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Abstract

What makes an asset a “safe asset”? We study a model where two countries each

issue sovereign bonds to satisfy investors’ safe asset demands. The countries differ in

the float of their bonds and the fundamental resources available to rollover debts. A

sovereign’s debt is safer if its fundamentals are strong relative to other possible safe

assets, not merely strong on an absolute basis. If demand for safe assets is high, a large

float enhances safety through a market depth benefit. If demand for safe assets is low,

then large debt size is a negative as rollover risk looms large.
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1 Introduction

US government debt is the premier example of a global safe asset. Investors around the

world looking for a safe store of value, such as central banks, tilt their portfolios heavily

towards US government debt. German government debt occupies a similar position as the

safe asset within Europe. US and German debt appear to have high valuations relative to

the debt of other countries with similar fundamentals, measured in terms of debt or deficit to

income ratios. Moreover, as fundamentals in the US and Germany have deteriorated, these

high valuations have persisted. Finally, as evident in the financial crises over the last five

years, during times of turmoil, the value of these countries’ bonds rise relative to the value

of other countries’ bonds in a flight-to-quality.

What makes US or German government debt a “safe asset”? This paper develops a model

that helps understand the characteristics of an asset that make it safe, as well why safe assets

display the phenomena described above. We study a model with many investors and two

countries, each of which issues government bonds. The investors have a pool of savings to

invest in the government bonds. Thus the bonds of one, or possibly both of the countries, will

hold these savings and serve as a store of value. However, the debts are subject to rollover

risk. The countries differ in their fundamentals, which measure their ability to service their

debt and factor into their rollover risk; and debt sizes, which proxy for the financial market

depth of the country’s debt market. Our model links fundamentals and debt size to the

valuation and equilibrium determination of asset safety.

In the model, an investor’s valuation of a bond depends on the number of other investors

who purchase that bond. If only a few investors demand a country’s bond, the debt is not

rolled over and the country defaults on the bond. For a country’s bonds to be safe, the

number of investors who invest in the bond must exceed a threshold, which is decreasing in

the country’s fundamentals (e.g., the fiscal surplus) and increasing in the size of the debt. The

modeling of rollover risk is similar to Calvo [8] and Cole and Kehoe [11]. Investor actions are

complements – as more investors invest in a country’s bonds, other investors are incentivized

to follow suit. Our perspective on asset safety emphasizes coordination, as opposed to

1



(exclusively) the income process backing the asset, as in conventional analyses of credit risk.

In the world, the assets that investors own as their safe assets are largely government debt,

money and bank debt. For these assets, valuation has a significant coordination component

as in our model, underscoring the relevance of our perspective.

Besides the above strategic complementarity, the model also features strategic substi-

tutability, as is common in models of competitive financial markets. Once the number of

investors who invest in the bonds exceeds the threshold required to roll over debts, then

investor actions become substitutes. Beyond the threshold, more demand for the bond that

is in fixed supply drives up the bond price, leading to lower returns. Our model links the

debt size to this strategic substitutability: for the same investor demand, a smaller debt size

leads to a smaller return to investors.

The model predicts that relative fundamentals more so than absolute fundamentals are

an important component of asset safety. Relative fundamentals matter because of the coor-

dination aspect of valuation. Investors expect that other investors will invest in the country

with better fundamentals, and thus relative valuation determines which country’s bonds have

less rollover risk and thus safety. This prediction helps understand the observations we have

made regarding the valuation of US debt in a time of deteriorating fiscal fundamentals. In

short, all countries’ fiscal conditions have deteriorated along with the US, so that US debt

has maintained and perhaps strengthened its safe asset status. The same logic can be used

to understand the value of the German Bund (as a safe asset within the Euro area) despite

deteriorating German fiscal conditions. The Bund has retained/enhanced its value because

of the deteriorating fiscal conditions of other Euro area countries.

We further show that this logic can endogenously generate the negative β of a safe asset;

that is, the phenomenon that safe asset values rise during a flight to quality. Starting from

a case where the characteristics of one country’s debt are so good that it is almost surely

safe; a decline in world absolute fundamentals further reinforces the safe asset status of that

country’s debt, leading to an increase of its value. We can thus explain the flight-to-quality

pattern in US government debt.
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The model also predicts that debt size is an important determinant of safety. If the global

demand for safe assets is high, then large debt size enhances safety. Consider an extreme

example with a large debt country and a small debt country. If investors coordinate all of

their investment into the small debt country, then the return on their investments will be

low (or even turn negative). That is the quantity of world demand concentrating on a small

float of bonds will drive bond prices up to a point that investors’ incentives in equilibrium

will be to coordinate investment toward the large debt. On the other hand, if global demand

for safe assets is low, then investors will be concerned that the large debt may not attract

sufficient demand to rollover the debt. In this case, investors will tend to coordinate on the

small debt size as the safe asset.

Our model offers some guidance on when the US government may lose its dominance as a

provider of the world safe asset. Many academics have argued that we are and have been in a

global savings glut, which in the model corresponds to a high global demand for safe assets.

In this case, US government debt is likely to continue to be the safe asset unless US fiscal

fundamentals deteriorate significantly relative to other countries, or if another sovereign debt

can compete with the US government debt in terms of size. Eurobonds seem like the only

possibility of the latter, although there is considerable uncertainty whether such bonds will

exist and will have better fundamentals than the US debt. However, if the savings glut ends

and the world moves to a low demand for safe assets, then our model predicts that US debt

may become unsafe. In this case, investors may shift safe asset demand to an alternative

high fundamentals country with a relatively low supply of debt, such as the German Bund.

We use our model to investigate the benefits of creating “Eurobonds.” We are motivated

by recent Eurobond proposals (see Claessens et al. [10] for a review of various proposals). A

shared feature of the many proposals is to create a common Euro-area-wide safe asset. Each

country receives proceeds from the issuance of the “common bond” which is meant to serve

as the safe asset, in addition to proceeds from the sale of an individual country-specific bond.

By issuing a common Eurobond, all countries benefit from investors’ need for a safe asset,

as opposed to just one country (Germany) which is the de-facto safe asset in the absence of
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a coordinated security design.

As our model features endogenous determination of the safe asset, it is well-suited to

analyze these “Eurobonds” proposals formally. Suppose that countries issue α share of

common bonds and 1 − α share as individual bonds. We ask, how does varying α affect

welfare, and the probability of safety for each country? Our main finding is that welfare is

only unambiguously increased for α above a certain threshold. Above this threshold, the

common-bond structure enhances the safety of both common bonds and individual bonds.

Below the threshold, however, welfare can be increasing or decreasing, depending on the

assumed equilibrium; and one country may be made worse off while another may be made

better off by increasing α. We conclude that a successful Eurobond proposal requires a

significant amount of coordination and volume / size of said Eurobonds.

Literature review. There is a literature in international finance on the reserve currency

through history. Historians identify the UK Sterling as the reserve currency in the pre-World

War 1 period, and the US Dollar as the reserve currency post-World War 2. There is some

disagreement about the interwar period, with some scholars arguing that there was a joint

reserve currency in this period. Eichengreen [15, 16, 17] discusses this history. Gourinchas

et al. [22] present a model of the special “exorbitant privilege” role of the US dollar in the

international financial system. A reserve currency fulfills three roles: an international store

of value, a unit of account, and a medium of exchange (Krugman [36], Frankel [19]). Our

paper concerns the store of value role. There is a broader literature in monetary economics

on the different roles of money (e.g., Kiyotaki and Wright [33], Banerjee and Maskin [2],

Lagos [38], Freeman and Tabellini [20], Doepke and Schneider [14]), and our analysis is most

related to the branch of the literature motiving money as a store of value. Samuelson [44]

presents an overlapping generation model where money serves as a store of value, allowing

for intergenerational trade. Diamond [13] presents a related model but where government

debt satisfies the store of value role. In this class of models, there is a need for a store of

value, but the models do not offer guidance on which asset will be the store of value. For
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example, it is money in Samuelson [44] and government debt in Diamond [13]. In our model,

the store of value determination is endogenous.

Our paper also belongs to a growing literature on safe asset shortages. Theoretical work

in this area explores the macroeconomic and asset pricing implications of such shortages

(Holmstrom and Tirole [32], Caballero et al. [7], Caballero and Krishnamurthy [5], Maggiori

[39], Caballero and Farhi [6]). There is also an empirical literature documenting safe asset

shortages and their consequences (Krishnamurthy and Vissing-Jorgensen [34, 35], Greenwood

and Vayanos [23], Bernanke et al. [4]). We presume that there is a macroeconomic shortage

of safe assets, and our model endogenously determines the characteristics of government debt

supply that satisfies the safe asset demand.

The element of rollover risk in our model is in the spirit of Calvo [8] and Cole and

Kehoe [11]. Rollover risk is also an active research area in corporate finance, with prominent

contributions by Diamond [12], and more recently, Morris and Shin [42], He and Xiong

[29, 28], and He and Milbradt [26, 27]. We utilize global games techniques (Carlsson and

van Damme [9]; Morris and Shin [40]; and others) to link countries’ fundamentals to the

determination of asset safety. In our economy agent actions can be strategic complements,

as in much of this literature, but different from the literature (e.g., Rochet and Vives [43]) can

also be strategic substitutes. In this sense, our paper is related to Goldstein and Pauzner [21],

who derive the unique equilibrium in a bank-run model with strategic substitution effects.

The strategic substitution effect in our model is however stronger than Goldstein and Pauzner

[21] and can lead to multiple equilibria, similar to Hellwig et al. [31], Angeletos et al. [1]. In

our analysis, when these strategic substitution effects are sufficiently strong, we construct an

equilibrium that features regions of joint safety. This equilibrium in which investor strategies

are non-monotone is new and a contribution to the global games literature. We label this

equilibrium, which closely resembles a mixed-strategy equilibrium, a joint safety equilibrium.

Last, a simplified version of the current model with an assumed equilibrium selection rule

instead of global game techniques is given in He et al. [30].

In our model, debt size confers greater market depth in the sense that increased purchases
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of the larger debt moves the price less. This notion of liquidity, that is, lower price impact, is

one aspect of liquidity (see, e.g., Kyle [37]), but is different than the transactional liquidity

studied in the over-the-counter search literature. In that literature, papers such as Vayanos

and Weill [45] show that a larger float of debt can make it easier to buy or sell the asset. This

occurs because it is easier to find trading partners when the float is larger. Thus, liquidity

has a coordination element via ease of trading thanks to the larger float. This transactional

notion of liquidity is not present in our model. Moreover, in our model, the coordination

element is through rollover risk, which interacts with debt float. Note that the Vayanos and

Weill [45] analysis could as well apply to risky assets as to safe assets. We are centrally

interested in describing safe assets, which is why we study rollover risk and the feedback of

liquidity into safety through rollover risk.1

2 Model

2.1 The Setting

Consider a two-period model with two countries, indexed by i, and a continuum of homoge-

neous risk-neutral investors, indexed by j. At date 0 each investor is endowed with one unit

of consumption good, which is the numeraire in this economy. Investors invest in the bonds

offered by these two countries to maximize their expected date 1 consumption, and there is

no other storage technology available.

There is a large country, called country 1, and a small country, called country 2. We

normalize the debt size of the large country to be one (i.e., s1 = 1), and denote the debt size of

the small country by s ≡ s2 ∈ (0, 1]. Each country sells bonds at date 0 promising repayment

at date 1. The size determines the total face value (in terms of promised repayment) of bonds

that each country sells: the large (small) country offers 1 (s) units of sovereign bonds. Hence
1Our paper complements the neoclassical asset pricing literature explaining differences in cross-country

currency returns based on country size, such as Hassan [25]. This literature focuses on risk-sharing effects
related to country size as reflected in GDP, whereas we focus on the coordination effects driven by the size
of a country’s debt.
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the aggregate bond supply is 1 + s. All bonds are zero coupon bonds. We can think of the

large country as the US and the small country as Canada.

The aggregate measure of investors, which is also the aggregate demand for bonds, is

1 + f , where f > 0 is a constant parameterizing the aggregate savings need. To save, we

assume that investors place market orders to purchase sovereign bonds. In particular, since

purchases are via market orders, the aggregate investor demand does not depend on the

equilibrium price.2 Denote by pi the equilibrium price of the bond issued by country i. Since

there is no storage technology available to investors, all savings of investors go to buy these

sovereign bonds. This implies via the market clearing condition that

s1p1 + s2p2 = p1 + sp2 = 1 + f.

Country i has fundamentals denoted θi. Purely as a matter of notation we write the fiscal

surplus as proportional to size and fundamentals, i.e., for country i it is siθi. Then, country

i has resources available for repayment consisting of the fiscal surplus siθi and the proceeds

from newly issued bonds sipi, for a total of (siθi + sipi). We assume that a country defaults

if and only if3

siθi + sipi︸ ︷︷ ︸
total funds available

< si︸︷︷︸
debt obligations

(1)

If a country defaults at date 0, there is zero recovery and any investors who purchased the

bonds of that country receive nothing.4 If a country does not default, then each bond of

that country pays off one at date 1. For simplicity, there is no default possibility at date 1,

e.g., this assumption can be justified by a sufficiently high fundamental in period 1.
2Market orders avoid the thorny theoretical issue of investors using the information aggregated by the

market clearing price to decide which country to invest in, a topic extensively studied in the literature on
Rational Expectations Equilibrium.

3One can think of the timing, as discussed in the text, as si is past debts that must be rolled over. This
is a rollover risk interpretation, where we take the past debt as given. Here is another interpretation. The
bonds are auctioned at date 0 with investors anticipating repayment at date 1. The date 0 proceeds of sipi
are used by the country in a manner that will generate siθi + sipi at date 1 which is then used to repay the
auctioned debt of si. He et al. [30] discuss the difference between old debt and new debt in more detail.

4We study the case of positive recovery in Section 3.5.
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The “fundamentals” of θi measures a country’s surplus, i.e., the country’s cushion against

default. For most of our analysis we refer to θi as the country’s fiscal surplus, which then

increases the funds available to roll over the country’s debt. Our model directly applies to

the case where debt is in real terms and the default is driven by a lack of liquidity. But with

some relabeling, there are other interpretations which are consistent with our modeling. We

can interpret θi to include reputational costs associated with defaulting on debts, in which

case the default equation, sipi < si(1 − θi), can be read as one where default is driven

by unwillingness-to-pay. For the case of foreign currency denominated debt, θi can include

both the fiscal surplus and foreign reserves of the country. For the case where the debt is

denominated in domestic currency, θi can include resources the central bank may be willing

to provide to forestall a rollover crisis. In this case, such resources, provided via monetization

of debt, may be limited by central bank’s concerns over inflation or a devalued exchange rate

(and its potential adverse effects on the country’s real surplus).

Our model can also capture the realistic case in which default on domestic currency

debt occurs through inflation rather than outright non-repayment of debt. Suppose that θi

parameterizes the real backing of the currency, and a smaller θi implies higher inflation in the

event of default. Then again, θi is a cushion against default, and the payout to bondholders

is decreasing in θi. This case can be handled in our model by setting the recovery in default

to be proportional to θi, an extension we consider in our NBER working paper version

(w22271).5

Finally, our analysis links size, si, to the determination of safety. We note that this

result does not arise mechanically through a relation that makes larger countries have a

larger surplus. Formally, we will assume that θi is independent of si. In this case, we can

cancel si on both sides of (1), so that it is evident that size does not directly enter the default

condition. Country size matters in our model through its impact on the equilibrium prices

(pi).
5For most of the analysis we set recovery to zero; but the model can be solved for case of positive recovery

as we do in Section 3.5.
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2.2 Multiple Equilibria in the Common Knowledge Case

We note that our model of sovereign debt features a multiple equilibrium crisis, in the sense

of Calvo [8] and Cole and Kehoe [11]. Suppose that investors conjecture that other investors

will not invest in the debt of a given country. Then the debt price pi will be low, and

the country is more likely to default, which further rationalizes the conjecture that other

investors will not invest in the debt of the country. Our main analysis will use the global

games approach of breaking common knowledge to pin down the equilibrium. But before

diving into that analysis, it is useful to go through the common knowledge case to highlight

the forces at work in the model.

We can rewrite (1) as,

pi < (1− θi). (2)

If the equilibrium price of country-i’s debt is less than country-i’s funding need, then the

country defaults.

Let us take a special case where the aggregate international savings need f is large enough

to rollover both countries’ debts:

1 + f ≥ (1 + s) max {1− θ1, 1− θ2} ≥ (1− θ1) + s (1− θ2) .

The left-hand side of this expression is the total funding available from investors and the

right-hand side is the sum of the funding needs of each country. Since in equilibrium returns

on the country’s debts have to be equalized, the middle inequality ensures that there exist

equilibrium bond prices so that neither country defaults.

In this special case, there are three equilibria. Equilibrium A is that country 1 is safe

(i.e., the safe asset) and country 2 defaults. The bond prices in this case are p1 = 1 + f and

p2 = 0, with investors earning a return of 1
1+f

. Equilibrium B is that country 2 is safe and

country 1 defaults. The bond prices in this case are s · p2 = 1 + f and p1 = 0, with investors

earning a return of s
1+f

. Finally, equilibrium C is that both countries rollover their debts

and are safe. Investors earn a return equal to 1+s
1+f

, which is the total repayments by both
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countries divided by the funds that investors pay to buy the debts. The equilibrium bond

prices are p1 = p2 = 1+f
1+s

.

Comparing across equilibrium A and B, we note that investors receive a higher return

in equilibrium A. In equilibrium B, all of investors’ savings chase a small quantity of debt,

driving returns down. Investors’ preference for equilibrium A, through the relative debt sizes

of the two countries, provides some intuition for the size benefit which we have alluded to;

its role in equilibrium selection will be explored more thoroughly in the next section.6 There

is a countervailing cost of size that is not evident in the common knowledge case, but will

be clear in the full model. If f is small so that 1 + f < (1 − θ1) + s(1 − θ2), then only

one country’s debts can be rolled over, and it is reasonable that investors grow concerned

that the large debt country will default and hence select equilibrium B. This mechanism

manifests itself in our later analysis as well.

Finally, investors are best off in equilibrium C where both countries are safe. But this

equilibrium can be unstable, especially when the abundance of global savings is not guaran-

teed, so f barely satisfies the two countries’ borrowing needs. For illustration, take the case

that the aggregate savings 1 + f is close to the aggregate funding needs (1− θ1) + s (1− θ2),

and both countries have similar fundamentals θ1 ≈ θ2. To support this equilibrium, in-

vestors need to allocate fractions of exactly 1
1+s

and s
1+s

of their portfolio to each country’s

debts. Suppose now that the fundamentals of the two countries, θ1 and θ2, start to diverge.

It is reasonable to think that some investors will anticipate that other investors will tilt their

portfolios towards the stronger country. But then the investors will follow suit, and equi-

librium will shift to the stronger country (either A or B). The stability of the joint safety

equilibrium depends in part on the relative fundamentals of the countries and whether 1 + f

is large or small.

The rest of this paper follows the global games approach to link equilibrium selection

to fundamentals. By doing so, we can thoroughly explore the economic intuitions that
6The global games equilibrium selection is related to the notion of p-dominance, as the equilibrium with

country 1 survival is 1
1+s -dominant. More specifically, investing in country 1 is the unique best response for

any individual if he believes other investors buy country 1’s bond with probability at least s
1+s .
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are hinted by the analysis in the common knowledge case. In He et al. [30] we posit an

equilibrium selection rule based on maximizing investor welfare, and provide results that

support the intuitions we have given in the common knowledge case. That analysis is far

more rudimentary than the global games approach followed here.

2.3 Private Information and Equilibrium Selection

We assume that there is a publicly observable world-level fundamental index θ ∈ (0, 1). Our

analysis focuses on a measure of relative strength between country 1 and country 2, which we

denote by δ̃ and is publicly unobservable. Specifically, conditional on the relative strength

δ̃, the fundamentals of these two countries satisfy

1− θ1

(
δ̃
)

= (1− θ) exp
(
−δ̃
)

and 1− θ2

(
δ̃
)

= (1− θ) exp
(
δ̃
)
. (3)

Recall from (2) that 1 − θi is the funding need of a country. Given δ̃, the higher the θ, the

greater the surplus of both countries and therefore the lower their funding need. And, given

θ, the higher the δ̃, the better are country 1 fundamentals relative to country 2, and therefore

the lower is country 1’s relative funding need.7 Finally, the above specification implies that

the funding need for each country is always positive.

We assume that the relative strength of country 1 has a support δ̃ ∈
[
−δ, δ

]
. We do not

need to take a stand on the distribution over the interval
[
−δ, δ

]
. Unless specified otherwise,

we assume δ < ln 1+f
s(1−θ) , which ensures that for the worst case scenario, financing need of the

weaker country exceeds the total savings 1 + f . This gives us the usual dominance regions

when the fundamentals take extreme values.

Following the global games technique to pin down the equilibrium, we assume that coun-

try 1’s relative strength δ̃ is not publicly observable. Instead, each investor j ∈ [0, 1] receives

7The scale of 1−θ and exponential noise eδ̃ and e−δ̃ in (3) help in obtaining a simple closed-form solution
in our model. The Appendix B.1 considers an additive specification θi = θ + (−1)

i
δ̃ and solves the case for

σ > 0; we show that the main qualitative results hold in that setting.
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a private signal

δj = δ̃ + εj,

where εj ∼ U [−σ, σ] and εj are independent across all investors j ∈ [0, 1]. Following the

global games literature as in Morris and Shin [41] we will focus on the limit case where the

noise vanishes, i.e., σ → 0.8

Finally, note that although we do not need to take a stand on the (prior) distribution of

δ̃, for much of the analysis, it will make most sense to think of a distribution that places all

of the mass around some point δ0 and almost no mass on other points. This will correspond

to a case where investor-j is almost sure that fundamentals are δ0, but is unsure about what

other investors know, and whether other investors know that investor-j knows fundamentals

are δ0, and so on. In other words, in the limiting case fundamental uncertainty vanishes and

only strategic uncertainty about each investors’ relative rank remains.

We focus on a symmetric single-survivor equilibrium in threshold strategies in this section.

More specifically, we assume that all investors adopt the same threshold strategy in which

each investor purchases country 1 bonds if and only if his private signal about country 1’s

relative strength is above a certain threshold, i.e. δj > δ∗; otherwise the investor purchases

country 2 bonds, and these strategies result in an equilibrium where only one country does

not default. We will later show in Proposition 2 that if we restrict agents to monotone

strategies, i.e. strategies in which an agent’s investment in a country is weakly increasing in

the signal received about that country, the symmetric single-survivor equilibrium in threshold

strategies is the unique equilibrium. Later in this paper, we study non-monotone strategies

which are needed to (i) construct a single-survivor equilibrium in the case of positive recovery

and (ii) to introduce a novel class of equilibria that feature joint safety.
8Under global strategic complementarity, Frankel et al. [18] show that the resulting equilibrium in many-

player-many-action models may depend on the specific distribution of εj (which we assume to be uniform
here) even when taking the limit of σ → 0. This noise-dependence feature may emerge in our model in which
global strategic complementarity does not hold.
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Deriving the equilibrium threshold. In equilibrium, the marginal investor who receives

the threshold signal δj = δ∗ must be indifferent between investing his money in either country.

Based on this signal, the marginal investor forms belief about other investors’ signals and

hence their strategies. Denote by x the fraction of investors who receive signals that are

above his own signal δj = δ∗, and as implied by threshold strategies will invest in country 1.

It is well-known (e.g., Morris and Shin [41]) that in the limit of diminishing noise σ → 0, the

marginal investor forms a “diffuse” view about other investors’ strategies, in that he assigns

a uniform distribution for x ∼ U [0, 1].

Combined with the threshold strategy, the fraction of investors who purchase the bonds

of country 1 is equal to the fraction of investors deemed more optimistic than the marginal

agent, x. Thus, the total funds going to country 1 and 2 are (1 + f)x and (1 + f) (1− x),

respectively. The resulting bond prices are thus

p1 = (1 + f)x and p2 =
(1 + f) (1− x)

s
.

We now calculate the expected return from investing in bond i, Πi.

Expected return from investing in country 1. Given x and its fundamental θ1, coun-

try 1 does not default if and only if

p1 − 1 + θ1 = (1 + f)x− 1 + θ1 ≥ 0 ⇐⇒ x ≥ 1− θ1

1 + f
. (4)

This is intuitive: country 1 does not default only when there are sufficient investors who

receive favorable signals about country 1 and place their funds in country 1’s bonds accord-

ingly. The survival threshold 1−θ1
1+f

is lower when country 1’s fundamental, θ1, is higher and

when the total funds available for savings, f , are higher.

Of course, country 1’s fundamental 1− θ1 = (1− θ) e−δ̃ in (3) is uncertain. We take the

limit as σ → 0, so that the signal is almost perfect and the threshold investor who receives
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a signal δ∗ will be almost certain that9

1− θ1 = (1− θ) e−δ∗ . (5)

Hence, in the limiting case of σ → 0, plugging (5) into (4) we find that the large country 1

survives if and only if

x ≥ 1− θ1

1 + f
=

(1− θ) e−δ∗

1 + f
. (6)

Here, either higher average fundamentals θ or a higher threshold δ∗ make country 1 more

likely to repay its debts.

Now we calculate the investors’ return by investing in country 1. Conditional on survival,

the realized return is
1

p1

=
1

(1 + f)x
,

while if default occurs the realized return is 0. From the point of view of the threshold

investor with signal δ∗, the chance that country 1 survives is simply the integral with respect

to the uniform density dx from (1−θ)e−δ∗

1+f
to 1:

Π1 (δ∗) =

∫ 1

(1−θ)e−δ∗

1+f

1

(1 + f)x
dx =

1

1 + f

(
ln

1 + f

1− θ
+ δ∗

)
. (7)

The higher the threshold δ∗, the greater the chance that country 1 survives, and hence the

higher the return by investing in country 1 bonds.

Expected return from investing in country 2. Denote the measure of investors that

are investing in country 2 by x′ ≡ 1 − x, that is the fraction of investors that are more

pessimistic than the marginal agent, which again follows a uniform distribution over [0, 1]. If
9In equilibrium, θ1 depends on the realization of x, which is the fraction of investors with signals above

δ∗. Given that the signal noise εj is drawn from a uniform distribution over [−σ, σ], we have

x = Pr
(
δ̃ + εj > δ∗

)
=
δ̃ + σ − δ∗

2σ
⇒ δ̃ = δ∗ + (2x− 1)σ.

which implies that θ1 = θ + (1− θ)
(
1− e−δ∗−(2x−1)σ

)
. Taking σ → 0 we get (5).
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the investor instead purchases country 2’s bonds, he knows that country 2 does not default

if and only if

sp2 − s+ sθ2 = (1 + f)x′ − s+ sθ2 ≥ 0⇔ x′ ≥ s (1− θ2)

1 + f
, (8)

Country 2 survives if the fraction of investors investing in country 2, x′, is sufficiently high.

The threshold is lower if the country is smaller, fundamentals are better, and the total funds

available for savings are higher.

Similar to the argument in the previous section, in the limiting case of almost perfect

signal σ → 0, country 2 fundamental θ2 in (8) is almost certain from the perspective of the

threshold investor with signal δ∗ (recall (3)):

1− θ2 = (1− θ) eδ∗ . (9)

Plugging equation (9) into equation (8), we find that country 2 survives if and only if

x′ ≥ s (1− θ) eδ∗

1 + f
. (10)

Relative to (6), country size s plays a role. All else equal, the lower size s and the smaller

country 2, the more likely that the country 2 survives.

Given survival, the investors’ return of investing in country 2, conditional on x′, is

1

p2

=
s

(1 + f)x′
; (11)

while the return is zero if country 2 defaults. As a result, using (11), the expected return

from investing in country 2 is

Π2 (δ∗) =

∫ 1

s(1−θ)eδ∗

1+f

s

(1 + f)x′
dx′ =

1

1 + f
· s
(
− ln s+ ln

1 + f

1− θ
− δ∗

)
(12)

Note that if s = 1, we see that this profit is the same as for country 1 whose debt size is
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fixed at 1.

Expected return of investing in country 1 versus country 2. Figure 1 plots the

return to investing in each country as a function of x (x′) which is the measure of investors

investing in country 1 (country 2). For illustration, we take the hypothetical equilibrium

threshold δ∗ = 0, and study the payoffs from the perspective of the marginal investor with

δ̃ = δ∗ = 0 so θ1 = θ2 = θ. Consider the solid green curve first which is the return

to investing in country 1. For x below the default threshold 1−θ
1+f

, the return is zero. This

default threshold is relatively high, since country 1 is large and hence it needs a large number

of investors to buy bonds to ensure a successful auction. Across the threshold 1−θ
1+f

, investor

actions are strategic complements – i.e., if a given investor knows that other investors are

going to invest in country 1, the investor wants to follow suit. Past the threshold, the return

falls as the face value of bonds is constant and investors’ demand simply bids up the price of

the bonds. In this region, investor actions are strategic substitutes. The marginal investor’s

expected return from investing in country 1 is the integral of shaded area beneath the green

solid line.

The dashed red curve plots the return to investing in country 2, as a function of x′

which is the measure of investors investing in country 2. The default threshold for country

2, which is s(1−θ)
1+f

, is lower than for country 1 ( 1−θ
1+f

) because country 2 only needs to repay

a smaller number of bonds. When δ∗ = 0, i.e., the marginal investor with signal δ∗ = 0

believes that both countries share the same fundamentals, the threshold return to investing

in country 2 is 1
1−θ . This is the same as the threshold return to investing in country 1, as

shown in Figure 1. While country 2 has a lower default threshold which implies a smaller

strategic complementarity effect, past the threshold the return to investing in country 2 falls

off quickly. That is, the strategic substitutes effect is more significant for country 2 than

country 1. This is because country 2 has a small bond issue and hence an increase in demand

for country 2 bonds increases the bond price (decreases return) more than the same increase

in demand for country 1 bonds. We see this most clearly at the boundary where x = x′ = 1,
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Figure 1: Returns of the marginal investor when investing in country 1 (2) as a
function of x (x′): The return to investing in country 1 (2) is the green solid (red dashed)
line. We assume δ∗ = 0 so that the marginal investor with δ̃ = δ∗ = 0 believes that both
countries have the same fundamentals. The bonds issued by the large country 1 (small
country 2) only pay when x > 1−θ

1+f
(x′ > s(1−θ)

1+f
). The return to country 1’s bonds falls to 1

1+f

when x = 1, while for country 2’s bonds the return falls more rapidly to s
1+f

when x′ = 1.

where the return to investing in the large country 1 is 1
1+f

, while the return to investing in

country 2 is s
1+f

.

To sum up, because the large country auctions off more bonds, it needs more investors

to participate to ensure no-default. However, the very fact that the large country sells more

bonds makes the large country a deeper financial market that can offer a higher return on

investment. This tradeoff – size features more rollover risk but provides a more liquid savings

vehicle – is at the heart of our analysis.

Equilibrium threshold δ∗. The equilibrium threshold δ∗ is determined by the indiffer-

ence condition for the threshold investor between investing in these two countries. Setting

Π1 (δ∗) − Π2 (δ∗) = 0, plugging in (7) and (12), the equilibrium threshold signal δ∗ is given
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by

δ∗ (s, z) = −1− s
1 + s︸ ︷︷ ︸

liquidity, (−)

· z +
−s ln s

1 + s︸ ︷︷ ︸
rollover risk, (+)

where z ≡ ln
1 + f

1− θ
> 0. (13)

Here, z measures aggregate funding conditions, which is greater if either more aggregate

funds f are available or there is a higher aggregate fundamental θ. The “savings glut” which

many have argued to characterize the world economy for the last decade is a case of high z.

From (13) we see that there are two effects of size. The first term is negative (for s ∈ (0, 1))

and reflects the liquidity or market depth benefit that accrues to the larger country, making

country 1 safer all else equal. The second term is positive and reflects the rollover risk for

country 1, whereby a larger size makes country 1 less safe. The benefit term is modulated

by the aggregate funding condition z. We next discuss implications of our model based on

the equation (13).

3 Model Implications

3.1 Determination of asset safety

Comparing the realized fundamental δ̃ to the equilibrium threshold δ∗ tells us which of the

two countries will not default, and thus which country’s debt will serve as the safe store of

value. Consider the case where the distribution of δ̃ places most of the mass around some

point δ0 and almost no mass on other points. This corresponds to a case where investor-j is

almost sure that fundamentals are δ0, but is unsure about what other investors know, and

whether other investors know that investor-j knows fundamentals are δ0. If δ0 > δ∗ then

country 1 debt is the safe asset, while if δ0 < δ∗ then country 2 debt is the safe asset. Given

that all investors know almost surely the value of δ0, investors are then almost sure which

debt is safe. Mapping this interpretation to thinking about the world, the model says today

may be a day that U.S. Treasury bonds are almost surely safe, i.e., δ0 >> δ∗. But there may
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be a news story out that questions the fundamentals of the U.S. (e.g., negotiations regarding

the debt limit), and while investor-j may know that it is still the case that δ0 >> δ∗, the

failure of common knowledge establishes a lower bound δ∗ at which the U.S. Treasury bond

will cease to be safe.

The following proposition gives the properties of the equilibrium threshold δ∗ (s, z), as a

function of country 2’s relative size s and the aggregate funding condition z.

Proposition 1 We have the following results for the equilibrium threshold δ∗ (s, z) for the

single-survivor equilibrium in threshold strategies:

1. The equilibrium threshold δ∗ (s, z) is decreasing in the aggregate funding conditions z.

Hence, country 1’s bonds can be the safe asset for worse values of country 1 fundamen-

tals δ̃, if the aggregate fundamental θ or aggregate saving f is higher.

2. The equilibrium threshold δ∗ (s, z) ≤ 0 for all s ∈ (0, 1], if and only if z ≥ 1. Hence,

when the aggregate funding z ≥ 1, the bonds issued by the larger country 1 can be the

safe asset for worse values of country 1 fundamentals δ̃.

3. When s→ 0 the equilibrium threshold δ∗ (s, z) approaches its minimum, i.e., lims→0 δ
∗ (s, z) =

infs∈(0,1] δ
∗ (s, z) = −z < 0. This implies that all else equal, country 1 is the safe asset

over the widest range of fundamentals when country 2 is smallest.

Proof. Result (1.) follows because of ∂
∂z
δ∗ (s, z) = −1−s

1+s
< 0. To show result (2.), note

that when z = 1 we have δ∗ (s, z = 1) = s−s ln s−1
1+s

< 0 for s ∈ (0, 1]. This inequality can be

shown by observing (i) (s− s ln s− 1)
′
> 0 and (ii) (s− s ln s− 1)s=1 = 0. Result (3.) holds

because

δ∗ (s, z) = −1− s
1 + s

z +
−s ln s

1 + s
> −1− s

1 + s
z > −z,

where the last inequality is due to −1−s
1+s

z being increasing in s for z > 0.

We illustrate these effects in Figure 2. The left Panel of Figure 2 plots δ∗ as a function

of s for the case of z = 1, which corresponds to strong aggregate funding conditions with

abundant savings and/or good fundamentals. In this case, the equilibrium threshold δ∗ (s) is
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Figure 2: Equilibrium threshold δ∗ as a function of country 2 size s: The left Panel
is for the case of strong aggregate funding conditions with z = 1, and the right Panel is for
the case of weak aggregate funding conditions with z = 0.2.

always negative, and is monotonically increasing in the small country size s. For small s close

to zero, the large country is safe even for low possible values of the fundamental δ̃, because

in this case country 2 does not exist as an investment alternative. Then because all investors

have no choice but to invest in country 1, the bonds issued by country 1 have minimal

rollover risk. If we assume that the aggregate savings 1 + f are enough to cover country 1’s

financing shortfall 1 − θ1

(
δ̃
)
even for the worst realization of δ̃ = −δ then country 1 will

always be safe in this case. This s = 0 case offers one perspective on why Japan has been

able to sustain a large debt without suffering a rollover crisis. Many of the investors in Japan

are so heavily invested in Japanese government, eschewing foreign alternative investments,

making Japan’s debt safe. In the model, when s = 0, investors have no elsewhere to go and

are forced into a home bias. If this home bias in investment disappeared, then Japanese debt

may no longer be safe.

The right Panel in Figure 2 plots δ∗ for a case of weak aggregate funding conditions

(z = 0.2), with insufficient savings and/or low fundamentals. Consistent with the first result

in Proposition 1 we see that in this case the large country can be at a disadvantage. For

medium levels of s (around 0.4), investors are concerned that there will not be enough demand

for the large country bonds, exposing the large country to rollover risk. As a result, investors

coordinate investment into the small country’s debt. Note that this may be the case even if
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the small country has worse fundamentals. For small s, the size disadvantage of the small

country becomes a concern, and the large country is safe even with poor fundamentals (the

third result in Proposition 1). For s large, we are back in the symmetric case. Comparing the

right Panel with z = 1 to the left Panel with z = 0.2 highlights that the large country’s debt

size is an unambiguous advantage only when the aggregate funding conditions are strong;

as the pool of savings shrink, the large debt size triggers rollover risk fears so that investors

coordinate investment into the small country’s debt.

3.2 Relative fundamentals

Our model emphasizes relative fundamentals as a central ingredient in debt valuation. To

clarify this point, consider a standard model without coordination elements and without the

safe asset saving need. In particular, suppose that the world interest rate is R∗ and consider

any two countries in the world with surpluses given by θ1 and θ2. Suppose that investors

purchase these countries’ bonds for pisi and receive repayment of si min (θi, 1). Then,

p1 =
E [min (θ1, 1)]

1 +R∗
and p2 =

E [min (θ2, 1)]

1 +R∗
,

so that bond prices depend on fundamentals, but not particularly on relative fundamentals

θ1 − θ2. In contrast, in our model if country-i has the better fundamentals (relative to the

equilibrium threshold δ∗), it attracts all the savings so that

pi = 1 + f and p−i = 0. (14)

Valuation in our model becomes sensitive to relative fundamentals, as investors endogenously

coordinate to buy bonds that they deem safer. In Section 3.5 we show that these forces also

explain why a safe asset carries a negative β.

The importance of relative fundamentals helps us understand why, despite deteriorating

US fiscal conditions, US Treasury bond prices have continued to be high: In short, all coun-

tries’ fiscal conditions have deteriorated along with the US, so that US debt has maintained
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and perhaps strengthened its safe asset status. The same logic can be used to understand

the value of the German Bund (as a safe asset within the Euro-area) despite deteriorat-

ing German fiscal conditions. The Bund has retained/enhanced its value because of the

deteriorating general European fiscal conditions.

3.3 Size and aggregate funding conditions

Our model highlights the importance of debt size in determining safety, and its interactions

with the aggregate funding conditions. In the high aggregate funding regime, which the

literature on the global savings glut has argued to be true of the world in recent history (see,

e.g., Bernanke [3], Caballero et al. [7], and Caballero and Krishnamurthy [5]), higher debt

size increases safety. US Treasury bonds are the world safe asset in part because US has

maintained large debt issues that can accommodate the world’s safe asset demands.

These predictions of the model also offer some insight into when US Treasury bonds may

cease being a safe asset. If the world continues in the high savings regime, the US will only

be displaced if another country can offer a large debt size and/or good relative fundamentals.

This seems unlikely in the foreseeable future. On the other hand, if the world switches to

the low savings regime, it is possible that US Treasury bonds become unsafe, and another

country debt with a smaller debt size and good fundamentals, such as the German Bund,

becomes the dominant safe asset.

3.4 Non-monotone strategies and joint safety equilibria

So far we have restricted the agents’ strategy space to so-called “threshold” strategies, i.e.,

invest in country 1 if δj is above certain threshold; otherwise invest in country 2. This section

discusses potential equilibria once this strategy space is expanded.

Denote the probability (or fraction) of investment in country 1 by an agent with signal

δj by φ (δj) ∈ [0, 1]; the agent’s strategy is monotone if φ (δj) is monotonically increasing in

his signal δj of the country 1’s fundamental, i.e., φ (δ) ≥ φ (δ′) if δ > δ′. Then we have the

following proposition, which is proved in Appendix B.2:
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Proposition 2 The single-survivor equilibrium with threshold strategies constructed in Eq.

(13) is the unique equilibrium within the monotone strategy space.

If we allow agents to choose among non-monotone strategies, i.e. φ (δj) is non-monotone,

then for large enough z it is possible to construct equilibria where both countries are safe

for some values of the relative fundamental signal δ̃ (while one country fails if δ̃ is too low

or too high). In the case where both countries do not default over some range of δ̃, the

equilibrium requires investors to “mix” because their investments are strategic substitutes.

By allocating funds to both countries’ debts in the right proportion, this mixing ensures no-

arbitrage across the assets. In Appendix A.1 we construct such a joint safety equilibrium in

which agents use “oscillating strategies” that are a tractable way of ensuring the no-arbitrage

conditions when such are present, such as is the case in joint safety equilibria when both

countries’ bonds may pay out. As another application, oscillating strategies allow us also

to derive a single-survivor equilibrium with strictly positive bond recovery, which requires

no-arbitrage conditions across the non-defaulting and defaulting bond.

Under this oscillating strategy, agents invest in country 2 for sufficiently low δj. If the

signal is slightly above an endogenous threshold δL, agents then invest in country 1, but go

back to investing in country 2 for higher signals, oscillating back and forth. Oscillation stops

when signals reach another endogenous threshold δH , above which agents always invest in

country 1. An example of such a strategy can be found in the top panels and the bottom left

panel of Figure 3 (they all depict the same strategy). The vertical black lines in these panels

denote δL(=-0.37) and δH(=-0.12). The horizontal blue line graphs φ (δ), the strategy as a

function of δ, which takes values of 0 or 1 in non-monotone fashion. The oscillation intervals

are of length of 2σ (in Figure 3, we have two full oscillations, i.e., δH − δL = 4σ). In the

constructed joint safety equilibrium, oscillation occurs only in the region where both countries

are safe given the realization of fundamental δ̃ and equilibrium investment strategies.

Even though oscillating strategies are constructed from pure strategies φ (δ) ∈ {0, 1}, they

feature investor indifference strictly inside the joint-safety regions, and thus closely mirror

mixed strategies. The lower right panel of Figure 3 displays the expected payoff, g (δ), of
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Figure 3: Oscillating strategy for z = 1 and s = 0.25: The joint safety region has
boundaries δL(=-0.37) and δH(=-0.12), marked by black vertical lines. The blue horizontal
lines are the investment strategy φ (δ), which takes values of 0 or 1 in non-monotone fashion.
An investor in the interior of the joint safety region (at the black dot=-0.27) considers a
range of other investors’ signals and their strategies (black rectangle) if he has the highest
signal (x = 0) [top left panel], median signal (x = 1

2
) [top right panel], lowest signal (x = 1)

[bottom left panel]. The bottom right panel plots the expected payoff g (δ) of investing in
country 1 over country 2 as a function of the signal δj.

investing in country 1 over country 2. The black rectangles in the other panels indicate

the region integrated over by an agent with a signal given by the black dot (=-0.27) when

computing g (δ). Regardless of the investor’s relative position x, as indicated by the different

position of the rectangle across the panels, the proportion of investors in country 1 stays

constant and hence the integral g (δ) equals 0. Knowing that both countries will be safe and

no arbitrage holds, investors are indifferent and the equilibrium prescribes them to oscillate

between investing in country 1 and country 2 depending on their private signal realizations.

Note that in the joint-safety region the fundamental δ̃ (and hence the private signal δj)

is no longer payoff relevant and instead the signal δj takes on the role of a randomization

device.10,11 However, for signal values close to the endogenous boundaries at which the
10The realization of the signal δj thus can be thought of as serving the role of “coin-toss;” although the

coin-toss is deterministic for each individual agent, we can aggregate these coin-tosses to follow an appropriate
distribution to ensure each player’s indifference. This is because every agent in this region knows that other
agents whose private signals span an interval of 2σ follow an oscillating strategy in a manner so that the
aggregate investment proportions is constant.

11What is the connection between our oscillating strategies and the purification scheme by Harsanyi [24]?
In our model, the agents’ choice of playing country 1 or 2 is a (non-monotone) function of their signal δi. In
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oscillation frequency changes, incentives are strict, resulting in strategies that are at a corner,

i.e., φ (δ) ∈ {0, 1}, as can be seen in the lower right panel of Figure 3. More importantly, these

cornered strategies can be shown to be consistent with the equilibrium strategies outside the

oscillation region [δL, δH ].12. As before we are interested in the endogenous boundaries δL

and δH when σ → 0.

All key qualitative properties in Proposition 1 derived under the single-survivor equilib-

rium in threshold strategies are robust to considering the joint safety equilibrium in oscilla-

tion strategies, with minor modifications. It is also worth emphasizing that equilibria with

oscillating strategies lead to the economically plausible situation that both countries’ debts

may be safe when the aggregate funding condition z is high. This possibility cannot emerge

in the case of monotone strategies in which one country always survives and one country

always defaults. The next proposition summarizes the results parallel to Proposition 1.

Proposition 3 We have the following results for the joint safety equilibrium in oscillating

strategies.

1. For sufficiently favorable aggregate funding conditions z ≥ z > 0 where z is derived in

Appendix A.1, the joint safety equilibrium in oscillating strategies exists. joint safety

supported by oscillation occurs on an interval

[δL, δH ] =

[
−z + (1 + s) ln (1 + s)− s ln s, z − 1 + s

s
ln (1 + s)

]
(15)

2. The survival region of the larger country 1,
[
δL, δ

]
, increases with the aggregate funding

conditions z. However, a higher z also increases the survival region of the smaller

country 2,
[
−δ, δH

]
.

Harsanyi [24], a given agent sees an epsilon-benefit to playing 1 or 2, with an appropriately chosen distribution
of epsilon to ensure appropriate proportions for indifference. Hence we are imposing the epsilon-benefit in
Harsanyi’s purification scheme as to bear the specific relation to δi.

12Investors invest in one of the countries for extreme realizations of δ̃, given the existence of upper- and
lower-dominance regions. In equilibrium, oscillation in an endogenous interior region of of the support ofδ
naturally arises due to the “global games” insight: “the uncertainty, however small it is, forces the players to
take account of the entire class of a priori possible games.” (Carlsson and van Damme [9], p. 990).
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3. When z ≥ z, the bonds issued by the larger country 1 are a safe asset for a wider range

of fundamentals than the bonds issued by the smaller country 2.

4. All else equal, the larger country 1 is a safe asset for the lowest level of fundamentals

when the debt size of country 2 goes to zero, i.e. s→ 0.

The first result shows that there is a simple closed form solution for the joint safety

interval (δL, δH). Regarding the second result, recall that in the single-survivor equilibrium

in threshold strategies studied in Proposition 1, a higher z increases the survival region of the

larger country 1 and at the same time decreases the survival region of the smaller country 2.

This is because only one country survives in the single-survivor equilibrium. In contrast, in

the joint safety equilibrium, both counties may survive, and thus improved aggregate funding

conditions makes both countries safer. The first and third result of Proposition 3 are similar

to the results of Proposition 1, i.e., under sufficiently favorable aggregate funding conditions

so that the joint safety equilibrium in oscillating strategies exists, the bonds of the larger

country are safer than the bonds of the smaller country. The fourth result is identical to

that of Proposition 1.

We have constructed two possible equilibria of the model, and as discussed, they have

similar comparative statics if both exist. But is one equilibrium better than the other in a

welfare sense? It will depend on the welfare criteria we apply. To start with, suppose that

the welfare criterion is based only on the probability of survival (e.g., if default costs are very

large); then the joint-safety equilibrium does achieve higher welfare as it results in (weakly)

less default for any given value of δ. If the welfare criterion also includes the revenues that

the countries raise from the bond auction, then the results are less clear. This is because

under the single-survivor equilibrium, the surviving country receives all of the proceeds from

the bond issuance, and can thus be hurt by joint-safety where it shares bond revenues with

the other country. On the other hand, if we take an equal-weighted welfare function (which

is appropriate if transfers are allowed), then the joint-safety equilibrium maximizes welfare

because the transfers involved under joint-safety wash out.
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3.5 Negative β safe asset

At the height of the US financial crisis, in the aftermath of the Lehman failure, the prices

of US Treasury bonds increased dramatically in a flight to quality. Over a period in which

the expected liabilities of the US government likely rose by several trillion dollars, the value

of US government debt went up. We compute that from September 12, 2008 to the end of

trading on September 15, 2008 the value of outstanding US government debt rose by just

over $70bn. Over the period from September 1, 2008 to December 31, 2008, the value of

US government debt outstanding as of September 1 rose in value by around $210bn. These

observations indicate that US Treasury bonds are a “negative β” asset. In this section, we

show that a safe asset in our model is naturally a negative β asset, and this β is closely tied

to the strength of an asset’s safety.

In our baseline model, in the single-survivor equilibrium with zero recovery, the price of

a safe asset (the surviving bond) is equal to 1+f
si

regardless of shocks. This stark result does

not allow us to derive predictions for the β, which is the sensitivity of price to shocks. Let

us introduce a positive recovery value in default per unit of face value, 0 < li < 1. This

essentially introduces total payouts from the defaulting country 1 or country 2 at the level

of l1 or sl2, respectively. For simplicity, we do not allow li to be dependent on the country’s

relative fundamental δ̃. However, li may depend on the average fundamental θ, to which we

will introduce shocks later when calculating the β of the assets.

When recovery is strictly positive, there is a strong strategic substitution force that

pushes investors to buy the defaulting country’s debt if nobody else does so. This is because

an infinitesimal investor would earn an unbounded return if she is the only investor in the

defaulting country’s bonds, given a strictly positive recovery. But this implies that threshold

strategies are no longer optimal in any symmetric equilibrium, especially when the signal

noise σ vanishes.

We thus focus on the strategy space of oscillation strategies to construct a single-survivor

equilibrium for the case of positive recovery.13 The basic idea, in the spirit of global games,
13Thus, oscillating strategies can be seen as a building block to construct single-survivor equilibria in the
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is as follows. Suppose that the relative fundamental of country 1, i.e., δ̃, is sufficiently high

so that country 1 survives for sure, irrespective of investors’ strategies. This corresponds to

the upper dominance region in global games. Then, investors given their private signals will

follow an oscillation strategy so that on average there are 1
1+l2s

( l2s
1+l2s

) measure of investors

purchasing the bonds issued by country 1 (2). This way, the defaulting country 2 pays out

l2s while the safe country 1 pays out 1 in aggregate, and each investor receives the same

return of
1

(1 + f) 1
1+l2s

=
l2s

(1 + f) l2s
1+l2s

=
1 + l2s

1 + f
.

For δ̃’s that are below but close to the upper dominance region, we postulate that this

oscillation strategy prevails in equilibrium, so that country 1 is the only safe country. On

the lower dominance region (so δ̃ is sufficiently low), investors follow an oscillation strategy

so that on average there are l1
l1+s

( s
l1+s

) measures of investors purchasing the bonds issued

by country 1 (2). This way, defaulting country 1 pays out l1 while the surviving country 2

pays out s in aggregate, and each investor receives the same return of

l1

(1 + f) l1
l1+s

=
s

(1 + f) s
l1+s

=
l1 + s

1 + f
.

Again, δ̃’s that are above but close to the lower dominance region, we postulate that this

oscillation strategy prevails in equilibrium so that country 2 is the safe country.

The logic of global games suggests that there will be an endogenous switching threshold

δ∗, such that it is optimal for investors with private signals above δ∗ to follow the oscillation

strategies in which country 1 survives, while it is optimal for investors with private signals

below δ∗ to follow the oscillation strategies in which country 2 survives. When l1, l2 are

presence of no-arbitrage conditions. This is because oscillating strategies encompass both indifference and
strict incentives, and consequently, are globally applicable.
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sufficiently small, the closed-form solution for δ∗ derived in Appendix B.3 is

δ∗ =
[(1− l2) s− (1− l1)] z − (s+ l1) ln (s+ l1) + (1 + sl2) ln (1 + l2s) + l1 ln l1 − sl2 ln l2

(1− l1) + s (1− l2)
.

(16)

When setting l1 = l2 = 0, we recover δ∗ = −(1−s)z−s ln(s)
1+s

, our original zero-recovery monotone

strategy result in (13).

For relative fundamental δ̃ ∈ [δ, δ∗), the price of each bond is given by

p1 =
l1 (1 + f)

l1 + s
and p2 =

1 + f

l1 + s
, (17)

while for the relative fundamental δ̃ ∈ (δ∗, δ], the resulting prices are

p1 =
1 + f

1 + l2s
and p2 =

l2 (1 + f)

1 + l2s
. (18)

Thus, this extension with a positive recovery allows us to determine the non-trivial en-

dogenous bond prices for both countries (in the zero recovery case, those prices were zero

or (1 + f) /si) by equalizing the returns across both countries. As bond prices of the two

countries are linked via the cash-in-the-market pricing, the defaulting country’s recovery can

affect the price of the safe asset.

Consider the case where δ̃ ∈ (δ∗, δ], which corresponds to the case that country 1’s bonds

are safe. From (18) we see that both bond prices are unaffected by l1. In contrast, through

the cash-in-the-market pricing effect, when the recovery of country 2 (l2) decreases, p2 drops

and p1 increases. This observation implies that the safe asset in our model will behave as

a negative β asset. To see this, suppose that as aggregate fundamentals deteriorate (say θ

falls), recoveries in default of both bonds, l1 and l2, decrease. Then, country 1’s bonds gain

when aggregate fundamentals deteriorate, which makes it a negative β asset, while country

2’s bonds lose.

In Appendix A.2, we formally derive the β in a world with shocks to θ. Figure 4 plots

the β as a function of δ. As suggested by the intuition, the β for the country 1’s bonds is

29



0.015 0.020 0.025 0.030 0.035 0.040 0.045
δ

-3

-2

-1

1

2

β1

θ∼U[0.1,0.6], s=0.9, f=0.1, l=0.7

Figure 4: Country 1 beta example: β1 = Cov(p1,θ)
V ar(θ)

for the bonds issued by country 1, as
function of country 1’s relative fundamental δ. For details, see Appendix A.2.

negative when the country 1’s relative fundamental δ is high, i.e., when country 1 is the safe

bond. Moreover, the higher the country 1’s relative fundamental, the more negative the β

of its bonds.

4 Coordination and Security Design

In this section, we characterize the benefits to coordinating through security design. We are

motivated by the Eurobond proposals that have been floated over the last few years (see

Claessens et al. [10], for a review of various proposals). A shared feature of these proposals

is to create a common Euro-area-wide safe asset. More specifically, each country receives

proceeds from the issuance of the “common bond,” which is meant to serve as the safe asset.

By issuing a common Euro-wide safe asset, all countries benefit from investors’ flight to

safety flows, as opposed to just the one country (Germany) which is the de-facto safe asset

in the absence of a coordinated security design. Our model, in which the determination of

asset safety is endogenous, is well-suited to analyze these issues formally. We are unaware

of other similar models or formal analysis of this issue.
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4.1 Main results

We assume that the two countries issue a common bond of size α (1 + s) as well as individual

country bonds of size (1− α)si where s1 = 1 and s2 = s, so that total world bond issuance

in aggregate face-value is still (1 + s). Here, α ∈ [0, 1] captures the size of common bond

program. Denote by pc the equilibrium price for the common bonds. Since the share of

proceeds from the common bond issue flowing to country i is si
1+s

, country i receives

si
1 + s

· pcα (1 + s) = siαpc

from the common bond auction. Country i also issues its individual bond of size (1− α) si

at some endogenous price pi, so total proceeds from both common and individual bond

issuances to country i are si(αpc + (1− α)pi). Then, country i avoids default whenever,

si(αpc + (1− α)pi) + siθi > si, (19)

which is a straightforward extension of the earlier default condition (1) to include the common

bond proceeds as the first term inside the parentheses. We assume that default affects

all of the country’s obligations, so that a country’s default leads to zero recovery on its

individual bonds and its portion of common bonds. Hence, investors in common bonds

receive repayments only from countries that do not default.

We model the bond auction as a two-stage game. In the first-stage, countries auction the

common bonds and investors spend a total of f − f̂ to purchase these bonds, so that the

market clearing condition gives

f − f̂ = (1 + s)αpc. (20)

In this stage, δ̃ is not yet observed and assumed to be distributed according to pdf
(
δ̃
)
. In

the second stage, investors use their remaining funds of 1 + f̂ to purchase individual country

31



bonds conditional on their signal δj = δ̃ + εj. After both auctions, each country makes its

own default decision. We discuss the robustness of the results to the timing assumption in

Section 4.4 and in in more detail in Online Appendix C.

Motivated by the single-survivor equilibrium and joint safety equilibrium constructed in

the base model, we derive the following equilibria for a setting with common bonds.

Proposition 4 We consider two equilibria, a joint safety equilibrium, supported by oscillat-

ing strategies, and a single-survivor equilibrium, supported by threshold strategies. In both

equilibria, the determination of asset safety depends on α as follows:

1. The single-survivor equilibrium exists for α ∈ [0, α∗] with corresponding threshold

δ∗ (α). If δ̃ > δ∗ (α), then country 1 is the safe asset and country 2 defaults, while

if δ̃ < δ∗(α) country 2 is the safe asset and country 1 defaults. Here, the upper bound

α∗ = e−z (1 + s) solves δ∗ (α∗) = 0.

2. The joint safety equilibrium exists for α ∈ [αHL, 1] with corresponding lower and upper

thresholds δL (α) and δH (α): If δ̃ ∈ [δL (α) , δH (α)], then both countries’ bonds are safe,

while if δ̃ < δL (α) (δ̃ > δH (α)) country 2 is safe and country 1 defaults (country 1 is

safe and country 2 default). Here, the lower bound αHL solves δL (αHL) = δH (αHL) =

δ∗ (αHL) and is given in the Appendix.

The two thresholds satisfy αHL < α∗.

Figure 5 illustrates the statement of Proposition 4 for the cases of s = 0.25 (left Panel)

and s = 0.5 (right Panel), both for z = 1. The black solid line plots the single-survivor

equilibrium cutoff δ∗ for α ∈ [0, α∗]. As z = 1, we are in the high savings case illustrated in

the left Panel of Figure 2, and thus δ∗ (0) < 0. The joint safety equilibrium also exists, and

overlaps with the single-survivor equilibrium on [αHL, α
∗] (with possibly negative αHL). In

this equilibrium, joint safety is a possibility as long as both countries do not differ too much

in fundamentals. The dashed-lines in Figure 5 indicate the upper/lower bounds of the joint

safety region [δL (α) , δH (α)], where the region itself is indicated by the grey shading.
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Figure 5: Common bond equilibria: δ∗ (solid line), δH , δL (dotted lines) for the case of
s = 0.25 and s = 0.5, as a function of α.

Focusing first on the right Panel with s = 0.5, we note that δ∗ might decrease with α (one

can see it graphically for small α’s). This implies that the small country can actually be hurt

by the introduction of small scale common bond issues. We discuss the intuition of this result

later in Section 4.2. Next, we see that the joint safety region begins at α = αHL > 0, and

expands as a function of α. Intuitively, as α increases, the minimum funding of the small

country increases, relaxing the winner-takes-all coordination game, which in turn allows

the small country to be safe for a larger range of realizations of δ̃. Next, the left Panel

considers s = 0.25, thereby reducing the aggregate funding requirements for joint safety.

This reduction in aggregate funding requirements is strong enough so that the joint safety

equilibrium exists even for α = 0 (i.e., even in the absence of common bonds).

To sum up, our analysis in this section suggests that increases in common bond issuance,

i.e., increases in α, only unambiguously create welfare gains (when such gains are thought

of in terms of reducing the instances of default) when α > α∗. In this case, increases in

α raise the safety of both country 1 and country 2. For α < α∗ and in the single survivor

equilibrium, a greater α reduces the safety of one country while increasing safety of the other

country. Thus, small steps towards a fiscal union could be worse than no step. The rest of

this section derives the equilibrium and results in Proposition 4, with proofs in Appendix

A.3 and A.4, as well as discuss robustness of the timing assumption.
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4.2 Single-survivor equilibrium

We first focus on the single-survivor equilibrium where only one country is safe for any δ̃.

Due to the absence of no arbitrage conditions in the second stage, this equilibrium can be

constructed from threshold strategies. We will find the largest α so that this single-survivor

equilibrium can exist, which we call α∗. Further, we explain why it is possible for δ∗ to

decrease with α in this equilibrium, i.e., why it is that common bonds may hurt the small

country.

Stage 2. In the second stage, investors have remaining funds of 1 + f̂ to purchase

individual bonds. Consider the marginal investor with signal δ∗ who considers that a fraction

x of investors have signals exceeding his. Country 1 does not default if and only if,

αpc + (1− α)p1 + θ1 > 1.

Since, f − f̂ = (1 + s)αpc by (20) and (1− α)p1 = x(1 + f̂), we rewrite this condition as,

f − f̂
1 + s

+ x(1 + f̂) + θ1 > 1⇔ x ≥
1− θ1 − 1

1+s
(f − f̂)

1 + f̂
.

We again take the limit as σ → 0 and set 1 − θ1 = (1 − θ)e−δ∗ . Additionally, as the return

to the marginal investor in investing in country 1 is 1−α
(1+f̂)x

if the country does not default

(and zero recovery in default), the expected return is (when f̂ = f and α = 0 one recovers

the profit function in (7)):

Π1 (δ∗) =
1− α
1 + f̂

ln

 1 + f̂

(1− θ) e−δ∗ − 1
1+s

(
f − f̂

)
 .

We repeat the same steps for the profits to investing in country 2 and find,

Π2 (δ∗) =
s (1− α)

1 + f̂
ln

 1 + f̂

s (1− θ) eδ∗ − s
1+s

(
f − f̂

)
 .
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We solve for the threshold δ∗(f̂ , α) in the same way as before, which takes α and f̂ as given:

Π1 (δ∗) = Π2 (δ∗)⇒ δ∗(f̂ , α). (21)

Stage 1. Next we derive f̂ by considering Stage 1 in which investors make their investment

decisions on common bonds before δ̃ realizes. Under the assumed equilibrium where only

one country is safe, the return to investing in the common bond, denoted by Rcom, is,

Rcom =
1

f − f̂

[∫ δ∗

−δ̄
αs · pdf

(
δ̃
)
dδ̃ +

∫ δ̄

δ∗
α · pdf

(
δ̃
)
dδ̃

]
. (22)

At the right-hand-side of (22), the denominator in front of the brackets is the total amount

of funds invested in the common bond, while the term inside the brackets is the repayment

on the common bonds in the cases of repayment only by country 2 and repayment only by

country 1, respectively. The returns to keeping one dollar aside and investing in individual

country bonds, denoted by Rind, is,

Rind =
1

1 + f̂

[∫ δ∗

−δ̄
(1− α) s · pdf

(
δ̃
)
dδ̃ +

∫ δ̄

δ∗
(1− α) · pdf

(
δ̃
)
dδ̃

]
. (23)

Again, the denominator in the front is the total amount of funds invested in individual

bonds, while the term in parentheses is the repayment on individual bonds in the cases of

repayment only by country 2 and repayment only by country 1. Note the similarity between

the terms inside the brackets in (22) and (23). The similarity arises because along the nodes

of country 2 defaulting or country 1 defaulting, the payoffs, state-by-state, to common bonds

and individual bonds are αsi and (1−α)si. In equilibrium, the expected return from investing

in common bonds in stage one must equal to that from waiting and investing in individual

bonds in stage 2:

Rcom = Rind ⇔
α

f − f̂
=

1− α
1 + f̂

⇔ f − f̂ = α (1 + f) , (24)
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so that an issue α (1 + s) of common bonds attracts a fraction α of all available funds, 1 +f .

This implies that the common bond price is given by

pc =
f − f̂

α (1 + s)
=

1 + f

1 + s
. (25)

irrespective of our assumptions on the distribution of δ̃, pdf
(
δ̃
)
. We combine equations (21)

and (24) to solve for the equilibrium threshold δ∗(α) as a function of common bonds size α.

When does the single-survivor equilibrium exist? We next consider the bound α∗

so that the single-survivor equilibrium exists whenever α ∈ [0, α∗]. We assumed in our

equilibrium derivation that only one country is safe (and the other country must default).

However, inspecting (19) we see that as α rises, since pc > 0, it may be that even a country

that receives zero proceeds from selling its individual bonds can avoid default. But this

would violate the equilibrium assumption that one country defaults for sure, leading to a

contradiction.

Define θdef (δ) ≡ max [θ1 (δ) , θ2 (δ)], and let us look for the strongest possible country

that is still assumed to default. What is the best fundamental that we can observe in a

defaulting country? Clearly, the fundamental of the defaulting country when δ̃ = δ∗. Then,

the strongest country that is still assumed to default is given by θdef (δ∗). This country only

defaults if

θdef (δ∗) + αpc < 1⇔ α ≤ 1 + s

1 + f
[1− θdef (δ∗ (α))] .

Then, define α∗ as the solution to

α∗ =
1 + s

1 + f
[1− θdef (δ∗ (α∗))] . (26)

In Appendix A.3, we show that the single-survivor equilibrium δ∗ (α) only exists for α ∈

[0, α∗] where

α∗ = e−z (1 + s) ,
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with δ∗ (α∗) = 0. For any α > α∗ , the single-survivor equilibrium does not exist.

The effect of introducing a small quantity of common bonds. Figure 5 shows that

there are situations in which δ∗α (0) ≡ ∂δ∗(α)
∂α

∣∣∣
α=0

< 0, implying that the large country gains

while the small country loses when a small fraction of common bonds are issued. Interestingly,

this result is against the casual intuition that common bonds should bring safety to the small

country.

This result is partly driven by the simple fact that the small country receives proportion-

ally less common bonds proceeds. Note that common bonds decreases the default threshold,

i.e., the proportion of investors required to make a country safe. Return to Figure 1, this

implies that the vertical lines indicating the default threshold shift to the left for both coun-

tries, while holding the conditional returns fixed. The large country gains if, starting from

δ∗ (0), the new area from additional safety underneath the conditional return curve is greater

than the new area for the small country. For s close to zero, almost all the common bond

proceeds and thus the rollover risk reduction accrue to the large country, as the small coun-

try’s vertical line almost coincides with the y-axis. As a result, introducing common bonds

hurts, rather than enhances, the safety of the small country.

4.3 Joint safety equilibrium

We now construct a joint safety equilibrium supported by oscillating strategies in which both

countries can be safe. We will further compute the minimum value of α, denoted by αHL,

for which this equilibrium exists. We find αHL < α∗, and the resulting overlap implies that

at least two equilibria exist for some parameters, as described in Proposition 4.

As discussed in Section 3.4, the possibility that both countries may be safe rules out

monotone threshold strategies due to the presence of no arbitrage conditions in the second

stage. Hence the equilibrium is constructed with oscillating strategies.
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Stage 2. The construction of the stage 2 equilibrium is given in Appendix A.4.14 There,

for given values of f̂ , pc and α, we derive the stage 2 equilibrium oscillating interval as

[δL, δH ] =

[
− ln

{
1

1− θ

[(
1 + f̂

) ss

(1 + s)1+s + αpc

]}
, ln

{
1

1− θ

[
1 + f̂

(1 + s)
1+s
s

+ αpc

]}]
.

(27)

Of course, f̂ and pc are equilibrium values that are determined by stage 1 investment deci-

sions.

Stage 1. With [δL, δH ] in hand, let us determine f̂ and pc = f−f̂
α(1+s)

(there are α (1 + s) units

of common bonds, and there is f − f̂ money invested in them). Consider any α > 0. Then,

we know that the expected returns from investing in common bonds in stage 1 and investing

in the best (i.e., surviving) individual country bonds in stage 2 have to be equalized. The

expected return to investing in individual bonds is given by

Rind =
1− α
1 + f̂


∫ δL

−δ
s · pdf

(
δ̃
)
dδ̃︸ ︷︷ ︸

Country 1

+

∫ δH

δL

(1 + s) pdf
(
δ̃
)
dδ̃︸ ︷︷ ︸

Joint survival

+

∫ δ

δH

pdf
(
δ̃
)
dδ̃︸ ︷︷ ︸

Country 2

 , (28)

and the expected return for common bonds is given by

Rcom =
α

f − f̂

[∫ δL

−δ
s · pdf

(
δ̃
)
dδ̃ +

∫ δH

δL

(1 + s) pdf
(
δ̃
)
dδ̃ +

∫ δ

δH

pdf
(
δ̃
)
dδ̃

]
. (29)

Note the similarity between these last two expressions in (28) and (29). The similarity arises

because the payoffs to common bonds and individual bonds are always αsi and (1 − α)si,

state-by-state. Thus, equalizing returns we have

Rind = Rcom ⇔
α

f − f̂
=

1− α
1 + f̂

⇔ f − f̂ = α (1 + f) , (30)

14It is similar to Appendix A.1,which constructs the oscillating equilibrium discussed in Proposition 3.
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so that as in the single-survivor equilibrium, common bonds of size α (1 + s) attract a pro-

portion α of all funds, (1 + f). The common bond price pc is thus also the same as in

(25):

pc =
f − f̂

α (1 + s)
=

1 + f

1 + s
. (31)

Plugging (30) and (31) into (27), we derive the joint safety interval

[δL, δH ] =

[
− ln

{
ez

1 + s

[(
s

1 + s

)s
(1− α) + α

]}
, ln

{
ez

1 + s

[(
1

1 + s

) 1
s

(1− α) + α

]}]
(32)

The next proposition establishes conditions for the existence of the oscillating equilibrium.

Proposition 5 Let z ≥ ln (1 + s), so that there is sufficient funding for joint safety. For

any given z, define αHL as the solution to δH (αHL) = δL (αHL). Then, we have δ∗ (αHL) =

δH (αHL) = δL (αHL) and αHL < α∗.

The first result states that at αHL, the thresholds δ∗, δH , δL all coincide. On [αHL, α
∗],

both equilibria exists, with the joint safety equilibrium’s joint safety region uniformly in-

creasing. As α increases past α∗, the single-survivor equilibrium ceases to exists, while the

joint safety equilibrium continues to exist.

4.4 Robustness to timing

This section discusses the robustness of the common bond results to the sequential timing

assumption of first having the common bonds sold, then agents receiving their individual

signals, and then having the individual bonds sold. In Online Appendix C, we construct

a simultaneous three-asset single-survivor equilibrium supported by oscillating strategies.

All three bonds are sold simultaneously after investors receive their individual signals. The

equilibrium defines thresholds δ∗sim (α) that are close but not exactly equal to the above

derived equilibrium thresholds δ∗seq (α).15

15We construct the equilibrium by oscillating between the common bonds and the individual country
bonds. For low and high values of δ, investment strategies oscillate in proportions α (common bond) and
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The equilibrium is constructed by equalizing the expected returns on individual bonds

and the common bond. For the sequential case, suppose counterfactually, that the marginal

agent δ∗seq could invest in the common bond in stage 2 at the stage 1 price pc = 1+f
1+s

. Then,

the expected return in the common bond would be

Πc

(
δ∗seq
)

=

∫ xmax(δ∗seq)

0

s
1+s

pc
dx+

∫ 1

xmin(δ∗seq)

1
1+s

pc
dx =

∫ xmax(δ∗seq)

0

s

1 + f
dx+

∫ 1

xmin(δ∗seq)

1

1 + f
dx.

(33)

For the simultaneous case, the common bond price is given by pc (δ, x) = (1+f)ρc(δ,x)
(1+s)α

(where

ρc (δ, x) is the endogenous fraction of agents investing in the common bond), and hence the

expected return from common bonds, Πc (δ) for the marginal agent δ∗seq, is

Πc (δ) =

∫ xmax(δ)

0

s
1+s

pc (δ, x)
dx+

∫ 1

xmin(δ)

1
1+s

pc (δ, x)
dx =

∫ xmax(δ)

0

s

(1 + f)

α

ρc (x)
dx+

∫ 1

xmin(δ)

1

(1 + f)

α

ρc (x)
dx

(34)

which has to be set equal to Πi (δ), i ∈ {1, 2}, as we are using oscillating strategies.

Let us compare (33) and (34). In the simultaneous case (34), the residual strategic

uncertainty over x not only affects the survival probability of the countries (via the integral

limits), but also affects the return conditional on survival (via the integrand). In contrast,

only the effect on survival probability (via the integral limits) is present for the sequential

case (33). The additional factor in (34) is α
ρc(x)

≤ 1 in the integrand (α is the no arbitrage

investment proportion that should go to the common bonds when it is clear which country

survives). This factor is needed to make common bonds less attractive in the change-over

region, as its payoffs vary less with x than does the payoff of each individual bond. Essentially,

(1− α) (surviving individual bond). There is a changeover region defined by the interval [δL, δH ] on which
investors invest in common bonds. The interval is pinned down as the solutions to Π2 (δL) = Πc (δL) and
Πc (δH) = Π1 (δH). In the limit as σ → 0, even though limσ→0 Πi (δL) 6= limσ→0 Πi (δH) for i ∈ {c, 1, 2},
we nevertheless have δL → δ∗sim ← δH so we loosely use the term “threshold” for δ∗sim. Unfortunately, we
were unable to construct a tractable three-asset equilibrium for the joint safety case, for reasons explained
in Online Appendix C.
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Figure 6: Robustness of single-survivor common bond equilibrium to sequential
timing assumption: single-survivor sequential common bond equilibrium δ∗seq (dashed
yellow line) in comparison to the simultaneous common bond equilibrium δ∗sim (solid blue
line) for (s = 0.25, z = 1) (left Panel) and (s = 0.5, z = 1) (right Panel).

we require more investors to invest in the common bond than in the region where there is

no uncertainty over which country will survive.

Numerically, we find that α
ρc(x)

is extremely close to 1; consequently, the difference between

δ∗seq and δ∗sim is insignificant. Figure 6 below compares the numerical results for δ∗seq and δ∗sim
for parameters found in Figure 5. The graphs zoom in on the range of α for which the

simultaneous three asset equilibrium can be derived. The simultaneous threshold δ∗sim is

plotted as the solid blue line, which is extremely close to the sequential equilibrium δ∗seq

(the dashed orange line) while the no common-bond benchmark δ∗α=0 is plotted as the thin

horizontal gray line.

5 Conclusion

US government debt is the world’s premier safe asset currently because i) the US has good

fundamentals relative to other possible safe assets, and ii) given that global demand for safe

assets is currently high, the large float of US government debt is the best parking spot for all
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of this safe asset demand. In short, there is nowhere else to go. We also derive endogenously

the negative β, apparent in a flight to quality, of US government debt. Our analysis of

endogenous asset safety also suggest that there can be gains from coordination, and that

Eurobonds can exploit these gains by coordinating a security design across Europe.

Our analysis can be extended in other directions. We have taken debt size as well as

fundamentals as fixed. But if there is a payoff for a country to ensure that its debt is viewed

by investors as a safe asset, then a country is likely to make decisions to capture this payoff.

Our investigations of this issue have turned up two results. When countries are roughly

symmetric and when global demand for safe assets is high, countries will engage in a rat race

to capture a safety premium. Starting from a given, smaller, debt size, and holding fixed the

size decision of one country, the other country will have an incentive to increase its debt size

since the larger debt size can confer increased safety. But then the first country will have an

incentive to respond in a similar way, and so on so forth. In equilibrium, both countries will

expand in a self-defeating manner to issue too much debt. The model identifies a second

case, when countries are asymmetric and one country is the natural “top dog.” In this case,

the larger debt country will have an incentive to reduce debts to the point that balances

rollover risk and retaining safety, while the smaller country will have an incentive to expand

its debt size. Our investigations are suggestive that asymmetry leads to better outcomes

than symmetry.

In closing, we emphasize again the main novelty of our analysis of safe assets. Our per-

spective on safety emphasizes coordination, as opposed to (exclusively) the income process

backing the asset, as in conventional analyses of credit risk. In the world, the assets that in-

vestors own as their safe assets are largely government debt, money and bank debt. For these

assets, valuation has a significant coordination component as in our model, underscoring the

relevance of our perspective.

42



References

[1] Angeletos, George-Marios, Christian Hellwig, and Alessandro Pavan, “Dy-

namic global games of regime change: learning, multiplicity and timing of attacks,”

Econometrica, 2007, 75 (3), 711–756.

[2] Banerjee, Abhijit V. and Eric S. Maskin, “A Walrasian Theory of Money and

Barter,” Quarterly Journal of Economics, 1996, 111 (4), 955–1005.

[3] Bernanke, Ben S., “The global savings glut and the US current account deficit,”

Technical Report, Speech delivered at the Sandbridge Lecture, Virginia Association of

Economists, Richmond, VA mar 2005.

[4] , Carol Bertaut, Laurie Pounder DeMarco, and Steven Kamin, “Interna-

tional Capital Flows and the Returns to Safe Assets in the United States, 2003-2007,”

Board of Governors of the Federal Reserve System International Finance Discussion

Papers, 2011, 1014.

[5] Caballero, Ricardo J and Arvind Krishnamurthy, “Global Imbalances and Fi-

nancial Fragility,” American Economic Review, 2009, 99 (2), 584–588.

[6] and Emmanuel Farhi, “The Safety Trap,” Working Paper, 2015.

[7] , , and Pierre-Olivier Gourinchas, “An Equilibrium Model of "Global

Imbalances" and Low Interest Rates,” American Economic Review, 2008, 98 (1), 358–

393.

[8] Calvo, Guillermo A., “Servicing the Public Debt: The Role of Expectations,” Amer-

ican Economic Review, 1988, 78 (4), 647–661.

[9] Carlsson, Hans and Eric van Damme, “Global Games and Equilibrium Selection,”

Econometrica, 1993, 61 (5), 989–1018.

43



[10] Claessens, Stijn, Ashoka Mody, and Shahin Vallee, “Paths to Eurobonds,” IMF

Working Paper, 2012, 12172.

[11] Cole, Harold L and T J Kehoe, “Self-fulfilling debt crises,” Review of Economic

Studies, 2000, 67, 91–116.

[12] Diamond, DW, “Debt Maturity and Liquidity Risk,” Quarterly Journal of Economics,

aug 1991, 106 (3), 709–737.

[13] Diamond, Peter A., “National Debt in a Neoclassical Growth Model,” American

Economic Review, 1965, 55 (5), 1126–1150.

[14] Doepke, Matthias and Martin Schneider, “Money as a Unit of Account,” Working

Paper, 2013.

[15] Eichengreen, Barry, “The Euro as a Reserve Currency,” Journal of Japanese and

International Economies, 1998, 12 (4), 483–506.

[16] , “The rise and fall of the dollar (or when did the dollar replace sterling as the

leading reserve currency?),” NBER Working Papers, 2005, 11336.

[17] , Exorbitant Privilege: the rise and fall of the Dollar and the future of the interna-

tional monetary system, Oxford University Press, 2011.

[18] Frankel, D M, Stephen Morris, and Ady Pauzner, “Equilibrium selection in

global games with strategic complementarities,” Journal of Economic Theory, 2003,

108 (1), 1–44.

[19] Frankel, Jeffrey, “On the dollar,” in “The New Palgrave Dictionary of Money and

Finance,” London: MacMillan Press, 1992.

[20] Freeman, Scott and Guido Tabellini, “The Optimality of Nominal Contracts,”

Economic Theory, 1998, 11 (3), 545–562.

44



[21] Goldstein, Itay and Ady Pauzner, “Demand-Deposit Contracts and the Probability

of Bank Runs,” Journal of Finance, jun 2005, 60 (3), 1293–1327.

[22] Gourinchas, Pierre-Oliver, Helene Rey, and Nicolas Govillot, “Exorbitant Priv-

ilege and Exorbitant Duty,” Working Paper, 2010.

[23] Greenwood, Robin and Dimitri Vayanos, “Bond supply and excess bond returns,”

Review of Financial Studies, 2014, 27 (3), 663–713.

[24] Harsanyi, J.C., “Games with randomly disturbed payoffs: a new rationale for mixed-

stratey equilibrium points,” International Journal of Game Theory, 1973, 2, 1–23.

[25] Hassan, Tarek, “Country size, currency unions, and international asset returns,” Jour-

nal of Finance, 2013, 68 (6), 2269–2308.

[26] He, Zhiguo and Konstantin Milbradt, “Endogenous liquidity and defaultable

bonds,” Econometrica, 2014, 82 (4), 1443–1508.

[27] and , “Dynamic debt maturity,” Review of Financial Studies, 2016, 29 (10),

2677–2736.

[28] and Wei Xiong, “Dynamic debt runs,” Review of Financial Studies, 2012, 25,

1799–1843.

[29] and , “Rollover Risk and Credit Risk,” Journal of Finance, 2012, 67 (2),

391–429.

[30] , Arvind Krishnamurthy, and Konstantin Milbradt, “What makes US gov-

ernment bonds safe assets?,” American Economic Review Papers & Proceedings, 2016,

106 (5), 519–523.

[31] Hellwig, Christian, A Mukherji, and A Tsyvinski, “Self-fulfilling currency crises:

the role of interest rates,” American Economic Review.

45



[32] Holmstrom, Bengt and Jean Tirole, “Private and Public Supply of Liquidity,”

Journal of Political Economy, feb 1998, 106 (1), 1–40.

[33] Kiyotaki, Nobuhiro and Randall Wright, “On Money as a Medium of Exchange,”

Journal of Political Economy, 1989, 97 (4), 927–954.

[34] Krishnamurthy, Arvind and Annette Vissing-Jorgensen, “The Aggregate De-

mand for Treasury Debt,” Journal of Political Economy, 2012, 120 (2), 233–267.

[35] and , “The Impact of Treasury Supply on Financial Sector Lending and

Stability,” Working Paper, 2015.

[36] Krugman, Paul R., “The international role of the dollar: theory and prospect,” in

“Exchange rate theory and practice,” National Bureau of Economic Research, Inc., 1984,

chapter NBER Chapt.

[37] Kyle, Albert S, “Continuous auctions and insider trading,” Econometrica, nov 1985,

53 (6), 1315–1335.

[38] Lagos, Ricardo, “Asset prices and liquidity in an exchange economy,” Working Paper,

2005.

[39] Maggiori, Matteo, “Financial Intermediation, International Risk Sharing, and Re-

serve Currencies,” Working Paper, 2013.

[40] Morris, Stephen and Hyun S Shin, “Unique Equilibrium in a Model of Self-Fulfilling

Currency Attacks,” American Economic Review, jun 1998, 88 (3), 587–597.

[41] and , “Liquidity black holes,” Working Paper, 2003.

[42] and , “Illiquidity component of credit risk,” Working Paper, 2010.

[43] Rochet, Jean-Charles and Xavier Vives, “Coordination failure and the lender of

last resort: was Bagehot right after all?,” Journal of the European Economic Associa-

tion, dec 2004, 2 (6), 1116–1147.

46



[44] Samuelson, Paul A., “An Exact Consumption-Loan Model of Interest with or without

the Social Contrivance of Money,” Journal of Political Economy, 1958, 66 (6), 467–482.

[45] Vayanos, Dimitri and Pierre-Olivier Weill, “A Search-Based Theory of the On-

the-Run Phenomenon,” Journal of Finance, 2008, 53 (3), 1361–1398.

A Main Appendix

A.1 Joint-safety Equilibrium with non-monotone strategies and zero
recovery

We now construct a joint safety equilibrium with non-monotone strategies and joint safety on the endoge-
nously determined interval [δL, δH ]. Given this equilibrium, we will compute the minimum value of z = z for
which this equilibrium exists. The possibility of joint safety means that our equilibrium construction using
threshold strategies is no longer possible. In a region where both countries are known to be safe (recall we
consider the limit where σ → 0), investors must be indifferent between the two countries, thus equalizing
bond returns. Outside the joint safety interval, i.e., δ̃ ∈ [−δ̄, δL)∪ (δH , δ̄], we are back to the case where the
signal is so strong that only one country is safe.

We conjecture the following non-monotone strategy whereby investment in country 1 and in country 2
alternates on discrete intervals of length kσ and (2− k)σ, with k ∈ (0, 2). The investor j’s strategy given
his private signal δj is φ (δj) ∈ {0, 1}:

φ (δj) =


0, δj < δL

1, δj ∈ [δL, δL + kσ] ∪ [δL + 2σ, δL + (2 + k)σ] ∪ [δL + 4σ, δL + (4 + k)σ] ∪ ...
0, δj ∈ [δL + kσ, δL + 2σ] ∪ [δL + (2 + k)σ, δL + 4σ] ∪ [δL + (4 + k)σ, δL + 6σ] ∪ ...
1, δj > δH

(A.1)

As we will show shortly, the non-monotone oscillation occurs only when both countries are safe, where the
equilibrium requires proportional investment in each safe country to equalize returns across two safe bonds.
Clearly, k determines the fraction of agents in investing in country 1 when oscillation occurs, to which we
turn next.

Graphical intuition of the proof. Figure 3 supplies the intuition of the proof, for σ > 0. Figure
3 shows an investor (black dot) with a signal deep inside the joint safety region, δj = δL + kσ. Regardless
of his relative position x, this investors knows that the proportions of investors in country 1 and 2 remain
constant throughout, leading to joint safety. Thus, the investor is indifferent as the bottom right Panel
shows, and follows the prescribed equilibrium oscillating strategy. Consider instead an investors on the edge
of the joint safety region, δj = δL. As 0 < σ < δH − δL, this investor knows for sure that country 2 will
survive, regardless of x, but is uncertain if country 1 will survive (it survives for high x, but not for low x).
To make this investor indifferent, the total amount of investment cannot be invariant to x in contrast to
Figure 3: to balance the returns when country 1 does not survive (low x), it needs high returns when it does
(high x). The highest returns, of course, are achieved when a country just survives, and thus the funding
must change as a function of x to give indifference. However, as the signal of the agent in question increases,
country 1 safety increases faster than its return drop, leading to (for σ > 0) a strict incentive to invest in
country 1, as shown by the g (δ) function pushing above 0 for an interval (δL, δL + kσ).
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A.1.1 Fraction of agents in investing in country 1
Consider a region where all investors know that both countries are safe. In this case, the total investment
in country 1 and 2 has to be 1+f

1+s and s(1+f)
1+s , respectively, to equalize returns. Take an agent with signal δ;

introduce the function ρ (δ), which is the expected proportion of agents investing in country 1 given (own)
signal δ. Then, given the assumed strategy for all agents and given that we are in the region where both
countries are safe,

ρ(δ) =

∫ δ+2σx

δ−2σ(1−x)

φ (y)

2σ
dy =

kσ

2σ
.

We choose k so that ρ(δ) = 1
1+s ⇐⇒ k = 2

1+s . This is because in equilibrium the proportion investing in
country 1 must be constant and equal to 1

1+s to equalize returns.
Recall that x denotes the fraction of agents with signal realizations above the agent’s private signal δ;

and x follows a uniform distribution on [0, 1]. For any value of δ and x,

ρ (δ, x) =

∫ δ+2σx

δ−2σ(1−x)

φ (y)

2σ
dy =


0, δ + 2σx < δL
δ+2σx−δL

2σ , δ + 2σx ∈ (δL, δL + kσ)
1

1+s , δH − (2− k)σ > δ > δL + kσ

(A.2)

When we evaluate δ at the marginal agent with signal δ = δL, we have

ρ (δL, x) =


0, x = 0

x, x ∈
(

0, 1
1+s

)
1

1+s , x > 1
1+s

(A.3)

where we observe that ρ (δL, x) is less than or equal to 1
1+s .

A.1.2 Lower boundary δL

In the completely safe region discussed above (for δ exceeding δL sufficiently), investors were indifferent
between both strategies. This is not the case for agent with signals around the threshold signal δL: as the
agent knows investors with signal below are always investing in country 2, country 1 is a perceived default
risk. We now calculate the return of investing in either country, from the perspective of the boundary agent
δL.

For the boundary agent δL, the return from investing only in country 2 (i.e. φ = 0) is given by

Π2 (δL) =

∫ 1

0

s

(1 + f) (1− ρ(δL, x))
dx (A.4)

where we integrate over all x as country 2 is safe regardless of x. We will show consistency of this assumption
with the derived equilibrium later. Thus, plugging in, we have

Π2 (δL) =
s

1 + f

[∫ 1
1+s

0

1

1− x
dx+

∫ 1

1
1+s

1
s

1+s

dx

]
=

s

1 + f

[
ln

1 + s

s
+ 1

]
<

1 + s

1 + f
. (A.5)

where we used s ln 1+s
s < 1. Here, we see that payoff to investing in country 2 is lower than the expected

payoff that would have realized if both countries were safe. This reflects the strategic substitution effect:
because more people (in expectation) invest in the safe country 2, the return in country 2 is lower.

Now we turn to country 1. Since country 1 has default risk, we need to calculate the threshold x = xmin
so that country 1 becomes safe if there are x > xmin measure of agents receiving better signals. To derive
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xmin, we first solve for ρmin1 (δ), which is the minimum proportion of agents investing in country 1 that are
needed to make country 1 safe given fundamental δ. We have

θ1 (δ) + (1 + f) ρmin1 (δ) = 1 ⇐⇒ ρmin1 (δ) =
1− θ1 (δ)

1 + f

Define xmin as the solution to ρ (δL, x) = ρmin1 (δL). Given equation (A.3), we have that,

xmin =
1− θ1 (δL)

1 + f
. (A.6)

The expected return of investing in country 1 given one’s own signal δL and the conjectured strategies φ (·)
of everyone else is given by,

Π1 (δL) =

∫ 1

xmin

1

(1 + f) ρ(δL, x)
dx =

1

1 + f

[∫ 1
1+s

xmin

1

x
dx+

∫ 1

1
1+s

1

1/ (1 + s)
dx

]

=
1

1 + f

[
ln

1

1 + s
− lnxmin + s

]
. (A.7)

The boundary agent δL must be indifferent between investing in either country, i.e., Π2 (δL) = Π1 (δL).
Plugging in (A.4) and (A.7), we have

s

1 + f

[
ln

1 + s

s
+ 1

]
=

1

1 + f

[
ln

1

1 + s
− lnxmin + s

]
⇐⇒ xmin =

ss

(1 + s)
1+s . (A.8)

We combine our two equations for xmin, (A.6) and (A.8), and use 1− θ1 (δL) = (1− θ) exp (−δL), to obtain:

ss

(1 + s)
1+s =

(1− θ) exp (−δL)

1 + f
.

Recall z = ln 1+f
1−θ ; we have

δL (z) = −z + (1 + s) ln (1 + s)− s ln s (A.9)

A.1.3 Upper boundary δH

The derivation is symmetric to the above. We have

ρ (δ, x) =

∫ δ+2σx

δ−2σ(1−x)

φ (y)

2σ
dy =


1

1+s , δ − 2σ (1− x) < δH − (2− k)σ
δ+2σx−δH

2σ δ − 2σ (1− x) ∈ (δH − (2− k)σ, δH)

1, δ − 2σ (1− x) > δH

(A.10)

so that

ρ (δH , x) =


1

1+s , x < 1
1+s

x, x ∈
(

1
1+s , 1

)
1, x = 1

(A.11)

which yields

Π1 (δH) =

∫ 1

0

1(
1 + f̂

)
ρ(δH , x)dy

dx =
1

1 + f
[ln (1 + s) + 1] <

1 + s

1 + f
,

where we integrated over all x as country 1 is always safe in the vicinity of δH .
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The default condition for country 2 is

sθ2 (δH) + (1 + f) [1− ρmax2 (δH)] = s ⇐⇒ 1− ρmax2 (δH) = s
1− θ2 (δH)

1 + f

where ρmax2 (δ) is the maximum amount of agents investing in country 1 so that country 2 does not default.
Assume, but later verify, that at δH we have 1 − ρmax2 (δH) < s

1+s , that is, country 2 would survive even if
less than s

1+s of investors invest in country 2. Define xmax (δH) as the solution to ρ (δH , xmax) = ρmax2 (δH);
(A.11) implies that

1− xmax (δH) = s
1− θ2 (δH)

1 + f
. (A.12)

As a result, the return to country 2 is,

Π2 (δH) =

∫ xmax(δH)

0

s

(1 + f) (1− ρ(δH , x))dy
dx =

s

1 + f̂

[∫ 1
1+s

0

1

1− 1
1+s

dx+

∫ xmax(δH)

1
1+s

1

1− x
dx

]

=
s

1 + f

[
1

s
+ ln

s

1 + s
− ln (1− xmax (δH))

]
Indifference at the boundary agent δH requires Π1 (δH) = Π2 (δH), which yields 1 − xmax (δH) = s

(1+s)
1+s
s

.

Combining this result with (A.12) and 1− θ2 (δH) = (1− θ) exp (δH), we solve,

δH (z) = z − 1 + s

s
ln (1 + s) (A.13)

A.1.4 Verifying the equilibrium
We now verify the interior agents δ ∈ (δL, δH) have the appropriate incentives to play the conjectured
strategy, and that our assumptions of country 1 (2) is always safe at δH (δL) are correct. As an investor with
signal δ = δL is indifferent, it is easy to show that agents with δ < δL find it optimal to invest in country
2. Consider an investor with signal δ = δL + kσ (i.e. let us consider the investors depicted by the black
dot in Figure 3). Regardless of his relative position (as measured by x) in the signal distribution, this agent
knows that a proportion 1

1+s of investors invest in country 1, thus making it safe for sure. Further, he knows
that a proportion s

1+s of investors invest in country 2, also making it safe. Therefore, this agent knows that
(i) both countries are completely safe and that (ii) investment flows give arbitrage free prices. He is thus
indifferent, and so is every investor with δL + kσ < δ < δH − (2− k)σ.

Next, we consider an investor with δ ∈ (δL, δL + kσ). We know that country 2 will always survive, and
thus we have

Π2 (δ) =

∫ 1

0

s

(1 + f)
∫ δ+2σx

δ−2σ(1−x)
1−φ(y)

2σ dy
dx.

Note that for any x with x ≥ − δ−δL−kσ2σ we are in the oscillating region; for x below we are in the increasing

part. Let ε ≡ δ−δL
2σ ∈

(
0, 1

1+s

)
so that so that δ = δL + 2σε. Thus, we have

1− ρ (δ, x) =

∫ δ+2σx

δ−2σ(1−x)

1− φ (y)

2σ
dy =

1− ε− x, x ∈
(

0, 1
1+s − ε

)
,

s
1+s , x ∈

(
1

1+s − ε, 1
)
.

(A.14)
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Then, we have

Π2 (δ) =
s

1 + f

[∫ 1
1+s−ε

0

1

1− ε− x
dx+

∫ 1

1
1+s−ε

1
s

1+s

dx

]
= Π2 (δL) +

s
(
ln (1− ε) + 1+s

s ε
)

1 + f

For investment in country 1, we know that, since δ > δL, we have ρmin1 (δ) < ρmin1 (δL). First, note that

ρ (δ, x) =

∫ δ+2σx

δ−2σ(1−x)

φ (y)

2σ
dy =

ε+ x, x ∈
(

0, 1
1+s − ε

)
1

1+s , x ∈
(

1
1+s − ε, 1

)
Let xmin (δ) be the measure of investors with higher signals than δ so that country 1 is safe. Since ρmin1 (δ) =
1−θ1(δ)
1+f , xmin (δ) is the lowest x ∈ [0, 1] such that

ρ (δ, x) = ε+ x ≥ ρmin1 (δ) .

Thus, we have

xmin (δ) = xmin (δL + 2σε) = max

{
1− θ1 (δL + 2σε)

1 + f
− ε, 0

}
. (A.15)

The expected investment return from country 1 is

Π1 (δ) =

∫
x:ρ(δ,x)≥ρmin1 (δ)

1

(1 + f)
∫ δ+2σx

δ−2σ(1−x)
φ(y)
2σ dy

dx

= Π1 (δL) +
1

1 + f
{lnxmin (δL)− ln [ε+ xmin (δL + 2σε)] + (1 + s) ε}

Thus, to show that Π1 (δL + 2σε) ≥ Π2 (δL + 2σε), we need to show that the following inequality holds for
ε ∈

(
0, 1

1+s

)
:

gL (ε) ≡ (1 + f) (Π1 −Π2) = lnxmin (δL)− ln [ε+ xmin (δL + 2σε)]− s ln (1− ε) ≥ 0. (A.16)

First, by using lnxmin (δL) = s ln s− (1 + s) ln (1 + s) and xmin
(
δL + 2σ 1

1+s

)
= 0, we know the above

inequality holds with equality at both end points ε = 0 and ε = 1
1+s , i.e., gL (0) = gL

(
1

1+s

)
= 0. Second, it

is easy to show that there exists a unique ε∗ such that 1−θ1(δL+2σε∗)
1+f = ε∗, at which point (A.15) binds at

zero. We further note that at ε = 0 we have 1−θ1(δL)
1+f > 0. Thus, in (A.15) we have ε∗ > 0 and for ε ∈ (0, ε∗)

we have xmin (δ) = 1−θ1(δL+2σε)
1+f − ε > 0, and for ε ∈

[
ε∗, 1

1+s

]
we have xmin (δ) = 0. Plugging in and taking

derivative with respect to ε, we have

∂

∂ε
ln [ε+ xmin (δL + 2σε)] =


−2σθ′1(δL+2σε)
1−θ1(δL+2σε) , ε ∈ (0, ε∗)

1
ε , ε ∈

[
ε∗, 1

1+s

]
Then, for (A.16), we have gL (ε) first rises and then drops:

g′L (ε) =


2σθ′1(δL+2σε)
1−θ1(δL+2σε) + s

1−ε > 0 , ε ∈ (0, ε∗) ,

− 1
ε + s

1−ε = (1+s)ε−1
1−ε < 0 , ε ∈

[
ε∗, 1

1+s

]
.
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Combined with gL (0) = gL

(
1

1+s

)
= 0 we know that gL (ε) > 0,∀ε ∈

(
0, 1

1+s

)
, i.e., Thus, on ε ∈

(
0, 1

1+s

)
the investors strictly want to invest in country 1.

We now consider the investors with δ ∈ (δH − (2− k)σ, δH). We know that country 1 will always survive,
and thus we have

Π1 (δ) =

∫ 1

0

1

(1 + f)
∫ δ+2σx

δ−2σ(1−x)
φ(y)
2σ dy

dx.

Let ε ≡ δH−δ
2σ ∈

(
0, s

1+s

)
so that so that δ = δH − 2σε. Thus, we have

ρ (δ, x) =

∫ δ+2σx

δ−2σ(1−x)

φ (y)

2σ
dy =


1

1+s , x ∈
(

0, 1
1+s + ε

)
,

x− ε, x ∈
(

1
1+s + ε, 1

)
.

(A.17)

Plugging in, we have

Π1 (δ) =
1

1 + f

[∫ 1
1+s+ε

0

1
1

1+s

dx+

∫ 1

1
1+s+ε

1

x− ε
dx

]
=

1

1 + f
[1 + (1 + s) ε+ ln (1− ε) + ln (1 + s)] .

For investment in country 2, we know that, since δ < δH , we have 1 − ρmax2 (δ) < 1 − ρmax2 (δL) ⇐⇒
ρmax2 (δL) < ρmax2 (δ). First, note that

1− ρ (δ, x) =

∫ δ+2σx

δ−2σ(1−x)

1− φ (y)

2σ
dy =


s

1+s , x ∈
(

0, 1
1+s + ε

)
,

1 + ε− x, x ∈
(

1
1+s + ε, 1

)
.

Let xmax (δ) be the measure of investors with higher signals than δ so that country 2 is safe. Since 1 −
ρmax2 (δ) = s 1−θ2(δ)1+f , xmax (δ) is the highest x ∈ [0, 1] such that

1− ρ (δ, x) = 1 + ε− x ≤ 1− ρmax2 (δ) .

Thus, we have

xmax (δ) = xmax (δH − 2σε) = min

{
1 + ε− s1− θ2 (δH − 2σε)

1 + f
, 1

}
. (A.18)

The expected investment return from country 2 is

Π2 (δ) =

∫
x:ρ(δ,x)≤ρmax2 (δ)

s

(1 + f)
∫ δ+2σx

δ−2σ(1−x)
1−φ(y)

2σ dy
dx

=
s

1 + f

[
1 + s

s

(
1

1 + s
+ ε

)
− ln [1 + ε− xmax (δ)] + ln

(
s

1 + s

)]
Differencing, we have

gH (ε) = (1 + f) [Π1 (ε)−Π2 (ε)] = ln (1− ε)− s ln s+ (1 + s) ln (1 + s) + s ln [1 + ε− xmax (δ)]

with similar properties to gL (ε).
Finally, we need to pick σ appropriately so that there exists some natural number N > 1 so that

2Nσ = δH − δL. For this particular choice of σ = σ̂, the limiting case of zero signal noise can be achieved
when we take the sequence of σn = σ̂/n for n = 1, 2, .....
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A.1.5 Equilibrium properties
First, with joint safety, the probability of survival for country 1 (or the probability of its bonds being the safe
asset) is no longer one minus the probability of survival of country 2. Using δ̃ ∼ U

(
−δ, δ

)
, the probability

of country 1 survival is

Pr (country 1 safe) =
δ − δL

2δ
=
δ + z − (1 + s) ln (1 + s) + s ln s

2δ
, (A.19)

and the probability of country 2 survival is

Pr (country 2 safe) =
δH + δ

2δ
=
δ + z − 1+s

s ln (1 + s)

2δ
.

As a result, the bonds issued by country 1 are more likely to be the safe assets than that issued by country
2 if the following condition holds:

s ln s− (1 + s) ln (1 + s) +
1 + s

s
ln (1 + s) = s ln s+

(
1

s
− s
)

ln (1 + s) > 0. (A.20)

This condition always holds: Define F (s) ≡ s2 ln s +
(
1− s2

)
ln (1 + s), then F (s) > 0 holds for s ∈ (0, 1).

It is clear that F (0) = 0 while F (1) = 0. Simple algebra shows that

F ′ (s) = 2s ln s− 2s ln (1 + s) + 1,
1

2
F ′′ (s) = ln s− ln (1 + s) + 1− s

1 + s
= ln

(
s

1 + s

)
+ 1− s

1 + s
.

Let y = s
1+s ∈ (0, 1); then because it is easy to show ln y+ 1−y < 0 (due to concavity of ln y), we know that

F ′′ (s) < 0. As a result, F (s) is concave but F (0) = F (1) = 0. This immediately implies that F (s) > 0,
which is our desired result. The condition is the same if we focus on sole survivals only instead of sole and
joint survival, i.e., the bonds of country j are the only safe asset, the condition is exactly the same.

Country 1 has the highest likelihood of survival when s→ 0, which immediately follow from− (1 + s) ln (1 + s)+
s ln s is decreasing in s.

Obviously, the above equilibrium construction requires that δL (z) < δH (z). Since δL (z) in (A.9) is
decreasing in z while δH (z) in (A.13) is increasing in z, this condition δL (z) < δH (z) holds if z > z so that
δL (z) = δH (z) which gives z:

−z + (1 + s) ln (1 + s)− s ln s = z − 1 + s

s
ln (1 + s)⇒ z =

1

2

[(
2 + s+

1

s

)
ln (1 + s)− s ln s

]

A.2 Extension for a negative β asset
Suppose that θ, which proxies for the aggregate fundamental for both countries, is subject to shocks. For
convenience, suppose that θ̃ is drawn from the following uniform distribution θ̃ ∼ U

[
θ, θ
]
, and recall z

(
θ̃
)

=

ln 1+f

1−θ̃ . Also, suppose that

li = lθ̃, i ∈ {1, 2}

where l > 0 is a positive constant, so that recovery is increasing in the fundamental shock. Using (16), we
calculate the threshold δ∗ (θ) as a function of the realization of θ̃ = θ, to be

δ∗ (θ) =
[(1− lθ) s− (1− lθ)] z (θ)− (s+ lθ) ln (s+ lθ) + (1 + slθ) ln (1 + lθs) + lθ ln (lθ)− slθ ln (lθ)

(1− lθ) + s (1− lθ)

Note that d
dθ δ
∗ (θ) < 0; that is, a higher θ, by reducing rollover risk, makes country 1 safer.
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In this exercise we consider a distribution so that the relative fundamental δ is almost surely, δ >
δ∗ (E [θ]). This implies that ex-ante country 1 bonds are more likely to be safe. Also, define θ̂ (δ) so that
δ∗
(
θ̂
)

= δ holds; this is the critical value of fundamental θ = θ̂ so that country 1’s bonds lose safety. We

choose δ so that θ̂ > θ, which implies that with strictly positive probability, country 1 defaults given a
sufficiently low fundamental.

We are interested in the β of the bond price of each country with respect to the θ shock, i.e.,

βi (δ) =
Cov

(
pi

(
θ̃; δ
)
, θ̃
)

V ar
(
θ̃
) =

E
[
pi

(
θ̃; δ
)
· θ̃
]
− E

[
θ̃
]
E
[
pi

(
θ̃; δ
)]

V ar
(
θ̃
) , (A.21)

From equation (18), we know that

p1 (θ; δ) =

{
(1+f)lθ
s+lθ if θ<θ̂ (δ) so country 1 defaults;
1+f
1+lθs if θ ≥ θ̂ (δ) so country 1 survives;

and

p2 (θ; δ) =

{
1+f
s+lθ if θ<θ̂ (δ) so country 2 survives;
(1+f)lθ
1+lθs if θ ≥ θ̂ (δ) so country 2 defaults.

Given these pricing functions, it is straightforward to evaluate βs in (A.21). We vary country 1’s relative
strength δ and plot the βs for both bonds as a function of δ in Figure 4. We only plot the β for country
1’s bonds, because β2 = −β1/s in our model.16

A.3 single-survivor equilibrium with common bonds
In this appendix, we proof that δ∗ (α) is unique, δ∗ (α) ≤ 0, exists on [0, α∗], and has δ∗ (α∗) = 0.

First, assume s = 1. Then, conjecture that δ∗ (α) = 0 throughout by a simple symmetry argument.
From (26), with θdef (δ∗ (α)) = θ, we then have

α∗ =
1 + s

1 + f
(1− θ) = e−z (1 + s) (A.22)

Next, assume s < 1 and ez > (1 + s) so that δ∗ (0) < 0. Then, let us conjecture δ∗ (α) ≤ 0 for α ∈ (0, α∗).
Setting Π1 (δ∗) = Π2 (δ∗) from (21) after substituting in for f̂ from (24), δ∗ (α) is implicitly defined via

0 = h (δ∗, α) = ln

[
ez

1− α
e−δ∗ − α

1+se
z

]
− s ln

[
ez

s

1− α
eδ∗ − α

1+se
z

]
(A.23)

Then, consider δ̃ = δ∗ (α)+. At this point, country 1 just survives, even though the funding gap (scaled
by size) of country 2 is the best among all defaulting countries. Then, for the monotone cutoff strategy to
be consistent, we need the default condition

α ≤ 1 + s

1 + f
[1− θ2 (δ∗)] =

1 + s

1 + f
(1− θ) eδ

∗
= e−z (1 + s) eδ

∗

16This is because cash-in-the-market-pricing implies that p1 + sp2 = 1 + f .
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Suppose that the constraint is binding, which defines a loosest δ∗ (α) by

δ̂∗ (α) = z + ln

(
α

1 + s

)
⇐⇒ eδ̂

∗(α) =
α

1 + s
ez (A.24)

Assume that α < α∗ = 1+s
1+f (1− θ). Plugging in δ̂∗ (α), we see that

h
(
δ̂∗ (α) , α

)
= ln

[
ez

1− α
e−z 1+s

α −
α

1+se
z

]
− s ln

[
ez

s

1− α
ez α

1+s −
α

1+se
z

]
< 0 (A.25)

as the second term explodes, i.e. ln [·] = ∞. Thus, it must be that 0 > δ∗ (α) > δ̂∗ (α)—the first part by
our assumption that δ∗ < 0 and the second by the construction. However, we note that δ̂∗ (α∗) = 0 so that
δ∗ (α∗) = 0. This is possible as (δ, α) = (0, α∗) is a root of h – both sides are exploding at this point. The
restriction above also implies that 0 < δ∗α (α∗) < δ̂∗α (α∗) = 1

α∗ so that δ∗ (α) has a bounded and positive
derivative at α∗.

We next show that for a fixed α ∈ [0, α∗], there exists unique δ∗ (α) that solves h (δ∗, α). Fix α. Then,
consider h (δ∗, α) as a function of δ∗. Differentiating w.r.t. δ∗, we have

∂h (δ∗, α)

∂δ∗
=

e−δ
∗
(
eδ
∗ − α

1+se
z
)

+ seδ
∗
(
e−δ

∗ − α
1+se

z
)

(
e−δ∗ − α

1+se
z
)(

eδ∗ − α
1+se

z
)

Then, given that we have α < α∗ and δ̂∗ (α) < δ∗ < 0 by assumption, we have(
e−δ

∗
− α

1 + s
ez
)
>

(
e−δ

∗
− α∗

1 + s
ez
)

= e−δ
∗
− 1 > 0

by assumption on the sign of δ∗. Next, we have(
eδ
∗
− α

1 + s
ez
)
>

(
eδ̂
∗(α) − α

1 + s
ez
)

=
α

1 + s
ez − α

1 + s
ez = 0

by the assumption on δ∗ ∈
(
δ̂∗ (α) , 0

)
. Thus, we have ∂h(δ∗,α)

∂δ∗ > 0. Finally, we know that h
(
δ̂∗ (α) , α

)
<

0 < h (0, α), so that a unique δ∗ (α) ∈
(
δ̂∗ (α) , 0

)
exists.

What remains to be shown is that δ∗ (α) does not cross 0 before α∗. Suppose it does. Then, there exists
an α̂ > 0 but α̂ 6= α∗ such that δ∗ (α̂) = 0. Then, we have

h (0, α̂) = ln

[
ez

1− α̂
1− α̂

1+se
z

]
− s ln

[
ez

s

1− α̂
1− α̂

1+se
z

]
= (1− s) ln

[
ez

1− α̂
1− α̂

1+se
z

]
+ s ln s

Setting this equal to 0, we have

ln

[
1− α̂

1− α̂
1+se

z

]
=
−s ln s

1 + s
− z ⇐⇒ 1− e[

−s ln s
1+s −z][

1− 1
1+se

[−s ln s
1+s ]

] = α̂

Simplifying, we have

α̂ =
(1 + s)

(
1− s

−s
1+s e−z

)
1 + s− s

−s
1+s
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Then, notice that α̂ > α∗ ⇐⇒
(1+s)

(
1−s

−s
1+s e−z

)
1+s−s

−s
1+s

> e−z (1 + s), which simplifies to 1 > α∗. Thus, the

function δ∗ (α) does not cross 0 before α∗.

A.4 Joint safety equilibrium with common bonds
Let us conjecture a non-monotone oscillating strategy as in A.1.

A.4.1 Lower boundary δL.
The definitions of ρ (δ, x) and ρ (δL, x) are as in Appendix A.1, and most of the result simply have f̂ instead
of f : as country 2 is safe to an agent with δ = δL, we have Π2 (δL) = s

1+f̂

[
ln 1+s

s + 1
]
< 1+s

1+f̂
.

The common bonds change the safety condition for country 1 to

θ1 (δ) + αpc +
(

1 + f̂
)
ρmin1 (δ) = 1 ⇐⇒ ρmin1 (δ) =

1− θ1 (δ)− αpc
1 + f̂

Define xmin (δL) as the solution to ρ (δL, x) = ρmin1 (δL). Given equation (A.3), we have that,

xmin (δL) =
1− θ1 (δL)− αpc

1 + f̂
(A.26)

Again, the expected return of investing in country 1 is given by Π1 (δL) = 1
1+f̂

[
ln 1

1+s − lnxmin (δL) + s
]
.

Indifference requires that Π2 (δL) = Π1 (δL), which implies that

xmin (δL) = exp [s ln s− (1 + s) ln (1 + s)] (A.27)

We combine the expressions for xmin (δL), (A.26) and (A.27), to solve for δL:

δL = − ln

{
1

1− θ

[(
1 + f̂

) ss

(1 + s)
(1+s)

+ αpc

]}
. (A.28)

A.4.2 Upper boundary δH.
The derivation of ρ (δ, x) and ρ (δH , x) follow Appendix A.1, , and most of the result simply have f̂ instead
of f . We have Π1 (δH) = ln(1+s)+1

1+f̂
as country 1 is considered safe at δj = δH .

The default condition for country 2 is

sθ2 (δ) + sαpc +
(

1 + f̂
)

[1− ρmax2 (δ)] = s ⇐⇒ [1− ρmax2 (δ)] = s
1− θ2 (δ)− αpc

1 + f̂

where ρmax2 (δ) is the maximum amount of people investing in country 1 so that country 2 does not default.
Define xmax (δH) as the solution to ρ (δH , xmax) = ρmax2 (δH). Given equation (A.11), we have that,

1− xmax (δH) = s
1− θ2 (δH)− αpc

1 + f̂
(A.29)

Then the return to investing in country 2 is again given by Π2 (δH) = s
1+f̂

[
1
s + ln s

1+s − ln (1− xmax (δH))
]
.

Indifference requires Π1 (δH) = Π2 (δH), which implies that

1− xmax (δH) =
s

(1 + s)
1+s
s

(A.30)
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We combine the expressions for xmax (δH), (A.29) and (A.30), to solve for δH :

δH = ln

{
1

1− θ

[
1 + f̂

(1 + s)
1+s
s

+ αpc

]}
(A.31)

The remainder of the proof, i.e., the verification argument, is exactly the same as in Appendix A.1 and
hence omitted here.

A.4.3 Cutoff αHL < α∗.
First, the assumption ez > (1 + s) ⇐⇒ (1 + f) > (1− θ) (1 + s) guarantees that there is some realizations
of δ̃ that would allow joint safety. Consider the total funding requirement,

total
(
δ̃
)

= (1− θ1) + (1− θ2) s = (1− θ)
(
e−δ̃ + s · eδ̃

)
(A.32)

This is minimized at δ̃ = − 1
2 ln s ≥ 0 for a total funding requirement of total

(
− 1

2 ln s
)

= (1− θ) 2
√
s. Next,

note that 1 + s > 2
√
s so that ez > (1 + s) > 2

√
s.

Recall that α∗ = e−z (1 + s). Then, assume that z > ln (1 + s) so that α∗ ∈ (0, 1). Then, we have

δH (α∗)− δL (α∗) = ln

{
ez

1 + s

[(
1

1 + s

) 1
s

(1− α∗) + α∗

]}
+ ln

{
ez

1 + s

[(
s

1 + s

)s
(1− α∗) + α∗

]}

= ln

[(
1

1 + s

) 1
s
(

1

α∗
− 1

)
+ 1

]
+ ln

[(
s

1 + s

)s(
1

α∗
− 1

)
+ 1

]
> 0

where we used
(

1
1+s

) 1
s

< 1 and
(

s
1+s

)s
< 1 and 1

α∗ > 1 in the last line. Thus, at α∗ the oscillating
equilibrium already exists. It is easy to show that the the joint safety region [δL (α) , δH (α)] is expanding
uniformly in α, and thus that αHL < α∗.

Finally, define αHL as the solution to

0 = δH (αHL)− δL (αHL)

= 2 [z − ln (1 + s)] + ln

[(
1

1 + s

) 1
s

(1− αHL) + αHL

]
+ ln

[(
s

1 + s

)s
(1− αHL) + αHL

]
Rearranging, we have[(

1

1 + s

) 1
s

(1− αHL) + αHL

] [(
s

1 + s

)s
(1− αHL) + αHL

]
− e−2z (1 + s)

2
= 0

which is a quadratic equation in αHL. We note that e−2z (1 + s)
2
< 1 ⇐⇒ 2 [ln (1 + s)− z] < 0, so

that αHL = 1 makes the LHS positive. We also know that the LHS is increasing in αHL for αHL > 0.
Thus, there exists at most one positive root αHL ∈ (0, 1) under the assumption z > ln (1 + s), and if
not, both roots are negative. Solving for the larger root αHL, and after some algebra, we can show that
δ∗ (αHL) = δH (αHL) = δL (αHL).
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B Online Appendix B: Additional Results

B.1 Additive Fundamental Structure
We have considered the specification of 1− θi = (1− θ) exp

(
(−1)

i
δ̃
)
for country i’s fundamental. We now

show that results are qualitatively similar with the alternative additive specification

θ1 = θ + δ̃, and θ2 = θ − δ̃.

As x = Pr
(
δ̃ + εj > δ∗

)
= δ̃+σ−δ∗

2σ ⇒ δ̃ = δ∗ + (2x− 1)σ, we know that

θ1 = θ + δ̃ = θ + δ∗ + (2x− 1)σ

θ2 = θ − δ̃ = θ − δ∗ − (2x− 1)σ

Given x, the large country 1 survives if and only if

p1 − 1 + θ1 = (1 + f)x− 1 + θ + δ∗ + (2x− 1)σ ≥ 0⇔ x ≥ 1− θ − δ∗ + σ

1 + f + 2σ

which implies the expected return from investing in country 1 is

Π1 =

∫ 1

1−θ−δ∗+σ
1+f+2σ

1

(1 + f)x
dx =

1

1 + f
ln

1 + f + 2σ

1− θ − δ∗ + σ
.

For country 2, the bond is paid back if

(1 + f)x′ − s+ sθ2 = (1 + f)x′ − s+ s [θ − δ∗ − (2x− 1)σ] ≥ 0

⇔ x′ ≥ s (1− θ + δ∗ − σ)

1 + f + 2sσ

which implies an expected return of

Π2 =

∫ 1

s(1−θ+δ∗−σ)
1+f+2sσ

s

(1 + f)x′
dx′ =

s

1 + f
ln

1 + f + 2sσ

s (1− θ + δ∗ + σ)

As a result, the equilibrium threshold δ∗ is pinned by by the indifference condition

ln
1 + f + 2σ

1− θ − δ∗ + σ
= s ln

1 + f + 2sσ

s (1− θ + δ∗ + σ)
.

Letting σ → 0 we obtain

ln
1 + f

1− θ − δ∗
= s ln

1 + f

s (1− θ + δ∗)
. (B.1)

We no longer have close-form solution for δ∗ in (B.1), as δ∗ shows up in both sides. However, the solution
is unique because LHS (RHS) is increasing (decreasing) in δ∗. Finally, to ensure δ∗ < 0 so that the larger
country 1 is relatively safer, we require the same sufficient condition of z = ln 1+f

1−θ > 1 in this alternative
specification.
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B.2 Uniqueness of the single-survivor equilibrium with threshold
strategies within monotone strategies

First, let us define a few primitives. Let δj be a generic signal, and δ be the true state of the world. Further,
let x denote the amount of pessimism of the investors, so that x = 1 is the most pessimistic agent (amongst
all agents out there) and x = 0 is the least pessimistic agent. We then have δ (δj , x) = δj + 2σ

(
x− 1

2

)
.

For most of the proofs, we assume wlog that the investor believes his signal to be the true signal, and thus
all the action comes from movements in his relative position. As σ → 0, fundamental uncertainty (that is
movements in δ as a function of x) will vanish, whereas strategic uncertainty (relative ranking of investors
as represented by x) remains.

Next, let us define φ (δj) as the proportion of funds an investor with signal δj invests in country 1. Then
define

ρ (δj , x) =
1

2σ

∫ δj+2σx

δj−2σ(1−x)
φ (y) dy

as the aggregate proportion of investors in country 1 an investor with signal δj and level of pessimism x
expects given the conjecture strategies φ (·). Note that there is translation invariance

ρ (δj , x) = ρ
(
δj + ε, x− ε

2σ

)
,∀x ∈

( ε

2σ
, 1
)

Finally, define the (scaled by 1 + f) difference in expected returns as

∆ (δj) =

∫ 1

0

1{ρ(δ,x)≥ρmin(δ)}
1

ρ (δ, x)
dx−

∫ 1

0

1{ρ(δ,x)≤ρmax(δ)}
s

1− ρ (δ, x)
dx

Then, for any given conjectured difference function ∆ (y), we must have

φ (y) =


1, ∆ (y) > 0

∈ [0, 1] , ∆ (y) = 0

0, ∆ (y) < 0

A monotone strategy is defined by φ′ (y) ≥ 0 for all y ∈
[
−δ, δ

]
, which implies that ρδ (δ, x) ≥ 0 as well

as ρx (δ, x) ≥ 0, i.e., ρ (δ, x) is monotone. This implies that we can write

∆ (δj) =

∫ 1

0

1{ρ(δj ,x)≥ρmin(δ(δj ,x))}
1

ρ (δ, x)
dx−

∫ 1

0

1{ρ(δj ,x)≤ρmax(δ(δj ,x))}
s

1− ρ (δ, x)
dx

≈
∫ 1

0

1{ρ(δj ,x)≥ρmin(δj)}
1

ρ (δ, x)
dx−

∫ 1

0

1{ρ(δj ,x)≤ρmax(δj)}
s

1− ρ (δ, x)
dx

=

∫ 1

xmin(δj)

1

ρ (δj , x)
dx−

∫ xmax(δj)

0

s

1− ρ (δj , x)
dx

Country 1 survives if ρ (δj , x) is larger than ρmin (δ (δj , x)). As the agent becomes more pessimistic relative to
the other agents, i.e., x increases, the actual relative fundamental increases, and thus the threshold decreases:

∂xρmin (δ (δj , x)) = ∂xe
−ze−δ(δj ,x) = −e−ze−δ(δj ,x)2σ < 0

∂δjρmin (δ (δj , x)) = −e−ze−δ(δj ,x) < 0

Thus, if ρ (δ, x) is monotone, there exists a unique threshold xmin (δ) above which country 1 is safe. Further,
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by the implicit function theorem, we have

x′min (δ) = −
ρδ (δ, x)− ∂δρmin

(
δ̃ (δ, x)

)
ρx (δ, x)− ∂xρmin

(
δ̃ (δ, x)

)
= −

φ(δ+2σx)−φ(δ−2σ(1−x))
2σ + e−ze−δ̃(δ,x)

φ (δ + 2σx)− φ (δ − 2σ (1− x)) + e−ze−δ̃(δ,x)2σ

= − 1

2σ

so that the pessimism threshold falls that makes country 1 safe. Similarly, we have

x′max (δ) = −
ρδ (δ, x)− ∂δρmax

(
δ̃ (δ, x)

)
∂x (δ, x)− ∂xρmax

(
δ̃ (δ, x)

)
= −

φ(δ+2σx)−φ(δ−2σ(1−x))
2σ + se−zeδ̃(δ,x)

φ (δ + 2σx)− φ (δ − 2σ (1− x)) + se−zeδ̃(δ,x)2σ

= − 1

2σ

We can thus approximate

xmax (δ + ε) +
ε

2σ
≈ xmax (δ) + x′max (δ) ε+

ε

2σ
= xmax (δ) and xmin (δ + ε) +

ε

2σ
≈ xmin (δ)

Finally, suppose a δ exists for which the investor expects joint safety, i.e., both countries to be safe for
sure. Then, we must have φ (δ) = 1

1+s by the no arbitrage condition. A single-survivor equilibrium with
threshold strategies is defined by a single-crossing condition on ∆ = Π1−Π2 and a non-flat part at 0, where
∆ (δ) > 0 implies φ = 1 and ∆ (δ) < 0 implies φ = 0. Consider any other equilibrium. By dominance
regions, we know that for high δ, φ = 1 will eventually be optimal, and for very low δ, φ = 0 will eventually
be optimal.

Thus, any other equilibrium is either characterized by (1) a flat part ∆ (δ) = 0, (2) multiple crossings
∆ (δ) = 0 or (3) a combination of the two. In our joint safety equilibrium supported by oscillating strategy,
(3) is the case, with a flat part in the middle.

B.2.1 Monotonicity and uniqueness of threshold equilibrium
A monotone strategy φ (δ) requires ∆ (δ) to change signs only once. Thus, ∆ (δ) either crosses zero at a
single point, or approaches it from below, stays flat on an interval [δL, δH ], and then rises above zero. Thus,
at any point δ s.t. ∆ (δ) = 0 we must have ∆′ (δ) ≥ 0. As we want to show that a threshold equilibrium is
the only equilibrium possible, we now rule out any flat parts of ∆ at zero.

To this end, suppose an interval [δL, δH ] exists on which ∆ (δ) = 0.

Interior xmin, xmax. Suppose now that xmin (δ) , xmax (δ) ∈ (0, 1). This means that both countries are
at risk of default, so there is no possibility of joint safety across all possible x ∈ [0, 1] (it might exists for
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some x if xmin (δ) < xmax (δ)). Take ε ∈ (0, δH − δL). Then, we write

Π1 (δ + ε) =

∫ 1

xmin(δ+ε)

1

ρ (δ + ε, x)
dx

=

∫ 1+ ε
2σ

xmin(δ+ε)+
ε
2σ

1

ρ
(
δ + ε, x− ε

2σ

)dx
=

∫ 1

xmin(δ+ε)+
ε
2σ

1

ρ
(
δ + ε, x− ε

2σ

)dx+

∫ 1+ ε
2σ

1

1

ρ
(
δ + ε, x− ε

2σ

)dx
≈

∫ 1

xmin(δ)

1

ρ (δ, x)
dx+

∫ 1

1− ε
2σ

1

ρ (δ + ε, x)
dx

= Π1 (δ) +

∫ 1

1− ε
2σ

1

ρ (δ + ε, x)
dx︸ ︷︷ ︸

new pessimists

Similarly, we have

Π2 (δ + ε) =

∫ xmax(δ+ε)

0

s

1− ρ (δ + ε, x)
dx

=

∫ xmax(δ+ε)+
ε
2σ

ε
2σ

s

1− ρ
(
δ + ε, x− ε

2σ

)dx
≈

∫ xmax(δ)

ε
2σ

s

1− ρ (δ, x)
dx+

∫ ε
2σ

0

s

1− ρ (δ, x)
dx−

∫ ε
2σ

0

s

1− ρ (δ, x)
dx

=

∫ xmax(δ)

0

s

1− ρ (δ, x)
dx−

∫ ε
2σ

0

s

1− ρ (δ, x)
dx

= Π2 (δ)−
∫ ε

2σ

0

s

1− ρ (δ, x)
dx︸ ︷︷ ︸

old optimists

so that

∆ (δL + ε) = Π1 (δL + ε)−Π2 (δL + ε)

= Π1 (δL) +

∫ 1

1− ε
2σ

1

ρ (δL + ε, x)
dx−

[
Π2 (δL)−

∫ ε
2σ

0

s

1− ρ (δL, x)
dx

]

=

∫ 1

1− ε
2σ

1

ρ (δL + ε, x)
dx+

∫ ε
2σ

0

s

1− ρ (δL, x)
dx > 0

But this implies that
φ (δL + ε) = 1

By monotonicity then, δL is the only point at which ∆ (δ) = 0 and no flat parts can exist for xmin, xmax ∈
(0, 1).

Cornered xmin, xmax. Next, suppose that at least one of the countries is going to survive regardless
of x because of the assumed strategies. Wlog, let us focus on δL. First, let us rule out that xmin (δL) = 0.
Note that for any ε > 0, we have by the dominance boundaries ∆ (δL − ε) < 0 and ∆ (δH + ε) > 0, the
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highest and lowest point of the all flat parts. Further note that xmin (δL) = 0 implies that country 1 always
survives in the eyes of an investor with signal δL. By construction we have ρ (δ, 0) = 0— when the agent
with signal δL is the most optimistic agent, he must believe by the conjecture on ∆ (δ) that everyone below
him investors fully into country 2. But then this agent cannot believe that country 1 is safe regardless of x,
as by assumption no country can survive without a minimum amount of investment.

Thus, at δL we must have xmax (δL) = 1 and xmin (δH) = 0—country 2 always survives given the
strategies of the different agents. Then, we have the survival boundary of country 2 not changing, and thus
again for ε ∈ (0, δH − δL) we have

Π2 (δ + ε) =

∫ 1

0

s

1− ρ (δ + ε, x)
dx

=

∫ 1+ ε
2σ

ε
2σ

s

1− ρ
(
δ + ε, x− ε

2σ

)dx
=

∫ 1

ε
2σ

s

1− ρ (δ, x)
dx+

∫ 1

1− ε
2σ

s

1− ρ (δ + ε, x)
dx

=

∫ 1

0

s

1− ρ (δ, x)
dx+

∫ 1

1− ε
2σ

s

1− ρ (δ + ε, x)
dx−

∫ ε
2σ

0

s

1− ρ (δ, x)
dx

= Π2 (δ) +

∫ 1

1− ε
2σ

s

1− ρ (δ + ε, x)
dx︸ ︷︷ ︸

new pessimists

−
∫ ε

2σ

0

s

1− ρ (δ, x)
dx︸ ︷︷ ︸

old optimists

Then, we have

0 = ∆ (δ + ε) = Π1 (δ + ε)−Π2 (δ + ε)

= Π1 (δ) +

∫ 1

1− ε
2σ

1

ρ (δ + ε, x)
dx−

[
Π2 (δ) +

∫ 1

1− ε
2σ

s

1− ρ (δ + ε, x)
dx−

∫ ε
2σ

0

s

1− ρ (δ, x)
dx

]

=

∫ 1

1− ε
2σ

1

ρ (δ + ε, x)
dx−

∫ 1

1− ε
2σ

s

1− ρ (δ + ε, x)
dx+

∫ ε
2σ

0

s

1− ρ (δ, x)
dx

=

∫ 1

1− ε
2σ

[
1

ρ (δ + ε, x)
− s

1− ρ (δ + ε, x)

]
dx︸ ︷︷ ︸

new pessimists

+

∫ ε
2σ

0

s

1− ρ (δ, x)
dx︸ ︷︷ ︸

old optimists

and there is now a possibility of a flat part. The intuition here is that we are balancing the returns that
arise to the new most pessimistic investor (i.e. for high x) against the previous expected returns of the most
optimistic investors (i.e. low x).
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Taking derivatives around ε = 0, we have

∆ (δ + ε) ≈ ∆ (δ) + ∆′ (δ) ε

=
1

2σ

[
1

ρ
(
δ + ε, 1− ε

2σ

) − s

1− ρ
(
δ + ε, 1− ε

2σ

)]
ε=0

ε

+

[∫ 1

1− ε
2σ

[
−ρδ (δ + ε, x)

ρ (δ + ε, x)
2 −

s (−ρδ (δ + ε, x))

[1− ρ (δ + ε, x)]
2

]
dx

]
ε=0

ε

+
1

2σ

[
s

1− ρ
(
δ, ε2σ

)]
ε=0

ε

=
1

2σ

[
1

ρ (δ, 1)
− s

1− ρ (δ, 1)
+

s

1− ρ (δ, 0)

]
ε

When δ = δL we must have ρ (δL, 0) = 0 by definition of δL. Then, the derivative ∆′ (δL) = 0 if

ρ (δL, 1) =
−1 +

√
1 + 4s

2s
>

1

1 + s

which implies that least for some points on (δL, δL + 2σ) we must have φ (δ) > 1
1+s .

By x′min (δ) ≤ 0 and x′max (δ) ≤ 0, as δ increases either we (i) move to a segment where xmin (δ) , xmax (δ) ∈
(0, 1), an interior situation, or (ii) to a segment with xmin (δ) = 0, xmax (δ) = 1, a completely safe part.

But we know from the previous section that (i) immediately has ∆′ (δ) > 0, a violation of the premise
that we are on a flat part for δ ∈ [δL, δH ]. Next, consider for (ii) any completely safe subset J ⊂ (δL, δH)
and δ ∈ J . Then, we require ρ (δ, x) = 1

1+s ,∀x ∈ [0, 1] by no arbitrage, which implies φ (δ) = 1
1+s . But

then we have a violation of monotonicity as ρ (δL, 1) > 1
1+s . Thus, there cannot be any flat parts of ∆ (δ) at

zero and the only equilibrium that survives is of the threshold form. By the construction in the paper, this
threshold equilibrium is unique.

Existence of threshold equilibrium. Consider our unique candidate equilibrium

δ∗ = −1− s
1 + s

z − s ln s

1 + s

derived in the main text. Consider now δj < δ∗. Then, we have

∆ (δj ; δ
∗) =

∫
ρ(x)>ρmin(δ̃(x;δj))

1

(1 + f) ρ (x)
dx− s

∫
ρ(x)<ρmax(δ̃(x;δj))

1

(1 + f) (1− ρ (x))
dx

We know that ∆ (δ∗; δ∗) = 0. But by our setup, we know that moving δj < δ∗ lowers both ρmin (δ) and
ρmax (δ). Thus, we need to look at the difference between the parts we are adding (region in which country
1 survives) and parts we are subtracting (region in which country 2 survives):

∆δj (δj ; δ
∗) = −ρ′min (δj)

1

(1 + f) ρmin (δj)
+ sρ′max (δj)

1

(1 + f) (1− ρmax (δj))

=
1

(1 + f)
− s 1

(1 + f)
=

1− s
1 + f

> 0

where we used

ρ′min (δj) = −ρmin (δj) and ρ′max (δj) = − (1− ρmax (δj))
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This is intuitive: as we increase δj , we are adding the most valuable states for country 1 (fixing ρ (x)) by
evaluating at points set on which it will just survive, i.e., close to ρmin (δj), and we are taking away the most
valuable states for country 2 by evaluating at points set on which it will just default, i.e., close to ρmax (δj).

B.3 single-survivor equilibrium with oscillating strategies because
of positive recovery

Let us say that s1 = 1, s2 = s and lisi to be the recovery given default of country i, so that it returns lisi
yi

per unit of dollar invested, where yi is total investment in country i. Then if country 1 survives, to equalize
return, we need

l2s

y2
=

1

y1
, y1 + y2 = 1 + f ⇒ y1

y2
=

1

l2s
.

This gives prices equal to

p1 = y1 =
(1 + f)

1 + l2s

p2 =
y2
s

=
(1 + f) l2
1 + l2s

Similarly, if country 2 survives, then

s

y2
=
l1
y1
, y1 + y2 = 1 + f ⇒ y1

y2
=
l1
s

which results in prices

p1 = y1 =
(1 + f) l1
l1 + s

p2 =
y2
s

=
(1 + f)

l1 + s

Let
z = ln

1 + f

1− θ
> 0

and fiscal surplus is given by

θ1 = 1− (1− θ) e−δ = 1− (1 + f) e−ze−δ

sθ2 = s
[
1− (1− θ) eδ

]
= s

[
1− (1 + f) e−zeδ

]
Define two constants k1 > 1 and k2 > 1 (which only occurs if s < l1) so that

k1
2− k1

=
1

l2s
⇐⇒ k1 =

2

1 + l2s
> 1

k2
2− k2

=
s

l1
⇐⇒ k2 =

2s

s+ l1
> 1

Then in the country-1-default region, k2σ measure of agents invest in country 2, i.e. play φ = 0, while
(2− k2)σ measure of agents play φ = 1. Similarly in the country-2-default region, , k1σ measure of agents
play φ = 1 while (2− k1)σ measure of agents play φ = 0.
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Conjecture the following equilibrium strategy with cutoff δ∗

φ (y) =



....

1, y ∈ [δ∗ − 2σ, δ∗ − k2σ]

0, y ∈ [δ∗ − k2σ, δ∗]
1, y ∈ [δ∗, δ∗ + k1σ]

0, y ∈ [δ∗ + k1σ, δ
∗ + 2σ]

1, y ∈ [δ∗ + 2σ, δ∗ + 2σ + k1σ]

....

In other words, two types of equilibria collide at δ∗. We conjecture that marginal investor at δ∗ is indif-
ferent, while the agents between [δ∗ − k2σ, δ∗] strictly prefer φ = 0, and symmetrically the agents between
[δ∗, δ∗ + k1σ] strictly prefer φ = 1. Other agents in this economy are indifferent.

Let x denote the fraction of agents with signal realization above the agent’s private signal δj , so that
given x, the true fundamental is

δ (x) = δj − (1− 2x)σ

Further, let ρ (δj , x) be the expected proportion agents investing in country 1 given x. Then, we have

ρ (δj , x) =


1− k2

2 , δ + 2σx < δ∗ + (2− k2)σ

x+ cst, else
k1
2 δ − 2σ (1− x) > δ∗ − (2− k1)σ

where cst is picked so that ρ (δj , x) is continuous in x. We note that the slope is generically x as we are
replacing φ = 0 with φ = 1 marginally. At δj = δ∗, we have

ρ (δ∗, x) =


1− k2

2 , x < 1− k2
2

x, else
k1
2 x > k1

2

and we need
1− k2

2
<
k1
2

Note that if we assume that ρmin (δ) , 1 − ρmax (δ) ∈
[
1− k2

2 ,
k1
2

]
we have a 1-to-1 function between x

and ρ that yields

xmin =
1− θ1 (δ∗)

1 + f
=

1− θ
1 + f

e−δ
∗
⇐⇒ lnxmin = −z − δ∗

1− xmax = s
1− θ2 (δ∗)

1 + f
= s

1− θ
1 + f

eδ
∗
⇐⇒ ln (1− xmax) = ln s− z + δ∗

Note here that we are ignoring fundamental uncertainty. Otherwise, we need to take account of the fact that
in the mind of the agent,

ρmin (δ (x)) = e−ze−δ(x) = e−ze−[δj−(1−2x)σ]

is the minimum investment in country 1 needed for it to survive conditional on x. For everything else below,
we assume that ρmin (δ (x)) = ρmin (δj). Next, note that

x = Fraction of people with signal above agent

so that x = 1 is the most pessimistic agent, and x = 0 is the most optimistic. As ρ (δ, x) is increasing in x,
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we have

x < xmin ⇐⇒ Country 1 fails
x > xmin ⇐⇒ Country 1 survives
x < xmax ⇐⇒ Country 2 survives
x > xmax ⇐⇒ Country 2 fails

Then, for the boundary agent, the expected return of investing in country 2 is given by

Π2 (δ∗) = Return2 (survival) +Return2 (default)

=

∫ xmax

0

s

(1 + f) (1− ρ (δ∗, x))
dx+

∫ 1

xmax

l2s

(1 + f) (1− ρ (δ∗, x))
dx

=

∫ 1− k22

0

s

(1 + f)
(
1−

(
1− k2

2

))dx+

∫ xmax

1− k22

s

(1 + f) (1− x)

+

∫ k1
2

xmax

l2s

(1 + f) (1− x)
dx+

∫ 1

k1
2

l2s

(1 + f)
(
1− k1

2

)dx
=

(
1− k2

2

)
s

(1 + f) k22
+

s

1 + f

[
ln

(
k2
2

)
− ln (1− xmax)

]
+

l2s

1 + f

[
ln (1− xmax)− ln

(
1− k1

2

)]
+

(
1− k1

2

)
l2s

(1 + f)
(
1− k1

2

)
=

s

(1 + f)

{(
1− k2

2
k2
2

)
+

[
ln

(
k2
2

)
− ln (1− xmax)

]
+ l2 + l2

[
ln (1− xmax)− ln

(
1− k1

2

)]}

and the expected return of investing in country 1 is given by

Π1 (δ∗) =

∫ xmin

0

l1
(1 + f) ρ (δ∗, x)

dx+

∫ 1

xmin

1

(1 + f) ρ (δ∗, x)
dx

=

∫ 1− k22

0

l1

(1 + f)
(
1− k2

2

)dx+

∫ xmin

1− k22

l1
(1 + f)x

dx

+

∫ k1
2

xmin

1

(1 + f)x
dx+

∫ 1

k1
2

1

(1 + f) k12
dx

=

(
1− k2

2

)
l1

(1 + f)
(
1− k2

2

) +
l1

1 + f

[
ln (xmin)− ln

(
1− k2

2

)]
+

1

1 + f

[
ln

(
k1
2

)
− ln (xmin)

]
+

(
1− k1

2

)
1

(1 + f) k12

=
1

1 + f

{
l1 + l1

[
ln (xmin)− ln

(
1− k2

2

)]
+

[
ln

(
k1
2

)
− ln (xmin)

]
+

(
1− k1

2
k1
2

)}
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Note that (
1− k1

2
k1
2

)
=

(
1
k1
2

− 1

)
= 1 + sl2 − 1 = sl2(

1− k2
2

k2
2

)
=

(
1
k2
2

− 1

)
=

s+ l1
s
− s

s
=
l1
s

Setting these equal, we have

s

{
l1
s

+

[
ln

(
k2
2

)
− ln (1− xmax)

]
+ l2 + l2

[
ln (1− xmax)− ln

(
1− k1

2

)]}
=

{
l1 + l1

[
ln (xmin)− ln

(
1− k2

2

)]
+

[
ln

(
k1
2

)
− ln (xmin)

]
+ sl2

}
Plugging in for k1, k2 and

k1
2

=
1

1 + l2s
k2
2

=
s

s+ l1

1− k1
2

=
l2s

1 + l2s

1− k2
2

=
l1

s+ l1
ln (xmin) = −z − δ∗

ln (1− xmax) = −z + δ∗ + ln s

Setting these equal, we have

s

{[
ln

(
k2
2

)
− ln (1− xmax)

]
+ l2

[
ln (1− xmax)− ln

(
1− k1

2

)]}
= l1

[
ln (xmin)− ln

(
1− k2

2

)]
+

[
ln

(
k1
2

)
− ln (xmin)

]
⇐⇒ s

{
− (1− l2) ln (1− xmax) +

[
ln

(
k2
2

)
− l2 ln

(
1− k1

2

)]}
= − (1− l1) ln (xmin) +

[
ln

(
k1
2

)
− l1 ln

(
1− k2

2

)]
⇐⇒ s

{
(1− l2) (z − δ∗ − ln s) +

[
ln

(
s

s+ l1

)
− l2 ln

(
l2s

1 + l2s

)]}
= (1− l1) (z + δ∗) +

[
ln

(
1

1 + l2s

)
− l1 ln

(
l1

s+ l1

)]
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Finally, solving for δ∗, we have

δ∗ =
s
{

(1− l2) (z − ln s) +
[
ln
(

s
s+l1

)
− l2 ln

(
l2s

1+l2s

)]}
− (1− l1) z −

[
ln
(

1
1+l2s

)
− l1 ln

(
l1
s+l1

)]
(1− l1) + s (1− l2)

=
s {(1− l2) z − (1− l2) ln s+ ln s− ln (s+ l1)− l2 ln l2 − l2 ln s+ l2 ln (1 + l2s)}

(1− l1) + s (1− l2)

+
− (1− l1) z + ln (1 + l2s) + l1 ln (l1)− l1 ln (s+ l1)

(1− l1) + s (1− l2)

so that finally

δ∗ =
[(1− l2) s− (1− l1)] z − (s+ l1) ln (s+ l1) + (1 + sl2) ln (1 + l2s) + l1 ln l1 − sl2 ln l2

(1− l1) + s (1− l2)
(B.2)

Plugging in l1 = l2 = 0, we have

δ∗ =
− (1− s) z − s ln (s)

1 + s

our benchmark result absent recovery. This is the only single-survivor equilibrium supported by threshold
strategies.

We want to show that from the perspective of δ∗, for an x small enough so that ρ (δ∗, x) = 1− k2
2 , does

country 1 default? We know that ρmin (δ∗) = e−ze−δ
∗
, so that

ρmin (δ∗) > 1− k2
2

⇐⇒ ln (ρmin (δ∗)) > ln

(
1− k2

2

)
⇐⇒ − (δ∗ + z) > ln

(
l1

s+ l1

)
which gives

− [2 (1− l2) sz − (s+ l1) ln (s+ l1) + (1 + sl2) ln (1 + l2s) + l1 ln l1 − sl2 ln l2]

> [(1− l1) + s (1− l2)] [ln l1 − ln (s+ l1)]

and ultimately yields

F ∗1 (l1, l2, s)] ≡ −2 (1− l2) sz− [1 + s (1− l2)] ln l1 +sl2 ln l2 +[1 + s (2− l2)] ln (s+ l1)− (1 + l2s) ln (1 + l2s)

and the default condition is given by F ∗1 (l1, l2, s) ≥ 0. Assume l1 = l2 = l. Then, we have

F ∗1 (l, l, s) = −2 (1− l) sz − [1− (1− 2l) s] ln l + [1 + s (2− l)] ln (s+ l)− (1 + ls) ln (1 + ls)

We can show that F ∗1 (l, l, s) is always positive for small enough recovery l as the term − [1− (1− 2l) s] ln l
explodes, swamping any negative z effect.17

17Taking derivatives w.r.t. l and s, we have

∂lF
∗
1 (l, l, s) = 2sz + s− (1 + s)

l
+

1 + (2− l) s
s+ l

+ 2s ln l − s ln (s+ l)− s ln (1 + ls)

∂sF
∗
1 (l, l, s) =

1 + (2− l) s
s+ l

− l ln (1 + ls) + (2− l) ln (s+ l)− 2 (1− l) z − l − (1− 2l) ln l
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Next, we want to show that from the perspective of δ∗, for an x large enough so that ρ (δ∗, x) = k1
2 , does

country 2 default? We know that 1− ρmax (δ∗) = se−zeδ
∗
, so that

1− ρmax (δ∗) > 1− k1
2

⇐⇒ ln (1− ρmax (δ∗)) > ln

(
1− k1

2

)
⇐⇒ ln s− z + δ∗ > ln

(
l2s

1 + l2s

)
so that

[(1− l1) + s (1− l2)] ln s− 2 (1− l1) z − (s+ l1) ln (s+ l1) + (1 + sl2) ln (1 + l2s) + l1 ln l1 − sl2 ln l2

> [(1− l1) + s (1− l2)] [ln l2 + ln s− ln (1 + l2s)]

Define

F ∗2 (l1, l2, s) ≡ −2 (1− l1) z − (s+ l1) ln (s+ l1) + (2− l1 + s) ln (1 + l2s) + l1 ln l1 − [s+ (1− l1)] ln l2

and the default condition is given by F ∗2 (l1, l2, s) ≥ 0. Assuming equal recovery l1 = l2 = l, we have

F ∗2 (l, l, s) = −2 (1− l) z − (s+ l) ln (s+ l) + (2− l + s) ln (1 + ls)− [s+ (1− 2l)] ln l

We can show that F ∗2 (l, l, s) is always positive for small enough recovery l as the term − [s+ (1− 2l)] ln l
explodes, swamping any negative z effect.

Let us consider an interior agent, i.e., δ ∈ [δ∗ − k2σ, δ∗ + k1σ]. Let

δ (ε) = δ∗ + 2εσ

with ε ∈
[
−k22 ,

k1
2

]
. Let us first consider investment in country 1. We have ρmin (δ) as the default boundary,

and actual investment is given by

ρ (δ, x) =


1− k2

2 , δ∗ + ε2σ + 2σx < δ∗ + (2− k2)σ

x+ cst, else
k1
2 δ∗ + ε2σ − 2σ (1− x) > δ∗ − (2− k1)σ

=


1− k2

2 , 2εσ + 2σx < (2− k2)σ

x+ cst, else
k1
2 2εσ − 2σ (1− x) > − (2− k1)σ

which gives

ρ (δ, x) =


1− k2

2 , ε+ x < 1− k2
2

x+ ε, else
k1
2 ε+ x > k1

2

Note that we have cst = ε by imposing continuity (which has to follow from ρ (δ, x) being an integral over
strategies φ).

Let xmin (δ) be the lowest x ∈ [0, 1] such that

ρ (δ, x) = ε+ x ≥ ρmin (δ)

and we therefore have
xmin (δ) = max {ρmin (δ)− ε, 0}
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Similarly, let xmax (δ) be the highest x ∈ [0, 1] such that

1− ρ (δ, x) = 1− ε− x ≥ 1− ρmax (δ)

and thus
1− xmax (δ) = max {1− ρmax (δ) + ε, 0}

The expected return of investing in country 1 is then given by

Π1 (δ) =

∫
x:ρ(δ,x)<ρmin(x)

l1
(1 + f) ρ (δ, x)

dx+

∫
x:ρ(δ,x)≥ρmin(x)

1

(1 + f) ρ (δ, x)
dx

=

∫ xmin(δ)

0

l1
(1 + f) ρ (δ, x)

dx+

∫ 1

xmin(δ)

1

(1 + f) ρ (δ, x)
dx

=

∫ 1− k22 −ε

0

l1

(1 + f)
(
1− k2

2

)dx+

∫ xmin(δ)

1− k22 −ε

l1
(1 + f) (x+ ε)

dx

+

∫ k1
2 −ε

xmin(δ)

1

(1 + f) (x+ ε)
dx+

∫ 1

k1
2 −ε

1

(1 + f) k12
dx

=
l1

1 + f

[
1− k2

2 − ε
1− k2

2

+ ln (xmin (δ) + ε)− ln

(
1− k2

2

)]

+
1

1 + f

[
ln

(
k1
2

)
− ln (xmin (δ) + ε) +

1− k1
2 + ε
k1
2

]

=
l1

1 + f

[
1− ε

1− k2
2

+ ln (xmin (δ) + ε)− ln

(
1− k2

2

)]

+
1

1 + f

[
ln

(
k1
2

)
− ln (xmin (δ) + ε) +

1− k1
2

k1
2

+
ε
k1
2

]

= Π1 (δ∗) +
l1

1 + f

[
− ε

1− k2
2

+ ln (xmin (δ) + ε)− lnxmin (δ∗)

]

+
1

1 + f

[
lnxmin (δ∗)− ln (xmin (δ) + ε) +

ε
k1
2

]

= Π1 (δ∗) +
1

1 + f

{
ε

(
1
k1
2

− l1

1− k2
2

)
− (1− l1) [ln (xmin (δ) + ε)− lnxmin (δ∗)]

}

= Π1 (δ∗) +
1

1 + f
{ε [(1− l1)− s (1− l2)]− (1− l1) [ln (xmin (δ) + ε)− lnxmin (δ∗)]}
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Similarly, investing in country 2 gives

Π2 (δ) =

∫ xmax(δ)

0

s

(1 + f) (1− ρ (δ, x))
dx+

∫ 1

xmax(δ)

l2s

(1 + f) (1− ρ (δ, x))
dx

=

∫ 1− k22 −ε

0

s

(1 + f)
(
1−

(
1− k2

2

))dx+

∫ xmax(δ)

1− k22 −ε

s

(1 + f) (1− x− ε)

+

∫ k1
2 −ε

xmax(δ)

l2s

(1 + f) (1− x− ε)
dx+

∫ 1

k1
2 −ε

l2s

(1 + f)
(
1− k1

2

)dx
=

s

1 + f

[
1− k2

2 − ε
k2
2

+ ln

(
k2
2

)
− ln (1− xmax (δ)− ε)

]

+
sl2

1 + f

[
ln (1− xmax (δ)− ε)− ln

(
1− k1

2

)
+

1− k1
2 + ε

1− k1
2

]

= Π2 (δ∗) +
s

1 + f

{
ε

(
l2

1

1− k1
2

− 1
k2
2

)
+ (1− l2) [ln (1− xmax (δ∗))− ln (1− xmax (δ)− ε)]

}

= Π2 (δ∗) +
s

1 + f

{
ε

[
(1− l1)− s (1− l2)

s

]
+ (1− l2) [ln (1− xmax (δ∗))− ln (1− xmax (δ)− ε)]

}
Let us define

g (ε) ≡ (1 + f) [Π1 (δ)−Π2 (δ)]

= ε [(1− l1)− s (1− l2)]− (1− l1) [ln (xmin (δ) + ε)− lnxmin (δ∗)]

−s
{
ε

[
(1− l1)− s (1− l2)

s

]
+ (1− l2) [ln (1− xmax (δ∗))− ln (1− xmax (δ)− ε)]

}
= − (1− l1) [ln (xmin (δ∗ + 2σε) + ε)− lnxmin (δ∗)]

+s (1− l2) [ln (1− xmax (δ∗ + 2σε)− ε)− ln (1− xmax (δ∗))]

+ε

{
[(1− l1)− s (1− l2)]− s

[
(1− l1)− s (1− l2)

s

]}
= − (1− l1) [ln (xmin (δ∗ + 2σε) + ε)− lnxmin (δ∗)]

+s (1− l2) [ln (1− xmax (δ∗ + 2σε)− ε)− ln (1− xmax (δ∗))]

Taking the derivative w.r.t. ε, we have many different cases. The issue is if xmin or xmax start binding first.
Regardless, close to ε = 0 we have neither xmin or xmax cornered, so that

ln (xmin (δ∗ + 2σε) + ε) = ln (ρmin (δ (ε))) = −z − δ (ε) = −z − (δ∗ + 2σε)

ln (1− xmax (δ∗ + 2σε)− ε) = ln (1− ρmax (δ (ε))) = s ln s− z + δ (ε) = s ln s− z + (δ∗ + 2σε)

and thus for ε small we have

g′ (ε) = − (1− l1) (−) 2σ + s (1− l2) 2σ = 2σ [(1− l1) + s (1− l2)] > 0

and indeed we have the incentives of the agents aligned with the conjectured strategies, at least around δ∗.
Next, we have to account for all the different cases – that is, we know that at some distance ε that

xmin, xmax start binding at 0, 1, respectively.
Let εmin be the point at which xmin becomes cornered, that is

ρmin (δ) = ε ⇐⇒ e−ze−(δ
∗+2σε) = ε ⇐⇒ 2σε+ ln ε = −z − δ∗
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Note that ρmin (δ) > 0 so that there is no solution for ε < 0.
Similarly, let εmax be the point at which xmax becomes cornered, that is

1− ρmax (δ) = −ε ⇐⇒ se−zeδ
∗+2σε = −ε ⇐⇒ 2σ (−ε) + ln (−ε) = ln s− z + δ∗

Note that 1− ρmax (δ) ≥ 0 so that there is no solution for ε > 0.

Positive ε. Consider positive ε. Thus, we only have to worry about xmin cornered. When xmin becomes
cornered, then

∂

∂ε
ln (xmin (δ∗ + 2σε) + ε) =

1

ε

Then, we have

g′ (ε) = − (1− l1)
1

ε
+ s (1− l2) 2σ

The derivative is increasing in ε, and is largest at ε = k1
2 at a value of

g′
(
k1
2

)
= − (1− l1) (1 + l2s) + s (1− l2) 2σ

For small enough σ, this is always negative.

Negative ε. Consider negative ε. Thus, we only have to worry about xmax cornered. When xmax
becomes cornered, then

∂

∂ε
ln (1− xmax (δ∗ + 2σε)− ε) = −1

ε

Then, we have

g′ (ε) = (1− l1) 2σ + s (1− l2)

(
−1

ε

)
The derivative is again increasing in ε, and is largest at ε = −k22 at a value of

g′
(
−k2

2

)
= − (1− l2) (s+ l1) + (1− l1) 2σ

For small enough σ, this is always negative.
For s = 1 and l1 = l2 = l, we have symmetric conditions.
The last thing we need to do is to check that

g

(
−k2

2

)
= g (0) = g

(
k1
2

)
= 0

To this end, we can also proof that as σ → 0, indeed one country (which one depending on on which side of
δ∗ the realization of δ falls) will always default. This is equivalent to the interior assumption for xmax, xmin
we made. For this to hold, we need the following restrictions

1− k1
2
≤ 1− ρmax (δ∗) ≤ k2

2
(B.3)

1− k2
2

≤ ρmin (δ∗) ≤ k1
2

(B.4)

The first line says that as σ → 0, if δ < δ∗ then a proportion k2
2 of investors invests in country 2, and it

survives. However, if δ > δ∗, then only a proportion 1− k1
2 of investors invests in country 2, and it defaults.
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Similar arguments hold for country 1, which is summarized by the second line.
This can be rewritten as

ln

(
1− k1

2

)
≤ ln (1− ρmax (δ∗)) ≤ ln

(
k2
2

)
ln

(
1− k2

2

)
≤ ln ρmin (δ∗) ≤ ln

(
k1
2

)
which gives

ln

(
l2s

1 + l2s

)
≤ ln s− z + δ∗ ≤ ln

(
s

s+ l1

)
ln

(
l1

s+ l1

)
≤ −z − δ∗ ≤ ln

(
1

1 + l2s

)
equivalent to

ln

(
l2

1 + l2s

)
+ z ≤ δ∗ ≤ ln

(
1

s+ l1

)
+ z

ln

(
l1

s+ l1

)
+ z ≤ −δ∗ ≤ ln

(
1

1 + l2s

)
+ z

equivalent to

ln (l2)− ln (1 + l2s) + z ≤ δ∗ ≤ − ln (s+ l1) + z

− ln

(
1

1 + l2s

)
− z ≤ δ∗ ≤ − ln

(
l1

s+ l1

)
− z

equivalent to

ln (l2)− ln (1 + l2s) + z ≤ δ∗ ≤ − ln (s+ l1) + z

ln (1 + l2s)− z ≤ δ∗ ≤ ln (s+ l1)− ln (l1)− z

so that finally

max [ln (l2)− ln (1 + l2s) + z, ln (1 + l2s)− z] ≤ δ∗ ≤ min [− ln (s+ l1) + z, ln (s+ l1)− ln (l1)− z] (B.5)

The first term is binding on the RHS for z > ln (1 + l2s)− 1
2 ln (l2), and the first term is binding on the left

hand side for z < ln (s+ l1)− 1
2 ln (l1).
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C Online Appendix C: Robustness Common Bonds
Notational Convention: We will refer to Common Bonds (aka Eurobonds) as asset 0, their price per unit of
face-value as p0, and the proportion of investors investing in common bonds as ρ0.

We maintain the main assumptions of the sequential setup: (i) there is an amount (face-value) α (1 + s)
of common bonds and an amount (1− α) si of individual bonds of country i available, (ii) each unit of
common bonds (that is, per unit of face-value) is made up of 1

1+s units of country 1 bonds and s
1+s units

of country 2 bonds, and (iii) issuance proceeds of the common bonds accrue in proportions 1
1+s and s

1+s to
country 1 and 2, respectively.

We are looking for a simultaneous three asset equilibrium between assets 0,1, and 2 that has the single-
survivor property, i.e., only one country survives. We will analyze the following oscillation strategy:

investment
proportion

...|0
α
| 2
(1−α)

|0
α
| 2
(1−α)

|0
h
| 1
(1−α)

|0
α
| 1
(1−α)

|0
α
|...

We will sometimes refer to the central interval 0 as the central region, the changeover region or loosely
the survival cutoff. The intuition of the strategy is as follows: when one country defaults for sure, the no
arbitrage condition between the surviving country and the common bond requires investors to invests in
proportions (1− α) and α into the surviving country’s bonds and common bonds, respectively. Next, let us
consider fundamentals close to the changeover region in which default risk of both countries appears. As the
fundamental δ increases, country 2 becomes riskier and country 1 becomes safer. As a consequence, with
common bonds being a portfolio of individual bonds, common bonds’ value moves less than the individual
country bonds. Thus, to achieve indifference, we would have to increase investment in common bonds to
decrease common bond returns to a level on par with individual bonds around the central region when
default risk starts affecting both countries. In particular, for any σ > 0, in such a region our strategy
requires endogenous investment in the common bond on an interval [δL, δH ] of length 2σ · h, i.e., we have
two degrees of freedom in the two points δL and δH , as described in more detail below. Importantly, for
such a construction to be an equilibrium and still be tractable, we require that any such construction does
not necessitate any further endogenous adjustment of the strategies away from the interval [δL, δH ]. We
term such a property insulated – an insulated equilibrium only depends on endogenous variables around the
survival cutoff and does not require any further endogenous variables away from it.

Formally, let the (endogenous) width of the interval 0 be given by 2σ ·h, while the intervals 1 and 2 have
width (1− α) 2σ, and the intervals 0 have width α · 2σ. Further, let δL and δH denote the lower and upper
end of interval 0, so that h = δH−δL

2σ . Second, we note that when we take σ → 0, we have δL → δ∗ ← δH
as long as h remains finite. Thus, in the limit, we transform the two degrees of freedom from (δL, δH) to
(δ∗, h). For any strategy to yield an insulated equilibrium we require h > α.18 Lastly, we note that in the

18In case h < α, we can still solve for δ∗ and h, but realize that some of the payoffs Πi (δ) away from δL
and δH do not converge to indifference: at least for some δ < δL, we do not have indifference at oscillation
widths 1 − α and α – this is easiest to see when we consider δ = δL − (1− α) 2σ; at this point there is
still some influence of h as the no-arbitrage proportions, if indeed we assume play according to 1 − α and
α away from δL, do not actually yield no arbitrage because of h + (1− α) < 1 and so the proportions are
off. Instead, we would need to build a sequence of intervals of endogenous width (similar to how we derived
h) to make sure indifference holds at all δ’s away from δL. But this any such equilibrium is not insulated
anymore, as we now need to solve for an infinite number of endogenous intervals. Consequently, we are
not succeeding at reducing the dimensionality of the problem significantly, and it remains intractable. If,
however, the equilibrium fulfills h > α, it is insulated, and the dimensionality reduces significantly to just
(δ∗, h), making the model tractable. Some generalization of single-survivor equilibria can still be achieved
in insulated form, but joint-safety equilibria immediately violate the insulated character of the equilibrium.
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limit σ → 0, we have

xmin (δL) = xmin (δH) + h

xmax (δL) = xmax (δH) + h

Suppose that country i is safe almost surely, and country −i defaults almost surely. Then, no arbitrage
between country i’s bond (paying of 1 per unit of face-value) and the common bond 0 requires

1

pi
=

si
1+s

p0

The supply of each bond is (1− α) si and α (1 + s), respectively. Let ρi be the proportion of money flowing
to bond i. Then, we must have

(1− α) sipi = ρi (1 + f)

α (1 + s) p0 = ρ0 (1 + f) = (1− ρi) (1 + f)

where ρ0 = (1− ρi) and ρ−i = 0. Plugging these into the no arbitrage condition, we have

(1 + s) p0 = sipi ⇐⇒
(1− ρi) (1 + f)

α
=
ρi (1 + f)

1− α
⇐⇒ ρi = 1− α

and ρ0 = (1− ρi) = α. Thus, regardless which country is considered “safe”, as long as investors are certain
of the safety of i they should invest their money in aggregate proportions 1− α and α in the safe individual
and common bonds, respectively. These no arbitrage investment proportions are incorporate via oscillation
outside of the central interval 0 in proportions ρi = 1− α and ρ0 = α.

Finally, the default condition for country i is given by

si
1 + s

(1− ρ1 − ρ2)︸ ︷︷ ︸
Common bond revenue

+ ρi︸︷︷︸
Individual bond revenue

≥ si
1− θi
1 + f

= sie
−ze(−1)

iδ

Because the no-arbitrage proportions around the outside the central region are symmetric, we do not
have separate cases for δL and δH . For δL, the cutoffs are h, h+ 1− α, α, 1, whereas for δH , the cutoffs are
0, 1− α, α− h, 1− h. This abstractly leads to 5 different cases:

C1 0 < h < α < h+ 1− α < 1 equivalent to 0 < α − h < 1− α < 1− h. We will ignore this case as we
are concentrating on an insulated equilibrium with h > α.

C2 0 < h < h + 1− α < α < 1 equivalent to 0 < 1− α < α − h < 1− h. We will ignore this case as we
are concentrating on an insulated equilibrium with h > α.

C3 0 < α < h < 1 < h+ 1−α equivalent to α− h < 0 < 1− h < 1−α. This is a case consistent with an
insulated equilibrium.

C4 0 < α < h < h+ 1− α < 1 equivalent to α − h < 0 < 1− α < 1− h. But this cases is impossible as
h+ 1− α < 1 ⇐⇒ h < α which contradicts α < h.

C5 0 < h < α < 1 < h + 1 − α equivalent to 0 < α − h < 1 − h < 1 − α. But this case is impossible as
1 < h+ 1− α ⇐⇒ α < h which contradicts h < α.

Thus, our analysis will focus solely on case C3.

Lower boundary δL

Online Appendix C-2



C3 0 < α < h < 1 < h+ 1− α

ρ1 (δL, x) =

{
0 (0, h)

x− h (h, 1)

ρ2 (δL, x) =

{
1− α (0, α)

1− x (α, 1)

ρ1 (δL, x) + ρ2 (δL, x) =


1− α (0, α)

1− x (α, h)

1− h (h, 1)

For interior equilibria, we need xmin (δL) ∈ (h, 1) and xmax (δL) ∈ (α, 1).

Upper boundary δH

C3 0 < α < h < 1 < h+ 1− α equivalent to α− h < 0 < 1− h < 1− α

ρ1 (δH , x) =

{
x (0, 1− α)

1− α (1− α, 1)

ρ2 (δH , x) =

{
1− x− h (0, 1− h)

0 (1− h, 1)

ρ1 (δH , x) + ρ2 (δH , x) =


1− h (0, 1− h)

x (1− h, 1− α)

1− α (1− α, 1)

For interior equilibria, we need xmin (δH) ∈ (0, 1− α) and xmax (δH) ∈ (0, 1− h).

Simultaneous equations when σ → 0

C3 0 < α < h < 1 < h+ 1− α equivalent to α− h < 0 < 1− h < 1− α

Π1 (δL) = (1− α)

[∫ 1

xmin(δL)

1

ρ1 (δL, x)
dx

]

= (1− α)

[∫ 1

xmin(δL)

1

x− h
dx

]
= (1− α) [ln (1− h)− ln (xmin (δL)− h)]

Π2 (δL) = (1− α) s

[∫ xmax(δL)

0

1

ρ2 (δL, x)
dx

]

= (1− α) s

[∫ α

0

1

1− α
dx+

∫ xmax(δL)

α

1

1− x
dx

]

= (1− α) s

[
α

1− α
+ ln (1− α)− ln (1− xmax (δL))

]
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Π1 (δH) = (1− α)

[∫ 1

xmin(δH)

1

ρ1 (δH , x)
dx

]

= (1− α)

[∫ 1−α

xmin(δH)

1

x
dx+

∫ 1

1−α

1

1− α
dx

]

= (1− α)

[
ln (1− α)− ln (xmin (δH)) +

α

1− α

]
Π2 (δH) = (1− α) s

[∫ xmax(δH)

0

1

ρ2 (δH , x)
dx

]

= (1− α) s

[∫ xmax(δH)

0

1

1− x− h
dx

]
= (1− α) s [ln (1− h)− ln (1− xmax (δH)− h)]

4 Possible cases: xmin (δL) ∈ (h, 1) and xmax (δL) ∈ (α, h)∪(h, 1), xmin (δH) ∈ (0, 1− h)∪(1− h, 1− α)
and xmax (δH) ∈ (0, 1− h).

(a) xmax (δL) ∈ (α, h) (which implies xmax (δH) = 0) and xmin (δH) ∈ (0, 1− h) (which implies
xmin (δL) ∈ (h, 1))

1

1 + s
h+ xmin (δL)− h = e−ze−δL ⇐⇒ xmin (δL) = e−ze−δL +

s

1 + s
h

s

1 + s
xmax (δL) + 1− xmax (δL) = s · e−zeδL ⇐⇒ xmax (δL) = (1 + s)

(
1− s · e−zeδL

)
1

1 + s
h+ xmin (δH) = e−ze−δH ⇐⇒ xmin (δH) = e−ze−δH − 1

1 + s
h

xmax (δH) = 0

Π0 (δL) =α

[∫ 1

xmin(δL)

1

ρ0 (δL, x)
dx+ s

∫ xmax(δL)

0

1

ρ0 (δL, x)
dx

]

=α

[(∫ 1

xmin(δL)

1

h
dx

)
+ s

(∫ α

0

1

α
dx+

∫ xmax(δL)

α

1

x
dx

)]

=α

( [
1−xmin(δL)

h

]
+s [1 + ln (xmax (δL))− ln (α)]

)

Π0 (δH) =α

[∫ 1

xmin(δH)

1

ρ0 (δH , x)
dx+ s

∫ xmax(δH)

0

1

ρ0 (δH , x)
dx

]

=α

[(∫ 1−h

xmin(δH)

1

h
dx+

∫ 1−α

1−h

1

1− x
dx+

∫ 1

1−α

1

α
dx

)
+ s · 0

]

=α

([
1− h− xmin (δH)

h
+ ln (h)− ln (α) + 1

])
(b) xmax (δL) ∈ (h, 1) (which implies xmax (δH) ∈ (0, 1− h)) and xmin (δH) ∈ (0, 1− h) (which
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implies xmin (δL) ∈ (h, 1))

1

1 + s
h+ xmin (δL)− h = e−ze−δL ⇐⇒ xmin (δL) = e−ze−δL +

s

1 + s
h

s

1 + s
h+ 1− xmax (δL) = s · e−zeδL ⇐⇒ xmax (δL) = 1 +

s

1 + s
h− s · e−zeδL

1

1 + s
h+ xmin (δH) = e−ze−δH ⇐⇒ xmin (δH) = e−ze−δH − 1

1 + s
h

s

1 + s
h+ 1− xmax (δH)− h = s · e−zeδH ⇐⇒ xmax (δH) = 1− 1

1 + s
h− s · e−zeδH

Π0 (δL) =α

[∫ 1

xmin(δL)

1

ρ0 (δL, x)
dx+ s

∫ xmax(δL)

0

1

ρ0 (δL, x)
dx

]

=α

[(∫ 1

xmin(δL)

1

h
dx

)
+ s

(∫ α

0

1

α
dx+

∫ h

α

1

x
dx+

∫ xmax(δL)

h

1

h
dx

)]

=α

 [
1−xmin(δL)

h

]
+s
[
1 + ln (h)− ln (α) + xmax(δL)−h

h

] 
Π0 (δH) =α

[∫ 1

xmin(δH)

1

ρ0 (δH , x)
dx+ s

∫ xmax(δH)

0

1

ρ0 (δH , x)
dx

]

=α

[(∫ 1−h

xmin(δH)

1

h
dx+

∫ 1−α

1−h

1

1− x
dx+

∫ 1

1−α

1

α
dx

)
+ s

(∫ xmax(δH)

0

1

h
dx

)]

=α

 [
1−h−xmin(δH)

h + ln (h)− ln (α) + 1
]

+s
[
xmax(δH)

h

] 
(c) xmax (δL) ∈ (α, h) (which implies xmax (δH) = 0) and xmin (δH) ∈ (1− h, 1− α) (which implies

xmin (δL) = 1)

xmin (δL) = 1
s

1 + s
xmax (δL) + 1− xmax (δL) = s · e−zeδL ⇐⇒ xmax (δL) = (1 + s)

(
1− s · e−zeδL

)
1

1 + s
(1− xmin (δH)) + xmin (δH) = e−ze−δH ⇐⇒ xmin (δH) =

(1 + s) e−ze−δH − 1

s

xmax (δH) = 0

Online Appendix C-5



Π0 (δL) =α

[∫ 1

xmin(δL)

1

ρ0 (δL, x)
dx+ s

∫ xmax(δL)

0

1

ρ0 (δL, x)
dx

]

=α

[
0 + s

(∫ α

0

1

α
dx+

∫ xmax(δL)

α

1

x
dx

)]
=α (s [1 + ln (xmax (δL))− ln (α)])

Π0 (δH) =α

[∫ 1

xmin(δH)

1

ρ0 (δH , x)
dx+ s

∫ xmax(δH)

0

1

ρ0 (δH , x)
dx

]

=α

[(∫ 1−α

xmin(δH)

1

1− x
dx+

∫ 1

1−α

1

α
dx

)
+ s · 0

]
=α ([ln (1− xmin (δH))− ln (α) + 1])

(d) xmax (δL) ∈ (h, 1) (which implies xmax (δH) ∈ (0, 1− h)) and xmin (δH) ∈ (1− h, 1− α) (which
implies xmin (δL) = 1)

xmin (δL) = 1
s

1 + s
h+ 1− xmax (δL) = s · e−zeδL ⇐⇒ xmax (δL) = 1 +

s

1 + s
h− s · e−zeδL

1

1 + s
(1− xmin (δH)) + xmin (δH) = e−ze−δH ⇐⇒ xmin (δH) =

(1 + s) e−ze−δH − 1

s
s

1 + s
h+ 1− xmax (δH)− h = s · e−zeδH ⇐⇒ xmax (δH) = 1− 1

1 + s
h− s · e−zeδH

Π0 (δL) =α

[∫ 1

xmin(δL)

1

ρ0 (δL, x)
dx+ s

∫ xmax(δL)

0

1

ρ0 (δL, x)
dx

]

=α

[
0 + s

(∫ α

0

1

α
dx+

∫ h

α

1

x
dx+

∫ xmax(δL)

h

1

h
dx

)]

=α

(
s

[
1 + ln (h)− ln (α) +

xmax (δL)− h
h

])
Π0 (δH) =α

[∫ 1

xmin(δH)

1

ρ0 (δH , x)
dx+ s

∫ xmax(δH)

0

1

ρ0 (δH , x)
dx

]

=α

[(∫ 1−α

xmin(δH)

1

1− x
dx+

∫ 1

1−α

1

α
dx

)
+ s

(∫ xmax(δH)

0

1

h
dx

)]

=α

(
[ln (1− xmin (δH))− ln (α) + 1]

+s
[
xmax(δH)

h

] )

Closed-form Approximations for α ≈ 0 Next, we approximate around α ≈ 0 to get some more
analytical insights into the behavior of δ∗ and h. To this end, we conjecture

h (α) = h0 + h1α+
h2
2
α2

δ∗ (α) = δ0 + δ1α
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As α→ 0, to converge to the known solution of the two asset simultaneous game, we need

h0 = 0

δ0 = δ∗ =
− (1− s) z − s ln s

(1 + s)

Next, we take limits for each of the cases (except case CT2, which requires α ≥ 1
2 , so is not applicable), and

impose h0 = 0. First, note that limα→0 Π0 (δL) = limα→0 Π0 (δH). Thus, we are looking for h1, h2 and δ0, δ1
that satisfy

lim
α→0

Π2 (δL) = lim
α→0

Π0 (δL) = lim
α→0

Π0 (δH) = lim
α→0

Π1 (δL)

Next, note that a local equilibrium requires h (α) ≥ α, and thus for small α we require parameters such that
h1 ≥ 1.

C3a We have

lim
α→0

Π0 (δL) = lim
α→0

Π0 (δH) =
1 + s− e−δ0−z − eδ0−zs2

h1

lim
α→0

Π1 (δL) = lim
α→0

Π1 (δH) = − ln
[
e−δ0−z

]
lim
α→0

Π2 (δL) = −s ln
[
1− (1 + s)

(
1− eδ0−zs

)]
6= 0 = lim

α→0
Π2 (δH)

For consistency limα→0 Π1 (δL) = limα→0 Π1 (δH), we require

1− (1 + s)
(
1− eδ0−zs

)
= 1 ⇐⇒ eδ0−zs = 1 ⇐⇒ ez = eδ0s

The indifference condition is

−s ln
[
1− (1 + s)

(
1− eδ0−zs

)]
=

1− e−δ0−z

h1
= − ln

[
e−δ0−z

]
and equating the first and third term requires ez = e−δ0 . These conditions can only hold for z =
− 1

2 ln s, and are violated for general parameters. Thus, case C3a is not possible in equilibrium for
small α.19

19A more direct proof: C3a requires 0 < α < h < 1 < h + 1 − α and xmax (δL) ∈ (α, h) (which implies
xmax (δH) = 0) and xmin (δH) ∈ (0, 1− h) (which implies xmin (δL) ∈ (h, 1))

1

1 + s
h+ xmin (δL)− h = e−ze−δL ⇐⇒ xmin (δL) = e−ze−δL +

s

1 + s
h

s

1 + s
xmax (δL) + 1− xmax (δL) = s · e−zeδL ⇐⇒ xmax (δL) = (1 + s)

(
1− s · e−zeδL

)
1

1 + s
h+ xmin (δH) = e−ze−δH ⇐⇒ xmin (δH) = e−ze−δH − 1

1 + s
h

xmax (δH) = 0

Note that xmax (δL) → (1 + s)
(
1− s · e−zeδ∗

)
= 0, so that eδ

∗
= s−1ez; further, note that xmin →

e−ze−δ
∗ ∈ (0, 1); plugging in, we have e−2z · s ∈ (0, 1), which is not a contradiction, but when inspect-

ing the indifference condition for investment yields a contradiction.
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C3b We have

lim
α→0

Π0 (δL) = lim
α→0

Π0 (δH) =
1 + s− e−δ0−z − eδ0−zs2

h1

lim
α→0

Π1 (δL) = lim
α→0

Π1 (δH) = − ln
[
e−δ0−z

]
lim
α→0

Π2 (δL) = lim
α→0

Π2 (δH) = −s ln
[
eδ0−zs

]
and the indifference condition is

−s ln
[
eδ0−zs

]
=

1 + s− e−δ0−z − eδ0−zs2

h1 (1 + s)
= − ln

[
e−δ0−z

]
⇐⇒ δ0 =

− (1− s) z − s ln s

1 + s
= δ∗ X

Next, we have

h1 =
1 + s− e−δ0−z − eδ0−zs2

(δ0 + z)
=

1 + s− e−( 2s·z−s ln s
1+s ) − e

−2z−s ln s
1+s s2(

2s·z−s ln s
1+s

)
where we used δ0 + z = 2s·z−s ln s

1+s and δ0 − z = −2z−s ln s
1+s . The insulated equilibrium as constructed

exists around α ≈ 0 if h1 > 1.

C3c We have

lim
α→0

Π0 (δL) = lim
α→0

Π0 (δH) = 0

lim
α→0

Π1 (δL) = 0 6= − ln

[
(1 + s) e−δ0−z − 1

s

]
= lim
α→0

Π1 (δH)

lim
α→0

Π2 (δL) = −s ln
[
1− (1 + s)

(
1− eδ0−zs

)]
6= 0 = lim

α→0
Π2 (δH)

For consistency limα→0 Π1 (δL) = limα→0 Π1 (δH), we require

(1 + s) e−δ0−z − 1 = s ⇐⇒ ez = e−δ0

and for consistency limα→0 Π1 (δL) = limα→0 Π1 (δH), we require

1− (1 + s)
(
1− eδ0−zs

)
= 1 ⇐⇒ eδ0−zs = 1 ⇐⇒ ez = eδ0s

These two conditions can only hold for z = − 1
2 ln s, and are violated for general parameters. Thus,

case C3c is not possible in equilibrium for small α.20

20A more direct proof: C3c requires 0 < α < h < 1 < h + 1 − α and xmax (δL) ∈ (α, h) (which implies
xmax (δH) = 0) and xmin (δH) ∈ (1− h, 1− α) (which implies xmin (δL) = 1)

xmin (δL) = 1
s

1 + s
xmax (δL) + 1− xmax (δL) = s · e−zeδL ⇐⇒ xmax (δL) = (1 + s)

(
1− s · e−zeδL

)
1

1 + s
(1− xmin (δH)) + xmin (δH) = e−ze−δH ⇐⇒ xmin (δH) =

(1 + s) e−ze−δH − 1

s

xmax (δH) = 0

Thus, we have xmax (δL) → (1 + s)
(
1− s · e−zeδL

)
= 0 and xmin (δH) = (1+s)e−ze−δH−1

s = 1. But as
δL → δ∗ ← δH , so we require eδ

∗
= s−1ez = e−z, which in turn requires the specific parameter restriction
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C3d We have

lim
α→0

Π0 (δL) = lim
α→0

Π0 (δH) =
s− eδ0−zs2

h1

lim
α→0

Π1 (δL) = 0 6= − ln

[
(1 + s) e−δ0−z − 1

s

]
= lim
α→0

Π1 (δH)

lim
α→0

Π2 (δL) = lim
α→0

Π2 (δH) = −s ln
[
eδ0−zs

]
For consistency limα→0 Π1 (δL) = limα→0 Π1 (δH), we require

(1 + s) e−δ0−z − 1 = s ⇐⇒ ez = e−δ0

But then for indifference we require

−s ln
[
eδ0−zs

]
=
s− e−δ0−zs2

h1
= − ln

[
(1 + s) e−δ0−z − 1

s

]
But we know the third term is equal to 0, so the first term requires eδ0−zs = 1 ⇐⇒ eδ0s = ez which
can only hold for z = − 1

2 ln s, and are violated for general parameters. Thus, case C3d is not possible
in equilibrium for small α.21

Thus, we are left with only case C3b for small α, which fulfills the insulated equilibrium criterion for points
(s, z) such that (s, z) : h1 (s, z) =

1 + s− e−( 2s·z−s ln s
1+s ) − e

−2z−s ln s
1+s s2(

2s·z−s ln s
1+s

) ≥ 1


Figure C.1 maps the set of points (s, z) for which the insulated criterion is fulfilled.

Verifying the equilibrium. Note that, away from α = 0, we have the expected returns at either
end-point not equal, even as σ → 0, because strategic uncertainty does not vanish:

lim
σ→0

Πi (δL) 6= lim
σ→0

Πi (δH)

To verify the equilibrium, we need to check that for any δ ∈ [δL, δH ], indeed common bonds are the most
attractive asset, for δ < δL, bond 2 is the most attractive asset, and for δ > δH , bond 1 is the most attractive

z = − 1
2 ln s.

21A more direct proof: C3d requires 0 < α < h < 1 < h + 1 − α and xmax (δL) ∈ (h, 1) (which implies
xmax (δH) ∈ (0, 1− h)) and xmin (δH) ∈ (1− h, 1− α) (which implies xmin (δL) = 1)

xmin (δL) = 1
s

1 + s
h+ 1− xmax (δL) = s · e−zeδL ⇐⇒ xmax (δL) = 1 +

s

1 + s
h− s · e−zeδL

1

1 + s
(1− xmin (δH)) + xmin (δH) = e−ze−δH ⇐⇒ xmin (δH) =

(1 + s) e−ze−δH − 1

s
s

1 + s
h+ 1− xmax (δH)− h = s · e−zeδH ⇐⇒ xmax (δH) = 1− 1

1 + s
h− s · e−zeδH

Thus, we have xmin (δH) → (1+s)e−ze−δH−1
s = 1, which requires eδ

∗
= e−z; similarly, we have xmax =

1− s · e−zeδ∗ ∈ (0, 1); plugging in, we have 1− s · e−2z ∈ (0, 1) which does not give a contradiction, but when
inspecting the indifference condition for investment yields a contradiction.
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Figure C.1: Existence of insulated simultaneous single-survivor common bond
equilibrium for small α: Set of points (s, z) for which an insulated single-survivor equi-
librium exists in the common bonds case for α ≈ 0, i.e., {(s, z) : h1 (s, z) ≥ 1}.

asset. For a given δL, δH , let
δ ≡ δL + 2σε

with ε ∈ (0, h), so that ε = 0 yields δL and ε = h yields δH . Then, for ε ∈ [0, h], we have

ρ1 (δ, x) =


0 (0, h− ε)
x+ ε− h (h− ε, h− ε+ 1− α)

1− α (h− ε+ 1− α, 1)

ρ2 (δ, x) =


1− α (0, α− ε)
1− (x+ ε) (α− ε, 1− ε)
0 (1− ε, 1)

where of course if for example as in C3 we have α < h, then some intervals are empty (i.e., (0, α− ε) = ∅ for
ε ∈ (α, h)). For interior equilibria, we need xmin (δ) ∈ (h− ε, h− ε+ 1− α) and xmax (δ) ∈ (α− ε, 1− ε).

C3 0 < α < h < 1 < h+ 1− α

ρ1 (δ, x) + ρ2 (δ, x) =



1− α (0, α− ε)
1− (x+ ε) (α− ε, h− ε)
1− h (h− ε, 1− ε)
x+ ε− h (1− ε, h− ε+ 1− α)

1− α (h− ε+ 1− α, 1)
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Let us calculate expected returns as a function of ε.22 To calculate expected returns, we have to conjecture
a position of xmin (δ) and xmax (δ). For α ≈ 0, we can only be in case C3b, and our numerical results for our
benchmark cases show that this case is applicable even when α increases. Thus, we only show the expected
returns for this case:

C3b 0 < α < h < 1 < h+ 1− α
xmin ∈ (h− ε, 1− ε) and xmax (δ) ∈ (h− ε, 1− ε). Now the position of ε in relation to α and h− α
matters, i.e., three intervals matter: ε < min {h− α, α}, ε ∈ (min {h− α, α} ,max {h− α, α}), and
ε > max {h− α, α}. Two sub-cases arise, which essentially define the relation of h− α to α:

(a) min {h− α, α} = h − α ⇐⇒ α < h < 2α (this is the applicable case for our benchmark cases
(s, z) =

(
1
4 , 1
)
and (s, z) =

(
1
2 , 1
)
, as numerically h is very close to α). Thus, the three intervals

are ε < h − α, ε ∈ (h− α, α), and ε > α. Note that ε = h
2 gives the midpoint δM , and the

midpoint is part of interval h2 ∈ (h− α, α).23
For ε < h− α = min {h− α, α} so that h− ε+ 1− α > 1 as well as α− ε > 0, we have

Π0 (δ) = α

[∫ 1

xmin(δ)

1

ρ0 (δ, x)
dx+ s

∫ xmax(δ)

0

1

ρ0 (δ, x)
dx

]

= α

[∫ 1−ε

xmin(δ)

1

1− (1− h)
dx+

∫ 1

1−ε

1

1− (x+ ε− h)
dx

]

+ α · s

[∫ α−ε

0

1

1− (1− α)
dx+

∫ h−ε

α−ε

1

1− [1− (x+ ε)]
dx+

∫ xmax(δ)

h−ε

1

1− (1− h)
dx

]

= α

[
1− ε− xmin (δ)

h
+ ln (h)− ln (h− ε)

]
+ α · s

[
α− ε
α

+ ln (h)− ln (α) +
xmax (δ) + ε− h

h

]
22Note that ε = 1

2h gives the central interval 0 midpoint

δM =
δH + δL

2
=
δH − δL + 2δL

2
= δL + σ · h.

23Consider h
2 < h − α ⇐⇒ α < h

2 ⇐⇒ 2α < h, which violates the assumptions. Next, consider
h
2 > α ⇐⇒ h > 2α, which also violates the assumptions. Thus, only h

2 ∈ (h− α, α) is consistent with
α < h < 2α.
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Π1 (δ) = (1− α)

[∫ 1

xmin(δ)

1

ρ1 (δ, x)
dx

]

= (1− α)

[∫ 1

xmin(δ)

1

x+ ε− h
dx

]
= (1− α) [ln (1 + ε− h)− ln (xmin (δ) + ε− h)]

Π2 (δ) = (1− α) s

[∫ xmax(δ)

0

1

ρ2 (δ, x)
dx

]

= (1− α) s

[∫ α−ε

0

1

1− α
dx+

∫ xmax(δ)

α−ε

1

1− (x+ ε)
dx

]

= (1− α) s

[
α− ε
1− α

+ ln (1− α)− ln (1− (xmax (δ) + ε))

]
For ε ∈ (h− α, α) so that h− ε+ 1− α < 1 and α− ε > 0, we have

Π0 (δ) = α

[∫ 1

xmin(δ)

1

ρ0 (δ, x)
dx+ s

∫ xmax(δ)

0

1

ρ0 (δ, x)
dx

]

= α

[∫ 1−ε

xmin(δ)

1

1− (1− h)
dx+

∫ h−ε+1−α

1−ε

1

1− (x+ ε− h)
dx+

∫ 1

h−ε+1−α

1

1− (1− α)
dx

]

+ α · s

[∫ α−ε

0

1

1− (1− α)
dx+

∫ h−ε

α−ε

1

1− [1− (x+ ε)]
dx+

∫ xmax(δ)

h−ε

1

1− (1− h)
dx

]

= α

[
1− ε− xmin (δ)

h
+ ln (h)− ln (α) +

ε+ α− h
α

]
+ α · s

[
α− ε
α

+ ln (h)− ln (α) +
xmax (δ) + ε− h

h

]

Π1 (δ) = (1− α)

[∫ 1

xmin(δ)

1

ρ1 (δ, x)
dx

]

= (1− α)

[∫ h−ε+1−α

xmin(δ)

1

x+ ε− h
dx+

∫ 1

h−ε+1−α

1

1− α
dx

]

= (1− α)

[
ln (1− α)− ln (xmin (δ) + ε− h) +

ε+ α− h
1− α

]
Π2 (δ) = (1− α) s

[∫ xmax(δ)

0

1

ρ2 (δ, x)
dx

]

= (1− α) s

[∫ α−ε

0

1

1− α
dx+

∫ xmax(δ)

α−ε

1

1− (x+ ε)
dx

]

= (1− α) s

[
α− ε
1− α

+ ln (1− α)− ln (1− (xmax (δ) + ε))

]
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For ε > α = max {h− α, α} so that h− ε+ 1− α < 1 as well as α− ε < 0, we have

Π0 (δ) = α

[∫ 1

xmin(δ)

1

ρ0 (δ, x)
dx+ s

∫ xmax(δ)

0

1

ρ0 (δ, x)
dx

]

= α

[∫ 1−ε

xmin(δ)

1

1− (1− h)
dx+

∫ h−ε+1−α

1−ε

1

1− (x+ ε− h)
dx+

∫ 1

h−ε+1−α

1

1− (1− α)
dx

]

+ α · s

[∫ h−ε

0

1

1− [1− (x+ ε)]
dx+

∫ xmax(δ)

h−ε

1

1− (1− h)
dx

]

= α

[
1− ε− xmin (δ)

h
+ ln (h)− ln (α) +

ε+ α− h
α

]
+ α · s

[
ln (h)− ln (ε) +

xmax (δ) + ε− h
h

]

Π1 (δ) = (1− α)

[∫ 1

xmin(δ)

1

ρ1 (δ, x)
dx

]

= (1− α)

[∫ h−ε+1−α

xmin(δ)

1

x+ ε− h
dx+

∫ 1

h−ε+1−α

1

1− α
dx

]

= (1− α)

[
ln (1− α)− ln (xmin (δ) + ε− h) +

ε+ α− h
1− α

]
Π2 (δ) = (1− α) s

[∫ xmax(δ)

0

1

ρ2 (δ, x)
dx

]

= (1− α) s

[∫ xmax(δ)

0

1

1− (x+ ε)
dx

]
= (1− α) s [ln (1− ε)− ln (1− (xmax (δ) + ε))]

Next, we numerically check Π0 (δ∗; ε) > max {Π1 (δ∗; ε) ,Π2 (δ∗; ε)} for candidate equilibria
(h, δ∗) for any ε ∈ [0, h]. This holds for all numerically solved for candidate equilibria.

(b) h − α > α ⇐⇒ h > 2α > α would be the other case, but we do not observe numerically any
h that are twice the size of α. Calculations for this case, as well as for cases C3a C3c and C3d
are available upon request.

The numerical results (h, δ∗sim) as well as the comparison δ∗seq for cases (s = .25, z = 1) and (s = .5, z = 1)
are presented in Figure C.2. The left Panels show the equilibrium h as the solid blue line in comparison to
the 45 degree line as the dashed yellow line, thus visualizing the insulated requirement h > α. We restrict
the graph to levels of α for which this condition holds. The right Panels then show the equilibrium δ∗sim as
the solid blue line in comparison to their sequential counterpart δ∗seq as the dashed yellow line.
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Figure C.2: Robustness of single-survivor common bond equilibrium to sequential
timing assumption: Simultaneous equilibrium central interval width h (solid blue line)
in comparison to 45 degree line (dashed yellow line) (left Panels); simultaneous equilibrium
threshold δ∗sim (solid blue line) in comparison to the sequential equilibrium threshold δ∗seq
(dashed yellow line) (right Panels).
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