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Abstract. This paper is concerned with inference on the cumulative distribution function (cdf)

FX∗ in the classical measurement error model X = X∗ + ε. We show validity of asymptotic

and bootstrap approximations for the distribution of the deviation in the sup-norm between the

deconvolution cdf estimator of Hall and Lahiri (2008) and FX∗ . We allow the density of ε to be

ordinary or super smooth, or to be estimated by repeated measurements. Our approximation

results are applicable to various contexts, such as confidence bands for FX∗ and its quantiles, and

cdf-based tests for goodness-of-fit of parametric models of FX∗ , homogeneity of two samples, and

stochastic dominance. Simulation and real data examples illustrate satisfactory performance of

the proposed methods.

1. Introduction

This paper is concerned with inference on the cumulative distribution function (cdf) FX∗ in
the classical measurement error model X = X∗ + ε, where we observe X instead of X∗ and
ε is a measurement error. For estimation of the probability density function (pdf) fX∗ , there
is rich literature on the density deconvolution (see, Meister, 2009, for a review). In contrast,
literature of estimation and inference on the cdf FX∗ is relatively thin. Fan (1991) proposed
a cdf estimator by integrating the deconvolution density estimator with some truncation. This
truncation for the integral is circumvented in Hall and Lahiri (2008) (for the case where the pdf
fε of ε is symmetric) and Dattner, Goldenshluger and Juditsky (2011) (for the case where fε is
possibly asymmetric). Hall and Lahiri (2008) studied the L2-risk properties of the cdf estimator.
Dattner, Goldenshluger and Juditsky (2011) considered minimax rate optimal estimation of
FX∗ . Both Hall and Lahiri (2008) and Dattner, Goldenshluger and Juditsky (2011) focused on
the risk properties of the estimator F̂X∗(t0) at a given t0 and assumed ordinary smooth densities
for fε. These papers demonstrate that in contrast to the no measurement error case, the cdf
estimator F̂X∗(t0) converges to FX∗(t0) typically at a nonparametric rate. On the other hand,
Söhl and Trabs (2012) established a uniform central limit theorem for linear functionals of the
deconvolution estimator that can be applied to derive a Donsker-type theorem, i.e., the weak
convergence of

√
n{F̂X∗(·) − FX∗(·)} to a Gaussian process. Söhl and Trabs (2012) considered

the case of ordinary smooth fε, and for the Donsker-type result obtained therein, it is demanded
that the Fourier transform f ft

ε satisfies |f ft
ε (·)| ≤ C| · |−β for some β < 1/2 and C > 0, which

excludes the Laplace distribution for example. It must be emphasized that (except for Fan, 1991,
on the truncated estimator) all these papers concentrated on the case of ordinary smooth and
known fε, so the cases of super smooth and unknown fε (with repeated measurements) are not
covered.
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In this paper, we investigate validity of asymptotic and bootstrap approximations for the dis-
tribution of the maximal deviation Tn = supt∈T |F̂X∗(t) − FX∗(t)| in the sup-norm over some
set T between the deconvolution cdf estimator F̂X∗ of Hall and Lahiri (2008) and FX∗ . Our
analysis allows fε to be ordinary or super smooth, or to be unknown and estimated by repeated
measurements. We also characterize the convergence rate of the bootstrap approximation er-
ror and find that it is of polynomial order under ordinary smooth errors and logarithmic order
under super smooth errors. Our approximation results on the distribution of Tn are applicable
to various contexts, such as confidence bands for FX∗ and its quantiles, and cdf-based tests for
goodness-of-fit of parametric models of FX∗ , homogeneity of two samples, and stochastic dom-
inance. We emphasize that some inference problems, such as testing for stochastic dominance,
are cumbersome to be handled by density-based methods. Also, even for problems which can
be dealt with density-based methods (e.g., goodness-of-fit testing), the cdf-based methods are
expected to have desirable power properties.

In the context of the density deconvolution, Bissantz, Dümbgen, Holzmann and Munk (2007)
extended Bickel and Rosenblatt’s (1973) construction of uniform confidence bands for densities
to the classical measurement error model with the ordinary smooth fε. A recent paper by Kato
and Sasaki (2016) considered confidence bands of the pdf fX∗ with unknown fε. In contrast
to the above papers, this paper is concerned with inference on the cdf FX∗ . Dattner, Reiß and
Trabs (2016) proposed a quantile estimator of X∗ and obtained the uniform convergence rate.
This paper provides a confidence band for the quantile function of X∗.

This paper is organized as follows. In Section 2, we focus on the case of known fε and present
the asymptotic and bootstrap approximations for Tn. Section 3 considers the case where fε is
unknown but repeated measurements on X∗ are available, and studies validity of a bootstrap
approximation for the distribution of Tn. Section 4 contains four applications of the main results:
a confidence band for quantiles (Section 4.1), goodness-of-fit test for parametric models of FX∗

(Section 4.2), homogeneity test for two samples (Section 4.3), and test for stochastic dominance
(Section 4.4). Section 5 presents some simulation evidences. In Section 6, we provide a real data
example, stochastic dominance tests for income data in Korea. All proofs are contained in the
Supplement.

2. Case of known measurement error distribution

2.1. Setup. We first introduce our basic setup. Suppose we observe a random sample {Xi}ni=1

generated from
X = X∗ + ε, (1)

where X∗ is an unobservable variable of interest and ε is its measurement error. Throughout
the paper, ε is assumed to be independent of X∗ (i.e., ε is the classical measurement error). Let
i =
√
−1 and f ft be the Fourier transform of a function f . If the pdf fε of ε is known, the pdf

fX∗ of X∗ can be estimated by the so-called deconvolution kernel density estimator (see, e.g.,
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Stefanski and Carroll, 1990)

f̂X∗(t) =
1

nh

n∑
i=1

K
(
t−Xi

h

)
, where K(u) =

1

2π

∫ 1

−1
e−iωu K ft(ω)

f ft
ε (ω/h)

dω, (2)

where h is a bandwidth and K is a kernel function with K ft supported on [−1, 1]. Furthermore,
if fε is symmetric, integration of f̂X∗ yields the following estimator for the cdf FX∗ of X∗ (see,
Hall and Lahiri, 2008)

F̂X∗(t) =
1

2
+

1

n

n∑
i=1

L
(
t−Xi

h

)
, where L(u) =

1

2π

∫ 1

−1

sin(ωu)

ω

K ft(ω)

f ft
ε (ω/h)

dω. (3)

For the general case of possibly asymmetric fε, an estimator for FX∗ is obtained by replacing
L(u) with La(u) = 1

π

∫ 1
0

1
ω Im

[
e−iωu Kft(ω)

f ftε (ω/h)

]
dω (Dattner, Goldenshluger and Juditsky, 2011),

where Im[·] stands for the imaginary part. Although we hereafter focus on the cdf estimator in
(3), our results can be extended to the general asymmetric case.

This section is concerned with approximation for the distribution of the maximal deviation

Tn = sup
t∈T
|F̂X∗(t)− FX∗(t)|, (4)

under the sup-norm, where T is a compact interval specified by the researcher. A direct use
of such approximation is construction of the confidence band for FX∗ over T . Several other
ways to use this approximation are presented in Section 4. In Section 2.2 below, we consider a
bootstrap approximation for the distribution of Tn. In Section 2.3, we also present an asymp-
totic approximation based on the Gumbel distribution for ordinary smooth measurement error
densities.

2.2. Bootstrap approximation. Consider a nonparametric bootstrap resample {X#
i }ni=1 from

{Xi}ni=1 with equal weights. The bootstrap counterpart of Tn is given by T#
n = supt∈T |F̂

#
X∗(t)−

F̂X∗(t)|, where F̂#
X∗ is defined as in (3) using X#

i . To establish validity of the bootstrap approx-
imation, we impose the following assumptions.

Assumption C. (i) {Xi}ni=1 is an i.i.d. sample from X = X∗ + ε. X∗ and ε are independent.
(ii) The densities fX , fX∗, and fε are bounded and continuous on R, and inft∈T δ fX(t) > c for
some c > 0 and δ-expansion T δ of T . Also, E|X∗| < ∞ and E|ε| < ∞. (iii) supω∈R{(1 +

|ω|)γ |f ft
X∗(ω)|} < C for some γ,C > 0. (iv) f ft

ε (ω) 6= 0 for all ω ∈ R, f ft
ε (ω) is differentiable at

all ω ∈ R, and fε is an even function.

Assumption C (i) is on the setup wherein we assume that ε is a classical measurement error.1

Assumption C (ii) is mild but excludes the Cauchy measurement error. This assumption is
required for characterizing the bias of the estimator (see, e.g., Hall and Lahiri, 2008). The Cauchy
measurement error is also ruled out in van Es and Uh (2005) who show pointwise asymptotic
normality of the deconvolution density estimator. Assumption C (iii), analogous to the so-called
Sobolev condition, is used to characterize the rate for the bias term (cf. Hall and Lahiri, 2008).

1The independence assumption between X∗ and ε is standard but, if necessary, can be relaxed to the sub-
independence assumption, see Schennach (2013).
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Assumption C (iv) contains conditions on fε. The first condition is common in the density
deconvolution literature but may be relaxed by taking a ridge approach as in Hall and Meister
(2007). The last condition is used to derive the cdf estimator in (3) as in Hall and Lahiri (2008).
Also when we consider estimation of fε using repeated measurements, symmetry of fε gives us a
simple estimator (Delaigle, Hall and Meister, 2008).

We now present two classes of assumptions on the tail behavior of fε. The first class is called
the ordinary smooth densities.

Assumption OS. (i) There exist β > 1/2 and c, C, ω0 > 0 such that

c|ω|−β ≤ |f ft
ε (ω)| ≤ C|ω|−β,

for all |ω| ≥ ω0. (ii) K is an even function with K ft(ω) = (1−ωq)rI{|ω| ≤ 1} for some q, r ≥ 2.
There exist c1, C1 > 0 such that

n−1/4hβ−1/2

∫
|K(u)|du < C1n

−c1 , (5)

for all n large enough. Also, letting K̄(u) = 1
π

∫ 1
0 cos(ωu) Kft(ω)

f ftε (ω/h)
I{|ω| ≥ hω0}dω, it holds that

hβ−1/2

∫
|K(u)− K̄(u)|du = O(hs), (6)

for some s > 0. (iii) As n→∞, it holds h→ 0,
√
nhβ−1/2 →∞, nνh→ 0 for some ν ∈ (0, 1/2),

and n1+2ξh2(β+γ)−1 → 0 for some ξ > 0.

Assumption OS (i) is a standard condition to characterize ordinary smooth densities. Note
that we focus on the case of β > 1/2, where the cdf estimator F̂X∗ converges at a nonparametric
rate (Dattner, Goldenshluger and Juditsky, 2011). For the case of β < 1/2, the estimator F̂X∗

typically converges at the
√
n-rate and the Donsker-type theorem applies (Söhl and Trabs, 2012).

Assumption OS (ii) contains conditions for the kernel function. The first condition specifies a
particular form for K that is commonly used in the literature (e.g., Delaigle and Hall, 2006). The
second condition ensures that the deconvolution kernel K is L1-integrable. The term n−1/4 in
(5) is required to ensure that the bootstrap counterpart T#

n convergences to a Gaussian process
at a polynomial rate in n (see, Lemma 2). If f ft

ε is twice differentiable, applying the integration
by parts formula twice gives

K(u) =
1

u2

∫ 1

0
cos(ωu)

{
K ft(ω)

f ft
ε (ω/h)

}′′
dω,

and a sufficient condition for (5) is

n−1/4hβ−1/2 sup
|ω|≤1

∣∣∣∣∣
{
K ft(ω)

f ft
ε (ω/h)

}′′∣∣∣∣∣ = O(n−c1),

for some c1 > 0. The third condition assures that K is well approximated by its trimmed version
K̄. Since ∫

|K(u)− K̄(u)|du =
1

π

∫ ∣∣∣∣∫ hω0

0
cos(ωu)

K ft(ω)

f ft
ε (ω/h)

dω

∣∣∣∣ du,
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applying the integration by parts formula twice again implies that a sufficient condition for (6)
is given by

hβ+1/2 sup
|ω|≤hω0

max

{∣∣∣∣∣
(
K ft(ω)

f ft
ε (ω/h)

)′∣∣∣∣∣ ,
∣∣∣∣∣
(
K ft(ω)

f ft
ε (ω/h)

)′′∣∣∣∣∣
}

= O(hs),

for some s > 0. Based on the above sufficient conditions, it is possible to show that Assumption
OS (ii) is satisfied by a large class of ordinary smooth error distributions including Laplace and its
convolutions. Intuitively these conditions mean that f ft

ε should not oscillate too wildly around its
trend implied by the ordinary smooth density. Finally, Assumption OS (iii) contains conditions
for the bandwidth h.

The second class of measurement error densities, called the super smooth densities, is presented
as follows.

Assumption SS. (i) There exist µ, c, C, ω0, λ > 0 and λ0 ∈ R such that

c|ω|λ0 exp(−|ω|λ/µ) ≤ |f ft
ε (ω)| ≤ C|ω|λ0 exp(−|ω|λ/µ),

for all |ω| ≥ ω0. (ii) K is an even function with K ft(ω) = (1−ωq)rI{|ω| ≤ 1} for some q, r ≥ 2.
There exist µ1 > 2µ and c1, C1 <∞ such that

1

ς(h)

∫
|K(u)|du < C1h

−c1 exp

(
1

µ1hλ

)
, (7)

for all n large enough, where

ς(h) = hϑ exp

(
1

µhλ

)
(8)

with ϑ = λ(s + 1/2) + λ0 + 1/2. Also, letting K̄(u) = 1
π

∫ 1
0 cos(ωu) Kft(ω)

f ftε (ω/h)
I{|ω| ≥ hω0}dω, it

holds that
1

ς(h)

∫
|K(u)− K̄(u)|du = O(n−s), (9)

for some s > 0. (iii) h =
(µ

2 log n+ µθ log log n
)−1/λ for some θ ∈ ((ϑ− γ)/λ+ 1, ϑ/λ).

Assumption SS (i) a standard condition to characterize super smooth densities. Assumption
SS (ii) contains conditions for the kernel function, and similar comments apply as the ordinary
smooth case. The condition µ1 > 2µ is required to guarantee that the bootstrap counterpart
T#
n convergences to a Gaussian process at a polynomial rate in n (see, Lemma 5). If f ft

ε is twice
differentiable, a sufficient condition for (7) is

1

ς(h)
sup
|ω|≤1

∣∣∣∣∣
(
K ft(ω)

f ft
ε (ω/h)

)′′∣∣∣∣∣ dω = O

(
h−a exp

(
1

µ1hλ

))
,

for some a > 0. Also, a sufficient condition for (9) is

exp

(
− 1

µhλ

)
sup
|ω|≤hω0

max

{∣∣∣∣∣
(
K ft(ω)

f ft
ε (ω/h)

)′∣∣∣∣∣ ,
∣∣∣∣∣
(
K ft(ω)

f ft
ε (ω/h)

)′′∣∣∣∣∣
}

= O(n−a1),

for some a1 > 0. For instance, these conditions are satisfied if

sup
|ω|≤1

max{|A′(ω/h)|, |A′′(ω/h)|} = O

(
h−a1 exp

(
1

µ1hλ

))
, (10)

5



for some a1 > 0, where A(ω) = exp(−|ω|λ/µ)
f ftε (ω)

. Based on (10), we can see that Assumption SS
(ii) is satisfied by a large class of super smooth error distributions including Gaussian and its
convolutions. Since the function A inherits the differentiability properties of f ft

ε , the condition
(10) intuitively means that f ft

ε should not oscillate too wildly around its trend implied by the
super smooth density. Assumption SS (iii) is on the bandwidth h. Note that this condition
implicitly requires γ > λ.

Let ĉα denote the (1−α)-th quantile of the bootstrap statistic T#
n . Under these assumptions,

validity of the bootstrap approximation is established as follows.2

Theorem 1. Suppose that Assumption C holds true. Then

P{Tn ≤ ĉα} ≥ 1− α− δn, (11)

for some positive sequence δn = O(n−c) (under Assumption OS) or δn = O((log n)−c) (under
Assumption SS) with c > 0.

Remark 1. Based on this theorem, we can construct an asymptotic confidence band for FX∗

over T with level α as Cn(t) = [F̂X∗(t)± ĉα] for t ∈ T in the sense that

P{FX∗(t) ∈ Cn(t) for all t ∈ T } ≥ 1− α− δn,

for δn = O(n−c) (under Assumption OS) or δn = O((log n)−c) (under Assumption SS) with some
c > 0. Note that the approximation error δn is of polynomial order under Assumption OS (the
ordinary smooth case) and of logarithmic order under Assumption SS (the super smooth case).
We also note from the proof of the theorem that the slower approximation rate for the super-
smooth case is solely due to the bias; if bias correction were possible, the bootstrap approximation
error would be of polynomial order in both cases.

Remark 2. To implement the bootstrap approximation in Theorem 1, we need to choose the
bandwidth h. For estimation of the cdf FX∗(t0) at a given t0, Hall and Lahiri (2008) suggested to
choose h to minimize the approximate integrated MSE based on the normal reference distribution
on X∗. For estimation of the quantile function of X∗, Dattner, Reiß and Trabs (2016) developed
an adaptive method to choose h based on Lepski (1990). In Section 5 for simulations, we suggest
a bandwidth selection rule based on Bissantz, Dümbgen, Holzmann and Munk (2007). The basic
idea is to estimate the ideal bandwidth that minimizes the maximal deviation between F̂X∗ and
FX∗ under the sup-norm by utilizing a series of estimates F̂X∗ based on different values of h.

2.3. Asymptotic Gumbel approximation for ordinary smooth case. For the ordinary
smooth case, it is also possible to characterize the asymptotic distribution of the standardized
object

tn = sup
t∈T
|fX(t)−1/2{F̂X∗(t)− FX∗(t)}|, (12)

2Here we present the bootstrap approximation result for the statistic Tn decaying to zero. The result may be
presented for its normalized counterpart. This is analogous to whether we present the bootstrap approximation
for the non-normalized object θ̂−θ or normalized one

√
n(θ̂−θ), where θ is some parameter and θ̂ is its estimator.
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by the Gumbel distribution. Under additional assumptions, listed in Assumption G in the
Supplement (Appendix C), we can follow similar steps in Bickel and Rosenblatt (1973) and
Bissantz, Dümbgen, Holzmann and Munk (2007) to show the following result.

Theorem 2. Suppose that Assumptions C,OS, and G hold, and (nh)−1(log n)3 → 0 as n→∞.
Then

P
{

(−2 log h)1/2(B−1/2tn − bn) ≤ c
}
→ exp(−2 exp(−c)), (13)

for all c ∈ R, where the constant B and sequence bn are defined in the Supplement (eq. (25)).

See the Supplement (Appendix C) for a detailed discussion on Assumption G and proof of
this theorem.

Remark 3. As shown in (13), the limiting behavior of tn is characterized by the Gumbel
distribution. Based on (13) and the conventional kernel density estimator f̂X for fX , we can also
obtain an asymptotically valid critical value to conduct inference. For example, the asymptotic
confidence band at level α for FX∗ is given by

CGn (t) = [F̂X∗(t)±B1/2f̂X(t)1/2{cGα (−2 log h)−1/2 + bn}],

for t ∈ T , where cGα solves exp(−2 exp(−cGα )) = α. However, as discussed in the next remark, the
asymptotic Gumbel approximation requires additional assumptions and tends to be less accurate
than the bootstrap approximation.

Remark 4. Compared to the bootstrap approximation, the asymptotic Gumbel approximation
has two drawbacks. First, the Gumbel approximation requires an additional assumption (As-
sumption G). Second, as indicated by Bissantz, Dümbgen, Holzmann and Munk (2007), the
approximation error (i.e., δn in (11) for the bootstrap approximation) by (13) is typically a
logarithmic rate even under Assumption OS, and therefore tends to be less accurate than the
bootstrap approximation in (11). This contrast between the asymptotic Gumbel and bootstrap
approximations was first clarified by Chernozhukov, Chetverikov and Kato (2014) for construc-
tion of confidence bands on the density with no measurement error. Kato and Sasaki (2016) ex-
tended their results for confidence bands on the pdf fX∗ with unknown fε. We obtain analogous
results for confidence bands on the cdf FX∗ . We also note that in contrast to Chernozhukov,
Chetverikov and Kato (2014) and Kato and Sasaki (2016) who employed Gaussian multiplier
bootstrap methods, Theorem 1 shows validity of the conventional nonparametric bootstrap. Ac-
cordingly the techniques used in the proof of Theorem 1 are quite different: in particular, we
employ Komlós, Major and Tusnády’s (1975) coupling along with anti-concentration inequalities
for Gaussian processes (Chernozhukov, Chetverikov and Kato, 2015) while the latter employ
the Slepian-Stein type coupling for suprema of empirical processes constructed in Chernozhukov,
Chetverikov and Kato (2014). Finally, we also obtain deterministic bounds on the approximation
error of the bootstrap; to the best of our knowledge this is new in the literature on deconvolution.

Remark 5. We note that the asymptotic Gumbel approximation in (13) is available only for the
ordinary smooth case. It remains an open question whether we can establish such an asymptotic
approximation for the super smooth case. As discussed in Bissantz, Dümbgen, Holzmann and
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Munk (2007, p. 486) for the density deconvolution, the main difficulty is that the limiting form
of the deconvolution kernel (eq. (24) in Appendix C of the Supplement) is not available for the
super smooth case. On the other hand, as shown in Theorem 1, we emphasize that the bootstrap
approximation is valid even for the super smooth case.

3. Case of unknown measurement error distribution

The assumption of known measurement error density fε is unrealistic in many applications. In
this section, we consider the situation where fε is unknown and needs to be estimated. In general,
fε cannot be identified by a single measurement. Identification of fε can be restored however
if we have two or more independent noisy measurements of the variable X∗. More specifically,
suppose that we observe

Xi,j = X∗i + εi,j for j = 1, . . . , Ni and i = 1, . . . , n,

where X∗i is the error-free variable and εi,j ’s are independently distributed measurement errors
from the density fε. We thus have Ni repeated measurements of each variable X∗i . We shall
assume that the number of repeated observations is bounded above (i.e., Ni ≤ C <∞ for all i).
This assumption is not critical for our theory but allows us to simplify the proofs considerably.
Since in practice the number of repeated measurements is small anyway, we do not pursue the
generalization to growing C. Under the assumption that fε is symmetric (Assumption C (iv)),
its Fourier transform f ft

ε can be estimated by (Delaigle, Hall and Meister, 2008)

f̂ ft
ε (ω) =

∣∣∣∣∣∣ 1

N

n∑
i=1

Ni∑
(j1,j2)∈Ji

cos{ω(Xi,j1 −Xi,j2)}

∣∣∣∣∣∣
1/2

, (14)

where N = 1
2

∑n
i=1Ni(Ni − 1) , Ji is the set of 1

2Ni(Ni − 1) distinct pairs (j1, j2) with 1 ≤ j1 <
j2 ≤ N , and we ignore all the observations with Ni = 1. By plugging this estimator into (3), we
can estimate the cdf FX∗ by

F̃X∗(t) =
1

2
+

1

N

n∑
i=1

Ni∑
j=1

L̃
(
t−Xi,j

h

)
, where L̃(u) =

1

2π

∫ 1

−1

sin(ωu)

ω

K ft(ω)

f̂ ft
ε (ω/h)

dω. (15)

In this section, we consider bootstrap approximation of the distribution of the maximal devi-
ation T̃n = supt∈T |F̃X∗(t)− FX∗(t)|. To construct the bootstrap counterpart of T̃n, we suggest
resampling from the set of observed variables {Xi,j} while keeping the estimated measurement
error density f̂ ft

ε the same. More precisely, the bootstrap version of F̃X∗ is given by

F̃#
X∗(t) =

1

2
+

1

N

n∑
i=1

Ni∑
j=1

L̃

(
t−X#

i,j

h

)
,

where X#
i,j is randomly drawn from the pooled observations {Xi,j}. The bootstrap counterpart

of T̃n is obtained as T̃#
n = supt∈T |F̃

#
X∗(t)− F̃X∗(t)|.

To establish validity of the bootstrap approximation by T̃#
n , we first show that the cdf estimator

F̃X∗ under repeated measurements converges fast enough under the sup-norm to F̂X∗ so that
the distributional properties of the latter would continue to hold. Previously, for the case of
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density deconvolution, Delaigle, Hall and Meister (2008) showed that under certain conditions,
the deconvolution pdf estimator f̃X∗ using f̂ ft

ε enjoys the same first-order asymptotic properties
as the estimator f̂X∗ in (2) for the case of known fε. Also, this result was obtained in terms of
the uniform MSE metric, suptE|f̃X∗(t) − f̂X∗(t)|2. Since validity of the confidence bands rests
on controlling the sup-norm, we derive a corresponding result for the cdf estimators under the
sup-norm. To this end, we add the following conditions.

Assumption B. (i) There exist c ∈ (0, 1) and C > 0 such that P{|ε| ≥ M} ≤ C(logM)−1/c

for all M > 0. (ii) As n → ∞, it holds h → 0,
√
nhβ−1/2 → ∞, log n/(nh4β) → 0, and

nh4β+1 →∞.

Based on these conditions, we are able to prove the following theorem.

Theorem 3. Suppose that Assumptions C, OS, and B hold with γ > β + 1. Then for some
c > 0,

√
nhβ−1/2 sup

t∈T
|F̃X∗(t)− F̂X∗(t)| = op(n

−c).

Let c̃α be the (1− α)-th quantile of the bootstrap statistic T̃#
n . Based on the above theorem,

validity of the bootstrap approximation is established as follows.

Theorem 4. Suppose that Assumptions C, OS, and B hold with γ > β + 1. Then

P{T̃n ≤ c̃α} ≥ 1− α− op(1). (16)

Remark 6. Based on this theorem, we can construct an asymptotic confidence band for FX∗

over T with level α as [F̃X∗(t) ± c̃α] for t ∈ T . The key additional requirement γ > β + 1

says that fX∗ is smoother than fε by up to a derivative. As shown in Theorem 3, this ensures
that the error from estimating f ft

ε is asymptotically negligible. Also, we note that the conditions
nh4β+1 → ∞ in Assumption B (ii) and n1+2ξh2(β+γ)−1 → 0 for some ξ > 0 in Assumption OS
(iii) hold simultaneously only if γ > β + 1.

Remark 7. Note that the above theorems are presented only for the ordinary smooth case.
A similar result can be derived for the super smooth case under the assumption that fX∗ is
smoother than fε, i.e. the former is also super smooth. One such sufficient condition in the
super smooth case could be ∫ ∣∣∣∣ωaf ft

X∗(ω)

f ft
ε (ω)

∣∣∣∣2 dω <∞,
for all a > 0.

Remark 8. Here we focus on the case where repeated measurements on X∗ are available and f ft
ε

can be estimated by (14) under the symmetry assumption on fε. If fε is not necessarily symmetric
but repeated measurements are available, then we can employ the estimator by Li and Vuong
(1998) or Comte and Kappus (2015) based on Kotlarski’s identity. Also, in some applications, a
separate independent experiment may give us observations from fε (see, e.g., Efromovich, 1997,
and Neumann, 1997). See Meister (2009, Section 2.6) for an overview on estimation of fε. We
can expect that similar results hold true for other estimators of f ft

ε under different setups as far

9



as the estimator f̂ ft
ε to construct F̃X∗ converges sufficiently fast to f ft

ε so that the estimation
error F̃X∗(t)− F̂X∗(t) is negligible.

4. Applications

4.1. Confidence band for quantile function. In addition to the confidence band for FX∗ ,
the results in the previous sections can be utilized to obtain the confidence band for the quantile
function of X∗. Hall and Lahiri (2008) proposed to estimate the u-th quantile Q(u) = F−1

X∗ (u)

by
Q̂(u) = sup{t : F̂m

X∗(t) ≤ u},

where F̂m
X∗(t) = supy≤t F̂X∗(y) is a monotone version of F̂X∗(t). To obtain the confidence band

for the quantile function Q(u) over some interval [u1, u2], we impose the following assumptions.

Assumption Q. (i) F−1
X∗ (u) exists and is unique for all u ∈ [u1, u2] such that 0 < u1 < u2 < 1.

There exists an interval H satisfying F−1
X∗ [u1 − ε, u2 + ε] ⊂ H for some ε > 0, infx∈H fX(x) > 0,

and 0 < infx∈H fX∗(x) ≤ supx∈H fX∗(x) < ∞. (ii) supx∈H |fX∗(x + δ) − fX∗(x)| ≤ M |δ|a for
all δ sufficiently small, with a > 0 (under Assumption OS) and a = 1 (under Assumption SS).

Based on these assumptions, we can obtain the asymptotic confidence bands for the quantile
function as follows.

Theorem 5. Suppose that Assumptions C, Q, and either OS or SS hold true. Then,

P

{
Q̂(u)− ĉα

f̂X∗(Q̂(u))
≤ Q(u) ≤ Q̂(u) +

ĉα

f̂X∗(Q̂(u))
for all u ∈ [u1, u2]

}
≥ 1− α− o(1).

Remark 9. Dattner, Reiß and Trabs (2016) have obtained the uniform convergence rate of their
quantile estimator, say Q̄(u), based on the M-estimation method. In particular, Dattner, Reiß
and Trabs (2016, Proposition 2.6) obtained that under an MSE optimal choice of the bandwidth,

sup
u∈[u1,u2]

|Q̄(u)−Q(u)| = Op

((
log n

n

) γ
2(β+γ)−1

)
.

Thus, Theorem 5 is complementary in that it provides a confidence band for Q(u) over u ∈
[u1, u2]. Note that as with the case of the cdf, we require under-smoothing to obtain the asymp-
totically valid confidence band, which excludes the MSE optimal bandwidth.

4.2. Goodness-of-fit testing. Another useful application of our results is goodness-of-fit test-
ing on parametric models for FX∗ . Consider a parametric model {GX∗(·, θ) : θ ∈ Θ} for the
distribution of the error-free variable X∗ of interest. For simplicity, suppose the measurement
error density fε is known as in Section 2. Our method can be adapted to the case of unknown
fε. The goodness-of-fit testing problem of our interest is

H0 : FX∗(t) = GX∗(t, θ) over t ∈ T for some θ ∈ Θ,

against negation of H0. Let θ̂ be some
√
n-consistent estimator of the true parameter θ0 under

H0. A typical example of θ̂ is the maximum likelihood estimator using the density function∫
gX∗(t− a, θ)fε(a)da on the observable X, where gX∗ is the density of GX∗ .

10



To test H0, we can employ the Kolmogorov-type statistic

Kn = sup
t∈T
|F̂X∗(t)−GX∗(t, θ̂)|,

and its bootstrap counterpart is given by

K#
n = sup

t∈T
|F̂#
X∗(t)−GX∗(t, θ̂

#)|,

where F̂#
X∗ and θ̂

# are computed by the (parametric) bootstrap resample {X#
i }ni=1 from X# =

X#
∗ + ε# with X#

∗ ∼ GX∗(·, θ̂) and ε# ∼ fε. In contrast to the no measurement error case, the
cdf estimator F̂X∗ converges at a slower rate than

√
n. Therefore, if θ̂ is

√
n-consistent, then

the estimation error of θ̂ is negligible under H0, and the validity of the bootstrap critical value
follows by a modification of the proof of Theorem 1. The result is summarized in the following
corollary. Let ĉKα be the (1− α)-th quantile of K#

n .

Corollary 1. Suppose that Assumption C holds true, the null H0 is satisfied at θ0,
√
n(θ̂−θ0) =

Op(1), and the density of GX∗(·, θ) is bounded for all θ in a neighborhood of θ0. Then

P{Kn > ĉKα } ≤ α+ δn,

for some positive sequence δn = O(n−c) (under Assumption OS) or δn = O((log n)−c) (under
Assumption SS) with c > 0.

Consistency of the test can be shown analogously. If fε is unknown but repeated measurements
on X∗ are available, a similar result holds true by replacing F̂X∗ and F̂#

X∗ with F̃X∗ and F̃#
X∗ ,

respectively.

4.3. Homogeneity test. Our bootstrap and asymptotic approximation results can be extended
to two sample problems. Let {Xi}ni=1 and {Yi}mi=1 be two independent samples of X and Y . X
is generated as in (1). Also Y is generated as

Y = Y ∗ + δ,

where Y ∗ is the unobservable error-free variable with the distribution function FY ∗ and δ is its
measurement error. We assume δ is independent of Y ∗. Suppose we wish to test the homogeneity
hypothesis

H0 : FX∗(t) = FY ∗(t) for all t ∈ T ,

against the negation of H0. The Kolmogorov-type statistic presented in the last subsection can
be modified as follows

Sn,m = sup
t∈T
|F̂X∗(t)− F̂Y ∗(t)|,

where F̂Y ∗ is the estimator for FY ∗as in (3) using the sample {Yi}mi=1. In this case, the bootstrap
counterpart of Sn,m is given by

S#
n,m = sup

t∈T

∣∣∣F̂#
X∗(t)− F̂

#
Y ∗(t)− {F̂X∗(t)− F̂Y ∗(t)}

∣∣∣ ,
11



where F̂#
Y ∗ using the sample {Yi}mi=1 is defined in the same manner as F̂#

X∗ . The (1 − α)-th
quantile ĉSα of S#

n,m provides an asymptotically valid critical value as follows.

Corollary 2. Suppose that Assumption C holds true for both X = X∗ + ε and Y = Y ∗ + δ, and
that n/(n+m)→ τ ∈ (0, 1) as n,m→∞. Then under H0

P{Sn,m > ĉSα} ≤ α+ δn,m,

for some positive sequence δn,m = O(n−c) (under Assumption OS for both ε and δ) or δn,m =

O((log n)−c) (under Assumption SS for both ε and δ) with c > 0.

An analogous result is available for the case of unknown fε by replacing F̂X∗ and F̂Y ∗ with their
repeated measurements versions. Also, if we wish to test the homogeneity hypothesis H0 but
Y has no measurement error (i.e., Y = Y ∗), we can replace F̂Y ∗ with the empirical distribution
function of the sample {Yi}mi=1.

4.4. Stochastic dominance test. Another intriguing application of our main results is testing
the hypothesis of the (first-order) stochastic dominance

H0 : FX∗(t) ≤ FY ∗(t) for all t ∈ T , (17)

against the negation of H0. By modifying the Kolmogorov-type test in Section 4.3, the test
statistic for (17) and its bootstrap counterpart are given by

Dn,m = sup
t∈T
{F̂X∗(t)− F̂Y ∗(t)},

D#
n,m = sup

t∈T

{
F̂#
X (t)− F̂#

Y (t)− {F̂X(t)− F̂Y (t)}
}
,

where F̂#
X and F̂#

Y are computed as in (3) using nonparametric bootstrap resamples {X#
i }ni=1

and {Y #
i }mi=1 from {Xi}ni=1 and {Yi}mi=1, respectively.

Let ĉDα denote the (1− α)-th quantile of the bootstrap statistic D#
n,m. The bootstrap validity

of our stochastic dominance test is established as follows.

Theorem 6. Suppose that Assumption C holds true for both X = X∗ + ε and Y = Y ∗ + δ, and
that n/(n+m)→ τ ∈ (0, 1) as n,m→∞.

(i): Under H0,
P{Dn,m > ĉDα } ≤ α+ %n,m,

for some positive sequence %n,m = O(n−c) (under Assumption OS for both ε and δ) or
%n,m = O((log n)−c) (under Assumption SS for both ε and δ) with c > 0.

12



(ii): Let P0 be the set of probability measures of (X,Y ) satisfying H0 (but fδ and fε are
fixed) and

0 < cX ≤ inf
t∈T

fX(t) ≤ sup
t∈T

fX(t) ≤ CX <∞,

0 < cY ≤ inf
t∈T

fY (t) ≤ sup
t∈T

fY (t) ≤ CY <∞,

sup
ω∈R
{(1 + |ω|)γX |f ft

X∗(ω)|} ≤MX <∞,

sup
ω∈R
{(1 + |ω|)γY |f ft

Y ∗(ω)|} ≤MY <∞,

for some cX , cY , γX , γY , CX , CY ,MX ,MY > 0 that are independent of (fX , fY ). Then

sup
P∈P0

P{Dn,m > ĉDα } ≤ α+ %n,m,

for some positive sequence %n,m = O(n−c) (under Assumption OS) or %n,m = O((log n)−c)

(under Assumption SS) with c > 0.
(iii): Under the alternative H1 (i.e., H0 is false) and Assumption OS or SS,

P{Dn,m > ĉDα } → 1.

Remark 10. Based on the proof of Theorem 6 (iii), we can characterize some local power
properties. Suppose that both measurement errors are ordinary smooth. For any sequence
Mn →∞, Dn,m is consistent (i.e., P{Dn,m > ĉDα } → 1) against local alternatives of the form

H1n : FY ∗(t) > FX∗(t) +Mnγn for some t ∈ T ,

where

γn = n−1/2

(√
log(1/hX)

h
βX−1/2
X

∨
√

log(1/hY )

h
βY −1/2
X

)
,

and hX and hY are (possibly different) bandwidths for the estimators F̂X∗ and F̂Y ∗ , respectively.
A similar expression is available for γn in the super smooth case with hβX−1/2

X , h
βY −1/2
Y replaced

by ς−1
X (hX), ς−1

Y (hY ) respectively. Finally in the mixed error case, i.e when one of the errors is
ordinary smooth while the other is super-smooth, the value of γn is determined by the super-
smooth error (e.g γn = n−1/2ςX(hX)

√
log(1/hX) if ε is super-smooth).

5. Simulation

In this section, we investigate the finite sample performance of the bootstrap uniform confi-
dence band discussed in Theorem 1 using simulation experiments.

5.1. Simulation designs. We generate data from the model (1), where the unobserved variable
of interest X∗ is drawn from the normal distribution N(0, σ2

X∗) and the measurement error ε
is drawn from the Laplace distribution L(0, σ2

ε) or the normal distribution N(0, σ2
ε). We fix

σX∗ = 1 and choose σε so that ’signal-to-noise ratio (SNR)’ is given by σX∗/σε = 2, 3, 4. We use
the kernel function K defined by

K(ω) =
48 cosω

πω4

(
1− 15

ω2

)
− 144 sinω

πω5

(
2− 5

ω2

)
,
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whose Fourier transformation is given by K ft(ω) = (1 − ω2)3 · I{|ω| ≤ 1}. We consider four
different sample sizes n = 100, 250, 500, 1000 and three different confidence levels 1 − α =

0.80, 0.90, 0.95. The number of simulation and bootstrap repetitions are 2000 and 1000, re-
spectively. We compute the coverage probabilities of our confidence bands for FX∗ over the
interval [−2σX∗ , 2σX∗ ].

5.2. Bandwidth choice. We adapt the bandwidth selection method of Bissantz, Dümbgen,
Holzmann and Munk (2007, Section 5.2) to the cdf estimation. First we consider J different
bandwidths: hj = h0j/J for j = 1, 2, . . . , J , where h0 is a pilot bandwidth. A pilot bandwidth is
an over-smoothing bandwidth obtained by multiplying γ > 1 to the normal reference rule of Hall
and Lahiri (2008, Section 4.2). The normal reference rule was originally suggested by Delaigle
and Gijbels (2004) to estimate density functions and was modified by Hall and Lahiri (2008) to
the setting of estimating distribution functions. For j = 2, . . . , J , define the distances

L∞(F̂X∗ , FX∗) = ||F̂X∗ − FX∗ ||∞, d
(∞)
j−1,j = ||F̂X∗,j−1 − F̂X∗,j ||∞,

where F̂X∗,j denotes the deconvolution estimator (3) with bandwidth h = hj and || · ||∞ denotes
the supremum norm. For over-smoothing bandwidths, L∞(F̂X∗ , FX∗) changes only moderately
with increasing bandwidth, while with undersmoothing bandwidth the distance suddenly in-
creases with decreasing bandwidth. Based on this observation, Bissantz, Dümbgen, Holzmann
and Munk (2007) suggest to choose the bandwidth to be the largest bandwidth at which d(∞)

j−1,j

is more than τ(τ > 1) times greater than d(∞)
J−1,J . In our simulations, we choose J = 20 (number

of bandwidths), τ = 3 and γ = 1.5. (We find that the simulation results are insensitive to the
precise choice of the parameters.

Figures 1 and 2 illustrate the distances over different bandwidths for 3 different random samples
with the measurement error drawn from the Laplace and normal distributions, respectively. A
comparison of two plots in a Figure indicates that the bandwidth at which d(∞)

j−1,j changes suddenly
(marked by a circle, a square, or star) is a good indicator of the bandwidth at which the true
distance L∞ is about to stagnate.

5.3. Simulation results. Table 1 presents the empirical coverage probabilities of our bootstrap
confidence bands. The simulated probabilities are generally close to the nominal confidence
levels. As we expected, the coverage errors tend to be smaller when the sample size is larger or
when the signal-to-ratio is larger.

Figures 3 and 4 depict some typical examples for the true cdf (CDF, FX∗), deconvolution cdf
estimate (ECDF, F̂X∗), and uniform confidence bands (CB), when the latent true distribution is
standard normal and the measurement errors are drawn from Laplace and normal distributions.
They show that the uniform confidence bands perform reasonably well even for small sample
size n = 100 and the widths of the bands shrink substantially as the sample size increases from
n = 100 to n = 500.
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Figure 1. L∞ and d∞j−1,j distances under Laplace error
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Figure 2. L∞ and d∞j−1,j distances under Normal error

Level n Laplace Error Normal Error
SNR=2 SNR=3 SNR=4 SNR=2 SNR=3 SNR=4

0.80 100 0.818 0.828 0.828 0.780 0.833 0.826
250 0.811 0.818 0.823 0.790 0.803 0.810
500 0.807 0.812 0.830 0.793 0.805 0.817
1000 0.811 0.824 0.836 0.763 0.789 0.812

0.90 100 0.911 0.919 0.924 0.882 0.920 0.924
250 0.897 0.913 0.916 0.888 0.899 0.903
500 0.902 0.915 0.921 0.880 0.892 0.911
1000 0.898 0.907 0.919 0.883 0.886 0.903

0.95 100 0.963 0.961 0.961 0.943 0.956 0.967
250 0.957 0.958 0.963 0.938 0.947 0.956
500 0.953 0.959 0.962 0.936 0.949 0.959
1000 0.951 0.955 0.958 0.932 0.945 0.955

Table 1. Simulated uniform coverage probabilities for FX∗ under Laplace and
Normal errors.

6. Real data example

6.1. Data description. In this section, we apply the stochastic dominance test to the Korea
Household Income and Expenditure Survey data to investigate welfare changes of different pop-
ulation sub-groups between 2006 and 2012. We use the data because the OECD report (2008)
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Figure 3. Uniform confidence bands under Laplace (left) and Normal (right)
errors with n = 100
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Figure 4. Uniform confidence bands under Laplace (left) and Normal (right)
errors with n = 500

shows that, among OECD countries, Korea has the most significant variations in within-age
group inequality and, compared to the inequality within the working age group, the relative
inequality within the retirement age group is the worst. The data fit into our framework because
it is well known that survey data are inherently affected by various sources of measurement
errors, see Deaton (1997) and Bound, Brown and Mathiowetz (2000) for potential sources of
measurement errors in household-based survey data. The survey reports incomes from various
sources and consumption of goods and services for each household. We first compute the real
household disposable income by adding all incomes, public pension, social benefits and transfers,
minus tax, public pension premium and social security fees, after adjusting for inflation using
the 2010 consumer price index. We then obtain the individualized data by adjusting the to-
tal household disposable income using the square-root equivalization scale, which is a common
practice to approximate individual welfare.

Table 2 shows the descriptive statistics for the data. It shows that average real incomes of
individuals in all age group except those over 70 have increased from 2006 to 2012. Standard
deviations of all incomes have also slightly increased over the same period. The results are
consistent with the finding of OECD (2008). However, unless the income distributions are
normal, comparison of only the first two moments is not sufficient to draw a conclusion on the
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Year Age Group Sample Size Mean S.D.
2006 25-45 12045 1,650 910

45-65 8512 1,575 1,034
60+ 4605 1,047 862
65+ 3250 968 823
70+ 2050 944 823

2012 25-45 8722 1,800 910
45-65 7653 1,814 1,106
60+ 5166 1,105 934
65+ 3700 974 879
70+ 2439 891 857

Table 2. Descriptive Statistics (Income unit: 1,000 won)

uniform ordering of nonparametric income distributions that does not depend on a specific social
welfare function. This motivates us to consider a stochastic dominance criterion (see, e.g., Levy
(2016)).

6.2. Results. We consider two different null hypotheses for each age group: (i) The 2006 income
distribution first-order stochastically dominates that the 2012 income distribution (abbreviated
to 06 FSD 12) (ii) The 2012 income distribution first-order stochastically dominates the 2006
income distribution (abbreviated to 12 FSD 06). As a benchmark test, we consider the Barrett
and Donald (2003, BD)’s test based on the observed incomes, neglecting the presence of mea-
surement errors. We choose the bandwidth as in our simulation experiments and assume Laplace
and normal measurement errors. The variance of measurement errors is determined so that the
signal-to-noise ratio (SNR) is 2,3, or 4.3

Table 3 reports the bootstrap p-values of the tests. The BD test implies that, for age groups
25-45 and 45-65, the 2012 income significantly dominates the 2006 income and, for age group
60+, there appears to be no dominance relationship (i.e. the two distributions cross), while
for age group 70+ the 2006 income dominates the 2012 income. Similar results hold when we
apply our test assuming Laplace measurement errors. However, when the measurement errors
are normal, our test shows that, for age group 60+, there is a significant evidence that the
2012 income dominates the 2006 income. This implies that the ambiguous result (crossing of
two distribution functions) for the age-group 60+ might be due to the presence of measurement
errors in the observed data.

3In practice, as mentioned in Section 3, the error variance is generally not identified unless repeated measure-
ments or extraneous information is available. However, in the case of the CPS income survey data, Bound and
Krueger(1991) mentioned that “the error variance represents 27.6% of the total variance in CPS earnings for men
and 8.9% for women.” According to their remark, the signal-to-ratios are 1.9 for men and 3.35 for women, both
of which lie in the range we considered.
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Age Group Null Hypothesis BD Laplace Error Normal Error
SNR=2 SNR=3 SNR=4 SNR=2 SNR=3 SNR=4

25-45 06 FSD 12 0.000 0.000 0.000 0.000 0.000 0.000 0.000
12 FSD 06 1.000 0.998 1.000 1.000 1.000 1.000 1.000

45-65 06 FSD 12 0.000 0.000 0.000 0.000 0.000 0.000 0.000
12 FSD 06 1.000 1.000 1.000 1.000 1.000 1.000 1.000

60+ 06 FSD 12 0.000 0.037 0.023 0.013 0.000 0.000 0.000
12 FSD 06 0.039 0.000 0.000 0.000 0.305 0.234 0.054

65+ 06 FSD 12 0.353 0.400 0.652 0.704 0.143 0.240 0.189
12 FSD 06 0.000 0.001 0.000 0.000 0.027 0.013 0.003

70+ 06 FSD 12 0.928 0.501 0.934 0.988 0.664 0.698 0.715
12 FSD 06 0.000 0.000 0.000 0.000 0.000 0.000 0.001

Table 3. Bootstrap P-values from BD and our tests
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Appendix A. Proofs of theorems

Notation: Hereafter, let P# and E# be the conditional probability and expectation under
the bootstrap distribution given {Xi}ni=1, respectively. Also, denote

L̄(u) =
1

π

∫ 1

0

sin(ωu)

ω

K ft(ω)

f ft
ε (ω/h)

I{|ω| ≥ hω0}dω,

Gn(t) = r(h)

∫
L̄
(
t− a
h

)
fX(a)1/2dW (a),

pε(Gn) = sup
x
P

{∣∣∣∣sup
t∈T
Gn(t)− x

∣∣∣∣ ≤ ε} ,
where W is a (two-sided) Wiener process on R, fX is the pdf of X, and

r(h) =

{
hβ−

1
2 under Assumption OS

1/ς(h) under Assumption SS
,

with ς(h) defined in eq. (8) of the paper. Note that analogous to K̄ (defined in Assumptions OS
(ii) and SS (ii)), L̄ is considered as a trimmed version of L. Due to the trimming, properties of
the Fourier transform guarantee L̄ ∈ L2(R) for each h under the assumption f ft

ε 6= 0, and this
guarantees existence of the stochastic integral in the definition of Gn.

Also, for any a ∈ (0, 1), let ca denote the constant such that
√
nhβ−

1
2 ca is the (1 − a)-th

quantile of supt∈T |Gn(t)|.

A.1. Proof of Theorem 1. We only prove the statement under Assumption OS (i.e., the
ordinary smooth case). The statement under Assumption SS is shown by a similar argument
using Lemmas 4-6.

First, we prove
P
{√

nhβ−
1
2 ĉα >

√
nhβ−

1
2 cα+δ1n − ε1n

}
≥ 1− δ2n, (18)

for some ε1n, δ1n, δ2n = O(n−c) with c > 0. Lemma 2 implies that with probability greater than
1− δ2n,

1− α = P#

{√
nhβ−

1
2 sup
t∈T

∣∣∣F̂#
X∗(t)− F̂X∗(t)

∣∣∣ ≤ √nhβ− 1
2 ĉα

}
≤ P#

{
sup
t∈T

∣∣∣G̃n(t)
∣∣∣ ≤ √nhβ− 1

2 ĉα + ε1n

}
+ δ1n,

for some ε1n, δ1n, δ2n = O(n−c) with c > 0, where G̃n has the same distribution as Gn under P#.
Since

√
nhβ−

1
2 ca is also the (1− a)-th quantile of supt∈T

∣∣∣G̃n(t)
∣∣∣ under P#, the above inequality

implies

P#

{
sup
t∈T

∣∣∣G̃n(t)
∣∣∣ ≤ √nhβ− 1

2 cα+δ1n

}
≤ P#

{
sup
t∈T

∣∣∣G̃n(t)
∣∣∣ ≤ √nhβ− 1

2 ĉα + ε1n

}
,

with probability greater than 1− δ2n. Thus, we obtain (18).
The main result is thus obtained from the following sequence of inequalities
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P{Tn ≤ ĉα} ≥ P

{
sup
t∈T
|Gn(t)| ≤

√
nhβ−

1
2 ĉα − εn

}
− δn

≥ P

{
sup
t∈T
|Gn(t)| ≤

√
nhβ−

1
2 cα+δ1n − ε1n − εn

}
− δn − δ2n

≥ P

{
sup
t∈T
|Gn(t)| ≤

√
nhβ−

1
2 cα+δ1n

}
− 2pε̄n(Gn)− δn − δ2n

= 1− α− δ1n − 2pε̄n(Gn)− δn − δ2n

≥ 1− α− δ1n −Mε̄n
√

log(1/h)− δn − δ2n,

where the first inequality follows from Lemma 1, the second inequality follows from (18), the
third inequality follows from the definitions of ε̄n = ε1n + εn and pε(Gn), along with the fact
Gn and −Gn have the same distribution (which ensures pε(|Gn|) ≤ 2pε(Gn)), the equality follows
from the definition that

√
nhβ−

1
2 cα+δ1n is the (1−α− δ1n)-th quantile of supt∈T |Gn(t)|, and the

last inequality follows from Lemma 3. Therefore, letting δ3n = δ1n +Mε̄n
√

log(1/h) + δn + δ2n,
we have

P{Tn ≤ ĉα} ≥ 1− α− δ3n.

Since δn, δ1n, δ2n, ε̄n are all positive sequences of order O(n−a) with some a > 0 and
√

log(1/h)

is a log-rate, we obtain eq. (11) in the paper.

A.2. Proof of Theorem 3. For simplicity, we restrict attention to the case of Ni = 2. For more
general situations where Ni is arbitrary but bounded above by C, the proof follows by similar
arguments after accounting for the dependence structure in f̂ ft

ε .
We first make the following preliminary observations. Note that F̃X∗(t) can be alternatively

written as

F̃X∗(t) =
1

2π

∫ 1/h

−1/h

Im{eiωtf̂ ft
X(ω)}

−ω
K ft(hω)

f̂ ft
ε (ω)

dω. (19)

where f̂ ft
X(ω) = N−1

∑
i,j e

iωXi,j denotes the empirical characteristic function. A similar ex-
pression holds for F̂X∗ . Let ξ = (f ft

ε )2 and ξ̂ = (f̂ ft
ε )2. We note the following properties for

ξ̂

E

[∫ h−1

ω0

ω−a|ξ̂(ω)− ξ(ω)|2dω

]
=


n−1h−(1−a) if a < 1

n−1 if a > 1

n−1 log(1/h) if a = 1

(20)

sup
|ω|≤h−1

|ξ/ξ̂| ≤ 1 + op(1). (21)

The results in (20) can be shown by expanding the expectations. To show (21), we use Yu-
kich (1987, Theorem 6.3) which assures that under Assumption B (i), sup|ω|≤h−1 |ξ̂ − ξ| =

Op(
√

log n/n) for h = O(n−c) with some c > 0. Combined with Assumption B (ii), this implies
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{min|ω|≤h−1 |ξ̂|}−1 = Op(h
−2β). Thus we obtain

sup
|ω|≤h−1

|ξ/ξ̂| ≤ 1 + sup
|ω|≤h−1

|(ξ̂ − ξ)/ξ̂| = 1 +Op

((
log n

nh4β

)1/2
)

= 1 + op(1),

thereby proving (21).
Pick any η ∈ (1/2, γ − β). Under Assumptions C (iii) and OS (i), it can be verified that∫ 1/h

−1/h

∣∣∣∣ωηf ft
X∗(ω)

ξ(ω)1/2

∣∣∣∣2 dω = O(1). (22)

We shall also make frequent use of the following algebraic inequality:

|ξ̂1/2 − ξ1/2| ≤ ξ−1/2|ξ̂ − ξ|. (23)

We now proceed to the main part of the proof. By (19), we can expand

F̃X∗(t)− F̂X∗(t) =
1

π

∫ ω0

0

Im{e−iωtf̂ ft
X(ω)}

−ω
{ξ̂(ω)−1/2 − ξ(ω)−1/2}K ft(hω)dω

+
1

π

∫ 1/h

ω0

Im{e−iωtf̂ ft
X(ω)}

−ω
{ξ̂(ω)−1/2 − ξ(ω)−1/2}K ft(hω)dω

= B1n(t) +B2n(t).

For the term B1n(t), using (23), we have

|B1n(t)| ≤ 1

π

∫ ω0

0

∣∣∣∣∣ Im{e−iωtf̂ ft
X(ω)}

−ω

∣∣∣∣∣
∣∣∣∣∣ξ(ω)

ξ̂(ω)

∣∣∣∣∣
1/2
|ξ̂(ω)− ξ(ω)|
ξ(ω)3/2

dω.

By the fact sup|ω|≤ω0
|ξ̂ − ξ| = Op(n

−1/2) and (21), we obtain

sup
t∈T
|B1n(t)| = Op(n

−1/2) sup
t∈T

I(t),

where

I(t) =

∫ ω0

0

∣∣∣∣∣ Im{e−iωtf̂ ft
X(ω)}

−ω

∣∣∣∣∣ dω
≤

∫ ω0

0

∣∣∣∣sin(ωt)

ω
Re{f̂ ft

X(ω)}
∣∣∣∣ dω +

∫ ω0

0

∣∣∣∣cos(ωt)

ω
Im{f̂ ft

X(ω)}
∣∣∣∣ dω

≤
∫ ω0

0

∣∣∣∣sin(ωt)

ω

∣∣∣∣ dω +

∫ ω0

0

∣∣∣∣∣ Im{f̂ ft
X(ω)}
ω

∣∣∣∣∣ dω
= I1(t) + I2.

Since T is a compact set, it holds supt∈T I1(t) <∞. By the definition of f̂ ft
X , the random variable

I2 can be bounded as

I2 ≤
1

N

∑
i,j

∫ ω0

0

∣∣∣∣sin(ωXi,j)

ω

∣∣∣∣ dω ≡ 1

N

∑
i,j

Ti,j .

Since

E[Ti,j ] = E

∫ ω0|Xi,j |

0

∣∣∣∣sin(t)

t

∣∣∣∣ dt ≤ C1 + E[log |Xi,j |] <∞
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for some C1 > 0, it holds I2 = Op(1). Combining these results, we obtain supt∈T |B1n(t)| =

Op(n
−1/2).

For the term B2n(t), we further expand

B2n(t) = − 1

π

∫ 1/h

ω0

Im{e−iωtf ft
X(ω)}

−ωξ(ω)
{ξ̂(ω)1/2 − ξ(ω)1/2}K ft(hω)

ξ(ω)1/2

ξ̂(ω)1/2
dω

+
1

π

∫ 1/h

ω0

Im
{
e−iωt{f̂ ft

X(ω)− f ft
X(ω)}

}
−ω

{ξ̂(ω)−1/2 − ξ(ω)−1/2}K ft(hω)dω

= B21n(t) +B22n(t).

For the term B21n(t), we have

sup
t∈T
|B21n(t)| ≤ 1

π

∫ 1/h

ω0

∣∣∣∣ωηf ft
X∗(ω)

ξ(ω)1/2

∣∣∣∣
∣∣∣∣∣ ξ̂(ω)− ξ(ω)

ω1+ηξ(ω)1/2

∣∣∣∣∣
∣∣∣∣∣ξ(ω)

ξ̂(ω)

∣∣∣∣∣
1/2

dω

≤ C2(1 + op(1))

(∫ 1/h

ω0

∣∣∣∣ωηf ft
X∗(ω)

ξ(ω)1/2

∣∣∣∣2 dω
)1/2(∫ 1/h

ω0

ω2(β−η−1)|ξ̂(ω)− ξ(ω)|2dω

)1/2

= O(n−1/2h(η−β+1/2)∧0),

for some C2 > 0, where the first inequality follows from the fact |Im{e−iωtf ft
X(ω)}| ≤ |f ft

X(ω)| =
|f ft
X∗(ω)|ξ(ω)1/2 and (23), the second inequality follows from (21) and Assumption OS (i), and

the equality follows from (20) and (22).
Now consider the term B22n(t). Applying (23) and Assumption OS (i), we can write

sup
t∈T
|B22n(t)| ≤ 1

π

∫ 1/h

ω0

|f̂ ft
X(ω)− f ft

X(ω)||ξ̂(ω)− ξ(ω)||ξ(ω)/ξ̂(ω)|1/2 1

ωξ(ω)3/2
dω

≤ 1

c3π

∫ 1/h

ω0

|f̂ ft
X(ω)− f ft

X(ω)||ξ̂(ω)− ξ(ω)||ξ(ω)/ξ̂(ω)|1/2ω3β−1dω,

for some c > 0. As in (22), it can be shown after expanding the expectation that

E

[∫ 1/h

ω0

ω−a|f̂ ft
X(ω)− f ft

X(ω)|2dω

]
= O((nh1−a)−1),

for all a < 1. Thus, by (21) and (22), it follows

sup
t∈T
|B22n(t)| ≤ 1 + op(1)

π

∫ 1/h

ω0

ω3β−1|f̂ ft
X(ω)− f ft

X(ω)||ξ̂(ω)− ξ(ω)|dω

=
1 + op(1)

π

(∫ 1/h

ω0

ω3β−1|f̂ ft
X(ω)− f ft

X(ω)|2dω

)1/2(∫ 1/h

ω0

ω3β−1|ξ̂(ω)− ξ(ω)|2dω

)1/2

= O((nh3β)−1).

Combining these results, we obtain

√
nhβ−1/2 sup

t∈T
|F̃X∗(t)− F̂X∗(t)| = Op

(
hη∧(β−1/2) +

1
√
nh2β+1/2

)
= op(1),

under Assumption B (ii) and the condition η > 1/2.
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A.3. Proof of Theorem 4. Define

D̂#
n (t) =

√
nhβ−1/2{F̂#

X∗(t)− F̂X∗(t)}, D̃#
n (t) =

√
nhβ−1/2{F̃#

X∗(t)− F̃X∗(t)}.

Also, let f̂ ft#
X (ω) = N−1

∑
i,j e

iωX#
i,j be the bootstrap counterpart of the empirical characteristic

function f̂ ft
X(ω) = N−1

∑
i,j e

iωXi,j .
We first show that there exist c, C > 0 such that

P#

{
sup
t∈T
|D̃#

n (t)− D̂#
n (t)| ≥ Cn−c

}
= op(1). (24)

By Theorem 3, it is enough for (24) to guarantee that there exist c, C > 0 satisfying

P#

{√
nhβ−1/2 sup

t∈T
|F̃#
X∗(t)− F̂

#
X∗(t)| ≥ Cn

−c
}

= op(1).

To this end, note that

F̃#
X∗(t)− F̂

#
X∗(t) =

1

2π

∫ 1/h

−1/h

Im
{
e−iωt

{
f̂ ft#
X (ω)− f̂ ft

X(ω)
}}

−ω
{ξ̂(ω)−1/2 − ξ(ω)−1/2}K ft(hω)dω

+
1

2π

∫ 1/h

−1/h

Im{e−iωtf̂ ft
X(ω)}

−ω
{ξ̂(ω)−1/2 − ξ(ω)−1/2}K ft(hω)dω

= C1n(t) + C2n(t).

The second term C2n(t) equals to F̃X∗(t) − F̂X∗(t) whose bound is given in Theorem 3. Thus,
we only need to consider the first term C1n(t). By expanding the expectations, it can be shown

E#

[∫ 1/h

ω0

ω−a|f̂ ft#
X (ω)− f̂ ft

X(ω)|2dω

]
= Op((nh

1−a)−1),

for all a < 1, and analogous arguments as in the proof of Theorem 3 yield supt∈T |C1n(t)| =

Op#((nh3β)−1) with probability approaching one. Therefore, by paralleling the arguments in the
proof of Theorem 3, we obtain (24).

We now proceed by verifying the conditions in the proof of Theorem 1. Lemma 1 and Theorem
3 ensure existence of a sequence εn = O(n−c) with some c > 0 such that

P

{
sup
t∈T

∣∣∣√nhβ−1/2{F̃X(t)− FX(t)} − Gn(t)
∣∣∣ > εn

}
= op(1). (25)

Furthermore by Lemma 2, combined with (24), we have that

P#

{
sup
t∈T

∣∣∣√nhβ−1/2{F̃#
X∗(t)− F̃X∗(t)} − G̃n(t)

∣∣∣ > εn

}
= op(1). (26)

Therefore, by (25) and (26), the conclusion follows by paralleling the arguments in the proof of
Theorem 1.

A.4. Proof of Theorem 5. We only prove the theorem under Assumption OS (i.e., the ordinary
smooth case). The proof under Assumption SS follows by a similar argument using Lemmas 4-6.
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We make the following preliminary observations. First, by the techniques employed in Lemmas
1-3, we can show4

sup
t∈H
|f̂X∗(t)− fX∗(t)| = Op(n

−c). (27)

Next by Dattner, Reiß and Trabs (2016, Proposition 2.1),
∥∥∥f̂X∗∥∥∥

1
< ∞ and

∫∞
−∞ f̂X∗(t)dt = 1

under Assumption C. Thus, we have F̂X∗(t) =
∫ t
−∞ f̂X∗(v)dv or equivalently F̂ ′X∗(t) = f̂X∗(t).

The latter ensures F̂X∗ is continuous.
We now show that5

sup
u∈[u1,u2]

|Q̂(u)−Q(u)| = op(n
−c1), (28)

for some c1 > 0. By Hall and Lahiri (2008, Theorem 3.7), Q̂(u) converges to Q(u) for each
u ∈ [u1, u2]. Now Qn(u) is monotone at each n by construction while Q(u) is continuous
by Assumption Q (i). Hence we can modify the proof of the Glivenko-Cantelli theorem (see,
Billingsley, 1995, p. 233), to strengthen the pointwise consistency to a uniform one, i.e.,

sup
u∈[u1,u2]

|Q̂(u)−Q(u)| = op(1), (29)

(see also, Bassett and Koenker, 1986, Theorem 3.1). As F̂X∗ is continuous, it follows that
F̂X∗(Q̂(u)) = u for all 0 < u < 1. Consequently,

F̂X∗(Q̂(u)) = FX∗(Q(u)) = FX∗(Q̂(u))− fX∗(Q̃(u))(Q̂(u)−Q(u)),

for some Q̃(u) such that |Q̃(u)−Q(u)| ≤ |Q̂(u)−Q(u)|, and we obtain

sup
u∈[u1,u2]

|Q̂(u)−Q(u)| ≤
(

inf
u∈[u1,u2]

|fX∗(Q̃(u))|
)−1

sup
u∈[u1,u2]

|F̂X∗(Q̂(u))− FX∗(Q̂(u))|

By (29) and Assumption Q (i) (infx∈H fX∗(x) > 0), we can verify infu∈[u1,u2] |fX∗(Q̃(u))| > 0

with probability approaching one. Furthermore, we have

sup
u∈[u1,u2]

|F̂X∗(Q̂(u))− FX∗(Q̂(u))| ≤ n−
1
2h−β+ 1

2 sup
t∈H
|Gn(t)|+ op(1) = Op

((
log(1/h)

nh2β−1

)1/2
)
,

where the inequality follows from Lemma 1 after employing the fact {Q̂(u) : u ∈ [u1, u2]} ⊂ H
with probability approaching one due to Assumption Q (i) and (29). The equality follows from
E[supt∈H |Gn(t)|] = O(

√
log(1/h)) (by the proof of Lemma 3). Combining these results, we

obtain (28) under Assumptions OS (iii) and B (ii).

4An analogous result applies for the super smooth case by Lemmas 4-6 with the rate replaced by Op((logn)−c)
for some c > 1 under the assumption γ > λ and an MSE optimal bandwidth choice.
5For the super smooth case, we can employ similar arguments to show that supu∈[u1,u2]

|Q̂(u) − Q(u)| =

op((logn)−c1) for some c1 > 1.
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We now proceed to the main part of the proof. Noting that Q̂(u)−Q(u) = fX∗(Q̃(u))−1{F̂X∗(Q̂(u))−
FX∗(Q̂(u))}, we have

P

{
Q̂(u)− ĉα

f̂X∗(Q̂(u))
≤ Q(u) ≤ Q̂(u) +

ĉα

f̂X∗(Q̂(u))
for all u ∈ [u1, u2]

}

= P

{
sup

u∈[u1,u2]
|f̂X∗(Q̂(u)){Q̂(u)−Q(u)}| ≤ ĉα

}
≥ P

{
sup
t∈H
|F̂X∗(t)− FX∗(t)| ≤ ĉα(1−∆n)

}
− o(1),

where ∆n = supu∈[u1,u2]

∣∣∣ f̂X∗ (Q̂(u))−fX∗ (Q̃(u))

f̂X∗ (Q̂(u))

∣∣∣ and the inequality follows from the fact

P
{
{Q̂(u) : u ∈ [u1, u2]} ⊂ H

}
→ 1 by Assumption Q (i) and (28). Also note that ∆n = Op(n

−c)

by Assumption Q (i)-(ii), (27), and (28). We now have the following sequence of inequalities

P

{
sup
t∈H
|F̂X∗(t)− FX∗(t)| ≤ ĉα(1−∆n)

}
≥ P

{
sup
t∈H
|Gn(t)| ≤

√
nhβ−

1
2 ĉα(1−∆n)− εn

}
− δn

≥ P

{
sup
t∈H
|Gn(t)| ≤

(√
nhβ−

1
2 cα+δ1n − ε1n

)
(1−∆n)− εn

}
− δn − δ2n

≥ P

{
sup
t∈H
|Gn(t)| ≤

√
nhβ−

1
2 cα+δ1n

}
− 2pε̄n(Gn)− δn − δ2n ≥ 1− α− δ1n − δn − δ2n − 2pε̄n(Gn),

where the first inequality follows from Lemma 1, the second inequality can be derived by Lemma
2 and a similar argument in the proof of Theorem 1, the third inequality follows from the
definitions of ε̄n = εn + ε1n(1 −∆n) +

√
nhβ−

1
2 cα+δ1n∆n and the concentration function. Note

that Lemma 3 implies pε̄n(Gn) ≤ Cε̄n
√

log n. Recalling that
√
nhβ−

1
2 cα+δ1n is the (α + δ1n)-th

quantile of supt∈H |Gn(t)|, by Chernozhukov, Chetverikov and Kato (2014, Lemma B1),

√
nhβ−

1
2 cα+δ1n ≤ E

[
sup
t∈H
|Gn(t)|

]
+
√

2| log(α+ δ1n)|.

Since E[supt∈H |Gn(t)|] = O(
√

log(1/h)), this implies
√
nhβ−

1
2 cα+δ1n = O(

√
log n) under As-

sumptions OS (iii) and B (ii). By the above and the rates of εn, ε1n, it follows pε̄n(Gn) = Op(n
−c2)

for some c2 > 0. Furthermore, by Lemmas 1 and 2, δn, δ1n, and δ2n are also O(n−c3) for some
c3 > 0. Combining these results, the conclusion follows.

A.5. Proof of Theorem 6. We shall assume for simplicity that fε = fδ, and consequently that
the bandwidth choices for both estimators are the same. We only prove for the case of ordinary
smooth error density as the proof for super-smooth density follows by the same arguments.
Assume that that the smoothness parameter in the former case is β. Let

GDn,m(t) = hβ−1/2

{∫
L̄
(
t− a
h

)
fX(a)1/2dW1(a)−

√
n

m

∫
L̄
(
t− a
h

)
fY (a)1/2dW2(a)

}
,

whereW1 andW2 are two independent (two-sided) Wiener processes on R (for fε 6= fδ or unequal
bandwidths, the L̄ functions in the above integrals would also be different). Also define

Ψn,m(t) = {F̂X∗(t)− FX∗(t)} − {F̂Y ∗(t)− FY ∗(t)},

Ψ#
n,m(t) = {F̂#

X∗(t)− F̂X∗(t)} − {F̂
#
Y ∗(t)− F̂Y ∗(t)}.
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A.5.1. Proof of (i). Since the samples {Xi}ni=1 and {Yi}mi=1 are independent of each other, by the
arguments of Lemmas (1)-(3), we can show the following: For some sequences εn, δn = O(n−c),

P

{
sup
t∈T

∣∣∣√nhβ−1/2Ψn,m(t)− GDn,m(t)
∣∣∣ > εn

}
< δn. (30)

Furthermore with probability greater than 1−δ2n, δ2n = O(n−c), there exist sequences ε1n, δ1n =

O(n−c) such that

P#

{
sup
t∈T

∣∣∣√nhβ−1/2Ψ#
n,m(t)− G̃D#

n,m(t)
∣∣∣ > ε1n

}
< δ1n, (31)

where G̃D#
n,m is a tight Gaussian process with the same distribution as GDn,m under P#. Finally it

also holds that
pεn(GDn,m) ≤Mεn

√
log(1/h), (32)

for any sequence εn = O(n−c) and some M <∞. Now

P
{
Dn,m ≤ ĉDα

}
≥ P

{
sup
t∈T

Ψn,m(t)− sup
t
{FX∗(t)− FY ∗(t)} ≤ ĉDα

}
≥ P

{
sup
t∈T

Ψn,m(t) ≤ ĉDα
}
,

where the last equality follows from supt{FX∗(t) − FY ∗(t)} ≤ 0 under H0. Using equations
(30)-(32), by paralleling the arguments in the proof of Theorem 1, we can show that

P

{
sup
t∈T

Ψn,m(t) ≤ ĉDα
}
≥ 1− α− %n,m.

Hence the claim follows immediately.

A.5.2. Proof of (ii). It is enough to show that ρn,m does not depend on P ∈ P0. To this end, it
is enough to show uniform validity of equations (30)-(32). Since these equations are essentially
two-sample counterparts of Lemmas (1)-(3), it suffices to check uniform validity of the latter.

Note that for Lemma (1), uniformity of the bias term follows by the argument in Hall and
Lahiri (2008, Theorem 3.2) using the uniform version of the Sobolev condition (i.e. the constants
MX and MY do not depend of (FX∗ , FY ∗)). For the stochastic term, the constants appearing
in the KMT coupling in the proof of Lemma (1) are universal, and constants and sequences in
other parts do not depend on P ∈ P0. Thus, δn in Lemma (1) does not depend on P ∈ P0.
Similarly, uniformity of Lemma (2) is also verified.

For Lemma (3), it is enough to guarantee that σn(t) is bounded away from zero and above by
universal constants that do not depend on P ∈ P0. This is guaranteed by the assumption that
fX and fY are bounded away from zero and above by universal constants that do not depend
on P ∈ P0.

A.5.3. Proof of (iii). Let cDa be a constant such that
√
nhβ−1/2cDa is the (1 − a)-th quantile of

supt∈T GDn,m(t). Using equation (31) and mirroring the arguments in the proof of Theorem 1, we
have that

P
{√

nhβ−1/2ĉDα <
√
nhβ−1/2cDα−δ1n + ε1n

}
≥ 1− δ2n. (33)
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Under H1, there exists t∗ ∈ T such that µ = FX∗(t
∗)− FY ∗(t∗) > 0. Then we obtain

P{Dn.m > ĉDα } ≥ P
{√

nhβ−1/2Dn,m >
√
nhβ−1/2cDα−δ1n + ε1n

}
− δ2n

≥ P
{
GDn,m(t∗) >

√
nhβ−1/2cDα−δ1n −

√
nhβ−

1
2µ+ ε1n + εn

}
− δ2n − δn,

for some εn, δn = O(n−c
′
) with some c′ > 0, where the first inequality follows from (33) and

the second inequality follows from (30). By analogous arguments as in the proof of Theo-
rem 5, we can show

√
nhβ−1/2cDα−δ1n = O(

√
log(1/h)). However under Assumption OS (iii),

√
nhβ−1/2 log−1/2(1/h)µ→ +∞; hence the conclusion follows immediately.
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Appendix B. Lemmas

Hereafter we use the following notation. By the Ito isometry, the variance function of the
Gaussian process Gn can be shown to be

σn(t) = hr2(h)

∫
L̄2 (a) fX(t− ha)da.

Let σ̄n = supt σn(t) and σn = inft σn(t). Assumption C (i) (inft∈T fX(t) > c > 0) guarantees
that σn > 0 for all n ∈ N.

Also, define the variance sub-metric dn(s, t) = V ar(Gn(s)− Gn(t)) on T .

B.1. Lemmas for Theorem 1 under Assumption OS.

Lemma 1. Under Assumptions C and OS, there exist sequences εn, δn = O(n−c) for some c > 0

such that
P

{
sup
t∈T

∣∣∣√nhβ−1/2{F̂X∗(t)− FX∗(t)} − Gn(t)
∣∣∣ > εn

}
< δn.

Proof. By applying the argument in Hall and Lahiri (2008), the bias of the estimator F̂X∗ satisfies
supt∈T |E[F̂X∗(t)]− FX∗(t)| = O(hγ). Thus, Assumption OS (iii) guarantees

√
nhβ−1/2 sup

t∈T
|E[F̂X∗(t)]− FX∗(t)| = o(n−ξ).

So, the bias term is negligible and it is enough to show that

P

{
sup
t∈T

∣∣∣√nhβ−1/2{F̂X∗(t)− E[F̂X∗(t)]} − Gn(t)
∣∣∣ > εn

}
< δn, (34)

for some εn, δn = O(n−c) with c > 0. Let FEDFX,n be the empirical distribution function by
{Xi}ni=1, αn(x) =

√
n{FEDFX,n (x)− FX(x)} be the empirical process, and

Dn(t) =
√
nhβ−1/2{F̂X∗(t)− E[F̂X∗(t)]} = hβ−1/2

∫
L
(
t− a
h

)
dαn(a).

Then (34) is rewritten as

P

{
sup
t∈T
|Dn(t)− Gn(t)| > εn

}
< δn, (35)

for some εn, δn = O(n−c) with c > 0.
First, we approximate Dn(t) by

Dn,0(t) = hβ−1/2

∫
L̄
(
t− a
h

)
dαn(a),
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Note that both Dn(t) and Dn,0(t) are well defined as Lebesgue-Steltjes integrals.6 From integra-
tion by parts,

Dn(t) = hβ−3/2

∫
K
(
t− a
h

)
αn(a)da

+hβ−1/2 lim
a→∞

{
L
(
t− a
h

)
αn(a)

}
− hβ−1/2 lim

a→−∞

{
L
(
t− a
h

)
αn(a)

}
= hβ−3/2

∫
K
(
t− a
h

)
αn(a)da, (36)

for all n ∈ N, where the second equality follows from the facts lima→±∞ αn(a) = 0 and
supu |L(u)| < ∞ for each h. Since a similar expression applies for Dn,0(t), there exists C > 0

such that

Dn(t)−Dn,0(t) = hβ−1/2

∫
{K(u)− K̄(u)}αn(u− th)du ≤ Chs sup

u
|αn(u)|,

for all n large enough and t ∈ T , where the inequality follows from Assumption OS (ii). Now
by the strong approximation (Komlós, Major and Tusnády, 1975), there exists a tight Brownian
bridge B(t) = W (t)− tW (1) and universal constants C1, C2 > 0 such that

P

{
sup
u
|αn(u)| ≤ sup

u
|B(FX(u))|+ C1

log n√
n

}
≥ 1− C2

n
,

for all n ∈ N. Combining theses results and using the properties of supu |B(FX(u))| (in particular,
P{supu |B(FX(u))| ≥ x} ≤ 2 exp(−2x2) for x > 0), there exists C3 > 0 such that

P

{
sup
t∈T
|Dn(t)−Dn,0(t)| > hs/2

}
≤ C3 exp(−2h−s) +

C2

n
,

for all n large enough. Note that hs/2 = O(n−c1) for some c1 > 0 due to Assumption OS (iii)
(nνh→ 0). Thus, it is enough for (35) to show that

P

{
sup
t∈T
|Dn,0(t)− Gn(t)| > εn

}
< δn,

for some εn, δn = O(n−c) with c > 0.
Second, we approximate Dn,0(t) by

Dn,1(t) = hβ−1/2

∫
L̄
(
t− a
h

)
dB(FX(a)).

Since L̄ ∈ L2(R), this integral exists for all t ∈ R. Analogous to the integration by parts formula
in (36), a similar result applies for Dn,1(t) based on stochastic integration by parts using the
facts limu→±∞ L̄(u) = 0 and supa |B(FX(a))| <∞ almost surely. Thus, we have

Dn,0(t)−Dn,1(t) = hβ−3/2

∫
K̄
(
t− a
h

)
{αn(a)−B(FX(a))}da

≤ hβ−1/2 sup
a
|αn(a)−B(FX(a))|

∫
|K̄(u)|du,

6This is verified as follows. By the definition L(u) =
∫ u
0
K(v)dv and Assumption OS (ii), we have supu |L(u)| <∞.

Also, by L̄(u) =
∫ u
0
K̄(v)dv (follows from Fubini’s theorem) and Assumption OS (ii), we have supu |L̄(u)| < ∞.

Therefore, bounded variation of the empirical process αn guarantees that both Dn(t) and Dn,0(t) are well defined.
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for all n ∈ N, almost surely. Now by Komlós, Major and Tusnády (1975), there exist Brownian
bridge B with continuous sample paths and universal constants C4, C5 > 0 such that

P

{
sup
a∈R
|αn(a)−B(FX(a))| > C4

log n√
n

}
≤ C5

n
,

for all n ∈ N. Combining this with Assumption OS (ii) (eq. (5) in the paper), there exist
c2, C6 > 0 such that

P

{
sup
t∈T
|Dn,0(t)−Dn,1(t)| > C6n

−c2
}
≤ C5

n
,

for all n large enough. Thus, it is enough for (35) to show that

P

{
sup
t∈T
|Dn,1(t)− Gn(t)| > εn

}
< δn,

for some εn, δn = O(n−c) with c > 0.
Third, we approximate Dn,1(t) by

Dn,2(t) = hβ−1/2

∫
L̄
(
t− a
h

)
dW (FX(a)).

By the definition B(t) = W (t)− tW (1), we have

|Dn,1(t)−Dn,2(t)| ≤ hβ−1/2|W (1)|
∣∣∣∣∫ L̄

(
t− a
h

)
fX(a)da

∣∣∣∣ , (37)

for all n ∈ N. Therefore, for the rate of supt∈T |Dn,1(t) −Dn,2(t)|, we need to characterize the
order of In1(t) =

∫
L̄
(
t−a
h

)
fX(a)da. By the definition of L̄ and∫ ∞

−∞
sin(ω(t− a))fX(a)da =

1

2i
{eiωtf ft

X(−ω)− e−iωtf ft
X(ω)},

an application of Fubini’s theorem assures

|In1(t)| =

∣∣∣∣∣ 1

2iπ

∫ 1/h

ω0

{eiωtf ft
X(−ω)− e−iωtf ft

X(ω)}K
ft(hω)

ωf ft
ε (ω)

dω

∣∣∣∣∣
≤ 1

π

∫ 1/h

ω0

ω−1dω = O(log(1/h)).

where the inequality follows from |f ft
X | = |f ft

X∗ ||f ft
ε | ≤ |f ft

ε | and f ft
ε (ω) = f ft

ε (−ω). Substituting
this bound for In1(t) into (37), we obtain

P

{
sup
t∈T
|Dn,1(t)−Dn,2(t)| > Mnh

β−1/2 log(1/h)

}
= O(n−c3),

for some c3 > 0 and sequence Mn = log n. By Assumption OS (i) (β > 1/2), it holds
Mnh

β−1/2 log(1/h) = O(n−c4) for some c4 > 0. Therefore, it is enough for (35) to show that

P

{
sup
t∈T
|Dn,2(t)− Gn(t)| > εn

}
< δn,

for some εn, δn = O(n−c) with c > 0. But we can see that the process Dn,2(t) has the same
finite dimensional distributions as the process Gn(t). Therefore, this trivially holds true and the
conclusion is obtained. �

31



Lemma 2. Under Assumptions C and OS, there exist sequences ε1n, δ1n, δ2n = O(n−c) for some
c > 0 such that with probability greater than 1− δ2n,

P#

{
sup
t∈T

∣∣∣√nhβ−1/2{F̂#
X∗(t)− F̂X∗(t)} − G̃n(t)

∣∣∣ > ε1n

}
< δ1n,

where G̃n is a tight Gaussian process with the same distribution as Gn under P#.

Proof. The proof is essentially a reformulation of that of Bissantz, Dümbgen, Holzmann and
Munk (2007, Theorem 2.1). Let α#

n (t) =
√
n{FEDF

X#,n
−FEDFX,n (t)} denote the bootstrap empirical

process. As shown in the proof of Bissantz, Dümbgen, Holzmann and Munk (2007, eq. (21)),
based on Shorack (1982), there exist a Brownian bridge B#

n and universal constants C,C1 > 0

such that for all n ∈ N,

P#

{
sup
t∈R
|α#
n (t)−B#

n (FEDFX,n (t))| > C
log n√
n

}
≤ C1

n
,

almost surely. Now it is known that the Brownian bridge is Hölder continuous for every exponent
b ∈ (0, 1/2) almost surely. Furthermore, by Komlós, Major and Tusnády’s (1975) coupling, along
with the fact P{supt |B(FX(t))| ≥ log n} ≤ 2 exp(−2(log n)2), there exist universal constants
C2, C3 > 0 such that

P

{
sup
t∈R
|FEDFX,n (t)− FX(t)| > C2

log n√
n

}
≤ C3

n
,

for all n ∈ N, which consequently implies

P

{
sup
t∈R
|B#

n (FEDFX,n (t))−B#
n (FX(t))| > C4

log n

nb/2

}
≤ C5

n
,

for some universal constants C4, C5 > 0. Combining these results, there exist universal constants
C6, C7, C8 > 0 such that with probability greater than 1− C6/n, it holds

P#

{
sup
t∈R
|α#
n (t)−B#

n (FX(t))| > C7
log n

nb/2

}
≤ C8

n
,

for all n ∈ N. Based on this, the conclusion follows by similar arguments to the proof of Lemma
1. �

Lemma 3. Suppose that Assumptions C and OS hold true. Then for any sequence εn = O(n−c)

with c > 0, there exists a constant M > 0 such that

pεn(Gn) ≤Mεn
√

log(1/h),

for all n large enough.

Proof. Pick any ε > 0. By Chernozhukov, Chetverikov and Kato (2015, Theorem 3) and sepa-
rability of Gn, there exists C > 0 such that

pε(Gn) ≤ Cε
{
σ−1
n E

[
sup
t∈T
|Gn(t)|

]
+
√

1 ∨ log(σn/ε)

}
,
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for all n ∈ N. Thus, it is enough to show that

E

[
sup
t∈T
|Gn(t)|

]
= O(

√
log(1/h)).

Now,

d2
n(s, t) = h2β

∫ {
L̄
( s
h
− a
)
− L̄

(
t

h
− a
)}2

fX(ha)da

by the Ito isometry. Note that L̄ is Lipschitz continuous because its derivative K̄ is uniformly
bounded on R (because hβ supu |K̄(u)| ≤ C for some C > 0 by Assumption OS (i)). Thus, it
holds

dn(s, t) ≤ C1h
−3/2|s− t|, (38)

for some C1 > 0 that is independent of s and t.
Let D(ε, dn) be the ε-packing number for the set T under the sub-metric dn. By (38), it holds

D(ε, dn) ≤ 2C1h
−3/2/ε. Pick any δ ∈ (0, 1). By van der Vaart and Wellner (1996, Corollary

2.2.8), there exist universal constants C2, C3 > 0 such that

E

[
sup

dn(s,t)≤δ
|Gn(s)− Gn(t)|

]

≤ C2

∫ δ

0

√
logD(ε, dn)dε ≤ C2δ

√
log(2C1h−3/2) + C2

∫ δ

0

√
log(1/ε)dε ≤ C3

√
log(1/h),

for all n ∈ N. Thus, there exists a collection of Gaussian random variables {Gn(tj)}pni=1 with
pn =

⌈
1

h3/2δ

⌉
such that

E

[
sup
t∈T
|Gn(t)|

]
≤ E

[
max

1≤j≤pn
|Gn(tj)|

]
+ C3

√
log(1/h),

for all n ∈ N. Now the properties of the maximum of Gaussian random variables yields

E

[
max

1≤j≤pn
|Gn(tj)|

]
≤ 2σ̄n

√
1 + log pn.

Combining these results, the conclusion follows. �

B.2. Lemmas for Theorem 1 under Assumption SS.

Lemma 4. Under Assumptions C and SS, there exist sequences εn = O(log n)−(1+c) and δn =

O(n−c) with c > 0 such that

P

{
sup
t∈T

∣∣∣∣ √nς(h)
{F̂X∗(t)− FX∗(t)} − Gn(t)

∣∣∣∣ > εn

}
< δn.

Lemma 5. Under Assumptions C and SS, there exist sequences ε1n, δ1n, δ2n = O(n−c) with c > 0

such that with probability greater than 1− δ2n,

P#

{
sup
t∈T

∣∣∣∣ √nς(h)
{F̂#

X (t)− F̂X(t)} − G̃n(t)

∣∣∣∣ > ε1n

}
< δ1n,

where G̃n is a tight Gaussian process with the same distributions as Gn under P#.

These lemmas can be shown in the same way as Lemmas 1 and 2. The log rate of εn in Lemma
4 is due to the bias term. Recall that under Assumption C (ii), the bias of the estimator F̂X∗ is
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given by
sup
t∈T
|E[F̂X∗(t)]− FX∗(t)| = O(hγ).

Then due to Assumption SS (iii), it holds
√
nhγ/ς(h) = C(log n)−c for some c > 1.

Lemma 6. Suppose that Assumptions C and SS hold true. Then for any sequence εn =

O(log n)−c with c > 1 there exists M > 0 such that

pεn(Gn) ≤Mεn(log n)1+r,

for all n large enough and any r > 0 independent of n.

Proof. Pick any ε > 0. By Chernozhukov, Chetverikov and Kato (2015, Theorem 3) and sepa-
rability of the Gaussian process Gn, there exists C > 0 such that

pε(Gn) ≤ Cε
{
σ−1
n E

[
sup
t∈T
|Gn(t)|

]
+
√

1 ∨ log(σn/ε)

}
,

for all n ∈ N. By Lemmas 7 and 8 shown below, the following hold true:

there exist c1 > 0 such that σn ≥ c1h
λ+ν for all ν > 0 and n large enough, (39)

there exist C1 > 0 such that σ̄n ≤ C1 for all n large enough. (40)

Observe that

d2
n(s, t) =

h

ς2(h)

∫ {
L̄
( s
h
− a
)
− L̄

(
t

h
− a
)}2

fX(ha)da

by the Ito isometry. Note that L̄ is Lipschitz continuous because its derivative K̄ is uniformly
bounded on R (because

√
hς−1(h) supu |K̄(u)| ≤ C2h

−c2 for some C2, c2 > 0 by Assumption SS
(i)). Thus, it holds dn(s, t) ≤ C3h

−c2−3/2|s− t| for some C3 > 0 that is independent of s and t.
Using (40), an analogous argument as in the proof of Lemma 3 shows that E [supt∈T |Gn(t)|] =

O(
√

log(1/h)). Combining this with (39) and Assumption SS (iii), the conclusion follows. �

Lemma 7. Under Assumptions C and SS, there exists c > 0 such that σn ≥ chλ+ν for all ν > 0

and n large enough.

Proof. We only prove the case of λ0 ≥ 0. The proof for the case of λ0 < 0 is similar. Pick any
ε > 0. By Assumption C (i), we provide a lower bound for σn via

σn = inf
t∈T

h

ς2(h)

∫
L̄2(a)fX(t− ha)da ≥ c1h

ς2(h)

∫
|a|≤hε

L̄2(a)da,

for some c1 > 0. Let
Φε(ω) = f ft

ε (ω)−1I{|ω| ≥ ω0}.

Using the fact sin(x) = x + R(x) with |R(x)| ≤ c2|x|2 for some c2 > 0, it follows that for all
|a| ≤ hε,

|L̄(a)| ≥ 1

π

∣∣∣∣a ∫ 1

0
K ft(ω)Φε

(ω
h

)
dω

∣∣∣∣− c2

π

∣∣∣∣a ∫ 1

0
|aω|K ft(ω)Φε

(ω
h

)
dω

∣∣∣∣ ≥ C{1−O(hε)}|aIn|,

where In =
∫ 1

0 K
ft(ω)Φε

(
ω
h

)
dω and the last inequality follows from the fact sup{|aω| : |a| ≤

hε, ω ∈ [0, 1]} = hε.
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We now provide a lower bound for In. Pick any δ > 0. Observe that

h
1−λ
2 ς(h)−

1
2 |In| =

exp(−1/µhλ)

hλ(s+1)+λ0

∫ 1

hω0

K ft(ω)Φε

(ω
h

)
dω

≥ c3
exp(−1/µhλ)

hλ(s+1)

∫ 1

hω0

K ft(ω)ω−λ0 exp

(
|ω|λ

hλµ

)
dω

≥ c3
exp(−1/µhλ)

hλ(s+1)

∫ 1

δ
K ft(ω) exp

(
|ω|λ

hλµ

)
dω

= c3

∫ (1−δ)h−λ

0

K ft(1− hλv)

(hλv)s
vs exp

(
|1− hλv|λ − 1

hλµ

)
dv

→ c3r
s

∫
vs exp(−λv/µ)dv > 0,

for some c3 > 0, where the first inequality follows from the fact Φε(ω) ≥ c3|ω|−λ0 exp(|ω|λ/µ), the
second inequality holds since all the terms inside the integral are positive and ω−λ0I{hω0 ≤ ω ≤
1} ≥ 1 for λ0 ≥ 0, the second equality follows from a change of variables, and the convergence
follows from the dominated convergence theorem after noting

K ft(1− hλv)

(hλv)s
vs exp

(
|1− hλv|λ − 1

hλµ

)
I{0 ≤ v ≤ (1− δ)h−λ}

≤

sup0≤t≤1{t−sK ft(1− t)}vs exp(−v/µ) if λ ≥ 1,

sup0≤t≤1{t−sK ft(1− t)}vs exp(−λv/µ) if 0 < λ < 1.

Thus, it holds h1/2ς(h)−1/2|In| > c3h
λ/2 for all n large enough.

Combining these results, there exists c > 0 such that

σn ≥ chλ
∫
|a|≤hε

|a|2da ≥ chλ+3ε,

for all n large enough, and the conclusion follows. �

Lemma 8. Under Assumptions C and SS, there exists C > 0 such that σ̄n ≤ C for all n large
enough.

Proof. We only prove the case of λ0 ≥ 0. The proof for the case of λ0 < 0 is similar. Pick any
ε ∈ (0, 2−1/λ). Since fX is bounded (Assumption C (ii)), there exists C1, C2 > 0 such that

σ̄n ≤ C1
exp(−2/µhλ)

hλ(2s+1)+2λ0

∫
L̄2(a)da = C2

exp(−2/µhλ)

hλ(2s+1)+2λ0

∫ 1

hω0

∣∣∣∣K ft(ω)

ω
Φε

(ω
h

)∣∣∣∣2 dω
≤ C2ω

−2
0

exp(−2/µhλ)

hλ(2s+1)+2(1+λ0)

∫ 1

hω0

∣∣∣K ft(ω)Φε

(ω
h

)∣∣∣2 dω
≤ C2ω

−2
0

exp(−2/µhλ)

hλ(2s+1)+2(1+λ0)

∫ ε

hω0

∣∣∣∣K ft(ω)
(ω
h

)−(1+λ0)
exp

(
|ω|λ

hλµ

)∣∣∣∣2 dω
+C2ω

−2
0

exp(−2/µhλ)

hλ(2s+1)

∫
|ω|>ε

∣∣∣∣K ft(ω)ω−(1+λ0) exp

(
|ω|λ

hλµ

)∣∣∣∣2 dω
= T1n + T2n,
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for all n large enough, where the first equality follows from Plancherel’s isometry,7 and the
second inequality follows from Φε(ω) ≤ C|ω|−λ0 exp(|ω|λ/µ). For T1n, Assumption SS (iii) and
the restriction ε ∈ (0, 2−1/λ) guarantee

T1n ≤ C3ω
−(1+λ0)
0

exp(−2/µhλ)

hλ(2s+1)+2(1+λ0)

∫ ε

hω0

∣∣∣∣K ft(ω) exp

(
|ω|λ

hλµ

)∣∣∣∣2 dω
≤ C4

exp(−1/µhλ)

hλ(2s+1)+2(1+λ0)
= O(n−c1),

for some C3, C4, c1 > 0. For T2n, note that

T2n ≤ C5ε
−(1+λ0) exp(−2/µhλ)

hλ(2s+1)

∫
|ω|>ε

∣∣∣∣K ft(ω) exp

(
|ω|λ

hλµ

)∣∣∣∣2 dω,
for some C5 > 0. By an analogous dominated convergence argument used in the proof of Lemma
7, we can show T2n converges to some finite constant. Combining these results, the conclusion
follows. �

7Note that L̄ is written as L̄(u) = 1
2π

∫ 1

−1
e−iωu

ω
Kft(ω)

f ftε (ω/h)
I{|ω| ≥ ω0}dω. This integral exists due to the truncation.

36



Appendix C. Assumptions and proofs for Theorem 2

In this appendix we prove Theorem 2, the asymptotic distribution of tn in eq. (12) of the
paper. Basic steps of our proof follow the recipe laid down by Bissantz, Dümbgen, Holzmann
and Munk (2007). Importantly, we impose tail conditions on f ft

ε of the form f ft
ε (ω)|ω|β → Cε as

|ω| → ∞. Based on this, we define

K(u) =
1

2πCε

∫ ∞
0

e−iωuωβK ft(ω)dω +
1

2πCε

∫ 0

−∞
e−iωu|ω|βK ft(ω)dω,

L(u) =
1

2πCε

∫ ∞
0

sin(ωu)ωβ−1K ft(ω)dω +
1

2πCε

∫ 0

−∞
sin(ωu)|ω|βω−1K ft(ω)dω. (41)

These are the pointwise limits of hβK(u) and hβL(u) as h→ 0 under some assumptions on f ft
ε .

In addition to Assumptions OS, we impose the following conditions.

Assumption G.

(i): f ft
ε (ω)|ω|β → Cε as |ω| → ∞ for some β > 1/2.

(ii): hβ
∫
|K(u)|du < M for someM > 0 independent of h.

∫
|u|3/2

√
log(log+ |u|)|K(u)|du <

∞. For some δ > 0,
∫
|hβK̄(u)−K(u)|du = O(h1/2+δ).

(iii): limu→±∞ |L(u)
√
|u| log(log+ |u|)| = 0. For some δ1 ∈ (0, 1),

∫
|L(u)|2−δ1du < ∞.

For some δ > 0, supu |hβL̄(u/h)− L(u/h)| = O(h1/2+δ).
(iv): fX and its derivative f ′X are bounded and continuous on R such that

limx→±∞ |xfX(x) log(log+ |x|)| = 0. Also, supx |f ′X(x)fX(x)−1/2
√
|x| log(log+ |x|)| <

∞. Furthermore it holds∫
|f ′X(x)fX(x)−1/2

√
|x| log(log+ |x|)|dx <∞.

These conditions are generalizations and simplifications of the ones in Bissantz, Dümbgen,
Holzmann and Munk (2007). Assumption G (i) is stronger than the usual assumption f ft

ε (ω)|ω|β <
Cε as |ω| → ∞ but is required for explicit derivation of the limiting distribution.

Assumption G (ii) contains conditions for the deconvolution kernel K. The first condition
ensures that K is L1-integrable. A sufficient condition for this is that 1/f ft

ε (ω) is a polynomial
function in ω. Indeed in this case it can be shown from the properties of the Fourier transform
that |K(u)| ∼ |u|−q as |u| → ∞ under some conditions on f ft

ε . For instance, the choice r > 2 for
K assures |K(u)| ∼ |u|−2 under the assumption∫ ∣∣∣∣∣

{
K ft(ω)

f ft
ε (ω/h)

}′′∣∣∣∣∣ dω = O(h−β).

A similar condition is given in, for example, Bissantz, Dümbgen, Holzmann and Munk (2007,
eq. (13)). K in (41) is the limit of K̄ as h → ∞ obtained by Assumption G (i). Recall that
by Assumption OS (ii), hβ−

1
2

∫
|K(u) − K̄(u)|du = O(hs). Additionally, it can be shown from

the previous assumptions and properties of the Fourier transform of ωβK ft(ω) that
∫
|hβK(u)−

K(u)|du < ∞. To obtain the rate h1/2+δ for the latter, we need some additional conditions
on the decay of f ft

ε . Denote R(ω) = f ft
ε (ω)ωβ − Cε. Then a sufficient condition for the third

condition in Assumption G (ii) is that R(ω) ∼ ω−1/2−δ as |ω| → ∞.
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Assumption G (iii) contains conditions on the integrated kernel function L. On the first two
conditions in Assumption G (iii), we can in fact show the stronger statement that for all the
commonly used kernel functions, L(u) ∼ |u|−β∧1 as u→ ±∞. Regarding the third condition in
Assumption G (iii), note that we can expand

hβL̄
(u
h

)
− L

(u
h

)
=

hβ

πCε

∫ 1/h

ω1

sin(ωu)

ω
K ft(hω)

R(ω)

ψft(ω)
dω − hβ

πCε

∫ ω1

0
sin(ωu)ωβ−1K ft(hω)dω.

Standard arguments show that this is of the order h1/2+δ under the assumption R(ω) ∼ ω−1/2−δ

as |ω| → ∞.
Assumption G (iv) provides conditions on the decay rates of the pdf fX and its derivative f ′X .

Similar assumptions are adopted in the literature (e.g., Bickel and Rosenblatt, 1973).
Based on these conditions, we obtain Theorem 2 with

B =

∫
L(a)2da, bn = (−2 log h)1/2 + (−2 log h)−1/2 log

(∫
{L′(a)}2da

4πB

)
, (42)

Furthermore, if we consider the simple hypothesis

H0 : FX∗(t) = F0(t) for t ∈ T ,

for some F0, a test statistic for H0 is t0n = supt∈T |fX(t)−1/2{F̂X∗(t) − F0(t)}|. Consider the
sequence of local alternatives

H1n : FX∗(t) = F0(t) + γnη(t) for t ∈ T ,

where η(t) is a continuous function and γn =
√
nhβ−1/2(2 log(1/h))1/2. By an analogous argu-

ment, we can obtain

P
{

(−2 log h)1/2(B−1/2t0n − bn) ≤ c
}
→ exp(−s(η) exp(−c)),

for all c ∈ R, where s(η) =
∫ 1

0 exp((BfX∗(a))−1/2η(a)) + exp(−(BfX∗(a))−1/2η(a))da.

C.1. Proof of Theorem 2. We show that

sup
t∈T
|fX(t)−1/2{F̂X∗(t)− FX∗(t)} − Yn(t)| = op((− log(h))−1/2), (43)

where Yn = h−1/2
∫
L
(
t−a
h

)
dW (a) is a Gaussian process. Once we obtain (43), the conclusion

follows by applying the arguments of Bickel and Rosenblatt (1973, Theorem A1). The rate
op((− log(h))−1/2) is required because later we scale by (− log(h))1/2 to obtain the limiting
distribution as in Bickel and Rosenblatt (1973).

First, as in the proof of Lemma 1, the bias term in Qn(t) is negligible and we can restrict
attention to the mean zero process

Dn(t) = Qn(t)− E[Qn(t)] = hβ−1/2

∫
L
(
t− a
h

)
dαn(a),

where αn(a) =
√
n{FEDFX,n (a) − FX(a)} is the empirical process, and FEDFX,n is the empirical

distribution function by {Xi}ni=1. We approximate Dn(t) by
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Dn,1(t) = hβ−1/2

∫
L̄
(
t− a
h

)
dW (FX(a)).

Indeed the arguments in the proof of Lemma 1 allow us to show

sup
t∈T
|Dn(t)−Dn,1(t)| = Op((nh)−1/2 log n)).

Also, Dn,1(t) has the same finite dimensional distribution as

Dn,2(t) = hβ−1/2

∫
L̄
(
t− a
h

)
fX(a)1/2dW (a).

Next, we approximate Dn,2(t) by

Dn,3(t) = h−3/2

∫
K
(
t− a
h

)
fX(a)1/2W (a)da.

To this end, note that for any h > 0,

lim
a→±∞

K
(
t− a
h

)
fX(a)1/2W (a) ≤ sup

u
|K(u)| lim

a→±∞
|afX(a) log(log+ |a|)|1/2 = 0,

where the inequality follows from the law of the iterated logarithm for the Wiener process and
the equality follows from the facts supu |K(u)| = O(h−β−1) and Assumption G (iv). Thus, using
stochastic integration by parts, we can write

Dn,2(t) = hβ−1/2

∫ {
fX(t− hu)1/2K̄(u) + hf ′X(t− hu)fX(t− hu)−1/2L̄(u)

}
W (t− hu)du.

and obtain

|Dn,2(t)−Dn,3(t)| ≤ h−1/2

∫
{hβK̄(u)−K(u)}fX(t− hu)1/2W (t− hu)du

+h1/2

∫
hβL̄(u)f ′X(t− hu)fX(t− hu)−1/2W (t− hu)du

= Tn,4(t) + Tn,5(t)

Now by the law of the iterated logarithm and Assumption G (ii) and (iv), it follows supt∈T |Tn,4(t)| =
Op(h

δ). For the term Tn,5(t),

|Tn,5(t)| ≤ h−1/2 sup
u
|hβL̄(u/h)− L(u/h)|

∫
|f ′X(t− z)fX(t− z)−1/2W (t− z)|dz

+h1/2

∣∣∣∣∫ L(u)f ′X(t− hu)fX(t− hu)−1/2W (t− hu)du

∣∣∣∣
= Tn,51(t) + Tn,52(t).

Using Assumption G (iii)-(iv), an application of the law of the iterated logarithm proves supt∈T Tn,51(t) =

O(hβ). Next, for the term Tn,52(t), Hölder’s inequality and the law of the iterated logarithm
imply

Tn,52(t) ≤ hδ1/(4−2δ1) ‖L(u)‖2−δ1

∥∥∥∥f ′X(u)fX(u)−1/2
√
|u| log(log+ |u|)

∥∥∥∥
2+δ1/(1−δ1)

.

By this expression and Assumption G (iii)-(iv), we are able to show supt∈T |Tn,52(t)| = op((− log(h))−1/2).
Combining these results, the claim supt∈T |Dn,2(t)−Dn,3(t)| = op((− log(h))−1/2) follows.
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Third, we approximate the process fX(t)−1/2Dn,3(t) with the process

Dn,4(t) = h−3/2

∫
K
(
t− a
h

)
W (a)da.

Note that

fX(t)−1/2Dn,3(t)−Dn,4(t) = h−1/2

∫
{fX(t)−1/2fX(t− hu)1/2 − 1}K(u)W (t− hu)du.

By the law of the iterated logarithm and Assumption G (ii) and (iv), it follows

sup
t∈T
|fX(t)−1/2Dn,3(t)−Dn,4(t)| = Op(h

1/2).

Fourth, let

Dn,5(t) = h−1/2

∫
L
(
t− a
h

)
dW (a).

By stochastic integration by parts formula and Assumption G (ii),

Dn,4(t)−Dn,5(t) =

{
lim
a→∞

L

(
t− a
h

)
W (a)

}
−
{

lim
a→−∞

L

(
t− a
h

)
W (a)

}
= 0,

for each h, which implies that Dn,4(t) = Dn,5(t) for all t ∈ T . Since Dn,5(t) has the same finite
dimensional distributions as the process Yn, the claim in (43) follows.
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