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1. Introduction 
 For more than half a century now economists have used the Arrow-Pratt measure of risk 
aversion to compare how risk averse two individuals are.  There are good reasons why.  For one 
thing, the mathematical characterization is very simple, based on a ratio of the first two 
derivatives of the utility function.  Second, and perhaps more importantly, the comparison based 
on the Arrow-Pratt measure was accompanied by some mathematically-equivalent behavioral 
conditions.  Specifically, being everywhere higher on the Arrow-Pratt measure is equivalent to 
having a larger risk premium or having a larger probability premium for an actuarially-neutral 
risk (Pratt 1964).   These behavioral, or choice-based, measures of risk aversion – i.e., the risk 
premium and the probability premium – have the advantage of being readily computed and 
compared in experiments investigating the factors that affect the strength of risk aversion.1   

Recent experimental studies have demonstrated, in various contexts, a salient aversion to 
risk increases of 3rd and even higher degrees.2  Moreover, 3rd-degree risk aversion (i.e., downside 
risk aversion or prudence), or even higher-degree risk aversion, has been shown to play critical 
roles in some important models of decision making under risk.3  Along with these interests in 
higher-degree risk aversion, a question arises as to how to compare two individuals’ relative 
strength of higher-degree risk aversion.  Pratt’s risk premium approach to comparative risk 
aversion has been generalized to deal with random initial wealth and comparative higher-degree 
risk aversion.4  By comparison, his probability premium approach to comparative risk aversion, 
though extensively used in experiments investigating the strength of 2nd-degree risk aversion, has 
not played an important role in the study of comparative higher-degree risk aversion.    

More recently, Jindapon and Neilson (2007) propose a new approach to comparative nth-
degree risk aversion that is based on a comparative statics analysis.  They show that an 
individual would always want to incur a larger monetary cost to reduce the nth-degree risk in 
wealth than another individual, if and only if the former is nth-degree Ross more risk averse than 
the latter. 

                                                             
1 For examples of choice-based risk aversion measures, see Holt and Laury (2002), Eckel and Grossman (2002), 
Andreoni and Sprenger (2011), Ebert and Wiesen (2014), Callen et al. (2014), and Grossman and Eckel (2015). 
2 For example, see Deck and Schlesinger (2010, 2014), Ebert and Wiesen (2011), Maier and Ruger (2011) and 
Noussair et al. (2014). 
3 One example is the self-protection decision.  It has been shown that while a risk averse individual does not 
necessarily invest more in self-protection than a risk neutral individual, a downside risk averse (or a more downside 
risk averse) individual tends to invest less in self-protection than a downside risk neutral individual (or a less 
downside risk averse individual) (Chiu 2005, Eeckhoudt and Gollier 2005, Menegatti 2009, Denuit et al. 2016, 
Crainich et al. 2016 and Peter 2017).  Another example is the precautionary saving/effort decision. It has been 
shown that as future income undergoes an nth-degree risk increase, the precautionary saving increases if and only if 
the utility function displays (n+1)th-degree risk aversion (Leland 1968, Sandmo 1970, Dreze and Modigliani 1972, 
Kimball 1990, Eeckhoudt and Schlesinger 2008, Eeckhoudt et al. 2012, Liu 2014, Wang et al. 2015, and Nocetti 
2016).     
4 For example, see Ross (1981), Machina and Neilson (1987), Modica and Scarsini (2005), Jindapon and Neilson 
(2007), Crainich and Eeckhoudt (2008), Li (2009), and Denuit and Eeckhoudt (2010). 
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As Liu and Meyer (2013) argue, however, all these existing approaches to comparative 
nth-degree risk aversion essentially quantify nth-degree risk aversion by the willingness to trade 
a 1st-degree risk increase with an nth-degree risk increase.  They propose a notion of “risk 
tradeoff” – the ratio of the reduction in expected utility caused by an nth-degree risk increase to 
that caused by an mth-degree risk increase – in order to quantify nth-degree risk aversion through 
the willingness to trade an mth-degree risk increase with an nth-degree risk increase for any m 
such that 1 m n≤ < .  They further show that an individual always has a larger tradeoff between 
an nth-degree risk increase and an mth-degree risk increase than another if and only if the former 
is (n/m)th-degree Ross more risk averse than the latter.    

Nevertheless, Liu and Meyer’s risk tradeoff approach is not a direct generalization of the 
previously existing approaches to comparative risk aversion.  Specifically, their notion of risk 
tradeoff cannot be interpreted as including either a risk premium or a probability premium as a 
special case.  Further, although Liu and Meyer provide a comparative statics problem to 
accompany their analysis, much in the spirit of Jindapon and Neilson (2007), their comparative 
statics problem is not a direct generalization of that in Jindapon and Neilson (2007). 

This paper extends the three main approaches to comparative risk aversion – the risk 
premium approach and the probability premium approach of Pratt (1964) and the comparative 
statics approach of Jindapon and Neilson (2007) – to study comparative nth-degree risk aversion, 
accommodating trading an mth-degree risk increase with an nth-degree risk increase for any m 
such that 1 m n≤ < .    

First, we propose a notion of the path-dependent mth-degree risk premium for an nth-
degree risk increase, and interpret the existing risk premium concepts as the 1st-degree risk 
premium along some special paths.  The relevant behavioral condition for one individual to be 
more nth-degree risk averse than another is that the former has a larger path-dependent mth-
degree risk premium than the latter for every (random) initial wealth, every nth-degree risk 
increase, and every possible path of mth-degree increasing risk.   

Second, we consider a situation where the individual compares random initial wealth to a 
binary compound lottery where the “good” state has less mth-degree risk than initial wealth and 
the “bad” state has higher nth-degree risk than initial wealth, with 1 m n≤ < .5 Generalizing 
Pratt’s probability premium, we look for the probability of the good state that makes the 
individual indifferent between initial wealth and the binary compound lottery.  The relevant 
behavioral condition for one individual to be more nth-degree risk averse than another is that the 
former requires a higher probability on the good state than the latter for every initial wealth, 
every nth-degree risk increase, and every mth-degree risk decrease.   

Third, we study a decision problem in which an individual faces an indexed path of 
random variables, and movements along the path involve precisely-defined reductions in nth-

                                                             
5 The “good” or “bad” is from the perspective of an individual that is both mth-degree risk averse and nth-degree 
risk averse. 
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degree risk and increases in mth-degree risk.  This formulation has as special cases both the 
comparative statics problem analyzed in Jindapon and Neilson (2007) and the portfolio choice 
problem analyzed in Pratt (1964), Ross (1981), and Machina and Neilson (1987).  The relevant 
behavioral condition for one individual to be more nth-degree risk averse than another is that the 
former always chooses a random variable farther along the path than the latter.  More simply, the 
nth-degree more risk averse individual chooses a random variable with less nth-degree risk but at 
the cost of more mth-degree risk. 

All told, this paper demonstrates that when the expected utility framework is assumed, all 
these general behavioral notions of comparative nth-degree risk aversion are equivalent, and can 
be characterized by the (n/m)th-degree Ross more risk aversion of Liu and Meyer (2013).  
 The paper is organized as follows. Section 2 reviews notions of nth-degree increasing 
risk, nth-degree risk aversion, and (n/m)th-degree Ross more risk aversion.  Section 3 presents 
three behavioral (i.e., choice-based) conditions comparing the nth-degree risk aversion of two 
individuals, as generalizations of the three main approaches to comparative risk aversion – the 
risk premium approach, the probability premium approach, and the comparative statics approach 
– respectively.  The theorems in this section establish that, in the framework of expected utility, 
all these three behavioral conditions are characterized by the (n/m)th-degree Ross more risk 
averse condition. Section 4 shows how the theorems lend insight into 3rd-degree risk aversion, 
relating the notion of downside risk aversion to the notion of prudence.  Section 5 offers some 
conclusions. 
 
2.  nth-Degree Increases in Risk, nth-Degree Risk Aversion, and (n/m)th-Degree Ross More 
Risk Aversion. 
 

Let F(x) and G(x) represent the cumulative distribution functions (CDFs) of two random 
variables whose supports are contained in a finite interval denoted [a, b] with no probability 
mass at point a.  This implies that F(a) = G(a) = 0 and F(b) = G(b) = 1.  Letting F[1](x) denote 

F(x), higher order cumulative functions are defined according to [ ] [ 1]( ) ( ) ,
xk k

a
F x F y dy−= ∫  k = 

2,3,…. Similar notation applies to G(x) and other CDFs.   
For any integer 1n ≥ , Ekern (1980) gives the following definition. 
 

Definition 1.  G(x) has more nth-degree risk (or is more nth-degree risky) than F(x) if 
 
 G[k](b) = F[k](b)             for k = 1, 2, …, n, and     (1) 
 [ ] [ ]( ) ( )n nG x F x≥          for all x in [a, b] with “>”  holding for some x in (a, b) . (2) 
 
Condition (1) guarantees that the first 1n −  moments are held constant across the two 
distributions, and conditions (1) and (2) together imply that F(x) dominates G(x) in nth-degree 
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stochastic dominance.  Thus, the nth-degree risk increase is a special case of nth-degree 
stochastic dominance in which the first 1n −  moments are kept the same.  This general definition 
of nth-degree risk increases has many well-known notions of stochastic changes as special cases.  
An increase in 1st-degree risk is a first-order stochastically dominated shift, which visually 
entails a leftward shift in probability mass.  It implies (but is not equivalent to) a reduction in the 
mean.  An increase in 2nd-degree risk holds the mean constant and spreads probability mass, 
which is the familiar mean-preserving spread of Rothschild and Stiglitz (1970).  It implies (but is 
not equivalent to) an increase in the variance.  Similarly, an increase in 3rd-degree risk holds the 
first two moments constant and shifts risk from high-wealth levels to low-wealth levels, which is 
the downside risk increase of Menezes et al. (1980).   It implies (but is not equivalent to) a 
reduction in rightward skewness.   
 The fact that an nth-degree risk increase requires that the first n – 1 moments remain 
constant places a restriction on the starting distribution F(x).  In particular, when F(x) is 
degenerate, placing all of its probability mass on a single outcome x0, only 1st-degree and 2nd-
degree risk increases are possible.  A 1st-degree risk increase would entail a first-order 
stochastically dominated shift, as usual, and a 2nd-degree one would involve a mean-preserving 
spread.  A 3rd-degree or higher risk increase would require that the variance of the new 
distribution be the same as that of the original distribution, and a degenerate distribution has zero 
variance.  Consequently, 3rd-degree or higher risk increases are only well-defined when the 
starting distribution is nondegenerate. 
 Ekern (1980) also provides a definition of nth-degree risk aversion when the preferences 
have an expected utility representation.  For any utility function u(x): [a, b] →  , assume that 
u C∞∈ .  Denote by ( ) ( )ku x  the kth derivative of u(x), k = 1, 2, 3... . 

 
Definition 2.  Decision maker u(x) is nth-degree risk averse if 1 ( )( 1) ( ) 0n nu x+− >  for all x in [a, b].  
 
Note that u(x) is said to be weakly nth-degree risk averse when the strict inequality in Definition 
2 is replaced with a weak one.  1st-degree risk aversion corresponds to an everywhere increasing 
utility function, and the usual 2nd-degree risk aversion corresponds to a concave utility function.  
If an individual exhibits all possible degrees of risk aversion his utility function will have 
derivatives that alternate in sign, beginning with a positive first derivative. 
 The relationship between the two concepts in Definitions 1 and 2 is given in Lemma 1 
below that is proved by Ekern (1980). 

 
Lemma 1.  G(x) has more nth-degree risk than F(x) if and only if every nth-degree risk averse 
decision maker u(x) prefers F(x) to G(x). 
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This result shows that nth-degree increases in risk are precisely the distribution changes that 
every nth-degree risk averse individual dislikes. 
 Another definition that is necessary for the analysis in this paper is (n/m)th-degree Ross 
more risk aversion, first described by Liu and Meyer (2013).  Assume that m and n are two 
positive integers such that 1 m n≤ < , and let the two utility functions u(x) and v(x) each be both 
nth-degree and mth-degree risk averse on [a, b].  The following definition of (n/m)th-degree Ross 
more risk aversion is from Liu and Meyer (2013).  
 
Definition 3.   u(x) is (n/m)th-degree Ross more risk averse than v(x) on [a, b] if  
 

   
1 ( ) 1 ( )

1 ( ) 1 ( )

( 1) ( ) ( 1) ( )
( 1) ( ) ( 1) ( )

n n n n

m m m m

u x v x
u y v y

+ +

+ +

− −
≥

− −
 for all x, y  [ , ]a b∈ ,  (3) 

or equivalently, if there exists 0λ > , such that 
( ) ( )

( ) ( )

( ) ( )
( ) ( )

n m

n m

u x u y
v x v y

λ≥ ≥  for all x, y  [ , ]a b∈ . 

 
Definition 3 includes many existing notions of one utility function being more risk averse 

than another as special cases.  For n = 2, m = 1 and y = x, condition (3) reduces to the familiar 

Arrow-Pratt more risk averse condition:
''( ) ''( )
'( ) '( )

u x v x
u x v x

− ≥ −  for all [ , ]x a b∈ .  As Ross (1981) 

points out, the behavioral conditions related to this characterization must have nonstochastic 

initial wealth, and the stronger condition 
''( ) ''( )
'( ) '( )

u x v x
u y v y

− ≥ −  for all , [ , ]x y a b∈  – which is 

referred to in the literature as Ross more risk aversion – allows for random initial wealth.  For m 
= 1, Definition (3) reduces to Ross more risk aversion when n = 2, to Ross more downside risk 
aversion when n = 3 (Modica and Scarsini 2005), and to Ross nth-degree more risk aversion for a 
general 2n ≥  (Jindapon and Neilson 2007, Li 2009, and Denuit and Eeckhoudt 2010). 

The following lemmas regarding the (n/m)th-degree Ross more risk averse condition will 
be used in proving the main results in the paper. Specifically, Lemma 2 is useful when using 
(n/m)th-degree Ross more risk aversion as a sufficient condition, and Lemma 3 is useful when 
showing (n/m)th-degree Ross more risk aversion as a necessary condition.  A proof of Lemma 2 
is given in Liu and Meyer (2013),6 and a proof of Lemma 3 is provided in the appendix.   

 
Lemma 2.  u(x) is (n/m)th-degree Ross more risk averse than v(x) on [a, b] if and only if there 
exist λ > 0 and ( )xφ  with 1 ( )( 1) ( ) 0m m xφ+− ≤  and 1 ( )( 1) ( ) 0n n xφ+− ≥  for all x in [a, b]  such that

( ) ( ) ( )u x v x xλ φ≡ + . 

                                                             
6 See the proof of their Theorem 1. 
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Lemma 3.  If u(x) is NOT (n/m)th-degree Ross more risk averse than v(x) on [a, b], then there 
exist µ > 0, 1 1[ , ] ( , )a b a b⊂  and  2 2[ , ] ( , )a b a b⊂  such that ( ) ( ) ( )x u x v xφ µ≡ −  satisfies 

1 ( )
1 1

1 ( )
2 2

( 1) ( ) 0 for all x [ , ]

( 1) ( ) 0 for all x [ , ]

n n

m m

x a b
x a b

φ

φ

+

+

− < ∈

− > ∈
  

 
3. Alternative Approaches to Comparative nth-Degree Risk Aversion 
 
3.1 The Risk Premium Approach 

The best-known approach to comparative risk aversion involves the risk premium.  In the 
original Arrow-Pratt analysis, the decision-maker has nonstochastic initial wealth w and faces an 
additive mean-zero risk ε .  The risk premium π is the payment that satisfies the indifference 
condition w wπ ε− +  .   Ross (1981) extends the Arrow-Pratt analysis to random starting 
wealth levels, and defines the risk premium π according to  

w yπ− 
 ,              (4) 

where w  is the random initial wealth and y  a Rothschild-Stiglitz risk increase from w .  In the 
expected utility framework, Ross shows that an individual always has a larger risk premium than 
another – for all w  and y  – if and only if the former is Ross more risk averse than the latter.7 

Machina and Neilson (1987) extend Ross (1981) by defining a random risk premium.  
More precisely, suppose that w  is the initial wealth, y  is a Rothschild-Stiglitz risk increase from 
w , and η  is a nonnegative random variable.  The random risk premium π  is a scalar satisfying 
the indifference condition 

w yπη−  
 .              (5) 

Machina and Neilson further show that, in the expected utility framework, an individual always 
has a larger random risk premium than another – for all w , y  and η  – if and only if the former 
is Ross more risk averse than the latter.  
 Note that the left-hand side of (4) or (5) ( w π−  or w πη−  ) is a 1st-degree risk increase 
from w  when 0π > , and the right-hand side ( y ) is a 2nd-degree risk increase from w .  So the 
risk premium conditions (4) and (5) involve trading off a 1st-degree risk increase against a 2nd-
degree one, along their respective “path” of 1st-degree risk increases.  Take (5), for example.  
The set { }w

π
πη

∈
−



  constitutes a continuous, parameterized path indexed by the scalar π.8 

Along this path, higher values of π correspond to increases in 1st-degree risk, and identifying π 

                                                             
7 This original notion of risk premium of Arrow-Pratt and Ross has been used to measure an individual’s aversion to 
higher-degree risk increases by Modica and Scarsini (2005), Crainich and Eeckhoudt (2008), Li (2009) and Denuit 
and Eeckhoudt (2010).   
8 Continuity is with respect to the topology of weak convergence. 
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in expression (5) is the same as finding the random variable on the path that is indifferent to y .  
A random variable further along the path involves more 1st-degree risk, and therefore a larger 
random risk premium, and consequently an individual who moves further along the path to reach 
indifference has a higher risk premium than one who does not move as far.   
 We can use this continuous path idea to formulate a general definition of the path-
dependent mth-degree risk premium for an nth-degree risk increase, where 1 m n≤ < , and uses it 
to measure an individual’s nth-degree risk aversion in terms of an mth-degree risk increase.  Let
w  be the random initial wealth and y  be an nth-degree risk increase from w , and let 

{ } [ , ]
( )

A B
x

π
π

∈
  denote a continuous path of random variables, parameterized by [ , ]A Bπ ∈ ⊂  , 

such that (0)x w=   and for every 'π π>  the random variable ( ')x π  has more mth-degree risk 

than ( )x π  does, where 1 m n≤ < .  We refer to { } [ , ]
( )

A B
x

π
π

∈
  as a path of mth-degree increasing 

risk from w .   
 
Definition 4.  Suppose that w  is the random initial wealth, y  is an nth-degree risk increase from 

w , and { } [ , ]
( )

A B
x

π
π

∈
   is a path of mth-degree increasing risk from w .  The path-dependent mth-

degree risk premium is the scalar π  satisfying the indifference condition 
  ( )x yπ 

 .          (6) 
 
 Obviously, { }w

π
π

∈
−



  and { }w
π

πη
∈

−


  are examples of paths of 1st-degree increasing 

risk from w .  The following examples are some paths of mth-degree increasing risk from w  for 
2m ≥ .  First, { } [0, )

( )x w
π

π πε
∈ ∞

= +   , where ε  is a mean-zero nondegenerate risk that is 

independent of w , is a path of 2nd-degree increasing risk from w .  Second, suppose that z  (with 
CDF H(x)) has more mth-degree risk than w  (with CDF F(x)).  Then { } [0,1]

( )x
π

π
∈

  is a path of 

mth-degree increasing risk from w  if ( )x π  has a CDF of ( ) (1 ) ( )H x F xπ π+ − .  In fact, 
assuming the expected utility framework and representing the preferences by utility function 
u(x), the path-dependent mth-degree risk premium for an nth-degree risk increase from w  to y  
along this path is given by ( ) (1 ) ( ) ( )Eu z Eu w Eu yπ π+ − =   or   

  ( ) ( )
( ) ( )

Eu w Eu y
Eu w Eu z

π −
=

−
 

 

 .    (7) 

Note that the ratio in (7) is the “rate of substitution” between an nth-degree risk increase and an 
mth-degree risk increase defined in Liu and Meyer (2013).  So, their rate of substitution is the 
path-dependent mth-degree risk premium for an nth-degree risk increase along a special path of 
mth-degree increasing risk from w , { } [0,1]

( )x
π

π
∈

 , as discussed above.    
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 It is straightforward to see that if the individual is both mth-degree and nth-degree risk 
averse, any path-dependent mth-degree risk premium for an nth-degree risk increase must be 
positive.  Now consider two individuals, u and v, with different risk preferences.  Take as given 
w , y , and a path of mth-degree increasing risk from w , { } [ , ]

( )
A B

x
π

π
∈

  .  If uπ  and vπ   satisfy 

( )u ux yπ 
  and ( )v vx yπ 

 , respectively, and u vπ π> , then this means that, compared to v, 
individual u must move further along the path of mth-degree increasing risk from w  before 
offsetting the disutility caused by the nth-degree increase in risk entailed in y .  More to the 
point, and much like the original Arrow-Pratt case, individual u is willing to accept a larger mth-
degree risk increase to avoid an nth-degree risk increase than individual v.   
 If u vπ π≥  for all w , y , and paths of mth-degree increasing risk from w , { } [ , ]

( )
A B

x
π

π
∈

 , 

then u can be regarded as being more nth-degree risk averse than v when the willingness to pay 
for avoiding the nth-degree risk increase takes the form of an mth-degree risk increase.  The 
following theorem provides a utility function-based characterization of the condition u vπ π≥ , in 
the tradition of Pratt (1964), when the preferences of both u and v satisfy the axioms of expected 
utility, and are represented by utility functions u(x) and v(x), respectively.  The proof of the 
theorem is in the appendix. 
 
Theorem 1.  Suppose that two expected utility maximizers u(x) and v(x) are each both mth-
degree risk averse and nth-degree risk averse everywhere.  The path-dependent mth-degree risk 
premia satisfy u vπ π≥   for every w , every y  that is nth-degree riskier than w  and every path of 

mth-degree increasing risk from w , { } [ , ]
( )

A B
x

π
π

∈
 , if and only if u(x) is (n/m)th-degree Ross more 

risk averse than v(x). 
 
 The condition that both individuals are everywhere mth-degree risk averse plays the same 
role that increasing utility functions play in the standard Arrow-Pratt characterization of 2nd-
degree comparative risk aversion.  There the increasing utility functions imply that the individual 
dislikes increases in the risk premium, and here the mth-degree risk aversion implies that the 
individual dislikes movements farther along the path of mth-degree increasing risk from w . 
   
3.2.  The Probability Premium Approach 

Along with the risk premium, Pratt (1964) also uses the probability premium as a 
measure of (global) risk aversion.  Pratt defines the probability premium q according to the 
indifference condition 

    
1
2
1
2

with probability 
with probability 

w q
w

w q
ε
ε

+ +
 − −

    (8) 
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where w is the nonrandom initial wealth and 0ε >  is a constant.  Pratt (1964) further shows that, 
in the expected utility framework, an individual u(x) always has a larger probability premium 
than another individual v(x) – for all w and ε  – if and only if the former is Arrow-Pratt more risk 
averse than the latter. 
 Unlike the risk premium approach, the probability premium approach to comparative risk 
aversion has received little attention since Pratt (1964), perhaps because it was not used by Ross 
(1981) in the first generalization of the Arrow-Pratt conditions to random initial wealth.9  We 
propose below a general formulation for using the probability premium to measure nth-degree 
risk aversion.  Suppose that w  is initial wealth, y  is an nth-degree risk increase from w , and z  
is an mth-degree risk decrease from w .  For an individual who is both nth-degree and mth-
degree risk averse, z w y 

  , where “ ” denotes the strict preference relationship. Consider a 
two-state compound lottery 
 

 
with probability 

with probability 1
z p
y p


 −





 . 

 
As p increases continuously from 0 to 1, the above lottery goes from being dominated by w  to 
being preferred to w .  Assuming continuity of preferences, there is a p such that  

    
with probability 

with probability 1
z p

w
y p


 −








.    (9) 

Formally, the mth-degree probability premium for an nth-degree risk increase is defined below. 
 
Definition 5.  Suppose that w  is the random initial wealth, y  is an nth-degree risk increase from 
w , and z  is an mth-degree risk decrease from w .  The mth-degree probability premium for the 
nth-degree risk increase is the scalar p satisfying the indifference condition (9). 
 

Note that for n = 2 and m = 1, the mth-degree probability premium for the nth-degree risk 
increase includes Pratt’s probability premium as a special case.  To see this, let w w= , z w ε= +  
and y  have two outcomes, w ε+  and w ε− , with equal probability ½ . Then (9) becomes  

   
1
2 2
1
2 2

with probability 
with probability 

p

p

w
w

w
ε
ε

 + +


− −
    

which is exactly the indifference condition (8) after relabeling 2
p  as q. 

                                                             
9 One exception is Jindapon (2010), who proposes a probability premium type measure of downside risk aversion 
based on the risk apportionment framework of Eeckhoudt and Schlesinger (2006).  In addition, Eeckhoudt and 
Laeven (2015) give a graphical representation of the probability premium. 
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 It is straightforward to see that if the individual is both mth-degree and nth-degree risk 
averse, then any mth-degree probability premium for an nth-degree risk increase lies in (0, 1).  
Now consider two individuals, u and v, with different risk preferences.  Given w , y  and z , if up  

and vp   satisfy (9) for u  and v , respectively, and u vp p> , then this means that, compared to 
v, individual u requires a larger probability on the favorable state – in which an mth-degree risk 
decrease materializes – for the two-state compound lottery to be indifferent to the status quo.  
 If u vp p≥  for all w , y  and z , then u can be regarded as being more nth-degree risk 
averse than v when the necessary compensation to offset an nth-degree risk increase takes the 
form of an mth-degree risk decrease.  The following theorem shows that in the framework of 
expected utility, the condition u vp p≥  is also characterized by (n/m)th-degree Ross more risk 
aversion.  The proof of the theorem is in the appendix. 
 
Theorem 2.  Suppose that two expected utility maximizers u(x) and v(x) are each both mth-
degree risk averse and nth-degree risk averse everywhere.  The mth-degree probability premia 
satisfy u vp p≥  for every w , y  and z  such that y  is nth-degree more risky than w  and z  is 
mth-degree less risky than w , if and only if u(x) is (n/m)th-degree Ross more risk averse than 
v(x). 
 

Theorem 2 provides a straightforward way for understanding what (n/m)th-degree Ross 
more risk averse means.  Individuals have initial random wealth given by w , and consider 
replacing it with a binary compound lottery that pays random variable z  in the good state and 
random variable y  in the bad state.  What makes the bad state bad is that y  is nth-degree riskier 
than w , and what makes the good state good is that z  is mth-degree less risky than w .  
Choosing to move away from the status quo, then, involves trading off the nth-degree risk 
increase against the mth-degree risk reduction.  The individual who is (n/m)th-degree Ross more 
risk averse requires a larger probability on the mth-degree risk reduction to keep him indifferent 
between the binary compound lottery and the status quo, which means for him the nth-degree 
risk increase weighs relatively more heavily in his decision than the mth-degree risk reduction 
does, compared to the other individual.   
  
3.3.  The Comparative Statics Approach 
 

Jindapon and Neilson (2007) construct a decision problem in which an individual can 
reduce the nth-degree risk in the random wealth variable by incurring a monetary cost.  
Specifically, suppose that CDF G(x) has more nth-degree risk than CDF F(x), and that by 
incurring a cost c(t), G(x) can be made into a less nth-degree risky CDF H(x, t) = tF(x)+(1- 
t)G(x), where 0 1t≤ ≤ , ( ) 0c t′ >  and ( ) 0c t′′ > .  The final wealth can be denoted as 
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1( ) ( ) ( )w t w t c t= −  , where 1( )w t  has a CDF of H(x, t).  An individual’s problem is to choose t to 
maximize the expected utility.  Jindapon and Neilson show that individual u(x) chooses a larger t 
than individual v(x) for all F(x) and G(x) such that G(x) has more nth-degree risk than F(x), if 
and only if the former is (n/1)th-degree Ross more risk averse than the latter.  They refer to their 
analysis as the comparative statics approach to comparative nth-degree risk aversion.10 
 Jindapon and Neilson’s (2007) comparative statics approach is extended here to provide a 
choice-based behavioral characterization of the more general (n/m)th-degree Ross more risk 
aversion.  Note that the final wealth in the Jindapon and Neilson setup, 1( ) ( ) ( )w t w t c t= −  , 
undergoes a two-step change as t increases.  Specifically, as t increases to t’, the change from 

( )w t  to ( ')w t  can be decomposed into the following two steps: From 1( ) ( ) ( )w t w t c t= −   to 

1( ') ( )w t c t−  is an nth-degree risk decrease, which is an improvement for an individual who is 

nth-degree risk averse; from 1( ') ( )w t c t−  to 1( ') ( ') ( ')w t w t c t= −   is a 1st-degree risk increase, 
which is a deterioration for an individual who prefers more to less. The definition below provides 
a general notion of changes in a random distribution that can be decomposed sequentially into an 
improvement and then a deterioration. 
 
Definition 6.  F(x) is sequentially less nth-degree risky and more mth-degree risky than G(x), if 
there exists H(x) such that F(x) has less nth-degree risk than H(x), and H(x) has more mth-degree 
risk than G(x).   
 
 Now consider a parameterized wealth path represented by ( )w α , where as α  increases

( )w α  becomes sequentially less nth-degree risky and more mth-degree risky.  Moving down 
such a path, one reduces the nth-degree risk in wealth by increasing the mth-degree risk in 
wealth.  The problem of an individual u(x) is  
 

[ ]max ( )Eu w
α

α           (10) 

The solution to (10) is assumed to be unique and is denoted uα .  
Intuitively, if u(x) is (n/m)th-degree Ross more risk averse than v(x), then u(x) would 

choose to locate further down the path than v(x). That is, u vα α≥ .  Indeed, we have the following 
characterization theorem, which is proved in the appendix.   
 

                                                             
10Watt and Vazquez (2013) provide an alternative comparative statics approach to comparative downside risk 
aversion. 
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Theorem 3.  u vα α≥  for every wealth path ( )w α  where, as α  increases, ( )w α  becomes 
sequentially less nth-degree risky and more mth-degree risky, if and only if u(x) is (n/m)th-
degree Ross more risk averse than v(x). 
 

There are four important situations that lead to wealth paths ( )w α  where increases in α  
make wealth sequentially less nth-degree risky and more mth-degree risky.  The first relates to 
Jindapon and Neilson’s (2007) comparative statics problem.  Suppose that total wealth consists 
of two independent components, i.e. 1 2( ) ( ) ( )w w wα α α= +   , and as α  increases 1( )w α  becomes 

less nth-degree risky and 2 ( )w α  becomes more mth-degree risky.  Note that the setup in 
Jindapon and Neilson (2007) is a special case of this situation for which m = 1. It can be 
immediately checked that as α  increases ( )w α  becomes sequentially less nth-degree risky and 
more mth-degree risky. Then according to Theorem 3, an (n/m)th-degree Ross more risk averse 
individual would choose to have a less nth-degree risky first component and a more mth-degree 
risky second component. 

The second situation incorporates binary compound lotteries, much like those in the 
probability premium setup.  Suppose that nature rolls the dice to reveal two states with 
probability p (for State 1) and (1-p) (for State 2) respectively, that ( )iw α  is the random wealth 

obtained in state i (i = 1, 2), and that as α  increases 1( )w α  becomes less nth-degree risky and 

2 ( )w α  becomes more mth-degree risky.  The ex ante total wealth can be depicted as:  
 

1

2

( ) with probability 
( )

( ) with probability (1- )
w p

w
w p

α
α

α


= 








   

 
It can be readily checked that as α  increases ( )w α  becomes sequentially less nth-degree risky 
and more mth-degree risky. Then according to Theorem 3, an (n/m)th-degree Ross more risk 
averse individual would choose to have a less nth-degree risky wealth in State 1 and a more mth-
degree risky wealth in State 2.  Thus, the intuition from the generalized comparative statics 
approach matches that from both the risk premium approach and the probability premium 
approach, where the (n/m)th-degree Ross more risk averse individual shows greater relative 
sensitivity to nth-degree than mth-degree risk. 

The third situation arises when the wealth path is constructed through probability 
mixtures of two random variables.  Suppose that F(x) is sequentially less nth-degree risky and 
more mth-degree risky than G(x), and consider the convex combination of these two CDFs, 
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( , ) ( ) (1 ) ( )J x F x G xα α α= + − .  It can be shown that as α  increases ( , )J x α  becomes 
sequentially less nth-degree risky and more mth-degree risky.11   

Specifically, because F(x) is sequentially less nth-degree risky and more mth-degree risky 
than G(x), there exists H(x) such that F(x) has less nth-degree risk than H(x), and H(x) has more 
mth-degree risk than G(x).  To show that 2 2 2( , ) ( ) (1 ) ( )J x F x G xα α α= + −  is sequentially less 

nth-degree risky and more mth-degree risky than 1 1 1( , ) ( ) (1 ) ( )J x F x G xα α α= + −  for 

2 11 0α α≥ > ≥ , consider CDF 1 2 1 2( ) ( ) ( ) ( ) (1 ) ( )K x F x H x G xα α α α= + − + − .  It is easy to see 

that 2( , )J x α  is preferred to ( )K x  by every nth-degree risk averse individual, and therefore 

2( , )J x α  has less nth-degree risk than ( )K x  (Lemma 1).  Similarly, it can be seen that ( )K x  has 

more mth-degree risk than 1( , )J x α .  Then, by definition, 2 2 2( , ) ( ) (1 ) ( )J x F x G xα α α= + −  is 
sequentially less nth-degree risky and more mth-degree risky than

1 1 1( , ) ( ) (1 ) ( )J x F x G xα α α= + − .  
According to Theorem 3, in choosing among ( , ) ( ) (1 ) ( )J x F x G xα α α= + −  where 

[0,1]α ∈ , an (n/m)th-degree Ross more risk averse individual would choose to put a larger 
weight on F(x). 

Fourth, and finally, the original Arrow-Pratt portfolio choice condition is a very special 
case of Theorem 3.  In the original problem, the individual has a fixed, nonstochastic amount to 
invest.  Placing all the money in the riskless asset yields wealth x with probability one, and 
placing it all in the risky asset yields wealth z , which z  is a random variable whose mean is 
strictly larger than x.  The individual can place some fraction α of his money in the riskless asset, 
in which case wealth is determined by the random variable ( )( ) 1w x zα α α= + −  .  As α 

increases ( )w α  becomes sequentially less 2nd-degree risky and more 1st-degree risky, and by 
Theorem 3 the individual who is (2/1)nd-degree Ross more risk averse chooses a higher value of 
α, that is, invests a larger fraction of his money in the riskless asset. 

This version of the portfolio problem is a highly special case, though, because as noted in 
footnote 11, when n > 2 the path created by the portfolio mixture is not one with sequentially less 
nth-degree risk and more mth-degree risk.  If, however, there exists a set of different assets, 
indexed by α, for which increases in α mean that the asset has sequentially less nth-degree and 
more mth-degree risk, Theorem 3 would apply and the (n/m)th-degree Ross more risk averse 
investor chooses an asset with less nth-degree risk than his less risk averse counterpart. 
 
4. Downside risk aversion and prudence 

                                                             
11 In contrast, suppose that x   is sequentially less nth-degree risky and more mth-degree risky than z . In general, it 
is not the case that as α  increases ( ) (1 )w x zα α α= + −    becomes sequentially less nth-degree risky and more 
mth-degree risky.  
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 The three behavioral characterizations provide a means for understanding the difference 
between downside risk aversion and prudence.  Kimball (1990) investigates prudence, measured 
by '''( ) / ''( )u x u x− , while Modica and Sarsini (2005) and Crainich and Eeckhoudt (2008) measure 
downside risk aversion using '''( ) / '( )u x u x .12  Clearly, both these ratios are natural extensions of 
the Arrow-Pratt measure to the 3rd-degree risk aversion.  
 The next two corollaries provide characterizations of prudence and downside risk 
aversion.  Corollary 1 is an equivalence theorem related to comparative prudence, and Corollary 
2 is its counterpart for comparative downside risk aversion. 
 
Corollary 1.  The following conditions are equivalent representations of agent u being more 
prudent than agent v over the interval [a,b]: 

(a) '''( ) / ''( ) '''( ) / ''( )u x u y v x v y− ≥ −  for all , [ , ]x y a b∈ . 

(b) Let { } [ , ]
( )

A B
x

π
π

∈
  be a path of 2nd-degree increasing risk from w  and y have more 3rd-

degree risk than w .  If uπ  and vπ  solve  ( ) ( )( )Eu x Eu yπ =   and ( ) ( )( )Ev x Ev yπ =  , 

respectively, then u vπ π≥ . 
(c) Let z  have less 2nd-degree risk than w  and y  have more 3rd-degree risk than w .  If pu 

and pv solve ( ) ( ) (1 ) ( )Eu w pEu z p Eu y= + −   and ( ) ( ) (1 ) ( )Ev w pEv z p Ev y= + −  , 
respectively, then u vp p≥ . 

(d) Let ( )w α  be a parameterized wealth path where, as α  increases, ( )w α  becomes 
sequentially less 3rd-degree risky and more 2nd-degree risky.  If uα  and vα  maximize 

( )Eu w α    and ( )Ev w α   , respectively, then u vα α≥ .  

 
Corollary 2.  The following conditions are equivalent representations of agent u being more 
downside risk averse than agent v over the interval [a,b]: 

(a) '''( ) / '( ) '''( ) / '( )u x u y v x v y≥  for all , [ , ]x y a b∈ . 

(b) Let { } [ , ]
( )

A B
x

π
π

∈
  be a path of 1st-degree increasing risk from w  and y have more 3rd-

degree risk than w .  If uπ  and vπ  solve  ( ) ( )( )Eu x Eu yπ =   and ( ) ( )( )Ev x Ev yπ =  , 

respectively, then u vπ π≥ . 

                                                             
12 Keenan and Snow (2002, 2017) and Liu and Meyer (2012) propose other measures of downside risk aversion that 
add a term of the Arrow-Pratt risk aversion to the ratio '''( ) / '( )u x u x .  
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(c) Let z  have less 1st-degree risk than w  and y  have more 3rd-degree risk than w .  If pu 
and pv solve ( ) ( ) (1 ) ( )Eu w pEu z p Eu y= + −   and ( ) ( ) (1 ) ( )Ev w pEv z p Ev y= + −  , 
respectively, then u vp p≥ . 

(d) Let ( )w α  be a parameterized wealth path where, as α  increases, ( )w α  becomes 
sequentially less 3rd-degree risky and more 1st-degree risky.  If uα  and vα  maximize 

( )Eu w α    and ( )Ev w α   , respectively, then u vα α≥ .  

 
 The two corollaries make clear the differences between downside risk aversion and 
prudence.  Consider condition (b), for example.  A more prudent individual is willing to accept a 
larger increase in the 2nd-degree risk to avoid an increase in the 3rd-degree risk than a less 
prudent individual is, while a more downside risk averse individual is willing to accept a larger 
increase in the 1st-degree risk to avoid an increase in the 3rd-degree risk than a less downside 
risk averse individual is.  Using the less precise terminology from moments, a more prudent 
individual is willing to accept a larger increase in variance to avoid an increase in the leftward 
skewness, and a more downside risk averse individual is willing to accept a larger reduction in 
mean to avoid an increase in the leftward skewness. 
 Conditions (c) and (d) lead to basically the same interpretation.  That is, compared with a 
less prudent individual, the more prudent individual weighs the 3rd-degree risk relatively more 
and the 2nd-degree risk relatively less; in contrast, compared with a less downside risk averse 
individual, the more downside risk averse individual weighs the 3rd-degree risk relatively more 
and the 1st-degree risk relatively less.     
 The same intuition covers other, higher-degree comparisons.  Using the moment 
terminology, (4/1)th-degree Ross risk aversion concerns trading off changes in kurtosis against 
changes in mean, (4/2)th-degree Ross risk aversion concerns tradeoffs between kurtosis and 
variance, and (4/3)th-degree Ross risk aversion pertains to kurtosis and skewness. 
 
5. Conclusion 

 
More than half a century ago, Pratt (1964) uses two behavioral (or choice-based) 

conditions – which are based on the risk premium and the probability premium, respectively – to 
characterize the Arrow-Pratt more risk averse condition that is based on the famous Arrow-Pratt 
risk aversion measure, ( ) / '( )u x u x′′− .  These behavioral conditions regarding comparative risk 
aversion are important both because they have economic contents and because they can be 
readily implemented in experimental investigations into individual characteristics (e.g., gender, 
age, income, education, and religion affiliation) that affect the degree of risk aversion.  These 
behavioral conditions do not depend on the expected utility framework to be meaningful and can 
be checked via experiments without explicit specifications of the utility function.  
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More recently, Liu and Meyer (2013) propose to use 
1 ( )

1 ( )

( 1) ( )
( 1) ( )

n n

m m

u x
u x

+

+

−
−

 as the (n/m)th-

degree risk aversion measure for nth-degree risk aversion, and generalize the Arrow-Pratt more 
risk averse condition and the Ross more risk averse condition to the (n/m)th-degree Ross more 
risk aversion. 

This paper generalizes the three main existing (behavioral or choice-based) approaches to 
comparative risk aversion – the risk premium approach and the probability premium approach 
due to Pratt (1964) and the comparative statics approach due to Jindapon and Neilson (2007) – 
for comparative nth-degree risk aversion that can accommodate trading off an nth-degree risk 
increase and an mth-degree risk increase for any m such that 1 m n≤ < .  It shows that when the 
expected utility framework is assumed, all these general notions of comparative nth-degree risk 
aversion are equivalent, and can be characterized by the (n/m)th-degree Ross more risk aversion.    

In the future, economists and other social scientists may want to investigate the 
determining factors of the strength of 3rd- and higher-degree risk aversion, just as what they have 
extensively done for the 2nd-degree risk aversion.  It is our hope that the results in this paper will 
deepen the understanding of, and help in creating alternative measures for, the intensity of nth-
degree risk aversion.  
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APPENDIX 
 
Proof of Lemma 3.  
If u(x) is NOT (n/m)th-degree Ross more risk averse than v(x) on [a, b], then there exist some y 
and z [ , ]a b∈  such that      

( ) ( )

( ) ( )

( ) ( )
( ) ( )

n m

n m

u y u z
v y v z

< . 

Obviously, for such y and z, there exists 0µ > , such that      
 

( ) ( )

( ) ( )

( ) ( )
( ) ( )

n m

n m

u y u z
v y v z

µ< <  , 

which implies, due to continuity, that there exist 1 1[ , ] ( , )a b a b⊂  and  2 2[ , ] ( , )a b a b⊂  such that             

    
( ) ( )

( ) ( )

( ) ( )
( ) ( )

n m

n m

u y u z
v y v z

µ< <     

for all y 1 1[ , ]a b∈  and all z 2 2[ , ]a b∈ .   
Define ( ) ( ) ( )x u x v xφ µ≡ − .  Differentiating yields  

1 ( ) 1 ( ) 1 ( )
1 1

1 ( ) 1 ( ) 1 ( )
2 2

( 1) ( ) ( 1) ( ) ( 1) ( ) 0 for all x [ , ]

( 1) ( ) ( 1) ( ) ( 1) ( ) 0 for all x [ , ]

n n n n n n

m m m m m m

x u x v x a b
x u x v x a b

φ µ

φ µ

+ + +

+ + +

− = − − − < ∈

− = − − − > ∈
  

            Q.E.D. 
 
Proof of Theorem 1. 
The “if” part:  Suppose that u(x) is (n/m)th-degree Ross more risk averse than v(x).  Then, 
according to Lemma 2, there exist λ > 0 and ( )xφ  with 1 ( )( 1) ( ) 0m m xφ+− ≤  and 1 ( )( 1) ( ) 0n n xφ+− ≥  
for all x in [a, b] such that ( ) ( ) ( )u x v x xλ φ≡ + . Note that ( )xφ  is both weakly mth-degree risk 
tolerant – meaning that ( )xφ−  is weakly mth-degree risk averse – and weakly nth-degree risk 
averse.   
 For every w , every y  that is nth-degree riskier than w  and every path of mth-degree 

increasing risk from w , { } [ , ]
( )

A B
x

π
π

∈
 , uπ  and vπ  satisfy ( ) ( )( )uEu x Eu yπ =   and 

( ) ( )( )vEv x Ev yπ =  , respectively, by definition.  Further, we have  

  

( ) ( ) ( )
( )
( )

( ) ( ) ( )

( ) ( )

( )
( ),

v v v

v

Eu x Ev x E x

Ev y E x

Ev y E y
Eu y

π λ π φ π

λ φ π

λ φ

= +

= +

≥ +

=
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where the inequality is from (i) ( )vx π  has more mth-degree risk than w  and y  has more nth-
degree risk than w , and (ii) ( )xφ  is both weakly mth-degree risk tolerant and weakly nth-degree 

risk averse.  Because ( )( )Eu x π  is strictly decreasing in π , we have  u vπ π≥ .   

             
The “only if” part:  Suppose that the path-dependent mth-degree risk premia satisfy u vπ π≥   for 
every w , every y  that is nth-degree riskier than w  and every path of mth-degree increasing risk 

from w , { } [ , ]
( )

A B
x

π
π

∈
 .  Then, it must be the case that u vπ π≥  for every w , every y  that is nth-

degree riskier than w  and a special path of mth-degree increasing risk from w  that is defined as 
follows.  
 Suppose that z  (with CDF H(x)) has more mth-degree risk than w  (with CDF F(x)).  
Then { } [0,1]

( )x
π

π
∈

  is a path of mth-degree increasing risk from w  if ( )x π  has a CDF of 

( ) (1 ) ( )H x F xπ π+ − .  And for u(x), the path-dependent mth-degree risk premium for an nth-
degree risk increase from w  to y  along this path is given by ( ) (1 ) ( ) ( )Eu z Eu w Eu yπ π+ − =   or   

  ( ) ( )
( ) ( )u

Eu w Eu y
Eu w Eu z

π −
=

−
 

 

 .     

Similarly,  

     ( ) ( )
( ) ( )v

Ev w Ev y
Ev w Ev z

π −
=

−
 

 

. 

So the given condition implies that ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

Eu w Eu y Ev w Ev y
Eu w Eu z Ev w Ev z

− −
≥

− −
   

  

 for every w , every 

y  that is nth-degree riskier than w  and every z  that is mth-degree riskier than w .  Note that the 
ratio on each side of the inequality is the “rate of substitution” between an nth-degree risk 
increase and an mth-degree risk increase defined in Liu and Meyer (2013).  According to their 
Theorem 1, it must be the case that u(x) is (n/m)th-degree Ross more risk averse than v(x). 

Q.E.D. 
 
Proof of Theorem 2. 
For any given w , y  and z  such that y  is nth-degree more risky than w  and z  is mth-degree 
less risky than w , define  

( ) ( ) [ ( ) (1 ) ( )]U p Eu w pEu z p Eu y≡ − + −  .      
Clearly, ( ) ( ) ( ) 0U p Eu y Eu z′ = − <   because u(x) is both mth-degree risk averse and nth-degree 
risk averse.  For the same reason, (0) 0U >  and (1) 0U < . 

So (0,1)up∃ ∈  such that ( ) 0uU p = .  ( )V p  for v(x) can be similarly defined, and 

(0,1)vp∃ ∈  such that ( ) 0vV p = .  
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The “if” part:  Suppose that u(x) is (n/m)th-degree Ross more risk averse than v(x).  Then, from 
Lemma 2, there exist λ > 0 and ( )xφ  with 1 ( )( 1) ( ) 0m m xφ+− ≤  and 1 ( )( 1) ( ) 0n n xφ+− ≥  for all x in 
[a, b] such that ( ) ( ) ( )u x v x xλ φ≡ + . Note that ( )xφ  is both weakly mth-degree risk tolerant – 
meaning that ( )xφ−  is weakly mth-degree risk averse – and weakly nth-degree risk averse. 
 Evaluating ( )U p  at vp , we have 

( ) ( ) [ ( ) (1 ) ( )]
( ) ( ) [ ( ) (1 ) ( )]
( ) [ ( ) (1 ) ( )]

[ ( ) ( )] (1 )[ ( ) ( )]
0.

v v v

v v v

v v

v v

U p Eu w p Eu z p Eu y
V p E w p E z p E y

E w p E z p E y
p E w E z p E w E y

λ φ φ φ
φ φ φ

φ φ φ φ

= − + −

= + − + −

= − + −

= − + − −

≥

 

 

 

  

     

The inequality above is from that (i) z  has less mth-degree risk than w  and y  has more nth-
degree risk than w , and (ii) ( )xφ  is both weakly mth-degree risk tolerant and weakly nth-degree 
risk averse.  Because ( )U p  is strictly decreasing in p, we have u vp p≥ . 
 
The “only if” part:  Suppose that u vp p≥  for all w , y  and z  such that y  is nth-degree more 
risky than w  and z  is mth-degree less risky than w .  To prove that u(x) is (n/m)th-degree Ross 
more risk averse than v(x), assume otherwise.  Then, according to Lemma 3, there exist µ > 0,  

1 1[ , ] ( , )a b a b⊂  and  2 2[ , ] ( , )a b a b⊂ , such that ( ) ( ) ( )x u x v xφ µ≡ −  satisfies 
1 ( )

1 1
1 ( )

2 2

( 1) ( ) 0 for all x [ , ]

( 1) ( ) 0 for all x [ , ]

n n

m m

x a b
x a b

φ

φ

+

+

− < ∈

− > ∈
       (A1) 

Now denote the CDFs for w , y  and z  as F(x), G(x) and H(x), respectively, and choose 
F(x), G(x) and H(x) such that    

[ ] [ ] [ ] [ ]
1 1 2 2

[ ] [ ] [ ] [ ]
1 1 2 2

0 ( , ) 0 ( , )
0 ( , ) 0 ( , )

n n m m

n n m m

G F x a b F H x a b
G F x a b F H x a b
 − > ∈ − > ∈
 

− = ∉ − = ∉ 
.       (A2) 

Evaluating ( )U p  at vp , we have 



20 
 

1 ( ) [ ] [ ]

( ) ( ) ( ) [ ( ) (1 ) ( )]
( ) [ ( ) (1 ) ( )]

[ ( ) ( )] (1 )[ ( ) ( )]

( ) [ ( ) ( )] (1 ) ( ) [ ( ) ( )]

( 1) ( )[ ( ) ( )]

v v v v

v v

v v
b b

v va a
b m m m m

v a

U p V p E w p E z p E y
E w p E z p E y
p E w E z p E w E y

p x d F x H x p x d F x G x

p x H x F x d

µ φ φ φ
φ φ φ

φ φ φ φ

φ φ

φ+

= + − + −
= − + −
= − + − −

= − + − −

= − −

∫ ∫
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The inequality in above is from (A1) and (A2).  Because ( )U p  is strictly decreasing in p, we 
have u vp p< , a contradiction. Therefore, u(x) must be (n/m)th-degree Ross more risk averse 
than v(x). 

Q.E.D.  
 
Proof of Theorem 3.     
The “if” part:  Suppose that u(x) is (n/m)th-degree Ross more risk averse than v(x). By Lemma 2, 
there exists 0λ >  and ( )xφ  such that ( ) ( ) ( )u x v x xλ φ≡ +  , where 1 ( )( 1) ( ) 0m m xφ+− ≤  and 

1 ( )( 1) ( ) 0n n xφ+− ≥  for all x.  Note that ( )xφ  is both weakly mth-degree risk tolerant – meaning 
that ( )xφ−  is weakly mth-degree risk averse – and weakly nth-degree risk averse. 
 We use proof by contradiction.  To prove u vα α≥ , assume u vα α<  instead.  Note 

[ ] [ ]( ( )) ( ( )) ( ( )) ( ( )) ( ( )) ( ( ))u v u v u vEu w Eu w Ev w Ev w E w E wα α λ α α φ α φ α− = − + −      . 

The first bracket in the above expression is negative because the expected utility of v(x) is 
maximized at vα .  Under the assumption u vα α< ,  the second bracket is nonpositive because 

that ( )xφ  is both weakly mth-degree risk tolerant and weakly nth-degree risk averse, and that
( )vw α  is sequentially less nth-degree risky and more mth-degree risky than ( )uw α .  So 

( ( )) ( ( )) 0u vEu w Eu wα α− <  , which contradicts that uα  is the optimal choice for u(x).  Therefore, 

it must be the case that u vα α≥ .    
 
The “only if” part: Suppose that u vα α≥  for every wealth path ( )w α  where, as α  increases, 

( )w α  becomes sequentially less nth-degree risky and more mth-degree risky.  To prove that u(x) 
is (n/m)th-degree Ross more risk averse than v(x), assume otherwise.  Then, according to Lemma 
3, there exist 0µ > , 1 1[ , ] ( , )a b a b⊂  and  2 2[ , ] ( , )a b a b⊂  such that ( ) ( ) ( )x u x v xφ µ≡ −  satisfies 

1 ( )
1 1

1 ( )
2 2

( 1) ( ) 0 for all x [ , ]

( 1) ( ) 0 for all x [ , ]

n n

m m

x a b
x a b

φ

φ

+

+

− < ∈

− > ∈
    (A3) 
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Because u vα α≥ , ( )uw α  is sequentially less nth-degree risky and more mth-degree risky 

than ( )vw α .  So there exists z  such that ( )uw α  has less nth-degree risk than z , and z  has more 

mth-degree risk than ( )vw α .    

Denote the CDFs for ( )uw α , ( )vw α  and z  as F(x), G(x) and H(x), respectively.  Due to 
the arbitrariness of the wealth path ( )w α , we can choose F(x), G(x) and H(x) such that    

[ ] [ ] [ ] [ ]
1 1 2 2

[ ] [ ] [ ] [ ]
1 1 2 2

0 ( , ) 0 ( , )
0 ( , ) 0 ( , )

n n m m

n n m m

H F x a b H G x a b
H F x a b H G x a b

 − > ∈ − > ∈
 

− = ∉ − = ∉ 
.       (A4) 

Then we have 
( ) ( )

( ) ( ) ( ) ( )
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( ) ( )

( ) ( )

( ) [ ( ) ( )] ( ) [ ( ) ( )]

( 1) ( )[ ( ) ( )] ( 1)

u v

u v u v

u v

u v

b b

a a
b n n n n m

a

Eu w Eu w

Ev w Ev w E w E w

E w E w

E w E z E z E w

x d F x H x x d H x G x

x H x F x dx

α α

µ α α φ α φ α

φ α φ α

φ α φ φ φ α

φ φ

φ+ +

−

= − + −      
< −

= − + −      

= − + −

= − − + −

∫ ∫
∫

 

   

 

  

1 2

1 2

1 ( ) [ ] [ ]

1 ( ) [ ] [ ] 1 ( ) [ ] [ ]
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a a

x G x H x dx

x H x F x dx x G x H x dx

φ

φ φ+ +

−

= − − + − −

<

∫
∫ ∫

         (A5) 

The first inequality above is from the fact that vα  is the optimal choice for v(x).   The second 

inequality above is from (A3) and (A4).  Note that (A5) implies that uα  is not the optimal choice 
for u(x), a contradiction.  Therefore, it must be the case that u(x) is (n/m)th-degree Ross more 
risk averse than v(x). 

Q.E.D.   



22 
 

References 
 

Andreoni, J., C. Sprenger (2011). Uncertainty equivalents: Testing the limits of the independence 
axiom. NBER Working Paper No. 17342. 

 
Callen, M., M. Isaqzadeh, J.D. Long, C. Sprenger (2014). Violence and risk preference: 

Experimental evidence from Afghanistan. American Economic Review 104, 123-148. 
 
Chiu, W. Henry (2005). Degree of downside risk aversion and self-protection. Insurance: 

Mathematics and Economics 36, 93-101. 
 
Crainich, D., L. Eeckhoudt (2008). On the intensity of downside risk aversion. Journal of Risk 

and Uncertainty 36, 267-276. 
 
Crainich, D., L. Eeckhoudt, and M. Menegatti (2016). Changing risks and optimal effort. Journal 

of Economic Behavior and organization 125, 97-106. 
 
Deck, C., H. Schlesinger (2010). Exploring higher-order risk effects. Review of Economic 

Studies 77, 1403-1420. 
 
Deck, C., H. Schlesinger (2014). Consistency of higher order risk preferences. Econometrica 82, 

1913-1943. 
 
Denuit, M., L. Eeckhoudt (2010). Stronger measures of higher-order risk attitudes. Journal of 

Economic Theory 145, 2027-2036. 
 
Denuit, M., L. Eeckhoudt, L. Liu and J. Meyer (2016). Tradeoffs for downside risk averse  
 decision makers and the self-protection decision.  Geneva Risk and Insurance Review 41,  
 19-47.   
 
Dreze, J.H., F. Modigliani (1972). Consumption decision under uncertainty, Journal of  

Economic Theory 5, 308-335. 
 
Ebert, S., D. Wiesen (2011).  Testing for prudence and skewness seeking. Management Science 

57, 1334-1349. 
 
Ebert, S., D. Wiesen (2014).  Joint measurement of risk aversion, prudence, and temperance. 

Journal of Risk and Uncertainty 48, 231-252. 
 



23 
 
Eckel, C., P. Grossman (2002).  Sex differences and statistical stereotyping in attitudes toward 

financial risk.  Evolution and Human Behavior 23, 281-295. 
 
Eeckhoudt, L. and Gollier, C. (2005). The impact of prudence on optimal prevention.  

Economic Theory 26, 989–994. 
 
Eeckhoudt, L., R. Huang, L. Tzeng (2012). Precautionary effort: A new look. Journal of Risk 

and Insurance 79, 585-590.  
 
Eeckhoudt, L., R. Laeven (2015). The probability premium: A graphical representation.   

Economics Letters 136, 39-41. 
 

Eeckhoudt, L., H. Schlesinger (2006). Putting risk in its proper place. American Economic  
Review 96, 280-289. 

 
Eeckhoudt, L., H. Schlesinger (2008). Changes in risk and the demand for saving, Journal of  

Monetary Economics 55, 1329-1336. 
 
Ekern, S. (1980). Increasing Nth degree risk. Economics Letters 6, 329-333. 
 
Grossman, P., C. Eckel (2015). Loving the long shot: risk taking with skewed lotteries. Journal 

of Risk and Uncertainty 51, 195-217.  
 
Holt, C., S. Laury (2002). Risk aversion and incentive effects. American Economic Review 92, 

1644-1655. 
 
Jindapon, P. (2010). Prudence probability premium. Economics Letters 109, 34-37. 
 
Jindapon, P., W. Neilson (2007). Higher-order generalizations of Arrow-Pratt and Ross risk 

aversion: A comparative statics approach. Journal of Economic Theory 136, 719-728. 
 
Keenan, D., A. Snow (2002). Greater downside risk aversion. Journal of Risk and Uncertainty  

24, 267-277. 
 
Keenan, D., A. Snow (2017). Greater parametric downside risk aversion. Journal of  

Mathematical Economics 71, 119-128. 
 
Kimball, M. (1990). Precautionary saving in the small and in the large. Econometrica 58, 53-73. 
 



24 
 
Leland, H.E. (1968). Saving and uncertainty: the precautionary demand for saving, Quarterly  

Journal of Economics 82, 465-473. 
 
Li, J. (2009). Comparative higher-degree Ross risk aversion. Insurance: Mathematics and 

Economics 45, 333-336.  
 
Liu, L. (2014). Precautionary saving in the large: nth degree deteriorations in future income.  

Journal of Mathematical Economics 52, 169-172. 
 
Liu, L., J. Meyer (2012). Decreasing absolute risk aversion, prudence and increased downside  

risk aversion.  Journal of Risk and Uncertainty 44, 243-260. 
 
Liu, L., J. Meyer (2013). Substituting One Risk Increase for Another: A Method for Measuring 

Risk Aversion. Journal of Economic Theory 148, 2706-2718. 
 
Machina, M.J., W.S. Neilson (1987). The Ross characterization of risk aversion: strengthening 

and extension. Econometrica 55, 1139-1149. 
 
Maier, J., M. Ruger (2011). Experimental Evidence on higher-order risk preferences with real 

monetary losses.  Working Paper, University of Munich. 
 
Menegatti, M. (2009). Optimal prevention and prudence in a two period model. Mathematical 

Social Science 58, 393-397. 
  
Menezes, C., C. Geiss, J. Tressler (1980). Increasing downside risk. American Economic Review 

70, 921-932. 
 
Modica, S., M. Scarsini (2005). A note on comparative downside risk aversion. Journal of 

Economic Theory 122, 267-271.  
 
Nocetti, D. (2016). Robust comparative statics of risk changes. Management Science 62, 1381- 

1392. 
 
Noussair, C., S. Trautmann, G. Van De Kuilen (2014). Higher order risk attitudes, demographics,  

and financial decisions. Review of Economic Studies 81, 325-355.  
 
Peter, R. (2017). Optimal self-protection in two periods: On the role of endogenous saving. 

Journal of Economic Behavior and Organization 137, 19-36.  
 



25 
 
Pratt, J. (1964). Risk aversion in the small and in the large. Econometrica 32, 122-136. 
 
Ross, S. A. (1981). Some stronger measures of risk aversion in the small and in the large with 

applications. Econometrica 49, 621-638. 
 
Rothschild, M., J. Stiglitz (1970). Increasing risk I: A definition. Journal of Economic Theory 2, 

225-243. 
 
Sandmo, A. (1970).  The effect of uncertainty on saving decisions, Review of Economic Studies  

37, 353-360. 
 

Wang, H., J. Wang, J. Li, X. Xia (2015).  Precautionary paying for stochastic improvements  
under background risks. Insurance: Mathematics and Economics 64, 180-185. 

 
Watt, R., F. J. Vazquez (2013). Allocative downside risk aversion, International Journal of  

Economic Theory 9, 267-277. 
 


