch, bidders are assumed to possess no private information before entry and they

learn their private values or signals only after entry (see, for example, McAfee and McMillan, 1987;

Engelbrecht-Wiggans, 1993; Tan, 1992; Levin and Smith, 1994; and Ye, 2004). In the second branch, it is

assumed that bidders are endowed with private information about their values but have to incur entry

costs to participate in an auction (see, for example, Samuelson, 1985; Stegeman, 1996; Campbell, 1998;

Menezes and Monteiro, 2000; Tan and Yilankaya, 2006; Cao and Tian, 2009; and Lu, 2009). Finally, in

the third branch, bidders are endowed with some private information before entry, and are able to ac-

quire additional private information after entry (Ye, 2007; Quint and Hendricks, 2013). The framework

in this current paper nests all the models mentioned above as special cases. Our paper thus characterizes

optimal mechanisms for a very general framework in the literature on auctions with costly entry.

Our research is also related to a small literature on auctions of entry rights. In a pioneering work,

Fullerton and McAfee (1999) introduce auctions for entry rights to shortlist contestants for a final tour-

nament. Ye (2007) extends their approach to the setting of two-stage auctions described above. Our

current approach differs from theirs in the way the set of finalists is determined: while in their approach

the number of finalists to be selected is fixed and pre-announced, in our entry right allocation mechanism

the selection of shortlisted bidders is contingent on the reported bid profile, making the number of final-

ists endogenously determined. For this reason the entry right allocation mechanism examined in this

research is more general.10

In another relevant paper, Lu and Ye (2013) explore optimal two-stage mechanisms in an environment

where bidders are characterized by heterogenous and private information acquisition costs before entry.

In that setting the pre-entry “type” is the entry cost, which is neither correlated to nor part of the value

of the asset for sale. As such, there is no benefit to make the second-stage mechanism contingent on the

reports of the pre-entry types, resulting in a much simpler characterization of optimal mechanisms. The

setting in this current paper is different, as the pre-entry “type” is correlated to the value of the asset,

hence there are potential gains to make the second-stage mechanism contingent on first-stage reports.

9See Bergemann and Välimäki (2006) for a thoughtful survey of this literature.
10In fact, it resembles multi-unit auctions with endogenously determined supply (see, e.g., McAdams, 2007).
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Indeed, in our current setting, the optimal allocation and payment rules in the second stage do depend

on the first-stage reports. Therefore the characterization of optimal mechanisms is more demanding in

this work, and the implementation of the optimal mechanism is also more sophisticated.

The rest of the paper is organized as follows. Section 2 presents the model. Section 3 characterizes the

optimal mechanism and its auction implementation. Section 4 discusses main assumptions/restrictions

in our analysis and the robustness of our results. Section 5 concludes.

2 THE MODEL

The information structure in our model is closest to that in Esö and Szentes (2007). The main differences

are that in Esö and Szentes, the additional information is controlled by the seller, and they focus on the

seller’s incentive to disclose (without observing) additional signals to the buyers. In our setting, however,

it is costly for the bidders to acquire additional information, and we focus on the bidders’ incentive for

information acquisition (entry). In addition, all buyers are included in the final sale in Esö and Szentes,

but due to costly entry in our setting, generally not all buyers will be willing to participate in the final

auction. As such, we will additionally consider entry mechanisms – which is the major difference from

the analysis in Esö and Szentes.

Formally, a single indivisible asset is offered for sale to N potentially interested buyers. The seller

and bidders are assumed to be risk neutral. The seller’s own valuation for the asset is normalized to 0.

Buyer i’s true valuation for the asset is vi. However, initially she only observes a noisy signal of it, αi ,

which is her private information and can be interpreted as her original “type”. After incurring a common

information acquisition cost (or entry cost) of c(> 0), bidder i fully observes her ex post value, vi. The

pairs (αi , vi) are assumed to be independent across i.11

Ex ante, αi follows distribution F(·) with its associated density f (·) on support [α,α].12 We assume

that f is positive on the interval [α,α] and satisfies the monotone hazard rate condition; that is, f / (1−F)

is weakly increasing. Given αi, the ex post value vi follows distribution Hαi
≡ H(·|αi) with its density

hαi
≡ h(·|αi) over support [v,v] ⊂ R.13 The values N and c and distributions F and Hαi

are all common

knowledge.

Following the signal orthogonalization technique introduced by Esö and Szentes (2007),14 there exist

functions u and s i, such that u(αi, s i) ≡ vi, where u is strictly increasing in both arguments, and s i is

11As in Esö and Szentes (2007) and Pavan, Segal, and Toikka (2014), this assumption rules out the possibility of full rent

extraction (Crémer and McLean, 1988).
12Esö and Szentes allow αi ’s to be drawn from different distributions. Our procedure can be extended to accommodate

asymmetric distributions for αi ’s. For ease of characterizing our optimal entry right allocation rule, we assume that αi ’s are

drawn from a common distribution, so that bidders are ex ante symmetric. Note that with different realizations of αi ’s, bidder

heterogeneity before entry is still captured in our model.
13Following the dynamic mechanism design literature, we assume that the support of vi is independent of the first-stage

signal αi.
14The use of this technique has become standard in the literature (see, e.g., Pavan, Segal, and Toikka, 2014, and Bergemann

and Wambach, 2015).
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independent of αi . In particular, s i can be constructed as follows:

s i = H(vi|αi),

which is the percentile of the value realization to bidder i.15 Thus given type αi and signal s i, the

valuation can be computed as

vi = H−1
αi

(s i)≡ u(αi, s i).

We will denote the c.d.f. of s i by G i.
16

We maintain the following assumptions that are adopted in Esö and Szentes (2007):

Assumption 1. (∂Hα(v)/∂α) /hα(v) is increasing in v.

Assumption 2. (∂Hα(v)/∂α) /hα(v) is increasing in α.

Esö and Szentes show that Assumption 1 is equivalent to u12 ≤ 0 and Assumption 2 is equivalent to

u11/u1 ≤ u12/u2. Assumption 1 thus states that the marginal impact of the new information on buyer i’s

value is decreasing in her type αi. Assumption 2 implies that an increase in αi, holding u(αi, s i) constant,

weakly decreases the marginal value of αi. Assumptions 1 and 2 can thus be interpreted as a kind of

substitutability in buyer i’s posterior valuation between αi and s i.

Example 1. (Ye, 2007): Each potential bidder is endowed with a private value component αi before

entry; after entry, each buyer learns another private value component s i, where s i is independent of αi .

The ex post value u(αi, s i)=αi + s i. By the linearity of u(αi, s i), Assumptions 1 and 2 hold.

Example 2. (Adapted from Esö and Szentes, 2007): vi is drawn from a normal distribution with mean

µ and precision (inverse variance) τ0. The pre-entry type, αi, is normally distributed with mean vi

and precision τv. After entry, the buyer can observe her true value, vi. It is clear that vi and αi are

strictly affiliated. The distribution of αi , which is normal, satisfies the hazard rate condition. The cdf

of vi conditional on αi, Hαi
, is normal with mean (τ0µ+ τvαi)/(τ0 + τv) and precision τ0 + τv. Define

s i = Hαi
(vi) and let u(αi, s i)= H−1

αi
(s i)≡ vi. Obviously u is strictly increasing in s i. It can be verified that

u1(αi, s i) = τv/(τ0 +τv), which is a constant. Therefore, u is linear and strictly increasing in αi. Hence

Assumptions 1 and 2 hold.

Since information acquisition is modeled as entry in our setting, we consider a mechanism design

framework in which the seller exercises entry control. In addition, we restrict our analysis to two-stage

mechanisms: the first stage is the entry right allocation mechanism, and the second stage is the private

15It is easily seen that si is uniformly distributed over [0,1], and is hence statistically independent of the initial information

αi .
16G i could be assumed to be uniform on [0,1]. More generally, all si ’s satisfying u(αi ,si )≡ vi are positive monotonic transfor-

mation of each other (Lemma 1 in Esö and Szentes).
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good provision mechanism. Note that in this mechanism design framework, the second-stage mechanism

can be made contingent on the first-stage reports.

We restrict to direct mechanisms where agents report their types truthfully at each stage on the equi-

librium path. We assume that all shortlisted bidders are disclosed and the first-stage reported profile α

is revealed to all admitted bidders so that the first-stage entry allocation and payments are immediately

verifiable.17 This revelation policy turns out to be “optimal”, in the sense that no other revelation policy

(e.g., not revealing or partially revealing α) can generate a higher expected revenue to the seller. For

this reason, our restriction to fully revealing α is without loss of generality in our search for optimal

mechanisms. A detailed discussion is relegated to Section 4. As in Pavan, Segal, and Toikka (2014), the

revelation policy concerned in this paper is about the first-stage information and outcome, including the

agents’ first-stage reports, their payments, and the agents being shortlisted. In our paper, the principal

has no control over the ways in which the second-stage new information is revealed to bidders. A short-

listed bidder will be fully informed about her true value vi after incurring the entry cost. As such, we are

not concerned about the discriminatory information disclosure issue studied in Li and Shi (2013).

As in Esö and Szentes, we can focus on equivalent direct mechanisms that require bidders to report

s i ’s, rather than vi ’s. Note that reporting (α′
i
,v′

i
) is equivalent to reporting (α′

i
, s′

i
= Hα′

i
(v′

i
)).

Let N = {1,2, ..., N} denote the set of all the potential buyers and 2N denote the collection of all the

subsets (subgroups) of N, including the empty set, φ. The first-stage mechanism is characterized by the

shortlisting rule A g(α) and payment rule xi(α), i = 1,2, ..., N. Given the reported profile α, the shortlisting

rule, A g :
[
α,α

]N
→ [0,1], assigns a probability to each subgroup g ∈ 2N, where

∑
g∈2N A g(α) = 1. The

payment rule xi :
[
α,α

]N
→R, specifies bidder i’s first-stage payment given the reported profile α.

Given the first-stage reported profile α, and that group g is shortlisted, the second-stage mechanism

is characterized by p
g

i
(α,sg), the probability that the asset is allocated to buyer i ∈ g, and t

g

i
(α,sg), the

payment to the seller made by buyer i ∈ g,∀g ∈ 2N.

3 THE ANALYSIS

We start with the second stage. Suppose group g is shortlisted, and the profile α̃ reported in the first

stage is revealed as public information to the shortlisted bidders.

First, suppose α is truthfully reported at the first stage and group g is shortlisted. Assume that they

follow the recommendation and incur the information acquisition cost c to discover sg.18

Given the announced α and s i, define the interim winning probability and expected payment rule as

P
g

i
(α, s i)= Es

g

−i
p

g

i
(α,sg) and T

g

i
(α, s i)= Es

g

−i
t

g

i
(α,sg), where s

g

−i
= sg\{s i}, ∀i ∈ g and ∀g ∈ 2N. Then bidder

17In Esö and Szentes, there is no such need for interim verification, as their allocation and payment rules are executed at the

end of the mechanism.
18As will be shown, the equilibrium expected profit from going forward is positive for a buyer upon entry, so in equilibrium, a

bidder does have an incentive to follow the recommendation to acquire (costly) information and participate in the final auction

once admitted (as dropping out only results in zero profit).
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i’s second-stage interim expected payoff when she observes s i but reports ŝ i is as follows:

π̃
g

i
(α;s i, ŝ i)= Es

g

−i
[u(αi, s i)p

g

i
(α, ŝ i,s

g

−i
)− t

g

i
(α, ŝ i,s

g

−i
)]= u(αi, s i)P

g

i
(α, ŝ i)−T

g

i
(α, ŝ i).

The second-stage incentive compatibility (IC) conditions require that

π̃
g

i
(α;s i, ŝ i)≤ π̃

g

i
(α;s i, s i),∀g,α,s i, ŝ i. (1)

First, the following lemma is standard in the traditional screening literature:

Lemma 1. Suppose α is truthfully revealed from the first stage and P
g

i
(α, s i),∀i ∈ g, is continuous and

weakly increasing in s i where g denotes the group being shortlisted, then the second-stage incentive

compatibility condition (1) holds if and only if

π̃
g

i
(α;s i, s i)= π̃

g

i
(α;ŝ i, ŝ i)+

∫si

ŝi

u2(αi,τ)P
g

i
(α,τ)dτ,∀s i > ŝ i,∀i ∈ g. (2)

(2) is an integral form of the envelope formula. Next, we consider the case when α̂i instead of αi

is reported by bidder i while others report their types truthfully. As demonstrated in Esö and Szentes

(2007), whenever a bidder had misreported her type in the first stage, she would “correct” her lie in the

second stage. Formally in our setting, suppose α−i is truthfully revealed from the first stage and the

second-stage mechanism is incentive-compatible given a truthfully revealed α. Then buyer i of type αi

who reported α̂i in the first round will report ŝ i =σi(αi, α̂i, s i) if she observes s i in the second stage such

that19

u(αi, s i)= u(α̂i,σi(αi, α̂i, s i)). (3)

Reporting ŝ i after a lie α̂i is equivalent to revealing vi truthfully regardless of the first-stage report. The

optimality of this strategy has been established in general for the Markov environments by Pavan, Segal,

and Toikka (2014). Our two-stage setting resembles the Markov environment defined in Pavan, Segal,

and Toikka since the agents’ payoffs only depend on their second-stage true types (vi ’s) and the allocation

outcome, but not on their first-stage true types. For this reason, an agent’s reporting incentive in the

second stage depends only on her current type and her first-stage report, but not on her first-stage true

type.

Note that ŝ i does not depend on α−i, g, or s
g

−i
. Define

π̃
g

i
(α,α̂i;s i, ŝ i) = Es

g

−i
[u(αi, s i)p

g

i
(α−i, α̂i, ŝ i,s

g

−i
)− t

g

i
(α−i, α̂i, ŝ i,s

g

−i
)]

= u(αi, s i)P
g

i
(α−i, α̂i, ŝ i)−T

g

i
(α−i, α̂i, ŝ i);

19The existence of σi(·, ·, ·) relies on the assumption that the support of vi does not depend on the first-stage signal αi.
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π̃
g

i
(αi, α̂i;α−i) = Esi

π̃
g

i
(α,α̂i;s i, ŝ i =σi(αi, α̂i, s i)).

π̃
g

i
(αi, α̂i;α−i) is the expected second-stage payoff for the type-αi bidder if she reported α̂i in the first

stage (and everyone else reported truthfully) given her opponents’ types being α−i. Parallel to Lemma 5

in Esö and Szentes, we can show the following lemma:

Lemma 2. Suppose α−i is truthfully revealed from the first stage and the second-stage mechanism is

incentive-compatible given a truthfully revealed α. If buyer i of type αi who reported α̂i in the first stage

is shortlisted in group g i, her expected payoff from the second stage is given by

π̃
gi

i
(αi, α̂i;α−i)= π̃

gi

i
(α̂i , α̂i;α−i)+

∫∫αi

α̂i

u1(y, s i)P
gi

i
(α̂i ,α−i,σi(y, α̂i, s i))d ydG i(s i). (4)

Throughout, g i will be used to denote the group including bidder i. (4) should again be regarded as

an integral form of the envelope formula: the winning probability (P
gi

i
) is now obtained when evaluating

at ŝ i = σi(y, α̂i, s i) (which is optimal given the first-round “lie” α̂i). We are now ready to consider the

first-stage IC mechanism.

Let πi(αi, α̂i) be the expected payoff (net of the entry cost) for a type-αi bidder who reports α̂i in the

first stage. By (3), we have

πi(αi, α̂i) = Eα−i

{
∑

gi

A gi (α̂i,α−i)[π̃
gi

i
(αi , α̂i;α−i)− c]− xi(α̂i,α−i)

}

(5)

= Eα−i

{
∑

gi

A gi (α̂i,α−i)
[
Esi

(
u(αi, s i)P

gi

i
(α−i, α̂i, ŝ i)−T

gi

i
(α−i, α̂i, ŝ i)

)
− c

]
}

− xi(α̂i),

where ŝ i =σi(αi , α̂i, s i) and xi(α̂i)= Eα−i
xi(α̂i ,α−i).

The following lemma characterizes the bidder’s expected payoff in an IC two-stage mechanism with

costly entry.

Lemma 3. If the two-stage mechanism is incentive compatible and Eα−i
A gi (αi,α−i)P

gi

i
(αi,α−i, s i) is

continuous in αi then buyer i’s expected payoff (as a function of her pre-entry type) can be expressed as

πi(αi,αi)=πi(α,α)+

∫αi

α

∫
u1(y, s i) ·

∑

gi

[
Eα−i

A gi (y,α−i)P
gi

i
(y,α−i, s i)

]
dG i(s i)d y. (6)

Proof. See Appendix A.

Note that
∑

gi

[
Eα−i

A gi (y,α−i)P
gi

i
(y,α−i, s i)

]
is buyer i’s equilibrium probability of eventually win-

ning the asset with signals (y, s i) in our setting. Thus (6) is also an integral form of the envelope formula.
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Under a set of regularity conditions, which basically require that each agent’s expected utility be a suf-

ficiently well behaved function of her private information, Pavan, Segal, and Toikka (2014) show that

the envelope formula continues to hold in the dynamic mechanism design setting. Lemma 3 can be re-

garded as an extension of their result to a dynamic mechanism design setting with costly information

acquisition.

3.1 The Optimal Two-stage Mechanisms

We are now ready to derive the seller’s expected payoff from an IC two-stage mechanism. By Lemma 3,

we have

Eπi(αi,αi)

= πi(α,α)+

∫α

α

∫αi

α

∫
u1(y, s i) ·

∑

gi

[
Eα−i

A gi (y,α−i)P
gi

i
(y,α−i, s i)

]
dG i(s i)d ydF(αi)

= πi(α,α)+

∫α

α

1−F(αi)

f (αi)

∫
u1(αi, s i) ·

∑

gi

[
Eα−i

A gi (αi,α−i)P
gi

i
(αi ,α−i, s i)

]
dG i(s i)dF(αi)

= πi(α,α)+Eα

{
∑

gi

A gi (αi,α−i)

[∫
1−F(αi)

f (αi)
u1(αi , s i)P

gi

i
(αi,α−i, s i)dG i(s i)

]}

.

The second equality above is due to Fubini’s Theorem. Thus

N∑

i=1

Eπi(αi ,αi)=
N∑

i=1

πi(α,α)+Eα

{
∑

g

A g(α)Es

[
∑

i∈g

p
g

i
(α,sg)

1−F(αi)

f (αi)
u1(αi , s i)

]}

.

The total expected surplus from the two-stage mechanism is

TS = Eα

∑

g

{

A g(α)Es

[
∑

i∈g

p
g

i
(α,sg)u(αi, s i)−|g|c

]}

.

The seller’s expected revenue is thus given by

ER = TS−

N∑

i=1

Eπi(αi,αi)

= Eα

∑

g

{

A g(α)Es

[
∑

i∈g

p
g

i
(α,sg)

(
u(αi, s i)−

1−F(αi)

f (αi)
u1(αi, s i)

)
−|g|c

]}

−

N∑

i=1

πi(α,α), (7)

where A g(α) is the shortlisting rule and p
g

i
(α,sg) is the second-stage allocation rule. To maximize ER

subject to IC and IR (individual rationality), the seller sets πi(α,α) = 0 for all i = 1,2, ..., N; i.e., no rent

should be given to the buyer with the lowest possible (pre-entry) type.
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Define the virtual value adjusted by the second-stage signal as follows:

w(αi, s i)= u(αi, s i)−
1−F(αi)

f (αi)
u1(αi, s i). (8)

From the expression of the expected revenue, we can derive the optimal allocation rules in both

stages as follows, provided that some suitable monotonicity conditions hold. At the second stage, given

the revealed α and the shortlisted group g, ∀sg,20

p
∗g

i
(α,sg)=






1 if i = argmax j∈g{w(α j, s j)} and w(αi, s i)≥ 0

0 otherwise
∀g,∀i ∈ g. (9)

So as also identified by Esö and Szentes, the asset should be awarded to the bidder with the highest

non-negative virtual value adjusted by the second-stage signal, which is a generalization of the optimal

allocation rule in Myerson (1981). Our analysis thus shows that the generalized Myerson allocation rule

is robust to settings with costly entry, which affects the final allocation only through its effect on the

entry right allocation rule.

Define the expected virtual surplus (the virtual value less the entry cost) as follows:

w∗g(α)= Es

[
∑

i∈g

p
∗g

i
(α,sg)w(αi, s i)−|g|c

]

.

Then at the first stage, contingent on the revealed α, the optimal shortlisting rule is as follows:21

A∗g(α)=






1 if g = argmax g̃{w∗ g̃(α)} and w∗g(α)≥ 0

0 otherwise
∀g. (10)

The optimal shortlisting rule admits the set of bidders that gives rise to the maximal expected virtual

surplus. Alternatively, the optimal shortlisting rule admits the bidders in descending order of their

marginal contribution to the expected virtual surplus – the bidder with the highest contribution first, the

bidder with the second-highest contribution second, etc. – provided that their marginal contribution is

positive. Let g∗(α) denote the set of bidders admitted under the optimal shortlisting rule.

Similarly to Esö and Szentes, following Assumptions 1 and 2, we can establish the following proper-

ties of the optimal second-stage allocation rule:22

Corollary 1. (i) p
∗gi

i
(α,sgi ) increases in both αi and s i, ∀i ∈ g i , ∀g i , α−i, and s

gi

−i
, which implies that

P
∗gi

i
(αi ,α−i, s i) increases in both αi and s i, ∀g i , α−i; (ii) If αi > α̂i, s i < ŝ i and u(αi, s i) = u(α̂i, ŝ i), then

p
∗gi

i
(αi ,α−i, s i,s

gi

−i
)≥ p

∗gi

i
(α̂i ,α−i, ŝ i,s

gi

−i
), which implies P

∗gi

i
(αi,α−i, s i)≥ P

∗gi

i
(α̂i,α−i, ŝ i),∀g i, α−i.

20Ties occur with probability zero and are hence ignored.
21Again ties occur with probability zero and are hence ignored.
22Assumption 2 is used to show property (ii).
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Property (ii) above suggests that whenever αi > α̂i , s i < ŝ i and u(αi, s i)= u(α̂i, ŝ i), the optimal alloca-

tion rule favors the “truth-telling” pair (αi , s i).

Given αi, let s(αi) be defined such that w(αi, s(αi))= 0. To identify properties of the optimal shortlist-

ing rule, we define a truncated random variable as follows:

w+
i (αi, s i)=






w(αi, s i) if w(αi, s i)≥ 0 or equivalently s i ≥ s(αi)

0 otherwise
∀i.

Note that conditional on α, w+
i
’s are independent across i ∈ g.

Let ∆S̃g(αi;α−i) denote buyer i’s marginal contribution to the expected virtual surplus, i ∈ g, then

∆S̃g(αi;α−i)= S̃(αg)− S̃(α
g

−i
), i ∈ g,∀αg,

where α
g

−i
=αg\{αi} and

S̃(αg)= Esg max
i∈g

{w+
i (αi, s i)},∀g,∀αg.

The following two properties are obvious:

(1) ∆S̃g(αi;α−i) increases with αi, and decreases with α j,∀ j 6= i,∀i ∈ g,∀g.

(2) ∆S̃g(αi;α−i) ≥ ∆S̃g′

(αi;α−i) , ∀α−i ,∀i ∈ g,∀g ⊂ g′.

The revenue-optimal shortlisting rule can be alternatively described as follows. For given α, we can

rank all αis from the highest to the lowest. The seller admits bidders one by one in descending order of

αi ’s as long as the bidder’s marginal contribution to the expected virtual surplus is nonnegative, i.e.

∆S̃g(αi;α−i)− c = S̃(αg)− S̃(α
g

−i
)− c ≥ 0,

where g denotes the group of bidders with the highest |g| types before entry.

Two properties follow immediately from the optimal shortlisting rule A∗g:

Corollary 2. (i) Given α−i, if bidder i with αi is shortlisted, then she would also be shortlisted with a

higher type α̃i(> αi); (ii) Given α−i, bidder i will be shortlisted as long as αi is higher than a threshold

α̂i(α−i). As αi increases, the shortlisted group weakly shrinks. As αi increases from α̂i(α−i), the bidders

in g∗(α)\{i} would be excluded one by one (with the lowest type originally shortlisted being excluded

first).

We are now ready to show that the optimal final good allocation and entry right allocation rules (9)

and (10) are truthfully implementable by some well constructed payment rules in both stages.

Theorem 1. Under Assumptions 1 and 2, the optimal final good allocation and entry right allocation

rules (9) and (10) are IR and IC implementable.
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Proof. u(αi, s i) increases with s i and by Assumption 1, u1(αi, s i) (weakly) decreases with s i. This implies

that w(αi, s i) increases with s i. By the final good allocation rule (9), the winning probability P
∗g

i
(α, s i)

is weakly increasing in s i. By Lemma 1, the second-stage mechanism is incentive compatible (given α

and g). Thus, given the truthfully revealed α and shortlisted group g, a second-stage payment rule,

say, t
∗g

i
(α,sg),∀i ∈ g,∀g, can be constructed to truthfully implement the second-stage allocation rule

p
∗g

i
(α,sg),∀i ∈ g,∀g while maintaining the second-stage IR constraints (to participate in the second-

stage mechanism), i.e. π̃
g

i
(α,αi;s i, s i)≥ 0 on equilibrium path. This resembles the Myerson (1981) setting

with asymmetric bidders.

We use π̃
∗gi

i
(αi, α̂i;α−i) to denote the second-stage expected payoff to buyer i of type αi if she an-

nounces α̂i and is shortlisted in group g i , given that everyone else announces α−i truthfully at the first

stage. π̃
∗gi

i
(αi, α̂i;α−i) is well defined given Lemma 2. Therefore, when buyer i of type αi announces α̂i

while others reveal α−i truthfully, her first-stage expected payoff can be written as follows:

π∗
i (αi, α̂i)= Eα−i

{
∑

gi

A∗gi (α̂i ,α−i)[π̃
∗gi

i
(αi, α̂i;α−i)− c]− x∗i (α̂i,α−i)

}

,

where x∗
i

is the first-stage payment rule.

Next, we will show that the optimal shortlisting rule (10) is truthfully implementable by a properly

chosen first-stage payment rule x∗
i
, together with the second-stage payment rules t

∗g

i
chosen above.

Note that by (5), we have

π∗
i (αi,αi)= Eα−i

{
∑

gi

A∗gi (αi ,α−i)[π̃
∗gi

i
(αi,αi;α−i)− c]− x∗i (αi,α−i)

}

. (11)

Construct the first-stage payment rule as follows:

x∗i (α) =
∑

gi

A∗gi (αi,α−i)[π̃
∗gi

i
(αi,αi;α−i)− c]

−

∫αi

α

∫
u1(y, s i) ·

∑

gi

[
Eα−i

A∗gi (y,α−i)P
∗gi

i
(y,α−i, s i)

]
dG i(s i)d y (12)

Substituting (12) into (11), we can verify that

π∗
i (αi,αi)=

∫αi

α

∫
u1(y, s i) ·

∑

gi

[
Eα−i

A∗gi (y,α−i)P
∗gi

i
(y,α−i, s i)

]
dG i(s i)d y,

which is precisely equation (6) with π∗
i
(α,α)= 0 (the optimality requirement). Note that π∗

i
(αi ,αi)≥ 0, so

IR is satisfied in the first stage.

Suppose that all buyers except i report their types α−i truthfully. Consider buyer i with αi contem-

plating to misreport α̂i <αi. The deviation payoff is

∆=π∗
i (αi, α̂i)−π∗

i (αi ,αi)= [π∗
i (αi, α̂i)−π∗

i (α̂i, α̂i)]+ [π∗
i (α̂i, α̂i)−π∗

i (αi,αi)].
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Since (6) is satisfied by the construction of x∗
i
(α), we have

π∗
i (α̂i , α̂i)−π∗

i (αi ,αi)=−

∫αi

α̂i

∫
u1(y, s i) ·

∑

gi

[
Eα−i

A∗gi (y,α−i)P
∗gi

i
(y,α−i, s i)

]
dG i(s i)d y.

Recall the definition of π∗
i
(αi , α̂i) above, we have from Lemma 2 that

π∗
i (αi, α̂i)−π∗

i (α̂i , α̂i)=

∫αi

α̂i

∫
u1(y, s i) ·

∑

gi

[
Eα−i

A∗gi (α̂i ,α−i)P
∗gi

i
(α̂i ,α−i,σi(y, α̂i, s i))

]
dG i(s i)d y.

Therefore, we have

∆ =

∫αi

α̂i

Eα−i

∑

gi

A∗gi (y,α−i)

∫
u1(y, s i)[P

∗gi

i
(α̂i,α−i,σi(y, α̂i, s i))−P

∗gi

i
(y,α−i, s i)]dG i(s i)d y

+

∫αi

α̂i

Eα−i

∑

gi

[A∗gi (α̂i,α−i)− A∗gi (y,α−i)]

∫
u1(y, s i)P

∗gi

i
(α̂i,α−i,σi(y, α̂i, s i))dG i(s i)d y. (13)

From Corollary 1 (ii), we have P
∗gi

i
(α̂i,α−i,σi(y, α̂i, s i))−P

∗gi

i
(y,α−i, s i) ≤ 0, which implies that the

first term in ∆ is negative.

We now consider the second term in ∆ when y > α̂i. By Corollary 2, the optimal shortlisting rule

implies that given α−i, when buyer i is admitted with a higher αi, she must be admitted to a group with

a weakly smaller size. If y and α̂i are admitted in the same group, then A∗gi (α̂i,α−i) = A∗gi (y,α−i) and

this term in ∆ is zero.

We now turn to the case where g∗(α̂i,α−i) ⊃ g∗(y,α−i) ⊃ {i}. Note that A∗gi (·,α−i) is 1 for the short-

listed group, and 0 for all other groups. Therefore,

∑

gi

[A∗gi (α̂i,α−i)− A∗gi (y,α−i)]u1(y, s i)P
∗gi

i
(α̂i,α−i,σi(y, α̂i, s i))

= u1(y, s i)[P
∗g∗(α̂i ,α−i )
i

(α̂i ,α−i,σi(y, α̂i , s i))−P
∗g∗(y,α−i )
i

(α̂i,α−i,σi(y, α̂i, s i))]

≤ 0,

which implies that the second term in ∆ is negative. Since g∗(α̂i,α−i) ⊃ g∗(y,α−i) ⊃ {i}, we must have

P
∗g∗(α̂i ,α−i)
i

(α̂i,α−i,σi(y, α̂i, s i)) ≤ P
∗g∗(y,α−i )
i

(α̂i ,α−i,σi(y, α̂i , s i)), i.e. entrant i wins with a smaller proba-

bility if a strictly bigger group is shortlisted.

A similar argument can be used to rule out deviation to α̂i >αi.

It is worth noting that Assumptions 1 and 2 are sufficient but not necessary for the optimal entry

rule to be truthfully implementable: the necessary and sufficient condition is that ∆ defined in (13) is

non-positive, which is also the integral monotonicity condition characterized by Pavan, Segal, and Toikka

(2014).

When u(αi, s i) is linear in αi, i.e., when u(αi, s i) = u1αi + r(s i) for some constant u1 and function r,

we will demonstrate that the optimal mechanism can be implemented via a two-stage auction, with the
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first stage being an auction for both entry rights and price premia and the second stage being a second-

price or English auction for the final good. This two-stage auction can be regarded as a handicap auction

introduced in Esö and Szentes, augmented by an additional auction at the entry stage.23

More specifically, our two-stage auction works as follows. The first stage is an all-pay auction, where

bidders need to pay what they bid, regardless of being awarded entry rights or not. Suppose buyer

i, knowing her type αi, bids an amount bi, i = 1,2, ..., N. After all the first-stage bids are collected,

underlying types will be recovered based on a recovery function, x∗−1, such that buyer i’s perceived type

α̂i is x∗−1(bi), i = 1,2, ..., N. Given the recovered type profile {α̂i}
N
i=1, the entry rights are implemented

according to the optimal entry rule (10), and a “price premium” is determined for each shortlisted buyer

according to the following premium schedule: p(α̂i) = u1(1− F(α̂i))/ f (α̂i). Both the recovery function

x∗−1 and the premium determination rule p are made public at the outset of the game, which remain

common knowledge throughout the auction process. Upon being admitted, each entrant bidder will incur

the information acquisition cost and participate in the second-round bidding. The second stage is a

traditional second-price or English auction with a zero reserve price, but the winner is required to pay

her premium over the price.24 This mechanism is referred to as the handicap auction in Esö and Szentes,

since the buyers compete under unequal conditions: a bidder with a smaller premium has an advantage.

In our setting, the handicap auction is modified so that the optimal entry rule is also implemented after

the first-round bidding. In Esö and Szentes, buyers pay fees regardless of winning the final good or not;

in our setting, buyers pay bi ’s regardless of being admitted to the final sale or not. For this reason, the

first-stage auction is a variant of the all-pay auction.

The implementation in our setting is established by showing that a properly selected x∗(·) constitutes

a symmetric (strictly) increasing equilibrium bid function in the (reduced) all-pay auction game, with the

second stage being replaced by its associated equilibrium payoffs. A major step in the proof is to establish

that x∗(αi) is strictly increasing for αi ∈ [α∗,α], where α∗ ∈ (α,α) is the minimum type that could possibly

be allocated with an entry right in equilibrium. The proof is tedious, which is available upon request.

3.2 Applications

Our optimal mechanism analysis is general enough to encompass many existing models in the literature

on auctions with costly entry. Below we demonstrate how we can apply our general optimal mechanism

to special models previously studied.

1. Bidders do not have pre-entry types and only learn about their values after entry (e.g., McAfee

and McMillan, 1987; Tan, 1992; and Levin and Smith, 1994). In this case, u(αi, s i) = s i. Hence

w(αi, s i) = s i, which implies that the optimal auction is ex post efficient, and the optimal entry is

to select a set of bidders that results in the maximal expected social surplus. Since bidders are

23The assumption that u1 is constant is satisfied in both Examples 1 and 2.
24Should there be only one entrant, the price premium for this sole entrant becomes the effective reserve price.
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identical before entry, optimal entry is entirely characterized by n∗, the optimal number of bidders

to be selected. The implementation is somewhat simple: the second round is a standard auction

(first-price, second-price, or English auction – no price premium is involved). The first round (entry

stage) is to select exactly n∗ bidders, and whomever selected is required to pay an upfront entry fee

e∗, which is set so that no rent is left for the entrants ex ante.

2. Bidders know their values before entry, and entry is merely a bid preparation process (without

value updating) (e.g. Samuelson,1985; Stegeman, 1996; Campbell, 1998; Menezes and Monteiro,

2000; Tan and Yilankaya, 2006; Cao and Tian, 2009; and Lu, 2009). In this setting, u(αi, s i) = αi ,

and hence w(αi, s i) = αi − (1−F(αi)) / f (αi). It is easily verified that according to Theorem 1, the

optimal allocation rules can be described as follows: the bidder with the highest “type” (αi) is

admitted as the sole entrant to win the item, as long as her contribution to the virtual surplus

w(αi, s i)− c is positive. The optimal mechanism can be implemented as follows: each buyer pays

what she bids in the first stage (regardless of being admitted or not), and the only entrant wins the

item at a price equal to her price premium determined from her first-round bid.

3. Each bidder is endowed with pre-entry type αi, and learns an additional private value component

s i (e.g., Ye, 2007; Quint and Hendricks, 2013). The total value is given by u(αi, s i)=αi+s i.
25 Hence

w(αi, s i)=αi+s i−(1−F(αi)) / f (αi). The optimal second-stage allocation rule thus requires that the

asset be allocated to the entrant bidder with the highest virtual value w(αi, s i) provided that it is

nonnegative. The optimal entry rule requires that bidders be admitted in descending order of their

pre-entry types, as long as their contribution to the expected virtual surplus is nonnegative.

To further illustrate the optimal entry rule, we assume that αi is distributed uniformly over [0,1]

and s i follows a Bernoulli distribution, taking value 1 (“High”) with probability q and 0 (“Low”)

with probability 1− q. Then w(αi, s i)= 2αi + s i −1. If only one buyer (the one with the highest type

α(1)) is admitted, the expected virtual surplus is given by w1 = E
(
2α(1)+ s1 −1

)
− c =2α(1)+q−1− c.

So the optimal number of entrants n∗ ≥ 1 if 2α(1)+q−1− c ≥ 0. For ease of computation we assume

that α(1) ≥ α(2) ≥ .5 (so that the virtual values from the top two bidders are guaranteed to be non-

negative). If two top buyers are admitted, the expected virtual surplus is given by

w2 = E
[
max

{
2α(1)+ s1 −1,2α(2)+ s2−1

}]
−2c

= E
[
max

{
2α(1)+ s1,2α(2) + s2

}]
−1−2c

= Pr(s1 = 1) ·
(
2α(1)+1

)
+Pr(s1 = s2 = 0) ·2α(1) +Pr(s1 = 0, s2 = 1) ·

(
2α(2) +1

)
−1−2c

= q ·
(
2α(1) +1

)
+ (1− q)2 ·2α(1) + (1− q)q ·

(
2α(2) +1

)
−1−2c

So the optimal number of entrants n∗ ≥ 2 if the incremental expected virtual surplus∆w= w2−w1 =

25Note that the common support assumption stated in footnote 13 is violated for this linear valuation model. Eso and Szente

(???) also use such an example but explain how it can be reconciled with the common support assumption.
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q(1− q)
[
1−2

(
α(1)−α(2)

)]
− c Ê 0. Continuing this procedure of calculation,26 it can be verified that

n∗ ≥ n if q(1− q)n−1
[
1−2

(
α(1)−α(n)

)]
− c Ê0,27 or

α(1) −α(n) ≤
1

2

[
1−

c

q(1− q)n−1

]
. (14)

This condition is intuitive: the admission of the n-th highest buyer is more likely to be justified if

(1) the probability that she will turn out to be the winner in the second round is sufficiently high;

(2) the entry cost is sufficiently low; or (3) her type is sufficiently close to the highest type. It is thus

clear that the optimal number of entrants, n∗, is determined by the following conditions:

α(1) −α(n∗) ≤
1

2

[
1−

c

q(1− q)n∗−1

]
, α(1) −α(n∗+1) >

1

2

[
1−

c

q(1− q)n∗

]
.

4 DISCUSSION

4.1 Revelation Policy

In our preceding analysis, we have focused on the revelation policy so that the first-stage reports are

fully revealed to the shortlisted bidders. Due to this particular revelation policy, one concern is that there

might be some loss of generality in identifying optimal mechanisms. To address this concern, we next

identify an upper bound for the expected revenue that can be achieved by examining a relaxed setting by

dropping the IC and IR constraints for the shortlisted bidders in the second stage so that all shortlisted

bidders must incur entry costs to learn their second-stage signals as in our original setup, and regardless

of their second-stage signals, they must participate in the second-stage selling mechanism and report

truthfully their second stage signals. As a result, regardless of the disclosure policy of the first-stage

reports, the highest possible expected revenue achievable in this relaxed setting should impose an upper

bound for the expected revenue that can be obtained in our original setup, where the bidders’ second-stage

IC and IR must both be satisfied. A useful observation is that in the relaxed setting, bidders can only

misreport their first-stage signals, and the shortlisted buyers’ beliefs on buyers’ first-stage type profiles

have no impact on their second-stage decisions (as shortlisted bidders must enter and truthfully report

their second-stage signals). This observation implies that the revelation policy of the first-stage reports is

not relevant to the mechanism design in the relaxed setting. Consequently, the highest expected revenue

attainable in this relaxed setting does not depend on the prevailing disclosure policy of the first-stage

signals. We next proceed to identify this bound.

In the relaxed setting, the mechanisms are specified exactly the same as in Section 2. All potential

bidders report their types αi, giving rise to a reported type profile α. The mechanism specifies the first-

stage shortlisting rule A g(α) and payment rule xi(αi ,α−i). Every shortlisted bidder j incurs cost c to

26We continue to consider the case α(1) >α(2) ≥ ... ≥α(n) ≥ .5 so that the virtual value from these buyers will be positive.
27The addition of the nth highest buyer only contributes to the expected virtual surplus when she turns out to be the only one

having a good “shot” in the second stage (i.e., sn = 1, while s1 = ... = sn−1 = 0).
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discover her second-stage signal s j. The second-stage selling mechanism specifies the winning probability

p
g

i
(α,sg) and payment rule t

g

i
(α,sg), ∀i ∈ g, ∀g ∈ 2N .

Recall that P
g

i
(α, s i) = Es

g

−i
p

g

i
(α,sg) and T

g

i
(α, s i) = Es

g

−i
t

g

i
(α,sg). For shortlisted bidder i ∈ g i with

type αi, her interim expected payoff when she reports α̂i and others report truthfully is given by

πi(αi, α̂i)= Eα−i
{
∑

gi

A gi (α̂i ,α−i)[Esi
((u(αi, s i)P

gi

i
(α̂i ,α−i, s i)−T

gi

i
(α̂i ,α−i, s i))− c]− xi(α̂i ,α−i)}. (15)

Applying the envelope theorem, the IC condition πi(αi,αi)≥πi(αi, α̂i) leads to the following necessary

condition:

dπi(αi ,αi)

dαi

=
∂πi(αi , α̂i)

∂αi

|α̂i=αi
= Eα−i

{
∑

gi

A gi (αi,α−i)Esi
[u1(αi , s i)P

gi

i
(αi ,α−i, s i)]}.

Therefore, we have

πi(αi ,αi) = πi(α,α)+Eα−i

∫αi

α

∑

gi

A gi (y,α−i)Esi
[u1(y, s i)P

gi

i
(y,α−i, s i)]d y

= πi(α,α)+Eα−i

∫αi

α

∫
u1(y, s i) ·

∑

gi

A gi (y,α−i)P
gi

i
(y,α−i, s i)dG i(s i)d y.

Note that the above expression is exactly the same as (6), which implies that the seller’s expected

revenue must be the same as in (7); in other words, the upper bound of the expected revenue in the

relaxed setting is achieved in our original setting. In this sense, there is no loss of generality to derive

optimal mechanisms by only considering mechanisms that fully reveal the buyers’ first-stage reports to

all admitted bidders.

4.2 Modeling Information Acquisition as Entry

Another important aspect in our analysis is that we model information acquisition as entry. An implica-

tion is that information acquisition is mandatory, in the sense that a bidder is not allowed to bid without

going through the “due diligence” process. This assumption is due to the specific institutional setup we

are trying to model. For example, “data rooms” are usually provided by the selling party to disclose a

large amount of confidential data to bidders during the due diligence process. A typical data room is a

continually monitored space that the bidders and their advisers will visit in order to inspect and report on

the various documents and data made available. Often only one bidder at a time will be allowed to enter

a data room. Teams involved in large due diligence processes will typically remain available throughout

the process. Such teams often consist of a number of experts in different fields, hence the overall cost

of keeping such groups on call near to the data room is often extremely high.28 In a typical electrical

28See Vallen and Bullinger (1999) for a detailed description of the due diligence process in a typical electric power plant sale

in the US.
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generating asset sale as studied by Ye (2007), before submitting a final bid, each bidder (more precisely,

bidding team) usually needs to go through the due diligence process to meet with senior management and

personnel, study equipment conditions and operating history, evaluate supply contracts and employment

agreements, etc. This process is strictly controlled and closely monitored by the auctioneer (typically

an investment banker serving as the financial advisor for the selling party). Given the complexity and

high-stakes nature of the sale, it is very unlikely that a seller would be comfortable accepting a bid from

someone who did not go through such an important information acquisition process. As such, we believe

that it is appropriate to model information acquisition as entry for such an environment. From both

theoretical and practical points of view, it would be interesting to identify optimal mechanisms in en-

vironments where bidders are allowed to bid without having to go through information acquisition (and

information acquisition may not be observable or contractible). Such an analysis would be more involved,

however, as we will need to worry that the informed and uninformed buyers may mimic each other.

4.3 Sequential Shortlisting

Finally, we restrict our search for optimal mechanisms to the class of two-stage mechanisms (with a sin-

gle shortlisting stage). A consequence is that if some bidders are excluded from entry after the first stage,

the seller cannot go back to these bidders after the second-stage bidding. For a more general character-

ization of optimal mechanisms, we should allow for sequential shortlisting so that the mechanism may

potentially consist of multiple stages or rounds, rather than only two. For example, the seller may select

a single bidder or a subset of bidders to go through due diligence and submit final bids, and if the seller is

not satisfied with any offer, he can go back to the unselected first-round bidders and invite another bid-

der or another subset of bidders to go through due diligence and submit final bids. This process can then

repeat itself, until the seller finds a satisfactory offer. Such mechanisms can be much more complicated.

First of all, the seller will need to determine the order of bidders to invite for conducting due diligence

(i.e., who should be invited first and who second, etc.). Given that bidders are heterogenous before entry,

it is desirable to make the optimal “ordering” or “sequencing” of entry contingent on their pre-entry type-

s. In Appendix B, we analyze such a general mechanism with two potential bidders. Restricting to two

potential bidders allows us to fully characterize optimal mechanisms with sequential shortlisting. Our

main results are as follows. First, the object is allocated to the shortlisted bidder with the highest virtual

value w(αi, s i), provided that it is positive. Second, without discounting, there is no need to shortlist

both bidders at the same stage. Third, as long as one bidder should be shortlisted, the bidder with the

higher first-stage signal should be shortlisted first. Fourth, the other bidder should be shortlisted in the

second round if and only if her expected contribution to the virtual surplus is positive (conditional on all

the available information, in particular, the second-stage signal revealed by the first shortlisted bidder).

While a full analysis with an arbitrary number of potential bidders would be too tedious and hence not
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attempted,29 we believe that our results based on the two-bidder case should be robust. For the general

case with any arbitrary number of potential bidders, we conjecture that the optimal final good allocation

rule should be the same as characterized in our main analysis (with single-round shortlisting); with se-

quential shortlisting, however, the optimal shortlisting rule should be modified, so that at each round,

at most one bidder is shortlisted, and a new bidder is shortlisted at a given round if and only if, condi-

tional on all the revealed information up to this round, her expected contribution to the virtual surplus

is positive. Since single-round shortlisting can be trivially replicated by sequential shortlisting, the op-

timal mechanism characterized in the main text must be revenue-dominated by the optimal mechanism

allowing for sequential shortlisting. This is true, however, when there is no time discounting. When time

discounting is taken into account, an obvious drawback of running a multi-stage mechanism is the poten-

tial for delay, which would be too costly and therefore favors a more time-efficient two-stage mechanism.

We believe that this consideration, along with the practical difficulty in administering multiple rounds

of the due diligence process,30 leads to the “norm” of the two-stage auction format widely used in the

real world. This is also the main justification for why we restrict our analysis to the class of two-stage

auctions.

5 CONCLUDING REMARKS

Our paper contributes to the literature on two fronts. First, it characterizes optimal two-stage mecha-

nisms for an environment of two-stage auctions, which are commonly employed in sales of complicated

and high-valued business assets, procurements, privatization, takeover, and merger and acquisition con-

tests. Our analysis is general enough to nest many existing studies in the literature of auctions with

costly entry. Second, our paper contributes to the literature on sequential screening by introducing costly

entry into a dynamic auction framework. Entry provides a natural setting for sequential information

acquisition; on the other hand, entry also makes the optimal mechanism design more challenging, as

now it must balance information acquisition at the entry stage and information elicitation in the final

good allocation stage, which are interdependent.

Implementation of the optimal mechanism characterized in this paper may face some practical obsta-

cles. First, the industry may not be comfortable with the idea of paying entry fees whether or not they win

the object eventually, and this is the major reason, we believe, that contributes to the common use of non-

binding indicative bidding. Second, the optimal mechanism is so complicated that the industry bidders

might face great difficulties in developing bidding strategies for both rounds (although such a concern is

29In particular, with a general number of agents, establishing the incentive compatibility of sequential shortlisting and selling

rules is much more involved. This is especially the case when we consider the incentive compatibility at the first stage. For

example, if agent i over-reports her type αi, then she has a better chance to be shortlisted. At the same time this changes the

chances of other agents to be shortlisted. For different type profiles, this impact would be different and there would be too many

possibilities to analyze. As a result, establishing the incentive compatibility in a similar way as for the two-agent case will be

much more challenging.
30Just Imagine, for example, the hassle of arranging multiple meetings with senior management.
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alleviated to some extent if professional or sophisticated experts are hired to help). For these reasons the

nature of our analysis is primarily normative, offering a “market design” approach to guide a potential

refinement of an extremely important transaction procedure widely used in the industry. Despite this

limitation, our analysis does conform to the “norm” of business in at least two aspects. First, a defining

feature of our optimal mechanism is the shortlisting rule, which is also central in the two-stage auction

practices. Second, we demonstrate that the optimal number shortlisted is endogenously determined (by

the first-stage bids), which is also consistent with the fact that in real sales, the number of finalists is

often not pre-determined.31

Our analysis offers a theoretical benchmark for evaluating various two-stage auctions currently used

in the real world. The information structure modeled in this research has recently received attention not

only from theorists but also from econometricians and empiricists. For example, Marmer, Shneyerov, and

Xu (2013) and Gentry and Li (2014) have successfully proposed nonparametric specification tests on a

so-called affiliated-signal (AS) model with entry, and Roberts and Sweeting (2013) estimate a parametric

variant of the AS model using data on California timber auctions. The affiliated-signal models can be

regarded as a special case in the framework studied in our paper, and the optimal mechanism character-

ized in this paper may potentially serve as a calibration benchmark for counter-factual simulations for

related empirical works to come.

31For example, in the ongoing sale of PGW (Philadelphia Gas Works), a recent application of two-stage auctions, a “smaller

number” of firms were invited to submit final bids after the first round – although this number was neither pre-announced nor

disclosed (CBS Phily, November 19, 2013, “Sell-off of Philadelphia’s Natural Gas Utility Goes To Binding Bidding,” by Mike

Dunn).
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6 APPENDIX A: PROOFS

Proof of Lemma 3: Let g i denote any subset that includes i. By (5) and Lemma 2, we have

πi(αi , α̂i)

= πi(α̂i , α̂i)+Eα−i

{
∑

gi

A gi (α̂i,α−i)[π̃
gi

i
(αi , α̂i;α−i)− π̃

gi

i
(α̂i, α̂i;α−i)]

}

= πi(α̂i , α̂i)+Eα−i

{
∑

gi

A gi (α̂i,α−i)

∫∫αi

α̂i

u1(y, s i)P
gi

i
(α̂i ,α−i,σi(y, α̂i , s i))d ydG i(s i)

}

.

Thus for α̂i <αi , πi(αi, α̂i)≤πi(αi ,αi) implies that

πi(αi,αi)−πi(α̂i, α̂i)≥ Eα−i

{
∑

gi

A gi (α̂i,α−i)

∫∫αi

α̂i

u1(y, s i)P
gi

i
(α̂i,α−i,σi(y, α̂i, s i))d ydG i(s i)

}

.

Similarly,

πi(α̂i ,αi)

= πi(αi ,αi)+Eα−i

{
∑

gi

A gi (αi,α−i)[π̃
gi

i
(α̂i ,αi;α−i)− π̃

gi

i
(αi,αi;α−i)]

}

= πi(αi ,αi)−Eα−i

{
∑

gi

A gi (αi,α−i)

∫∫αi

α̂i

u1(y, s i)P
gi

i
(αi ,α−i,σi(y,αi , s i))d ydG i(s i)

}

.

Thus for α̂i <αi , πi(α̂i,αi)≤πi(α̂i, α̂i) implies that

πi(αi,αi)−πi(α̂i, α̂i)≤ Eα−i

{
∑

gi

A gi (αi,α−i)

∫∫αi

α̂i

u1(y, s i)P
gi

i
(αi,α−i,σi(y,αi, s i))d ydG i(s i)

}

.

So

Eα−i

{
∑

gi

A gi (α̂i,α−i)

∫ ∫αi

α̂i
u1(y, s i)P

gi

i
(α̂i ,α−i,σi(y, α̂i , s i))d y

αi − α̂i

dG i(s i)

}

≤
πi(αi,αi)−πi(α̂i, α̂i)

αi − α̂i

≤ Eα−i

{
∑

gi

A gi (αi,α−i)

∫ ∫αi

α̂i
u1(y, s i)P

gi

i
(αi,α−i,σi(y,αi, s i))d y

αi − α̂i

dG i(s i)

}

.

By Fubini’s Theorem, we have

Eα−i

{
∑

gi

A gi (α̂i,α−i)

∫ ∫αi

α̂i
u1(y, s i)P

gi

i
(α̂i,α−i,σi(y, α̂i, s i))d y

αi − α̂i

dG i(s i)

}

=
∑

gi

∫ ∫αi

α̂i
u1(y, s i)Eα−i

[
A gi (α̂i,α−i)P

gi

i
(α̂i ,α−i,σi(y, α̂i , s i))

]
d y

αi − α̂i

dG i(s i).
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Since A gi , P
gi

i
≤ 1, and u is concave in αi, we have

∫αi

α̂i
u1(y, s i)Eα−i

[
A gi (α̂i,α−i)P

gi

i
(α̂i,α−i,σi(y, α̂i, s i))

]
d y

αi − α̂i

≤

∫αi

α̂i
u1(y, s i)d y

αi − α̂i

≤ u1(α̂i , s i).

By assumption u1(α̂i, s i) has a finite expectation with respect to s i. Hence, by the Lebesgue convergence

theorem,

lim
α̂i→αi

Eα−i

{
∑

gi

A gi (α̂i ,α−i)

∫ ∫αi

α̂i
u1(y, s i)P

gi

i
(α̂i,α−i,σi(y, α̂i, s i))d y

αi − α̂i

dG i(s i)

}

=
∑

gi

∫
lim

α̂i→αi

∫αi

α̂i
u1(y, s i)Eα−i

[
A gi (α̂i,α−i)P

gi

i
(α̂i ,α−i,σi(y, α̂i , s i))

]
d y

αi − α̂i

dG i(s i)

=
∑

gi

∫
lim

α̂i→αi

{
u1(α̂i , s i)Eα−i

[
A gi (α̂i ,α−i)P

gi

i
(α̂i,α−i, s i)

]}
dG i(s i)

=
∑

gi

∫{
u1(αi , s i)Eα−i

[
A gi (αi ,α−i)P

gi

i
(αi,α−i, s i)

]}
dG i(s i)

= Eα−i

{
∑

gi

A gi (αi,α−i)

∫
u1(αi, s i)P

gi

i
(αi,α−i, s i)dG i(s i)

}

.

The third equality above is due to the assumption that Eα−i

[
A gi (α̂i,α−i)P

gi

i
(α̂i ,α−i, s i)

]
is continuous

in α̂i (which is guaranteed as long as both A gi and P
gi

i
are continuous a.e. in

[
α,α

]|gi |).

Analogously, we can show that

lim
α̂i→αi

Eα−i

{
∑

gi

A gi (αi ,α−i)

∫ ∫αi

α̂i
u1(y, s i)P

gi

i
(αi,α−i,σi(y,αi, s i))d y

αi − α̂i

dG i(s i)

}

= Eα−i

{
∑

gi

A gi (αi,α−i)

∫
u1(αi, s i)P

gi

i
(αi,α−i, s i)dG i(s i)

}

.

Thus the left derivative of πi(αi,αi) is given by

dπ−
i
(αi,αi)

dαi

= Eα−i

{
∑

gi

A gi (αi,α−i)

∫
u1(αi, s i)P

gi

i
(αi ,α−i, s i)dG i(s i)]

}

.

Working with the case α̂i >αi, we can obtain the right derivative of πi(αi,αi), which is given by

dπ+
i
(αi,αi)

dαi

= Eα−i

{
∑

gi

A gi (αi,α−i)

∫
u1(αi, s i)P

gi

i
(αi,α−i, s i)dG i(s i)

}

.

Therefore, we conclude that πi(αi)=πi(αi,αi) is differentiable everywhere, and

π′
i(αi) = Eα−i

{
∑

gi

A gi (αi,α−i)

∫
u1(αi , s i)P

gi

i
(αi,α−i, s i)dG i(s i)

}
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=

∫
u1(αi, s i) ·

∑

gi

[
Eα−i

A gi (αi,α−i)P
gi

i
(αi,α−i, s i)

]
dG i(s i)

Since π′
i
(αi) is bounded over

[
α,α

]
, πi satisfies a Lipschitz condition and hence it can be recovered

from its derivative, which gives rise to (6).

7 APPENDIX B: AN ANALYSIS ALLOWING SEQUENTIAL SHORTLISTING

We consider two potential bidders who are endowed with types (α1,α2). If bidder i incurs information

acquisition cost c, her ex post value vi will be randomly drawn from a distribution indexed by αi. Again

we follow the orthogonalization procedure introduced by Esö and Szentes (2007) to write vi = u(αi, s i).

Unlike the single-round shortlisting modeled in the main text, we now consider a general mechanism

allowing for sequential shortlisting.

Stage I: the auctioneer shortlists a subset g of bidders, where g ∈ {{1}, {2}, {1,2}} with probability

AI
g(α1,α2), and transfers are defined by xI

i
(α1,α2), i = 1,2. Note that AI

g(α1,α2)≥ 0 and
∑

g AI
g(α1,α2)≤ 1.

Stage I I: If bidder i is shortlisted to discover her value vi by incurring the cost c, she announces

the percentile of her value s i. Contingent on (α1,α2, s i), bidder −i is also shortlisted with probability

AII
−i

(α1,α2, s i), and the transfer is denoted as xII
k

(α1,α2, s i), k = 1,2. If bidder −i is shortlisted, then she

incurs the cost c to discover s−i, and is required to announce her s−i.

Stage I I I: If no one is shortlisted thus far, the game ends. if {i} is shortlisted thus far, the winning

probability is defined as pIII
i

(α1,α2, s i), and the transfer is defined by xIII
i

(α1,α2, s i).

If bidder 1 is first shortlisted and bidder 2 is subsequently shortlisted, then the winning probabilities

are defined as pIII
i,(1,2)

(α1,α2, s1, s2), i = 1,2, and the transfers are given by xIII
i,(1,2)

(α1,α2, s1, s2), i = 1,2,

where (1,2) indicates the order of bidders being shortlisted. pIII
i,(2,1)

(α1,α2, s1, s2) and xIII
i,(2,1)

(α1,α2, s1, s2),

i = 1,2 are similarly defined.

If both bidders are shortlisted at the first stage, then the winning probabilities are defined as

pIII
i,{1,2}

(α1,α2, s1, s2), i = 1,2, and the transfers are given by xIII
i,{1,2}

(α1,α2, s1, s2), i = 1,2, where {1,2} de-

notes the set of bidders being shortlisted.

We first establish an upper bound on expected revenue by assuming that bidders’ second-round sig-

nals, the s i ’s, are observed by the auctioneer, thus the mechanism can be made contingent on the s i ’s

directly. As a result, the IC conditions after the first stage can be ignored. Consider bidder i with type

αi, if she reports α′
i

while the other bidder is reporting truthfully, her expected profit is given by

πi(αi , α̂i)

= Eα j ,si ,s j
{−xi(α̂i,α j)+ AI

{i, j}(α̂i ,α j)[u(αi, s i)p
III
i,{i, j}(α̂i,α j, s i, s j)− xIII

i,{i, j}(α̂i,α j, s i, s j)− c]

+AI
{i}(α̂i,α j)[A

II
j (α̂i,α j, s i)(u(αi, s i)p

III
i,(i, j)(α̂i,α j, s i, s j)− xIII

i,(i, j)(α̂i,α j, s i, s j))

+ (1− AII
j (α̂i,α j, s i))(u(αi, s i)p

III
i (α̂i,α j, s i)− xIII

i (α̂i,α j, s i))− xII
i (α̂i,α j, s i)− c]
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+AI
{ j}(α̂i,α j)[A

II
i (α̂i ,α j, s j)(u(αi, s i)p

III
i,( j,i)(α̂i,α j, s i, s j)− xIII

i,( j,i)(α̂i,α j, s i, s j)− c)− xII
i (α̂i,α j, s j)]}.

Applying the envelope theorem, the IC condition πi(αi,αi)≥πi(αi, α̂i) leads to the following necessary

condition:

dπi(αi,αi)

dαi

=
∂πi(αi, α̂i)

∂αi

|α̂i=αi

= Eα j ,si ,s j
{AI

{i, j}(αi,α j)u1(αi, s i)p
III
i,{i, j}(αi ,α j, s i, s j)+ AI

{i}(αi,α j)[A
II
j (αi ,α j, s i)u1(αi, s i)p

III
i,(i, j)(αi,α j, s i, s j)

+(1− AII
j (αi,α j, s i))u1(αi, s i)p

III
i (αi ,α j, s i)]+ AI

{ j}(αi ,α j)A
II
i (αi,α j, s j)u1(αi , s i)p

III
i,( j,i)(αi,α j, s i, s j)}.(16)

Therefore, we have

πi(αi,αi)=πi(α,α)+

∫αi

α

dπi(y, y)

d y
d y.

2∑

i=1

Eπi(αi,αi) =

2∑

i=1

πi(α,α)+
2∑

i=1

∫α

α

∫αi

α

dπi(y, y)

d y
d ydF(αi)

=

2∑

i=1

πi(α,α)+
2∑

i=1

Eαi

[
1−F(αi)

f (αi)

dπi(αi,αi)

dαi

]

The expected total surplus from the mechanism is

TS = Eα,s{AI
{i, j}(αi ,α j)[u(αi, s i)p

III
i,{i, j}(αi,α j, s i, s j)+u(α j, s j)p

III
j,{i, j}(αi,α j, s i, s j)−2c]

+AI
{i}(αi,α j)A

II
j (αi ,α j, s i)[u(αi, s i)p

III
i,(i, j)(αi,α j, s i, s j)+u(α j, s j)p

III
j,(i, j)(αi,α j, s i, s j)−2c]

+AI
{i}(αi,α j)(1− AII

j (αi,α j, s i))[u(αi, s i)p
III
i (αi,α j, s i)− c]

+AI
{ j}(αi ,α j)A

II
i (αi,α j, s j)[u(α j, s j)p

III
j,( j,i)(αi,α j, s i, s j)+u(αi, s i)p

III
i,( j,i)(αi,α j, s i, s j)−2c]

+AI
{ j}(αi ,α j)(1− AII

i (αi ,α j, s j))[u(α j, s j)p
III
j (αi,α j, s j)− c]}.

Recall that

w(αi, s i)= u(αi, s i)−
1−F(αi)

f (αi)
u1(αi, s i). (17)

ER = TS−

2∑

i=1

Eπi(αi,αi)

= Eα,s{AI
{i, j}(αi,α j)[w(αi , s i)p

III
i,{i, j}(αi,α j, s i, s j)+w(α j, s j)p

III
j,{i, j}(αi ,α j, s i, s j)−2c]

+AI
{i}(αi ,α j)A

II
j (αi,α j, s i)[w(αi, s i)p

III
i,(i, j)(αi,α j, s i, s j)+w(α j, s j)p

III
j,(i, j)(αi,α j, s i, s j)−2c]

+AI
{i}(αi ,α j)(1− AII

j (αi ,α j, s i))[w(αi , s i)p
III
i (αi ,α j, s i)− c]

+AI
{ j}(αi,α j)A

II
i (αi ,α j, s j)[w(α j, s j)p

III
j,( j,i)(αi,α j, s i, s j)+w(αi, s i)p

III
i,( j,i)(αi,α j, s i, s j)−2c]
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+AI
{ j}(αi,α j)(1− AII

i (αi,α j, s j))[w(α j, s j)p
III
j (αi,α j, s j)− c]}−

2∑

i=1

πi(α,α). (18)

Based on (18), we can first pin down the optimal asset allocation rule when both bidders are short-

listed (simultaneously or sequentially). Terms

w(αi, s i)p
III
i,{i, j}(αi ,α j, s i, s j)+w(α j, s j)p

III
j,{i, j}(αi,α j, s i, s j)−2c (19)

and

w(αi, s i)p
III
i,(i, j)(αi ,α j, s i, s j)+w(α j, s j)p

III
j,(i, j)(αi ,α j, s i, s j)−2c (20)

are maximized if we define

pIII∗
i,{i, j}(αi,α j, s i, s j)= pIII∗

i,(i, j)(αi,α j, s i, s j)= pIII∗
i,( j,i)(αi ,α j, s i, s j)

=






1 if i = argmax j∈{1,2}{w(α j, s j)} and w(αi, s i)≥ 0

0 otherwise
∀i ∈ {1,2}.

Second, we pin down the optimal asset allocation rule when only one bidder is shortlisted. The term

w(αi, s i)p
III
i (αi,α j, s i)− c

is maximized if we define

pIII∗
i (αi,α j, s i)=






1 if w(αi, s i)≥ 0

0 otherwise
∀i ∈ {1,2}. (21)

Define

w+
i (αi, s i)=






w(αi, s i) if w(αi, s i)≥ 0 or equivalently s i ≥ s(αi)

0 otherwise
∀i.

Proposition 1. The object is allocated to the shortlisted bidder with the highest positive virtual value

w+(αi , s i).

Now we are ready to pin down the optimal shortlisting rule for the relaxed problem. Recall that given

αi, s(αi) is defined such that w(αi, s(αi))= 0.

Lemma 4. There is no loss of generality in choosing AI∗
{i, j}

(αi,α j) = 0. In other words, there is no need to

shortlist both bidders at stage I.

Proof. Shortlisting two bidders in a single round can be duplicated by shortlisting bidder i first, and then

admitting the other regardless of the signal s i possessed by the first bidder admitted.
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Note terms (19) and (20) can both be written as

max{w+(αi, s i),w
+(α j, s j)}−2c.

Lemma 5. Given that a bidder i is shortlisted in stage I and announces s i, then the other bidder j is

admitted in stage II if and only if

Es j
max{w+(α j, s j)−w+(αi, s i),0}− c >0.

Proof. Suppose bidder i is shortlisted in stage I. We have AI
{i}

(αi,α j)= 1 and AI
{ j}

(αi,α j)= 0. Upon know-

ing s i, to maximize expected revenue, the auctioneer should set AII∗
j

(αi,α j, s i)= 1 if Es j
max{w+(α j, s j)−

w+(αi , s i),0}− c >0 and AII∗
j

(αi,α j, s i)= 0 otherwise.

Lemma 6. For αi > α j, given that one bidder must be shortlisted in stage I, then bidder i must be

shortlisted.

Proof. Suppose bidder i is shortlisted in stage I. We have AI
{i}

(αi ,α j) = 1 and AI
{ j}

(αi,α j) = 0. Upon

knowing s i, according to Lemma 5, we should set AII∗
j

(αi,α j, s i)= 1 if Es j
max{w+(α j, s j)−w+(αi , s i),0}−

c >0 and AII∗
j

(αi,α j, s i)= 0 otherwise.

Suppose bidder j is shortlisted in stage I. We have AI
{ j}

(αi,α j)= 1 and AI
{i}

(αi,α j) = 0. Upon knowing

s j, according to Lemma 5, we should set AII∗
i

(αi,α j, s j)= 1 if Esi
max{w+(αi, s i)−w+(α j, s j),0}− c >0 and

AII∗
i

(αi ,α j, s j)= 0 otherwise.

We next show that, given αi >α j, the expected revenue from shortlisting bidder i first is higher than

that from shortlisting j first, i.e.,

Esi ,s j
{AII∗

j (αi,α j, s i)[w(αi, s i)p
III∗
i,(i, j)(αi,α j, s i, s j)+w(α j, s j)p

III∗
j,(i, j)(αi,α j, s i, s j)−2c]

+(1− AII∗
j (αi ,α j, s i))[w(αi , s i)p

III∗
i (αi,α j, s i)− c]}

≥ Esi ,s j
{AII∗

i (αi,α j, s j)[w(α j, s j)p
III∗
j,( j,i)(αi,α j, s i, s j)+w(αi, s i)p

III∗
i,( j,i)(αi,α j, s i, s j)−2c]

+(1− AII∗
i (αi ,α j, s j))[w(α j, s j)p

III∗
j (αi ,α j, s j)− c]}. (22)

Define ŝ i(c;αi,α j) ∈ [s, s̄] such that

Es j
max{w+(α j, s j)−w+(αi , s i = ŝ i),0}− c = 0. (23)

So ŝ i(c;αi,α j) defines a cutoff for the realization of s i: bidder j is shortlisted if and only if s i < ŝ i(c;αi,α j).

If

Es j
max{w+(α j, s j)−w+(αi, s i = s),0}− c <0,
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we define ŝ i(c;αi,α j)= s, i.e., bidder j should never be shortlisted regardless of the value of s i.

If

Es j
max{w+(α j, s j)−w+(αi, s i = s̄),0}− c >0,

we define ŝ i(c;αi,α j)= s̄, i.e., bidder j should always be shortlisted regardless of the value of s i.

ŝ j(c;αi,α j) is analogously defined.

Given αi >α j, we can show that ŝ j(c;αi,α j)≥ ŝ i(c;αi,α j). Without loss of generality, we focus on the

case where both ŝ j(c;αi,α j) and ŝ i(c;αi,α j) ∈ (s, s̄).

∀ s i ≤ ŝ i(c;αi,α j), define ŝ j(s i;αi,α j) such that w+(α j, s j = ŝ(s i;αi,α j))−w+(αi, s i)= 0. So ŝ j(s i;αi,α j)

is the cutoff of s j so that bidder j’s contribution to the (positive) virtual value is positive iff s j ≥ ŝ j(s i;αi,α j).

We are now ready to show (22).

First note that both LHS and RHS of (22) are decreasing in c. When c = 0, we have LHS = RHS.

LHS equals Esi
[w(αi, s i)p

III∗
i

(αi,α j, s i)]− c = Esi
[w+(αi , s i)]− c when c > c i, where c i is defined by

ŝ i(c i;αi,α j)= s (so bidder j would not be shortlisted if c > c i). We define c j analogously. Then c i < c j as

c i = Es j
max{w+(α j, s j)−w+(αi, s),0}< Esi

max{w+(αi, s i)−w+(α j, s),0}= c j.

Clearly, LHS becomes Esi
[w+(αi, s i)]− c when c ≥ c i; and RHS becomes Es j

[w+(α j, s j)]− c when

c ≥ c j.

To establish the desired inequality (22), it is sufficient to show that LHS decreases more slowly than

RHS as c increases.

Note the LHS can be alternatively written as

LHS = [Esi
w+(αi, s i)− c]+

∫ŝi (c;αi ,α j )

s
[

∫s̄

ŝ j (si ;αi ,α j )
(w+(α j, s j)−w+(αi, s i))G

′(s j)ds j − c]G′(s i)ds i.

Similarly,

RHS = [Es j
w+(α j, s j)− c]+

∫ŝ j (c;αi ,α j )

s
[

∫s̄

ŝi (s j ;αi ,α j )
(w+(αi , s i)−w+(α j, s j))G

′(s i)ds i − c]G′(s j)ds j.

By (23), we have

∫s̄

ŝ j (ŝi (c;αi ,α j );αi ,α j )
(w+(α j, s j)−w+(αi, ŝ i(c;αi,α j)))G

′(s j)ds j − c =0

Therefore,

∂LHS

∂c

= −1−

∫ŝi (c;αi ,α j )

s
G′(s i)ds i
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+[

∫s̄

ŝ j (ŝi (c;αi ,α j );αi ,α j )
(w+(α j, s j)−w+(αi , ŝ i(c;αi,α j)))G

′(s j)ds j − c]G′(ŝ i(c;αi,α j))
∂ŝ i(c;αi,α j)

∂c

= −1−

∫ŝi (c;αi ,α j )

s
G′(s i)ds i.

Similarly,
∂RHS

∂c
=−1−

∫ŝ j (c;αi ,α j )

s
G′(s j)ds j.

Thus
∂RHS

∂c
≤

∂LHS

∂c
,

as ŝ i(c;αi,α j)≤ ŝ j(c;αi,α j). (22) thus holds.

Given Lemma 6, we have the following proposition:

Proposition 2. If αi >α j, then bidder j is not shortlisted in stage I, and bidder i is shortlisted in stage

I iff Esi
[w+(αi, s i)]− c > 0. Bidder j is shortlisted in stage II iff bidder i is shortlisted in stage I and s i <

ŝ i(c;αi,α j) as defined in (23). If bidder i is not shortlisted in stage I, then no buyer is shortlisted in both

stages.

We next show that the shortlisting and allocation rules derived above are incentive compatible. We

continue to assume, without loss of generality, that at most one bidder is shortlisted in stage I.

The key observation is still that if bidder i deviates by announcing a first-stage signal α′
i
6= αi, then

when asked to announce the second-stage signal, she would correct the lie by announcing s′
i
=σi(αi ,α

′
i
, s i)

which together with α′
i

reveals the true value ui(αi, s i), i.e.

ui(αi, s i)= ui(α
′
i, s′i).

This is true either in the second or third stage when bidder i is asked to announce her type. The reason

is that type (α′
i
, s′

i
) would reveal s′

i
truthfully if she reveals α′

i
truthfully. The argument is essentially the

same as illustrated by Esö and Szentes (2007).

Given that (αi ,α j) is truthfully announced at stage I, we first construct payment rules such that

(s i, s j) is announced in later stages. In the third stage, regardless of the number of bidders shortlisted,

a payment rule can be constructed as a second-price auction with bidder-specific reserves contingent

on their own first-stage signals to implement the optimal allocation rule in the third stage in weakly

dominant strategies.

For the second-stage payment rule xII
i

(αi,α j, s i), it can be constructed following the envelope condi-

tion. If announcing s′
i
, the bidder i’s expected payoff at stage II conditional on s i,αi,α j is given by

πII
i (s′i|s i;αi,α j)

= Es j
{[AII

j (αi ,α j, s′i)(u(αi, s i)p
III
i,(i, j)(αi ,α j, s′i, s j)− xIII

i,(i, j)(αi ,α j, s′i, s j))
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+(1− AII
j (αi ,α j, s′i))(u(αi, s i)p

III
i (αi,α j, s′i)− xIII

i (αi,α j, s′i))− xII
i (αi,α j, s′i)− c]}.

The mechanism will be IC as long as the single crossing and the monotonicity conditions hold. The

monotonicity condition is about AII
j

(αi,α j, s′
i
)pIII

i,(i, j)
(αi ,α j, s′

i
, s j)+ (1− AII

j
(αi ,α j, s′

i
))pIII

i
(αi,α j, s′

i
)]. Let

ζ = Es j
[AII

j (αi,α j, s′i)p
III
i,(i, j)(αi ,α j, s′i, s j)+ (1− AII

j (αi ,α j, s′i))p
III
i (αi,α j, s′i)]

= Es j
pIII

i,(i, j)(αi ,α j, s′i, s j)+ [1− AII
j (αi ,α j, s′i)][p

III
i (αi,α j, s′i)−Es j

pIII
i,(i, j)(αi,α j, s′i, s j)].

Define sc
i

such that AII
j

(αi ,α j, s′
i
) = 1 iff s′

i
≤ sc

i
. Thus ζ = Es j

pIII
i,(i, j)

(αi ,α j, s′
i
, s j) when s′

i
≤ sc

i
and ζ =

pIII
i

(αi,α j, s′
i
) when s′

i
> sc

i
. Clearly, both parts increase in s′

i
. Moreover, pIII

i
(αi,α j, s′

i
)≥ Es j

pIII
i,(i, j)

(αi,α j, s′
i
, s j),

∀s′
i
. Thus ζ increases in s′

i
.

To check the single crossing condition, first we have

∂πII
i

(s′
i
|s i;αi,α j)

∂s i

= Es j
{
∂u(αi, s i)

∂s i

[AII
j (αi,α j, s′i)p

III
i,(i, j)(αi,α j, s′i, s j)+ (1− AII

j (αi,α j, s′i))p
III
i (αi ,α j, s′i)]}

=
∂u(αi, s i)

∂s i

ζ.

We thus have ∂πII
i

(s′
i
|s i;αi,α j)/∂s i∂s′

i
> 0, as ζ increases in s′

i
and ∂u(αi, s i)/∂s i > 0.

Recall that, if bidder i deviates by announcing a first-stage signal α′
i
6= αi, then when asked to an-

nounce the second-stage signal, she would correct the lie by announcing s′
i
=σi(αi ,α

′
i
, s i) which together

with α′
i

reveals the true value ui(αi, s i), i.e., u(αi, s i)= u(α′
i
, s′

i
). Let σi =σi(αi ,α

′
i
, s i).

πi(α
′
i,αi)

= Eα j ,si ,s j
{−xi(α

′
i ,α j)+ AI

{i}(α
′
i,α j)[A

II
j (α′

i,α j,σi)(u(αi, s i)p
III
i,(i, j)(α

′
i ,α j,σi, s j)− xIII

i,(i, j)(α
′
i,α j,σi, s j))

+(1− AII
j (α′

i,α j,σi))(u(αi, s i)p
III
i (α′

i,α j,σi)− xIII
i (α′

i ,α j,σi))− xII
i (α′

i,α j,σi)− c]

+AI
{ j}(α

′
i,α j)[A

II
i (α′

i ,α j, s j)(u(αi, s i)p
III
i,( j,i)(α

′
i,α j,σi, s j)− xIII

i,( j,i)(α
′
i,α j,σi, s j)− c)− xII

i (α′
i,α j, s j)]}.

Define ∆= πi(α
′
i
,αi)−πi(αi,αi) = [πi(α

′
i
,αi)−πi(α

′
i
,α′

i
)]+ [πi(α

′
i
,α′

i
)−πi(αi ,αi)]. We consider the two

terms one by one.

Use πII
i

and πIII
i

to denote player i’s payoff at stages I I and I I I respectively. Similar to Lemma 1 in

the main text, we have

πII
i (s i|s i;αi,α j)

= πII
i (s′i|s

′
i;αi,α j)+

∫si

s′
i

u2(αi , t){AII
j (αi ,α j, t)Es j

pIII
i,(i, j)(αi,α j, t, s j)+ (1− AII

j (αi ,α j, t))pIII
i (αi,α j, t)}dt.

30



Define

πIII
i (s i|s i; s j,αi,α j)= u(αi, s i)p

III
i,( j,i)(αi ,α j, s i, s j)− xIII

i,( j,i)(αi,α j, s i, s j)− c.

We have

πIII
i (s i|s i; s j,αi,α j)=πIII

i (s′i|s
′
i; s j,αi,α j)+

∫si

s′
i

u2(αi , t)pIII
i,( j,i)(αi,α j, t, s j)dt.

Let σi =σi(αi ,α
′
i
, s i). Since u(αi, s i)= u(α′

i
,σi(αi,α

′
i
, s i)), we have

πi(α
′
i,αi)

= Eα j ,si ,s j
{−xi(α

′
i ,α j)+ AI

{i}(α
′
i,α j)[A

II
j (α′

i,α j,σi)(u(α′
i,σi)p

III
i,(i, j)(α

′
i ,α j,σi, s j)− xIII

i,(i, j)(α
′
i ,α j,σi, s j))

+(1− AII
j (α′

i,α j,σi))(u(α′
i,σi)p

III
i (α′

i ,α j,σi)− xIII
i (α′

i ,α j,σi))− xII
i (α′

i,α j,σi)− c]

+AI
{ j}(α

′
i,α j)[A

II
i (α′

i ,α j, s j)(u(α′
i,σi)p

III
i,( j,i)(α

′
i,α j,σi, s j)− xIII

i,( j,i)(α
′
i,α j,σi, s j)− c)− xII

i (α′
i,α j, s j)]}

= Eα j
[−xi(α

′
i ,α j)]+Eα j ,si

{AI
{i}(α

′
i,α j)π

II
i (σi(αi ,α

′
i, s i)|σi(αi,α

′
i, s i);α

′
i,α j)}

+Eα j ,si ,s j
{AI

{ j}(α
′
i,α j)[A

II
i (α′

i ,α j, s j)π
III
i (σi(αi,α

′
i, s i)|σi(αi,α

′
i, s i); s j,α

′
i,α j)− xII

i (α′
i,α j, s j)]}.

Similarly,

πi(α
′
i ,α

′
i)

= Eα j
[−xi(α

′
i,α j)]+Eα j ,si

{AI
{i}(α

′
i,α j)π

II
i (σi(α

′
i,α

′
i, s i)|σi(α

′
i,α

′
i, s i);α

′
i,α j)}

+Eα j ,si ,s j
{AI

{ j}(α
′
i ,α j)[A

II
i (α′

i,α j, s j)π
III
i (σi(α

′
i,α

′
i, s i)|σi(α

′
i,α

′
i, s i); s j,α

′
i,α j)− xII

i (α′
i,α j, s j)]}

= Eα j
[−xi(α

′
i,α j)]+Eα j ,si

{AI
{i}(α

′
i,α j)π

II
i (s i|s i;α

′
i,α j)}

+Eα j ,si ,s j
{AI

{ j}(α
′
i ,α j)[A

II
i (α′

i,α j, s j)π
III
i (s i|s i; s j,α

′
i,α j)− xII

i (α′
i,α j, s j)]}.

Therefore,

πi(α
′
i,αi)

= πi(α
′
i,α

′
i)+Eα j ,si

{AI
{i}(α

′
i ,α j)[π

II
i (σi(αi ,α

′
i, s i)|σi(αi,α

′
i, s i);α

′
i,α j)−πII

i (s i|s i;α
′
i,α j)]}

+Eα j ,si ,s j
{AI

{ j}(α
′
i,α j)A

II
i (α′

i ,α j, s j)[π
III
i (σi(αi,α

′
i, s i)|σi(αi,α

′
i, s i); s j,α

′
i,α j)−πIII

i (s i|s i; s j,α
′
i,α j)]}

= πi(α
′
i,α

′
i)+Eα j ,si

{AI
{i}(α

′
i ,α j)

∫σi (αi ,α
′
i
,si )

si

u2(α′
i , t)[AII

j (α′
i,α j, t)Es j

pIII
i,(i, j)(α

′
i ,α j, t, s j)

+(1− AII
j (α′

i,α j, t))pIII
i (α′

i,α j, t)]dt}+Eα j,si ,s j
AI

{ j}(α
′
i,α j)A

II
i (α′

i,α j, s j)

∫σi (αi ,α
′
i
,si )

si

u2(α′
i , t)pIII

i,( j,i)(α
′
i,α j, t, s j)dt.

Let t =σi(y,α′
i
, s i). We have

πi(α
′
i,αi)

= πi(α
′
i,α

′
i)+Eα j ,si

{AI
{i}(α

′
i ,α j)

∫αi

α′
i

u2(α′
i,σi(y,α′

i, s i))[A
II
j (α′

i,α j,σi(y,α′
i, s i))Es j

pIII
i,(i, j)(α

′
i,α j,σi(y,α′

i, s i), s j)
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+(1− AII
j (α′

i,α j,σi(y,α′
i, s i)))p

III
i (α′

i,α j,σi(y,α′
i, s i))]σi1(y,α′

i, s i)d y} (24)

+Eα j ,si ,s j
AI

{ j}(α
′
i,α j)A

II
i (α′

i ,α j, s j)

∫αi

α′
i

u2(α′
i,σi(y,α′

i, s i))p
III
i,( j,i)(α

′
i,α j,σi(y,α′

i, s i), s j)σi1(y,α′
i , s i)d y.

Note that u(αi, s i)= u(α′
i
,σi(αi ,α

′
i
, s i)) implies

u1(αi , s i)= u2(α′
i ,σi(αi ,α

′
i, s i))σi1(αi,α

′
i, s i).

Recall that AI
{i, j}

(αi ,α j)= 0 for the optimal shortlisting rule identified above. Applying the Myersoni-

an procedure as in the proof of Lemma 3, incentive compatibility leads to

dπi(αi,αi)

dαi

= Eα j ,si
{AI

{i}(αi,α j)u1(αi, s i)[A
II
j (αi,α j, s i)Es j

pIII
i,(i, j)(αi,α j, s i, s j)+ (1− AII

j (αi,α j, s i))p
III
i (αi ,α j, s i)]}

+Eα j ,si ,s j
{AI

{ j}(αi,α j)A
II
i (αi,α j, s j)u1(αi , s i)p

III
i,( j,i)(αi ,α j, s i, s j)}> 0. (25)

We are now ready to show ∆=πi(α
′
i
,αi)−πi(αi,αi)= [πi(α

′
i
,αi)−πi(α

′
i
,α′

i
)]−[πi(αi,αi)−πi(α

′
i
,α′

i
)]≤ 0.

Without loss of generality, we assume α′
i
<αi.

By (25), we have

πi(αi,αi)−πi(α
′
i,α

′
i)

=

∫αi

α′
i

∫1

0
u1(y, s i){Eα j

{AI
{i}(y,α j)[A

II
j (y,α j, s i)Es j

pIII
i,(i, j)(y,α j, s i, s j)+ (1− AII

j (y,α j, s i))p
III
i (y,α j, s i)]}

+Eα j ,s j
{AI

{ j}(y,α j)A
II
i (y,α j, s j)p

III
i,( j,i)(y,α j, s i, s j)}}dG(s i)d y.

By (24), we have

πi(α
′
i,αi)−πi(α

′
i,α

′
i)

=

∫αi

α′
i

∫1

0
u1(y, s i){Eα j

{AI
{i}(α

′
i,α j)[A

II
j (α′

i,α j,σi(y,α′
i, s i))Es j

pIII
i,(i, j)(α

′
i,α j,σi(y,α′

i, s i), s j)

+ (1− AII
j (α′

i,α j,σi(y,α′
i , s i)))p

III
i (α′

i,α j,σi(y,α′
i, s i))]}

+Eα j ,s j
{AI

{ j}(α
′
i,α j)A

II
i (α′

i,α j, s j)p
III
i,( j,i)(α

′
i,α j,σi(y,α′

i , s i), s j)}}dG(s i)d y.

Note pIII
i,(i, j)

= pIII
i,( j,i)

for the proposed mechanism. To show ∆ ≤ 0, it suffices to show that ∀y ∈

[α′
i
,αi], s i,α j, s j,

[AI
{i}(y,α j)A

II
j (y,α j, s i)+ AI

{ j}(y,α j)A
II
i (y,α j, s j)]p

III
i,(i, j)(y,α j, s i, s j)+ AI

{i}(y,α j)(1− AII
j (y,α j, s i))p

III
i (y,α j, s i)

≥ [AI
{i}(α

′
i,α j)A

II
j (α′

i,α j,σi(y,α′
i, s i))+ AI

{ j}(α
′
i ,α j)A

II
i (α′

i,α j, s j)]p
III
i,(i, j)(α

′
i,α j,σi(y,α′

i, s i), s j)

+ AI
{i}(α

′
i,α j)(1− AII

j (α′
i,α j,σi(y,α′

i, s i)))p
III
i (α′

i ,α j,σi(y,α′
i, s i)). (26)
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Note that

pIII
i (y,α j, s i) ≥ pIII

i (α′
i ,α j,σi(y,α′

i , s i)),

pIII
i,(i, j)(y,α j, s i, s j) ≥ pIII

i,(i, j)(α
′
i,α j,σi(y,α′

i, s i), s j),

pIII
i (y,α j, s i) ≥ pIII

i,(i, j)(y,α j, s i, s j),

pIII
i (α′

i ,α j,σi(y,α′
i, s i)) ≥ pIII

i,(i, j)(α
′
i,α j,σi(y,α′

i, s i), s j).

The first two inequalities above are due to the fact that the virtual value for bidder i is lower if she

deviates in such a way (α′
i
< αi) in the first stage, and corrects the lie later (the same arguments as in

Corollary 1 in Esö and Szentes and in our main analysis with simultaneous shortlisting). The last two

inequalities above are due to the fact that bidder i wins with a lower chance if bidder j is shortlisted.

The LHS of (26) is bidder i’s winning probability if she announces truthfully her first-stage signal

y and second-stage signal s i. The RHS of (26) is bidder i’s winning probability if she under-reports by

announcing α′
i

at the first stage and then correcting the lie at the second stage by announcing σi(y,α′
i
, s i).

Note that we have

AI
{i}(α

′
i,α j)(1− AII

j (α′
i,α j,σi(y,α′

i, s i)))≤ AI
{i}(y,α j)(1− AII

j (y,α j, s i)) (27)

since AI
{i}

(α′
i
,α j)≤ AI

{i}
(y,α j) and AII

j
(α′

i
,α j,σi(y,α′

i
, s i)))≥ AII

j
(y,α j, s i).

We are now ready to prove the desired inequality ∆≤ 0. First note that the following result is suffi-

cient but not necessary for the desired inequality:

[AI
{i}(y,α j)A

II
j (y,α j, s i)+ AI

{ j}(y,α j)A
II
i (y,α j, s j)] (28)

≥ [AI
{i}(α

′
i,α j)A

II
j (α′

i,α j,σi(y,α′
i, s i))+ AI

{ j}(α
′
i ,α j)A

II
i (α′

i,α j, s j)].

We will consider different cases in order:

Case 1 y < α j. Then we have α′
i
< y < α j, which means AI

{i}
(y,α j) = AI

{i}
(α′

i
,α j) = 0. We must have

AI
{ j}

(y,α j) = AI
{ j}

(α′
i
,α j) and AII

i
(y,α j, s j) ≥ AII

i
(α′

i
,α j, s j). This means that (28) holds. By (27), we

have the desired inequality ∆≤ 0.

Case 2 α′
i
<α j < y. We have AI

{i}
(α′

i
,α j)= 0.

If AI
{i}

(y,α j)= 0, then AI
{ j}

(y,α j)= AI
{ j}

(α′
i
,α j)= 0. We have (28), hence ∆≤ 0.

If AI
{i}

(y,α j)= 1, then AI
{ j}

(y,α j)= 0. If AI
{ j}

(α′
i
,α j)= 0, we have (28), done.

If AI
{ j}

(α′
i
,α j) = 1, then we need to compare AII

j
(y,α j, s i) and AII

i
(α′

i
,α j, s j): AII

i
(α′

i
,α j, s j) = 0, or

AII
i

(α′
i
,α j, s j)= 1 and AII

j
(y,α j, s i)= 1: we have (28), done; AII

i
(α′

i
,α j, s j)= 1 but AII

j
(y,α j, s i)= 0: s-

ince AI
{i}

(y,α j)= 1, we have LHS of (26) = pIII
i

(y,α j, s i); and RHS of (26) = pIII
i,(i, j)

(α′
i
,α j,σi(y,α′

i
, s i), s j).

Also done since pIII
i

(y,α j, s i)≥ pIII
i,(i, j)

(α′
i
,α j,σi(y,α′

i
, s i), s j).
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Case 3 α j <α′
i
< y. This means that AI

{ j}
(y,α j)= AI

{ j}
(α′

i
,α j)= 0. Thus

RHS of (28) = AI
{i}

(α′
i
,α j)A

II
j

(α′
i
,α j,σi(y,α′

i
, s i)) and LHS of (28) = AI

{i}
(y,α j)A

II
j

(y,α j, s i).

If AI
{i}

(α′
i
,α j) = 0, we have AI

{i}
(y,α j)A

II
j

(y,α j, s i) ≥ AI
{i}

(α′
i
,α j)A

II
j

(α′
i
,α j,σi(y,α′

i
, s i)). We then have

(28), done.

If AI
{i}

(α′
i
,α j) = 1, we have AI

{i}
(y,α j) = 1. Note that AII

j
(y,α j, s i) ≤ AII

j
(α′

i
,α j,σi(y,α′

i
, s i)) since the

virtual value of bidder i is lower when she deviates, as shown by Esö and Szentes (2007). In this

case, we have LHS of (26) = AII
j

(y,α j, s i)p
III
i,(i, j)

(y,α j, s i, s j)+ (1− AII
j

(y,α j, s i))p
III
i

(y,α j, s i), and

RHS of (26)

= AII
j

(α′
i
,α j,σi(y,α′

i
, s i))p

III
i,(i, j)

(α′
i
,α j,σi(y,α′

i
, s i), s j)+(1−AII

j
(α′

i
,α j,σi(y,α′

i
, s i)))p

III
i

(α′
i
,α j,σi(y,α′

i
, s i)).

Note that

AII
j (α′

i ,α j,σi(y,α′
i , s i))p

III
i,(i, j)(α

′
i,α j,σi(y,α′

i, s i), s j)+ (1− AII
j (α′

i ,α j,σi(y,α′
i , s i)))p

III
i (α′

i,α j,σi(y,α′
i, s i))

≤ AII
j (α′

i ,α j,σi(y,α′
i , s i))p

III
i,(i, j)(y,α j, s i, s j)+ (1− AII

j (α′
i,α j,σi(y,α′

i, s i)))p
III
i (y,α j, s i)

≤ AII
j (y,α j, s i)p

III
i,(i, j)(y,α j, s i, s j)+ (1− AII

j (y,α j, s i))p
III
i (y,α j, s i).

Thus (26) holds. Hence we also have ∆≤ 0.

Proposition 3. The shortlisting rule and allocation rule characterized above are incentive compatible.
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