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Abstract

Methodology is proposed to uncover structural breaks in functional data that is “fully functional” in the

sense that it does not rely on dimension reduction techniques. A thorough asymptotic theory is developed

for a fully functional break detection procedure as well as for a break date estimator, assuming a fixed

break size and a shrinking break size. The latter result is utilized to derive confidence intervals for the

unknown break date. The main results highlight that the fully functional procedures perform best under

conditions when analogous fPCA based estimators are at their worst, namely when the feature of interest

is orthogonal to the leading principal components of the data. The theoretical findings are confirmed by

means of a Monte Carlo simulation study in finite samples. An application to annual temperature curves

illustrates the practical relevance of the proposed procedures.
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1 Introduction

This paper considers the problem of detecting and dating structural breaks in functional time series data, and

hence lies at the intersection of functional data analysis (FDA) and structural breaks analysis for dependent ob-

servations. FDA has witnessed an upsurge in research contributions in the past decade. These are documented,

for example, in the comprehensive books by Ramsay and Silverman (2005) and Ferraty and Vieu (2010). Re-

search concerned with structural breaks has a longstanding tradition in both the statistics and econometrics

communities. Two recent reviews by Aue and Horváth (2013) and Horváth and Rice (2014) highlight newer

developments, the first with a particular focus on time series.
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Early work in functional structural break analysis dealt primarily with random samples of independent

curves, the question of interest being whether all curves have a common mean function or whether there are

two or more segments of the data that are homogeneous within but heterogeneous without. Berkes et al. (2009)

developed statistical methodology to test the null hypothesis of no structural break against the alternative of a

(single) break in the mean function assuming that the error terms are independent and identically distributed

curves. Aue et al. (2009) quantified the large-sample behavior of a break date estimator under a similar set of

assumptions. The work in these two papers was generalized by Aston and Kirch (2012a, b) and Torgovitski

(2016) to include functional time series exhibiting weak dependence into the modeling framework. In Zhang et

al. (2011), a structural break detection procedure for serially correlated functional time series data is proposed

that is based on the self-normalization approach of Shao and Zhang (2010). Structual break detection in the

context of functional linear models is considered in Aue et al. (2014) and for spatially distributed functional

data in Gromenko et al. (2016). Smooth deviations from stationarity of functional time series in the frequency

domain were studied in Aue and van Delft (2017+).

Most of the procedures in FDA, such as those presented in the above cited papers, are based on dimension

reduction techniques, primarily using the widely popular functional principal components analysis (fPCA),

by which the functional variation in the data is projected onto the directions of a small number of principal

curves, and multivariate techniques are then applied to the resulting sequence of score vectors. This is also the

case in functional structural break detection, in which after an initial fPCA step multivariate structural break

theory is utilized. Despite the fact that functional data are, at least in principle, infinite dimensional, the state

of the art in FDA remains to start the analysis with an initial dimension reduction procedure.

Dimension reduction approaches, however, automatically incur a loss of information, namely all infor-

mation about the functional data that is orthogonal to the basis onto which it is projected. This weakness is

easily illustrated in the context of detecting and dating structural breaks in the mean function: if the function

representing the mean break is orthogonal to the basis used for dimension reduction, there cannot be a con-

sistent test or estimator for the break date in that basis. This point will be further illustrated by theoretical

arguments and in comprehensive numerical studies in Section 4, where other more subtle differences between

the competing methods will be highlighted.

The main purpose of this paper is then to develop methodology for detecting and dating structural breaks

in functional data without the application of dimension reduction techniques. Here, fully functional test

statistics and break date estimators are studied, and their asymptotic theory is developed under the assumption

that the model errors satisfy a general weak dependence condition. This theory illuminates a number of

potential advantages of the fully functional procedures. For example, it is shown that when the direction of

the break is orthogonal to the leading principal components of the data, the estimation of the mean break

is asymptotically improved when using the fully functional estimator compared to mean breaks of the same

size that are contained in the leading principal components. This contrasts with fPCA based techniques in

2



which such mean breaks are more difficult, if not impossible, to detect, even given arbitrarily large sample

sizes. In addition, the assumptions required for the fully functional theory are weaker than the ones used in

Aue et al. (2009) and Aston and Kirch (2012a, b), as convergence of the eigenvalues and eigenfunctions of

the empirical covariance operator to the eigenvalues of the population covariance operator do not have to be

accounted for. These assumptions are typically formulated as finiteness of fourth moment conditions. The

relaxation obtained here may be particularly useful for applications to intra-day financial data such as the one-

minute log-returns on Microsoft stock discussed in the online supplement Aue et al. (2017+) accompanying

this article.

The application presented in Section 5 is concerned with annual temperature curves recorded across dif-

ferent measuring stations in Australia. Structural breaks in these temperature curves are detected with both

fPCA and fully functional methods. The sample covariance operator associated with the data has eigenvalues

that decay remarkably slowly. A somewhat peculiar feature of fPCA methods in this setting, studied as part

of the simulation experiment, is a loss of accuracy in break dating even when the break function loads almost

exclusively on the first component. A similar effect is found in the data, where fPCA-based break dates can

occur outside of the confidence intervals provided by the fully functional procedure.

Most closely related to the present work are Fremdt et al. (2014), who considered structural break de-

tection using fPCA under an increasing number of projections. Horváth et al. (2014) developed a functional

analog of the KPSS test statistic for the purpose of stationarity testing that does not rely on dimension re-

duction. Sharipov et al. (2016) considered a bootstrap procedure for measuring the significance of the norms

of functional CUSUM processes with applications to testing for a structural break in the means of functional

observations and in the distribution function of scalar time series observations under a mixing assumption,

generalizing the result for the independent, identically distributed case put forward in Tsudaka and Nishiyama

(2014). Bucchia and Wendler (2016+) studied general bootstrap procedures for structural break analysis in

Hilbert space-valued random fields.

The remainder of the paper is organized as follows. Testing procedures and a break date estimator are

introduced in Section 2, along with the main asymptotic results of the paper. The asymptotic properties

developed in this section are accompanied by implementation details given in Section 3 and results from a

comprehensive simulation study in Section 4. The application to temperature curves is given in Section 5, and

Section 6 concludes. Proofs of the main results as well as additional empirical illustrations of the proposed

methodology are provided in the online supplement Aue et al. (2017+), henceforth referred to simply as the

online supplement. In addition, an R package, fChange, has been developed to supplement this article and

is available on the Comprehensive R Archive Network. The package contains implementations of all of the

testing and estimation procedures introduced below, see Sönmez et al. (2017).
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2 Main results

In this paper, a functional data model allowing for a mean function break is considered. It is assumed that the

observations X1, . . . , Xn are generated from the model

Xi = µ+ δ1{i > k∗}+ εi, i ∈ Z, (2.1)

where k∗ = bθnc, with θ ∈ (0, 1), labels the unknown time of the mean break parameterized in terms of the

sample size n, µ is the baseline mean function that is distorted by the addition of δ after the break time k∗,

1A denotes the indicator function of the set A and Z the set of integers. Each Xi is a real-valued function

defined without loss of generality on the unit interval [0, 1]. The argument t ∈ [0, 1] will be used to refer to a

particular value Xi(t) of the function Xi. Correspondingly, the quantities µ, δ and εi on the right-hand side

of (2.1) are functions on [0, 1] as well. Interest is first in testing the structural break hypotheses

H0 : δ = 0 versus HA : δ 6= 0,

and then, in the event that HA is thought to hold, estimating the break date k∗. Throughout the following

assumptions are made, roughly entailing that the innovations (εi : i ∈ Z) are weakly dependent, stationary

functional time series. Below, let ‖ · ‖ and 〈·, ·〉 denote the canonical norm and inner product in L2[0, 1].

Assumption 2.1. The innovations (εi : i ∈ Z) satisfy

(a) there is a measurable function g : S∞ → L2[0, 1], where S is a measurable space and independent,

identically distributed (iid) innovations (εi : i ∈ Z) taking values in S such that εi = g(εi, εi−1, . . .) for i ∈ Z;

(b) there are `-dependent sequences (εi,` : i ∈ Z) such that, for some p > 2,

∞∑
`=0

(
E[‖εi − εi,`‖p]

)1/p
<∞,

where εi,` = g(εi, . . . , εi−`+1, ε
∗
i,`,i−`, ε

∗
i,`,i−`−1, . . .) with ε∗i,`,j being independent copies of εi,0 independent

of (εi : i ∈ Z).

Processes satisfying Assumption 2.1 were termed Lp-m-approximable by Hörmann and Kokoszka (2010),

and cover most stationary functional time series models of interest, including functional AR and ARMA (see

Aue et al., 2015; and Bosq, 2000) and functional GARCH processes (see Aue et al., 2017). It is assumed that

the underlying error innovations (εi : i ∈ Z) are elements of an arbitrary measurable space S. However, in

many examples S is itself a function space, and the evaluation of g(εi, εi−1, ...) is a functional of (εj : j ≤ i).

The proposed methodology is based on the (scaled) functional cumulative sum (CUSUM) statistic

S0
n,k =

1√
n

( k∑
i=1

Xi −
k

n

n∑
i=1

Xi

)
. (2.2)
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The superscript 0 indicates the tied-down nature of the CUSUM statistic, since S0
n,0 = S0

n,n = 0 (interpreting

an empty sum as zero). Noting that ‖S0
n,k‖ as a function of k tends to be large at the true break date motivates

the use of the max-type structural break detector

Tn = max
1≤k≤n

‖S0
n,k‖2

to test H0 versus HA. Furthermore, the break date estimator for k∗ may be taken as

k̂∗n = min
{
k : ‖S0

n,k‖ = max
1≤k′≤n

‖S0
n,k′‖

}
. (2.3)

The main results of this paper concern the large-sample behavior and empirical properties of the test statistic

Tn and the estimator k∗n.

2.1 Asymptotic properties of structural break detector

UnderH0, the limiting behavior of S0
n,k evidently depends on that of the partial sum process of the error terms

(εi : i ∈ Z). As this sequence may be weakly serially correlated under Assumption 2.1, the asymptotics of the

partial sum process necessarily involve the long-run covariance kernel

Cε(t, t
′) =

∞∑
`=−∞

Cov(ε0(t), ε`(t
′)) (2.4)

of the error sequence (εi : i ∈ Z). Note that Cε constitutes the limiting covariance kernel of
√
n times the

centered sample mean under H0. It is a well-defined element of L2[0, 1]2 under Assumption 2.1. This kernel

was considered initially in Hörmann and Kokoszka (2010). It was also studied in Panaretos and Tavakoli

(2012) in the context of spectral analysis of functional time series, and in Horváth et al. (2013) in an application

to the functional two sample problem. In addition, Cε may be used to define a positive definite and symmetric

Hilbert–Schmidt integral operator on L2[0, 1], cε, given by

cε(f)(t) =

∫
Cε(t, s)f(s)ds,

which further defines a non-increasing sequence of nonnegative eigenvalues (λ` : ` ∈ N) and a corresponding

orthonormal basis of eigenfunctions (φ` : ` ∈ N) satisfying

cε(φ`)(t) = λ`φ`(t), ` ∈ N. (2.5)

The eigenvalues of cε determine the limiting distribution of Tn as detailed in the following theorem.

Theorem 2.1. Under Model 2.1, Assumption 2.1 and H0,

Tn
D→ sup

0≤x≤1

∞∑
`=1

λ`B
2
` (x) (n→∞), (2.6)

where (B` : ` ∈ N) are independent and identically distributed standard Brownian bridges defined on [0, 1].
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Theorem 2.1 points to an asymptotically validated test of H0, namely to reject if the test statistic Tn

exceeds the corresponding quantile of the distribution on the right hand side of (2.6). As the limiting distribu-

tions depends, in a rather complicated way, on the unknown eigenvalues (λ` : ` ∈ N) and standard Brownian

bridges, Monte Carlo simulation can be used to approximate this distribution using estimated eigenvalues.

Implementation details are provided in Section 3 below. Theorem 2.1 was also obtained in Sharipov et al.

(2016) under a strong mixing condition that is analogous to Assumption 2.1. These authors further developed

a block bootstrap methodology to approximate the limiting distribution.

A common assumption made in order for analogous break point detection procedures based on fPCA to

be consistent, as studied for example in Berkes et al. (2009) and Aston and Kirch (2012a), is that δ is not

orthogonal to the principal component basis used to perform the dimension reduction step. When using the

detector Tn no such assumption is needed.

Theorem 2.2. Under Model 2.1, Assumption 2.1 and HA, Tn
P→∞, as n→∞.

The proofs of Theorems 2.1 and 2.2 are in the online supplement.

2.2 Asymptotic properties of the break date estimator

Further advantages of the fully functional approach become apparent when studying the asymptotic properties

of the break date estimator k̂∗n, which are established below. Two cases are studied: the fixed break situation

for which the break size is independent of the sample size, and the shrinking break situation for which the

break size converges to zero at a specified rate. In the fixed break case, the following holds.

Theorem 2.3. If model (2.1) holds with 0 6= δ ∈ L2[0, 1], and if Assumption 2.1 is satisfied, then

k̂∗n − k∗
D→ min

{
k : P (k) = sup

k′∈Z
P (k′)

}
(n→∞), (2.7)

where

P (k) =

{
(1− θ)‖δ‖2k + 〈δ, Sε,k〉, k < 0,

−θ‖δ‖2k + 〈δ, Sε,k〉, k ≥ 0,
(2.8)

with

Sε,k =

k∑
i=1

εi +

−1∑
i=−k

εi.

As one can see in (2.7), the limit distribution of k̂∗n in the case of a fixed break size depends on the

unknown underlying distribution of the error process. This encourages the consideration of a break δn that

shrinks as a function of the sample size, in which case the limit distribution is the supremum of a two-sided

Brownian motion with triangular drift depending on a small set of nuisance parameters, but not otherwise on

the distribution of the error sequence (εi : i ∈ Z).
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Theorem 2.4. If model (2.1) holds with 0 6= δ = δn ∈ L2[0, 1] such that ‖δn‖ → 0 but n‖δn‖2 → ∞ and if

Assumption 2.1 is satisfied, then

‖δn‖2
(
k̂∗n − k∗

) D→ inf
{
x : Q(x) = sup

x′∈R
Q(x′)

}
(n→∞),

where R denotes the real numbers and

Q(x) =

{
(1− θ)x+ σW (x), x < 0,

−θx+ σW (x), x ≥ 0,
(2.9)

with (W (x) : x ∈ R) a two-sided Brownian motion, and

σ2 = lim
n→∞

∫∫
Cε(t, t

′)
δn(t)δn(t′)

‖δn‖2
dtdt′,

where Cε(t, t′) is the long-run covariance kernel of (εi : i ∈ Z) given in (2.4).

An interesting consequence of Theorems 2.3 and 2.4 is that mean changes δ that are orthogonal to the

primary modes of variation in the data are asymptotically easier to detect and estimate. For example, if,

under the conditions of Theorem 2.3, δ is orthogonal to the error functions, then the stochastic term in the

limit distribution vanishes. Moreover, if the functions δn in Theorem 2.4 tend to align with eigenfunctions

corresponding to smaller and smaller eigenvalues of the integral operator with kernel Cε, then σ2 tends to zero

in the definition of Q(x). The proofs of Theorems 2.3 and 2.4 are given in the online supplement.

Theorem 2.4 suggests a confidence interval for k∗.

Corollary 2.1. Let Ξ = inf{x : Q(x) = supx′∈RQ(x′)}. Then, under the conditions of Theorem 2.4 and for

α ∈ (0, 1), the random interval (
k̂∗n −

Ξ1−α/2

‖δn‖2
, k̂∗n −

Ξα/2

‖δn‖2

)
(2.10)

is an asymptotic 1− α sized confidence interval for k∗, where Ξq is the qth quantile of Ξ.

The main crux here is that δn is unknown and the distribution of Ξ depends on the unknown break fraction

θ and the limiting variance parameter σ2. Consistent estimation techniques for these parameters are discussed

in Section 3 below. This confidence interval tends to be conservative in practice due to the fact that it is derived

under the assumption of a shrinking break. A thorough empirical study of the break date estimator and the

corresponding confidence interval is provided in Section 4.

The last result of this section concerns the large-sample behavior of k̂∗n if no break is present in the data,

that is, if δ = 0 in (2.1).

Theorem 2.5. If model (2.1) holds with δ = 0, so that Xi = µi + εi for all i = 1, . . . , n, and if Assumption

2.1 is satisfied, then

k̂∗n
n

D→ arg max
0≤x≤1

‖Γ0(x, ·)‖ (n→∞),
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where Γ0 is a bivariate Gaussian process with mean zero and covariance function E[Γ0(x, t)Γ0(x′, t′)] =

(min{x, x′} − xx′)Cε(t, t′).

The proof of Theorem 2.5 is provided in the online supplement. Observe that the limiting distribution in

Theorem 2.5 is non-pivotal, but it can be approximated via Monte Carlo simulations using an estimator of

Cε. To see this note that, because of the Karhunen–Loéve representation, Γ0(x, t) can be written in the form∑∞
`=1

√
λ`φ`(t)B`(x), where (λ` : ` ∈ N) and (φ` : ` ∈ N) are the eigenvalues and eigenfunctions of Cε and

(B` : ` ∈ N) are independent standard Brownian bridges. Computing the norm as required for the limit in

Theorem 2.5 yields that

arg max
x∈[0,1]

‖Γ0(x, ·)‖ D
= arg max

x∈[0,1]

( ∞∑
`=1

λ`B
2
` (x)

)1/2

.

Truncation of the sum under the square-root on the right-hand side gives then approximations to the theoretical

limit. For practical purposes population eigenvalues have to be estimated from the data. This can be done

following the steps described in Section 3.2.

2.3 Two fPCA based approaches

In the remainder of this section, the fully functional results put forward here are compared to their fPCA coun-

terparts in Berkes et al. (2009), Aue et al. (2009), Aston and Kirch (2012a, b), and Torgovitski (2016). Berkes

et al. (2009) and Torgovitski (2016) dealt with detection procedures and Aue et al. (2009) with break dating

procedures, while Aston and Kirch (2012a, b) presented both. A short summary of the different approaches

follows.

The works of Berkes et al. (2009), Aue et al. (2009) and Aston and Kirch (2012a, b) utilized the eigenval-

ues, say τ̂1, . . . , τ̂n, and eigenfunctions, say ψ̂1, . . . , ψ̂n, of the sample covariance operator K̂ of the observa-

tions whose kernel is given by K̂(t, t′) = n−1
∑n

i=1[Xi(t) − X̄n(t)][Xi(t
′) − X̄n(t′)]. In the presence of a

mean break as in (2.1), K̂(t, t′) converges as the sample size tends to infinity to the covariance kernel

K(t, t′) = K0(t, t
′) + θ(1− θ)δ(t)δ(t′),

where K0(t, t
′) = E[ε1(t)ε1(t

′)] is the covariance kernel of the innovations (εi : i ∈ Z). In particular, the

eigenvalues and eigenfunctions of K̂(t, t′) converge to those of K(t, t′) under appropriate assumptions that

include the finiteness of the fourth moment E[‖ε1‖4]. Choosing a suitable dimension d ∈ {1, . . . , n} allows

one to define an fPCA detector based on the maximally selected quadratic form statistic

R̃n = max
1≤k≤n

R̃n,k = max
1≤k≤n

1

n
S̃Tn,kΣ̂

−1
n S̃n,k, (2.11)

and the break point estimator

k̃∗n = min
{
k : R̃n,k = max

1≤k′≤n
Rn,k′

}
, (2.12)
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where S̃n,k =
∑k

i=1 ξ̂i−kn−1
∑n

i=1 ξ̂i and ξ̂i = (ξ̂i,1, . . . , ξ̂i,d)
T with fPCA scores ξ̂i,` = 〈Xi−X̄n, ψ̂`〉, and

Σ̂n = diag(τ̂1, . . . , τ̂d). For the independent case, the counterparts of Theorems 2.1 and 2.2 were established

in Berkes et al. (2009) for a Cramér–von Mises test statistics, and those of Theorems 2.3 and 2.4 in Aue et

al. (2009). Aston and Kirch (2012a) considered versions of the test in (2.11) and showed the consistency of

k̃∗n in the time series case. The performance of Rn and k̃∗n depends crucially on the selection of d and the

complexity of the break function δ. To briefly illustrate this point, suppose that K0(t, t
′) = αb(t)b(t′) for

some orthonormal function b that is orthogonal to δ. It then follows from elementary calculations that ψ̂1 will

be asymptotically orthogonal to δ if and only if α > θ(1 − θ)‖δ‖2, and hence under this latter condition one

cannot have a consistent fPCA based test or break date estimator if d = 1. The use of the fully functional

approach to dating break points is therefore especially advantageous in the interesting case of breaks that are

sizable but not obvious in the sense that their influence does not show up in the directions of the leading

principal components of the data.

This fact was noticed by Torgovitski (2016), who extended the detection procedures in two ways. First,

instead of using the spectral decomposition of the covariance operator K, his procedures are based on the

long-run covariance operator Cε and its eigenvalues λ1, . . . , λn and eigenfunctions φ1, . . . , φn. Second, an

alignment is introduced that shifts the detection procedure into the subspace of the potential break, the idea

being to significantly improve power, while not majorly compromising the level. The alignment is obtained

by modifying the first sample eigenfunction φ̂1 using

φ̃′1 =
φ̂1
nγ

+
ŝS̃n,k̃∗n√

n
, (2.13)

where γ ∈ (0, 1/2) is a tuning parameter and ŝ = sign〈φ̂1, S̃n,k̃∗n〉. Torgovitski (2016) then proposed to

replace φ̂1 with φ̂′1 = φ̃′1/‖φ̃′1‖ in the definition of (2.11), but did not introduce the corresponding break

dating procedure.

3 Implementation details

3.1 Estimation of long-run covariance operator

The implementation of the detection procedure and confidence intervals based on the break point estimator

requires the estimation of the covariance operator Cε. Due to its definition as a bi-infinite sum of the lagged

autocovariances of the functional time series (εi : i ∈ Z), the following lag-window estimator is used. Let

Ĉε(t, t
′) =

∞∑
`=−∞

wτ

(
`

h

)
γ̂`(t, t

′), (3.1)

where the components of this estimator are defined as follows: h is a bandwidth parameter satisfying h =

h(n), and 1/h(n) + h(n)/n1/2 → 0 as n→∞,

γ̂`(t, t
′) =

1

n

∑
i∈I`

[
Xi(t)− X̄∗i (t)

] [
Xi+`(t

′)− X̄∗i+`(t′)
]
,
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with I` = {1, . . . , n− `} if ` ≥ 0 and I` = {1− `, . . . , n} if ` < 0.

X̄∗j (t) =



1

k̂∗n

k̂∗n∑
i=1

Xi(t), 1 ≤ j ≤ k̂∗n,

1

n− k̂∗n

n∑
i=k̂∗n+1

Xi(t), k̂∗n + 1 ≤ j ≤ n,

and wτ is a symmetric weight function with bounded support of order τ satisfying the standard conditions

wτ (0) = 1, wτ (u) = wτ (−u), wτ (u) ≤ 1, wτ (u) = 0 if |u| > m for some m > 0, wτ is continuous, and

0 < q = lim
x→0

x−τ [1− wτ (x)] <∞. (3.2)

Through Ĉε, eigenvalue estimates λ̂1, . . . , λ̂n of λ1, . . . , λn are defined via the integral operator

λ̂`φ̂`(t) =

∫
Ĉε(t, s)φ̂`(s)ds. (3.3)

In order to show consistency of these estimates, a condition supplementary to the weak dependence of the

errors (εi : i ∈ Z) given in Assumption 2.1 is needed.

Assumption 3.1. For some p > 2, `(E[‖εi − εi,`‖p])1/p → 0 as `→∞.

Assumption 3.1 is not necessarily stronger than Assumption 2.1, although both are implied by the simple

condition that (E[‖εi−εi,`‖p])1/p = O(`−ρ) for some ρ > 1, which is by itself a fairly mild assumption. This

condition appears in Horváth et al. (2013). The following result holds.

Proposition 3.1. Under the conditions of Theorem 2.4 and Assumption 3.1, Ĉε in (3.1) is a consistent estima-

tor of Cε in L2[0, 1]2. Moreover, for any fixed d ∈ N, max1≤`≤d |λ` − λ̂`| = oP (1).

The verification of this result is given in Lemma A.5 of the online supplement. While the proposition

guarantees the large-sample accuracy under a reasonably broad set of conditions, producing the estimate Ĉε

and its eigenvalues satisfying (3.3) in practice requires the choice of a weight function wτ and bandwidth h.

This problem, which is familiar to nonparametric analysis of finite-dimensional time series and spectral den-

sity estimation (see, for example, Chapter 7 of Brillinger, 2001), has only recently begun to receive attention

in the setting of functional time series.

In the case of long-run covariance function estimation and functional spectral density estimation, Hörmann

and Kokoszka (2010) and Panaretos and Tavakoli (2012) utilized Bartlett and Epanechnikov weight functions

(see Bartlett 1946; and Wand and Jones, 1995) with bandwidths of the form h = n1/3 and h = n1/5, re-

spectively. These choices arise from the well-known fact that taking a bandwidth of the form h = n1/(1+2τ)

maximizes the rate at which the mean-squared normed error of the estimator Ĉε tends to zero. The perfor-

mance of the estimator in finite samples can, however, be affected by strong serial correlation in the data, in
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which case one should use a larger bandwidth in order to reduce the bias of Ĉε. An approach that balances

these two concerns is to take h = Mn1/(1+2τ), where the constant M is estimated from the data and increases

with the level of serial correlation. It can be shown (see Rice and Shang, 2017) that the optimal constant M

in terms of asymptotically minimizing the mean squared normed error of Ĉε is of the form

M =
(

2τ‖qC(τ)
ε ‖2

)1/(1+2τ)
({
‖Cε‖2 +

(∫ 1

0
Cε(u, u)du

)2
}∫ ∞
−∞

w2
τ (x)dx

)−1/(1+2τ)

,

where C(τ)
ε is related to the τ th derivative of a spectral density operator evaluated at frequency zero. The

unknown quantities in M can be estimated using pilot estimates of Cε and C(τ)
ε to produce an estimated

bandwidth h = M̂n1/(1+2τ). Complete details of this estimation procedure are provided in Section C of the

online supplement to the paper.

A comparison of the accuracy in terms of mean-squared normed error of Ĉε for a multitude of bandwidth

and weight function combinations is provided in Rice and Shang (2017), but a comparative study of how

these estimators perform in problems of inference has not been conducted, to the best of our knowledge. With

results reported in the online supplement, the proposed break point detection method was compared for all

combinations of the Bartlett, Parzen (Parzen, 1957) and a version of the flat-top (Politis and Romano, 1996)

weight functions with the four bandwidth choices of h = n1/3, h = n1/4, h = n1/5, and h = M̂n1/(1+2τ) for

the data generating processes considered in the simulation study presented below, as well as some additional

processes exhibiting stronger temporal dependence. It was found that when it comes to conducting hypothesis

tests and producing confidence intervals as described above with moderately correlated errors, each of these

typical choices produced similar results. The difference across weight functions was minuscule, whereas there

were some small fluctuations in the empirical sizes of the test of H0 due to the choice of the bandwidth: no

more than a 2% difference when the level was set at 5% over those FAR processes utilized in Section 4, but

with expected bigger discrepancies and advantages for the empirical bandwidth when the level of dependence

approached non-stationarity. Due to the similarity in performance of each choice for the data generating

processes considered below, results are only presented for the bandwidth h = n1/4 and the Bartlett weight

function below.

3.2 Computation of critical values

To compute the critical values of the limiting distribution of Tn given in Theorem 2.1, say T , the following

procedure was employed. Based on the estimator Ĉε, the first D empirical eigenvalues satisfying (3.3) were

computed, where D is taken to be the number of basis elements over which the initial discretely observed

functional data are smoothed. By then simulating D independent Brownian bridges on [0, 1], B`(x), using the

R package sde, a realization of T is estimated by

T̂ = sup
0≤x≤1

D∑
`=1

λ̂`B
2
` (x).

11



This estimation is independently repeated R times, and quantiles of the resulting Monte Carlo distribution are

used to produce the appropriate cut-offs. For the results in Sections 4 and 5, R was selected to be 1,000.

3.3 Construction of confidence intervals

This section provides more information on the construction of confidence intervals as defined through Corol-

lary 2.1. To start, let Ξ̂ = inf{x : Q̂(x) = supx′∈R Q̂(x′)} be the sample version of Ξ, where Q̂ is an estimated

version of Q in (2.9) obtained by plugging in the natural estimators

θ̂ =
k̂∗n
n

and σ̂2 =

∫∫
Ĉε(t, t

′)
δ̂n(t)δ̂n(t′)

‖δ̂n‖2
dtdt′

in place of their respective population counterparts θ and σ as specified in Theorem 2.4, where

δ̂n =
1

n− k̂∗n

n∑
i=k̂∗n+1

Xi −
1

k̂∗n

k̂∗n∑
i=1

Xi,

and Ĉε an estimator of Cε as discussed in Section 3.1. All of these estimators are consistent under the

conditions of Theorem 2.4; see Lemma A.5 of the online supplement. Let Ξ̂q denote the qth quantile of the

distribution of Ξ̂.

Theorem 3.1. Under the conditions of Theorem 2.4 and Assumption 3.1, for α ∈ (0, 1), the random interval(
k̂∗n −

Ξ̂1−α/2

‖δ̂n‖2
, k̂∗n −

Ξ̂α/2

‖δ̂n‖2

)

is an asymptotic 1− α confidence interval for k∗.

Note that the construction of confidence intervals is aided by the use of the exact form of the maximizers

in the limit of Theorem 2.4 as derived in Bhattacharya and Brockwell (1976) and Stryhn (1996), see the

supplemental material for more. Since σ2 and σ̂2 are respectively bounded from above by λ1 and λ̂1, the

largest eigenvalues of the integral operators with kernels Cε and Ĉε, a conservative confidence interval is

obtained by replacing σ̂2 with λ̂1.

4 Simulation Study

4.1 Setting

Following the construction of the data generating processes (DGP’s) in Aue et al. (2015), n functional data

objects were generated usingD = 21 Fourier basis functions v1, . . . , vD on the unit interval [0, 1]. The choice

of D corresponds to our study of yearly Australian temperature curves constructed from daily minimum

temperature observations that were initially smoothed over this basis. Qualitatively these results remain valid
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for larger values of D. Without loss of generality, the initial mean curve µ in 2.1 is assumed to be the zero

function. Independent curves were then generated according to

ζi =

D∑
`=1

Ni,`v`,

where the Ni,` are independent normal random variables with standard deviations σ = (σ` : ` = 1, . . . , D)

used to mimic various decays for the eigenvalues of the covariance and long-run covariance operators. Three

distinct situations were considered:

• Setting 1: the errors are finite dimensional, using σ` = 1 for ` = 1, 2, 3 and σ` = 0 for ` = 3, . . . , D;

• Setting 2: mimics a fast decay of eigenvalues, using σ = (3−` : ` = 1, . . . , D);

• Setting 3: mimics a slow decay of eigenvalues, using σ = (`−1 : ` = 1, . . . , D).

Note that the last setting, inspired by the data analysis reported in Section 5, is not to be taken asymptotically

in D. Rather it is meant to model a slow decay of the finitely many initial eigenvalues without intending to

prescribe the behavior for D tending to infinity.

As innovations, independent curves εi = ζi, i = 1, . . . , n, were used. To explore the effect of temporal

dependence on the break point estimators, functional autoregressive curves were also considered, which are

widely used to model serial correlation of functional data, see Besse et al. (2000) and Antoniadis and Sapatinas

(2003). First-order functional autoregressions εi = Ψεi−1 + ζi, i = 1, . . . , n, were generated (using a burn-in

period of 100 initial curves that were discarded). The operator was set up as Ψ = κΨ0, where the random

operator Ψ0 is represented by a D×D matrix whose entries consist of independent, centered normal random

variables with standard deviations given by σσ′ as specified by Settings 1–3. A scaling was applied to achieve

‖Ψ0‖ = 1. The constant κ can then be used to adjust the strength of the temporal dependence. To ensure

stationarity of the time series, |κ| = 0.5 was selected.

To highlight the effect of the distribution of the break function across eigendirections as well as its size

relative to the noise level, the following arrangements were made. A class of break functions was studied

given by

δm = δm,c =
√
cδ∗m, δ∗m =

1√
m

m∑
`=1

v`, m = 1, . . . , D, (4.1)

where the normalization ensures that all δ∗m have unit norm. The role of c is explained below. Note that δ1

represents the case of a break only in the leading eigendirection of the errors. On the other end of the spectrum

is δD describing the case of a break that affects all eigendirections uniformly. To relate break size to the natural

fluctuations in the innovations, the signal-to-noise ratio

SNR =
θ(1− θ)‖δm‖2

tr(Cε)
= c

θ(1− θ)
tr(Cε)

,
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was used, where θ denotes the relative location of the break date and Cε the long-run covariance operator

of the εi. (Note that since ‖δ∗m‖ = 1, in the adopted formulation SNR does not depend on m.) Results are

reported choosing c to maintain a prescribed SNR.

Finally, in order to mitigate the effect of the particular shape of the Fourier basis functions and the ordering

v1, . . . , vD on the performance of the various procedures, a random permutation π was applied to 1, . . . , D

before each simulation run, and the experiment was performed as described above using the permuted ordering

vπ(1), . . . , vπ(D). Combining the previous paragraphs, functional curves yi = δm1{i > k∗}+εi, i = 1, . . . , n,

according to (2.1) were generated for k∗ = bθnc with θ = 0 (null hypothesis), and θ = 0.25 and 0.5

(alternative). Both the fully functional procedure and its fPCA counterparts were applied to a variety of

settings, with outcomes reported in subsequent sections. All results are based on 1000 runs of the simulation

experiments. Additional complementary simulation evidence is presented in the online supplement.

4.2 Level and power of the detection procedures

In this section, the level and power of the proposed detection procedure are compared to the two fPCA-based

methods introduced in Section 2.3. In particular, the fPCA-based detector (2.11) was run with three levels of

total variation explained (TVE), namely 85%, 90% and 95%. The change-aligned detection procedure (2.13)

was set up as in Torgovitski (2016). Critical values for the proposed fully functional detection procedure were

obtained through simulation from the limit distribution under the null hypothesis as provided in Theorem 2.1.

Table 4.1 provides the levels for the various detection procedures for the three settings of eigenvalue

decays, and iid and FAR(1) data generating processes. For the FAR(1) case, the long-run covariance operator

was estimated following the recommendations given in Rice and Shang (2017). The sample sizes under

consideration were n = 50 and n = 100. It can be seen that, even for these rather small to moderate sample

sizes, the proposed method kept levels reasonably well across all specifications. This is true to a lesser extent

also for the fPCA-based procedures, while the change-aligned version produced the most variable results.

The fPCA-based procedures depend, by construction, more explicitly on the behavior of the eigenvalues with

levels well adjusted in case of a fast decay. The proposed procedure is fairly robust in all settings.

To examine the power of the detection procedures in finite samples, the break functions δm in (4.1) were

inserted as described in Section 4.1 with scalings c so that the SNR varied between 0, 0.1, 0.2, 0.3, 0.5, 1 and

1.5. The empirical rejection rates out of 1000 simulations for each test statistic described above are reported

as power curves in Figure 4.1 when the errors in (2.1) are iid and distributed according to each of Settings 1,

2, and 3. The sample size in the figure is n = 50 and the number of components m in the break functions

δm are 1, 5, and 20. Note that the plots in Figure 4.1 are not size corrected because it would not qualitatively

change the outcomes. Further simulation evidence is provided in the online supplement. The findings of these

simulations can be summarized as follows:

• The change aligned test of Torgovitski (2016) was usually outperformed by both the fPCA and fully

functional methods for most of the DGP’s and sample sizes under consideration.
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Setting DGP n Proposed TVE 85% TVE 90% TVE 95% Aligned
1 iid 50 0.08 0.02 0.03 0.03 0.02

100 0.06 0.07 0.06 0.06 0.05
FAR(1) 50 0.07 0.03 0.03 0.02 0.00

100 0.05 0.07 0.06 0.07 0.02
2 iid 50 0.07 0.06 0.06 0.06 0.09

100 0.06 0.05 0.06 0.07 0.05
FAR(1) 50 0.07 0.04 0.04 0.05 0.11

100 0.06 0.05 0.05 0.05 0.05
3 iid 50 0.04 0.02 0.02 0.00 0.00

100 0.05 0.07 0.03 0.02 0.01
FAR(1) 50 0.03 0.01 0.03 0.00 0.00

100 0.05 0.02 0.02 0.02 0.00

Table 4.1: Empirical sizes for the various detection procedures for two data generation processes. The nominal
level was α = 0.05.

• The power for the fully functional detection procedure was observed to improve as m increased, as

predicted by the theory. Moreover, when the change was largely orthogonal to the errors, as in Setting

1 with m = 20, the expected advantage of the fully functional method over the dimension reduction

based approaches materialized.

• A particularly interesting example to examine is when m = 1 under Setting 3 (with slowly decaying

eigenvalues). One notices in this case that, although the change lied fully in the direction of the leading

principal component of the errors, the fPCA-based methods were outperformed by the fully functional

method, and additionally their performance decayed as TVE increased. Here, the slow decay of eigen-

values adversely affects the fPCA procedure. This contrasts, for example, with the case when m = 20

under Setting 2 (with fast decaying eigenvalues), when the fPCA method improved as TVE increased,

and ultimately outperformed the fully functional method. This demonstrates that the fPCA method is

not guaranteed to beat the proposed detection procedure even when the break is in the leading eigendi-

rection. Moreover, this particular case highlights the fact that increasing TVE may not always lead to

improved performance. Note also that this example seems to match well with the situation encountered

in an application to Australian temperature curves presented in Section 5.

• In additional simulations reported in the online supplement, the expected improvement in power when

n increased was noticed. Additionally, no more power loss than is typical was observed when the model

errors are serially correlated rather than independent and identically distributed.

4.3 Performance of the break dating procedures

In order to study the empirical properties of the break date estimator k̂∗n, the break functions δm specified in

(4.1) of Section 4.1 were utilized again with scaling c chosen to yield SNR values of 0.5 and 1. The break
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Figure 4.1: Power curves for the various break detection procedures for three different forms of the break
functions indexed my m and the three eigenvalues settings for n = 50 and independent errors. The x-axis
gives different choices of SNR. Observe that “FF” refers to the proposed fully functional method, “0.85”,
“0.90“ and “0.95“ correspond to the three levels of TVE in the fPCA procedures, and “Aligned” to the method
of Torgovitski (2016).

date was inserted at θ = 0.25, so that the samples before and after the break have a ratio of 1 to 3. As in the

previous section, focus is on the small sample size n = 50. The results from additional settings are reported

in the online supplement. For each setting and choice of m, the estimators k̂∗n and k̃∗n for k∗ were computed

for the proposed and the fPCA methods, respectively in 1000 independent simulation runs. The results are

summarized in the form of box plots in Figure 4.2.

Overall, the proposed method is observed to be competitive, with box plots being narrower or of the same

width as those constructed from the fPCA counterparts. It can be seen that the accuracy of the fully functional

break date procedure improved for increasing m, spreading the break across a larger number of directions. As

expected, the performance of the fPCA procedure was sensitive to the choice of TVE, in a way that often only

the best selection of TVE was competitive with the fully functional method. Moreover, in analogy to the same
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phenomenon observed in the power study, the fully functional procedure enjoys an advantage when the break

loads entirely on the first eigenfunction (m = 1) for slowly decaying eigenvalues of the covariance operator

(Setting 3).
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Figure 4.2: Boxplots for the various break dating procedures for three different forms of the break functions
indexed mym and two choices of SNR for the three eigenvalues settings, sample size n = 50 and independent
errors. Labeling of the procedures is as in Figure 4.1.

The confidence intervals computed from Theorem 3.1 are seen to be conservative. As already pointed out

after Corollary 2.10, this is due to the fact, that they are based on an asymptotic analysis assuming a shrinking

break. For illustration purposes, since this will prove relevant in Section 5, Figure 4.3 gives 95% confidence

intervals for the case of Setting 3 with independent errors and sample size n = 100. The break function δm

is inserted in the middle (θ = 0.5), using m = 1, 5 and 20 as before. The plots provide further evidence for

the theory, as the confidence intervals get significantly narrower when the break function is distributed across

a larger number of directions. The case m = 1 leads to the widest confidence intervals, which for this case

are of little practical relevance. Larger sample sizes and higher SNR lead to the expected improvements, but

are not shown here to conserve space. To improve the width of the confidence intervals for small sample sizes

17



and/or small SNR’s, one might entertain some jackknife or bootstrap modifications. This might be pursued in

detail elsewhere.
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Figure 4.3: Confidence intervals constructed from the fully functional break dating procedure across 1000
simulation runs for Setting 3, sample size n = 100, and three types of break functions indexed by m with
SNR set to 0.5. For each run, the blue line gives the 95% confidence interval and the red dot the estimated
break date.

4.4 Heavy tails

The heavy tail case is only considered for independent curves in Settings 2 with fast decay of eigenvalues

of the innovations and break function specified by δm in (4.1) with m = 1, 5 and 20 as before. Settings 1

and 3 produce results more in favor of the proposed method. Instead of the normal distributions specified in

Section 4.1, ζ1, . . . , ζn were chosen to be t-distributed with 2, 3 and 4 degrees of freedom and ε1, . . . , ε100

were defined accordingly. Modifications of the simulation settings presented in this section could potentially

be useful for applications to intra-day financial data such as the Microsoft intra-day return data presented as

part of the online supplement. Due to the reduced number of finite moments in this setting, the fPCA-based

procedure is not theoretically justified, while the fully functional procedure is not justified only for the case of

two degrees of freedom.

Results in Figure 4.4 are given for n = 100, k∗ = 50. The summary statistics show the proposed method

to be superior in all cases. The proposed method looks in general more favorable in the heavy-tail case than in

the time series case of the previous section due to the deteriorated performance in estimating eigenvalues and
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eigenfunctions. It can be seen that in all cases the fPCA-based procedure fails to produce reasonable results.
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Figure 4.4: Boxplots for the various break dating procedures for three different forms of the break functions
indexed my m and t-distributed innovations with 2, 3 and 4 degrees of freedom for Setting 2, sample size
n = 100, k∗ = 50 and independent errors. Labeling of the procedures is as in Figure 4.1.

The performance is worst for df = 2 and somewhat comparable for df = 3 and df = 4. The proposed method

is seen to work for the latter two cases but its performance deteriorates somewhat for df = 2, a situation that

is not theoretically justified.

5 Application to annual temperature curves

In this section, the proposed methodology is applied to annual temperature curves from eight measuring

stations in Australia. More precisely, the raw data consists of 365 (366) daily measurements of minimum

temperatures that were converted into functional objects using 21 Fourier basis functions. The observations

for each of the eight stations are recorded over different time spans, roughly equaling 100 years. The data may

be downloaded from The Australian Bureau of Meteorology at the URL www.bom.gov.au. For each case,

the fully functional break detection procedure rejected the null hypothesis of no structural break in the mean

function. Consequently, both functional break dating procedure and fPCA counterpart were applied to locate

the time of the mean break. Information on all stations under consideration is provided in Table 5.1. More

details may be found in the online supplement.
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Station Range k̂∗n (year) CI (years) Range of k̃∗n (year)
Sydney (Observatory Hill) 1959–2012 1991 (1981, 1994) 1983, 1991
Melbourne (Regional Office) 1855–2012 1998 (1989, 2000) 1996, 1998
Boulia Airport 1888–2012 1978 (1954, 1981) 1978
Cape Otway Lighthouse 1864–2012 1999 (1949, 2005) 1999, 2000
Gayndah Post Office 1893–2009 1962 (1952, 1966) 1953, 1962, 1968
Gunnedah Pool 1876–2011 1985 (1935, 1992) 1979, 1984, 1985, 1986
Hobart (Ellerslie Road) 1882–2011 1966 (1957, 1969) 1966, 1967, 1968, 1969
Robe Comparison 1884–2011 1981 (1954, 1985) 1969, 1974, 1981

Table 5.1: Summary of results for eight Australian measuring stations. The column labeled k̂∗n reports the
estimated break date using the fully functional method, CI gives the corresponding 95% confidence interval.
This is contrasted with the range of break date estimates obtained from using fPCA methods with dimension
of the projection space d = 1, . . . , 10. The year in bold is the most frequently chosen break date.

In the following the station Gayndah Post Office is singled out and discussed in more detail. The time

series plot of n = 116 annual curves recorded in degree Celsius at this station from 1893 to 2009 are given

in the upper left panel of Figure 5.1. They exhibit the temperature profile typical for Australia, with higher

temperatures in the beginning and end of the year. The corresponding scree plot of sample eigenvalues in the

upper right panel of the same figure indicates a slow decay, which Setting 3 in Section 4 sought to mimic. The

p-value of the fully functional detection procedure for this station was 0.008. Table 5.1 reports the break date

estimate for the fully functional procedure as 1962 and gives a 95% confidence interval spanning the years

from 1952 to 1966. In the range considered, the fPCA procedure chose three different years as break dates,

namely 1953 (corresponding to d = 1 and TVE = 0.40), 1962 (for d = 3 and TVE = 0.62), and 1968 (for

all other choices of d with TVE reaching 0.92 at d = 10). It can therefore be seen that, for any reasonable

choice of TVE, the fPCA break date estimate leads to a year that is not included in the 95% confidence

interval obtained from the fully functional methodology, even those were shown to be conservative in Section

4. The estimated break function is displayed in the middle panel of Figure 5.1. Almost 90% of the variation

in ‖δ̂‖ is explained by the first sample eigenfunction, with a rapid decay of contributions from higher sample

eigenfunctions. This is displayed in the middle panel of Figure 5.1. The situation is therefore indeed similar

to the case displayed in the lower left panels of Figures 4.1 and 4.2, which corresponds to slow decay of

eigenfunctions and a break occurring predominantly in the direction of the first mode of variation. That this is

a situation beneficial to the proposed procedure is further highlighted in the lower panel of Figure 5.1. Here

it can be seen that the estimated SNR of the sample break function decreases significantly with the inclusion

of further sample eigenvalues and eigenfunctions into the analysis. In particular, the estimated SNR’s are, for

d > 1, noticeably smaller than the estimated SNR obtained from the fully functional procedure.

The application shows that, while both fully functional and fPCA procedures often work similarly in

20



0.0 0.2 0.4 0.6 0.8 1.0

5
10

15
20

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ● ● ● ● ● ●

5 10 15 20

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

0.
0

0.
2

0.
4

0.
6

0.
8

●

●

●

●

●

●

●
●

●
● ● ● ● ● ● ●

● ●

● ●

5 10 15 20

0.
1

0.
2

0.
3

0.
4

0.
5

FF
fPCA
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scree plot of eigenvalues from the sample covariance operator of the Gayndah Post Office temperature profiles
(right). Middle panel: Estimated break function δ̂ (left) and proportion of variation in ‖δ̂‖ explained by the `th
sample eigenfunction (right). Lower panel: Estimated SNR for the fully functional procedure (straight line)
and for the fPCA procedure across varying d.

21



practice, there are cases when they differ substantially. In the situation discussed in this section, there is

evidence to believe that the fully functional method is perhaps more trustworthy. The results of the data

application used in combination with the simulation analysis show that one can do worse than the proposed

procedure but not obviously better.

6 Conclusions

In this paper, a fully functional methodology was introduced to detect and date mean curve breaks for func-

tional data. The assumptions made allow for time series specifications of the curves and are formulated using

the optimal rates for approximations of the data with `-dependent sequences. The assumptions are notably

weaker than those usually made in the fPCA context and include heavy-tailed functional observations, making

the asymptotic theory developed here widely applicable. In a comprehensive simulation study it is shown that

the fully functional method tends to perform better than its fPCA counterpart, with significant performance

gains for breaks that do not align well with the directions specified by the largest (few) eigenvalue(s) of the

data covariance operator, but also in a number of subtler situations such as breaks concentrated on the first

eigendirection with slowly decaying eigenvalues. It is shown in an application to annual temperature curves

that the latter situation can be of practical relevance. More generally, this work provides an in-depth study in a

specific context of the overarching principle that whenever the signal of interest is not dominant or is “sparse”,

in the sense that it is not entirely contained in the leading principal components, then alternatives to dimension

reduction based methods should be considered and are likely more effective.
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[8] Aue, A., Horváth, L. & D. Pellatt (2017). Functional generalized autoregressive conditional het-

eroskedasticity. Journal of Time Series Analysis 38, 3–21.

[9] Aue, A., Rice, G. & O. Sönmez (2017+). Online supplement to “Detecting and dating structural breaks

in functional data without dimension reduction”.

[10] Aue, A. & A. van Delft (2017+). Testing for stationarity of functional time series in the frequency

domain. Preprint available at https://arxiv.org/abs/1701.01741.

[11] Bartlett, M.S. (1946). The large-sample theory of squential tests. Proceedings of the Cambridge Philo-

sophical Society 42, 239–244.
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in the frequency domain∗†
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Abstract

Interest in functional time series has spiked in the recent past with papers covering both methodology

and applications being published at a much increased pace. This article contributes to the research in this

area by proposing stationarity tests for functional time series based on frequency domain methods. Setting

up the tests requires a delicate understanding of periodogram- and spectral density operators that are the

functional counterparts of periodogram- and spectral density matrices in the multivariate world. Two sets

of statistics are proposed. One is based on the eigendecomposition of the spectral density operator, the

other on a fixed projection basis. Their properties are derived both under the null hypothesis of stationary

functional time series and under the smooth alternative of locally stationary functional time series. The

methodology is theoretically justified through asymptotic results. Evidence from simulation studies and

an application to annual temperature curves suggests that the tests work well in finite samples.

Keywords: Frequency domain methods, Functional data analysis, Locally stationary processes, Spectral

analysis
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1 Introduction

The aim of this paper is to provide new stationarity tests for functional time series based on frequency domain

methods. Particular attention is given to taking into account alternatives allowing for smooth variation as

a source of non-stationarity, even though non-smooth alternatives can be covered as well. Functional data

analysis has seen an upsurge in research contributions for at least one decade. This is reflected in the growing

number of monographs in the area. Readers interested in the current state of statistical inference procedures
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may consult Bosq (2000), Ferraty & Vieu (2010), Horváth & Kokoszka (2012), Hsing & Eubank (2015) and

Ramsay & Silverman (2005).

Papers on functional time series have come into the focus more recently and constitute now an active area

of research. Hörmann & Kokoszka (2010) introduced a general weak dependence concept for stationary func-

tional time series, while van Delft & Eichler (2016) provided a framework for locally stationary functional

time series. Antoniadis & Sapatinas (2003), Aue et al. (2015) and Besse et al. (2000) constructed prediction

methodology that may find application across many areas of science, economics and finance. With the excep-

tion of van Delft & Eichler (2016), the above contributions are concerned with procedures in the time domain.

Complementing methodology in the frequency domain has been developed in parallel. One should mention

Panaretos & Tavakoli (2013), who provided results concerning the Fourier analysis of time series in function

spaces, and Hörmann et al. (2015), who addressed the problem of dimension reduction for functional time

series using dynamic principal components.

The methodology proposed in this paper provides a new frequency domain inference procedure for func-

tional time series. More precisely, tests for second-order stationarity are developed. In the univariate case,

such tests have a long history, going back at least to the seminal paper Priestley & Subba Rao (1969), who

based their method on the evaluation of evolutionary spectra of a given time series. Other contributions build-

ing on this work include von Sachs & Neumann (2000), who used local periodograms and wavelet analysis,

and Paparoditis (2009), whose test is based on comparing a local estimate of the spectral density to a global

estimate. Dette et al. (2011) and Preuß et al. (2013) developed methods to derive both a measure of and a

test for stationarity in locally stationary time series, the latter authors basing their method on empirical pro-

cess theory. In all papers, interest is in smoothly varying alternatives. The same tests, however, also have

power against non-smooth alternatives such as structural breaks or change-points. A recent review discussing

methodology for structural breaks in time series is Aue & Horváth (2013), while Aue et al. (2017) is a recent

contribution to structural breaks in functional time series.

The proposed test for second-order stationarity of functional time series uses the Discrete Fourier Trans-

form (DFT). Its construction seeks to exploit that the DFTs of a functional time series evaluated at distinct

Fourier frequencies are asymptotically uncorrelated if and only if the series is second-order stationary. The

proposed method is therefore related to the initial work of Dwivedi & Subba Rao (2011), who put forth similar

tests in a univariate framework. Their method has since been generalized to multivariate time series in Jentsch

& Subba Rao (2015) as well as to spatial and spatio-temporal data by Bandyopadhyay & Subba Rao (2017)

and Bandyopadhyay et al. (2017), respectively. A different version of functional stationarity tests, based on

time domain methodology involving cumulative sum statistics (Aue & Horváth, 2013), was given in Horváth

et al. (2014).

Building on the research summarized in the previous paragraph, the tests introduced here are the first

of their kind in the frequency domain analysis of functional time series. A delicate understanding of the

functional DFT is needed in order to derive the asymptotic theory given here. In particular, results on the large-

2



sample behavior of a quadratic form test statistic are provided both under the null hypothesis of a stationary

functional time series and the alternative of a locally stationary functional time series. For this, a weak

convergence result is established that might be of interest in its own right as it is verified using a simplified

tightness criterion going back to work of Cremers & Kadelka (1986). The main results are derived under the

assumption that the curves are observed in their entirety, corresponding to a setting in which functions are

sampled on a dense grid rather than a sparse grid. Differences for these two cases have been worked out in Li

& Hsing (2010).

The remainder of the paper is organized as follows. Section 2 provides the background, gives the requisite

notations and introduces the functional version of the DFT. The exact form of the hypothesis test, model

assumptions and the test statistics are introduced in Section 3. The large-sample behavior under the null

hypothesis of second-order stationarity and the alternative of local stationarity is established in Sections 4.

Empirical aspects are highlighted in Section 5. The proofs are technical and relegated to the Appendix.

Several further auxiliary results are proved in the supplementary document Aue & van Delft (2017), henceforth

referred to simply as the Online Supplement.

2 Notation and setup

2.1 The function space

A functional time series pXt : t P Zq will be viewed in this paper as a sequence of random elements on a prob-

ability space pΩ,A, P q taking values in the separable Hilbert space of real-valued, square integrable functions

on the unit interval r0, 1s. This Hilbert space will be denoted by HR “ L2pr0, 1s,Rq. The functional DFT of

pXt : t P Zq, to be introduced in Section 2.3, can then be viewed as an element of HC “ L2pr0, 1s,Cq, the

complex counterpart of HR. While the interval r0, 1s provides a convenient parametrization of the functions,

the results of this paper continue to hold for any separable Hilbert space.

The complex conjugate of z P C is denoted by z and the imaginary number by i. The inner product and

the induced norm on HC are given by

xf, gy “

ż 1

0
fpτqgpτqdτ and }f}2 “

a

xf, fy, (2.1)

respectively, for f, g P HC. Two elements of HC are tacitly understood to be equal if their difference has

vanishing L2-norm. More generally, for functions g : r0, 1sk Ñ C, the supremum norm is denoted by

}g}8 “ sup
τ1,...,τkPr0,1s

|gpτ1, . . . , τkq|

and the Lp-norm by

}g}p “

ˆ
ż

r0,1sk
|gpτ1, . . . , τkq|

p dτ1 ¨ ¨ ¨ dτk

˙1{p

.

In all of the above, the obvious modifications apply to HR, the canonical Hilbert space in the functional data

analysis setting.
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Let H stand more generally for HC, unless otherwise stated. An operator A on H is said to be compact if

its pre-image is compact. A compact operator admits a singular value decomposition

A “
8
ÿ

n“1

snpAqψn b φn, (2.2)

where psnpAq : n P Nq, are the singular values of A, pφn : n P Nq and pψn : n P Nq orthonormal bases of

H and b denoting the tensor product. The singular values are ordered to form a monotonically decreasing

sequence of non-negative numbers. Based on the convergence rate to zero, operators on H can be classified

into particular Schatten p-classes. That is, for p ě 1, the Schatten p-class SppHq is the subspace of all

compact operators A on H such that the sequence spAq “ psnpAq : n P Nq of singular values of A belongs to

the sequence space `p, that is,

A P SppHq if and only if ~A~p “

ˆ 8
ÿ

n“1

spnpAq

˙1{p

ă 8,

where ~A~p is referred to as the Schatten p-norm. The space SppHq together with the norm ~A~p forms

a Banach space and a Hilbert space in case p “ 2. By convention, the space S8pHq indicates the space of

bounded linear operators equipped with the standard operator norm. For 1 ď p ď q, the inclusion SppHq Ď

SqpHq is valid. Two important classes are the Trace-class and the Hilbert-Schmidt operators on H , which are

given by S1pHq and S2pHq, respectively. More properties of Schatten-class operators, in particular of Hilbert–

Schmidt operators, are provided in van Delft & Eichler (2016). Finally, the identity operator is denoted by IH

and the zero operator by OH .

2.2 Dependence structure on the function space

A functional time seriesX “ pXt : t P Zq is called strictly stationary if, for all finite sets of indices J Ă Z, the

joint distribution of pXt`j : j P Jq does not depend on t P Z. Similarly, X is weakly stationary if its first- and

second-order moments exist and are invariant under translation in time. The L2-setup provides a point-wise

interpretation to these moments; that is, the mean function m of X can be defined using the parametrization

mpτq “ ErXtpτqs, τ P r0, 1s, and the autocovariance kernel ch at lag h P Z by

chpτ, τ
1q “ CovpXt`hpτq, Xtpτ

1qq, τ, τ 1 P r0, 1s. (2.3)

Both m and ch are well defined in the L2-sense if Er}X0}
2
2s ă 8. Each kernel ch induces a corresponding

autocovariance operator Ch on HR by

Ch gpτq “

ż 1

0
chpτ, τ

1q gpτ 1q dτ 1 “ E
“

xg,X0yXhpτq
‰

, (2.4)

for all g P HR. In analogy to weakly stationary multivariate time series, where the covariance matrix and

spectral density matrix form a Fourier pair, the spectral density operator Fω is given by the Fourier transform

of Ch,

Fω “
1

2π

ÿ

hPZ
Ch e

´iωh. (2.5)
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A sufficient condition for the existence of Fω in SppHCq is
ř

hPZ ~Ch~p ă 8.

As in Panaretos & Tavakoli (2013), higher-order dependence among the functional observations is defined

through cumulant mixing conditions (Brillinger, 1981; Brillinger & Rosenblatt, 1967). For this, the notion

of higher-order cumulant tensors is required; see Appendix S1 for their definition and a discussion on their

properties for nonstationary functional time series. Point-wise, after setting tk “ 0 because of stationarity, the

k-th order cumulant function of the process X can be defined by

ct1,...,tk´1
pτ1, . . . , τkq “

ÿ

ν“pν1,...,νpq

p´1qp´1 pp´ 1q!

p
ź

l“1

E
„

ź

jPνl

Xtj pτjq



, (2.6)

where the summation is over all unordered partitions of t1, . . . , ku. The quantity in (2.6) will be referred to

as the k-th order cumulant kernel if it is properly defined in the L2-sense. A sufficient condition for this to

be satisfied is Er}X0}
k
2s ă 8. The cumulant kernel ct1,...,t2k´1

pτ1, . . . , τ2kq induces a 2k-th order cumulant

operator Ct1,...,t2k´1
through right integration:

Ct1,...,t2k´1
gpτ1, .., τkq “

ż

r0,1sk
ct1,...,t2k´1

pτ1, . . . , τ2kqgpτk`1, . . . , τ2kq dτk`1 ¨ ¨ ¨ dτ2k,

which maps from L2pr0, 1sk,Rq to L2pr0, 1sk,Rq. Similar to the case k “ 2, this operator will form a Fourier

pair with a 2k-th order cumulant spectral operator given summability with respect to ~¨~p is satisfied. The

2k-th order cumulant spectral operator is specified as

Fω1,...,ω2k´1
“ p2πq1´2k

ÿ

t1,...,t2k´1PZ
Ct1,...,t2k´1

exp

ˆ

´ i
2k´1
ÿ

j“1

ωj tj

˙

, (2.7)

where the convergence is in ~¨~p. Under suitable regularity conditions, the corresponding kernels also form

a Fourier pair. Note that a similar reasoning can be applied to 2pk ` 1q-th order cumulant operators and their

associated cumulant spectral operators, using more complex notation.

2.3 The functional discrete Fourier transform

The starting point of this paper is the following proposition that characterizes second-order stationary behavior

of a functional time series in terms of a spectral representation.

Proposition 2.1. A zero-mean, HR-valued stochastic process pXt : t P Zq admits the representation

Xt “

ż π

´π
eitωdZω a.s. a.e., (2.8)

where pZω : ω P p´π, πsq is a right-continuous functional orthogonal-increment process, if and only if it is

weakly stationary.

If the process is not weakly stationary, then a representation in the frequency domain is not necessarily

well-defined and certainly not with respect to complex exponential basis functions. It can be shown that a time-

dependent functional Cramér representation holds true if the time-dependent characteristics of the process are
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captured by a Bochner measurable mapping that is an evolutionary operator-valued mapping in time direction.

More details can be found in van Delft & Eichler (2016). In the following the above proposition is utilized to

motivate the proposed test procedure.

In practice, the stretch X0, . . . , XT´1 is observed. If the process is weakly stationary, the functional

Discrete Fourier Transform (fDFT) DpT qω can be seen as an estimate of the increment process Zω. This is in

accordance with the spatial and spatio-temporal arguments put forward in Jentsch & Subba Rao (2015) and

Bandyopadhyay et al. (2017), respectively. At frequency ω, the fDFT is given by

DpT qω “
1

?
2πT

T´1
ÿ

t“0

Xte
´iωt, (2.9)

while the functional time series itself can be represented through the inverse fDFT as

Xt “

c

2π

T

T´1
ÿ

j“0

DpT qωj
eiωjt. (2.10)

Under weak dependence conditions expressed through higher-order cumulants, the fDFTs evaluated at distinct

frequencies yield asymptotically independent Gaussian random elements inHC (Panaretos & Tavakoli, 2013).

The fDFT sequence of a Hilbert space stationary process is in particular asymptotically uncorrelated at the

canonical frequencies ωj “ 2πj{T . For weakly stationary processes, it will turn out specifically that, for

j ‰ j1 or j ‰ T ´ j1, the covariance of the fDFT satisfies xCovpD
pT q
ωj , D

pT q
ωj1
qg1, g2y “ Op1{T q for all

g1, g2 P H . This fundamental result will be extended to locally stationary functional time series in this paper

by providing a representation of the cumulant kernel of the fDFT sequence in terms of the (time-varying)

spectral density kernel. Similar to the above, the reverse argument (uncorrelatedness of the functional DFT

sequence implies weak stationarity) can be shown by means of the inverse fDFT. Using expression (2.9), the

covariance operator of Xt and Xt1 in terms of the fDFT sequence can be written as

Ct,t1 “ ErXt bXt1s

“
2π

T

T´1
ÿ

j,j1“0

ErDpT qωj
bDpT qωj1

seitωj´it1ωj1

“
2π

T

T´1
ÿ

j“0

ErIpT qωj
seiωjpt´t

1q (2.11)

“ Ct´t1 ,

where the equality in (2.11) holds in an L2-sense when xErDpT qωj bD
pT q
ωj1
sg1, g2y “ 0 for all g1, g2 P H with

j ‰ j1 or j ‰ T ´ j1 and where IpT qωj “ D
pT q
ωj1
b D

pT q
ωj1

is the periodogram tensor. This demonstrates that

the autocovariance kernel of a second-order stationary functional time series is obtained and, hence, that an

uncorrelated DFT sequence implies second-order stationarity up to lag T . Below, the behavior of the fDFT

under the smooth alternative of locally stationary functional time series is derived. These properties will then

be exploited to set up a testing framework for functional stationarity. Although this work is therefore related
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to Dwivedi & Subba Rao (2011) — who similarly exploited analogous properties of the DFT of a stationary

time series — it should be emphasized that the functional setting is a nontrivial extension.

3 The functional stationarity testing framework

This section gives precise formulations of the hypotheses of interest, states the main assumptions of the paper

and introduces the test statistics. Throughout, interest is in testing the null hypothesis

H0 : pXt : t P Zq is a stationary functional time series

versus the alternative

HA : pXt : t P Zq is a locally stationary functional time series,

where locally stationary functional time series are defined as follows.

Definition 3.1. A stochastic process pXt : t P Zq taking values in HR is said to be locally stationary if

(1) Xt “ X
pT q
t for t “ 1, . . . , T and T P N; and

(2) for any rescaled time u P r0, 1s, there is a strictly stationary process pXpuqt : t P Zq such that

›

›X
pT q
t ´X

puq
t

›

›

2
ď

´ˇ

ˇ

ˇ

t
T ´ u

ˇ

ˇ

ˇ
` 1

T

¯

P
puq
t,T a.s.,

where P puqt,T is a positive, real-valued triangular array of random variables such that, for some ρ ą 0

and C ă 8, Er|P puqt,T |
ρs ă 8 for all t and T , uniformly in u P r0, 1s.

Note that, under HA, the process constitutes a triangular array of functions. Inference methods are then

based on in-fill asymptotics as popularized in Dahlhaus (1997) for univariate time series. The process is

therefore observed on a finer grid as T increases and more observations are available at a local level. A

rigorous statistical framework for locally stationary functional time series was recently provided in van Delft

& Eichler (2016). These authors established in particular that linear functional time series can be defined by

means of a functional time-varying Cramér representation and provided sufficient conditions in the frequency

domain for the above definition to be satisfied.

Based on the observations in Section 2.3, a test for weak stationarity can be set up exploiting the uncor-

relatedness of the elements in the sequence pDpT qωj q. Standardizing these quantities is a delicate issue as the

spectral density operators F
pT q
ωj are not only unknown but generally not globally invertible. Here, a statistic

based on projections is considered. Let pψl : l P Nq be an orthonormal basis of HC. Then, pψlbψl1 : l, l1 P Nq
is an orthonormal basis of L2pr0, 1s2,Cq and, by definition of the Hilbert–Schmidt inner product on the alge-

braic tensor product space H bH ,

xE
“

DpT qωj1
bDpT qωj2

‰

, ψl b ψl1yHbH “ ErxDpT qωj1
, ψlyxD

pT q
ωj2
, ψl1ys “ Cov

`

xDpT qωj1
, ψly, xD

pT q
ωj2
, ψl1y

˘

.
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This motivates to set up test statistics based on the quantities

γ
pT q
h pl, l1q “

1

T

T
ÿ

j“1

xD
pT q
ωj , ψlyxD

pT q
ωj`h , ψl1y

b

xFωj pψlq, ψlyxF
:
ωj`hpψl1q, ψl1y

, h “ 1, . . . , T ´ 1. (3.1)

A particularly interesting (random) projection choice is provided by the eigenfunctions φωj

l and φωj`h

l corre-

sponding to the l-th largest eigenvalues of the spectral density operators Fωj and Fωj`h
, respectively. In this

case, based on orthogonality relations the statistic can be simplified to

γ
pT q
h plq “

1

T

T
ÿ

j“1

xD
pT q
ωj , φ

ωj

l yxD
pT q
ωj`h , φ

ωj`h

l y
b

λ
´ωj

l λ
ωj`h

l

, h “ 1, . . . , T ´ 1, (3.2)

and thus depends on l only. In the following the notation γpT qh is used to refer both to a fixed projection basis

used for dimension reduction at both frequencies ωj and ωj`h as in (3.1) as well as for the random projection

based method in (3.2) using two separate Karhunen–Loève decompositions at the two frequencies of Fωj and

Fωj`h
, respectively. The write-up will generally present theorems for both tests if the formulation allows, but

will focus on the latter case if certain aspects have to be treated differently. The counterparts for the former

case are then collected in the appendix for completeness.

In practice, the unknown spectral density operators Fωj and Fωj`h
are to be replaced with consistent

estimators F̂pT qωj and F̂
pT q
ωj`h . Similarly the population eigenvalues and eigenfunctions need to be replaced by

the respective sample eigenvalues and eigenfunctions. The estimated quantity corresponding to (3.1) and (3.2)

will be denoted by γ̂pT qh . Note that the large-sample distributional properties of tests based on (3.1) and (3.2)

are similar. Some additional complexity enters for the statistic in (3.2) because the unknown eigenfunctions

can only be identified up to rotation on the unit circle and it has to be ensured that the proposed test statistic is

invariant to this rotation; see Section E.2 for the details. As an estimator of FpT qω , take

F̂pT qω “
2π

T

T
ÿ

j“1

Kbpω ´ ωjq
`

rDpT qωj
s b rDpT qωj

s:
˘

, (3.3)

where Kbp¨q “
1
bKp

¨
bq is a window function satisfying the following conditions.

Assumption 3.1. Let K : r´1
2 ,

1
2 s Ñ R be a positive, symmetric window function with

ş

Kpxqdx “ 1 and
ş

Kpxq2dx ă 8 that is periodically extended, i.e., Kbpxq “
1
bKp

x˘2π
b q.

The periodic extension is to include estimates for frequencies around ˘π. Further conditions on the

bandwidth b are imposed below (Section 4) to determine the large-sample behavior of γ̂pT qh under both the

null and the alternative. The replacement of the unknown operators with consistent estimators requires to

derive the order of the difference

?
T
ˇ

ˇγ
pT q
h ´ γ̂

pT q
h

ˇ

ˇ. (3.4)
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It will be shown in the next section that, for appropriate choices of the bandwidth b, this term is negligible

under both null and alternative hypothesis.

To set up the test statistic, it now appears reasonable to extract information across a range of directions

l, l1 “ 1, . . . , L and a selection of lags h “ 1, . . . , h̄, where h̄ denotes an upper limit. Build therefore first the

Lˆ L matrix Γ̂
pT q
h “ pγ̂

pT q
h pl, l1q : l, l1 “ 1, . . . , Lq and construct the vector γ̂pT qh “ vecpΓ̂

pT q
h q by vectorizing

Γ̂
pT q
h via stacking of its columns. Define

β̂
pT q
h “ eJγ̂

pT q
h , (3.5)

where e is a vector of dimension L2 whose elements are all equal to one and J denotes transposition. Note

that for (3.2), a somewhat simplified expression is obtained, since the off-diagonal terms l “ l1 do not have

to be accounted for. Dropping these components reduces the number of terms in the sum (3.5) from L2 to L,

even though the general form of the equation continues to hold. Choose next a collection h1, . . . , hM of lags

each of which is upper bounded by h̄ to pool information across a number of autocovariances and build the

(scaled) vectors
?
T b̂

pT q
M “

?
T
`

<β̂pT qh1
, . . . ,=β̂pT qhM

,=β̂pT qh1
, . . . ,=β̂pT qhM

˘J
,

where < and = denote real and imaginary part, respectively. Finally, set up the quadratic form

Q̂
pT q
M “ T pb̂

pT q
M qJΣ̂´1

M b̂
pT q
M , (3.6)

where Σ̂M is an estimator of the asymptotic covariance matrix of the vectors bpT qM which are defined by

replacing γ̂pT qh with γpT qh in the definition of b̂pT qM . The statistic Q̂pT qM will be used to test the null of stationarity

against the alternative of local stationarity. Note that this quadratic form depends on the tuning parameters L

and M . These effects will be briefly discussed in Section 5.

4 Large-sample results

4.1 Properties under the null of stationarity

The following gives the main requirements under stationarity of the functional time series that are needed to

establish the asymptotic behavior of the test statistics under the null hypothesis.

Assumption 4.1 (Stationary functional time series). Let pXt : t P Zq be a stationary functional time series

with values in HR such that

(i) Er}X0}
k
2s ă 8,

(ii)
ř8
t1,...,tk´1“´8

p1` |tj |
`q}ct1,...,tk´1

}2 ă 8 for all 1 ď j ď k ´ 1,

for some fixed values of k, ` P N.

The conditions of Assumption 4.1 ensure that the k-th order cumulant spectral density kernel

fω1,...,ωk´1
pτ1, . . . , τkq “

1

p2πqk´1

8
ÿ

t1,...,tk´1“´8

ct1,...,tk´1
pτ1, . . . , τkqe

´ip
řk

j“1 ωjtjq (4.1)
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is well-defined in L2 and is uniformly continuous in ω with respect to } ¨ }2. Additionally, the parameter `

controls the smoothness of fω in the sense that, for all i ď `,

sup
ω

›

›

›

Bi

Bωi
fω

›

›

›

2
ă 8. (4.2)

A proof of these facts can be found in Panaretos & Tavakoli (2013). Through right-integration, the function

(4.1) induces a k-th order cumulant spectral density operator Fω1,...,ωk´1
which is Hilbert–Schmidt. The

following theorem establishes that the scaled difference between γpT qh and γ̂pT qh is negligible in large samples.

Theorem 4.1. Let Assumptions 3.1 and 4.1 be satisfied with k “ 8 and ` “ 2 and assume further that

infωxFpψq, ψy ą 0 for ψ P H . Then, for any fixed h,

?
T
ˇ

ˇγ
pT q
h ´ γ̂

pT q
h

ˇ

ˇ “ Op

ˆ

1
?
bT
` b2

˙

pT Ñ8q.

The proof is given in Section S2 of the Online Supplement. For the eigen-based statistic (3.2), the condi-

tion infωxFpψq, ψy ą 0 reduces to infω λ
ω
L ą 0. In practice this means that only those eigenfunctions should

be included that belong to the l-largest eigenvalues in the quadratic form (3.6). This is discussed in more detail

in Section 5, where a criterion is proposed to choose L. Theorem 4.1 shows that the distributional properties

of γ̂pT qh are asymptotically the same as those of γpT qh , or both versions (3.1) and (3.2) of the test, provided that

the following extra condition on the bandwidth holds.

Assumption 4.2. The bandwidth b satisfies bÑ 0 such that bT Ñ8 as T Ñ8.

Note that these rates are in fact necessary for the estimator in (3.3) to be consistent, see Panaretos &

Tavakoli (2013), and therefore do not impose an additional constraint under H0. The next theorem derives

the second-order structure of γpT qh for the eigenbased statistics (3.2). It shows that the asymptotic variance is

uncorrelated for all lags h and that there is no correlation between the real and imaginary parts.

Theorem 4.2. Let Assumption 4.1 be satisfied with k “ t2, 4u. Then,

T Cov
´

<γpT qh1
pl1q,<γpT qh2

pl2q
¯

“ T Cov
´

=γpT qh1
pl1q,=γpT qh2

pl2q
¯

“

$

’

’

&

’

’

%

δl1,l2
2
`

1

4π

ż ż

xFω,´ω´ωh,´ω1pφ
ω1

l2
b φ

ω1`ω1h
l2

q, φωl1 b φ
ω`ωh
l1

y
b

λωl1λ
´ω1

l2
λ´ω´ωh
l1

λ
ω1`ω1h
l2

dωdω1, if h1 “ h2 “ h,

Op 1
T q, if h1 ‰ h2,

where δi,j “ 1 if i “ j and 0 otherwise. Furthermore,

T Covp<γpT qh1
pl1q,=γpT qh2

pl2qq “ O

ˆ

1

T

˙

uniformly in h1, h2 P Z.
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The proof of Theorem 4.2 is given in Appendix D.1, its counterpart for (3.1) is stated as Theorem C.1 in

Appendix C. Note that the results in the theorem use at various instances the fact that the k-th order spectral

density operator at frequency ω “ pω1, . . . , ωkq
T P Rk is equal to the k-th order spectral density operator at

frequency ´ω in the manifold
řk
j“1 ωj mod 2π.

With the previous results in place, the large-sample behavior of the quadratic form statistics Q̂pT qM defined

in (3.6) can be derived. This is done in the following theorem.

Theorem 4.3. Let Assumptions 3.1 and 4.2 be satisfied. Let Assumption 4.1 be satisfied with k ě 1 and ` “ 2

and assume that infω λ
ω
L ą 0. Then,

(a) For any collection h1, . . . , hM bounded by h̄,

?
Tb

pT q
M

D
Ñ N2M p0,Σ0q pT Ñ8q,

where D
Ñ denotes convergence in distribution and N2M p0,Σ0q a 2M -dimensional normal distribution

with mean 0 and diagonal covariance matrix Σ0 “ diagpσ2
0,m : m “ 1, . . . , 2Mq whose elements are

σ2
0,m “ lim

TÑ8

L
ÿ

l1,l2“1

TCov
`

<γpT qhm
pl1q,<γpT qhm

pl2q
˘

, m “ 1, . . . ,M,

and σ2
0,M`m “ σ2

0,m. The explicit form of the limit is given by Theorem 4.2.

(b) Using the result in (a), it follows that

Q̂
pT q
M

D
Ñ χ2

2M pT Ñ8q,

where χ2
2M is a χ2-distributed random variable with 2M degrees of freedom.

The proof of Theorem 4.3 is provided in Appendix D.1. Part (b) of the theorem can now be used to

construct tests with asymptotic level α. Theorem C.2 contains the result for the test based on (3.1). To

better understand the power of the test, the next section investigates the behavior under the alternative of local

stationarity.

4.2 Properties under the alternative

This section contains the counterparts of the results in Section 4.1 for locally stationary functional time series.

The following conditions are essential for the large-sample results to be established here.

Assumption 4.3. Assume pXpT qt : t ď T, T P Nq and pXpuqt : t P Zq are as in Definition 3.1 and let κk;t1,...,tk´1

be a positive sequence in L2pr0, 1sk,Rq independent of T such that, for all j “ 1, . . . , k ´ 1 and some ` P N,

ÿ

t1,...,tk´1PZ
p1` |tj |

`q}κk;t1,...,tk´1
}2 ă 8. (4.3)
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Suppose furthermore that there exist representations

X
pT q
t ´X

pt{T q
t “ Y

pT q
t and X

puq
t ´X

pvq
t “ pu´ vqY

pu,vq
t , (4.4)

for some processes pY pT qt : t ď T, T P Nq and pY pu,vqt : t P Zq taking values in HR whose k-th order joint

cumulants satisfy

(i) }cumpX
pT q
t1
, . . . , X

pT q
tk´1

, Y
pT q
tk
q}2 ď

1
T }κk;t1´tk,...,tk´1´tk}2,

(ii) }cumpX
pu1q
t1

, . . . , X
puk´1q

tk´1
, Y

puk,vq
tk

q}2 ď }κk;t1´tk,...,tk´1´tk}2,

(iii) supu }cumpX
puq
t1
, . . . , X

puq
tk´1

, X
puq
tk
q}2 ď }κk;t1´tk,...,tk´1´tk}2,

(iv) supu }
B`

Bu`
cumpX

puq
t1
, . . . , X

puq
tk´1

, X
puq
tk
q}2 ď }κk;t1´tk,...,tk´1´tk}2.

Note that these assumptions are generalizations of the ones in Lee & Subba Rao (2016), who investigated

the properties of quadratic forms of stochastic processes in a finite-dimensional setting. For fixed u0, the

process pXpu0qt : t P Zq is stationary and thus the results of van Delft & Eichler (2016) imply that the local

k-th order cumulant spectral kernel

fu0;ω1,...,ωk´1
pτ1, . . . , τkq “

1

p2πqk´1

ÿ

t1,...,tk´1PZ
cu0;t1,...,tk´1

pτ1, . . . , τkqe
´i

řk´1
l“1 ωltl (4.5)

exists, where ω1, . . . , ωk´1 P r´π, πs and

cu0;t1,...,tk´1
pτ1, . . . , τkq “ cum

`

X
pu0q
t1

pτ1q, . . . , X
pu0q
tk´1

pτk´1q, X
pu0q
t0

pτkq
˘

(4.6)

is the corresponding local cumulant kernel of order k at time u0. The quantity fu,ω will be referred to as

the time-varying spectral density kernel of the stochastic process pXpT qt : t ď T, T P Nq. Under the given

assumptions, this expression is formally justified by Lemma S1.2.

Because of the standardization necessary in γ̂pT q, it is of importance to consider the properties of the

estimator (3.3) in case the process is locally stationary. The next theorem shows that it is a consistent estimator

of the integrated time-varying spectral density operator

Gω “

ż 1

0
Fu,ωdu,

where the convergence is uniform in ω P r´π, πs with respect to ~¨~2. This therefore becomes an operator-

valued function in ω that acts on H and is independent of rescaled time u.

Theorem 4.4 (Consistency and uniform convergence). Suppose pXpT qt : t ď T, T P Nq satisfies Assumption

4.3 for ` “ 2 and consider the estimator F̂pT qω in (3.3) with bandwidth fulfilling Assumption 3.1. Then,

(i) Er~F̂pT qω ´Gω~
2
2s “ OppbT q´1 ` b4q;

(ii) supωPr´π,πs ~F̂
pT q
ω ´Gω~2

p
Ñ 0,

uniformly in ω P r´π, πs.
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The proof of Theorem 4.4 is given in Section S4 of the Appendix. Under the conditions of this theorem,

the sample eigenelements pλ̂ωl , φ̂
ω
l : l P Nq of F̂ω are consistent for the eigenelements pλ̃ωl , φ̃

ω
l : l P Nq of Gω;

see Mas & Menneteau (2003).

To obtain the distributional properties of γ̂pT q, it is necessary to replace the denominator with its deter-

ministic limit. In analogy with Theorem 4.1, the theorem below gives conditions on the bandwidth for which

this is justified under the alternative.

Theorem 4.5. Let Assumption 4.3 be satisfied with k “ 8 and ` “ 2 and assume that infωxGωpψq, ψy ą 0

for all ψ P HC. Then,

?
T |γ

pT q
h ´ γ̂

pT q
h | “ Op

ˆ

1
?
bT
` b2 `

1

b
?
T

˙

pT Ñ8q.

The proof of Theorem 4.5 is given in Section S2 of the Online Supplement. The theorem shows that for

γ̂
pT q
h to have the same asymptotic sampling properties as γpT qh , additional requirements on the bandwidth b are

needed. These are stated next.

Assumption 4.4. The bandwidth b satisfies bÑ 0 such that b
?
T Ñ8 as T Ñ8.

The conditions imply that the bandwidth should tend to zero at a slower rate than in the stationary case.

The conditions on the bandwidth imposed in this paper are in particular weaker than the ones required by

Dwivedi & Subba Rao (2011) in the finite-dimensional context.

The dependence structure of γpT qh under the alternative is more involved than under the null of stationarity

because the mean is nonzero for h ‰ 0 mod T . Additionally, the real and imaginary components of the

covariance structure are correlated. The following theorem is for the test based on (3.2).

Theorem 4.6. Let Assumption 4.3 be satisfied with k “ t2, 4u. Then, for h “ 1, . . . , T ´ 1,

E
“

γ
pT q
h plq

‰

“
1

2π

ż 2π

0

ż 1

0

xFu,ωφ̃
ω`ωh
l , φ̃ωl ye

´i2πuh

b

λ̃ωl λ̃
ω`ωh
l

dudω `O

ˆ

1

T

˙

“ O

ˆ

1

h2

˙

`O

ˆ

1

T

˙

. (4.7)

The covariance structure satisfies

1. T Covp<γpT qh1
pl1q,<γpT qh2

pl2qq “

1

4

“

Σ
pT q
h1,h2

pl1, l2q ` Σ́
pT q
h1,h2

pl1, l2q ` Σ̀
pT q
h1,h2

pl1, l2q ` Σ̄
pT q
h1,h2

pl1, l2q
‰

`RT ,

2. T Covp<γpT qh1
pl1, l2q,=γpT qh2

pl3, l4qq “

1

4i

“

Σ
pT q
h1,h2

pl1, l2q ´ Σ́
pT q
h1,h2

pl1, l2q ` Σ̀
pT q
h1,h2

pl1, l2q ´ Σ̄
pT q
h1,h2

pl1, l2q
‰

`RT ,

3. T Covp=γpT qh1
pl1, l2q,=γpT qh2

pl3, l4qq “

1

4

“

Σ
pT q
h1,h2

pl1, l2q ´ Σ́
pT q
h1,h2

pl1, l2q ´ Σ̀
pT q
h1,h2

pl1, l2q ` Σ̄
pT q
h1,h2

pl1, l2q
‰

`RT ,
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where }RT }2 “ OpT´1q and where Σ
pT q
h1,h2

pl1, l2q, Σ́
pT q
h1,h2

pl1, l2qΣ̀
pT q
h1,h2

pl1, l2q, Σ̄
pT q
h1,h2

pl1, l2q are derived in the

Appendix and general expressions for (3.1) are defined in equations (S.5.1)–(S.5.4) of the Online Supplement.

The proof of Theorem 4.6 is given in Section S4 of the Appendix. Its companion theorem is stated as

Theorem C.3 in Section C. The last result in this section concerns the asymptotic of Q̂pT qM in (3.6) in the locally

stationary setting. Before stating this result, observe that the previous theorem shows that a noncentrality

parameter will have to enter, since the mean of γpT qh plq is nonzero. Henceforth, the limit of (4.7) shall be

denoted by

µhplq “
1

2π

ż 2π

0

ż 1

0

xFu,ωφ̃
ω`ωh
l , φ̃ωl ye

´i2πuh

b

λ̃ωl λ̃
ω`ωh
l

dudω

and its vectorization by µh. Following Paparoditis (2009) and Dwivedi & Subba Rao (2011), there is an intu-

itive interpretation of the degree of nonstationarity that can be detected in these functions. For fixed l and small

h, they can be seen to approximate the Fourier coefficients of the function xFu,ωφ̃
ω`ωh
l , φ̃ωl y{pλ̃

ω
l λ̃

ω`ωh
l q1{2.

More specifically, for small h and T Ñ8, they approximate

ϑh,jplq “
1

2π

ż 2π

0

ż 1

0

xFu,ωφ̃
ω`ωh
l , φ̃ωl y

b

λ̃ωl λ̃
ω`ωh
l

ei2πuh´ijωdudω.

Thus, µhplq « ϑh,0plq. If the process is weakly stationary, then Fu,ω ” Fω and the eigenelements reduce to

λωl , λ
ω`h
l and φωl , φ

ω`h
l , respectively, and hence the integrand of the coefficients does not depend on u. All

Fourier coefficients are zero except ϑ0,jplq. In particular, ϑ0,0plq “ 1. Observe that, for the statistic (3.1),

the above becomes ϑh,jpl, l1q and, for h “ 0, the off-diagonal elements yield coherence measures. The mean

functions can now be seen to reveal long-term non-stationary behavior. Unlike testing methods based on

segments in the time domain, the proposed method is consequently able to detect smoothly changing behavior

in the temporal dependence structure. A precise formulation of the asymptotic properties of the test statistic

in (3.2) under HA is given in the next theorem.

Theorem 4.7. Let Assumptions 3.1 and 4.4 be satisfied. Let Assumption 4.3 be satisfied k ě 1 and ` “ 2 and

assume that infω λ
ω
L ą 0. Then,

(a) For any collection h1, . . . , hM bounded by h̄,
?
Tb

pT q
M

D
Ñ N2M pµ,ΣAq pT Ñ8q,

where N2M pµ,ΣAq denotes a 2M -dimensional normal distribution with mean vector µ, whose first M

components are <eTµhm and last M components are =eTµhm , and block covariance matrix

ΣA “

¨

˝

Σ
p11q
A Σ

p12q
A

Σ
p21q
A Σ

p22q
A .

˛

‚

whose M ˆM blocks are, for m,m1 “ 1, . . . ,M , given by

Σ
p11q
A pm,m1q “ lim

TÑ8

L
ÿ

l1,l2“1

1

4

“

Σ
pT q
h1,h2

pl1, l2q ` Σ́
pT q
h1,h2

pl1, l2q ` Σ̀
pT q
h1,h2

pl1, l2q ` Σ̄
pT q
h1,h2

pl1, l2q
‰

,
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Σ
p12q
A pm,m1q “ lim

TÑ8

L
ÿ

l1,l2“1

1

4i

“

Σ
pT q
h1,h2

pl1, l2q ´ Σ́
pT q
h1,h2

pl1, l2q ` Σ̀
pT q
h1,h2

pl1, l2q ´ Σ̄
pT q
h1,h2

pl1, l2q
‰

,

Σ
p22q
A pm,m1q “ lim

TÑ8

L
ÿ

l1,l2“1

1

4

“

Σ
pT q
h1,h2

pl1, l2q ´ Σ́
pT q
h1,h2

pl1, l2q ´ Σ̀
pT q
h1,h2

pl1, l2q ` Σ̄
pT q
h1,h2

pl1, l2q
‰

,

where Σ
pT q
hm,hm1

pl1, l2q, Σ́
pT q
hm,hm1

pl1, l2q, Σ̀
pT q
hm,hm1

pl1, l2q, Σ̄
pT q
hm,hm1

pl1, l2q are as in Theorem 4.6.

(b) Using the result in (a), it follows that

Q̂
pT q
M

D
Ñ χ2

µ,2M , pT Ñ8q,

where χ2
µ,2M denotes a generalized noncentral χ2 random variable with noncentrality parameter µ “

}µ}22 and 2M degrees of freedom.

The proof of Theorem 4.7 can be found in Appendix S4. Theorem C.4 contains the result for (3.1).

5 Empirical results

This section reports the results of an illustrative simulation study designed to verify that the large-sample

theory is useful for applications to finite samples. The test is subsequently applied to annual temperature

curves data. The findings provide guidelines for a further fine-tuning of the test procedures to be investigated

further in future research.

5.1 Simulation setting

To generate functional time series, the general strategy applied, for example in the papers by Aue et al. (2015)

and Hörmann et al. (2015), is utilized. For this simulation study, all processes are build on a Fourier basis

representation on the unit interval r0, 1s with basis functions ψ1, . . . , ψ15. Note that the lth Fourier coefficient

of a pth-order functional autoregressive, FAR(p), process pXt : t P Zq satisfies

xXt, ψly “
8
ÿ

l1“1

p
ÿ

t1“1

xXt´t1 , ψlyxAt1pψlq, ψl1y ` xεt, ψly

«

Lmax
ÿ

l1“1

p
ÿ

t1“1

xXt´t1 , ψlyxAt1pψlq, ψl1y ` xεt, ψly, (5.1)

the quality of the approximation depending on the choice of Lmax. The vector of the first Lmax Fourier coef-

ficients Xt “ pxXt, ψ1y, . . . , xXt, ψLmaxyq
J can thus be generated using the pth-order vector autoregressive,

VAR(p), equations

Xt “

p
ÿ

t1“1

At1Xt´t1 ` εt,

where the pl, l1q element of At1 is given by xAt1pψlq, ψl1y and εt “ pxεt, ψ1y, . . . , xεt, ψLmaxyq
J. The entries

of the matrices At1 are generated as Np0, νpt
1q

l,l1 q random variables, with the specifications of νl,l1 given below.
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To ensure stationarity or the existence of a causal solution (see Bosq, 2000; van Delft & Eichler, 2016, for

the stationary and locally stationary case, respectively), the norms κt1 of At1 are required to satisfy certain

conditions, for example,
řp
t1“1 ~At1~8 ă 1. The functional white noise, FWN, process is included in (5.1)

setting p “ 0.

All simulation experiments were implemented by means of the fda package in R and any result reported

in the remainder of this section is based on 1000 simulation runs.

5.2 Specification of tuning parameters

The test statistics in (3.6) depends on the tuning parameters L, determining the dimension of the projection

spaces, and M , the number of lags to be included in the procedure. In the following a criterion will be set

up to choose L, while for M only two values were entertained because the selection is less critical for the

performance as long as it is not chosen too large. Note that an optimal choice for L is more cumbersome to

obtain in the frequency domain than in the time domain because a compromise over a number of frequencies

is to be made, each of which may individually lead to a different optimal L than the one globally selected.

To begin with, consider the eigenbased version of the test. The theory provided in the previous two sections

indicates that including too small eigenvalues into the procedure would cause instability. On the other hand,

the number of eigenvalues used should explain a reasonable proportion of the total variation in the data.

These two requirements can be conflicting and a compromise is sought implementing a thresholding approach

through the criterion

L “ LM pζ1, ζ2, ξq “ max

"

` : ζ1 ă
1

T

T
ÿ

j“1

ř`
l“1 λ

ωj

l
řLmax
l1“1 λ

ωj

l1

ă ζ2 and
infj λ

ωj

`

infj λ
ωj

1

ą ξ

*

´ tlogpMqu, (5.2)

where ωj denotes the j-th Fourier frequency and t¨u integer part.1 Extensive simulation studies have shown

that the choices ζ1 “ 0.70, ζ2 “ 0.90 and ξ “ 0.15 work well when the eigenvalues display a moderate decay.

Then, the performance of the procedure appears robust against moderate deviations from these presets.

For processes with a very steep decay of the eigenvalues, however, this rule might pick L on the conserva-

tive side. To take this into account, the criterion is prefaced with a preliminary check for fast decay that leads

to a relaxation of the parameter values ζ2 and ξ if satisfied. The condition to be checked is

Cpξ1, ξ2, ξ3q “

"

infj λ
ωj

2

infj λ
ωj

1

ă ξ1 and
infj λ

ωj

3

infj λ
ωj

1

ă ξ2 and
infj λ

ωj

4

infj λ
ωj

1

ă ξ3

*

, (5.3)

with ξ1 “ 0.5, ξ2 “ 0.25 and ξ3 “ 0.125. Observe that (5.3) provides a quantification of what is termed a

‘fast decay’ in this paper. If it is satisfied, L is chosen using the criterion (5.2) but now with ζ2 “ 0.995 and

ξ “ 0.01. Condition (5.3) is in particular useful for processes for which the relative decay of the eigenvalues

tends to be quadratic, a behavior more commonly observed for nonstationary functional time series. A further

automation of the criterion is interesting and may be considered in future research as it is beyond the scope
1The rule is maxt1, Lu in the exceptional cases that (5.2) returns a nonpositive value.
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of the present paper. The test statistic Q̂pT qM in (3.6) is then set up with the above choice of L and with

hm “ m and M “ 1 and 5. A rejection is reported if the simulated test statistic value exceeds the critical

level prescribed in part (b) of Theorem 4.3.

Correspondingly, for the fixed projection basis, the test statistic Q̂pT qM in (3.6) is set up to select those

directions ` P t1, . . . , Lmaxu for which xFωψ`, ψ`y are largest and which explain at least 90 percent of total

variation (averaged over frequencies). Furthermore, hm “ m for m “ 1, . . . ,M with M “ 1 and 5. A

rejection is reported as above using the critical level prescribed in part (b) of Theorem C.2.

The performance of both tests is evaluated below in a variety of settings. To distinguish between the two

approaches, refer to the eigenbased statistic as Q̂pT qM,e and to the fixed projection statistic as Q̂pT qM,f . Estimation

of the spectral density operator and its eigenelements, needed to compute the two statistics, was achieved using

(3.3) with the concave smoothing kernel Kpxq “ 6p0.25´ x2q with compact support on x P r´1{2, 1{2s and

bandwidth b “ T´1{5.

5.3 Estimating the fourth-order spectrum

The estimation of the matrix ΣM is a necessary ingredient in the application of the proposed stationarity test.

Generally, the estimation of the sample (co)variance can influence the power of tests as has been observed in a

number of previous works set in similar but nonfunctional contexts. Among these contributions are Paparoditis

(2009) and Jin et al. (2015), who used the spectral density of the squares, Nason (2013), who worked with

locally stationary wavelets, Dwivedi & Subba Rao (2011), who focused on Gaussianity of the observations,

and Jentsch & Subba Rao (2015), who employed a stationary bootstrap procedure. A different idea was put

forward by Bandyopadhyay & Subba Rao (2017) and Bandyopadhyay et al. (2017). These authors utilized the

notion of orthogonal samples to estimate the variance, falling back on a general estimation strategy developed

in Subba Rao (2016).

To estimate the tri-spectrum for the eigenbased statistics, the estimator proposed in Brillinger & Rosenblatt

(1967) was adopted to the functional context in the following way. Note first that in order to utilize the results

of Theorem 4.3, the limiting covariance structure given through discretized population terms of the form

T
ÿ

j1,j2“1

p2πq

T 2
xFωj1

,´ωj1`h1
,´ωj2

pφ
ωj2
l2
b φ

ωj2`h1
l2

q, φ
ωj1
l1
b φ

ωj1`h1
l1

y `O

ˆ

1

T 2

˙

has to be estimated. To do this, consider the raw estimator

IpT qα1,α2,α3,α4
pφ̂
ωj1
l1
, φ̂

ωj2
l1
, φ̂

ωj3
l2
, φ̂

ωj4
l2
q

“
1

p2πq3T

T
ÿ

t1,t2,t3,t4“1

xCt1,t2,t3,t4pφ̂
ωj3
l2
b φ̂

ωj4
l2
q, φ̂

ωj1
l1
b φ̂

ωj2
l1
ye´i

ř4
j“1 αj ,

and observe that this is the fourth-order periodogram estimator of the random variables xXt, φ̂
ωj

l y. This

estimator is to be evaluated for a combination of frequencies α1, . . . , α4 that lie on the principal manifold

but not in any proper submanifold (see below) and is an unbiased but inconsistent estimator under the null
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hypothesis. The verification of this claim is given in the Online Supplement. To construct a consistent version

from the raw estimate, smooth over frequencies. The elements of Σ̂m can then be obtained from the more

standard second-order estimators above and from fourth-order estimators of the form

p2πq3

pb4T q
3

ÿ

k1,k2,k3,k4

K4

´ωj1 ´ αk1
b4

, . . . ,
ωj4 ´ αk4

b4

¯

Φpαk1 , . . . , αk4qI
pT q
αk1

,...,αk4
pl1, l2q, (5.4)

where K4px1, . . . , x4q is a smoothing kernel with compact support on R4 and where Φpα1, α2, α3, α4q “ 1

if
ř4
j“1 αj ” 0 mod 2π such that

ř

jPJ αj ı 0 mod 2π where J is any non-empty subset of t1, 2, 3, 4u

and Φpα1, α2, α3, α4q “ 0 otherwise. The function Φ therefore controls the selection of frequencies in the

estimation, ensuring that no combinations that lie on a proper submanifold are chosen. This is important

because, for k ą 2, the expectation of k-th order periodograms at such submanifolds possibly diverges. This

was pointed out in Brillinger & Rosenblatt (1967, Page 163). The estimator in (5.4) is consistent under the

null if the bandwidth b4 satisfies b4 Ñ 0 but b´3
4 T Ñ 8 as T Ñ 8. As this estimator is required for various

combinations of l1 and l2, it is worthwhile to mention that computational complexity increases rapidly. The

implementation was therefore partially done with the compiler language C++ and the Rcpp-package in R.

The simulations and application to follow below were conducted with K4px1, . . . , x4q “
ś4
j“1Kpxjq,

where K is as in Section 5.2 and bandwidth b4 “ T´1{6. It should be noted that the outcomes were not

sensitive with respect to the bandwidth choices.

5.4 Finite sample performance under the null

Under the null hypothesis of stationarity the following data generating processes, DGPs, were studied:

(a) The Gaussian FWN variables ε1, . . . , εT with coefficient variances Varpxεt, ψlyq “ expppl ´ 1q{10q;

(b) The FAR(2) variables X1, . . . , XT with operators specified through the respective variances νp1ql,l1 “

expp´l´ l1q and νp2ql,l1 “ 1{pl` l13{2q and Frobenius norms κ1 “ 0.75 and κ2 “ ´0.4, and innovations

ε1, . . . , εT as in (a);

(c) The FAR(2) variables X1, . . . , XT as in (b) but with Frobenius norms κ1 “ 0.4 and κ2 “ 0.45.

The sample sizes under consideration are T “ 2n for n “ 6, . . . , 10, so that the smallest sample size consists

of 64 functions and the largest of 1024. The processes in (a)–(c) comprise a range of stationary scenarios.

DGP (a) is the simplest model, specifying an independent FWN process. DGPs (b) and (c) exhibit second-

order autoregressive dynamics of different persistence, with the process in (c) possessing the stronger temporal

dependence.

The empirical rejection levels for the processes (a)–(c) can be found in Table 5.1. It can be seen that

the empirical levels for both statistics with M “ 1 are generally well adjusted with slight deviations in a few

cases. The performance of the statistics withM “ 5 is similar, although the rejection levels for the eigenbased

statistics tend to be a little conservative for models B and C.
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% level % level % level % level
T Q̂

pT q
1,e 5 1 Q̂

pT q
5,e 5 1 Q̂

pT q
1,f 5 1 Q̂

pT q
5,f 5 1

(a) 64 1.32 4.00 0.90 8.17 3.40 0.30 1.31 3.60 0.60 8.65 3.90 1.20
128 1.40 5.20 0.60 8.98 5.00 0.90 1.38 5.00 0.80 9.07 5.10 1.40
256 1.53 5.40 1.30 8.89 4.50 0.80 1.31 5.60 0.80 9.23 5.30 1.00
512 1.49 5.50 1.30 9.35 5.50 1.00 1.38 5.20 1.00 9.34 4.90 0.90

1024 1.44 5.70 1.10 9.17 4.00 0.70 1.36 5.00 1.20 9.51 4.60 0.70
(b) 64 1.23 2.70 0.10 7.94 2.80 0.80 1.41 2.90 0.60 8.59 4.80 1.60

128 1.40 5.20 0.80 8.80 3.60 0.70 1.41 5.40 0.90 8.91 5.10 1.20
256 1.41 5.70 1.70 8.89 2.90 0.40 1.34 4.60 0.90 9.21 5.20 1.00
512 1.29 6.10 1.00 9.11 5.30 0.90 1.34 5.40 1.10 9.36 4.30 0.50

1024 1.42 4.70 2.00 8.91 3.70 0.70 1.44 4.40 0.90 9.46 4.20 0.70
(c) 64 1.21 3.90 0.80 8.25 2.00 0.30 1.36 3.50 0.60 8.62 3.90 1.20

128 1.39 5.80 1.40 8.86 5.00 1.30 1.39 5.90 0.90 8.81 4.00 1.20
256 1.42 4.50 1.50 8.90 3.00 0.50 1.38 4.50 0.90 9.37 4.30 1.20
512 1.49 5.40 1.10 9.26 3.70 0.60 1.39 6.50 1.10 9.36 5.00 0.70

1024 1.39 4.50 0.90 9.29 3.90 0.50 1.34 5.90 1.00 9.66 5.70 0.80

Table 5.1: Median of test statistic values and rejection rates of Q̂pT qM,e and Q̂pT qM,f at the 1% and 5% asymptotic
level for the processes (a)–(c) for various choices of M and T . All table entries are generated from 1000
repetitions.

T (a) (b) (c) (d) (e) (f)
64 8.20 14.00 8.17 14.01 8.20 14.01 7.99 14.01 5.09 12.45 7.84 14.00

0.88 0.93 0.88 0.92 0.88 0.92 0.88 0.92 0.93 0.93 0.88 0.93

128 9.89 14.00 9.77 14.01 9.87 14.00 8.95 14.01 5.94 12.35 9.19 14.00
0.90 0.93 0.89 0.92 0.89 0.92 0.89 0.92 0.94 0.93 0.88 0.93

256 10.52 14.00 10.06 14.01 10.32 14.00 8.88 14.02 6.46 12.48 10.04 14.00
0.89 0.93 0.88 0.92 0.88 0.92 0.89 0.92 0.93 0.93 0.88 0.93

512 11.00 14.00 11.00 14.02 11.00 14.00 10.00 14.01 6.65 12.37 11.00 14.00
0.89 0.94 0.89 0.92 0.89 0.93 0.89 0.92 0.94 0.93 0.89 0.93

1024 11.00 14.00 11.00 14.03 11.00 14.00 11.00 14.02 6.44 12.33 11.00 14.00
0.88 0.94 0.89 0.92 0.88 0.93 0.89 0.92 0.94 0.94 0.88 0.94

Table 5.2: Average choices of L (top entries in each row specified by T ) and aTVE (bottom entries) for
M “ 1, various sample sizes and processes (a)–(f). For each process, the left column is for the eigenbased
statistics, the right column for the fixed projection statistics.

For the eigenbased statistics set up with M “ 1, Table 5.2 displays the average choices of L according

to (5.2) and the corresponding average total variation explained (aTVE) T´1
řT
j“1

`
řL
l“1 λ

ωj

l {
řLmax
l1“1 λ

ωj

l1

˘

.

It can be seen that larger sample sizes lead to the selection of larger L, as more degrees of freedom become

available. Moreover, aTVE tends to be close to 0.90 for the models under consideration. Some evidence on

closeness between empirical and limit densities for the statistics Q̂pT q5,e and Q̂pT q5,f are provided in Figure 5.1.

Naturally, the numbers for the fixed projection based statistics are more homogeneous.
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Figure 5.1: black: Empirical density of Q̂pT q5,e (black) and Q̂pT q5,f (blue) for T “ 64 (left panel) and T “ 512
(right panel) for DGPs (a)–(c) (top to bottom). Red: The corresponding chi-squared densities predicted under
the null.
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5.5 Finite sample performance under the alternative

Under the alternative, the following data generating processes are considered:

(d) The tvFAR(1) variables X1, . . . , XT with operator specified through the variances νp1ql,l1 “ expp´l´ l1q

and Frobenius norm κ1 “ 0.8, and innovations given by (a) with added multiplicative time-varying

variance

σ2ptq “
1

2
` cos

ˆ

2πt

1024

˙

` 0.3 sin

ˆ

2πt

1024

˙

;

(e) The tvFAR(2) variablesX1, . . . , XT with both operators as in (d) but with time-varying Frobenius norm

κ1,t “ 1.8 cos

ˆ

1.5´ cos

ˆ

4πt

T

˙˙

,

constant Frobenius norm κ2 “ ´0.81, and innovations as in (a);

(f) The structural break FAR(2) variables X1, . . . , XT given in the following way.

– For t ď 3T {8, the operators are as in (b) but with Frobenius norms κ1 “ 0.7 and κ2 “ 0.2, and

innovations as in (a);

– For t ą 3T {8, the operators are as in (b) but with Frobenius norms κ1 “ 0 and κ2 “ ´0.2, and

innovations as in (a) but with variances Varpxεt, ψlyq “ 2 expppl ´ 1q{10q.

All other aspects of the simulations are as in Section 5.4. The processes studied under the alternative provide

intuition for the behavior of the proposed tests under different deviations from the null hypothesis. DGP (d)

is time-varying only through the innovation structure, in the form of a slowly varying variance component.

The first-order autoregressive structure is independent of time. DGP (e) is a time-varying second-order FAR

process for which the first autoregressive operator varies with time. The final DGP in (f) models a structural

break, a different type of alternative. Here, the process is not locally stationary as prescribed under the

alternative in this paper, but piecewise stationary with the two pieces being specified as two distinct FAR(2)

processes.

The empirical power of the various test statistics for the processes in (d)–(f) are in Table 5.3. Power results

are roughly similar across the selected values ofM for both statistics. For DGP (d), power is low for the small

sample sizes T “ 64 for the eigenbased statistics and even lower for the fixed projection statistics. It is at

100% for all T larger or equal to 256. The low power is explained by the form of the time-varying variance

which takes 1024 observations to complete a full cycle of the sine and cosine components. In the situation

of the smallest sample size, this slowly varying variance appears more stationary, explaining why rejections

of the null are less common. Generally, the eigenbased statistics performs better than its fixed projection

counterpart for this process.

DGP (e) shows lower power throughout. The reason for this is that the form of local stationarity under

consideration here is more difficult to separate from stationary behavior expected under the null hypothesis.
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% level % level % level % level
T Q̂

pT q
1,e 5 1 Q̂

pT q
5,e 5 1 Q̂

pT q
1,f 5 1 Q̂

pT q
5,f 5 1

(d) 64 6.39 54.30 30.00 14.33 29.40 12.30 2.68 17.20 4.00 11.08 13.20 4.80
128 66.97 99.90 99.80 86.94 99.80 99.40 18.94 98.80 93.30 35.79 98.10 90.20
256 611.13 100.00 100.00 747.09 100.00 100.00 130.23 100.00 100.00 206.05 100.00 100.00
512 1462.97 100.00 100.00 1506.20 100.00 100.00 269.31 100.00 100.00 347.91 100.00 100.00

1024 1550.04 100.00 100.00 1627.24 100.00 100.00 195.85 100.00 100.00 251.64 100.00 100.00
(e) 64 5.29 48.90 46.30 15.78 47.20 45.40 3.93 44.20 39.40 14.74 44.40 40.50

128 6.05 50.20 46.30 20.74 52.00 48.40 4.20 45.30 42.10 15.47 46.50 43.20
256 5.67 49.50 45.80 19.71 52.80 47.90 4.04 43.70 40.40 15.67 46.10 43.10
512 6.35 50.65 47.55 25.80 56.96 51.45 3.91 44.40 41.80 17.37 48.50 44.30

1024 9.80 52.06 50.35 42.40 65.83 59.50 4.64 46.80 43.80 22.10 54.80 49.00
(f) 64 23.84 97.00 93.10 30.79 89.70 79.60 6.19 52.50 23.50 15.81 33.60 14.60

128 30.37 97.00 93.20 40.66 90.70 83.10 11.97 90.30 69.90 23.45 80.70 51.60
256 80.27 100.00 100.00 87.25 100.00 100.00 23.10 99.90 98.60 38.49 99.80 98.10
512 288.79 100.00 100.00 298.20 100.00 100.00 46.99 100.00 100.00 68.60 100.00 100.00

1024 781.13 100.00 100.00 824.65 100.00 100.00 94.85 100.00 100.00 127.87 100.00 100.00

Table 5.3: Median of test statistic values and rejection rates of Q̂pT qM,e and Q̂pT qM,f at the 1% and 5% asymptotic
level for the processes (d)–(f) for various choices of M and T . All table entries are generated from 1000
repetitions.

This is corroborated in Figure 5.2, where the center of the empirical version of the non-central generalized chi-

squared limit under the alternative is more closely aligned with that of the standard chi-squared limit expected

under the null hypothesis than for the cases (d) and (f). Both test statistics behave similarly across the board.

The results for DGP (f) indicate that the proposed statistics have power against structural break alterna-

tives. This statement is supported by Figure 5.2. Here the eigenbased version picks up power quicker than the

fixed projection counterpart as the sample size T increases. All statistics work well once T reaches 256.

Going back to Table 5.2, it further seen that L is under HA generally chosen in a similar way as under

H0, with one notable exception being the process under (e), where L tends to be significantly smaller. Under

the alternative, aTVE tends to be marginally larger for models (d)–(f) than for the models (a)–(c) considered

under the null hypothesis.

5.6 Finite sample performance under non-Gaussian observations

In this section, the behavior of the eigenbased test under non-Gaussianity is further investigated through the

following processes:

(g) The FAR(2) variables X1, . . . , XT as in (b) but with both independent t19-distributed FWN and inde-

pendent βp6, 6q-distributed FWN;

(h) The tvFAR(1) variables X1, . . . , XT as in (d) but with independent t10-distributed FWN and indepen-

dent βp6, 6q-distributed FWN.

For direct comparison, both t19- and βp6, 6q-distributions were standardized to conform to zero mean and unit

variance as the standard normal. The sample sizes considered were T “ 64 and T “ 128, since these are most
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Figure 5.2: Empirical density of Q̂pT q5,e (black) and Q̂pT q5,f (blue) for T “ 64 (left panel) and T “ 512 (right
panel) for DGPs (d)–(f) (top to bottom). Note that 2.5% outliers have been removed for Model (e). Red: The
corresponding chi-squared densities predicted under the null.
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similar to the ones observed for the temperature data discussed in Section 5.7, and M “ 1, 3 and 5. All other

aspects are as detailed in Section 5.4. These additional simulations were designed to shed further light on the

effect of estimating the fourth-order spectrum in situations deviating from the standard Gaussian setting. Note

in particular that the t19-distribution serves as an example for leptokurtosis (the excess kurtosis is 0.4) and the

βp6, 6q distribution for platykurtosis (the excess kurtosis is ´0.4). Process (g) showcases the behavior under

the null, while process (h) highlights the performance under the alternative. The corresponding results are

given in Table 5.4 and can be readily compared with corresponding outcomes for the Gaussian processes (b)

and (d) in Tables 5.1–.5.3.

% level % level
T L aTVE Q̂

pT q
1,e 5 1 Q̂

pT q
5,e 5 1

(g) t 64 8.13 0.88 1.33 3.30 0.30 8.24 2.40 0.70
128 9.73 0.89 1.22 4.90 1.40 8.80 3.90 1.00

β 64 8.18 0.88 1.16 2.90 0.60 7.61 2.40 0.40
128 9.80 0.89 1.34 4.60 0.90 8.97 4.00 0.60

(h) t 64 4.32 0.98 7.44 59.70 40.10 16.55 42.80 26.80
128 4.57 0.98 85.85 100.00 100.00 98.84 99.80 99.50

β 64 4.42 0.98 7.07 58.60 37.80 16.14 39.30 22.50
128 4.65 0.98 88.78 100.00 100.00 98.57 99.90 99.80

Table 5.4: Median of test statistic values and rejection rates of Q̂pT qM,e at the 1% and 5% asymptotic level for
the processes (g) and (h), where t and β indicate t19- and βp6, 6q-distributed innovations, respectively. The
values for L and aTVE correspond to M “ 1. All table entries are generated from 1000 repetitions.

It can be seen from the results in Table 5.4 that the proposed procedures perform roughly as expected.

First, under the null hypothesis for process (g) and for T “ 64, levels tend to be conservative for all M . For

T “ 128, levels are well adjusted for M “ 1 and still decent for M “ 5. Both t19 and βp6, 6q variables tend

to be produce levels that differ only little from their Gaussian counterparts in Table 5.1. Second, under the

alternative for process (h), powers align roughly as for the Gaussian case in Table 5.3. Comparing to Table 5.2,

it can be seen that for process (h), the chosen L are lower than in the Gaussian case. Overall, the simulation

results reveal that the estimation of the fourth-order spectrum does not lead to a marked decay in performance.

5.7 Application to annual temperature curves

To give an instructive data example, the proposed method was applied to annual temperature curves recorded

at several measuring stations across Australia over the last century and a half. The exact locations and lengths

of the functional time series are reported in Table 5.5, and the annual temperature profiles recorded at the

Gayndah station are displayed for illustration in the left panel of Figure 5.3. To test whether these annual tem-

perature profiles constitute stationary functional time series or not, the proposed testing method was utilized,

using specifications similar to those in the simulation study. Focusing here on the eigenbased version, the test
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statistic Q̂pT qM,e in (3.6) was applied with L chosen according to (5.2) and hm “ m for m “ 1, . . . ,M , where

M “ 1 and 5.

The testing results are summarized in Table 5.5. It can be seen that stationarity is rejected in favor of the

alternative at the 1% significance level at all measuring stations for Q̂pT q5,e and for all but two measuring stations

for Q̂pT q1,e , the exceptions being Melbourne and Sydney, where the test is rejected at the 5% level with a p-value

of 0.014, and Sydney, where the p-value is approximately 0.072. The clearest rejection of the null hypothesis

was found for the measuring station at Gunnedah Pool for both choices of M . The values of L chosen with

(5.2) range from 4 to 8 and are similar to the values observed in the simulation study. The right-hand side

of Figure 5.3 shows the decay of eigenvalues associated with the different measuring stations. Moreover, for

M “ 1 (M “ 5) aTVE ranges from 0.762 (0.705) in Hobart to 0.882 (0.847) in Melbourne.

Station T L aTVE Q̂
pT q
1,e L aTVE Q̂

pT q
5,e

Boulia 120 7 0.864 11.623 6 0.823 65.463
Robe 129 8 0.876 13.262 7 0.837 39.339
Cape Otway 149 5 0.844 35.382 4 0.798 75.876
Gayndah 117 6 0.840 14.638 5 0.792 55.967
Gunnedah 133 4 0.825 41.494 3 0.760 76.805
Hobart 121 5 0.762 20.405 4 0.705 38.288
Melbourne 158 8 0.882 5.274 7 0.847 54.879
Sydney 154 8 0.873 8.591 7 0.837 28.359

Table 5.5: Summary of results for eight Australian measuring stations. The column labeled T reports the
sample size, L gives the value chosen by (5.2), aTVE is the average total variation explained as used in this
criterion.
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Figure 5.3: Plot of annual temperature curves at Gayndah station (left) and of eigenvalue decay across different
measuring stations (right).
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6 Conclusions and future work

In this paper methodology for testing the stationarity of a functional time series is put forward. The tests are

based on frequency domain analysis and exploit that fDFTs at different canonical frequencies are uncorrelated

if and only if the underlying functional time series are stationary. The limit distribution of the quadratic form-

type test statistics has been determined under the null hypothesis as well as under the alternative of local

stationarity. Finite sample properties were highlighted in simulation experiments with various data generating

processes and an application to annual temperature profiles, where deviations from stationarity were detected.

The empirical results show promise for further applications to real data, but future research has to be

devoted to a further fine-tuning of the proposed method; for example, an automated selection of frequencies

hm outside of the standard choice hm “ m for all m “ 1, . . . ,M . This can be approached through a more

refined analysis of the size of the various β̂pT qhm
in (3.5) whose real and imaginary part make up the vector b̂

pT q
M

in the test statistics Q̂pT qM .

Another promising route of research is as follows. Figure 6.1 provides contour plots of squared modulus of

γ̂
pT q
1 for model (b) under the null and for models (d)–(f) under the alternative. The contours are obtained from

averaging (over the simulation runs) the aggregated contributions γ̂pT q1 and projecting these onto a Fourier

basis of dimension 15. It can be seen that the magnitude of the contours provides another indicator for how

easy or hard it may be to reject the null hypothesis. The top row in the figure is for the stationary DGP (b). For

any of the sample sizes considered, the magnitude across r0, 1s2 remains small, as expected under the null. The

behavior under the alternative is markedly different, but the specifics depend on the type of alternative. For

the time-varying noise process (d), the contribution of non-stationarity is at the diagonal, with the magnitude

along this ridge depending on the sample size. For DGP (e), the form of non-stationarity creates very different

contours. The structural break process (f) induces non-stationarity in the contours in a similar way as DGP

(d), with most concentration occurring at the diagonal for all sample sizes. Any future refinement of the tests

will have to take these features into account.
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Figure 6.1: Contour plots of γ̂pT q1 for L‹ for various sample sizes T and DGPs (b) and (d)–(f) (top to bottom).
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A A functional Cramér representation

Proof of Proposition 2.1. Let pXt : t P Zq be a zero-mean, HR-valued stochastic process that is weakly

stationary. It has been shown (Panaretos & Tavakoli, 2013) that for processes with
ř

hPZ ~Ch~1 ă 8,

there exists an isomorphic mapping between the subspaces sppXt : t P Zq of H and sppeit¨ : t P Zq of

L2pr´π, πs,B,~Fω~1dωq. As a consequence, X admits the representation

Xt “

ż π

´π
eitλdZλ a.s. a.e., (A.1)

where pZλ : λ P p´π, πsq is a right-continuous, functional orthogonal-increment process. Conversely, for

any process with the above representation, orthogonality of the increments and Theorem S2.2 of van Delft &

Eichler (2016) imply

CovpXt, Xsq “ E
„
ż π

´π
eitλ1dZλ1 b

ż π

´π
eisλ2dZλ2



“

ż π

´π
eipt´sqλFλdλ “ Ct´s,

showing that a process that admits representation (A.1) must be weakly stationary.

B Properties of functional cumulants

For random elements X1, . . . , Xk in a Hilbert space H , the moment tensor of order k can be defined as

E
“

X1 b ¨ ¨ ¨ bXk

‰

“
ÿ

l1,...lkPN
E
”

k
ź

t“1

xXt, ψlty
ı

pψl1 b ¨ ¨ ¨ b ψlkq,

where the elementary tensors pψl1b¨ ¨ ¨bψlk : l1, . . . , lk P Nq form an orthonormal basis in the tensor product

space
Âk

j“1H . The latter follows since pψl : l P Nq is an orthornormal basis of the separable Hilbert space

H . Similarly, define the k-th order cumulant tensor by

cum
`

X1, . . . , Xk

˘

“
ÿ

l1,...lkPN
cum

´

k
ź

t“1

xXt, ψlty
¯

pψl1 b ¨ ¨ ¨ b ψlkq, (B.1)

where the cumulants on the right hand side are as usual given by

cum
`

xX1, ψl1y, . . . , xXk, ψlky
˘

“
ÿ

ν“pν1,...,νpq

p´1qp´1 pp´ 1q!

p
ź

r“1

E
”

ź

tPνr

xXt, ψlty
ı

,

the summation extending over all unordered partitions ν of t1, . . . , ku. The following is a generalization of

the product theorem for cumulants (Brillinger, 1981, Theorem 2.3.2).

Theorem B.1. Consider the tensor Xt “ b
Jt
j“1Xtj for random elements Xtj in H with j “ 1, . . . , Jt and

t “ 1, . . . , k. Let ν “ tν1, . . . νpu be a partition of t1, . . . , ku. The joint cumulant tensor cumpX1, . . . , Xkq

is given by

cumpX1, . . . , Xkq “
ÿ

r11,...,rkJt

ÿ

ν“pν1,...,νpq

p
ź

n“1

cum
`

xXtj , ψrtjy|pt, jq P νn
˘

ψr11 b ¨ ¨ ¨ b ψrkJt ,
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where the summation extends over all indecomposable partitions ν “ pν1, . . . , νpq of the table

p1, 1q ¨ ¨ ¨ p1, J1q
...

. . .
...

pk, 1q ¨ ¨ ¨ pk, Jtq.

Formally, abbreviate this by

cumpX1, . . . , Xkq “
ÿ

ν“pν1,...,νpq

Sν

´

b
p
n“1 cum

`

Xtj |pt, jq P νn
˘

¯

,

where Sν is the permutation that maps the components of the tensor back into the original order, that is,

Sνpb
p
r“1 bpt,jqPνr Xtjq “ X11 b ¨ ¨ ¨ bXkJt .

Next, results for cumulants of the fDFT are stated under both stationarity and local stationarity regimes.

Lemma B.1 (Cumulants of the fDFT under stationarity). Let pXt : t P Zq be a k-th order stationary

sequence taking values in HR that satisfies Assumption 4.1. The cumulant operator of the fDFT then satisfies

cum
`

DpT qωj1
, . . . , DpT qωjk

˘

“
p2πqk{2´1

T k{2
∆
p
řk

l“1 ωjl
q

T Fωj1
,...,ωjk´1

`RT,k, (B.2)

where the function ∆
pωq
T “ T for ω ” 0 mod 2π, ∆

pωkq

T “ 0 for k ı 0 mod T and the remainder satisfies

}RT,k}2 “ OpT´k{2q.

The proof of this lemma can be found in Panaretos & Tavakoli (2013). To give the analog of Lemma

B.1 in the locally stationary case, a number of auxiliary statements must be derived first. Because of space

constraints, these statements and their proofs are relegated to the Online supplement. Lemma S1.1 and Lemma

S1.2 allow to derive the that the cumulant tensors of the local fDFT can be expressed in terms of the time-

varying spectral operator. At the Fourier frequencies, the time-varying spectral operator can in turn be shown

to possess a well-defined Fourier transform. The properties of the resulting Fourier coefficients make apparent

that the dependence structure of the local fDFT behaves in a very specific manner that is based on the distance

of the frequencies. The coefficients additionally provide an upper bound on the norm of the cumulant operator.

This is summarized in the next lemma, which is the locally stationary version of Lemma B.1.

Lemma B.2 (Cumulants of the fDFT under local stationarity). Let pXt,T : t ď T, T P Nq be a k-th order

locally stationary process in H satisfying Assumption 4.3. The cumulant operator of the local fDFT satisfies

cum
`

DpT qωj1
, . . . , DpT qωjk

˘

“
p2πqk{2´1

T k{2

T´1
ÿ

t“0

Ft{T ;ωj1
,...,ωjk´1

e´i
řk

l“1 tωjl `Rk,T (B.3)

“
p2πqk{2´1

T k{2´1
F̃j1`...`jk;ωj1

,...,ωjk´1
`Rk,T ,

where }Rk,T }2 “ OpT´k{2q and the operator

F̃s;ωj1
,...,ωjk´1

“

ż 1

0
Fu;ωj1

,...,ωjk´1
e´i2πsudu (B.4)

denotes the s-th Fourier coefficient of Fu;ωj1
,...,ωjk´1

and is Hilbert–Schmidt. for some constant C ą 0.
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In case the process does not depend on u, we have F̃s;ωj1
,...,ωjk´1

“ OH for s ‰ 0. That is, the oper-

ator F̃s;ωj1
,...,ωj2k´1

maps any ψ P L2pr0, 1sk,Cq to the origin for s ‰ 0. The corollary below is a direct

consequence of Lemma B.2.

Corollary B.1. If Assumption 4.3 holds with ` “ 2, then

(i) ~cumpDpT qωj1
, . . . , DpT qωjk

q~2 ď
C

T k{2´1|j1 ` ¨ ¨ ¨ ` jk|2
`O

ˆ

1

T k{2

˙

;

(ii) sup
ω

ÿ

sPZ
~F̃s;ω~2 ď 8.

C Companion results for the test defined through (3.1)

Theorem C.1. Let Assumption 4.1 be satisfied with k “ t2, 4u. Then,

T Cov
´

<γpT qh1
pl1, l

1
1q,<γ

pT q
h2
pl2, l

1
2q

¯

“ T Cov
´

=γpT qh1
pl1, l

1
1q,=γ

pT q
h2
pl2, l

1
2q

¯

“

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

1

4π

ˆ
ż

F
pl1,l2q
ω F

pl11,l
1
2q

´ω´ωh
b

F
pl1,l1q
ω F

pl2,l2q
´ω F

pl11,l
1
1q

´ω´ωh
F
pl12,l

1
2q

ω`ωh

dω `

ż

F
pl1,l12q
ω F

pl11,l2q
´ω´ωh

b

F
pl1,l1q
ω F

pl12,l
1
2q

´ω F
pl11,l

1
1q

´ω´ωh
F
pl2,l2q
ω`ωh

dω

`

ż ż

F
pl1 l11,l2 l

1
2q

ω,´ω´ωh,´ω1
b

F
pl1,l1q
ω F

pl11,l
1
1q

´ω´ωh
F
pl2,l2q
´ω1 F

pl12,l
1
2q

ω1`ωh

dωdω1
˙

, if h1 “ h2 “ h.

Op 1
T q, if h1 ‰ h2.

where F
pl,l1q
ω “ xFωpψl1q, ψly, F

pl1l11,l2l
1
2q

ω1,ω2,ω3 “ xFω1,ω2,ω3pψl2l12q, ψl1l11y and ψll1 “ ψl b ψl1 . Furthermore,

T Covp<γpT qh1
pl1, l

1
1q,=γ

pT q
h2
pl2, l

1
2qq “ O

ˆ

1

T

˙

uniformly in h1, h2 P Z.

Theorem C.2. If the condition infω λ
ω
L ą 0 is replaced with infωxFpψq, ψy ą 0 for all ψ P HC, then parts

(a) and (b) of Theorem 4.3 are retained using

σ2
0,m “ lim

TÑ8

L
ÿ

l1,l11,l2,l
1
2“1

TCov
`

<γpT qhm
pl1, l

1
1q,<γ

pT q
hm
pl2, l

1
2q
˘

, m “ 1, . . . ,M,

where the explicit form of the limit is given by Theorem C.1.

Theorem C.3. Let Assumption 4.3 be satisfied with k “ t2, 4u. Then, for h “ 1, . . . , T ´ 1,

E
“

γ
pT q
h pl, l1q

‰

“
1

2π

ż 2π

0

ż 1

0

F
pl,l1q
u,ω e´i2πuh

pG
pl,lq
ω G

pl1,l1q
ω`ωh

q1{2
dudω `O

ˆ

1

T

˙

“ O

ˆ

1

h2

˙

`O

ˆ

1

T

˙

. (C.1)

The covariance structure satisfies
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1. T Covp<γpT qh1
pl1, l2q,<γpT qh2

pl3, l4qq “

1

4

“

Σ
pT q
h1,h2

pl4q ` Σ́
pT q
h1,h2

pl4q ` Σ̀
pT q
h1,h2

pl4q ` Σ̄
pT q
h1,h2

pl4q
‰

`RT ,

2. T Covp<γpT qh1
pl1, l2q,=γpT qh2

pl3, l4qq “

1

4i

“

Σ
pT q
h1,h2

pl4q ´ Σ́
pT q
h1,h2

pl4q ` Σ̀
pT q
h1,h2

pl4q ´ Σ̄
pT q
h1,h2

pl4q
‰

`RT ,

3. T Covp=γpT qh1
pl1, l2q,=γpT qh2

pl3, l4qq “

1

4

“

Σ
pT q
h1,h2

pl4q ´ Σ́
pT q
h1,h2

pl4q ´ Σ̀
pT q
h1,h2

pl4q ` Σ̄
pT q
h1,h2

pl4q
‰

`RT ,

where Σ
pT q
h1,h2

pl4q, Σ́
pT q
h1,h2

pl4q, Σ̀
pT q
h1,h2

pl4q, Σ̄
pT q
h1,h2

pl4q are defined in equations (S.5.1)–(S.5.4) of the Online

Supplement. and }RT }2 “ OpT´1q.

Theorem C.4. If the condition infω λ
ω
L ą 0 is replaced with infωxFpψq, ψy ą 0 for all ψ P HC, then parts

(a) and (b) of Theorem C.4 are retained using ΣA defined through

Σ
p11q
A pm,m1q “ lim

TÑ8

L
ÿ

l1,l2,l3,l4“1

1

4

“

Σ
pT q
hm,hm1

pl4q ` Σ́
pT q
hm,hm1

pl4q ` Σ̀
pT q
hm,hm1

pl4q ` Σ̄
pT q
hm,hm1

pl4q
‰

,

Σ
p12q
A pm,m1q “ lim

TÑ8

L
ÿ

l1,l2,l3,l4“1

1

4i

“

Σ
pT q
hm,hm1

pl4q ´ Σ́
pT q
hm,hm1

pl4q ` Σ̀
pT q
hm,hm1

pl4q ´ Σ̄
pT q
hm,hm1

pl4q
‰

,

Σ
p22q
A pm,m1q “ lim

TÑ8

L
ÿ

l1,l2,l3,l4“1

1

4

“

Σ
pT q
hm,hm1

pl4q ´ Σ́
pT q
hm,hm1

pl4q ´ Σ̀
pT q
hm,hm1

pl4q ` Σ̄
pT q
hm,hm1

pl4q
‰

,

where Σ
pT q
hm,hm1

pl4q, Σ́
pT q
hm,hm1

pl4q, Σ̀
pT q
hm,hm1

pl4q, Σ̄
pT q
hm,hm1

pl4q are as in Theorem C.3.

D First and second order dependence structure

D.1 Under the null hypothesis of stationarity

Proof of Theorem 4.2. Using Lemma B.1, for h “ 1, . . . , T ´ 1, and

xx, yyxz, wy “ xpxb zqw, yy “ xxb z, y b wyHS x, y, z, w P H,

where x¨, ¨yHS denotes the Hilbert–Schmidt inner product, the expectation of (3.2) is given by

E
“

?
Tγ

pT q
h plq

‰

“
1
?
T

T
ÿ

j“1

„

1

T
∆
phq
T

xFωj , φ
ωj

l b φ
ωj`h

l yHS
b

λ
ωj

l λ
ωj`h

l

`O

ˆ

1

T

˙

“ O

ˆ

1
?
T

˙

. (D.1)

Additionally, Theorem B.1 implies that the covariance structure of the fDFT’s is given by

Cov
`

DpT qωj1
bDpT qωj1`h1

, DpT qωj2
bDpT qωj2`h2

˘

“ cumpDpT qωj1
, D

pT q
´ωj1`h1

, D
pT q
´ωj2

, DpT qωj2`h2
q

` S1324

`

cumpDpT qωj1
, D

pT q
´ωj2

q b cumpD
pT q
´ωj1`h1

, DpT qωj2`h2
q
˘
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` S1423

`

cumpDpT qωj1
, DpT qωj2`h2

q b cumpD
pT q
´ωj1`h1

, D
pT q
´ωj2

q
˘

, (D.2)

where Sijkl denotes the permutation operator on b4
i“1L

2
Cpr0, 1sq that permutes the components of a tensor

according to the permutation p1, 2, 3, 4q ÞÑ pi, j, k, lq, that is, Sijklpx1 b ¨ ¨ ¨ b x4q “ xi b ¨ ¨ ¨ b xl. Denote

then the elementary tensor ψll1 “ ψlbψl1 . WriteDplqω “ xD
pT q
ω , ψly, F

pl,l1q
ω “ xFωpψl1q, ψly and F

plm,l1m1q
ωj1

,ωj2
,ωj3

“

xFωj1
,ωj2

,ωj3
pψl1m1q, ψlmy. Under the conditions of Theorem 4.2, Lemma B.2 implies for the denominator in

(3.1) that

1

T

T
ÿ

j1,j2“1

ˆ

p2πq

T 2
F
pl1 l2,l3 l4q
ωj1

,´ωj1`h1
,´ωj2

∆
pωh2

´ωh1
q

T `O

ˆ

1

T 2

˙

`

„

Fpl1,l3qωj1

1

T
∆
pωj1

´ωj2
q

T `O

ˆ

1

T

˙„

F
pl2,l4q
´ωj1`h1

1

T
∆
pωj1`h1

´ωj2`h2
q

T `O

ˆ

1

T

˙

`

„

Fpl1,l4qωj1

1

T
∆
pωj1

`ωj2`h2
q

T `O

ˆ

1

T

˙„

F
pl2,l3q
´ωj1`h1

1

T
∆
p´ωj1`h1

´ωj2
q

T `O

ˆ

1

T

˙˙

.

For the statistic (3.2) this structure becomes

1

T

T
ÿ

j1,j2“1

ˆ

p2πq

T 2
xFωj1

,´ωj1`h1
,´ωj2

pφ
ωj2
l2
b φ

ωj2`h2
l2

q, φ
ωj1
l1
b φ

ωj1`h1
l1

y∆
pωh2

´ωh1
q

T `O
` 1

T 2

˘

`

„

xFωj1
φ
ωj2
l2
, φ

ωj1
l1
y

1

T
∆
pωj1

´ωj2
q

T `O
` 1

T

˘

„

xF´ωj1`h1
φ
´ωj2`h2
l2

, φ
´ωj1`h1
l1

y
1

T
∆
pωj1`h1

´ωj2`h2
q

T `O
` 1

T

˘



`
“

xFωj1
φ
´ωj2`h2
l2

, φ
ωj1
l1
y

1

T
∆
pωj1

`ωj2`h2
q

T `O
` 1

T

˘

„

xpF´ωj1`h1
φ
ωj2
l2
, φ
´ωj1`h1
l1

y
1

T
∆
p´ωj1`h1

´ωj2
q

T `O
` 1

T

˘

˙

.

Using that the spectral density operator is self-adjoint and the projection basis are its eigenfunctions, it follows

xFωj1
pφ
ωj2
l2
q, φ

ωj1
l1
y “ xφ

ωj2
l2
,Fωj1

pφ
ωj1
l1
qy “ λ

ωj1
l1
xφ
ωj2
l2
, φ

ωj1
l1
y.

The covariance strucure of the numerator of (3.2) then reduces to

“
1

T

T
ÿ

j1,j2“1

ˆ

p2πq

T 2
xFωj1

,´ωj1`h1
,´ωj2

pφ
ωj2
l2
b φ

ωj2`h2
l2

q, φ
ωj1
l1
b φ

ωj1`h1
l1

y∆
pωh2

´ωh1
q

T `O
` 1

T 2

˘

`

„

λ
ωj1
l1
xφ
ωj2
l2
, φ

ωj1
l1
y

1

T
∆
pωj1

´ωj2
q

T `O
` 1

T

˘

„

λ
´ωj1`h1
l1

xφ
´ωj2`h2
l2

, φ
´ωj1`h1
l1

y
1

T
∆
pωj1`h1

´ωj2`h2
q

T `O
` 1

T

˘



`
“

λ
ωj1
l1
xφ
´ωj2`h2
l2

, φ
ωj1
l1
y

1

T
∆
pωj1

`ωj2`h2
q

T `O
` 1

T

˘

„

λ
´ωj1`h1
l1

xφ
ωj2
l2
, φ
´ωj1`h1
l1

y
1

T
∆
p´ωj1`h1

´ωj2
q

T `O
` 1

T

˘



.

In case h1 ‰ h2, the first line is of order OpT´1q. In the second and third line, it can be seen that the cross

terms will be of order OpT´1q uniformly in ωj . The first product term in the second line will only be of order

Op1q if j1 “ j2 and j1`h1 “ j2`h2, while in the third line this requires j1 “ ´j2´h2 and j2 “ ´j1´h1.

It can then be derived that TCovpγ
pT q
h1
pl1q, γ

pT q
h2
pl2qq “ OpT´1q for h2 ‰ T ´ h1. Since

<γpT qh1
pl1q “

1

2
pγ
pT q
h1
pl1q ` γ

pT q
h1
pl1qq
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and

=γpT qh1
pl1q “

1

2i

´

γ
pT q
h1
pl1q ´ γ

pT q
h1
pl1qq,

it follows therefore

TCov
`

<γpT qh1
pl1,=γpT qh2

pl2qq “ OpT´1q

uniformly in h1, h2. All together, the above derivation yields

T Cov
`

<γpT qh1
pl1q,<γpT qh2

pl2q
˘

“ T Cov
`

=γpT qh1
pl1q,=γpT qh2

pl2q
˘

“
T

2
Cov

`

γ
pT q
h1
pl1q, γ

pT q
h2
pl2q

˘

,

and thus Lipschitz-continuity and orthogonality of the eigenfunctions imply that the limiting covariance struc-

ture of (3.2) is given by

T Cov
´

<γpT qh1
pl1q,<γpT qh2

pl2q
¯

“ T Cov
´

=γpT qh1
pl1q,=γpT qh2

pl2q
¯

“
δl1,l2

2
`

1

4π

ż ż

xFω,´ω´ωh,´ω1pφ
ω1

l2
b φ

ω1`ω1h
l2

q, φωl1 b φ
ω`ωh
l1

y
b

λωl1λ
´ω1

l2
λ´ω´ωh
l1

λ
ω1`ω1h
l2

dωdω1.

This completes the proof.

D.2 Under the alternative hypothesis of local stationarity

Proof of Theorem 4.4. (i) In order to prove the first assertion of the theorem, introduce the bias-variance

decomposition

E
”

�

�F̂pT qω ´ E
“

F̂pT qω

‰

` E
“

F̂pT qω

‰

´Gω
�

�

2

2

ı

(D.3)

“ E
”

�

�F̂pT qω ´ E
“

Ĝω
‰�

�

2

2

ı

` E
”

�

�E
“

F̂pT qω

‰

´Gω
�

�

2

2

ı

.

The cross terms cancel because ErxF̂pT qω ´ ErF̂pT qω s,ErF̂pT qω s ´ GωyHbHs and ErF̂pT qω ´ ErF̂pT qω ss “ OH .

Now, by Lemma B.1,

cum
`

DpT qω , D
pT q
´ω

˘

“
1

T

T´1
ÿ

t“0

Ft{T,ω `RT,2 “ GpT qω `RT,2,

where }RT,2}2 “ OpT´1q. Convolution of the cumulant tensor with the smoothing kernel and a subsequent

Taylor expansion give

E
“

F̂pT qω

‰

“
2π

bT

T
ÿ

´“1

Kbpω ´ ωjqcum
`

DpT qω , D
pT q
´ω

˘

“ Gω ` εb,T ,

where }εb,T }2 “ Opb2 ` pbT qq´1. The interchange of summations is justified by Fubini’s Theorem, since

supω,u }fu,ω}2 ă 8 and supω,u }
B2

Bω2
fu,ω}2 ă 8. Here, the error term pbT q´1 follows from discretization of

the window function (see, for example, Lemma P5.1 of Brillinger, 1981). Note that the integral approximation
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in time direction does not change the error term because of Lipschitz continuity in u. Thus, the second term

in (D.3) satisfies

E
“

~EF̂pT qω ´Gω~
2
2

‰

“ O

ˆ

b2 `
1

bT

˙2

.

To bound the first term of the right-hand side in (D.3), observe that, for ω ‰ ω1,

cumpDpT qω , D
pT q
ω1 q “

1

2πT

T
ÿ

t,t1“1

cumpX
pT q
t , X

pT q
t1 qe

´iptω`t1ω1q

“
1

2πT

T
ÿ

t,t1“1

Ct{T ;t1´tpτ, τ
1qe´ipt1´tqω1´itpω`ω1q ` εt´t1,T

“
1

2πT

T
ÿ

t“1

ÿ

|h|ďT´t

cumpX
pT q
t , X

pT q
t`hqe

´iphω1q´itpω`ω1q `RT,2

“
1

2πT

T
ÿ

t“1

ÿ

|h|ďT´t

Ft{T,he
´iphω1q´itpω`ω1q `RT,2, (D.4)

where Lemma S1.1 was applied to obtain the second equality sign in combination with

}εT }2 “
1

2πT

T
ÿ

t1“1

1` |t1 ´ t2|

T
}κ2;t1´t2}2 “ O

ˆ

1

T

˙

by (4.3). Decompose the corresponding local autocovariance operator of (D.4) as

1

2πT

ˆ T´1
ÿ

h“0

T´h
ÿ

t“1

Ct{T ;he
´iphω1q´itpω`ω1q `

´1
ÿ

h“´T`1

T´|h|
ÿ

t“1

Ct{T ;he
´iphω1q´itpω`ω1q

˙

`RT,2. (D.5)

Under Assumption 4.3,
�

�

�

�

1

2πT

T´1
ÿ

h“0

T´h
ÿ

t“1

Ct{T,he
´iphω1q´itpω`ω1q

�

�

�

�

2

ď
1

2πT

T´1
ÿ

h“0

ˇ

ˇ

ˇ

ˇ

T´h
ÿ

t“1

e´itpω`ω1q

ˇ

ˇ

ˇ

ˇ

�

�Ct{T,h
�

�

2

ď
1

2πT

T´1
ÿ

h“0

ˇ

ˇ∆
pω`ω1q
T´h

ˇ

ˇ

�

�Ct{T,h
�

�

2
ď
C

T

ÿ

hPZ
|h|}κ2;h}2 “ O

ˆ

1

T

˙

for some constant C. A similar derivation shows the same bound holds for the second term of (D.5). It

can therefore be concluded that
�

�cumpD
pT q
ω , D

pT q
λ q

�

�

2
“ OpT´1q uniformly in ω ‰ ω1, 0 ď ω, ω1 ă π.

Furthermore, Lemma B.1 and Minkowski’s Inequality yield

�

�

�
cumpDpT qω , D

pT q
´ω , D

pT q
ω1 , D

pT q
´ω1q

�

�

�

2
ď

1

T

�

�

�

�

1

T

T´1
ÿ

t“0

F t
T
,ω,´ω,ω1

�

�

�

�

2

`O

ˆ

1

T 2

˙

“
1

T

�

�

�
G
pT q
ω,´ω,ω1

�

�

�

2
`O

ˆ

1

T 2

˙

“ O

ˆ

1

T

˙

.

The last equality follows since supu,ω ~Ft{T,ω,´ω,ω1~2 ď
ř

h1,h2,h3PZ }κ3;h1,h2,h3}2 “ Op1q by Assumption

4.3. Therefore the product theorem for cumulant tensors (Theorem B.1) implies that

Cov
`

IpT qω , I
pT q
ω1

˘

“ cum
`

DpT qω , D
pT q
´ω , D

pT q
´ω1 , D

pT q
ω1

˘
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` S1324

´

cum
`

DpT qω , D
pT q
´ω1

˘

b cum
`

D
pT q
´ω , D

pT q
ω1

˘

¯

` S1423

´

cum
`

DpT qω , D
pT q
ω1

˘

b cum
`

D
pT q
´ω , D

pT q
´ω1

˘

¯

, (D.6)

where Sijkl denotes the permutation operator on b4
i“1L

2
Cpr0, 1sq that permutes the components of a tensor

according to the permutation p1, 2, 3, 4q ÞÑ pi, j, k, lq, that is, Sijklpx1 b ¨ ¨ ¨ b x4q “ xi b ¨ ¨ ¨ b xl. It is clear

from (D.6) that ~CovpI
pT q
ω , I

pT q
ω1 q~2 “ OpT´1q for ω1 ‰ ω, 0 ď ω, ω1 ă π, while for ω1 “ ω it follows that

�

�Cov
`

IpT qω , IpT qω

˘�

�

2
ď

�

�

�
S1324

´

cum
`

DpT qω , D
pT q
´ω

˘

b cum
`

D
pT q
´ω , D

pT q
ω

˘

¯�

�

�

2

`

�

�

�
S1423

´

cum
`

DpT qω , DpT qω

˘

b cum
`

D
pT q
´ω , D

pT q
´ω

˘

¯�

�

�

2
`RT,2 “ Op1q. (D.7)

Furthermore,

Cov
`

F̂pT qω , F̂pT qω

˘

“

ˆ

2π

T

˙2 T
ÿ

j,j1“1

Kbpω ´ ωjqKbpω ´ ωj1q

ˆ
1

T 2

ˆ T´1
ÿ

t,t1“0

Ft{T,ωj
b Ft{T,´ωj

e´ipt´t1qpωj´ωj1 q

`

T´1
ÿ

t,t1“0

Ft{T,ωj
b Ft{T,´ωj

e´ipt´t1qpωj`ωj1 q

˙

`RT,2. (D.8)

Hence,

�

�

�
CovpF̂pT qω , F̂pT qω q

�

�

�

2
ď sup

u,ω

�

�Fu,ω
�

�

2

2

ˆ

2π

T

˙2 T
ÿ

j,j1“1

Kbpω ´ ωjqKbpω ´ ωj1q
|∆
pωj´ωj1 q

T |2

T 2

` sup
u,ω

�

�Fu,ω
�

�

2

2

ˆ

2π

T

˙2 T
ÿ

j,j1“1

Kbpω ´ ωjqKbpω ´ ωj1q
|∆
pωj`ωj1 q

T |2

T 2
`O

ˆ

1

T

˙

“ O

ˆ

1

bT

˙

. (D.9)

Together with the equivalence of the Hilbert–Schmidt norm of the operator and the L2–norm of its kernel, the

above implies then that the second term of (D.3) satisfies

E
“

~F̂pT qω ´ EF̂pT qω ~2
2

‰

“

ż

r0,1s2
Varpf̂ pT qω pτ, τ 1qqdτdτ 1 “ O

ˆ

1

bT

˙

uniformly in ω P r´π, πs. This establishes (i).

(ii) The second part of the proof proceeds along similar lines as Paparoditis (2009). An application of

Minkowski’s inequality yields

�

�F̂pT qω ´Gω
�

�

2
ď

�

�

�

�

2π

T

T
ÿ

j“1

Kbpωj1 ´ ωjq

„

cumpDpTωj
, D

pT q
´ωj
q ´

1

T

ÿ

t“1

Ft{T,ωj

�

�

�

�

2

`

�

�

�

�

2π

T

T
ÿ

j“1

Kbpωj1 ´ ωjq
1

T

ÿ

t“1

“

ft{T,ωj
´ Ft{T,ω

‰

�

�

�

�

2
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`

�

�

�

�

ˆ

2π

T

T
ÿ

j“1

Kbpωj1 ´ ωjq ´ 1

˙

1

T

ÿ

t“1

Ft{T,ω

�

�

�

�

2

.

Markov’s inequality together with (i), which is not affected by the discretization of the integral, imply the first

term tends to zero. Since the spectral operator is Lipschitz continuous in ω, the second term is bounded by
ˇ

ˇ

ˇ

ˇ

1´

ż π

´π
Kbpωk ´ ω

1qdω1
ˇ

ˇ

ˇ

ˇ

|b| “ O

ˆ

1`
1

bT

˙

Opbq “ Opbq.

Finally, the third term is seen to be of order OppbT q´1q.

Proof of Theorem 4.6. By Lemma B.2, the expectation of γpT qh pl, l1q satisfies

E
“

γ
pT q
h pl, l1q

‰

“
1

T

T
ÿ

j“1

„

1

T

T´1
ÿ

t“0

F
pl,l1q
t{T,ωj

pG
pl,lq
ωj G

pl1,l1q
ωj`hq

1{2
e´itωh `O

ˆ

1

T

˙

“ O

ˆ

1

h2
`

1

T

˙

,

for all h “ 1, . . . , T ´ 1. Using then Lipschitz continuity of the spectral operators taking as basis the eigen-

functions of spectral density operator, expression (C.1) becomes

E
“

γ
pT q
h plq

‰

“
1

2π

ż 2π

0

ż 1

0

xFu,ωφ̃
ω`ωh
l , φ̃ωl ye

´i2πuh

pλ̃ωl λ̃
ω`ωh
l q1{2

dudω `O

ˆ

1

T

˙

“ O

ˆ

1

h2

˙

`O

ˆ

1

T

˙

.

Note once more that

<γpT qh plq “
1

2

´

γ
pT q
h plq ` γ

pT q
h plq

¯

and =γpT qh plq “
1

2i

´

γ
pT q
h plq ´ γ

pT q
h plq

¯

.

Under the alternative, these are in fact correlated and four separate cases will have to be considered:

(i) Cov
`

<γpT qh1
pl1q,<γpT qh2

pl2q
˘

“
1

4

”

Cov
`

γ
pT q
h1
pl1q, γ

pT q
h2
pl2q

˘

` Cov
`

γ
pT q
h1
pl1q, γ

pT q
h2
pl2q

˘

` Cov
`

γ
pT q
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pl1q, γ

pT q
h2
pl2q

˘

` Cov
`

γ
pT q
h1
pl1q, γ

pT q
h2
pl2q

˘

ı

,

(ii) Cov
`

<γpT qh1
pl1q,=γpT qh2

pl2q
˘

“
1

4i

”

Cov
`

γ
pT q
h1
pl1q, γ

pT q
h2
pl2qq ´ Cov

`

γ
pT q
h1
pl1q, γ

pT q
h2
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` Cov
`

γ
pT q
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pl1q, γ

pT q
h2
pl2q

˘

´ Cov
`

γ
pT q
h1
pl1q, γ

pT q
h2
pl2q

˘

ı

,

(iii) Cov
`

=γpT qh1
pl1q,<γpT qh2

pl2q
˘

“
1

4i

”

Cov
`

γ
pT q
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pl1q, γ

pT q
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pl2q

˘
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`

γ
pT q
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pT q
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˘
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`

γ
pT q
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pT q
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˘
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γ
pT q
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pl1q, γ

pT q
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pl2q

˘

ı

,

(iv) Cov
`

=γpT qh1
pl1q,=γpT qh2

pl2q
˘

“
1

4

”

Cov
`

γ
pT q
h1
pl1q, γ

pT q
h2
pl2q

˘

´ Cov
`

γ
pT q
h1
pl1q, γ

pT q
h2
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˘
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`

γ
pT q
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pl1q, γ

pT q
h2
pl2q

˘

` Cov
`

γ
pT q
h1
pl1q, γ

pT q
h2
pl2q

˘

ı

.

The expressions for the covariance structure of
?
Tγ

pT q
h and its conjugate can now be derived using Lemma

B.2. For example,

Cov
`

xDωj1
, φ

ωj1
l1
yxDωj1`h1

, φ
ωj1`h1
l1

y, xDωj2
, φ

ωj2
l2
yxDωj2`h2

, φ
ωj2`h2
l2

y
˘
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“

”

xF̃j1´j2;ωj1
φ
ωj2
l2
, φ

ωj1
l1
y `O

ˆ

1
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˙

ı”
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φ
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φ
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ˆ
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φ
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ˆ
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and therefore
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ÿ
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ωj1`h1
l1

y

pλ
ωj1
l1
λ
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λ
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φ
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λ
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φ
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φ
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λ
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λ
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φ
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λ
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φ
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φ
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φ
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`
1

T 2

˙*

.

The more general expressions are provided in the Online Supplement.

E Weak convergence

The proof of the distributional properties of γ̂pT q as stated in Theorem 4.3 and 4.7 are established in this

section. The proof consists of a few steps. First, we derive the properties of γpT q, i.e., in which the spectral

density operators and the corresponding eigenelements are known. For this, we investigate the distributional

properties of the operator

w
pT q
h “

1

T

T
ÿ

j“1

DpT qωj
bDpT qωj`h

h “ 1, . . . T ´ 1. (E.1)

Given appropriate rates of the bandwidths, replacing the denominator of (3.1) with, respectively, consistent

estimates of the spectral density operators and its eigenvalues will follow from theorems 4.1 and 4.5. The

proofs of these theorems can be found in the Online Supplement. For the empirical counterpart of (3.2), it

then remains to show that we can replace the projection basis with the sample versions of the eigenfunctions.

In particular, we shall below that

1
?
T

T
ÿ

j“1

@

DpT qωj
bDpT qωj`h

, φ̂
ωj

l,T b φ̂
ωj`h

l,T

D

HS

D
Ñ

1
?
T

T
ÿ

j“1

@

DpT qωj
bDpT qωj`h

, φ
ωj

l b φ
ωj`h

l

D

HS
.
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E.1 Weak convergence on the function space

To demonstrate weak convergence of (E.1), we shall make use of a result (Cremers & Kadelka, 1986), which

considerably simplifies the verification of the usual tightness condition often invoked in weak convergence

proofs. In particular, the following lemma indicates that weak convergence of the functional process will

almost directly follow from the weak convergence of the finite dimensional distributions once it is weakly

tight in the following sense.

Lemma E.1. Let pT ,A, µq be a measure space, let pB, | ¨ |q be a Banach space, and let X “ pXn : n P Nq
be a sequence of random elements in LpBpT , µq such that

(i) the finite-dimensional distributions ofX converge weakly to those of a random elementX0 inLpBpT , µq;

(ii) lim sup
nÑ8

Er}Xn}
p
ps ď Er}X0}

p
ps.

Then, X converges weakly to X0 in LpBpT , µq.

To apply it in the present context, consider the sequence pÊpT qh : T P Nq of random elements inL2pr0, 1s2,Cq,
for h “ 1, . . . , T ´ 1 defined through

Ê
pT q
h “

?
T
´

w
pT q
h ´ E

“

w
pT q
h

‰

¯

.

For ψll1 “ ψl b ψ
1
l an orthonormal basis of L2pr0, 1s2,Cq, we can represent the process as

Ê
pT q
h “

8
ÿ

l,l1“1

xÊ
pT q
h , ψll1yψll1

from which it is easily seen the finite-dimensional distributions of the basis coefficients provide a complete

characterization of the distributional properties of ÊpT qh . Thus, weak convergence of pxÊpT qh , ψll1y : l, l
1 P Nq

in the sequence space `2C will imply weak convergence of the process pÊpT qh : T P Nq. To formalize this, we

put the functional ÊpT qh in duality with pÊpT qh q˚ P L2pr0, 1s2,Cq˚ through the pairing

Ê
pT q
h pφq “ xÊ

pT q
h , φy

for all φ P L2pr0, 1s2,Cq˚. The conditions of Lemma E.1 can now be verified. For the first, the following

theorem establishes that the finite-dimensional distributions converge weakly to a Gaussian process both under

the null and the alternative.

Theorem E.1. Under Assumption 4.1 or Assumption 4.3, for all li, l1i P N, hi “ 1, . . . , T ´ 1, i “ 1, . . . , k

and k ě 3,

cum
´

Ê
pT q
h1
pψl1l11q, . . . , Ê

pT q
hk
pψlkl1kq

¯

“ op1q pT Ñ8q.
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Its proof can be found in Section S3 of the Online Supplement. The second condition of Lemma E.1 will

be satisfied if

E
“›

›Ê
pT q
h

›

›

2

2

‰

“

8
ÿ

l,l1“1

E
“ˇ

ˇÊ
pT q
h pψll1q

ˇ

ˇ

2‰
Ñ

8
ÿ

l,l1“1

E
“ˇ

ˇEhpψll1q
ˇ

ˇ

2‰
“ E

“›

›Eh
›

›

2

2

‰

pT Ñ8q, (E.2)

with Eh denoting the limiting process. Using Theorem (E.1) and (E.2) weak convergence of the functional

process can now be determined, distinguishing between the real and imaginary parts.

Theorem E.2 (Weak convergence under the null). Let pXt : t P Zq be a stochastic process taking values in

HR satisfying Assumption 4.1 with ` “ 2. Then,

`

<ÊpT qhi
,=ÊpT qhi

: i “ 1, . . . , k
˘ D
Ñ pRhi , Ihi : i “ 1, . . . , kq, (E.3)

where Rh1 , Ih2 , h1, h2 P t1, . . . , T´1u, are jointly Gaussian elements inL2pr0, 1s2,Cqwith means ErRh1pψll1qs “
ErIh2pψll1qs “ 0 and covariances

Cov
`

Rh1pψl1l11q,Rh2pψl2l12q
˘

(E.4)

“Cov
`

Ih1pψl1l11q, Ih2pψl2l12q
˘

“
1

4π

ż 2π

0

@

Fωpψl2q, ψl1
D @

F´ω´ωh
pψl12q, ψl1

D

dω (E.5)

`
1

4π

ż 2π

0

@

Fωpψl12q, ψl1
D @

F´ω´ωh
pψl2q, ψl11

D

dω

`
1

4π

ż 2π

0

ż 2π

0

@

Fω,´ω´ωh,´ω1pψl2l12q, ψl1l11

D

dωdω1

for all h1 “ h2 and l1, l11, l2, l
1
2, and 0 otherwise. In addition,

CovpRh1pψl1l11q, Ih2pψl2l12qq “ 0

uniformly in h1, h2 and l1, l11, l2, l
1
2.

Proof. The covariance structure is the more general version of Theorem 4.2 as derived in Appendix D.1 while

the convergence of the finite–dimensional distributions from Theorem E.1. It then remains to verify that the

condition (ii) of Lemma E.1 is satisfied. This follows from the covariance structure since

E
“
›

›Ê
pT q
h

›

›

2

2

‰

“

ż

r0,1s2
Var

`

Ê
pT q
h pτ, τ 1q

˘

dτdτ 1 ď T }Varpw
pT q
h q}22 “ 2}VarpRhq}

2
2.

This completes the proof.

Under the alternative, a similar result is obtained.

Theorem E.3 (Weak convergence under the alternative). Let pXt : t P Zq be a stochastic process taking

values in HR satisfying Assumption 4.3 with ` “ 2. Then,

`

<ÊpT qhi
,=ÊpT qhi

: i “ 1, . . . , k
˘ d
Ñ pRhi , Ihi : i “ 1, . . . , kq, (E.6)
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where Rh1 , Ih2 , h1, h2 P t1, . . . , T´1u, are jointly Gaussian elements inL2pr0, 1s2,Cqwith means ErRh1pψll1qs “
ErIh2pψll1qs “ 0 and covariance structure

1. CovpRh1pψl1l11q,Rh2pψl2l12qq “

1

4

“

Υh1,h2pψl1l11 l2l12q ` Ύh1,h2pψl1l11 l2l12q ` Ὺh1,h2pψl1l11 l2l12q ` Ῡh1,h2pψl1l11 l2l12q
‰

2. CovpRh1pψl1l11q, Ih2pψl2l12qq “

1

4i

“

Υh1,h2pψl1l11 l2l12q ´ Ύh1,h2pψl1l11 l2l12q ` Ὺh1,h2pψl1l11 l2l12q ´ Ῡh1,h2pψl1l11 l2l12q
‰

3. CovpIh1pψl1l11q, Ih2pψl2l12qq “

1

4

“

Υh1,h2pψl1l11 l2l12q ´ Ύh1,h2pψl1l11 l2l12q ´ Ὺh1,h2pψl1l11 l2l12q ` Ῡh1,h2pψl1l11 l2l12q
‰

for all h1, h2 and l1, l11, l2, l
1
2, and where Υh1,h2 , Ύh1,h2 , Ὺh1,h2 and Ῡh1,h2 are given in (S4.5)–(S4.7).

Proof. The covariance structure is fully derived in the Online Supplement while the convergence of the finite–

dimensional distributions follows again from Theorem E.1. Condition (ii) of Lemma E.1 is satisfied since

E
“›

›Ê
pT q
h

›

›

2

2

‰

“

ż

r0,1s2
Var

`

Ê
pT q
h pτ, τ 1q

˘

dτdτ 1 ď T }Varpw
pT q
h q}22 “ }VarpRhq}

2
2 ` }VarpIhq}

2
2,

which completes the proof.

E.2 Replace projection basis with estimates

We now focus on replacing the projection basis with estimates of the eigenfunctions of the spectral density

operators. It can be shown (Mas & Menneteau, 2003) that for appropriate rates of the bandwidth b for which

the estimated spectral density operator is a consistent estimator of the true spectral density operator, the cor-

responding estimated eigenprojectors Π̂ω
l “ φ̂l

ω
b φ̂l

ω
are consistent for the eigenprojectors Πω

l,T . However,

the estimated eigenfunctions are not unique and are only identified up to rotation on the unit circle. In order

to show that replacing the eigenfunctions with estimates does not affect the limiting distribution, we therefore

first have to consider the issue of rotation. More specifically, when we estimate φωj

l , a version ẑlφ̂
ωj

l where

ẑl P C with modulus |ẑl| “ 1 is obtained. We can therefore not guarantee that an estimated version ẑlφ̂
ωj

l,T is

close to the true eigenfunction φ̂ωj

l . It is therefore essential that our test statistic is invariant to this rotation.

To show this, write

Ψhpl, jq “ xD
pT q
ωj
, φ̂

ωj

l yxD
pT q
ωj`h , φ̂

ωj`h

l y

and let Ψph, Lq “ vecpΨhpl, jqq for the stacked vector of dimension LpT ´ hq ˆ 1, then (3.5) can be written

as

β̂
pT q
h “ eJΨph, Lq
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Let us then construct the matrix

ZjL “

¨

˚

˚

˚

˚

˝

ẑj1 ¨ ¨ ¨
... ẑj2

. . .
ẑjL

˛

‹

‹

‹

‹

‚

and the block diagonal matrix Z1:T
L “ diagpZjL : j “ 1, . . . , T q and additionally the kronecker product

Zph, Lq “ Z1:T´h
L b Zh:T

L .

This object is then of dimension LpT´hqˆLpT´hq and is diagonal with elements ẑjl ẑ
j`h
l , l “ 1, . . . , L; j “

1, . . . , T ´ h. If we rotate the eigenfunctions on the unit circle, we obtain a version

β̂
pT q
h “ eJZph, LqΨph, Lq,

in which case we can write

?
TZL,M b̂

pT q
M “

?
T
`

<β̂pT qh1
, . . . ,=β̂pT qhM

,=β̂pT qh1
, . . . ,=β̂pT qhM

˘J
,

where the block diagonal matrix is given by

ZL “ diagp<Zph1, Lq, . . . ,<ZphM , Lq,=Zph1, Lq, . . .=ZphM , LqqJ.

However this rotation then also implies that Σ̂M becomes ZL,M Σ̂MZJL,M and therefore

T pb̂
pT q
M qJpZL,M q

JrZL,M Σ̂MZL,M
Js
´1

ZL,M b̂
pT q
M “ Q̂

pT q
M

showing our statistic does not depend on rotation of the estimated eigenfunctions. In the rest of the proof, we

can therefore focus on estimates φ̂ωj`h

l,T and φ̂ωj`h

l,T and ignore their respective unknown rotations ẑjl and ẑ
j`h
l .

Given the estimates of the spectral density operators are consistent, note that the consistency of the esti-

mated eigenprojectors together with continuity of the tensor product imply that

sup
ω
~pΠω

l,T,h ´Πω
l,h~

2
2

p
Ñ 0 T Ñ8, (E.7)

where the projectors are given by Πω
l,h :“ φ

ωj

l b φ
ωj`h

l . In the previous section, we moreover showed

1
?
T

T
ÿ

j“1

DpT qωj
bDpT qωj`h

D
Ñ w

pT q
h

Using Portmanteau’s Theorem, this means there exists a large Mδ s.t.

lim sup
TÑ8

P
´

�

�

1
?
T

T
ÿ

j“1

DpT qωj
bDpT qωj`h

�

�

2
ěMδ

¯

ď P
´

�

�w
pT q
h

�

�

2
ěMδ

¯

ď δ, δ ą 0.
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The Cauchy-Schwarz inequality and the definition of the Hilbert-Schmidt inner product yield

lim sup
TÑ8

P
´ˇ

ˇ

ˇ

1
?
T

T
ÿ

j“1

@

DpT qωj
bDpT qωj`h

, φ̂
ωj

l,T b φ̂
ωj`h

l,T ´ φ
ωj

l b φ
ωj`h

l

D

HS

ˇ

ˇ

ˇ
ą ε

¯

ď lim sup
TÑ8

P
´

ż ż

ˇ

ˇ

ˇ

1
?
T

T
ÿ

j“1

DpT qωj
pτqD

pT q
´ωj`h

pτ 1q
“

φ̂
´ωj

l,T pτqφ̂
ωj`h

l,T pτ 1q ´ φ
´ωj

l pτqφ
ωj`h

l pτ 1q
‰

ˇ

ˇ

ˇ
dτdτ 1 ą ε

¯

and using (E.7)

ď lim sup
TÑ8

P
´

sup
ω
~φ̂ωl,T b φ̂

ωh
l,T ´ φ

ω
l b φ

ωh
l ~2

�

�

1
?
T

T
ÿ

j“1

DpT qωj
bDpT qωj`h

�

�

2
ą ε

¯

ď lim sup
TÑ8

Ppsup
ω
~φ̂ωl,T b φ̂

ωh
l,T ´ φ

ω
l b φ

ωh~2 ą ε{Mδ

¯

` lim sup
TÑ8

P
´

�

�

1
?
T

T
ÿ

j“1

DpT qωj
bDpT qωj`h

�

�

2
ěMδ

¯

ď0` δ

for every δ ą 0. Given the bandwidth condition (Assumption 4.2) is satisfied, we therefore finally obtain

1
?
T

T
ÿ

j“1

@

DpT qωj
bDpT qωj`h

, φ̂
ωj`h

l b φ̂
ωj

l

D

HS

D
Ñ

1
?
T

T
ÿ

j“1

@

DpT qωj
bDpT qωj`h

, φ
ωj`h

l b φ
ωj

l

D

HS
(E.8)

as T Ñ8.
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S1 Properties of functional cumulants under local stationarity

Lemma S1.1. Let Assumption 4.3 be satisfied and cu;t1,...,tk´1
as given in (4.6). Then,

›

›

›
cum

`

X
pT q
t1
, . . . , X

pT q
tk´1

, X
pT q
tk

˘

´ ct1{T ;t1´tk,...,tk´1´tk

›

›

›

2

ď

ˆ

k

T
`

k´1
ÿ

j“1

ˇ

ˇ

ˇ

tj ´ tk
T

ˇ

ˇ

ˇ

˙

}κk;t1´tk,...,tk´1´tk}2.

Proof of Lemma A.2. By linearity of the cumulant operation, consecutively taking differences leads, by equa-

tion (4.4) of the main paper and the triangle inequality, to
›

›

›
cum

`

X
pT q
t1
, . . . , X

pT q
tk

˘

´ cum
`

X
pt1{T q
t1

, . . . , X
ptk{T q
tk

˘

›

›

›

2
ď K

k

T
}κk;t1´tk,...,tk´1´tk}2,

using part (i) of Assumption 4.3. By (4.4),

X
ptj{T q
tj

´X
ptk{T q
tj

“
ptj ´ tkq

T
Y
ptj{T,tk{T q
tj

. (S1.1)

1AA was partially supported by NSF grants DMS 1305858 and DMS 1407530. AvD was partially supported by Maastricht
University, the contract “Projet d’Actions de Recherche Concertées” No. 12/17-045 of the “Communauté française de Belgique” and
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Similarly,

›

›

›
cum

`

X
pt1{T q
t1

, . . . , X
ptk{T q
tk

q ´ ct1{T ;t1´tk,...,tk´1´tk

›

›

›

2

ď

k´1
ÿ

j“1

|tj ´ tk|

T
}κk;t1´tk,...,tk´1´tk}2,

which follows from part (iii) of Assumption 4.3 Minkowski’s inequality then implies the lemma.

Lemma S1.2. Consider a sequence of functional processes pXpT qt : t ď T, T P Nq satisfying Assumption 4.3

with k “ 2 and ` “ 2. Then, this triangular array uniquely characterizes the time-varying local spectral

density operator

Fu,ω “
1

2π

ÿ

hPZ
Cu,he

´iωh, (S1.2)

which belongs to S2pHq. Its kernel satisfies

(i) supu,ω }
Bi

Bui
fu,ω}2 ă 8 for i “ 1, 2,

(ii) supu,ω }
Bi

Biω
fu,ω}2 ă 8 for i “ 1, 2,

(iii) supu,ω }
B2

BωBufu,ω}2 ă 8.

Proof of Lemma A.3. Using Lemma A.2, it is straightforward to show that pXT
t : t ď T, T P Nq uniquely

determines the time-varying spectral density operator, that is,
ż π

´π
}FpT qu,ω ´ Fu,ω}

2
2 dω “ op1q pT Ñ8q. (S1.3)

Existence of the derivatives follow from the dominated convergence theorem and the product rule for differ-

entiation in Banach spaces (Nelson, 1969).

Proof of Lemma A.4. The first line of (A.4) follows on replacing the cumulants cumpX
pT q
t1
, . . . , X

pT q
tk´1

, X
pT q
tk
q

with ctk{T ;t1´tk,...,tk´1´tk and Lemma A.2. The second line because the discretization of the integral is an

operation of order OpT´2q.

By Assumption 4.3 (iv), the kernel of u ÞÑ B
BuFu;ω1 ,...,ωk´1

satisfies

›

›

›
sup
u

B

Bu
fu;ω1,...,ωk´1

›

›

›

2
ď

1

p2πqk´1

ÿ

t1,...,tk

}κk;t1´tk,...,tk´1´tk}2 ă 8.

The dominated convergence theorem therefore yields

sup
u,ω1,...,ωk´1

›

›

›

B

Bu
fu,ω1,...,ωk´1

›

›

›

2
ă 8. (S1.4)
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Finally, integration by parts for a periodic function in L2pr0, 1skq with existing n-th directional derivative in

u, yields

}f̃s;ωj1
,...,ωjk´1

}22

“

ż

r0,1sk

ˇ

ˇ

ˇ

ˇ

„ Bn´1

Bun´1 fu;ωj1
,...,ωjk´1

pτ q

p´i2πsqn´1 e´is2πu

1

0

´

ż 1

0

e´is2πu

p´i2πsqn
Bn

Bun
fu;ωj1

,...,ωjk´1
pτ qdu

ˇ

ˇ

ˇ

ˇ

2

dτ

“

ż

r0,1sk`2

1

p2πsq2n
ei2πspu´vq B

2

Bu2
fu;ωj1

,...,ωjk´1
pτ q

B2

Bv2
fv;ωj1

,...,ωjk´1
pτ qdτdudv

ď
1

p2πsq2n

ż

r0,1sk`2

ˇ

ˇ

ˇ

ˇ

B2

Bu2
fu;ωj1

,...,ωjk´1
pτ q

B2

Bv2
fv;ωj1

,...,ωjk´1
pτ q

ˇ

ˇ

ˇ

ˇ

dτdudv

ď
1

p2πsq2n

ż

r0,1s2

›

›

›

›

B2

Bu2
fu;ωj1

,...,ωjk´1

›

›

›

›

2

›

›

›

›

B2

Bv2
fv;ωj1

,...,ωjk´1

›

›

›

›

2

dudv

ď
1

p2πsq2n

ˆ

sup
u

›

›

›

›

B2

Bu2
fu;ωj1

,...,ωjk´1

›

›

›

›

2

˙2

ă 8,

where the Cauchy–Schwarz inequality was applied in the second-to-last equality. The interchange of integrals

is justified by Fubini’s theorem. Thus,

sup
ω1,..,ωk´1

}f̃s;ωj1
,...,ωjk´1

}2 ď
1

p2πq2n
sup

u,ω1,...,ωn

›

›

›

›

Bn

Bun
fu;ωj1

,...,ωjk´1

›

›

›

›

2

|s|´n. (S1.5)

and (A.6) follows from Assumption 4.3 (iv).

Proof of Corollary A.1. For completeness, we elaborate on part (ii) of the corollary. Note that

~F̃0:ω~2 ď sup
ω,u
~Fu,ω~2 ă

ÿ

h

}κ2,h}2 ă 8.

The p-harmonic series for p “ 2 then yields

sup
ω

ÿ

sPZ
~F̃s;ω~2 ď

ÿ

h

}κ2,h}2

ˆ

1`
1

p2πq4
π2

3

˙

ă 8, (S1.6)

where the constant p2πq´4 follows from (S1.5).

S2 Error bound for the denominator of the test statistic

A bound needs to be obtained on the error resulting from the replacement of the unknown spectral operators

with consistent estimators. It will be sufficient to consider a bound on

?
T |γ

pT q
h pl1, l2q ´ γ̂

pT q
h pl1, l2q|

for all l1, l2 P N, where γpT q is defined in equation (3.1) of the main paper. Consider the function gpxq “

x´1{2, x ą 0, and notice that

γ
pT q
h pl1, l2q ´ γ̂

pT q
h pl1, l2q “

1

T

T
ÿ

j“1

Dpl1qωj
D
pl2q
´ωj`h

”

gpFpl1,l1qωj
Fpl2,l2qωj`h

q ´ gpF̂pl1,l1qωj
F̂l2,l2qωj`h

q

ı

.
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Given the assumption infωxFωpψq, ψy ą 0 for all ψ P H is satisfied, continuity of the inner product implies

that for fixed l1, l2 the mean value theorem may be applied to find

γ
pT q
h pl1, l2q ´ γ̂

pT q
h pl1, l2q

“
1

T

T
ÿ

j“1

Dpl1qωj
D
pl2q
´ωj`h

«

Bgpxq

Bx

ˇ

ˇ

ˇ

x“F̆
pl1,l1q
ωj

F̆
pl2,l2q
ωj`h

`

F̂pl1,l1qωj
F̂pl2,l2qωj`h

´ Fpl1,l1qωj
Fpl2,l2qωj`h

˘

ff

,

where F̆
pl1,l1q
ωj F̆

pl2,l2q
ωj`h lies in between F̂

pl1,l1q
ωj F̂

pl2,l2q
ωj`h and F

pl1,l1q
ωj F

pl2,l2q
ωj`h . Because of uniform convergence of

F̂ωj P S2pHq with respect to ω, it follows that

?
T |γ

pT q
h pl1, l2q ´ γ̂

pT q
h pl1, l2q| “ Opp1q

ˇ

ˇ

ˇ

ˇ

1

T

T
ÿ

j“1

D
pl1q
ωj D

pl2q
´ωj`h

pF
pl1,l1q
ωj F

pl2,l2q
ωj`h q

3{2

`

F̂pl1,l1qωj
F̂pl2,l2qωj`h

´ Fpl1,l1qωj
Fpl2,l2qωj`h

˘

ˇ

ˇ

ˇ

ˇ

.

(S2.1)

With these preliminary results at hand, the first main theorems can be verified.

Proof of Theorems 4.1 and 4.5. In order to prove both theorems, partition (S2.1) as follows

J1pl, l2q “
1
?
T

T
ÿ

j“1

D
pl1q
ωj D

pl2q
´ωj`h

´ ErDpl1qωj D
pl2q
´ωj`h

s

pF
pl1,l1q
ωj F

pl2,l2q
ωj`h q

3{2
F̂pl1,l1qωj

`

F̂pl2,l2qωj`h
´ Fpl2,l2qωj`h

˘

, (S2.2)

J2pl, l2q “
1
?
T

T
ÿ

j“1

D
pl1q
ωj D

pl2q
´ωj`h

´ ErDpl1qωj D
pl2q
´ωj`h

s

pF
pl1,l1q
ωj F

pl2,l2q
ωj`h q

3{2
Fpl2,l2qωj`h

`

F̂pl1,l1qωj
´ Fpl1,l1qωj

˘

, (S2.3)

J3pl, l2q “
1
?
T

T
ÿ

j“1

ErDpl1qωj D
pl2q
´ωj`h

s

pF
pl1,l1q
ωj F

pl2,l2q
ωj`h q

3{2

`

F̂pl1,l1qωj
F̂pl2,l2qωj`h

´ ErF̂pl1,l1qωj
F̂pl2,l2qωj`h

s
˘

, (S2.4)

J4pl, l2q “
1
?
T

T
ÿ

j“1

ErDpl1qωj D
pl2q
´ωj`h

s

pF
pl1,l1q
ωj F

pl2,l2q
ωj`h q

3{2

`

ErF̂pl1,l1qωj
F̂pl2,l2qωj`h

s ´ Fpl1,l1qωj
Fpl2,l2qωj`h

˘

. (S2.5)

The proof of both theorems are based on Corollary S2.1 and Lemmas S2.1-S2.4 below. These results together

with an application of the Cauchy–Schwarz inequality yield

(i) |J1| “ Op

ˆ

1
?
bT
` b2

˙

,

(ii) |J2| “

$

’

’

’

&

’

’

’

%

Op

ˆ

1
?
bT
`

b2
?
T

˙

under Assumption 4.1,

Op

ˆ

1
?
bT
` b2

˙

under Assumption 4.3,

(iii) |J3| “

$

’

’

’

&

’

’

’

%

Op

ˆ

1
?
bT

˙

under Assumption 4.1,

Op

ˆ

1
?
bT

˙

under Assumption 4.3,
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(iv) |J4| “

$

’

’

’

&

’

’

’

%

O

ˆ

b2 `
1

bT

˙

under Assumption 4.1.

O

ˆ

?
Tb2 `

1

b
?
T

˙

under Assumption 4.3.

Minkowski’s Inequality then gives the result.

Corollary S2.1. Under Assumption 4.1

E
“

~F̂pT qω ´ Fω~
2
2

‰

“ O

ˆ

1

bT
` b4

˙

pT Ñ8q, (S2.6)

while, under Assumption 4.3,

E
“

~F̂pT qω ´Gω~
2
2

‰

“ O

ˆ

1

bT
` b4

˙

pT Ñ8q. (S2.7)

Proof. See Panaretos & Tavakoli (2013, Theorem 3.6) and Theorem 4.4, respectively.

Lemma S2.1. Let pgpl1,l2qj : j P Zq be a bounded sequence in C for all l1, l2 P N such that infj g
pl1,l2q
j ą 0.

Under Assumption 4.1 and under Assumption 4.3,

E
„ˇ

ˇ

ˇ

ˇ

1
?
T

T
ÿ

j“1

g
pl1,l2q
j

`

Dpl1qωj
D
pl2q
´ωj`h

´ E
“

Dpl1qωj
D
pl2q
´ωj`h

‰˘

F̂pl1,l1qωj

ˇ

ˇ

ˇ

ˇ

2

“ Op1q.

Proof. Observe that

E
„ˇ

ˇ

ˇ

ˇ

1
?
T

T
ÿ

j“1

g
pl1,l2q
j

`

Dpl1qωj
D
pl2q
´ωj`h

´ E
“

Dpl1qωj
D
pl2q
´ωj`h

‰˘

F̂pl1,l1qωj

ˇ

ˇ

ˇ

ˇ

2

“ E
„ˇ

ˇ

ˇ

ˇ

1
?
T

T
ÿ

j“1

g
pl1,l2q
j

`

Dpl1qωj
D
pl2q
´ωj`h

´ E
“

Dpl1qωj
D
pl2q
´ωj`h

‰˘2π

bT

T
ÿ

j1“1

K

ˆ

ωj1

b

˙

Dpl1qωj´j1
Dpl1qωj1´j

ˇ

ˇ

ˇ

ˇ

2

“
1

T

ˆ

2π

bT

˙2 T
ÿ

j1,j2“1

g
pl1,l2q
j1,j2

T
ÿ

j11,j
1
2“1

K

ˆ

ωj11
b

˙

K

ˆ

ωj12
b

˙

E
”

 `

Dpl1qωj1
D
pl2q
´ωj1`h

´ E
“

Dpl1qωj1
D
pl2q
´ωj1`h

‰˘

ˆDpl1qωj1´j11

Dpl1qωj11´j1

( `

D
pl1q
´ωj2

Dpl2qωj2`h
´ E

“

D
pl1q
´ωj2

Dpl2qωj2`h

‰˘

Dpl1qωj12´j2
Dpl1qωj2´j12

(

ı

.

Expanding the expectation in terms of cumulants, one obtains the structure

ErpX ´ EXqY srpW ´ EW qZs

“ ErXYWZs ´ ErW sErXY Zs ´ ErYWZrErXs ` ErW sErXsErY Zs

“ cumpX,Y,W,Zq ` cumpX,Y,W qcumpZq ` cumpX,W,ZqcumpY q

` cumpX,Y qcumpW,Zq ` cumpX,W qcumpY, Zq ` cumpX,ZqcumpY,W q,

where X,Y,W,Z are products of random elements of H . Hence, by the product theorem for cumulants, only

those products of cumulants have to be considered that lead to indecomposable partitions of the matrix below
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or of any sub-matrix (with the same column structure) with the exception that pY q or pZq is allowed to be

decomposable but not within the same partition.

pXq D
pl1q
ωj1

D
pl2q
´ωj1`h

pY q D
pl1q
ωj1´j11

D
pl1q
ωj11´j1

pW q D
pl1q
´ωj2

D
pl2q
ωj2`h

pZq D
pl1q
ωj12´j2

D
pl1q
ωj2´j12

(S2.8)

That is, the order of the error belonging to those partitions has to be investigated for which the cumulant terms

that contain an element of the sets tDpl1qωj1
, D

pl2q
´ωj1`h

u and of tDpl1q´ωj2
D
pl2q
ωj2`hu also contain at least one element

from another set. Because the process has zero-mean, it suffices consider partitions for which mi ě 2. By

Lemma A.1 of the main paper, a cumulant of order k upscaled by order T will be of order OpT´k{2`1q under

H0 and OpT´k{2`2q under the alternative. This directly implies that only terms of the following form have to

be investigated:

1

T

ˆ

2π

bT

˙2 T
ÿ

j1,j2“1

T
ÿ

j11,j
1
2“1

K

ˆ

ωj11
b

˙

K

ˆ

ωj12
b

˙

cum4cum2cum2, (S2.9)

1

T

ˆ

2π

bT

˙2 T
ÿ

j1,j2“1

T
ÿ

j11,j
1
2“1

K

ˆ

ωj11
b

˙

K

ˆ

ωj12
b

˙

cum3cum3cum2, (S2.10)

1

T

ˆ

2π

bT

˙2 T
ÿ

j1,j2“1

T
ÿ

j11,j
1
2“1

K

ˆ

ωj11
b

˙

K

ˆ

ωj12
b

˙

cum2cum2cum2cum2. (S2.11)

However, for a fixed partition P “ tP1, . . . , PMu,

T
M
ź

j“1

O

ˆ

1

Tmj{2´1

˙

,

from which it is also clear that (S2.9) and (S2.10) are at most going to be of order Op1q under the alternative

and of lower order under H0. The term (S2.11) could possibly of order OpT q. Further analysis can therefore

be restricted to partitions of this form. As mentioned above, partitions in which a term contains an element

of the sets tDpl1qωj1
, D

pl2q
´ωj1`h

u and of tDpl1q´ωj2
D
pl2q
ωj2`hu must contain at least one element from another set. It

follows that partitions in which mi “ 2 for all i P t1, . . . ,Mu, without any restrictions on the summations,

are decomposable. We find the term of highest order is thus of the type

1

T

T
ÿ

j1,j2“1

g
pl1,l2q
j1,j2

ˆ

2π

bT

˙2 T
ÿ

j11,j
1
2“1

K

ˆ

ωj11
b

˙

K

ˆ

ωj12
b

˙

cum
`

D
pl2q
´ωj1`h

, Dpl2qωj2`h

˘

cum
`

D
pl1q
´ωj2

, Dpl1qωj1

˘

ˆ cum
`

Dpl1qωj1´j11

Dpl1qωj1´j11

˘

cum
`

Dpl1qωj12´j2
Dpl1qωj2´j12

˘

“ sup
j
g

2pl1,l2q
j OpTT´1q “ Op1q,

under the null of stationarity and under the alternative, where the error is uniform in ω. The bound in case

of the alternative follows from Corollary A.1 of the main paper. The result follows since, by the positive

definiteness of the spectral density operators, supj |g
pl1,l2q
j | ă 8 for all l1, l2 P N.
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Lemma S2.2. Let pgpl1,l2qj : j P Zq be a bounded sequence in C for all l1, l2 P N such that inf l1,l2 g
pl1,l2q
j ą 0.

Then,

E

„ˇ

ˇ

ˇ

ˇ

1
?
T

T
ÿ

j“1

g
pl1,l2q
j

`

Dpl1qωj
D
pl2q
´ωj`h

´ E
“

Dpl1qωj
D
pl2q
´ωj`h

‰˘

ˇ

ˇ

ˇ

ˇ

2

“

$

’

&

’

%

O

ˆ

1

T

˙

under H0.

Op1q under H1.

Proof. Notice that

E

„ˇ

ˇ

ˇ

ˇ

1
?
T

T
ÿ

j“1

g
pl1,l2q
j

`

Dpl1qωj
D
pl2q
´ωj`h

´ E
“

Dpl1qωj
D
pl2q
´ωj`h

‰˘

ˇ

ˇ

ˇ

ˇ

2

“
1

T

T
ÿ

j1,j2“1

ˆ

g
pl1,l2q
j1,j2

E
“

Dpl1qωj1
D
pl2q
´ωj1`h

D
pl1q
´ωj2

Dpl2qωj2`h

‰

´ E
“

Dpl1qωj1
D
pl2q
´ωj1`h

sErDpl1q´ωj2
Dpl2qωj2`h

s

˙

“
1

T

T
ÿ

j1,j2“1

´

g
pl1,l2q
j1,j2

cum
`

Dpl1qωj1
, D

pl2q
´ωj1`h

, D
pl1q
´ωj2

Dpl2qωj2`h

˘

`

cum
`

Dpl1qωj1
, D

pl1q
´ωj2

˘

cum
`

D
pl2q
´ωj1`h

, Dpl2qωj2`h

˘

` cum
`

Dpl1qωj1
, Dpl2qωj2`h

˘

cum
`

D
pl2q
´ωj1`h

, D
pl1q
´ωj2

˘

¯

.

Under the null, this is therefore of the order OpT {T 2 ` 1{T q “ Op1{T q, where is uniform over ω. Under the

alternative, by Corrolary A.1 of the main paper, the last term can be estimated by

1

T

T
ÿ

j1,j2“1

g
pl1,l2q
j1,j2

ˆ

1

T
G
pl1 l2,l1 l2q
ωj1

,´ωj1`h,´ωj2
` F̃

pl1,l1q
j1´j2;ωj1

F̃
pl2,l2q
´j1`j2;´ωj1`h

` F̃
pl1,l2q
j1`j2`h;ωj1

F̃
pl2,l1q
´j1´j2´h;´ωj1`h

`O

ˆ

1

T

˙˙

ď sup
j
|g
pl1,l2q
j |2

1

T

T
ÿ

j1,j2“1

ˆ

1

T
G
pl1 l2,l1 l2q
ωj1

,´ωj1`h,´ωj2
` F̃

pl1,l1q
j1´j2;ωj1

F̃
pl2,l2q
´j1`j2;´ωj1`h

` F̃
pl1,l2q
j1`j2`h;ωj1

F̃
pl2,l1q
´j1´j2´h;´ωj1`h

`O

ˆ

1

T

˙˙

ď sup
j
|g
pl1,l2q
j |2

ˆ

ÿ

t1,t2,t3

}κ4;t1,t2,t3}2}ψl1}
2
2|ψl2}

2
2 ` C

ÿ

t

}κ2;t}2

˙

“ Op1q,

for some constant C.

Lemma S2.3. Let pgpl1,l2qj : j P Zq be a bounded sequence in C for all l1, l2 P N such that inf l1,l2 g
pl1,l2q
j ą 0.

Then,

E
„ˇ

ˇ

ˇ

ˇ

1
?
T

T
ÿ

j“1

g
pl1,l2q
j E

“

Dpl1qωj
D
pl2q
´ωj`h

‰

´

F̂pl1,l1qωj
F̂pl2,l2qωj`h

´ E
“

F̂pl1,l1qωj
F̂pl2,l2qωj`h

‰

¯

ˇ

ˇ

ˇ

ˇ



“

$

’

’

’

&

’

’

’

%

O

ˆ

1
?
bT

˙

under Assumption 4.1.

O

ˆ

1
?
bT

˙

under Assumption 4.3.
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Proof. Observe first that by the Cauchy–Schwarz inequality,

Er|J3pl1, l2q|s ď sup
j

ˇ

ˇg
pl1,l2q
j E

“

Dpl1qωj
D
pl2q
´ωj`h

‰ˇ

ˇ

ˆ

ˆ

E
„ˇ

ˇ

ˇ

ˇ

1
?
T

T
ÿ

j“1

`

F̂pl1,l1qωj
F̂pl2,l2qωj`h

´ E
“

F̂pl1,l1qωj
F̂pl2,l2qωj`h

‰˘

ˇ

ˇ

ˇ

ˇ

2˙1{2

,

which follows because the term over which the supremum is taken is deterministic. In particular, it is of order

OpT´1q under the null and Oph´2q under the alternative. To find a bound on

E
„
ˇ

ˇ

ˇ

ˇ

1
?
T

T
ÿ

j“1

`

F̂pl1,l1qωj
F̂pl2,l2qωj`h

´ E
“

F̂pl1,l1qωj
F̂pl2,l2qωj`h

‰˘

ˇ

ˇ

ˇ

ˇ

2

,

we proceed similarly as in the proof of Lemma S2.1. Observe that,

E
„ˇ

ˇ

ˇ

ˇ

1
?
T

T
ÿ

j“1

`

F̂pl1,l1qωj
F̂pl2,l2qωj`h

´ EF̂pl1,l1qωj
F̂pl2,l2qωj`h

˘

ˇ

ˇ

ˇ

ˇ

2

“
1

T

ˆ

2π

bT

˙2 T
ÿ

j1,j2“1

T
ÿ

j11,j
1
2,j
1
3,j
1
4“1

4
ź

i“1

K

ˆ

ωj1i
b

˙

ˆ E
„

`

Dpl1qωj1´j11

Dpl1qωj11´j1
Dpl2qωj1`h´j12

Dpl2qωj12´j1´h
´ ErDpl1qωj1´j11

Dpl1qωj11´j1
Dpl2qωj1`h´j12

Dpl2qωj12´j1´h
s
˘

ˆ
`

Dpl1qωj13´j2
Dpl1qωj2´j13

Dpl2qωj14´j2´h
Dpl2qωj2`h´j14

´ ErDpl1qωj13´j2
Dpl1qωj2´j13

Dpl2qωj14´j2´h
Dpl2qωj2`h´j14

s
˘



.

Write

ErpX ´ EXqsrpY ´ EY qs “ cumpX,Y q ´ cumpXqcumpY q

for products X,W of random elements of H . When expanding this in terms of cumulants, we only have to

consider those products of cumulants that lead to indecomposable partitions of the rows of the matrix below

pXq D
pl1q
ωj1´j11

D
pl1q
ωj11´j1

D
pl2q
ωj1`h´j12

D
pl2q
ωj12´j1´h

pY q D
pl1q
ωj13´j2

D
pl1q
ωj2´j13

D
pl2q
ωj14´j2´h

D
pl2q
ωj2`h´j14

(S2.12)

In order to satisfy this, in every partition there must be at least one term that contains both an element of X

and of Y . A similar reasoning as in the proof of S2.1 indicates we will only have to consider partitions where

2 ď mi ď 4 for i “ 1, . . . ,M . In case of stationarity we only have to consider those with mi “ 2 for all

i “ 1, . . . ,M . In both cases at least one restriction in terms of the summation must occur in order for the

partition to be decomposable. In particular, it can be verified that the partition of highest order is of the form

1

T

T
ÿ

j1,j2“1

ˆ

2π

bT

˙4 T
ÿ

j11,j
1
2,j
1
3,j
1
4“1

4
ź

i“1

K

ˆ

ωj1i
b

˙

cumpDpl2qωj14´j2´h
Dpl2qωj2`h´j14

qcumpDpl2qωj1`h´j12

Dpl2qωj12´j1´h
q

ˆ cumpDpl1qωj1´j11

, Dpl1qωj13´j2
qcumpDpl1qωj11´j1

, Dpl1qωj2´j13

q
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“
1

T

T
ÿ

j1,j2“1

ˆ

2π

bT

˙4 T
ÿ

j11,j
1
2,j
1
3,j
1
4“1

4
ź

i“1

K

ˆ

ωj1i
b

˙„

F̃
pl2,l2q
0;ω

´j2`h´j14

`O

ˆ

1

T

˙„

F̃
pl2,l2q
0;ωj1´j12`h

O

ˆ

1

T

˙

ˆ

„

F̃
pl1,l1q
j1´j2´j11`j

1
3;ωj1´j11

`O

ˆ

1

T

˙„

F̃
pl1,l1q
j2´j1´j13`j

1
1;ωj11´j1

`O

ˆ

1

T

˙

ď C
1

bT
sup
ω
|G2pl2,l2q

ω |
1

T

T
ÿ

j1,j2“1

„

F̃
pl1,l1q
j1´j2;ωj1´j11

`O

ˆ

1

T

˙„

F̃
pl1,l1q
j2´j1;ωj11´j1

`O

ˆ

1

T

˙

“ O

ˆ

1

bT

˙

,

since }F̃j1´j2´j11`j13;ωj1´j11

}2 ď C|j1´ j2´ j
1
1` j

1
3|
´2 and }Kpx{bq}8 “ Op1q, where the bandwidth leads to

only bT nonzero terms in the summation over j1. The same bound can be shown to hold under stationarity. As

before, the error is uniform with respect to ω which follows again from Corollary A.1 of the main paper.

Lemma S2.4. Let pgpl1,l2qj : j P Zq be a bounded sequence in C for all l1, l2 P N such that inf l1,l2 g
pl1,l2q
j ą 0.

Then,
ˇ

ˇ

ˇ

ˇ

1
?
T

T
ÿ

j“1

g
pl1,l2q
j E

“

Dpl1qωj
D
pl2q
´ωj`h

‰`

E
“

F̂pl1,l1qωj
F̂pl2,l2qωj`h

‰

´ Fpl1,l1qωj
Fpl2,l2qωj`h

˘

ˇ

ˇ

ˇ

ˇ

“

$

’

’

’

&

’

’

’

%

O

ˆ

b2 `
1

bT

˙

under Assumption 4.1.

O

ˆ

?
Tb2 `

1

b
?
T

˙

under Assumption 4.3.

Proof. First note that

ˇ

ˇ

ˇ

ˇ

1
?
T

T
ÿ

j“1

g
pl1,l2q
j E

“

Dpl1qωj
D
pl2q
´ωj`h

‰

ˇ

ˇ

ˇ

ˇ

“

$

’

&

’

%

O

ˆ

1
?
T

˙

under Assumption 4.1.

Op
?
T q under Assumption 4.3.

Observe next that

E
“

F̂pl1,l1qωj
F̂pl2,l2qωj`h

‰

´ Fpl1,l1qωj
Fpl2,l2qωj`h

“

ˆ

2π

bT

˙2 T
ÿ

j1,j2“1

K

ˆ

ωj1
b

˙

K

ˆ

ωj2
b

˙

E
“

Dpl1qωj´j1
Dpl1qωj1´j

Dpl2qωj`h´j2
Dpl2qωj2´j´h

‰

´ Fpl1,l1qωj
Fpl2,l2qωj`h

“

ˆ

2π

bT

˙2 T
ÿ

j1,j2“1

K

ˆ

ωj1
b

˙

K

ˆ

ωj2
b

˙

´

cumpDpl1qωj´j1
, Dpl2qωj`h´j2

qcumpDpl1qωj1´j
, Dpl2qωj2´j´h

q

` cumpDpl1qωj´j1
, Dpl2qωj2´j´h

qcumpDpl1qωj1´j
, Dpl2qωj`h´j2

q

¯

`O

ˆ

b2 `
1

bT

˙

.

Here, it was used that Er|F̂pl1,l1qωj ´ F
pl1,l1q
ωj |s ď Er~F̂ωj ´ Fωj~2s}ψl1}2}ψl1}2 “ Opb2 ` 1{bT q under H0.

The same bound holds under the alternative, where Fω is replaced with the integrated spectrum Gω. Under

the alternative, write
ˆ

2π

bT

˙2 T
ÿ

j1,j2“1

K

ˆ

ωj1
b

˙

K

ˆ

ωj2
b

˙

`

F̃
pl1,l2q
j2´j1´h;ωj´j1

F̃
pl1,l2q
j1`h´j2;ωj1´j

` F̃
pl1,l2q
h´j1´j2;ωj´j1

F̃
pl1,l2q
j1`j2´h;ωj1´j
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`O

ˆ

1

T

˙

`O

ˆ

b2 `
1

bT

˙

“ O

ˆ

b2 `
1

bT

˙

where Corollary A.1 of the main paper was applied and where we used that the bandwidth leads to only bT

nonzero terms in the summation. Under H0, a similar argument shows that the term is of order Opb2` 1{bT q.

The result now follows.

S3 Convergence of finite-dimensional distributions

Theorem S3.1. Let Lemma A.1 be satisfied for some finite k ě 3. Then, for all li, li1 P N and hi P Z with

i “ 1, . . . , k,

1

T k{2
cum

´

w
pT q
h1
pψl1l11q, . . . , w

pT q
hk
pψlklk 1q

¯

“ op1q pT Ñ8q, (S3.1)

where wpT qh pψll1q “ xw
pT q
h , ψll1y and pψll1 : l, l1 P Nq an orthonormal basis of L2pr0, 1s2,Cq

Proof. The proof is given in three parts, the first of which provides the outset, the second gives the arguments

for the stationary case, while the third deals with the locally stationary situation.

(1) Preliminaries. Fix τ1, τ2 P r0, 1s and h “ 1, . . . , T ´ 1. It will be shown that the finite-dimensional

distributions of pwpT qh pτ1, τ2q : T P Nq converge to a Gaussian distribution by proving that the higher order

cumulants of the terms
?
Tw

pT q
h pψll1q “

?
T xw

pT q
h , ψll1y vanish asymptotically. To formulate this, consider

an array of the form
p1, 1q p1, 2q

...
...

pk, 1q pk, 2q

(S3.2)

and let the value s “ ii1 correspond to entry pi, i1q. For a partition P “ tP1, . . . , PQu, the elements of a set Pq

will be denoted by sq1, . . . , sqmq where |Pq| “ mq is the corresponding number of elements in Pq. Associate

with entry s the frequency index js “ jii1 “ p´1qi
1´1pji`h

i1´1
i q, Fourier frequency λjs “

2πjs
T and the basis

function index vs “ vii1 “ l2´i
1

i l1i
i1´1 for i “ 1, . . . , k and i1 “ 1, 2. An application of the product theorem

for cumulants yields

cum
´

T
ÿ

j1“1

Dpl1qωj1
D
pl11q
´ωj1`h1

, . . . ,
T
ÿ

jk“1

Dplkqωjk
D
ppl1kq
´ωjk`hk

¯

“
ÿ

j1,...,jk

ÿ

i.p.

cumpD
pvsq
λjs

: s P P1q ¨ ¨ ¨ cumpD
pvsq
λjs

: s P PQq,

where the summation extends over all indecomposable partitions P “ tP1, . . . , PQu of (S3.2). Because

Xt has zero-mean, the number of elements within each set must satisfy mq ě 2. To ease notation, write

D
plq
ωjk
“ xD

pT q
ωjk
, ψly and

pF
pvsq
t{T ;λjs

: s P Pqq “ xft{T ;λjq1 ,...,λjqmq´1
,b

mq

i1“1ψvsqi1
y,
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noting that the latter quantity is well-defined. An application of Lemma A.1 of the main paper yields

ÿ

i.p.

Q
ź

q“1

cum
`

D
pvsq
λjs

: s P Pq
˘

(S3.3)

“
ÿ

i.p.

Q
ź

q“1

„

p2πqmq{2´1

Tmq{2

ˆ T´1
ÿ

t“0

F
pvsq
t{T ;λjs

e´i
ř

s tλjs : s P Pq

˙

`O

ˆ

1

Tmq{2

˙

,

where under the null Fpvsqt{T ;λjs
“ F

pvsq
λjs

. In the following, the proof is separated into the cases where the true

process is stationary and where it is locally stationary.

(2) Proof under stationarity. Recall that supω ~Fωj1
,...,ωj

k1´1
~2 ă 8 for all k1 ď k, and thus, by the

Cauchy–Schwarz inequality, supω |F
pvsq
λjs
| ă 8 for s P Pq and q “ 1, . . . , Q. Therefore,

ÿ

i.p.

Q
ź

q“1

cumpD
pvsq
λjs

: s P Pqq

ď
ÿ

i.p.

Q
ź

q“1

„

p2πqmq{2´1Kq

Tmq{2
∆pT q

ˆ

ÿ

sPPq

λjsq `O

ˆ

1

Tmq{2

˙

for some constantsK1, . . . ,KQ independent of T . Due to the functions ∆pT q, there areQ constraints ifQ ă k

or if Q “ k and there exists hi1 and hi2 such that hi1 ‰ hi2 for i1, i2 P t1, . . . , ku. On the other hand, if the

size of the partition is equal to k and hi1 “ hi2 for all i1, i2 P t1, . . . , ku, there are Q ´ 1 constraints. This

implies that

1

Tn{2
cum

ˆ T
ÿ

j1“1

Dpl1qωj1
D
pl11q
´ωj1`h1

, . . . ,
T
ÿ

jn“1

Dplkqωjk
D
pl1kq
´ωjk`hk

˙

“ OpT´n{2Tn´pQ´1qT´2n{2TQq

“ OpT´n{2`1q.

The cumulants of order k ě 3 will therefore tend to 0 as T Ñ8.

(3) Proof under local stationarity. Write (S3.3) in terms of the Fourier coefficients as

1

Tn{2

T
ÿ

j1,...,jk“1

ÿ

i.p.

Q
ź

q“1

cum
`

D
pvsq
λks

: s P Pq
˘

“
1

Tn{2

T
ÿ

j1,...,jk“1

ÿ

i.p.

Q
ź

q“1

„

p2πqmq{2´1

Tmq{2´1

`

F̃
pvsq
ř

s js;λjs
: s P Pq

˘

`O

ˆ

1

Tmq{2

˙

.

Note that, by Corollary A.1 and the Cauchy–Schwarz inequality,

T
ÿ

j“1

ˇ

ˇF̃
pvsq
ř

s js;λjs

ˇ

ˇ ď sup
ω

ÿ

jPZ
}F̃j;ω}2

mq
ź

i“1

}ψvqi}2 ă 8, s P Pq,
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for all q “ 1, . . . , Q. If Q ă k or if Q “ k and there are hi1 and hi2 such that hi1 ‰ hi2 for i1, i2 P t1, . . . , ku

within the same set, then there is dependence on Q of the k sums j1, . . . , jn. On the other hand, if the size of

the partition is equal to k and hi1 “ hi2 for all i1, i2 “ 1, . . . , k, then there areQ´1 constraints on j1, . . . , jn.

Thus, similar to the stationary case, it follows that the order is

OpT´k{2T k´Q`1T´2k{2`Qq “ OpT´k{2`1q,

hence giving the result.

S4 Proofs under the alternative hypothesis of local stationarity

Completion of the proof of Theorem 4.6. To find the expressions for the covariance structure of
?
Tγ

pT q
h and

its complex conjugate, use Theorem A.1 and Lemma A.2 of the main paper to write

Cov
`

Dpl1qωj1
D
pl2q
´ωj1`h1

, Dpl3qωj2
D
pl4q
´ωj2`h2

˘

“
2π

T
F̃
pl1 l2,l3 l4q
p´h1`h2;ωj1

,´ωj1`h1
,´ωj2

q
`O

ˆ

1

T 2

˙

`

„

F̃
pl1,l3q
pj1´j2;ωj1

q
`O

ˆ

1

T

˙„

F̃
pl2,l4q
p´j1´h1`j2`h2;´ωj1`h1

q
`O

ˆ

1

T

˙

`

„

F̃
pl1,l4q
pj1`j2`h2;ωj1

q
`O

ˆ

1

T

˙„

F̃
pl2,l3q
p´j1´h1´j2,´ωj1`h1

q
`O

ˆ

1

T

˙

.

Thus,

Cov
`

?
Tγ

pT q
h1
pl1, l2q,

?
Tγ

pT q
h2
pl3, l4q

˘

“
1

T

T
ÿ

j1,j2“1

"

2π

T

F̃
pl1 l2,l3 l4q
p´h1`h2;ωj1

,´ωj1`h1
,´ωj2

q

pG
pl1,l1q
ωj1

G
pl2,l2q
´ωj1`h1

G
pl3,l3q
´ωj2

G
pl4,l4q
ωj2`h2

q1{2
`

F̃
pl1,l3q
pj1´j2;ωj1

q
F̃
pl2,l4q
p´j1´h1`j2`h2;´ωj1`h1

q

pG
pl1,l1q
ωj1

G
pl3,l3q
´ωj2

G
pl2,l2q
´ωj1`h1

G
pl4,l4q
ωj2`h2

q1{2

`
F̃
pl1,l4q
pj1`j2`h2;ωj1

q
F̃
pl2,l3q
p´j1´h1´j2,´ωj1`h1

q

pG
pl1,l1q
ωj1

G
pl4,l4q
ωj2`h2

G
pl2,l2q
´ωj1`h1

G
pl3,l3q
´ωj2

q1{2

`O

ˆ

1

T

„ F̃
pl1,l3q
pj1´j2;ωj1

q

pG
pl1,l1q
ωj1

G
pl3,l3q
´ωj2

q1{2
`

F̃
pl2,l4q
p´j1´h1`j2`h2;´ωj1`h1

q

pG
pl2,l2q
´ωj1`h1

G
pl4,l4q
ωj2`h2

q1{2

`
F̃
pl1,l4q
pj1`j2`h2;ωj1 q

pG
pl1,l1q
ωj1

G
pl4,l4q
ωj2`h2

q1{2
`

F̃
pl2,l3q
p´j1´h1´j2,´ωj1`h1

q

pG
pl2,l2q
´ωj1`h1

G
pl3,l3q
´ωj2

q1{2



`
1

T 2

˙*

.

By Corollary A.1 (ii), this equals

Σ
pT q
h1,h2

pl4q “ T Cov
`

γ
pT q
h1
pl1, l2q, γ

pT q
h2
pl3, l4q

˘

(S4.1)

“
1

T

T
ÿ

j1,j2“1

G
pl1,l2,l3,l4q
j1,j2

´

F̃
pl1,l3q
pj1´j2;ωj1

q
F̃
pl2,l4q
p´j1´h1`j2`h2;´ωj1`h1

q

` F̃
pl1,l4q
pj1`j2`h2;ωj1

q
F̃
pl2,l3q
p´j1´h1´j2,´ωj1`h1

q
`

2π

T
F̃
pl1 l2,l3 l4q
p´h1`h2;ωj1

,´ωj1`h1
,´ωj2

q

¯
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`O

ˆ

1

T

˙

,

where G
pl1,l2,l3,l4q
j1,j2

“ pG
pl1,l1q
ωj1

G
pl2,l2q
ωj1`h1

G
pl3,l3q
ωj2

G
pl4,l4q
ωj2`h2

q´1{2. Similarly,

Σ́
pT q
h1,h2

pl4q “ T Cov
`

γ
pT q
h1
pl1, l2q, γ

pT q
h2
pl3, l4q

˘

(S4.2)

“
1

T

T
ÿ

j1,j2“1

G
pl1,l2,l3,l4q
j1,j2

´

F̃
pl1,l3q
pj1`j2;ωj1

q
F̃
pl2,l4q
p´j1´h1´j2´h2;´ωj1`h1

q

` F̃
pl1,l4q
pj1´j2´h2;ωj1

q
F̃
pl2,l3q
p´j1´h1`j2;´ωj1`h1

q
`

2π

T
F̃
pl1 l2,l3 l4q
p´h1´h2;ωj1

,´ωj1`h1
,ωj2

q

¯

`O

ˆ

1

T

˙

,

Σ̄
pT q
h1,h2

pl4q “ T Cov
`

γ
pT q
h1
pl1, l2q, γ

pT q
h2
pl3, l4q

˘

(S4.3)

“
1

T

T
ÿ

j1,j2“1

G
pl1,l2,l3,l4q
j1,j2

´

F̃
pl1,l3q
p´j1`j2;´ωj1

q
F̃
pl2,l4q
pj1`h1´j2´h2;ωj1`h1

q

` F̃
pl1,l4q
p´j1´j2´h2;´ωj1

q
F̃
pl2,l3q
pj1`h1`j2;ωj1`h1

q
`

2π

T
F̃
pl1 l2,l3 l4q
ph1´h2;´ωj1

,ωj1`h1
,ωj2

q

¯

`O

ˆ

1

T

˙

,

and

Σ̀
pT q
h1,h2

pl4q “ T Cov
`

γ
pT q
h1
pl1, l2q, γ

pT q
h2
pl3, l4q

˘

(S4.4)

“
1

T

T
ÿ

j1,j2“1

´

G
pl1,l2,l3,l4q
j1,j2

F̃
pl1,l3q
p´j1´j2;´ωj1

q
F̃
pl2,l4q
pj1`h1`j2`h2;ωj1`h1

q

` F̃
pl1,l4q
p´j1`j2`h2;´ωj1

q
F̃
pl2,l3q
pj1`h1´j2;ωj1`h1

q
`

2π

T
F̃
pl1 l2,l3 l4q
ph1`h2;´ωj1

,ωj1`h1
,´ωj2

q

¯

`O

ˆ

1

T

˙

.

This completes the proof.

Similarly, we find for the covariance structure of Theorem E.3:

Υh1,h2pψl1l11 l2l12q “ lim
TÑ8

1

T

T
ÿ

j1,j2“1

´

@

F̃j1´j2;ωj1
pψl2q, ψl1

D@

F̃´j1´h1`j2`h2;´ωj1`h1
pψl12q, ψl11

D

`
@

F̃j1`j2`h2;ωj1
pψl12q, ψl1

D@

F̃´j1´h1´j2,´ωj1`h1
pψl2q, ψl11

D

`
2π

T

@

F̃p´h1`h2;ωj1
,´ωj1`h1

,´ωj2
qpψl2 l12q, ψl1,l11

D

¯

, (S4.5)
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Ύh1,h2pψl1l11 l2l12q “ lim
TÑ8

1

T

T
ÿ

j1,j2“1

´

@

F̃j1`j2;ωj1
pψl2q, ψl1

D@

F̃´j1´h1´j2´h2;´ωj1`h1
pψl12q, ψl11

D

`
@

F̃j1´j2´h2;ωj1
pψl12q, ψl1

D@

F̃´j1´h1`j2;´ωj1`h1
pψl2q, ψl11

D

`
2π

T

@

F̃p´h1´h2;ωj1
,´ωj1`h1

,ωj2
qpψl2 l12q, ψl1 l11

D

¯

, (S4.6)

Ῡh1,h2pψl1l11 l2l12q “ lim
TÑ8

1

T

T
ÿ

j1,j2“1

´

@

F̃´j1`j2;´ωj1
pψl2q, ψl1

D@

F̃j1`h1´j2´h2;ωj1`h1
pψl12q, ψl11

D

`
@

F̃´j1´j2´h2;´ωj1
pψl12q, ψl1

D@

F̃j1`h1`j2;ωj1`h1
pψl2q, ψl11

D

`
2π

T

@

F̃ph1´h2;´ωj1
,ωj1`h1

,ωj2
qpψl2 l12q, ψl1 l11

D

¯
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and

Ὺh1,h2pψl1l11 l2l12q “ lim
TÑ8

1

T

T
ÿ

j1,j2“1

´

@

F̃´j1´j2;´ωj1
pψl2q, ψl1

D@

F̃j1`h1`j2`h2;ωj1`h1
pψl12q, ψl11

D

`
@

F̃´j1`j2`h2;´ωj1
pψl12q, ψl1

D@

F̃j1`h1´j2;ωj1`h1
pψl2q, ψl11

D

`
2π

T

@

F̃ph1`h2;´ωj1
,ωj1`h1

,´ωj2
qpψl2 l12q, ψl1 l11

D

¯

(S4.8)

S5 Results for the fourth-order spectrum

Using a basis expansion, the expectation of the fourth-order periodogram operator can be expressed in terms

the cumulants of the upscaled fDFTs. We have

E
“

IpT qωj1
,ωj2

,ωj3
,ωj4

‰

“
1

p2πq3T
p2πT q2DpT qωj1

bDpT qωj2
bDpT qωj3

bDpT qωj4

“
T

p2πq

´

cum
`

DpT qωj1
, . . . , DpT qωj4

˘

` cum
`

DpT qωj1
, DpT qωj2

˘

b cum
`

DpT qωj3
, DpT qωj4

˘

` S1324pcum
`

DpT qωj1
, DpT qωj3

˘

b cum
`

DpT qωj2
, DpT qωj4

˘

q

` S1423pcum
`

DpT qωj1
, DpT qωj4

˘˘

q b cum
`

DpT qωj2
, DpT qωj3

˘

¯

, (S5.1)

where Theorem B.1 has been applied to reach the second equality. Note that, due to the inclusion of the

function Φ, only those terms are to be considered for which the frequencies satisfy j4 “ ´j1´ j2´ j3 in such

a way that j1 ‰ j2 j1 ‰ j3 and j2 ‰ j3 and j1 ‰ j4. For such values not contained in a proper submanifold,
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the products of second-order cumulant tensors are at most of order OpT´2q in an L2 sense under the null

hypothesis. Using Lemma B.1, it follows that, under H0,
�

�

�

�

E
“

IpT qωj1
,ωj2

,ωj3
,ωj4

‰

´
T

p2πq

2π

T 2
Fωj1

,ωj2
,ωj3

�

�

�

�

2

“ O

ˆ

T

T 2

˙

“ O

ˆ

1

T

˙

and hence asymptotically unbiased. Using a standard smoothing kernel argument and a subsequent Taylor

expansion, the estimator (5.4) is readily shown to satisfy

�

�E
“

F̂pT qωj1
,ωj2

,ωj3
,ωj4

‰

´ Fωj1
,ωj2

,ωj3

�

�

2
“ O

ˆ

1

b4T
` b24

˙

and hence

�

�E
ż ż

F̂
pT q
ω,´ω`ωh,´ω1,ω1`ω

1
h
dωdω1 ´

ż ż

Fω,´ω`ωh,´ω1,ω1`ω
1
h
dωdω1

�

�

2
“ O

ˆ

1

b4T
` b24

˙

.

Under the alternative, (S5.1) continues to hold. Again only those combinations of j1, . . . , j4 have to be

considered that are on the principal manifold but not on a proper submanifold. By Lemma B.2, the first term

of the decomposition in (S5.1) now yields the time-integrated fourth order spectral density operator plus an

error term

T

p2πq

ˆ

p2πq

T 2

T´1
ÿ

t“0

Ft{T ;ωj1
,...,ωj4´1

e´i
řk

l“1 tωjl `R4,T

˙

,

where R4,T “ OpT´2q and hence multiplied by T leads to an error of OpT´1q. Additionally, there are three

terms of the form

T

p2πq

ˆ

1

T 2

T´1
ÿ

t,t1“0

Ft{T,ωj1
b Ft{T,ωj3

e´iptpωj1`j2
q`t1pωj3`j4

qq

`R2,T
1

T

T´1
ÿ

t“0

Ft{T,ωj1
e´itpωj1`j2

q `R2,T
1

T

T´1
ÿ

t“0

Ft{T,ωj1
e´itpωj3`j4

q `R2,TR2,T

˙

.

Note that Φ only selects those terms for which the frequencies satisfy j4 “ ´j1 ´ j2 ´ j3 such that j1 ‰ j2

j1 ‰ j3 and j2 ‰ j3. Let R be a remainder element of S2pHq. The second-order terms can be written as

T

p2πq

ˆ

1

T 2

T´1
ÿ

t,t1“0

Ft{T,ωj1
b Ft{T,ωj3

e´ipt´t1qpωj1`j2
q `

R

T

2

|j1 ` j2|2

˙

.

Therefore, consider bounding their smoothed versions

p2πq3

pb4T q
3

ÿ

k1,k2,k3

K4

´ωj1 ´ αk1
b4

, . . . ,
ωj4 `

ř3
i“1 αki

b4

¯

Φpαk1 , . . . , αk4q

ˆ

1

p2πqT

T´1
ÿ

t,t1“0

Ft{T,αk1
b Ft1{T,αk3

e´ipt´t1qpαk1`k2
q `

1

p2πq

2R

|k1 ` k2|
2

˙

.
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Consider the leading term first. The double sum and nonnegativity of the smoothing kernels allows to derive

the upper bound

p2πq3

pb4T q
3

ÿ

k1,k2,k3

�

�

�

�
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, . . . ,
ωj4 `

ř3
i“1 αki

b4

¯

Φpαkq
1

p2πqT
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ˇ
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ˇ
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�
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�

�

2
,

but since submanifolds, i.e., k1 “ k2, are not allowed via Φ, the above can be bounded by

sup
u,ω
~Fu,ω~

2
2

p2πq2

b34pT q
4
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K4
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¯
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ˇ

ˇ

ˇ
∆
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q

T

ˇ

ˇ

ˇ

2

ď

ˆ

sup
u,ω
~Fu,ω~

2
2Op

1
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q

˙
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ˆ

1

b4T 2
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.

Now consider the two error terms. A change of variables gives

p2πq3

pb4T q
3

ÿ

k1,k2,k3

K4

´ωk1
b4
, . . . ,

ωk4
b4

¯

Φpωj ´́́ αkq
R

|j1 ´ k1 ` j2 ´ k2|
2

and by the p-harmonic series this is of order
�

�

�

�

p2πq3

pb4T q
3

ÿ

k2,k3,l

K4

´ωl
b4
, . . . ,

ωk4
b4

¯

Φpωj ´́́ αkq
R

|l|2

�

�

�

�

2

“ O
´ 1

b4T

¯

.

Therefore, a similar argument as under the null yields
�

�

�

�

E
„
ż ż

F̂
pT q
ω,´ω`ωh,´ω1,ω1`ω

1
h
dωdω1



´

ż ż

Gω,´ω`ωh,´ω1,ω1`ω
1
h
dωdω1

�

�

�

�

2

“ O

ˆ

1

b4T
` b24

˙

,

where Gω,´ω`ωh,´ω1,ω1`ω
1
h

is the time-integrated fourth-order spectral density operator acting on S2pHCq.

References

Aue, A. & A. van Delft (2017). Testing for stationarity of functional time series in the frequency domain.

Preprint.

Cremers, H. & D. Kadelka (1986). On weak convergence of integral functions of stochastic processes with

applications to processes taking paths in LEp . Stochastic Processes and their Applications 21, 305–317.

Nelson, E. (1969). Topics in Dynamics, Volume I: Flows. Princeton University Press.

Panaretos, V. & S. Tavakoli (2013). Fourier analysis of stationary time series in function space. The Annals

of Statistics 41, 568–603.

60


	1 Introduction
	2 Main results
	2.1 Asymptotic properties of structural break detector
	2.2 Asymptotic properties of the break date estimator
	2.3 Two fPCA based approaches

	3 Implementation details
	3.1 Estimation of long-run covariance operator
	3.2 Computation of critical values
	3.3 Construction of confidence intervals

	4 Simulation Study
	4.1 Setting
	4.2 Level and power of the detection procedures
	4.3 Performance of the break dating procedures
	4.4 Heavy tails

	5 Application to annual temperature curves
	6 Conclusions
	Second file aue.pdf
	1 Introduction
	2 Notation and setup
	2.1 The function space
	2.2 Dependence structure on the function space
	2.3 The functional discrete Fourier transform

	3 The functional stationarity testing framework
	4 Large-sample results
	4.1 Properties under the null of stationarity
	4.2 Properties under the alternative

	5 Empirical results
	5.1 Simulation setting
	5.2 Specification of tuning parameters
	5.3 Estimating the fourth-order spectrum
	5.4 Finite sample performance under the null
	5.5 Finite sample performance under the alternative
	5.6 Finite sample performance under non-Gaussian observations
	5.7 Application to annual temperature curves

	6 Conclusions and future work
	A A functional Cramér representation
	B Properties of functional cumulants
	C Companion results for the test defined through (3.1)
	D First and second order dependence structure
	D.1 Under the null hypothesis of stationarity
	D.2 Under the alternative hypothesis of local stationarity

	E Weak convergence
	E.1 Weak convergence on the function space
	E.2 Replace projection basis with estimates

	S1 Properties of functional cumulants under local stationarity
	S2 Error bound for the denominator of the test statistic
	S3 Convergence of finite-dimensional distributions
	S4 Proofs under the alternative hypothesis of local stationarity
	S5 Results for the fourth-order spectrum



