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Abstract

We study group identification problems, the objective of which is to classify
agents into groups based on individual opinions. Our point of departure from
the literature is to allow membership to be fractional, to qualify the extent of
belonging. Examining implications of independence of irrelevant opinions, we
identify and characterize four nested families of rules. The four families include
the weighted-average rules, which are obtained by taking a weighted average of
all entries of a problem, and the fractional consent rules, which adapt the consent
rules from the binary model to our multinary setup, balancing two principles in
group identification, namely liberalism and social consent. Existing characteri-
zations of the one-vote rules, the consent rules, and the liberal rule follow from

ours.
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1 Introduction

1.1 Motivation

Ethno-racial identity is a multi-faceted issue and it is not rare to find individuals see-
ing themselves as belonging to several groups, whether it be due to racial or cultural
reasons. Over 9 million Americans report more than one race as their identity and
from 2000 to 2010, their population grew three times as fast as the monoracial pop-
ulation[] The 2011 United Kingdom Census reveals that the population with mixed
heritage approximately doubled over a decadeE] and around 7 percent of children grow
up in multi-ethnic householdsﬂ In Brazil, as much as 43.4 percent of the 190-million
population self-identify with multiple racial backgrounds|] These increasing numbers
of individuals of mixed race direct our attention to a question: How much does each
racial group contribute to one’s identity?

The group identification literature, initiated by a seminal work of Kasher and Ru-
binstein (1997), takes a social choice approach to the problem of classifying individuals
into (racial) groups. A typical group identification problem consists of individual opin-
ions on who belong to which group and the objective is to aggregate them into a single
social decision. One may propose some properties that a reasonable (decision) rule
should satisfy and characterize a rule or a family of rules by means of such properties.
Starting from the binary case where the question is essentially how to partition the
agents into members and non-members of a given group (Kasher and Rubinstein, 1997;
Samet and Schmeidler, 2003; Sung and Dimitrov, 2005; Dimitrov et al., 2007; Houy,
2007; and Cengelci and Sanver, 2010), the literature has developed to allow the group
under study to vary (Miller, 2008; Cho and Ju, 2015) and identify three or more groups
simultaneously (Cho and Ju, 2017).

A limitation with the existing studies is that they only deal with deterministic

!United States Census Bureau, The Two or More Races Populations: 2010, published 2012.

2United Kingdom Office for National Statistics, 2011 Census: Key Statistics and Quick Statistics
for Local Authorities in the United Kingdom, published 2013.

3United Kingdom Office for National Statistics, 2011 Census Analysis: What Does the 2011 Census
Tell Us about Inter-ethnic Relationships?, published 2014.

4Brazilian Institute of Geography and Statistics, Demographic Census 2010: General Characteris-
tics of the Population, Religion, and Persons with Disabilities, published 2010.



membership. If an agent belongs to a group, his identity is fully determined by that
group. Yet an individual’s identity may not be so clear-cut; it may spread across
several groups, each constituting a differing amount of identity. To take account of this
possibility, we study fractional membership in a multinary identification model. In our
model, it is possible, for instance, that % of an agent’s identity comes from group a
and % from group b.

The shortage and drawbacks of decision rules in the multinary literature also call for
attention to fractional membership. A good inventory of rules are available for binary
identification problems. Examples include the consent rules (Samet and Schmeidler,
2003), the agreement rules, and the nomination rules (Miller, 2008). In particular,
the consent rules afford the flexibility of accommodating various degrees of liberalism
and democracy. In contrast, the multinary literature has only the family of one-vote
rules, most members of which induce a very skewed distribution of decision power
across agents. Further, the multinary model does not admit rules that have strengths
similar to those of the consent rules. This is due in part to the deterministic nature
of membership, prohibiting multiple agents from being decisive on the same issue.
One way of overcoming the limitation is to permit fractional membership and hence
fractional decisiveness.

These observations motivate us to seek new possibilities that arise when fractional
membership is introduced to the identification model, both multinary and binary. We

identify four families of rules and justify them with axiomatic characterizations.

1.2 The Model

Specifically, we extend the multinary model of Cho and Ju (2017), where there are three
or more groups to be identified. Each agent has an opinion, stating to which one of the
groups each agent (including himself) belongs. An (identification) problem is simply
a profile of such opinions and is represented by an n X n matrix, where entry (i, ) is
agent i’s opinion about agent j (n is the number of agents). A (social) decision specifies
the agents’ fractional membership to all groups; that is, to each agent corresponds a

profile of non-negative fractions adding up to one, representing the extent to which the



agent belongs to the groupsﬁ Our main axiom for rules is independence of irrelevant
opinions, which requires that identification of a given group should rely only on the
opinions about that group. The axiom is implicit in the binary model of Kasher and
Rubinstein (1997) and Samet and Schmeidler (2003) and the variable group model of
Miller (2008). Cho and Ju (2017) explicitly formulate the axiom in a context where
multiple groups are identified at the same time. The axiom has a natural analog in
our fractional model: if the opinions on group a, say, remain the same, so should the
fractional decisions on group a (while the fractional decisions on the other groups may

vary).

1.3 Main Results

With independence of irrelevant opinions imposed, a new family of rules emerge that
value individual opinions potentially differently to reach a social decision. A typical rule
in this family is associated with a profile of weights, each corresponding to an agent.
Given a problem, the rule determines agent i’s membership by taking a weighted aver-
age of all entries in the problem, using ¢’s weights the rule is equipped with. We call
these rules the weighted-average rules. We show that the weighted-average rules are
the only rules satisfying independence of irrelevant opinions and a full-range condition
called deterministic full range (Theorem . Deterministic full range requires that for
each agent 7 and each group a, the range of a rule should include a decision where i is
a full (i.e., with fraction 1) member of group a; and the axiom is weaker than unanim-
ity. The one-vote rules (Miller, 2008), which determine each agent’s identity using one

fixed entry of a problem, are special cases of the weighted-average rules whose distribu-

5Note the asymmetric formulation of opinions and decisions: opinions are deterministic whereas
decisions are fractional. One may model the fractional membership problem in such a way that opinions
and decisions have the same algebraic structure, similar to and extending Rubinstein and Fishburn
(1986). However, we introduce fractional membership only to decisions because we are interested
in new possibilities that become available with a minimal departure from the existing models and
because eliciting opinions in the fractional form from agents may be informationally demanding in
some contexts (especially with a large number of agents). Some other strands of literature keep similar
asymmetries between input (opinions) and output (decisions). In probabilistic public choice (Gibbard,
1977), agents submit their preferences over sure alternatives while a lottery over those alternatives are
chosen as an outcome. In probabilistic assignment (Bogomolnaia and Moulin, 2001) and school choice
(Abdulkadiroglu and Sénmez, 2003), agents’ preferences are defined over objects but they are assigned
lotteries over the objects.
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Figure 1: Characterizations of four families of rules. The weighted-average rules are
characterized by independence of irrelevant opinions and deterministic full range. Further
imposing symmetry leads to a subfamily of symmetrized weighted-average rules, and weak
agentwise change to a subfamily of agentwise weighted-average rules. At the intersection of
the two subfamilies lie the fractional consent rules. The latter rules are also the ones generated
by the fractional approval functions.

tion of weights is degenerate. Thus, our characterization of the weighted-average rules
generalizes that of the one-vote rules by Cho and Ju (2017).

Within the family of weighted-average rules, we invoke further axioms and narrow
attention to two subfamilies. First, we consider symmetry, a fairness property requiring
that agents’ names should have no impact on membership. Symmetry isolates the family
of symmetrized weighted-average rules (Theorem . This family is a convex set with
five extreme points, which can be used as building blocks to construct a rule that suits
our purpose at hand. Two rules stand out among the five. One is the liberal rule
(Kasher and Rubinstein, 1997), which grants each agent the full right to choose his
membership. Also known as self-identification, the liberal rule is the most common
way of collecting information on ethnicity and race (for example, most censuses use it).
The other rule is what we call the almost-column rule, according to which agent i’s
membership is the simple average of the entries in column ¢ except entry (i,7), that
is, all opinions about ¢ except his self-opinion. The liberal and almost-column rules
also have a connection to the fractional consent rules, which we discuss below. In the
family of symmetrized weighted-average rules, the liberal rule is the only deterministic

one and the main characterization of Cho and Ju (2017) follows as a corollary. Figure



summarizes our characterizations.

A drawback shared by some weighted-average rules motivates another subfam-
ily. The definition of weighted-average rules allows agent ¢’s membership to hinge
on agent j’s opinion about agent h. This is an issue when we pursue identification on
an individual basis and it is foreshadowed by the axioms that give rise to the weighted-
average rules, namely independence of irrelevant opinions and deterministic full range:
none of the axioms has a component that enables a rule to distinguish columns from
rows in identification problems. Therefore, we invoke another axiom, weak agentwise
change, which requires that there exist at least one case where opinions about i are
decisive enough to influence his membership in some deterministic fashion. Weak agen-
twise change is implied by some axioms studied in the literature, such as agentwise
unanimity by Kasher and Rubinstein (1997) (“consensus”’ as the authors call it) and
a different type of an independence axiom by Samet and Schmeidler (2003). Weak
agentwise change yields the family of agentwise weighted-average rules (Theorem .
For an agentwise weighted-average rule, the weights determining agent ¢’s membership
are placed only on those entries of a problem that directly concern him, that is, those
in column 7.

We also extend an important family of rules from the binary identification literature
to our setting. To distinguish notions, let us call an aggregation function that operates
on binary problems an approval function. In the binary setup, Samet and Schmeidler
(2003) introduce the consent approval functions, for which the consent quotas that
parametrize the family serve to balance liberalism and social consent. A consent ap-
proval function socially approves an agent’s self-opinion if a consent quota is met and
otherwise put him in the group opposite to his choice. Adapting such a decision scheme
to a multinary environment is not straightforward because an exogenous, asymmet-
ric tie-breaking rule should come into play whenever an agent’s view of himself is not
accompanied by sufficient support from others.

To circumvent this difficulty, note that a multinary identification problem contains
several pieces of binary information: it tells us, for each group, who belong to that
group. Therefore, a multinary problem can equivalently be represented as a list of

binary problems. Then we may apply approval functions to each of the binary problems



separately and combine the resulting binary decisions into a single multinary decision.
In this “decomposition” process, one may attempt to work with the consent approval
functions by Samet and Schmeidler (2003) but all of them except the liberal one turn
out to fail.

At the heart of the failure is the deterministic nature of the consent approval func-
tions, which motivates a fractional extension. In the binary setting, we propose the
fractional consent approval functions and characterize them by the same set of ax-
ioms as Samet and Schmeidler (2003): monotonicity, agentwise identification (“inde-
pendence” as the authors call it), and symmetry (Theorem . When applied in the
decomposition process, the fractional consent approval functions generate a family of
rules parametrized by a number between zero and one (Theorem . The parameter
captures the degree of compromise between liberalism and social consent in the multi-
nary setup and therefore we call such rules the fractional consent rules. Denoting by
w the parameter associated with a fractional consent rule, each agent i determines
fraction w of his membership and the remaining fraction 1 — w rests in the hands of
the other agents, each responsible for fraction };T“f of 7’s membership. The fractional
consent rules are a special case of both the symmetrized weighted-average rules and the
agentwise weighted-average rules. Thus, they are the only rules satisfying independence
of irrelevant opinions, deterministic full range, symmetry, and weak agentwise change
(Theorem [6).

Our results indicate that the small departure of permitting decisions to be fractional
unveils a new family of rules that afford the flexibility of basing individual identity on
several opinions. This strength cannot be achieved by deterministic rules because of
their very deterministic nature: two or more entries of a problem cannot be decisive at
the same time. The weighted-average rules, on the other hand, can compromise on their
decisiveness by assigning weights to them and the distribution of weights represents the
emphasis we place on one’s self-opinion and others’ opinions about him.

The connection between Cho and Ju (2017) and our results parallels that between
Gibbard-Satterthwaite Impossibility Theorem (Gibbard, 1973; Satterthwaite, 1975) and
Gibbard Random Dictatorship Theorem (Gibbard, 1977) in social choice theory. In

a voting environment where agents submit ordinal preferences over alternatives, the



first theorem says, each strategy-proof voting scheme is dictatorial (assuming that the
scheme includes at least three outcomes). When a voting scheme is allowed to be proba-
bilistic, the second theorem shows, strategy-proofness (together with ex post efficiency)
implies random dictatorship: a fixed distribution over agents determines the dicta-
tor at random, who then chooses his most preferred alternative. In sum, the passage
from the deterministic to the probabilistic setup adds randomizations over the voting
schemes that are already available in the deterministic setup. The weighted-average
rules generalize the one-vote rules in much the same way as random dictatorship does
dictatorship. The analogy, however, weakens when symmetry is invoked. The axiom is
compatible with independence of irrelevant opinions in the deterministic identification
model whereas a similar axiom, anonymity, is not compatible with strategy-proofness
in the deterministic voting model. Further, the fractional identification model admits
symmetric rules—e.g., the almost-column rule—that cannot be expressed as a convex
combination of symmetric deterministic rules. The strategy-proof decision schemes in
the deterministic voting model, namely dictatorial rules, constitute extreme points of

the set of all strategy-proof voting schemes in the probabilistic voting model.

1.4 Related Literature

Group identification begins with an axiomatic analysis of Kasher and Rubinstein (1997).
In a binary setup where agents are to be identified as members or non-members of a
group under question, they characterize the liberal rule and derive an impossibility
result. Samet and Schmeidler (2003) propose and characterize the consent rules that
depending on the choice of parameters, can embed varying degrees of liberalism and
social consent in decisions. Other papers studying the binary model include Sung
and Dimitrov (2005), Dimitrov et al. (2007), Houy (2007), and Cengelci and Sanver
(2010). On a more general domain where opinions can be “neutral”, Ju (2010, 2013)
explores decisiveness of an agent or a group of agents and characterizes self-dependency;,
a hallmark of liberalism, by a weaker set of axioms.

Most closely related to this paper is Cho and Ju (2017), who consider the multi-
nary problem of identifying three or more groups simultaneously. Noting an implicit

assumption in the binary model, they introduce independence of irrelevant opinions,



an adaptation of Arrow’s (1951) independence axiom in preference aggregation theory
to the group identification setting. They show that the one-vote rules uniquely satisfy
the axiom (together with non-degeneracy) and that only the liberal rule obtains once
symmetry is additionally imposed. Clearly, the weighted-average rules in this paper are
a fractional counterpart of the one-vote rules and our characterizations extend Cho and
Ju (2017).

On the other hand, Miller (2008) considers a variable group model with the focus on
consistency (or “separability” as he calls it), a relational property that binds decisions
across groups; e.g., the decision on group “a and b’ should be the conjunction of the
decisions on group “a” and on group “b”. The one-vote rules first appear in this context
and Miller (2008) shows that they are the only rules satisfying consistency (together
with non-degeneracy). While different axioms are imposed in different setups, Miller
(2008) and Cho and Ju (2017) both characterize the one-vote rules. To clarify the
distinction, Cho and Ju (2015) introduce an extended setup that subsumes the two

papers and derive stronger results.

The rest of the paper proceeds as follows. In Section [2] we set up the model and
introduce various rules and axioms. In Section [3| we investigate the connection be-
tween independence of irrelevant opinions and a stronger, simplifying property called
decomposability. Characterizations of the weighted-average rules and two subfamilies

thereof are in Section [4] and those of the fractional consent rules are in Section [l

2 The Model

A finite set of agents seek to determine their membership to several groups, with mem-
bership being allowed to be fractional. Let N = {1,--- ,n} be the set of agents and
G = {ki, -+ ,kn} the set of groups (n > 2 and m > 3). Agents are denoted by i and
4, and groups by k and /. Each agent i € N has an opinion P; = (P;)jeny € GV,
where for each j € N, P;; = k € G means that i believes j to be a member of group &.
A (multinary) problem is an opinion profile P = (P;);en. We often treat individual
opinions as row vectors (1 x n) and problems as matrices (n x n), with P;; being entry
(i,7) of P. Let P = G™*¥ be the set of all problems. For each P € P and each



i € N, let P* = (P};)jeny be column i of P, which is the opinions about i; and let
P~ = (P%)en gy be all the columns of P but column .

Let A(G) be the set of distributions over G. A (social) decision is a profile
x = (z;)ien, where for each i € N, x; = (zi)rec € A(G) is agent i’s fractional
membership to all groups. Let X = (A(G))" be the set of all decisions. Given
decision x € X, for each ¢ € N and each k € GG, we interpret x;; as an index measuring
the extent to which agent ¢ belongs to group & (in particular, we do not interpret x;
as the probability of agent i belonging to group k). An agent may affirm affiliation
to multiple racial groups and our formulation with fractions attempts to capture the
composition of his identity.

A (social decision) rule is a mapping f : P — X, associating with each problem
a decision. Decision x € X is deterministic if for each ¢ € N, z; is a degenerate
distribution (i.e., for some k € G, z; = 1). A rule is deterministic if it always
produces a deterministic decision. Decisions and rules are fractional if they are not
deterministic.

In our model, decisions are allowed to be fractional while opinions are not. One may
consider an alternative setup where fractional opinions are aggregated into a fractional
decision, which adapts algebraic aggregation theory of Rubinstein and Fishburn (1986)
to group identification. We do not pursue the alternative for two reasons. First, we
seek to explore advantages of decision rules that emerge with only a minimal departure
from the literature. As our analysis shows, fractional decisions suffice to unveil new
possibilities. Second is the clear simplicity our model has. With only deterministic
opinions permitted, the task of formulating an opinion is simple: an agent need only
to choose one group for each agent. On the other hand, a fractional opinion consists
of n distributions over the groups, which may be too demanding an informational
requirement in some contexts, especially when a large number of agents are involved.
There are models in other literature where the input and outcome for a collective
decision problem have asymmetric structures. Gibbard (1977) studies a probabilistic
public choice model where agents have preferences over sure alternatives and a lottery
over those alternatives are to be chosen. The literature on probabilistic assignment
(Bogomolnaia and Moulin, 2001) and school choice (Abdulkadiroglu and Sénmez, 2003)
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applies Gibbard’s (1977) approach to the allocation of indivisible commodities.

Below we use the following notation. For each k € G, k,xn is a problem in P
consisting of £’s only; a row vector kyx, and a column vector k,, w1 are similarly defined.
For all z;,y; € A(G), let ||x; — y;|| = maxyeq |vik — yix|- Note that ||z; — y;|| = 1 if
and only if for some k£ € (G, one of z;;, and y;; is 1 and the other is 0. In particular, if

there is k € G with z, yix > 0, then ||z; — y;|| < 1.

2.1 Rules

In the deterministic group identification models (Samet and Schmeidler, 2003; Miller,
2008; Cho and Ju, 2017), both binary and multinary, the following rules have been
studied. The liberal rule, denoted L, classifies each agent into the group of his own
choice; i.e., for each P € P, each i € N, and each k € G, P; = k implies Ly (P) = 1.
A rule f is a one-vote rule if each agent’s membership is determined by a single fixed
entry for all problems; i.e., for each i € N, there is (j, h) € N? such that for each P € P
and each k € G, Pj, = k implies f;,(P) = 1—we call (j,h) the decisive entry for i.
The decisive entry for ¢ is not required to be in column 4, in which case, the membership
decision for 7 is based on an opinion about some other agent. An agentwise one-vote
rule is a one-vote rule such that for each ¢« € N, the decisive entry for agent ¢ is in
column 1.

We can easily extend the one-vote rules to the fractional setup by introducing “frac-
tional decisiveness”. A rule f is a weighted-average rule if for each i € N, there exists
a; € A(N?) such that for each P € P and each k € G, fi,(P) = Z(j,h)eN2:Pjh:k a;(7,h)
(where «;(j, h) is the weight assigned to entry (7, h) by ;). We call (a;);en the weights
associated with f. By definition, a weighted-average rule is a convex Combinationﬁ
of the one-vote rules.

An interesting subfamily of the weighted-average rules consists of those rules that
do not discriminate agents on the basis of their names (the latter property is called
symmetry and is defined below). These rules are most succinctly described as a convex

combination of several extreme points of the subfamily, which we define now. The

6Convex combinations of rules are defined in the usual way. Given rules f and g and X € [0, 1], the
rule Af + (1 — \)g is defined as for each P € P, each i € N, and each k € G, (Af + (1 — X)g),;, (P) =
Afie(P) 4+ (1 = A)gix(P).
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almost-column rule is the rule f such that for each P € P and each i € N, f;(P)
is the simple average of (Pj;)jenfi} (i-e., for each k € G, fi(P) = —5[{j € N\{i} :
P;; = k}|). The almost-row rule is the rule f such that for each P € P and each
i € N, f;(P) is the simple average of (F;;)jen\(i}- The almost-diagonal rule is the
rule f such that for each P € P and each i € N, f;(P) is the simple average of
(Pj;)jen\iy- The almost-off-diagonal rule is the rule f such that for each P € P
and each i € N, f;(P) is the simple average of (Pjp);nen\(i},j#n (this rule is well-defined
only when n > 3). A rule is a symmetrized weighted-average rule if it is a convex
combination of the liberal, almost-column, almost-row, almost-diagonal, and almost-
off-diagonal rules.[] The family of symmetrized weighted-average rules has only one
deterministic rule: the liberal rule.

As is the case with the one-vote rules, a weighted-average rule is allowed to put
positive weights on the opinions not about agent i (i.e., entries outside column i) when
determining ¢’s membership, which is not desirable when we seek a decision on an
individual basis. A rule f is an agentwise weighted-average rule if it is an weighted-
average rule with the associated weights (o), , say, such that for each i € N, o; puts
positive weights only on the opinions about i (i.e., .y ai(j, 1) = 1).

In the binary setup, Samet and Schmeidler (2003) introduce the family of consent
rules. The family is parametrized by two numbers, each of which serves as a quota to
be satisfied in order for an agent’s self-opinion to be socially approved (different quotas
apply depending on whether the agent sees himself as belonging to a given group).
While the consent rules do not easily extend to the deterministic multinary setup (see
Section [p| for details), the fractional multinary setup admits a generalization. Say that
a rule is a fractional consent rule if there is w € [0,1] such that for each P € P,
cach i € N, and each k € G, fu(P) = wlip,—ry + =2 |{j € N\{i} : P;; = k}|, where
1¢p,—ky is an indicator function. Denote by f* the fractional consent rule associated
with w. Under a fractional consent rule, each i’s membership is a weighted average of

his self-opinion and the others’ opinions about him; the others’ opinions about him are

"To give an explicit formula, a rule f is a symmetrized weighted-average rule if it is a weighted-
average rule with the associated weights (), v, say, and there exist s,t,u,v,w € [0, 1] with s+ (n —
Dt+(n—1u+ (n—1)w+ (n? — 3n+2)w = 1 satisfying the following: for each i € N, (i) o;(i,4) = s;
(ii) for each j € N\{i}, a(j,7) = ¢t; (iii) for each j € N\{i}, a;(j, i) = w; (iv) for each j € N\{i},
a;(i,7) = v; and (v) for all j,h € N\{i} with j # h, a;(j,h) = w.

12



all valued equally (but not necessarily as equally as i’s self-opinion); and the weights
(w,1—w) applied when taking a weighted average is the same across all agents. Clearly,
the fractional consent rules constitute the intersection of the symmetrized weighted-

average rules and the agentwise weighted-average rules.

2.2 Axioms

Does the identity of an Asian depend on whether other agents view him as a White or as
a Black? If agent ¢ changes his opinion about agent j from White to Black, should the
change be considered additional support for j’s membership to the group of Asians? In
the context of ethnic classification, there is no clear order that defines the relationship
among ethnic groupsff| Therefore, each ethnicity should be treated as an independent
entity and when identifying a group, changes in opinions about other groups should be
dismissed as irrelevant. In fact, the latter inter-group independence is implicit in the
binary identification literature such as Kasher and Rubinstein (1997) and Samet and
Schmeidler (2003)@: for identification of a group, opinions only about that group are
solicited, thus ruling out the possibility from the outset that opinions about other groups
may affect membership to the group. In the deterministic identification model, Cho and
Ju (2017) formulate the independence property as an axiom and call it independence
of irrelevant opinions, noting its resemblance to Arrow’s (1951) independence axiom
in preference aggregation theory. In our fractional setting, the independence axiom
requires that an agent’s fractional membership to a group should be invariant with
respect to changes in the opinions about the other groups. A formal expression of this

idea is as follows.

Independence of Irrelevant Opinions. Let P, P’ € P and k € G. Suppose that for
all 4,j € N, P;; = k if and only if P/; = k. Then for each i € N, fy(P) = fu(P").

80n surface, one could argue, based on skin color, that Asian is between White and Black, to justify
a (linear) order “White—Asian—Black”. Yet the claim is immediately challenged by genetic distances
between human populations. The genetic variation across White and Black is lower than that across
White and Asian, suggesting that White is closer to Black than to Asian; see, e.g., Tishkoff and Kidd
(2004), Kidd et al. (2004), and Ayub et al. (2003). In fact, the genetic distance map across ethnic
groups does not fit into any order.

9The following papers also assume the same inter-group independence in the binary model: Sung
and Dimitrov (2005), Dimitrov et al. (2007), Houy (2007), Cengelci and Sanver (2010).
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Concerning fairness, we require that all agents be treated symmetrically regardless of
their names. This idea is expressed by a permutation over the agents, which represents
a change in their names. Let 7 : N — N be a permutation. For each P € P,
let Pr = (Pr)a(j))ijen and fr(P) = (f”(i)(P))ieN (for each = € X, z, is defined
similarly). The following property, due to Samet and Schmeidler (2003), says that

name changes should not affect the membership decision for the agents.
Symmetry. For each P € P and each permutation 7 : N — N, f(P,) = f-(P).

In the deterministic case, independence of irrelevant opinions has strong implications
when combined with the following axiom, which requires that no agent’s membership

should be fixed.
Non-degeneracy. For each i € N, there are P, P’ € P such that f;(P) # f;(P’).

Non-degeneracy, however, is too weak in the fractional setup to pin down a family
of rule we are interested in. Thus, we consider a slightly stronger requirement: when

restricted to deterministic decisions, a rule should have a full range for each agent.

Deterministic Full Range. For each i € N and each k € G, there is P € P such

Deterministic full range says nothing about what decision a rule should assign to
particular problems. Yet in the presence of independence of irrelevant opinions, the
axiom indeed prescribes reasonable decisions to those problems that consist of a single

group. The following property is stronger than deterministic full range.
Unanimity. For each ¢ € N and each k € G, fix(knxn) = 1.

While independence of irrelevant opinions leads to quite a small class of rules, it has
no bite on how opinions about agent ¢ should be valued when agent j’s membership is
determined. In fact, none of the axioms introduced so far compels a rule to distinguish
columns from rows, which is why a rule satisfying independence of irrelevant opinions
may put a positive weight on the information that does not directly concern agent j.
Now we introduce two axioms that allow us to remedy such problems. In a binary
setup, Kasher and Rubinstein (1997) consider an agent-by-agent version of the above

unanimity property, requiring that if all agents have the same opinion about an agent,
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then the social decision should respect that opinion. This property can be adapted to

the multinary setup as follows.

Agentwise Unanimity. For each P € P, each i € N, and each k € G, if P' = k1,
then fix(P) = 17

To weaken agentwise unanimity, consider problems P, P’ € P. Suppose that for
some agent i, P and P’ differ only in the opinions about i (i.e., P # P and P~" = P'7%).
If the membership decision for i is never affected as the problem changes from P to P,
one could argue that opinions about ¢ play no role in determining his identity, which
is not desirable. Thus, we require that there exist a case where opinions about ¢ are

decisive enough to influence his membership in some deterministic fashion.

Weak Agentwise Change. For each i € N, there are P, P’ € P such that P! # P,
P~ =P and ||fi(P) - fi(P)]| = L.

Even when combined with unanimity, weak agentwise change is weaker than agent-
wise unanimity. Samet and Schmeidler (2003) propose a property saying that to deter-
mine an agent’s membership, a rule should focus only on the opinions about him—they
call the property “independence”. Clearly, the independence axiom has direct bearing
on decisions across agents and it is stronger than weak agentwise change in the presence

of unanimity.

3 Decomposability

A simple way of solving a multinary problem is to transform it into a list of “binary”
problems (one for each group), obtain a “binary” decision for each binary problem, and
then combine all binary decisions into a multinary decision. This approach, called de-
composition, turns out to be very close to the requirement of independence of irrelevant
opinions in the deterministic setup (Cho and Ju, 2017). In this section, we re-examine
that relationship in the fractional case.

Given P € P, for each k € G, the binary problem concerning group k derived
from P, denoted BPF € {0,1}V*¥  is defined as for all 4,5 € N, Bg’k =1ifP; =k

10K asher and Rubinstein (1997) call this property consensus.
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and Bg’k = 0 otherwise. Let B = {0,1}*" be the set of all binary problems. Our
definition of opinion requires that each agent be a member of one and only one group.
Thus, each multinary problem P can alternatively be represented by m binary problems
(BP*)cq. For each B € B, let |B| =Y.

A binary decision is a profile b = (b;)ien € [0, 1]V, where for each i € N, b; is agent i’s

i jen Bij be the number of ones in problem B.
fractional membership to the group under question. A list of m binary decisions (b*)req
translates to a proper multinary decision if and only if for each i € N, >, bF=1.

Since a multinary problem can be expressed as a collection of binary problems, one
may ask if a rule can also be expressed as a function operating on binary problems.
Formally, an approval function is a mapping ¢ : B — [0, 1]V, associating with each
binary problem B € B a binary decision ¢(B) € [0,1]Y. A natural counterpart of
the weighted-average rules for approval functions are those with fixed weights on the
entries of a binary problem: an approval function ¢ is a weighted-average approval
function if for each i € N, there exists a; € A(N?) such that for each B € B,
pi(B) = Z(j,h)ENQ:th:I a;(j, h).

The following property requires that a rule be expressed in the form of an approval

function.

Decomposability. There is an approval function ¢ : B — [0, 1] such that for each
P € P,eachie N, and each k € G, fir(P) = p;(BPF).

In this case, we say that f is represented by ¢ and ¢ generates f. Clearly,
a weighted-average rule is decomposable, represented by a weighted-average approval
function. Further, decomposability is stronger than independence of irrelevant opinions.
An approval function can serve to represent a decomposable rule only if it satisfies a
number of properties. Exploring the latter properties is instructive since it simplifies
our investigation of independence of irrelevant opinions and decomposability to that of
properties of approval functions, which are more analytically tractable. To define such
properties, an approval function ¢ is m-unit-additive if for all m binary problems
B',...,B™ € B, > .o B¥ = L,x, implies >, o ¢(B*) = 1ix,. It is unanimous if
©(0nxn) = 015, and @(l,xn) = lixn. Given B € B, the dual binary problem of
B is denoted B = 1,, — B (i.e., for all 4,5 € N, (F)ij = 1 — B;;); similarly, given
b € [0,1]"V, the dual binary decision of b is denoted b = 1,,,, — b. The dual of ¢,
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denoted by %, is the approval function such that for each B € B, ¢%(B) = ¢(B). We
say that ¢ is self-dual if ¢ = . Finally, ¢ is monotonic if for all B, B’ € B such
that B < B', ¢(B) < p(B').

Now we show that the ability of an approval function to represent a decomposable

rule is equivalent to m-unit-additivity.

Proposition 1. An approval function represents a decomposable rule if and only if it

18 m-unit-additive.

Proof. First, we prove the “only if” part. Suppose that an approval function ¢ represents
a decomposable rule f. Let B!,..., B™ € B be such that Y okec B* = 1,,«,,. Then there
exists P € P such that for each k € G, B¥ = B"*. Since ¢ represents f, for each i € N
and each k € G, fir.(P) = ;(B"*). Thus, by the definition of fractional decisions,
Y wec 0i(BY) =3 1o wi( BPF) =3 oo fie(P) = 1 and ¢ is m-unit-additive.

Next, to prove the “if” part, let ¢ be an m-unit-additive approval function. Define
a rule f using ¢ as follows: for each P € P, each i € N, and each k € G, fix(P) =
@i(BT*). Then f is well-defined by m-unit-additivity of ¢. Thus, f is decomposable
and is represented by ¢. O

In the deterministic setup, decomposability is equivalent to the combination of inde-
pendence of irrelevant opinions and non-degeneracy. The latter equivalence, however,

fails in our fractional model. The following example makes this point.

Example 1 (A rule satisfying independence of irrelevant opinions and non-degeneracy,
but not decomposability). We consider a variant of the one-vote rules. Fix a € G and
for each i € N, (j;,h;) € N2 A rule f* is such that each agent i € N belongs to
group a with at least fraction % and the remaining fraction is determined solely by
entry (ji, hi). That is, for each P € P and each i € N, (i) if Pj,5, = a, then f} (P) = 1;
and (ii) if Py, = b € G\{a}, then f;,(P) = 1 = f;(P). Clearly, f* is independent of
irrelevant opinions and non-degenerate. However, f* is not decomposable. To see this,
suppose, by contradiction, that f* is decomposable and is represented by an approval
function ¢. Consider agent 1 € N. Since f},(anxn) = 1, decomposability implies that
©1(1nxn) = 1. Now let b € G\{a}. Since f},(bnxn) = 3, decomposability again implies

©1(Lpxn) = %, a contradiction. JAN
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For our purpose, it is enough to identify an axiom that when combined with inde-
pendence of irrelevant opinions, implies decomposability. It turns out that deterministic
full range suffices. To prove this, we first establish that under the assumption of inde-

pendence of irrelevant opinions, deterministic full range is equivalent to unanimity:.

Lemma 1. In the presence of independence of irrelevant opinions, deterministic full

range 1s equivalent to unanimity.

Proof. We only show that under the assumption of independence of irrelevant opinions,
deterministic full range implies unanimity (the converse is clear). Let f be a rule
satisfying independence of irrelevant opinions and deterministic full range. For each
k € G, define an approval function ©* : B — [0, 1]V as follows: for each B € B and each
i € N, o¥(B) = fix(P), where P € P is such that B”¥ = B. The m approval functions

(gok) rec are well-defined because [ satisfies independence of irrelevant opinions.

Step 1: For eachi € N and each k € G, ©¥(0,x,) = 0.

Let : € N and k € G. By deterministic full range, there exists P € P such that
fie(P) = 1. Let £,h € G\ {k} be distinct. Let P’ € P be such that for all j,j" € N,
(i) Pj; = k if and only if Pj; = k; and (ii) Pj; = h if and only if Pj; # k. By

independence of irrelevant opinions, fix(P') = fir(P) = 1, so that f;,(P") = 0. Thus,
O (Onxn) = Y (BYY) = fio(P") = 0. Since our choice of k is arbitrary, the claim follows.

Step 2: f is unanimous.

Suppose, by contradiction, that there exist i € N and k € G such that fi(knxn) < 1.
Then, there is ¢ € G\ {k} such that fi;(knxn) > 0. That is, ¢f(0,xp) = @f(Bknxnt) =
fie(knsxn) > 0, contradicting Step 1. O

Now we show that decomposability follows from independence of irrelevant opinions

and deterministic full range.

Proposition 2. Independence of irrelevant opinions and deterministic full range to-

gether imply decomposability.

Proof. Let f be a rule satisfying independence of irrelevant opinions and deterministic
full range. Then f is represented by a profile of m approval functions (¢*)req (as in

the proof of Lemma [l)). By Lemmal I} f is unanimous. Now, we proceed in two steps.
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Step 1: For each P € P, each i € N, and each k € G, if k is not one of the entries of
P, then fix(P) = 0.

Let P € P,i € N, and k € G. Assume that k£ is not one of entries of P. Let
¢ € G\{k} and consider P' = {,,,,,. By Lemmall] fis(P’) =1, so that f;x(P’') = 0. Now
applying independence of irrelevant opinions to P and P, fix(P) = fir(P') = 0.

Step 2: pl =2 =... =™

Suppose, by contradiction, that there are k,¢ € G such that ©* # . Then there
are B € B and i € N such that ¢¥(B) # ¢{(B). Let h € G\ {k,¢}. Let P € P be
such that for all j,5' € N, (i) P = h if and only if B;; = 0; and (ii) P;; = k if and
only if Bj; = 1. Similarly, let P" € P be such that (i) P;j; = h if and only if B;; = 0;
and PJ;, = ( if and only if B;; = 1. By construction, B = BF'* = B. Also, since
BPh = BP'!independence of irrelevant opinions implies fi(P) = fin(P'). Since for
cach a € G\ {k,h}, a is not one of the entries of P, Step 1 implies f;,(P) = 0. Thus,
Ywee fiw(P) = fa(P) + fin(P) = 1. That is, fin(P) = 1 — fu(P) = 1 — ¢f(B™) =
1 — ¢¥(B). Similarly, for each a € G\ {¢,h}, fia(P') =0, so that f;,(P') =1 — p%(B).
However, ©F(B) # ¢(B) implies fi,(P) # fin(P'), a contradiction. O

In the fractional setup, decomposability alone cannot guarantee some basic prop-
erties of approval functions, which stands in contrast with what is known in the de-
terministic setup. For instance, an approval function representing a decomposable rule
may violate all of unanimity, monotonicity, and self-duality. The following example

illustrates this point.

Example 2. Let N = {1,2} and G = {a,b,c}. Let t € [0, %] and define an approval
function ¢ as follows: for each B € B and each i € N, ¢;(B) =t if B = 0gx2; % if
Bl =1; 5L if |[B] = 2; 222 if [B| = 3; and 1 — 2t if B = 1yxo. It is simple to show
that ¢ is m-unit-additive (for each t € [0, %]) Define a rule f by means of ¢ as follows:
for each P € P, each i € N, and each k € G, fi(P) = ¢;(BP*). By construction, f is
represented by ¢ and therefore, it is decomposable. Nevertheless, ¢ is not unanimous
(neither is f) unless t = 0. Also, ¢ is not monotonic unless ¢ € [0, 3]. Finally, ¢ is not

self~dual unless ¢t = 0. A

The approval function defined in Example [2| can work to define a decomposable
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rule while failing several reasonable properties. Our next result indicates that we may

escape those failures by additionally imposing deterministic full range.

Proposition 3. Let f be a rule satisfying decomposability and deterministic full range.

Then an approval function ¢ that represents f is unanimous, self-dual, and monotonic.

Proof. Suppose that f satisfies decomposability and deterministic full range and that
f is represented by ¢. By Lemma [l f is unanimous. By Proposition [} ¢ is m-unit-
additive.

To show that ¢ is unanimous, let i € N. For each k € G, 1 = fix(kpxn) =
@i( B¥n k) = 0;(1,4n). Let Bt = 1,5, and for each k € G\ {1}, B*¥ = 0,,x,. Then, 1 =
> okee Pi(BY) = @i(Lnxn) + (M =1)0i(0nxn) = 1+ (m = 1)i(0nxn). Thus, ©;(0nxn) = 0.

To show that ¢ is self-dual, let B! = B, B> = B and for each k € G\ {1,2},
B* = 0,,4,. Since ZkeG B* = 1,.,, m-unit-additivity and unanimity imply 1;x, =
> ke P(BY) = o(B) + ¢(B). Thus, p(B) = ¢(B).

To show that ¢ is monotonic, suppose, by contradiction, that there are « € N and
B, B’ € B with B < B’ such that ¢;(B) > ¢;(B’). Let B! = B and B? = B’. Let
B?, ...,B™ € Bbesuch that Y, B* = 1,4, (such B?, ..., B™ exist since B' + B* <
B+ B = 1l,x,). By m-unit-additivity and self-duality,

keG\{1,2}

= 1+ Z wi(B),

keG\{1,2}

a contradiction. ]

4 Weighted-average Rules

With preliminary observations on independence of irrelevant opinions at hand, we are

now ready to explore its consequences in detail. In the deterministic case, indepen-
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dence of irrelevant opinions and non-degeneracy characterize the one-vote rules (Cho
and Ju, 2017). An exact counterpart of the latter characterization in the fractional
setup—mnamely that the two axioms characterize the weighted-average rules—does not
hold (see Example . However, the weighted-average rules are the only rules satisfying

independence of irrelevant opinions and the stronger axiom of deterministic full range.

Theorem 1. A rule satisfies independence of irrelevant opinions and deterministic full

range if and only if it is a weighted-average rule.

Proof. In the proof, we use the following notation. A binary problem B € B is a unit
binary problem if |B| = 1 (i.e., there is only one unity in B). For each (j,h) € N2,
let U7" € B be the unit binary problem such that Uj}’f =1.

We omit the simple proof of the “if” part. To prove the “only if” part, let f be
a rule satisfying independence of irrelevant opinions and deterministic full range. By
Proposition [, f is decomposable and is represented by an approval function ¢. Recall
that decomposability of f is equivalent to m-unit-additivity of ¢. Moreover, since f
is unanimous and decomposable, ¢ is unanimous, self-dual, and monotonic. Now it

suffices to show that ¢ is a weighted-average approval function.

Step 1: For each i € N and each B € B\{0nxn}, pi(B) = Z(j,h)eNQ:thzl @i (UM,
We prove the claim by induction. Clearly, (%) the claim is true for each B € B with
|B] = 1. Let ¢ € N be such that ¢ < n?. Suppose that («x) for each i € N and each
B € Bwith |B| < €, 0i(B) = 32 nenzp,,-1 ©;(UM). Let i € N and let B € B be such
that |B| = { + 1. Define m binary problems (Bk)kea as follows: (i) |B'| =1, |B?| = ¢,
and B! + B? = B; (ii) B® = B; and (iii) for each k € G\{1,2,3}, B¥ = 0,,x,,. Since
> ieq BY = 1uxn, m-unit-additivity implies Y, _, ;(B*) = 1. By unanimity, for each
ke G\{1,2,3}, p;(B*) = 0. Now self-duality and the induction hypothesis (*x) imply
pi(B) = ¢i(B) = 1 = ¢i(B) = pi(B') + 0i(B*) = X2 pyenzp, =1 ¥i(U"). Finally, the

claim follows from () and the induction argument.

Step 2: ¢ is a weighted-average approval function.

Let i € N. For each (j,h) € N?, let a;(j,h) = ¢;(U"). By unanimity and Step 1,
Z(M)E]\,g a;(j, h) = Z(M)eNQ 0i(UM) = ¢i(1yxn) = 1. Thus, a; € A(N?). Now by
construction and Step 1, ¢ is a weighted-average approval function, with the associated

weights (o), - O
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Remark 1. The axioms in the theorem are logically independent. The variants of
the one-vote rules in Example [I] satisfy independence of irrelevant opinions but not
deterministic full range. It is simple to construct rules satisfying the latter axiom but

not the former. A

The characterization of the one-vote rules in the deterministic setup follows as a
simple corollary if we restrict Theorem [1| to the class of deterministic rules. To prove,
suppose that f is a deterministic rule satisfying independence of irrelevant opinions and
non-degeneracy. Then f satisfies unanimity (and hence deterministic full range). By
Theorem [T, f is a weighted-average rule. Now the deterministic nature of f implies

that it is a one-vote rule.

Corollary 1 (Cho and Ju, 2017). A deterministic rule satisfies independence of irrel-

evant opinions and non-degeneracy if and only if it is a one-vote rule.

Next, we narrow down to two subfamilies of the weighted-average rules by imposing
two more axioms, one at a time, in addition to the axioms in Theorem First, we
consider a fairness axiom, symmetry. In the deterministic case, the axiom singles out
the liberal rule in the family of one-vote rules. With fractional membership permitted,
however, a few other rules emerge and any convex combination of those rules satisfies
symmetry as well as other axioms. The following result shows that the symmetrized

weighted-average rules obtain once symmetry is additionally imposed.

Theorem 2. Assume that there are at least three agents (n > 3). A rule satisfies
independence of irrelevant opinions, deterministic full range, and symmetry if and

only if it is a symmetrized weighted-average ruleH

Proof. We only prove the “only if” part. Let f be a rule satisfying the three axioms.
By Theorem , [ is a weighted-average rule, with the associated weights (c;),cn €
(A(N?))". Throughout the proof, let a,b € G be distinct groups.

Step 1: For each i € N and all j,h,j',h' € N\{i} with j # h and j' # I, a;(j, h) =
a; (7', 1) (this step applies only when n > 3).

1Tn light of Theorem [1]and logical independence of the axioms in that theorem, it is simple to verify
that the axioms in Theorem [2| are independent.
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Assume that n > 4. We first prove the claim when j = j'. Let i € N. Let
J.h,h' € N\{i} be all distinct. Let P € P be such that P;, = a and all the other
entries of P are b. Then f;,(P) = «;(j,h). Let 1 : N — N be a transposition
that swaps h and A’ only. Then f;,(P;) = «;(j, ). Using 7(i) = ¢ and symmetry,
[i(P) = fz@)(P) = fi(Px), so that a;(j,h) = fia(P) = fia(Pr) = (4, I').

Next, we prove the claim when h = h'. Let ¢ € N. Let j,j/,h € N\{i} be all
distinct. Let PP € P be such that Pj, = a and all the other entries of P are b. Then
fia(P) = a;(j,h). Let m: N — N be a transposition that swaps j and j' only. Then
fia(Pr) = ai(j',h). Using m(i) = ¢ and symmetry, f;(P) = fz@)(P) = fi(Px), so that
a;(j,h) = fia(P) = fia(Pr) = ci(j', ).

Combining the previous two arguments proves the claim for n > 4. The claim for
n = 3 follows from a simpler argument. Write N = {1,2,3}. Let i € N, say, i = 1.
Then we need only to show that a;(2,3) = @;1(3,2). Let P € P be such that Py3 = a
and all the other entries of P are b. Let m : N — N be a transposition that swaps 2
and 3 only. Then fi1,(P) = a1(2,3) and f1.(Pr) = a1(3,2). Using (1) = 1 and
symmetry, f1(P) = frq)(P) = fi(Pr), so that a1(2,3) = f1.(P) = fia(Pr) = a1(3,2).
Step 2: For each i € N and all j,h € N\{i}, (i) ;(j,j) = a;(h,h); (ii) a;(j,i) =
a;(h,i); and (iii) o;(i,j) = a;(i, h).

This can be proved by an argument similar to that in Step 1.

Step 3: Concluding.

By symmetry, a;(1,1) = a2(2,2) = --- = ap(n,n). Let s = a;y(1,1). By Steps 1
and 2, for each i € N, we may let t; = «;(j, j) for some j € N\{i}; u; = «;(j, ) for some
j € N\{i}; v; = a;(i,7) for some j € N\{i}; and w; = «;(j, h) for some j,h € N\{i}
with j # h. Again by symmetry, (¢;,u;, v;, w;) does not depend on i and we can write
t=th=- - =t,, u=U1 =" =U,, V=V =+ =10y, and w =w; = --- = w,. Since
a; € A(N?), s+(n—1t+(n—1Du+(n—1)v+(n*—3n+2)w = 1. Now it is clear that
f is obtained by taking a convex combination of the liberal, almost-diagonal, almost-
column, almost-row, and almost-off-diagonal rules, with weights s, (n — 1)t, (n — 1)u,

(n — 1)v, and (n? — 3n + 2)w, respectively. O

Remark 2. When there are only two agents (n = 2), the almost-diagonal, almost-

column, and almost-row rules are all deterministic and the almost-off-diagonal rule
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does not exist. Thus, for n = 2, the rules satisfying the three axioms in the theorem
are of the following form: there exist weights s,¢,u,v € [0,1] with s +t+u+v =1
such that for each P € P and all i,j € N with ¢ # j, f;(P) is the weighted average
of P, P, P, and P;;, with the associated weights s, t, u, and v, respectively. This
characterization for the two-agent case follows from the proof of the above theorem (the

only difference is that Step 1 is no longer needed). A

The characterization of the liberal rule in the deterministic setup obtains as a corol-
lary to Theorem Except the liberal rule, the other four extreme points of the set
of symmetrized weighted-average rules are all fractional. Thus, a deterministic rule
satisfying independence of irrelevant opinions, non-degeneracy, and symmetry, should

put zero weight on the four extreme points, implying that it is the liberal rule.

Corollary 2 (Cho and Ju, 2017). Assume that there are at least three agents (n > 3).
A deterministic rule satisfies independence of irrelevant opinions, non-degeneracy, and

symmetry if and only if it is the liberal rule.

Next, we turn our attention to another subfamily of the weighted-average rules.
First, observe that a weighted-average rule can base the membership decision for agent ¢
on opinions about other agents. This is because neither independence of irrelevant opin-
ions nor deterministic full range contains a component that governs how membership
decisions should be related across agents. With the aid of weak agentwise change, we

can ensure that positive weights are placed only on opinions about .

Theorem 3. A rule satisfies independence of irrelevant opinions, deterministic full
range, and weak agentwise change if and only if it is an agentwise weighted-average

rule.

Proof. The simple proof of the “if” part is omitted. To prove the “only if” part, let
f be a rule satisfying the three axioms. By Theorem [} f is a weighted-average rule,
with, say, the associated weights (a;);cy € (AN2)N. Let i € N. It suffices to
show that for each (j,h) € N? with h # i, a;(j,h) = 0. Suppose, by contradiction,
that for some (j,h) € N? with h # i, a;(j,h) > 0. Let P,P’ € P be such that
P* # P"and P™" = P'7". Letting k = Py, = P}, € G, fu(P) > ai(j,h) > 0
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and fir(P') > «a;(j,h) > 0. Thus, ||f;(P) — f;(P")|| < 1, violating weak agentwise
change. O

Remark 3. To verify the independence of the axioms in the theorem, Theorem|[I] provides
rules satisfying all but weak agentwise change. The variant of the one-vote rules in
Example 1| such that for each i € N, the decisive entry (j;, h;) for ¢ is in column i
(i.e., h; = 1), satisfies all but deterministic full range. Finally, for a rule satisfying all
but independence of irrelevant opinions, fix a € G and consider the following: for each
P € P and each i € N, (i) if there is k € G with P" = k1, then fi(P) = 1; (ii)
otherwise, fi.(P) = 1. A

Since agentwise unanimity implies both unanimity and weak agentwise change, we

obtain the following corollary.

Corollary 3. A rule satisfies independence of irrelevant opinions and agentwise una-

nimaty if and only if it is an agentwise weighted-average rule.

5 Fractional Consent Rules

The focus of this section is on extending the consent rules in the binary setup (Samet
and Schmeidler, 2003) to our model and characterizing them. Recall that we refer to
rules in the binary setup as approval functions. The spirit underlying a consent ap-
proval function is to approve an agent’s self-opinion if and only if the number of agents
agreeing with him exceeds a given quota. In the binary setup, it is obvious what the
decision should be when the quota is not met: if ¢ views himself as a member (and a
non-member), then the decision will be a non-member (and a member, respectively). A
similar spirit can be implemented in the multinary setup, for instance, by specifying a
default membership against each group (Cho and Ju, 2017). That is, define a mapping
0 : G — G and whenever agent i’s self-opinion is k£ € G and he does not gain sufficient
support from other agents, put ¢ in group d(k). Such rules, however, fail to inherit many
strengths from their binary origin. Groups are not treated symmetrically and introduc-
tion of the mapping ¢ is not natural, compared to how a consent approval function
deals with the case of insufficient social consent. Further, they violate independence of

irrelevant opinions: membership to group 0(k) depends on opinions about group k.
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One way of circumventing these issues is to use consent approval functions to gener-
ate rules via the reverse decomposition process in Section[3] Yet most consent approval
functions, except the liberal one, cannot serve this purpose. The key reason is that the
consent approval functions are deterministic. Therefore, we first generalize them to a
fractional setup and then investigate the rules they generate.

An approval function ¢ is a fractional consent approval function if there exist
non-decreasing functions s : {1,--- ,n} — [0,1] and ¢ : {1,--- ,n} — [0, 1] satisfying
the following: (i) for each B € B and each i € N, (i.a) when B;; = 1, ¢;(B) =
s({j e N:Bj=1}|), and (i.b) when B; = 0, ¢;(B) = 1 —t(|{j € N:B;; =0}|);
and (ii) for each h € {1,--- ,n}, s(h) +¢t(n — h+ 1) > 1. Denote by ¢** the fractional
consent approval function associated with functions s and ¢. Condition (ii) and the
non-decreasing property of s and t ensure that ¢ is monotonic. If s and ¢ assume
only the values of 0 and 1, ¢ is deterministic and it reduces to a consent approval
function as defined by Samet and Schmeidler (2003). Further, in such case, there exist
s*,t* € {1,--- ,n+ 1} such that for each h € {1,--- ,n}, (i) h < s* implies s(h) =0
and h > s* implies s(h) = 1; and (ii) A < t* implies t(h) = 0 and h > t* implies
t(h) = 1. The numbers s* and t* are the consent quotas that parametrize the family of
deterministic consent approval functions in Samet and Schmeidler (2003).

The fractional consent approval functions can be characterized by several axioms. In
addition to the properties of approval functions introduced in Section [3| we consider the
following. An approval function ¢ satisfies agentwise identification if for each i € N
and all B, B' € B with B = B, p;(B) = ¢;(B'). Also, ¢ satisfies symmetry if for
cach B € B and each permutation 7 : N — N, ¢(B;) = ¢.(B) (where B, and ¢.(B)
are similarly defined as P, and f(P) in Section . Finally, ¢ satisfies deterministic
full range if for each i € N, there exist B, B’ € B such that ¢;(B) = 0 and ¢;(B’) = 1.
When restricted to deterministic approval functions, deterministic full range is indeed
equivalent to non-degeneracy. Note that a fractional consent approval function ¢
satisfies deterministic full range if and only if s(n) = t(n) = 1. Deterministic full range
is weaker than unanimity; it is also weaker than self-duality when restricted to the
fractional consent approval functions (the latter implication does not hold in general).

The following result characterizes the fractional consent approval functions by mono-

26



tonicity, agentwise identification, and symmetry.

Theorem 4. An approval function satisfies monotonicity, agentwise identification, and

symmetry if and only if it is a fractional consent approval functz’on.@

Proof. We only prove the “only if” part. Let ¢ be an approval function satisfying the
three axioms in the theorem. By agentwise identification and symmetry, there is a
function 6 : {0,1} x {0,1,--- ,n — 1} — [0,1] such that for each B € B and each
i € N, ¢i(B) = 0(Bi, |{j € N\{i} : Bj; =1}|). By monotonicity, 6(1,-) and 6(0, )
are both non-decreasing. Define functions s and ¢ from {1,--- ,n} to [0, 1] as for each
h e {l,---,n}, s(h) = 0(1,h — 1) and t(h) = 1 — 6(0,n — h). Clearly, s and ¢ are
non-decreasing and ¢ = ©*.

It remains to show that for each h € {1,---,n}, s(h) +t(n —h+1) > 1. Let
h € {1,--- ,n}. Fix agent i € N. Let B € B be such that B;; = 0 and B® has h — 1
ones and n — h + 1 zeros. Let B’ € B be the same as B except that B), = 1. Then
0i(B) =1—t(n—h+1) and ¢;(B’) = s(h). Since monotonicity implies ¢;(B) < ¢;(B’),
it follows that s(h) +t(n —h+1) > 1. O

The characterization of the deterministic consent approval functions (Samet and
Schmeidler, 2003) follows from Theorem : a deterministic approval function satisfies
monotonicity, agentwise identification, and symmetry if and only if it is a deterministic
consent approval function.

Then what rules do the fractional consent approval functions generate when it is used
to represent a rule? Our next result shows that they are indeed the fractional consent
rules as long as deterministic full range is imposed. Recall that the family of fractional
consent rules is parametrized by w € [0, 1]: agent i’s self-opinion is assigned weight w
and each other agent’s opinion about ¢ is assigned weight % When w = 1, we have
the liberal rule, which puts full weight on his self-opinion. On the other hand, when
w = 0, we have the almost-column rule, which puts full weight on the others’ opinions
about ¢, or “social consent” on ¢’s membership, and the weight is evenly distributed

to the n — 1 opinions. Therefore, a choice of w between 1 and 0 corresponds to a

12The logical independence of the axioms in this theorem is clear from Samet and Schmeidler (2003).
One may adapt their examples (of deterministic approval functions) to get fractional approval functions.
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compromise between two principles in determining individual identity: liberalism and
social consent. This is the fractional analog of the principle that underpins the consent
rules in the binary setup. The consent quotas of a given consent rule determines when

an agent’s self-opinion is socially approved, similar to the role of w.

Theorem 5. Suppose that a rule is represented by a fractional consent approval function

satisfying deterministic full range. Then the rule is a fractional consent rule.

Proof. Suppose that a rule f is represented by a fractional consent approval function %
satisfying deterministic full range. Since f satisfies decomposability and deterministic
full range, Proposition 3| implies that ¢ is unanimous and self-dual. Thus, s(n) =
t(n) = 1 and for each h € {1,--- ,n}, s(h) = t(h). Also, recall that ¢ is m-unit-
additive.

Let h € {1,--- ,n—1}. Fix agent 1 € N. Let B',--- , B™ € B be such that

(i) for each j < h, B}, =1, and for each j > h + 1, B}, = 0;

ii) for each 7 < h+1, B]2‘1 = 0, and for each j > h + 2, 3321 =1,
iii) Bj,,, = 1 and for each j # h + 1, B}, = 0;
iv) Bt =... = B™ = 0,x,; and
V) B' 4 4 B™ = 1[5
By m-unit-additivity of ¢*, 1 = ¢;(B') + -+ + ¢;(B™) = s(h) + (1 —t(h+1)) +
(1 —t(n—1))+0+---+0. Since self-duality implies t(h+1) = s(h+1) and t(n—1) =
s(n — 1), simplifying the latter equation yields s(h + 1) — s(h) = 1 — s(n — 1). Thus,

(
(iii) B
(iv) B
(

s(2) —s(1) =s(3) —s(2) =--- =s(n) —s(n—1). Let w=s(1) =t(1) € [0,1]. Then
for each h € {1,--- ,n— 1}, s(h+ 1) — s(h) = t(h + 1) — t(h) = =%, Now it is clear
that f is the fractional consent rule f* associated with w. n

Another characterization obtains when we note that each fractional consent rule is
a convex combination of the liberal and almost-column rules. As shown by Theorem
the latter two rules are extreme points of the set of rules satisfying independence of
irrelevant opinions, deterministic full range, and symmetry. The other three extreme
points—the almost-row, almost-diagonal, almost-off-diagonal rules—determine i’s mem-

bership using opinions that do not directly concern him, in violation of weak agentwise

13Such B!,---, B™ can be constructed because G has at least three groups (m > 3). When m = 3,
condition (iv) would not be needed.
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change. Thus, additionally imposing weak agentwise change, we have the following

characterization.

Theorem 6. Assume that there are at least three agents (n > 3). A rule satisfies inde-

pendence of irrelevant opinions, deterministic full range, symmetry, and weak agentwise

change if and only if it is a fractional consent rule.

A corollary to the above theorem and Corollary [3|is that the fractional consent rules

are the only rules satisfying independence of irrelevant opinions, agentwise unanimity,

and symmetry.
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