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Abstract

This paper analyzes the formation of partnerships in social networks. Agents ran-

domly request favors and turn to their neighbors to form a partnership. If favors are

costly, agents have an incentive to delay the formation of the partnership. In that

case, for any initial social network, the unique Markov Perfect equilibrium results in

the formation of the maximum number of partnerships when players become infinitely

patient. If favors provide benefits, agents rush to form partnerships at the cost of dis-

connecting other agents and the only perfect initial networks for which the maximum

number of partnerships are formed are the complete and complete bipartite networks.

The theoretical model is tested in the lab. Subjects generally play according to their

equilibrium strategy and the efficient outcome is obtained over 78% of the times. Deci-

sions are affected by the complexity of the network. Two behavioral rules are observed

during the experiment: subjects accept the formation of the partnership too often and

reject partnership offers when one of their neighbors is only connected to them.
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1 Introduction

1.1 The formation of partnerships in social networks

The idea that power and influence of an individual in a network depend upon his or her
position in the network is well-established in a variety of contexts cutting across disciplines.
For instance, social network analysis suggests that the power of individuals cannot be ex-
plained by the individual’s characteristics alone, but must be combined with the structure
of his or her relationship with others -power arises from occupying advantageous positions in
networks of relationships. In particular, network exchange theories focus on exchange rates
which essentially represent the relative “bargaining power" of one individual in his or her
bilateral exchange with neighbors in the network.1

We study the impact of network structures on the pattern of bilateral exchanges both
theoretically as well as by means of laboratory experiments. Our setting is one in which
individuals form partnerships to exchange favors with one another. Favors could be small
– advice on a particular issue, a small loan, help on a school project or with baby-sitting,
or large – sharing one’s life with another person, or forming a professional partnership with
other workers . The need for such favors arises randomly for any individual at any point of
time. If an individual i needs a favor at any point, he turns to one of his neighbors j in the
network to request the favor. The recipient of such a request can either grant the favor at
some cost c (which is strictly less than the value of the favor v) or refuse to grant the favor.
In the latter case, the link between i and j is broken. Individual i can then approach another
neighbor to grant him the favor. If the favor is granted, the two players enter a reciprocal
agreement to grant each other the favor and leave the network. The process is repeated in
the next period when some individual chosen at random needs a favor.

Since there is a cost involved in granting the favor, an individual grants a favor only
because she knows that she might need a favor tomorrow. In particular, our model is purely
individualistic in the sense that we ignore completely the existence of any social norm to
enforce cooperative behavior. This distinguishes our model from that of Jackson, Rodriguez-
Barraquer and Tan (2012), whose work we discuss later. The absence of societal punishments
implies that typical repeated-game theoretic considerations do not apply in our model. So,
any individual i who is approached with a request for a favor by individual j will only grant
the favor if he does not want to break the link with j. Since the cost of granting a favor is
incurred in the current period, i will grant the favor if the expected discounted stream of
future payoffs from maintaining the link with j exceeds c.

This is where the structure of the network comes into play. We illustrate this informally
by means of a couple of examples. Suppose, for instance, that the network is a line on three
individuals, with 1 and 3 being the extreme nodes while 2 is in the middle. Suppose that
one of the extreme nodes, say 1, requires a favor in some period t, and requests his neighbor

1For an overview of recent developments in network exchange theories, see Willer (1999).
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2 to grant him the favor. Clearly, the only rational response is for 2 to reject the request
since he does not lose anything by doing so, and saves c in the process. This is because 2
is ensured from any possibility of all his links being broken - once the link with 1 is broken,
2 and 3 will form a partnership which will never break up. On the other hand, suppose it
is 2 who needs a favor and requests 1 to give him the favor. Notice that if 1 is sufficiently
patient, then he should not refuse the request. For suppose he agrees to grant the favor to
2. In the next period, with a probability of a third, it is 3 who will need the favor and 2 will
refuse leaving 1 and 2 to exchange favors indefinitely in the future. Since v > c, the current
cost of granting the favor must be less than the future stream of discounted payoffs if i is
not too impatient.

Consider another example where the initial network is a 4-person line, with 1 and 4 being
the extreme nodes. Then, two matchings are possible. But, this requires that 2 and 3 do not
form a partnership with each other since that would leave 1 and 4 unmatched. We argue
that this pair will not form in equilibrium. Suppose that 2 approaches 3 with a request.
Then 3 will refuse the request since she is sure that 4 will accept to grant him a favor in the
future. (We will later refer to players 1 and 4 as ’captive’ agents of players 2 and 3 since
they have no other option and will always accept the formation of the partnership.)

In general, it is not difficult to see that not all requests will be granted and so the network
will grow sparser over time. At any point in time, either a player will see all his requests
rejected, and become isolated or a pair of players will agree to form a lasting partnership.The
main focus of our paper is to examine whether the pattern of these bilateral links is efficient
in the sense of forming the maximum number of matched pairs no matter what the initial
network.2 While this intuition is simple enough in the simple examples given above, it is far
from obvious that some “wrong" pair of agents will not form a partnership, thus making the
overall pattern of matches inefficient. However, we are able to show that in all networks with
a finite number of nodes, the efficient pattern of bilateral links will indeed be established.

The intuition for this result derives from a generalization of the strategy of the players in
the 4-person line, where we saw that agents 2 and 3 will never choose to form a partnership
which disconnects the two other agents in the network. We establish that the unique optimal
strategy of a player i is to accept the request of a player j if and only if, once the link ij
is broken, player i does not belong to all maximum matchings of the graph g \ ij. This
characterization of the optimal strategy (which is obtained by induction on the size of the
graph) relies on the identification of all maximum matchings of a graph, and of the players
who belong to all maximum matchings.3 It immediately implies that a maximum matching

2In our model, this is the only possible definition of efficiency since all pairs of agents generate the
same surplus. As players become perfectly patient, maximizing the total number of pairs is equivalent to
maximizing the sum of utilities of all agents.

3We call these nodes "essential" nodes of the graph. These nodes, termed "always efficient" nodes also
play a role in the characterization of the equilibrium strategies in the model of non-stationary bargaining in
networks of Abreu and Manea (2012). They also appear in the Edmunds Gallai decomposition of bipartite
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is obtained in equilibrium, as players will never break a link which reduces the number of
matches in the graph.

In this baseline model, the maximum number of pairs is formed because agents delay the
formation of the partnership until the social network is such that there is a risk that they
will not be able to find a partner in the long run. We contrast this model with another model
where both agents immediately benefit from the formation of the partnership so that players
rush to form partnerships. As opposed to the case of costly favors, the maximum matching in
this alternative model with positive favors is not necessarily formed in equilibrium. In fact,
the efficient number of pairs will be formed if and only if the initial network is completely
elementary, in the sense that the number of matchings does not decrease by more than one
whenever a pair leaves the graph.4 We show that there are only two perfect completely
elementary graphs: the complete network and the complete bipartite network with half of
the players on each side of the network.

In the second part of the paper, we test whether players form efficient partnerships in
social networks running a series of laboratory experiments. The experimental design mimics
the game of partnership formation, but in a finite setting where, instead of receiving an ex-
pected discounted value, subjects obtain a fixed finite value when they form the partnership.
5 We consider five different settings with initial social networks of increasing complexity. We
observe that a large fraction of the subjects (more than 75%) do indeed select the equilibrium
action, and that the subjects’ ability to compute and select the subgame perfect equilibrium
action depends on the complexity of the network. We also note that, even when subjects do
not perfectly employ their subject equilibrium strategy, the proportion of rounds for which
the efficient maximum matching is obtained is very high – around 78% of all rounds.

We analyze the systematic departures from equilibrium behavior and discover that sub-
jects err by accepting too often. In addition, we see that subjects who are more risk averse
(as measured by a classical questionnaire on risk aversion) accept more often, in the fear
of being left isolated at the end of the game. One instance where we observe that agents
correctly reject the requests is when they have access to ’captive’ agents who are only linked
to them. We show that this ’captive agents’ heuristic works very well and that players with
captive agents are much more likely to play their subgame perfect equilibrium strategy. Fi-
nally, we note that the complexity of the network – and in particular the presence of cycles
– greatly complicates the computation of the equilibrium behavior and results in subjects
making more mistakes.

graphs which was used by Corominas-Bosch (2004) and Polansky (2007) to characterize equilibrium strategies
in a model where nodes on the same side of the market make simultaneous offers.

4The terminology of "elementary" networks is due to Lovasz and Plummer (1986).
5The value is computed so that the equilibrium behavior in the finite game is equal to the equilibrium

behavior in the infinite game studied in the theoretical section of the paper.
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1.2 Relation to Literature

Our model of partnership formation in social networks is related to two different strands of the
literature. First, it has close connections to models of bargaining in networks, in particular
models of bargaining in non-stationary networks where agents who leave the network are
not replaced.6 Corominas-Bosch (2004) and Polansky (2007) proposed the first models of
bargaining in non-stationary buyer-seller networks, but under the assumption that all players
on the same side of the market make simultaneous offers. Manea (2011), and Abreu and
Manea (2012a) and (2012b) consider bargaining models where a pair of players is chosen at
random to make offers. While Manea (2011) analyzes the stationary situation, where players
are replaced after an offer is accepted, Abreu and Manea (2012a) and (2012b) analyze the
situation where the network is non-stationary. Abreu and Manea (2012a) is indeed very
closely connected to our model, and some insights are common in the two papers. They
study an infinite horizon bargaining game in which pairs of players connected in an exogenous
network are randomly matched to bargain over a unit of surplus. If the matched pair reach
agreement, then they leave the network, and so the network becomes sparser over time just as
in our model. Moreover, their focus is similar to ours in the sense that they too are interested
in whether the maximum number of matchings will be attained in equilibrium. Of course,
this will be possible only if the “right" pairs of agents reach agreement. Abreu and Manea
(2012a) point out that efficient matching cannot be attained in general in Markov equilibria,
even though Markov equilibria are shown to always exist in Abreu and Manea (2012b).
However, they construct an ingenious system of punishments and rewards which ensure the
existence of an efficient subgame perfect non-Markovian equilibrium. The context that we
are modeling is very different from theirs, leading to very different formal models and proof
techniques even though some of the structural properties of nodes (i.e. the "essentiality"
of nodes which belong to all maximum matchings) appear to play an important role in the
proofs of both papers. The main differences are that we suppose that players do not bargain
over a continuous surplus, use a different definition of the value of a partnership, assume that
links are broken after a rejection and that the same player can turn to all his neighbors in
sequence to form a partnership. These differences imply different conclusions. We are able to
show that there is a unique Markov equilibrium which is efficient. On the other hand, there
will in general be multiple equilibria in Abreu and Manea (2012), but one non-Markovian
equilibrium will be efficient.

Second, because we model the value of a partnership through reciprocal exchange of
favors, our model is related to the literature on favor exchange.7 Gentzkow and Möbius
(2003), Bramoullé and Kranton (2007), Bloch, Genicot and Ray (2008), Karlan, Möbius,
Rozenblat and Szeidl (2009) and Ambrus, Möbius and Szeidl (2014) are all papers which
share the same basic structure as our model, where agents request favors or transfers at

6See Manea (2016) for a recent survey.
7This literature is surveyed in Möbius and Rozenblat (2016).
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different points in time, and favors or transfers are enforced through reciprocation in the
future. The paper in the literature on favor exchange which is closest to our model is the
paper by Jackson, Rodriguez-Barraquer and Tan (2012). In this paper, pairs of agents are
matched randomly in any period, with one of the agents requiring a favor from the other.
Contrary to our model, favors are link-specific and the agent can only obtain a favor form
one of his neighbors. Pairs meet too infrequently to sustain bilateral exchange, However, the
favor exchange network may be sustained through social pressures or punishments leading to
possible loss of neighbors in the network. Despite the similarity in the settings, the primary
focus of their model is very different from ours. In particular, very different forces sustain
the socially efficient network in the two settings - social pressures in their case and individual
incentives in our case.

There is a growing literature on experiments in networks which is related to the experi-
mental part of this paper.8 To the best of our knowledge, our paper is the first to propose
an experimental test of the model of partnership formation in non-stationary networks. The
most closely related paper is the paper by Charness, Corominas-Bosch and Frechette (2007)
who test the Corominas-Bosch bargaining model and observe that, as in our experimental
study, the proportion of efficient trade is very high and players’ behavior seems to conform
to the equilibrium behavior predicted by the theory.

2 The Model

2.1 Partnerships

We consider a society of n agents who are organized in a social network g. The social network
evolves over time, as agents will delete links and leave the network. At any discrete time
t = 1, 2, .., one agent is chosen with probability 1

n to request a favor from a neighbor. If
the favor is granted, the agent who receives the favor obtains a flow payoff of v and the
agent who grants the favor pays a flow cost c. All agents discount the future using the same
discount factor �. We define the value of a partnership as the expected discounted payoff
obtained by an agent when he has found a partner with whom he reciprocates favors,

V =
v � c

n(1� �)
.

Partnerships are formed according to the following decentralized procedure. Suppose
that an agent i needs a favor at date t. Two situations may arise:

• Either agent i is already in a partnership

• Or agent i is not yet in a partnership
8See Choi, Gallo and Kariv (2016) for an up-to-date survey of this literature
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In the former case, the favor is offered by agent i’s partner. In the latter case, agent i turns
to his direct neighbors in the current social network gt and asks them sequentially for a favor.
The agent needing the favor chooses the sequence in which to approach his neighbors for the
favor. If neighbor j is approached by agent i, he responds by Yes or No to the offer. If agent
j rejects the request from i, the link ij is destroyed, the new social network is gt \ ij, and
agent i turns to the next neighbor in his chosen sequence. If all agents reject i’s request, the
network at next period is

gt+1 = gt \ i,

the network obtained from g by deleting i and all his links.
If agent j responds Yes, the partnership {ij} is formed, and the two partners leave the

social network, deleting all their links. Thus, the partnership forms as soon as a favor is
granted. We let

gt+1 = gt \ i, j,

denote the network obtained after agents i and j have left.
In general, a strategy for player i who needs a favor is to choose the sequence in which to

approach his neighbors for the favor, given the history of the game, while a strategy for j who
has been asked by i to grant a favor is to decide whether to grant the favor (Y) or not(N),
again as a function of the history of the game. However, in what follows, we focus attention
on Markov strategies which only depend on the current social network. More formally, let
Si(g) be the set of all possible sequences over the neighbors of i in the network g. Then, if i
needs a favor at time t and current network gt, his strategy is a mapping from gt to Si(gt).
If j is asked to grant a favor by i at network gt, his strategy is a mapping from (gt, i) to
{Y,N}.

A Markov equilibrium is a collection of Markov strategies such that all agents choose
their best responses to the strategies of the others.

An outcome of the partnership formation process is a list of partnerships formed or
agents leaving the network at every time period as a function of the realization of "needs"–
the list of agents who request a favor at each period. Given a fixed realization of needs, an
outcome is efficient if it maximizes the sum of payments of all agents. Given that agents
are homogeneous, when the discount factor goes to one, the sum of payments of all agents
is maximized when the number of partnerships is maximized.

Definition 2.1 A social network g supports efficient equilibria if and only if, for all real-
izations of needs, the equilibrium outcomes of the process of partnership formation starting
from g are efficient.
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2.2 Matchings and bipartite graphs

In this subsection, we collect definitions in graph theory pertaining to matchings and bipartite
graphs which will prove useful in our analysis.9 Given a network g, a matching M is a
collection of edges in g such that no pair of edges in M has a common vertex. A matching
M is maximal if there is no matching M 0

� M in g. A matching M is a maximum matching
if there is no matching M 0 in g such that |M 0

| > |M |. For any graph g, we let µ(g) denote
the matching number of graph g, i.e. the size of any maximum matching in g. If n is even,
and µ(g) = n

2 , there exists a matching covering all the vertices in g. This is called a perfect
matching and any graph admitting a perfect matching is a perfect graph.

A graph g is bipartite if the set of vertices can be partitioned into two subsets A and B
such that there is no edge among any two vertices in A and no edge among any two vertices
in B. A bipartite graph is complete if all vertices in A are connected to all vertices in B.
If |A| = |B|, a partite graph is perfect if and only if it satisfies Hall’s condition: for any
subset C ✓ A, the set of vertices in B which are connected to vertices in C, f(C) satisfies
|f(C)| � |C|.

3 Partnerships with costly favors

In this Section, we analyze the equilibrium of the process of partnership formation. We
first illustrate the equilibrium in a simple four-player line. We then introduce the concept
of essential players in the network, and prove a Lemma on the effect of link deletion on
essentiality. Using this definition, we characterize the optimal behavior of agents in the
partnership formation game. We then prove the main Theorem of this section, establishing
that all social networks support efficient equilibria for � sufficiently close to 1. Finally, we
discuss equilibrium behavior when players are less patient in the complete network and in
the line.

3.1 Equilibrium in a four player line L4

Let n = 4 and suppose that g = L4, the four-player line as illustrated in Figure 1.

1 2 3 4

Figure 1: The line L4

The matching number of the line L4 is two: the maximum number of partnerships formed is
two. We claim that, when � is sufficiently close to 1, in equilibrium, the maximum number

9See Lovasz and Plummer (1986) for an excellent monograph on matchings and bipartite graphs.
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of matchings is achieved in equilibrium. Suppose that player 1 has a need and approaches
player 2. If player 2 rejects the offer, he becomes a peripheral agent in the line L3. In L3, if
a peripheral agent requests a favor from the central agent, the central agent will decline the
request, as he can form a partnership in the line L2 and economize on the cost of giving the
favor. Hence, with a positive probability, agent 2 ends up being disconnected if he rejects
the request of player 1. For � sufficiently close to 1, the cost of being disconnected exceeds
the economy in the cost c, so agent 2 always accepts agent 1’s request. Suppose that agent
2 has a request. If he meets agent 3, agent 3 declines the offer to form the partnership, as
he can form a partnership later with agent 4 and economize on the cost c. If agent 2 meets
agent 1, agent 1 always accepts the formation of the partnership.

In the line L4, we can thus characterize the optimal response of agents for � sufficiently close
to 1 as follows:

• Agent 1 (4) accepts to form a partnership with agent 2 (3)

• Agent 2 (3) accepts to form a partnership with agent 1 (4)

• Agent 2 (3) declines to form a partnership with agent 3 (2)

Given this equilibrium behavior, the two partnerships 12 and 34 are always formed in equi-
librium: the line L4 supports efficient equilibria. We will now show that the construction of
equilibrium can be extended to any graph g, and introduce the concept of essential nodes to
characterize equilibrium behavior.

3.2 Essential nodes

A node i in graph g is called essential if it belongs to all maximum matchings of the graph
g. It is called inessential otherwise. Clearly, all nodes are essential in a perfect graph. As
illustrated in Figure 2, all nodes are inessential in the odd cycle C3, and in the line L5, nodes
2 and 4 are essential, but not nodes 1, 3 and 5. In the line L5, node 3 is the most central
node according to all measures of node centrality, but is inessential. This example shows
that there is no connection between centrality and essentiality of nodes in a graph.
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1 2 3 4

The line L4

1

2 3

The cycle C3

1 2 3 4 5

The line L5

Figure 2: Essential and inessential nodes

The next Lemma establishes properties on essential nodes which will prove useful in the
characterization of equilibrium.

Lemma 3.1 1. If i is an essential node in g, there exists ij 2 g, such that j is inessential
in g \ i.

2. If i is not an essential node in g and ij 2 g, j is an essential node in g \ i.

3. If i is a essential node in g and j is inessential in g, i is essential in g \ j.

4. If i is an essential node in g , jk 2 g, and µ(g) = µ(g \ j, k) + 1, then i is essential in
g \ j, k.

Proof:

1. Let M be a maximum matching in g and E1 = (ij) the edge covering i in M . Then
(E2, ...EM) is a maximum matching in g \ i which does not contain j. Hence, j is not
essential in g \ i.

2. Suppose by contradiction that j is not essential in g \ i. Then there exists a maximum
matching of g\i with no edge covering j, M = (E1, ...EM). Consider then the matching
(M, ij) in g. This is a matching of cardinality µ(g \ i) + 1, contradicting the fact that
i is not essential in g.
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3. Suppose by contradiction that there exists a maximum M matching of g \ j where i
is not covered. Because j is inessential in g, µ(g) = µ(g \ j). So M has the same
cardinality as a maximum matching in g and hence is a maximum matching of g,
contradicting the fact that i is essential in g.

4. Suppose that i is inessential in g \ j, k. Then there exists a maximum matching M in
g \ j, k not covering i. As µ(g) = µ(g \ j, k)+ 1, M 0 = (M, jk) is a maximum matching
of g not covering i, contradicting the fact that i is essential in g.

Lemma 3.1 shows that any essential node i must be connected to some node which is inessen-
tial in g \ i. On the other hand, all neighbors of an inessential node i are essential in g \ i.
When an inessential agent is removed from the network, all essential agents remain essential.
When a pair of agents leaves the network, without disrupting the total number of matchings,
all essential agents remain essential as well.

3.3 Equilibrium behavior

With the help of Lemma 3.1, we now characterize the optimal response of agents in the game
of partnership formation.

Proposition 3.2 Let � be a Markov equilibrium, and suppose j receives a request from i in
the social network g. Then, j accepts the request iff j is inessential in g \ i or g \ i, k where
k is the first agent if any in i’s chosen sequence si(g) to accept i’s request if j refuses the
request.10

Proof: The proof is by induction on the number of agents in a connected component. For
n = 2, both agents are essential and the statement is trivially satisfied. For n = 3, we
distinguish between two cases;

• g = L3

• g = C3.

At g = L3, the central agent rejects the request of the first peripheral agent to require a
favor as he remains connected in the line L2. On the other hand, the two peripheral agents
become isolated if they reject the offer of the central agent and accept the request of the
central agent. If g = C3, the request of the first agent is always rejected as the other two
agents remain connected and essential if that agent is removed from the network.

Suppose now that the statements are true for all n0 < n and consider a component with n
agents.

10The sequence si(g) is of course part of the equilibrium strategy profile �.
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Let g0 be the component formed if j rejects i’s request. So, g0 = g\i, or g0 = g\i, k depending
on whether there is some neighbor k of i who accepts i’s request following a refusal by j.
In either case, |g0| < n, and we use the induction hypothesis to compute the continuation
payoff of agent j if he rejects i’s request.
Suppose first that j is inessential in g0. If j is chosen next period to have a request, by
Lemma 3.1, (statement 2), all neighbors of j remain essential in g0 \ j. By the induction
hypothesis, the last agent in the sequence chosen by agent j, sj(g0) must reject j’s request. By
backward induction, the agent preceding that agent in the sequence also rejects j’s request,
and all agents contacted in the sequence sj(g0) also reject the request. Hence j obtains a
continuation payoff of 0 with positive probability. For � sufficiently close to 1, agent j thus
has an incentive to accept i’s request.

Suppose next that j is essential in g0. We claim that j’s request will always be fulfilled. First
suppose that j has a request next period, at t + 1, when the social network is g0 and j is
essential in g0. By Lemma 3.1 (statement 1), one of his neighbors, say k, becomes inessential
in g0 \ j. Let j choose a sequence sj(g0) finishing with agent k. If no other agent in the
sequence has accepted j’s request, agent k will, by the induction hypothesis, because agent
k is inessential in g0 \ j.

Next suppose that j’s first requests happens at some period t0 > t + 1, when the social
network is gt0 . If j is essential in gt0 , then the previous argument establishes that some
neighbor of j in gt0 must accept j’s request.
So, suppose instead that j is inessential in gt0 . Let g” be the first network in the sequence of
networks between g0 and gt0 where j becomes inessential. Abusing notation, denote by g0 the
social network immediately preceding g00 along the equilibrium path, such that j is essential
in g0 but not in g00 where either (i) g00 = g0 \ k or (ii) g00 = g0 \ k, l for some k, l.
Suppose that (i) holds, and that k is essential in g0. Then, from statement (1) of Lemma
3.1 there is some l such that k, l 2 g0 and l is inessential in g”. By the induction argument,
agent l must accept k, a contradiction to k being isolated from g0. On the other hand, if k is
inessential in g0, from statement (3) of Lemma 3.1, j must be essential in g”, which is again
a contradiction.
Suppose (ii) holds, so that g” = g0 \ k, l for some k, l 2 g0. It cannot be that µ(g”) = µ(g0)
because we can add kl to a maximum matching in g00 and obtain a matching in g0 of size
µ(g00) + 1. We use the following claim to show that µ(g”) + 1 = µ(g0).

Claim 3.3 If along the equilibrium path, at some period t, a pair (k, l) of agents forms a
partnership, then µ(gt \ k, l) = µ(gt)� 1.

Proof of the Claim: Suppose that agent k places the request and agent l responds. Agent
k must be essential in gt. If agent k were inessential, all his neighbors would reject his
claim. By the inductive step, player l must be inessential in the graph g0 formed after his
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rejection. Suppose first that all agents following l reject k’s request in equilibrium so that
g0 = gt \ k. As k is essential in gt, µ(gt \ k) = µ(gt) � 1. Let M be a maximum matching
of gt \ k not containing l. Then M is a maximum matching of g \ k, l and |M | = µ(gt)� 1.
Next suppose that there exist a sequence of agents following l who accept k’s request and let
l1, .., lN denote the agents in the sequence. By the preceding argument, for the last agent in
the sequence, µ(gt \k, lN) = µ(gt)�1. We argue that whenever µ(gt \k, ln) = µ(gt)�1, then
µ(gt \ k, ln�1) = µ(gt)� 1. If agent ln�1 accepts k’s request, by the inductive step, he must
be inessential in µ(gt \ k, ln). Pick a maximum matching M of gt \ k, ln not containing ln�1.
This is a maximum matching of gt \k, ln�1 and as |M | = µ(gt)�1, µ(gt \k, ln�1) = µ(gt)�1.
This shows that µ(gt \ k, l) = µ(gt)� 1, concluding the proof of the Claim.

From statement (4) of lemma 3.1, if µ(g”) = µ(g0)�1, then j must be essential in g00. Hence,
we have shown that if j is essential at gt, j must remain essential at all social networks along
the equilibrium path, and hence j has an incentive to reject i’s request. ’

3.4 The main theorem

We now use the characterization of equilibrium behavior to prove our main theorem: when
players are sufficiently patient, the maximum number of pairs are formed in equilibrium, and
any network supports efficient equilibria.

Theorem 3.4 There exists � > 0 such that for all � � �, all social networks support efficient
equilibria.

Proof: For a fixed realization of needs, an equilibrium is efficient if and only if the maximum
number of pairs is formed in equilibrium and no agent delays the formation of a partnership.
In the equilibrium characterized in subsection 3.3, at any period t either a partnership is
formed or an agent is isolated from the network. Hence, there is no delay in the formation
of partnerships. Furthermore, by Claim 3.3, along the equilibrium path, whenever a pair
of agents forms a partnership, it does not disrupt the formation of partnerships by the
remaining agents. Hence the total number of partnerships formed in equilibrium is µ(g) the
maximum number of partnerships in the original social network. ⇤

3.5 Exact conditions for the efficient formation of partnerships

Theorem 3.4 establishes that all social networks support efficient equilibria for sufficiently
large values of �. However, the exact condition on parameters for which efficient equilibria
are supported depends on the architecture of the social network. In this subsection, we
explicitly compute this condition for two specific networks; the line Ln and the complete
network Kn where n is an even number. Both networks are perfect so that the maximum
number of matchings is equal to n

2 .
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3.5.1 Conditions for efficient partnership formation in the line Ln

We determine the condition for existence of an efficient equilibrium – where the maximum
number of matchings is formed for the line Ln and any line Lk of length k. Let V k denote
the continuation value of a peripheral agent in a line with k agents. If k is even, V k = V
as we consider an efficient equilibrium ; if k is odd, V k < V and we provide an explicit
computation below. When player j receives a request from agent i, he accepts the request if
and only if

V � �c+ �V k,

where k is the size of the component containing j after the link ij is severed. Clearly, if k
is even, j always has an incentive to reject i’s request. This guarantees that, whenever a
partnership ij is formed, µ(g \ i, j) = µ(g)� 1 so that the total number of matchings formed
in equilibrium is equal to the matching number of Ln. We now compute the continuation
value of a peripheral agent, say agent 1, in the line Lk where k is odd.

If an agent outside the component Lk has a need, agent 1’s value is �V k. If agent 1 has a
need, his request is rejected and his value is 0. If any other inessential agent j = 3, 5, ..., k
has a need, this request is rejected and the component containing agent 1 becomes an even
line so that agent 1’s value is �V . If an essential agent j = 2, ..., k � 1 has a request, in an
efficient equilibrium, the request will be accepted by one of his neighbors. With probability
1
2 , the neighbor is to the left of agent j and the component containing agent 1 becomes an
even line so that agent 1’s value is �V . With probability 1

2 , the request is accepted by an
agent to the right of agent j, and agent 1 becomes a peripheral agent in an odd line of size
j � 1. If agent 2 has a request and addresses it to agent 1, agent 1 accepts it and pays the
cost c. Hence, we write the value as

V k =
1

n
[(n� k)�V k +

3(k � 1)�V

4
�

c

2
+

k�1
2X

j=0

�V 2j+1

2
]. (1)

As V k < V for all k, we observe that V k is increasing in k: the value of a peripheral agent in
an odd line increases with the size of the line. This implies that the condition for existence of
an efficient equilibrium in the line is the most stringent when k = n�1. Hence the condition
for existence of an efficient equilibrium is

V � �c+ �V n�1,

where V n�1 is defined recursively through equation (1)
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3.5.2 Conditions for efficient partnership formation in the complete network

Kn

In any complete network Kk, the continuation value is identical for all agents as they are all
symmetric in the continuation network. Let W k denote the continuation value of any agent
in the complete network Kk. We claim that, whenever i requests a need from a sequence
of agents j1, ..jk�1, all agents but the last agent jk�1 are going to reject the request. If k
is odd, Kk�1 is an even complete graph, and in an efficient equilibrium, all agents obtain a
value V and reject the request. If k is even, in an efficient equilibrium, the last agent accepts
the request, so that the continuation graph is the even complete graph Kk�2. All agents
preceding jk�1 thus have an incentive to reject the request, anticipating that the graph Kk�2

will be formed.
An efficient equilibrium thus exists if and only if

V � �c+ �W k,

where W k is the value of an agent, say agent 1, in an odd complete graph Kk, which is
computed as follows.
If an agent outside the component Kk has a need, agent 1’s value is �W k. If agent 1 has
a need, his request is rejected and he obtains a value 0. If any other agent has a need, his
request is rejected and agent 1 obtains a value �V . Hence

W k =
1

n
[(n� k)�W k + (k � 1)�V ].

We thus obtain

W k =
(k � 1)�V

n� �(n� k)
,

which is increasing in k so that the most stringent equilibrium condition is

V � �c+ �W n�1.

Interestingly, we observe that, as V > V k for all odd k, V k < W k for all odd k and hence
V n�1 < W n�1. The continuation value of an agent in an odd complete graph is always
larger than in an odd line of the same cardinality. This implies that it is easier to sustain
efficient partnership formation in the line than in the complete graph. Hence, an increase
in the number of links in the social networks may be detrimental to the efficient formation
of partnerships. Increasing the number of social links increases the number of potential
matchings, but may also increase the continuation value of agents after a link is severed,
making it more difficult to sustain the efficient formation of partnerships.
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4 Partnerships with positive favors

4.1 Positive favors

We now consider a model where the formation of a partnership results in positive values
for both agents. When an agent responds to a request, he obtains a positive flow payoff
w > 0 rather than incurring a negative cost c < 0. The equilibrium response of an agent is
obvious: every agent has an incentive to accept the formation of a partnership immediately.
As opposed to the model in the previous section, where agents try to delay the formation of
a partnership, when agents obtain joint values, they want to rush to form partnerships. This
behavior may result in the inefficient formation of matches. For example, in the line L4, if
agent 2 approaches agent 3 with a request, agent 3 accepts immediately, and the pair (23)
is the only partnership formed, short of the maximum number of matches which is equal to
2. Hence, when agents rush to form partnerships, not every social network supports efficient
equilibria, and our objective in this Section is to characterize those social networks for which
the maximum number of matchings is always formed in equilibrium.

4.2 Elementary social networks

Following Lovasz and Plummer (1986), we call a social network g elementary if any edge in
g appears in some maximum matching. The line L4 is not elementary because the edge 23
does not appear in any maximum matching. On the other hand, the line L5 is elementary.
Any cycle Ck is elementary. Any complete graph Kk is elementary. Lovasz and Plummer
(1986) provide the following characterization of elementary social networks.

Lemma 4.1 (Lovasz and Plummer) A social network g is elementary if and only if for all
ij 2 g, µ(g \ i, j) = µ(g)� 1.

Proof: Pick an edge ij 2 g. If g is elementary, there exists a maximum matching containing
ij, M = (ij,M 0). As M 0 is a maximum matching of g \ i, j, µ(g \ i, j) = |M 0

| = |M | � 1 =
µ(g)�1. Conversely, pick a maximum matching M 0 of µ(g\i, j), then as µ(g) = µ(g\i, j)+1,
M = (M 0, ij) is a maximum matching of g and thus any edge of g appears in some maximum
matching.

When a network is elementary, whenever a pair of agents i, j leaves the network, the maxi-
mum number of pairs formed in g \ i, j is equal to the matching number of g minus one, so
that the formation of the partnership (ij) does not result in the disruption of the matchings
in the graph. However, this argument only works if one considers the formation of a single
partnership (ij) and not of a sequence of partnerships (ij1)(j1j2).... Consider for example the
cycle C6. This cycle is elementary: when a partnership (ij) forms, the remaining network is
the line L4 and the matching number of the line L4 satisfies µ(L4) = 2 = µ(C6)�1. However,
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as we argued earlier, the line L4 is not elementary: the formation of the partnership (23)
results in a single matching formed. Hence, in order to guarantee that the maximum number
of partnerships is formed at some social network g we require that the social network formed
after any sequence of pairs have left is itself elementary: this is a very strong property and
we call graphs satisfying this condition completely elementary.

A social network g is completely elementary if after any sequence of pairs (ij1), (j1, j2), .., (jkj)
leaves the network, the resulting network g \ i, j1, j2, .., jk, j is elementary. Any complete
network Kk is completely elementary. The line L5 is completely elementary because if a pair
leaves, it results either in the formation of the line L3 which is elementary or in the formation
of the lines L2 and L1 which are elementary. The line L7 is not completely elementary because
if a pair leaves, it may result in the formation of the line L4 which is not elementary. The
cycles C5 and C7 are completely elementary as the formation of a partnership results in the
formation of the line L3 and L5 which are themselves completely elementary. But the cycle
C9 which leads to the formation of the line L7 is not completely elementary. We now state

Proposition 4.2 When favors provide positive values to both agents, a social network g
supports efficient equilibria if and only if it is completely elementary.

4.3 Perfect networks supporting efficient equilibria

We now provide an alternative characterization of completely elementary networks when the
social network g admits a perfect matching. Hence, we focus attention on networks with an
even number of nodes such that µ(g) = n

2 . We will prove that a perfect network supports
efficient equilibria if and only if it is either formed of components which are complete or
complete bipartite graphs.

Theorem 4.3 When favors provide values to both agents, a perfect social network g supports
efficient equilibria if and only if it is the disjoint union of perfect components which are either
complete or complete bipartite.

Proof: (Sufficiency) Consider a perfect component g which is either complete bipartite
or complete bipartite. and an edge ij in g. If g is the complete graph Kk, then g \ i, j
is the complete graph Kk�2 and hence is a perfect complete graph. If g is the perfect
complete bipartite graph Bk,k, then g \ i, j is the perfect complete bipartite graph Bk�1,k�1.
Because any perfect complete or perfect complete bipartite graph is elementary, the perfect
component g is completely elementary. The full network formed of the disjoint union of
perfect components is also completely elementary and hence supports efficient equilibria.

(Necessity) The proof is by induction on the number of nodes in a connected component
g of the original network. If |g| = 2, the statement is vacuous and always satisfied. If
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|g| = 4 and the network is completely elementary, it must either be the complete network
K4 or the cycle C4. The cycle C4 is equal to the complete bipartite graph B2,2. The other
two connected networks of size 4 (up to a a permutation of the players) is the line L4 and
the network formed by the cycle and one additional link. As we argued earlier, the line
L4 is not elementary (the link 23 in red does not appear in any maximum matching. The
other network, illustrated below, is not elementary because one of the links (in red) does not
appear in any maximum matching.

1 2 3 4

The line L4

1 2

34

The cycle C4 plus one link

Now consider a connected component g of size 2k which is perfect and completely elementary.
For any ij 2 g, g \ i, j is completely elementary. In addition, as ij belongs to some maximum
matching, µ(g \ i, j) = µ(g)� 1 so that g \ i, j is perfect. By the induction hypothesis, g \ i, j
is the disjoint union of components which are either complete or complete bipartite.

Claim 4.4 If g is perfect and completely elementary, then g \ i, j is connected for all ij 2 g.

Proof of the Claim: Suppose by contradiction that there exists i, j such that g\i, j contains
different components. Because g \ i, j is perfect, all components must be even. Furthermore,
each agent in g must be connected to at least two other agents. Suppose that this were not
the case, and some agent j is only linked to another agent i. Pick any other agent k such that
ik 2 g (which exists since |g| > 2) and consider the graph g\i, k. Agent j becomes isolated in
the graph g\ i, k contradicting the fact that g\ i, k is a perfect graph. Because g is connected
and g \ i, j contains different components, there must exist two agents k and l belonging to
two different components h1 and h2 such that either ik, jl 2 g or il, jk 2 g. Without loss of
generality, suppose that ik, jl 2 g and consider the graph g \ i, k, j, l. Because g is perfect
and completely elementary, g \ i, k, j, l is perfect and only contains even components. But
because |h1| and |h2| are even k 2 h1, l 2 h2 and i, j /2 h1 [ h2, g \ i, k, j, l contains two
components with odd sizes |h1|� 1 and |h2|� 1, a contradiction.

Next, consider a link ij 2 g. By Claim 4.4, g \ i, j is connected. By the induction hypothesis,
it is either a complete graph K2k�2 or a complete bipartite graph Bk�1,k�1. Suppose first

18



that g \ i, j = K2k�2. Because |g| > 4, for any kl 2 g, the graph g \ k, l is a complete graph
Kk�2 and not a complete bipartite graph. Now we show that all agents are connected to all
other agents in g. Pick an agent i. He is connected to at least two other agents j and k in g.
Consider two other nodes l,m. Because g \ i, j is a complete graph, lm 2 g. So g \ lm is a
complete graph and jk 2 g. But then g \ jk is a complete graph, showing that i is connected
to all agents l 6= j, k, so that i is connected to all other agents in g.

Next suppose that g \ i, j is a complete bipartite graph Bk�1,k�1. The set of agents N \ i, j
can thus be decomposed into two subsets A and B such that there is no edge among agents
in A and among agents in B. Because |g| > 4, for any k, l 2 g, the graph g \ k, l must be
a complete bipartite graph Bk�1,k�1 and not a complete graph. Now, for k, l 6= i, j, g \ k, l
is a complete bipartite graph, so that agents i and j cannot be on the same side. We thus
partition the set of players into two sets of equal cardinality A [ {i} and B [ {j} such that
there is no edge among agents on the same side. The graph g is necessarily bipartite To
prove that g is a complete bipartite graph, consider i and pick one agent in A, k and one
agent in B, l. Because g \ k, j is a complete bipartite graph, i is connected to all agents in
B. Because g \ k, l is a complete bipartite graph, i is connected to all agents in B \ l [ {j}.
Hence i is connected to all agents in B [ {j} completing the proof of the Theorem.

5 Experimental Design

In order to test the behavior of agents in the game of partnership formation in social net-
works, we design a laboratory experiment in the model with costly favors.11 The objective
of the experiment is to check whether boundedly rational agents will play equilibrium strate-
gies when facing incentives in real social-network interactions, and to what extent different
networks support efficient outcomes.

Unlike the infinite process described in Section 2, the experiment must stop in finite time.
We assume that once agents form partnerships and leave the network, they immediately
collect the total value of the partnership and will not request or grant favors anymore. Only
those agents who are not yet in a partnership are chosen with equal probability to request a
favor from one of their neighbors. The process ends when no new partnership can be formed
in the network. The value obtained by an agent in a partnership is either v� c (if the agent
grants the favor) or v ( if he requests the favor). Agents who are not in a partnership at
the end of the process receive a value of 0. We calibrate the values of v and c so that, in
the particular networks we consider in the experiment, the equilibrium behavior in the finite
game coincides with the equilibrium of the game of partnership formation of Section 2 when
the discount factor � converges to 1.

11Behavior in the model of positive favors is obvious, so we do not feel that an experiment will be helpful
there.
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5.1 Initial Social Networks in the Experiment

We choose five initial social networks in the experiment which are depicted in Figure 3. The
number of nodes, links and complexity of the network structure increase from social network
1 to social network 5. The first two social networks are the lines L4 and L5. The other three
social networks are more complex and involve cycles with four agents in social network 3,
five agents in social network 4, and seven agents in social network 5.

In the experiment, subjects go through the initial social networks 1 to 5 in sequence. They
play the game with each initial social network five times so play a total of 25 times. There
are also 2 practice periods on social network 1 at the beginning of the experiment.

At the beginning of each period, subjects are randomly re-matched into groups. Given any
initial network, each period starts with one agent, say i, being randomly chosen to request
a favor from one of his neighbors, agent j. The sequence in which agent i approaches his
neighbors is chosen at random by the computer.12 Agent j then decides whether to accept
the offer or not. If the offer is accepted, the partnership is formed and both agents leave the
social network. If this agent decides to reject the offer, the link between i and j is destroyed.
Agent i then requests a favor from his next neighbor in the sequence. If all neighbors reject
his request, agent i will be cut off from the social network. Once agents leave or are cut off
from the social network, the computer will then randomly select the next agent from the
remaining social network and the same process is executed again. The social network evolves
until each agent either has a partner or is isolated. Each period thus involves a sequence of
decisions, with each decision made in a specific network by the selected subject. For each
decision, subjects who made it and who proposed the request are informed of the result
and their respective payoffs, and others in their group are shown the changes in the social
network on the computer screen.

5.2 Individual difference tests

Belief elicitation
Subjects should make decisions in the game according to their beliefs about the rationality
and the behavior of other agents in the social network. In order to take into account these
beliefs in the analysis of decisions, we have asked subjects about the decision of other agents
in a simple situation. In the context of the 3-agent line L3, subjects are asked to give an
estimate of the proportion of central agents who actually accepted the request from one of

12In the theoretical model, the proposer chooses the sequence in which neighbors are approached. But
whether the sequence is chosen endogenously or exogenously does not affect the equilibrium response of the
agents. Since the analysis focuses on equilibrium responses and matchings formed, the two models with
endogenous and exogenous sequences are equivalent.
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Social network 1

1 2 3 4 5

Social network 2
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Social network 4

1

2

3

4

5

6

7

Social network 5

Figure 3: Initial social networks 1-5 in the experiment
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the extreme nodes. In this situation, the agent should always reject the request, as he obtains
either v or v� c after the rejection. The actual proportion of acceptance from central agents
is 14.6%. The average estimated proportion of acceptance is 20.8%, and half of the subjects
believe that it is smaller than 10%. In addition, only 15.6% of subjects estimate that the
proportion of acceptance is equal to or higher than 50%. This question is not incentivized
in our experimental design.13

Cognitive ability
In our experiment, cognitive abilities are elicited with the CRT test (Frederick, 2005). This
test is designed to assess an individual’s ability to move from an intuitive and spontaneous
wrong decision to a reflective and deliberative right one. Subjects are asked to answer three
questions in the CRT test, which are listed as follows:

• Question 1: A bat and a ball cost e11. The bat costs e10 more than the ball. How
much does the ball cost?

• Question 2: If it takes 5 machines 5 minutes to make 5 widgets, how long would it take
100 machines to make 100 widgets?

• Question 3: In a lake, there is a patch of lily pads. Every day, the patch doubles in
size. If it takes 48 days for the patch to cover the entire lake, how long would it take
for the patch to cover half of the lake?

Although the CRT test is relatively short and simple to perform compared to other cognitive
tests, its results are positively related with rational thinking performance (Toplak, West and
Stanovich, 2011). On average, 1.75 questions are answered correctly by subjects in the CRT
test for this study.

Risk elicitation
Rejection is a risky decision when the acceptance of the request gives v � c for sure. So,
acceptance ans rejection decisions should be related to subjects’ attitudes towards risk. We
elicited this attitude following a procedure introduced by Eckel et al (2012). The procedure
consists of a choice among six lotteries in the form of a coin flip that gives a low or a high
payoff with equal probability. The lotteries are arrayed from a safe one with a certain payoff
of 18 experiment points to a highly risky one with a high payoff of 54 points and a negative
low payoff of -2 points. Expected return increases along with higher variance as one moves
from the safest to the riskiest lottery. The variance that a subject is willing to accept gives a
proxy of his risk preference. Therefore, we can estimate each subject’s level of risk attitude

13This is not a true elicitation of subjects’ beliefs about other agents’ behavior as the answer to this
question depends also on the rationality of the subject questioned. Nevertheless, the answer to this question
may explain deviation from the equilibrium strategy.

22



by looking at his choice among six lotteries: lottery 1 through 4 represent decreasing levels
of risk aversion, lottery 5 indicates risk neutrality, and lottery 6 corresponds to risk seeking
individuals.

Table 1: Six lotteries in risk test
Lottery Payoff (experiment points) Risk Preference Percentage

Low (50%) High (50%) Expected Variance
1 18 18 18 0 Highly risk averse 20.14%
2 14 26 20 36 Very risk averse 22.86%
3 10 34 22 144 Risk averse 17.1%
4 6 42 24 324 Slightly risk averse 7.49%
5 2 50 26 576 Risk neutral 15.31%
6 -2 54 26 784 Risk loving 17.1%

5.3 Experimental Procedure

In each experimental session, subjects are randomly assigned ID numbers and seats in front of
the corresponding terminal in the laboratory. The experimenter reads the instructions aloud.
Subjects are given the opportunities to ask questions, which are answered in private. We
check the subjects’ understanding of the instructions by asking them to answer 7 incentivized
review questions at their own pace. After answering one review question, each subject is
shown whether his answer is correct, as well as the right answer. After going over all review
questions, subjects go through 27 periods in the social-network experiment, including 2
practice periods. Afterwards, subjects are asked to report their beliefs on other agents’
behaviors, and take the CRT and risk tests. At the end of the experiment, each subject fills
out a demographic survey on the computer, and is then paid in private. Each session lasts
approximately 80 minutes, with 15 minutes devoted to the instructions. The experiment is
programmed in Java.

In the experiment, we set the parameters at v = 20 experimental points and c = 8 points.
Therefore, in a given period, a subject will obtain a payoff of 20 points by requesting a favor
or 12 points by granting a favor. If the subject has no partner, he will earn 0 points. There
are 21 subjects in each session. As there are 4 or 5 subjects per group from the initial social
networks 1 to 4, for the corresponding period one subject will be randomly chosen not to
play and be paid 10 points. At the end of the experiment, 10 out of 25 periods are randomly
chosen to be paid. In addition, a subject could earn 2 points per review question and per
CRT question answered correctly. He will also earn the payoff resulting from the draw for
the lotteries he chose in the risk test. The exchange rate is 10 experiment points for e1
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for all sessions. Each subject also receives a participation fee of e3. The average earning
(including participation fee) is equal to e21.

All sessions were conducted in French at GATE-LAB, the Experiment Economics Laboratory
in Lyon between April and September 2015. The subjects are students from an engineering
department, Ecole Centrale de Lyon, a business school EM Lyon, and the University of Lyon.
No one participated more than once. We ran 6 independent sessions. In total, 126 subjects
participated in the experiment and we collected 1842 decisions.The English translations of
the experimental instructions can be found in the Appendix.

6 Results

In this section, we analyze the results of the experiments, focusing on two main questions.
First, we study individual behavior and analyze whether agents play the subgame perfect
equilibrium strategy, which is also referred to as risk-neutral best response (BR) here. We
also identify which factors could explain the deviation from the best response behavior.
Second, we analyze whether, at the aggregate level, the social interaction among real agents
results in efficient outcomes in different social networks.

6.1 Individual Behavior

To check whether subjects choose the BR, we consider all networks which may arise during
the experiment and break down behavior in the various networks, defining different situations
that subjects are faced with when making decisions in each graph.14 Overall, there are 28
possible graphs and 105 possible situations in the experiment.

For each situation, we compute the BR of the agent using the characterization results of
Section 2. We also calculate the expected value of acceptance, which is always 12 with
certainty, and the expected value of rejection for each situation. For example, in Figure 3,
suppose that agent 2 in the initial social network 1 receives a request from agent 3. Agent
2 can make the following calculation using backward induction. He will earn 12 for sure by
accepting the request; however, if agent 2 declines the offer, the link between agents 2 and 3
will be destroyed, and agent 3 would make a request to agent 4, who is expected to accept the
offer. The network would then evolve to L2 where agent 2 has 50% chance of earning 20 by
making a request that should be accepted by a rational agent 1, and 50% chance of earning
12 by accepting the request from agent 1. The expected value is thus 0.5⇥20+0.5⇥12 = 16.

14For instance, in the initial network 1 or line L4, there are 3 different situations: one where an extreme
agent requests a favor from a central agent, one where a central agent requests a favor from an extreme agent
and one where a central agent requests a favor from the other central agent.
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Hence agent 2 should reject the offer. Generally, the difference between the expected values
of rejection and acceptance is defined as follows:

EV.difference = Expected value of rejection � Expected value of acceptance.

Note that when EV.difference > 0, BR is to reject, and when EV.difference < 0, BR is to
accept.15

Due to strategy uncertainty, subjects may not behave according to the expected value dif-
ference calculated under the assumption that other agents play BR. For instance, in the
previous example, it is possible that agent 1 mistakenly rejects the offer, making the payoff
after rejection equal to 0.5⇥0+0.5⇥12 = 6 for agent 2. Considering the possibility of agent
1’s mistake, agent 2 may instead accept the offer as he earns less than 12 by rejection. We
thus decided to check if subjects make decisions based on the difference between the actual
payoffs after rejection and acceptance. The actual payoff after rejection is computed, for
each situation, as the average actual payoff after rejection. The difference between actual
payoff after rejection and acceptance is therefore defined as follows:

Real.difference = Real gain of rejection � Real gain of acceptance.

Finally, in order to assess the complexity of each situation, we compute the steps of reasoning
a person has to consider when making the decision, i.e., the number of successive decisions
in the longest path of the extensive form game starting from this situation.16 For instance,
when agent 2 receives a request from agent 3 in the previous example, the complexity for
agent 2 is equal to 2. We also calculate the complexity of the social network by taking the
average of complexity in all possible situations at a given initial graph, and find that the
complexity increases from 2 steps of reasoning on average for the initial social network 1 to
8 steps of reasoning for the initial social network 5.

6.1.1 Basic Findings

We first examine whether subjects behave according to the subgame perfect equilibrium of
the partnership formation game. Overall, we find that the proportion of best responses is
equal to 79.5%. Even if we exclude the simple situations where the decision maker only has
one link, the proportion of best response remains as high as 66.7%. Table 2 presents the
proportions of rejection for EV.difference > 0 (Real.difference > 0) and EV.difference < 0
(Real.difference < 0) in each session, respectively. On average, the proportion of rejection

15Given our design, we did not have any situation with indifference in the experiment.
16Other measures of complexity of the situation can also be computed, such as the total number of nodes

in the extensive form of the game or the total number of terminal nodes, etc. We find that all of these
measures are highly correlated with each other.
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is as high as 67.2% (59.5%) when EV.difference > 0 (Real.difference > 0) and as low as
12.8% (26.5%) when EV.difference < 0 (Real.difference < 0) (the proportion of acceptance
is 87.2% (73.5%) correspondingly). In other words, a majority of subjects play equilibrium
strategies, with 67.2% of rejection when BR is to reject and 87.2% of acceptance when BR
is to accept.

Table 2: Proportions of rejection

EV.difference > 0 EV.difference < 0 Real.difference> 0 Real.difference < 0
Session 1 0.691 0.106 0.583 0.263
Session 2 0.703 0.148 0.588 0.297
Session 3 0.655 0.089 0.556 0.239
Session 4 0.528 0.140 0.492 0.231
Session 5 0.768 0.143 0.708 0.290
Session 6 0.683 0.139 0.646 0.273
Average 0.672 0.128 0.595 0.265

Even though subjects generally conform to the theoretical prediction, we find that their
choices vary greatly in different situations. Table 3 presents some graphs which arise fre-
quently during the experiment. These graphs are ordered from the simple two-agent line
to the most complex seven-agent network, labeled as g1, . . . g8 in sequence. In each graph,
we compute the expected value difference, real earning difference, the proportion of best
response as well as the number of observations for each possible situation. It can be seen
from Table 3 that subjects perform differently when the social networks are lines (e.g., 85.7%
of best response for g1 to g3) and when social networks have cycles (e.g., 24% and 51.3% of
best responses in g4 and g5, respectively). Their rational reaction also changes with different
positions in a given graph (e.g., in g6, 88.9% of best response when agent 3 or 4 requests to 1
and 50% conversely) or when different neighbors place requests (e.g., in g7, 80% of rational
acceptance for agent 2 when 3 requests a favor and 44.4% when 1 makes the request).

In particular, we observe that subjects tend to follow two behavioral patterns, which are
presented in Figure 4.
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Table 3: Proportions of best response in selected graphs
# Graph Situation EV.diff. Real.diff. BR # of obs.

g1: 1 2 1 (2) ! 2 (1) -12 -12 0.983 478

1 2 3 4

1 (4) ! 2 (3) -4.7 -4.44 0.649 154
g2: 2 (3) ! 3 (2) 4 3.82 0.733 60

2 (3) ! 1 (4) -12 -12 1 63

1 2 3 4 5

2 (4) ! 3 -4.7 -0.27 0.7 20
g3: 1 (5) ! 2 (4) 4 1.57 0.529 87

3 ! 2 (4) 4 3.2 0.769 26
2 (4) ! 1 (5) -12 -12 1 27

g4:
1

2

3

2 (3) ! 1 4 -1.33 0.24 25

g5:
1

2 3

4
2 (4) ! 1 4 1.6 0.513 39

1

2 3

4
2 ! 1 -1.33 -4 0.39 41

3 (4) ! 1 4 1.33 0.889 27
g6: 3 (4) ! 4 (3) -4.7 -4 0.676 37

1 ! 3 (4) 4 3.5 0.5 32
1 ! 2 -12 -12 1 13

1

2 3

4

5

5 ! 1 4 -0.52 0.784 37
2 (4) ! 1 4 0.57 0.824 34

g7: 3 ! 2 (4) -4.7 0.8 0.8 35
1 ! 2 (4) -0.35 0.8 0.444 18
2 (4) ! 3 4 -0.11 0.359 39

1 ! 5 -12 -12 1 12

1

2

3

4

5

6

7 1 (4, 5, 6) ! 3 4 0.76 0.8 30
g8: 2 (7) ! 1, 4 (5, 6) - 3.34 1.14 0.667 24

3 ! 1 (4, 5, 6) -1.8 -1.71 0.714 7
1, 4 (5, 6) ! 2 (7) 4 0.95 0.414 29
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Figure 4: Two behavior patterns in the experiment
First, subjects are more likely to accept than to reject (left panel of Figure 4). On average,
65.6% of requests are accepted by subjects. We also find a higher rate of rational acceptance
(acceptance when BR is to accept), which is 87.2%, compared to 67.2% for rational rejection
(rejection when BR is to reject). However, the high rate of acceptance is probably due to the
fact that rational acceptance includes the simple situations when the decision maker has only
one link. If we exclude these situations, the proportion of rational acceptance is only 64.7%.
We conduct probit regressions to control for this fact,17 and still find a significantly higher
rate of rational acceptance than rational rejection.18 There are two plausible explanations
for this tendency to accept: (1) to reject is a risky choice and subjects tend to accept because
of risk aversion; (2) there is a cognitive cost to calculate expected value of rejection, and
so subjects will make the immediate acceptance decision instead. We will explore these two
explanations in the next subsection.

Second, subjects tend to rationally reject when they have a captive agent not making the
17In the regressions, the dependent variable is the probability of best response. The primary independent

variable is the dummy variable “BR Reject” which is equal to 1 if BR is to reject. Control variables include
the dummy variable “One link” which is equal to 1 if the subject has only one link, as well as other variables
introduced in the regressions in the next subsection. The regression results are presented in Table 7 in
Appendix.

18In Table 7, the coefficients for dummy variable “BR Reject” are negative, p< 0.01, p< 0.05, p< 0.1.
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request (right panel of Figure 4). An agent is said to be a captive agent if he has only one
connection in the social network. So one should expect that a captive agent will always
accept the request from his only neighbor. When a subject has a captive agent he should
reject the current offer as he is guaranteed to earn 20 by requesting a favor from his captive
agent. We find that 81.9% of requests are rationally rejected when subjects have captive
agents not making the request, compared to 54.1% of rational rejection by subjects who do
not have captive agents. (This effect is proved to be significant through regression results in
the next subsection).

6.1.2 Determinants of behavior

We now analyze in detail departures from equilibrium behavior related to the characteristics
of the current social network and situation. We also control for factors related to individuals.
In order to systematically check how these factors affect the strategies of the subjects, we
conduct probit regressions. The results are presented in Table 4 and Table 5. The dependent
variable is the probability of best response when BR is to reject (in Table 4) and when BR
is to accept (in Table 5), respectively. Independent variables include “EV.difference”, the
difference between expected value after rejection and acceptance in specifications (1) through
(3), “Real.difference”, the difference between actual payoffs after rejection and acceptance in
specifications (4) through (6). Specifications (1) and (4) only include variables related to
the characteristics of the social network and situation: a dummy variable “Cycle” which is
equal to 1 if subject is in the cycle, a dummy variable "Steps of reasoning" which is equal
to 1 if an agent has to consider more than 3 steps of reasoning in the extensive form of the
game he faced. In the case of the regressions when BR is to reject (in Table 4), we add an
additional dummy variable “Captive” which is equal to 1 if the subject has a captive agent
who is not the one who requests a favor from him. Specifications (2) and (5) control for
individual differences: the number of correct answers in the "CRT" test , the measure of
"Risk" preference for a subject where smaller value indicates higher level of risk aversion, and
the proxy for the subject’s "Belief" about other agents’ rationality where a lower percentage
represents a higher estimation of the rationality of other agents. Finally, specifications (3)
and (6) add individual ”Experience", the number of decisions the subject has already made,
in order to capture a learning effect.

We first check the relation between best response and expected value difference as well as real
earning difference. Figure 5 presents the proportion of rejection in each situation for each
expected value difference (left panel) and real earning difference (right panel), respectively.
For risk neutral rational agents, the proportion of rejection should be equal to zero when
EV.difference < 0 and equal to one when EV.difference > 0.
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Table 4: Probit regressions: Probability to best respond when BR is to reject

(1) (2) (3) (4) (5) (6)

EV.difference -0.030 -0.029 -0.043
(0.115) (0.117) (0.112)

Real.difference -0.007 -0.008 -0.001
(0.010) (0.008) (0.009)

Steps of Reasoning -0.168*** -0.177*** -0.143*** -0.175*** -0.184*** -0.145***
(0.043) (0.044) (0.041) (0.038) (0.039) (0.034)

Cycle 0.010 0.005 -0.033 0.016 0.011 -0.032
(0.062) (0.058) (0.059) (0.066) (0.061) (0.063)

Captive 0.400*** 0.397*** 0.395*** 0.404*** 0.401*** 0.394***
(0.040) (0.041) (0.042) (0.037) (0.040) (0.040)

Risk 0.016** 0.018** 0.016** 0.018**
(0.007) (0.007) (0.007) (0.007)

CRT 0.014 0.011 0.014 0.011
(0.021) (0.021) (0.020) (0.021)

Belief -0.002** -0.002*** -0.002** -0.002***
(0.001) (0.001) (0.001) (0.001)

Experience 0.014*** 0.014***
(0.003) (0.004)

No. of observations 724 724 724 724 724 724

Note: standard errors in parentheses are clustered at the session level; coefficients are
marginal effects. *** p<0.01, ** p<0.05, * p<0.1.
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Table 5: Probit regressions: Probability to best respond when BR is to accept

(1) (2) (3) (4) (5) (6)

EV.difference -0.033*** -0.033*** -0.032***
(0.002) (0.002) (0.003)

Real.difference -0.024*** -0.024*** -0.024***
(0.002) (0.002) (0.002)

Steps of Reasoning -0.101*** -0.109*** -0.074* -0.034 -0.048 0.011
(0.033) (0.030) (0.038) (0.042) (0.044) (0.060)

Cycle -0.062 -0.068 -0.058 -0.028 -0.040 -0.018
(0.048) (0.044) (0.045) (0.044) (0.045) (0.050)

Risk -0.008*** -0.009*** -0.007** -0.007***
(0.002) (0.002) (0.003) (0.003)

CRT 0.016** 0.015** 0.016** 0.016*
(0.008) (0.008) (0.008) (0.008)

Belief -0.001 -0.001 -0.001 -0.001
(0.000) (0.000) (0.001) (0.001)

Experience 0.005** 0.009***
(0.003) (0.003)

No. of observations 1,118 1,118 1,118 1,104 1,104 1,104

Note: standard errors in parentheses are clustered at the session level; coefficients are
marginal effects. *** p<0.01, ** p<0.05, * p<0.1.
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Figure 5: Proportion of rejection in each situation by EV.difference and Real.difference

It can be seen from Figure 5 that although subjects do not play completely according to
the theoretical prediction, they are more likely to reject when the expected value difference
or the real earning difference increases. In particular, this relation is almost linear when
EV.difference < 0 and Real.difference < 0.

Regression results in Table 5 support this finding. A subject’s probability of playing a best
response (acceptance) will decrease by about 3.2 percentage points when the expected value
difference increases by 1 unit (p < 0.01 for coefficients “EV.difference”), and will decrease by
about 2.4 percentage points when the real earning difference increases by 1 unit (p < 0.01
for coefficients “Real.difference”). We note that when BR is to accept (EV.difference < 0),
the subject’s best response increases linearly with the expected value difference and the real
earning difference, indicating that subjects tend to play equilibrium strategies when the cost
of deviation from rational acceptance increases.

However, Figure 5 shows that when BR is to reject (EV.difference > 0), there is a striking het-
erogeneity among subjects’ best responses according to different decision situations, even for
situations with the same expected value difference. In fact, the coefficients of “EV.difference”
in specifications (1) through (3) and the coefficients of “Real.difference” in specifications (4)
through (6) in Table 4 are all negative and insignificant. This indicates that other charac-
teristics of the situation, such as complexity of the network or the structure of the network
are likely to play a role in situations when BR is to reject.
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We next present in Figure 6 the proportion of best responses as a function of the steps of
reasoning when BR is to accept or to reject (left panel), and when the current social network
is in a line or contains a cycle (right panel).
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Figure 6: Proportion of best response by situation complexity

It can be seen from Figure 6 that the proportion of best response decreases with the com-
plexity at first and then increases slightly when the number of steps of reasoning is higher
than 3. We also observe a high volatility of best responses for some steps of reasoning. This
is probably due to the small number of observations, especially when the situation becomes
more complex -we only have a third of the total observations corresponding to situations
where the number of steps of reasoning is higher than 3. Overall, we find that the propor-
tion of best responses is high when the situation is less complex. The proportion of rational
rejections is 73.1% (91.8% of rational acceptance) when the number of steps of reasoning
is smaller than 3, and is 62.9% (64.1% of rational acceptance) otherwise. Results of the
regressions in Table 4 and Table 5 further show that when it takes more than 3 steps of
reasoning, the probability of best responses decreases by about 14.3 percentage points when
BR is to reject and by about 7.4 percentage points when BR is to accept. However, the
effect is only significant if we do not control for learning effect and real earning difference.

On average, it takes 5 steps for a subject to figure out his subgame perfect equilibrium
strategies when the network contains a cycle, but it only requires 2 steps in a line. However,
when we control for the complexity of the situation, the network structure - whether the
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subject is in a line or a network containing a cycle - has no significant effect on the probability
of best response (coefficients for “Cycle” are insignificant in Table 4 and Table 5). On
the other hand, when facing the same level of complexity, the probability of best response
increases by at least 39.4 percentage points if the subjects have captive agents when BR is
to reject (p< 0.01 for coefficients “Captive” in Table 4). This result further supports the
previous finding that this heuristics helps subjects adopt equilibrium strategies.

We next argue that risk aversion, cognitive ability, subject’s belief about other participants’
rationality can also help explain behavior heterogeneity. Regression results show that sub-
jects with higher levels of risk aversion are less likely to rationally reject (the coefficients for
“Risk” are 0.016 to 0.018 at p < 0.05 in Table 4) and are more likely to rationally accept the
favor (the coefficients for “Risk” are -0.009 to -0.007 at p < 0.05 in Table 5). That is, risk
aversion makes subjects more likely to accept, especially in situations when BR is to reject.
Even in the “safe rejection” situations when subjects will earn at least 12 by rejection, highly
risk averse subjects- those who choose low but certain payoff in the risk test- still tend to
accept (56.6% of rejection by high risk averse subjects v.s. 70.3% of rejection by other types
of subjects).

On the other hand, subjects have to invest their cognitive abilities and cognitive efforts to
calculate the expected value of rejection so as to find out their optimal choices. We use
the number of correct answers in the CRT test as the proxy for subjects cognitive abilities
and cognitive efforts. We find that subjects with a better answer in the CRT test are more
likely to play equilibrium strategies. This effect is only significant (p < 0.05 for coefficient
“CRT” in Table 5) and sometimes marginally significant (p < 0.1 for coefficient “CRT” in
specification (3) of Table 5) when BR is to accept.

Subjects’ beliefs about others’ rationality may also affect their tendency to best respond.
Regression results in Table 4 and Table 5 show that the coefficients of variable “Belief” are
negative in all specifications, and in particular, they are significant when BR is to reject
(p < 0.05 for coefficients “Belief” in Table4). The result indicates that subjects holding a
stronger belief about strategy uncertainty (i.e., weaker belief about others’ rationality) are
more likely to choose the safe “acceptance”, when rejection is in fact their subgame perfect
equilibrium strategies under the assumption of rationality for other agents.

Lastly, as the experiment is repeated for 25 periods, from the simple social network to the
complex ones, it is interesting to ask whether previous experiences affect individual choices,
and more importantly, whether subjects learn to best respond over time. We check the
effect of a subject’s own decision experience on best response by controlling for situation
characteristics as well as individual difference, and find a significant learning effect. It can
be seen from Table 4 and Table 5 that on average, with one more decision a subject has
made, the probability of best response increase sby 1.4 percentage points when BR is to
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reject (p < 0.01 for coefficients “Experience” in Table 4), and by at least 0.5 percentage
points when BR is to accept (and p < 0.05 for coefficients “Experience” in Table 5).

6.2 Aggregate outcomes

In this subsection, we analyze whether aggregate behavior leads to efficient outcomes in the
experiment. We first look at the number of matched pairs for each of the five initial social
networks formed in the experiment. If all subjects follow the subgame perfect equilibrium
strategies, as shown in Section 2, the maximum number of matches in the initial social
network will be achieved. We therefore compute an efficiency index (EI) as follows:

EI =
Number of actual matched pairs

Maximum number of matched pairs
.

Notice that, in some social networks, the maximum number of matched pairs can still be
formed when agents do not play their equilibrium strategies. For example, in the social
network 5, even when some agents make mistakes by accepting the offer when they should
reject, there will still be 3 matches formed at the end. On the contrary, in social network 1, if
any of the agents does not play his best response, the efficient outcome cannot be achieved.
As a result, social networks differ by the sensitivity of the number of matches formed as
a function of the behavior of agents. Taking this fact into account, we consider random
agents who randomly reject and accept the request in each situation with equal probability,
and compute the number of matched pairs formed by these random agents. This gives us a
benchmark with which to compare the efficiency level obtained by real agents. We compute
a relative efficiency index (REI) as follows:

REI =
Number of actual matched pairs - Number of randomly matched pairs

Maximum number of matched pairs - Number of randomly matched pairs
.

Table 6 presents the outcome efficiency for each of five initial social networks, including the
number of actual matched pairs , the number of randomly matched pairs , the maximum
number of matched pairs, the efficiency index as well as the relative efficiency index. The
proportion of best response is also computed for each initial social network. On average,
the efficiency index is as high as 0.90 and the relative efficiency index is 0.75. We also find
that 78% of times (493 out of 630 total outcomes) the maximum number of matched pairs
is achieved. More interestingly, in the most complex seven-agent social network, all groups
achieve efficient outcomes in the last period. For each initial social network, the number
of matched pairs established by random agents is also lower than that achieved by actual
agents.
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Table 6: Outcome efficiency for initial social networks
Period Network 1 Network 2 Network 3 Network 4 Network 5

1 1.63 1.96 1.53 1.96 2.78
2 1.73 1.92 1.53 1.88 2.89
3 1.60 1.96 1.63 1.96 2.94
4 1.63 1.88 1.53 1.96 2.89
5 1.77 1.88 1.57 1.96 3.00

Average 1.67 1.92 1.56 1.94 2.90
Random agents 1.09 1.41 1.13 1.51 2.25
Max.# of pairs. 2 2 2 2 3

EI 0.84 0.96 0.78 0.97 0.97
REI 0.64 0.86 0.49 0.88 0.87

Best response 0.828 0.821 0.756 0.804 0.774

In addition, the efficiency index (relative efficiency index) is 0.84 (0.64) and 0.78 (0.49) in
social networks 1 and 3, lower than those in social networks 2, 4 and 5. We also observe
that the efficiency level achieved by random agents is also lower in these two networks. In
fact, social networks 1 and 3 have an even number of agents, whereas the rest has an odd
number of agents. Therefore, the low level of efficiency in these two networks is partly due
to the fact that they are more sensitive to mistakes in the agents’ behavior. As a result,
even though the proportion of best response in social network 1 is higher than in all other
networks, the efficiency level is lower.

7 Conclusion

This paper analyzes the formation of partnerships in social networks. Agents randomly
request favors and turn to their neighbors to form a partnership where they commit to
provide the favor when requested. If favors are costly, agents have an incentive to delay
the formation of the partnership. In that case, we show that for any initial social network,
the unique Markov Perfect equilibrium results in the formation of the maximum number
of partnerships when agents become infinitely patient. If favors provide benefits, agents
rush to form partnerships at the cost of disconnecting other agents and the only perfect
initial networks for which the maximum number of partnerships are formed are the complete
and complete bipartite networks. The theoretical model is tested in the lab. Experimental
results show that a large fraction of the subjects (75%) play according to their subgame
perfect equilibrium strategy and reveals that the efficient maximum matching is formed over
78% of the times. When subjects deviate from their best responses, they accept to form
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partnerships too early. The incentive to accept when it is optimal to reject is positively
correlated with the subjects’ risk aversion, and players employ simple heuristics – like the
presence of a captive partner – to decide whether they should accept or reject the formation
of a partnership.

We are aware of a number of limitations of our model and experimental study and would
like to focus our attention to two important questions in future work. First, we would like
to extend the model to the study of partnerships of more than two agents. While this
extension does not pose any conceptual difficulty, it requires to define generalized matchings
of more than two agents, and requires to use more complex tools from graph theory. The
second extension is to allow for heterogeneity in the value of partnerships, letting the value
of the partnership depend on the pair ij, vij. Computing the optimal behavior of agents
in non0stationary networks with heterogeneous values is probably a very complex task, but
we are hopeful that it is tractable and that our model and experimental results could be
generalized to a model with heterogeneous players.
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A Supplementary results

Table 7 presents the probit regression results. The dependent variable is the probability to
play a best response. Independent variables include the dummy variable “BR Reject” which
is equal to 1 if BR is to reject, the dummy variable “One link” which is equal to 1 if the
subject has only one link, “ Abs(EV.difference)”, the absolute difference between expected
value of rejection and acceptance in specifications (1) through (3), “Abs(Real.difference)”, the
absolute difference between actual values after rejection and acceptance in specifications (4)
through (6), the dummy variable “Captive” which is equal to 1 if the subject has a captive
agent who is not the one who requests a favor to him, a dummy variable “Cycle” which
is equal to 1 if subject is in the cycle, the number of "Steps of reasoning" a agent has to
consider in the extensive form of the game he faced, the interaction term between “Captive”
and “Cycle”, the interaction term between “Captive” and “Steps of reasoning”, the number
of correct answers in the "CRT" test a subject made, the measure of "Risk" preference for
a subject, and the proxy for subject’s "Belief" about other agents’ rationality, as well as
subject’s own “Experience".

Figure 7 shows the proportion of rejection conditional on the number of rejections a subject
has chosen before. We exclude the last four decisions as they contain few observations,
and we see in Figure 7 that subjects tend to reject if they chose more rejections before. In
particular, once they have chosen a rejection, they are more likely to reject the favor later
(27.1% of rejection when never rejected v.s. 36.8% of rejection when made at least one
rejection before). Furthermore, in order to check whether subjects learn to play optimally,
we present in Figure 4 the proportion of best responses over an individual own experience,
i.e., the number of decisions the person has made so far.19 We exclude the last four decisions
and find that on average the proportion of best responses increases slightly as subjects gain
more experiences. We also observe a high volatility of the subject’s best response over time,
especially in situations when BR is to reject. The volatility of rational behavior is probably
due to the fact that subjects have to make the decision in a different situation every time.

19We also check subjects’ rejection patterns and best responses over their previous experiences of not only
making decisions, but also observing decisions as the person made the request or as others not involved in
the game. We observe a similar behavior.

40



Table 7: Probit regressions: Probability to best respond

(1) (2) (3) (4) (5) (6)
One link -0.013 -0.021 -0.012 0.450*** 0.442*** 0.387***

(0.038) (0.038) (0.042) (0.039 (0.041) (0.046)
BR Reject -0.104*** -0.107*** -0.113*** -0.0811** -0.083** -0.083**

(0.031) (0.029) (0.030) (0.039) (0.036) (0.037)
Abs(EV.difference) 0.053*** 0.054*** 0.051***

(0.005) (0.006) (0.006)
Abs(Real.difference) -0.007 -0.006 -0.000

(0.005) (0.004) (0.004)
Steps of Reasoning -0.097*** -0.106*** -0.081*** -0.042 -0.051* -0.037

(0.028) (0.031) (0.029) (0.027) (0.030) (0.028)
Cycle -0.009 -0.014 -0.032 -0.020 -0.025 -0.046

(0.032) (0.030) (0.033) (0.034) (0.032) (0.036)
Captive 0.242*** 0.242*** 0.239*** 0.205*** 0.205*** 0.206***

(0.013) (0.015) (0.014) (0.012) (0.012) (0.010)
Risk 0.000 0.001 0.001 0.001

(0.003) (0.003) (0.003) (0.003)
CRT 0.016 0.015 0.016 0.015

(0.011) (0.012) (0.011) (0.012)
Belief -0.001** -0.001** -0.001* -0.001*

(0.001) (0.001) (0.001) (0.001)
Experience 0.008*** 0.009***

(0.002) (0.002)

No. of observations 1,842 1,842 1,842 1,828 1,828 1,828

Note: standard errors in parentheses are clustered at the session level; coefficients are
marginal effects. *** p<0.01, ** p<0.05, * p<0.1.
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Figure 7: Individual choices over their own experiences
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We also compute the number of rounds for the partnership formation process to achieve the
equilibrium outcome. Table 8 presents the number of rounds to equilibrium for each of the
five social networks. It can be seen from Table 8 that social network 1 only needs 2.1 rounds
on average to reach equilibrium, but it takes 4.7 rounds on average for social network 5.
These results indicate that when we have more players, it will take more rounds to reach the
equilibrium outcome. The more links a given social network has, the more rounds it takes
to achieve the equilibrium outcome.

Table 8: Number of rounds to equilibrium for initial social networks
Period Network 1 Network 2 Network 3 Network 4 Network 5

1 2.1 2.9 2.5 3.3 5.0
2 2.1 2.8 2.5 3.3 4.8
3 2.1 2.8 2.6 3.0 4.6
4 2.0 2.9 2.2 3.3 4.8
5 2.3 3.1 2.2 3.3 4.6

Average 2.1 2.9 2.4 3.2 4.7

B Experimental Instructions

We would like to thank you for having agreed to participate in this economics experiment.
During this experiment, you will earn a given sum of money. Your earnings are stated in
experimental currency unit (ECU). At the end of the session they will be converted to euros
using the following rate of conversion :

1 ECU = 0,1 Euros

So 10 ECU= 1 Euros

Besides the earnings you will make during the experiment, you will receive a 3 Euros par-
ticipation fee. Your earnings will be paid using a bank transfer in a maximum of 4 weeks .
All the decisions which you will take during this experiment are anonymous. You will never
have to identify yourself on the computer.
The experiment consists of several periods. At the beginning of every period the groups
of players are randomly formed. The links between the members of the same group are
represented in the form of a graph. In a graph a player can form a pair with his direct
neighbors but not with the other players. The number of players and the structure of the
graph change every five periods. The first two periods of the first sequence are trial periods
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which are not taken into account to determine your earnings. This experiment contains a
total of 27 periods.
Example 1 :

1

2

3

45

In this group of 5 players, player #1 can form a pair with players #2 and #5 but not with
players #3 and #4.
A player is chosen randomly among every group to be the claimant. All the players in the
graph have an equal chance to be chosen. A neighbor chosen randomly among the neighbors
of the claimant is requested to form a pair with the claimant. All the neighbors of the
claimant have an equal chance to be chosen.
If this chosen neighbor accepts to form a pair with the claimant, then:

• The pair leaves the graph: all the links that linked the pair to the rest of the graph
are deleted. The period ends for the two players of the pair.

• The claimant earns 20 ECU.

• The neighbor that accepted to form the pair with the claimant earns 20 - 8 ECU, so
12 ECU.

• If there is another possibility of forming a new pair in the remaining graph, another
player is chosen randomly among the remaining players to be the new claimant.

If this chosen neighbor refuses to form a pair with the claimant, then:

• The link that linked the claimant to this neighbor is deleted.

• A neighbor is chosen randomly among the remaining neighbors to form a pair with the
claimant.

• If the claimant has no remaining neighbors, then if there is another possibility of form-
ing a new pair in the remaining graph, another player is chosen among the remaining
players to be the new claimant.
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Example 2 : In the graph of example 1. We suppose that player #5 is chosen to be the
claimant. We suppose that among the neighbors of player #5 (in this case player #1 and
#4), player #1 is chosen to form a pair with player #5.
If player #1 accepts to form the pair with player #5.

• Players #1 and #5 are no longer linked to the remaining graph.

• Player #5 earns 20 ECU for this period.

• Player #1 earns 12 ECU for this period.

• A new claimant is randomly chosen among the players of the remaining graph formed
by players #2, #3 and #4.

1

2

3

45

If player #1 refuses to form a pair with player #5.

• Players #1 and #5 are no longer linked in the graph.

• Player #4 has the opportunity to form a pair with player #5.

1

2

3

45

In the end, a claimant that forms a pair earns 20 ECU. A neighbor player who was chosen
to form a pair and he accepts, earns 12 ECU. A player that doesn’t belong to any pair at
the end of a period, earns 0 ECU.
After the last period of the last sequence, 10 periods will be drawn randomly among the
periods except the trial periods. The earnings obtained for these 10 periods will determine
your earnings for this experiment. Every period has an equal chance to be drawn.
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You are 21 participants in the room. When the number of players in the group is 4 or 5,
there is then a participant that is randomly chosen, that won’t be able to participate during
one period. In this case, his earning for this period is 10 ECU.
It is totally forbidden to communicate between each other during the experiment. Any
communication may cause the exclusion of the participant from the experiment without
compensation. We kindly ask you to reread carefully these instructions and answer the
questionnaire which is going to appear on your screens. Every correct answer to this ques-
tionnaire will yield a profit of 2 ECU . If you have questions - now or during the experiment,
kindly call us by pressing your call button. We shall come to answer you in private.
A series of questions will be given to you after the 27 periods of the experiment. Some of
these questions will allow you to win additional earnings
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