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Abstract

In this paper we establish the consistency of the model selection criterion based on

the quasi-marginal likelihood (QML) obtained from Laplace-type estimators. We con-

sider cases in which parameters are strongly identified, weakly identified and partially

identified. Our Monte Carlo results confirm our consistency results. Our proposed

procedure is applied to select among New Keynesian macroeconomic models using US

data.
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1 Introduction

Thanks to the development of fast computers and accessible software packages, Bayesian

methods are now commonly used in the estimation of macroeconomic models. Bayesian

estimators get around numerically intractable and ill-shaped likelihood functions, to

which maximum likelihood estimators tend to succumb, by incorporating economically

meaningful prior information. In a recent paper, Christiano, Trabandt and Walentin

(2011) propose a new method of estimating a standard macroeconomic model based

on the criterion function of the impulse response function (IRF) matching estima-

tor of Christiano, Eichenbaum and Evans (2005) combined with prior density. In-

stead of relying on a correctly specified likelihood function, they define an approximate

likelihood function and proceed with a random walk Metropolis-Hastings algorithm.

Chernozhukov and Hong (2003) establish that such an approach has a frequentist jus-

tification in a more general framework and call it a Laplace-type estimator (LTE) or

quasi-Bayesian estimator.1 The quasi-Bayesian approach does not require the complete

specification of likelihood functions and may be robust to potential misspecification.

IRF matching can also be used even when shocks are fewer than observed variables (see

Fernández-Villaverde, Rubio-Ramı́rez and Schorfheide, 2016, p.686). Other applica-

tions of LTEs to estimate macroeconomic models include Christiano, Eichenbaum and

Trabandt (2016), Kormilitsina and Nekipelov (2016), Gemma, Kurozumi and Shintani

(2017) and Miyamoto and Nguyen (2017).

When two or more competing models are available, it is of great interest to select one

model for policy analysis. When competing models are estimated by Bayesian methods,

the models are often compared by their marginal likelihood. Likewise, it is quite

intuitive to compare models estimated by LTE using the “marginal likelihood” obtained

from the LTE criterion function. In fact, Christiano, Eichenbaum and Trabandt (2016,

Table 3) report the marginal likelihoods from LTE when they compare the performance

of their macroeconomic model of wage bargaining with that of a standard labor search

model. In this paper, we prove that such practice is asymptotically valid in that a model

with a larger value of its marginal likelihood is either correct or a better approximation

1The term “quasi-Bayesian” also refers to the procedure that involves data-dependent prior or multiple

priors in the Bayesian literature.
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to true impulse responses with probability approaching one as the sample size goes to

infinity.

We consider the consistency of model selection based on the marginal likelihood in

three cases: (i) parameters are all strongly identified; (ii) some parameters are weakly

identified; and (iii) some model parameters are partially identified. While case (i) is

standard in the model selection literature (e.g., Phillips, 1996; Sin and White, 1996),

cases (ii) and (iii) are also empirically relevant because some parameters may not be

strongly identified in macroeconomic models (see Canova and Sala, 2009). We consider

the case of weak identification using a device that is similar to Stock and Wright (2000)

and Guerron-Quintana, Inoue and Kilian (2013). We also consider the case in which

parameters are set identified as in Chernozhukov, Hong and Tamer (2007) and Moon

and Schorfheide (2012).

Our approach allows for model misspecification and is similar in spirit to the

Bayesian model selection procedure considered by Schorfheide (2000). Instead of using

the marginal likelihoods (or the standard posterior odds ratio) directly, Schorfheide

(2000) introduces the VAR model as a reference model in the computation of the loss

function so that he can compare the performance of possibly misspecified dynamic

stochastic general equilibrium (DSGE) models in the Bayesian framework. The re-

lated DSGE-VAR approach of Del Negro and Schorfheide (2004, 2009) also allows

DSGE models to be misspecified, which results in a small weight on the DSGE model

obtained by maximizing the marginal likelihood of the DSGE-VAR model. An advan-

tage of our approach is that we can directly compare the quasi-marginal likelihoods

(QMLs) even if all the competing DSGE models are misspecified.2

The econometric literature on comparing DSGE models includes Corradi and Swan-

son (2007), Dridi, Guay and Renault (2007) and Hnatkovska, Marmer and Tang (2012).

In particular, Hnatkovska, Marmer and Tang (2012) propose hypothesis testing proce-

dures to evaluate the relative performance of possibly misspecified DSGE models. We

propose a model selection procedure as in Fernández-Villaverde and Rubio-Ramı́rez

(2004), Hong and Preston (2012) and Kim (2014). In the likelihood framework,

2As established in White (1982), desired asymptotic results can often be obtained even if the likelihood

function is misspecified. The quasi-Bayesian approach is also closely related to the limited-information

likelihood principle used by Zellner (1998) and Kim (2002), among others.
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Fernández-Villaverde and Rubio-Ramı́rez (2004) and Hong and Preston (2012) con-

sider asymptotic properties of the Bayes factor and posterior odds ratio for model

comparison, respectively. In the LTE framework, Kim (2014) shows the consistency of

the QML criterion for a nested model comparison, to which Hong and Preston (2012,

p.365) also allude. In a recent paper, Shin (2014) proposes a Bayesian generalized

method of moments (GMM) and develops a novel method for computing the marginal

likelihood.

We make general contributions in three ways. First, we show that the naive QML

model selection criterion may be inconsistent when models are not nested. This fact is

why the existing literature, such as Kim (2014), focuses on the nested case. Second, we

develop a new modified QML model selection criterion that remains consistent when

nonnested models are considered. Third, we consider cases in which some parameters

are either weakly or partially identified. The weakly and partially identified cases

are relevant for the estimation of DSGE models but have not been considered in the

aforementioned literature.

The outline of this paper is as follows. We begin our analysis by providing a simple

illustrative example of model selection in Section 2. Asymptotic justifications for the

QML model selection criterion are established in Section 3. We discuss various aspects

of implementing IRF matching in Section 4 and provide guidance for the practical im-

plementation of our procedure in Section 5. A small set of Monte Carlo experiments is

provided in Section 6. Empirical applications of our procedure to evaluate New Keyne-

sian macroeconomic models using US data are provided in Section 7. The concluding

remarks are made in Section 8. The proofs of the theoretical results and additional

Monte Carlo results are relegated to the online appendix (Inoue and Shintani, 2017).

Throughout the paper, all the asymptotic statements are made for the case in which

the sample size tends to infinity or T →∞.

2 An Illustrative Example

There are several issues that may arise in model selection. For example, one may

compare a correctly specified model and a misspecified model; or one may compare two

correctly specified models where one is more parsimonious than the other. To motivate
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our proposed QML, we illustrate these issues in a simple Monte Carlo setup and show

that comparing values of estimation criterion functions alone does not necessarily select

the preferred model.

Consider a simplified version of the model in Canova and Sala (2009):

yt = Et(yt+1)− σ[Rt − Et(πt+1)] + u1t, (1)

πt = δEt(πt+1) + κyt + u2t, (2)

Rt = φπEt(πt+1) + u3t, (3)

where yt, πt and Rt are output gap, inflation rate and nominal interest rate, respec-

tively, and u1t,u2t and u3t are independent iid standard normal random variables,

which respectively represents a shock to the output Euler equation (1), New Keyne-

sian Phillips curve (NKPC) (2), and monetary policy function (3). Et(·) = E(·|It) is

the conditional expectation operator conditional on It, the information set at time t;

σ is the parameter of elasticity of intertemporal substitution; δ ∈ (0, 1) is the discount

factor; κ is the slope of the NKPC and φπ controls the reaction of the monetary policy

to inflation. Because a solution is
yt

πt

Rt

 =


1 0 −σ

κ 1 −σκ

0 0 1



u1t

u2t

u3t

 , (4)

we have covariance restrictions: 3

Cov([yt πt Rt]
′) =


1 + σ2 κ+ κσ2 −σ

κ+ σ2κ 1 + κ2 + σ2κ2 −σκ

−σ −σκ 1

 . (5)

Suppose that we use

f(σ, κ) = [1 + σ2, κ+ σ2κ, −σ, 1 + κ2 + σ2κ2, −σκ]′, (6)

and the corresponding five elements in the covariance matrix of the three observed

variables, where we set σ = 1 and κ = 0.5. We consider two cases. In case 1, the

two parameters are estimated in model A, while σ is estimated and the value of κ is

3While there is no unique solution to this model, we simply use a solution from Canova and Sala (2009).

This fact does not cause any problem in our minimum distance estimation exercise based on (5).
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set to a wrong parameter value, 1, in model B. In other words, model A is correctly

specified and model B is incorrectly specified. In case 2, only one parameter (σ) is

estimated and the value of κ is set to the true parameter value in model A, while the

two parameters are estimated in model B. Although the two models are both correctly

specified in this design, model A is more parsimonious than model B.

Suppose that we employ a classical minimum distance (CMD) estimator and choose

the model with a smaller estimation criterion function. Table 1 shows the frequencies

of selecting the right model (model A) when one selects a model with a smaller value of

the minimized estimation criterion function. The number of Monte Carlo replications

is 1,000 and the sample sizes are 50, 100 and 200. The column labeled “Diagonal”

indicates the selection probabilities when the diagonal weighting matrix whose diagonal

elements are the reciprocals of the bootstrap variances of the sample analogs of the

restrictions. The column labeled “Optimal” indicates those when the weighting matrix

is the inverse of the bootstrap covariance matrix of the sample analog of the restrictions.

This table shows that although this intuitive procedure tends to select the correctly

specified models over the incorrectly specified models in designs 1, it is likely to select an

overparameterized model if the two models have equal explanatory power in population

as in cases 2. Our proposed QML model selection criteria overcome this issue as

formally shown in the next section.

Furthermore, the issue of weak and partial identification is often encountered in

macroeconomic applications. In this static model example, suppose f(σ, κ) = [κ +

σ2κ, 1+κ2 +σ2κ2,−σκ]′ and the corresponding three elements of the covariance matrix

are used to estimate the model instead of (6). As κ approaches zero, the strength of

identification of σ becomes weaker. In addition, the slope of NKPC κ is known to

depend on several deep parameters that are only partially identified.

Tables A1–A4 in Inoue and Shintani (2017) report the performance of our QML

model selection procedure and others when the parameters are strongly, weakly or

partially identified in this static model. We find that the probability of selecting model

A also tends to approach one as the sample size increases, even when identification is

weak and when some parameters are partially identified.
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3 Asymptotic Theory

3.1 Quasi-Marginal Likelihood for Extremum Estimators

We first consider QMLs based on general objective functions and establish the consis-

tency of the model selection based on QMLs. Models A and B are parameterized by

vectors, α ∈ A and β ∈ B, respectively, where A ⊂ <pA and B ⊂ <pB . Let q̂A,T (α)

and q̂B,T (β) be the objective functions for estimating models A and B, respectively,

that would be minimized in the conventional frequentist estimation method. Here

subscript T signifies the fact that both objective functions are constructed using the

same data with sample size T . The conventional extremum estimators are given by

α̂T = arg min α∈Aq̂A,T (α) and β̂T = arg minβ∈B q̂B,T (β). Let qA(α) and qB(β) denote

the population analog of q̂A,T (α) and q̂B,T (β), and define the (possibly pseudo) true

parameter values of α and β by α0 = arg minα∈A qA(α) and β0 = arg minβ∈B qB(β),

respectively.

In this paper, we say model A is nested in model B if there exists a function

φ : <pA → <pB such that qA(α) = qB(φ(α)), for all α ∈ A.4 Rivers and Vuong

(2002) generalize a likelihood ratio test for model comparison originally developed by

Vuong (1989) to the case of extremum estimators and show that q̂A,T (α̂T )− q̂B,T (β̂T ) =

Op(T
−1) if the models are nested and that q̂A,T (α̂T )− q̂B,T (β̂T ) = Op(T

− 1
2 ), otherwise.

Hnatkovska, Marmer and Tang (2012) and Smith (1992) show similar results for CMD

estimators and GMM estimators, respectively.

Following Chernozhukov and Hong (2003), the quasi-posteriors of models A and B

can be defined by

e−T q̂A,T (α)πA(α)∫
A e
−T q̂A,T (α)πA(α)dα

and
e−T q̂B,T (β)πB(β)∫

B e
−T q̂B,T (β)πB(β)dβ

, (7)

where πA(α) and πB(β) are the prior probability density functions for the two models.

By treating (7) as the posterior, their LTE (e.g., quasi-posterior mean, median and

mode) is obtained via the Markov Chain Monte Carlo (MCMC) method, which may

be particularly useful when the objective functions are not numerically tractable or

when extremum estimates are not reasonable.

4See Vuong(1989) for the formal definition when competing models are nested, strictly non-nested or

overlapping.
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We now define the QMLs for models A and B by

mA =

∫
A
e−T q̂A,T (α)πA(α)dα and mB =

∫
B
e−T q̂B,T (β)πB(β)dβ. (8)

We say that the QML model selection criterion is consistent in the following sense:

mA > mB with probability approaching one if qA(α0) < qB(β0) or if qA(α0) = qB(β0)

and pAs < pBs where pAs and pBs are the numbers of strongly identified parameters

in models A and B, respectively. For example, suppose the parameter α in model A

corresponds to a subset of the parameter β in model B so that two models are nested,

and a remaining part of parameter β are fixed at their true value. Then, β0 = φ(α0)

and qA(α0) = qB(β0) hold and the model with the fixed parameter value is preferable

because it reduces parameter estimation uncertainty. This definition of consistency is

common in the literature on the selection of parametric models (see Leeb and Pötscher,

2009; Nishii, 1988; and Inoue and Kilian, 2006, to name a few), and the model selection

criteria, such as those in Nishii (1988), Sin and White (1996) and Hong and Preston

(2012), are designed to be consistent in this sense. 5 For the model selection based on

the value of qA(α0) and pAs relative to the value of qB(β0) and pBs to make sense, every

object of model selection needs to be incorporated in criterion functions and parameter

vectors. We will be more specific about this issue when we remark on Propositions 1

and 2 in the next two subsections.

It can be shown that the log of the QML is approximated by

ln(mA) = −T q̂A,T (α̂T )− pA
2

ln(T ) +Op(1), (9)

ln(mB) = −T q̂B,T (β̂T )− pB
2

ln(T ) +Op(1). (10)

Because the leading term diverges at rate T , a correctly specified model will be chosen

over an incorrectly specified model. When the model is nested and qA(α0) = qB(β0),

a more parsimonious model will be chosen because of the second term. The problem

occurs when the model is not nested and qA(α0) = qB(β0). Because the difference of

the dominant terms can have either sign with positive probability and diverges at rate

T 1/2, a model will be chosen randomly. When two models that are not nested have

equal fit, one may still prefer a more parsimonious model based on Occam’s razor or

5One could also call a model selection criterion consistent if mA > mB with probability approaching one

if qA(α0) < qB(β0). Our model selection criterion is also consistent in this sense.
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if a selected model is to be used for forecasting (Inoue and Kilian, 2006). For that

purpose we propose the following modified QML:

ln(m̃A) = ln(mA) + (T −
√
T )q̂A,T (α̂T ), (11)

ln(m̃B) = ln(mB) + (T −
√
T )q̂B,T (β̂T ). (12)

In the logarithmic form, the modified QML effectively replaces −T q̂A,T (α̂T ) in the

Laplace approximation by −
√
T q̂A,T (α̂T ) so that T

1
2 (q̂A,T (α̂T ) − q̂B,T (β̂T )) = Op(1)

and the more parsimonious model will be selected in the equal-fit case, and the modi-

fied QML model selection criterion remains consistent for both nested and nonnested

models.

Let αs and βs denote strongly identified parameters, if any, αw and βw weakly

identified parameters, and αp and βp partially identified parameters. pAs and pBs

denote the number of the strongly identified parameters, pAw and pBw the number of

the weakly identified parameters, and pAp and pBp the number of the partially identified

parameters. As and Bs are the spaces of the strongly identified parameters, Aw and Bw

are those of the weakly identified parameters, and Ap and Bp are those of the partially

identified parameters. We consider two cases. Some of the parameters may be weakly

identified in the first case (α = [α′s α
′
w]′, pA = pAs +pAw , and A = As×Aw) while some

parameters may be partially identified in the second case (α = [α′s α
′
p]
′, pA = pAs +pAp

and A = As × Ap). The parameters may be all strongly identified (pA = pAs), weakly

identified (pA = pAw) or partially identified (pA = pAp).

Assumption 1

(a) A is compact in <pA [B is compact in <pB ].

(b) If pAs > 0, q̂A(α) and qA(α) are twice continuously differentiable in αs ∈ int(As),

supα∈A |q̂A,T (α) − qA(α)| = op(1), supα∈A ‖∇αs q̂A,T (α) − ∇αsqA(α)‖ = op(1)

and supα∈A ‖∇2
αs q̂A,T (α) − ∇2

αsqA(α)‖ = op(1) [If pBs > 0, q̂B(β) and qB(β)

are twice continuously differentiable in βs ∈ int(Bs), supβ∈B |q̂B,T (β)− qB(β)| =

op(1), supβ∈B ‖∇βs q̂B,T (β) − ∇βsqB(β)‖ = op(1) and supβ∈B ‖∇2
βs
q̂B,T (β) −

∇2
βs
qB(β)‖ = op(1)].

(c) If pAs > 0, πAs(αs) is continuous at αs,0 and πAs(αs,0) > 0. [If pBs > 0, πBs(βs)

is continuous at βs,0 and πBs(βs,0) > 0].
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Assumption 1(b) requires uniform convergence of q̂A,T (·), ∇q̂A,T (·) and ∇2qA,T (·) to

qA(·), ∇qA(·) and∇2qA(·), respectively, which holds under more primitive assumptions,

such as the compactness of the parameter spaces, pointwise convergence and stochastic

equicontinuity (see Theorem 1 of Andrews, 1992).

It is well-known that some parameters of DSGE models may not be strongly identi-

fied. See Canova and Sala (2009), for example. It is therefore important to investigate

asymptotic properties of our model selection procedure in case some parameters may

not be strongly identified. To allow for some weakly identified parameters, we impose

the following assumptions:

Assumption 2 (Weak Identification)

(a) qA(α) = qAs(αs) + T−1qAw(α) if pAs > 0 and qA(αw) = T−1qAw(αw) if pAs = 0

where qAw(·) is Op(1) uniformly in α ∈ A. [qB(β) = qBs(βs) + T−1qBw(β) if

pBs > 0 and qB(βw) = T−1qBw(βw) if pBs = 0 where qBw(·) is Op(1) uniformly in

β ∈ B].

(b) If pAs > 0, then there exists αs,0 ∈ int(As) such that for every ε > 0

inf
αs∈As:‖αs−αs,0‖≥ε

qAs(αs) > qAs(αs,0)

[If pBs > 0, then there exists βs,0 ∈ int(Bs) such that for every ε > 0

inf
βs∈Bs:‖βs−βs,0‖≥ε

qBs(βs) > qBs(βs,0)].

(c) If pAs > 0, the Hessian ∇2
αsqAs(αs,0) is positive definite [ If pBs > 0, the Hessian

∇2
βs
qBs(βs,0) is positive definite].

Remarks.

1. Assumptions 1 and 2 are high-level assumptions, and sufficient and lower-level

assumptions for CMD and GMM estimators are provided in the next two subsections.

2. Typical prior densities are continuous in macroeconomic applications, and Assump-

tion 1(c) is likely to be satisfied.

3. Assumption 2(a) postulates that αw is weakly identified while αs is strongly identi-

fied where α = [α′s α
′
w]′. Note that we allow for cases in which the parameters are all

strongly identified as well as cases in which they are all weakly identified. When there is
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a strongly identified parameter, Assumption 2(b) requires that its true parameter value

αs,0 uniquely minimize the population estimation criterion function, and Assumption

2(c) requires that the second-order sufficient condition for minimization be satisfied.

Theorem 1 (The Case When Some Parameters May Be Weakly Identified). Suppose that

Assumptions 1 and 2 hold.

(a) If qAs(αs,0) < qBs(βs,0), then mA > mB and m̃A > m̃B with probability ap-

proaching one.

(b) (Nested Case) If qAs(αs,0) = qBs(βs,0), pAs < pBs and q̂A,T (α̂T ) − q̂B,T (β̂T ) =

Op(T
−1), then mA > mB and m̃A > m̃B with probability approaching one.

(c) (Nonnested Cases) If qAs(αs,0) = qBs(βs,0), pAs < pBs and q̂A,T (α̂T )− q̂B,T (β̂T ) =

Op(T
−1/2), then m̃A > m̃B with probability approaching one.

Remarks.

1. Theorem 1(a) shows that the proposed QML model selection criterion selects the

model with a smaller population estimation criterion function with probability ap-

proaching one. Theorem 1(b) implies that, if the minimized population criterion func-

tions take the same value, our model selection criterion will select the model with a

lesser number of strongly identified parameters. In the special case where Model A is

correctly specified and is a restricted version of Model B, our criterion will select Model

A, provided that the restriction is imposed on a strongly identified parameter. This is

because the QML has a built-in penalty term for parameters that are not necessary for

reducing the population criterion function as can be seen in the Laplace approximation

of the marginal likelihood. Note that these results hold even when the parameters are

all strongly identified.

2. This consistency result applies whether or not the models are correctly specified

or misspecified. If one model is correctly specified in that its minimized population

criterion function is zero, while the other model is misspecified in that its minimized

population criterion function is positive, our model selection criterion will select the

correctly specified model with probability approaching one. Arguably, it may still make

sense to minimize the criterion function even when two models are misspecified. In

that case, our model selection criterion will select the better approximating model with

probability approaching one.
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3. When the models are not nested and qA(αs,0) = qB(βs,0), Theorem 1(c) shows

that the marginal likelihood does not necessarily select a more parsimonious model

even asymptotically. This result is consistent with Hong and Preston’s (2012) result

on BIC. Although this may not be a major concern when the models are nonnested,

the modified QML selects a parsimonious model even when the nonnested models

satisfy qA(αs,0) = qB(βs,0). However, because the leading term in the modified QML

diverges at rate
√
T , the modified QML is less powerful than the unmodified QML if

qA(αs,0) < qB(βs,0). We will investigate this trade-off in Monte Carlo experiments.

Next, we consider cases in which some parameters may be partially identified. We

say that the parameters are partially identified if A0 = {α0 ∈ A : qA(α0) =

minα∈A qA(α)} consists of more than one point (see Chernozhukov, Hong and Tamer,

2007). Moon and Schorfheide (2012) lists macroeconometric examples in which this

type of identification arises. Similarly, we define B0 = {β0 ∈ B : qB(β0) =

minβ∈B qB(β)}. In addition to Assumption 1, we impose the following assumptions.

Assumption 3 (Partial Identification)

(a) There exists A0 ⊂ A such that, for every α0 ∈ A0 and ε > 0 infα∈(Ac
0)−ε qA(α) >

qA(α0), where (Ac
0)−ε = {α ∈ A : d(α,A0) ≥ ε} and d(α,A0) = infa∈A0 ‖α−a‖ [

There exists B0 ⊂ B such that, for every β0 ∈ B0 and ε > 0, infα∈(Ac
0)−ε qA(α) >

qA(α0), where (Bc
0)−ε = {β ∈ B : d(β,B0) ≥ ε} and d(β,B0) = infb∈B0 ‖β− b‖.]

(b) If pAs > 0, the Hessian ∇2
αsqA([α′s,0, α

′
p,0]′) is positive definite for some αp,0 ∈

Ap,0. [ If pBs > 0, the Hessian ∇2
βs
qB([β′s,0, β

′
p,0]′) is positive definite for some

βp,0 ∈ Bp,0].

(c)
∫
Ap,0

πA(αp|αs,0)dαp > 0 where πA(αp|αs) is the prior density of αp conditional

on αs. [
∫
Bp,0

πB(βp|βs,0)dβp > 0 where πB(βp|αs) is the prior density of βp con-

ditional on βs].

Remark. Assumptions 3(a), (b) and (c) are generalizations of Assumptions 2(b), 2(c)

and 1(c), respectively, to sets.

Theorem 2 (The Case When Some Parameters May Be Partially Identified).

(a) Suppose that Assumptions 1 and 3(a) hold. If minα∈A qA(α) < minβ∈B qB(β),
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then mA > mB and m̃A > m̃B with probability approaching one.

(b) (Nested Case) Suppose that Assumptions 1 and 3 hold. If qAs(αs,0) = qBs(βs,0),

pAs < pBs and q̂A,T (α̂T ) − q̂B,T (β̂T ) = Op(T
−1), then mA > mB and m̃A > m̃B

with probability approaching one.

(c) (Nonnested Cases) Suppose that Assumption 3 holds. If qAs(αs,0) = qBs(βs,0),

pAs < pBs and q̂A,T (α̂T )−q̂B,T (β̂T ) = Op(T
−1/2), then m̃A > m̃B with probability

approaching one.

Remarks

Theorem 3(a) shows that even in the presence of partially identified parameters, our

criteria select a model with a smaller value of the population estimation objective

function. This result occurs because it is the value of the objective function, not the

parameter value, that matters to model selection.

3.2 Quasi-Marginal Likelihood for CMD Estimators

Since the extremum estimators include a class of important estimators popularly used

in practice, it should be useful to describe a set of assumptions specific to each of the

estimators. We first consider the CMD estimator, which has been used to estimate the

structural parameters in DSGE models by matching the predicted impulse response

function (say, DSGE-IRF) and the estimated impulse response function from the VAR

models (say, VAR-IRF) in empirical macroeconomics.

Suppose that we compare two DSGE models, models A and B. Models A and B are

parameterized by structural parameter vectors, α ∈ A and β ∈ B, where A ⊂ <pA and

B ⊂ <pB . Let f(α) and g(β), of dimension k × 1, denote the DSGE-IRFs of models

A and B, respectively. The IRF matching estimator of Christiano, Eichenbaum and

Evans (2005) minimizes the criterion functions

q̂A,T (α) =
1

2
(γ̂T − f(α))′ŴT (γ̂T − f(α)),

q̂B,T (β) =
1

2
(γ̂T − g(β))′ŴT (γ̂T − g(β)),

with respect to α ∈ A and β ∈ B , respectively, for models A and B, where γ̂T is a

k × 1 vector of VAR-IRFs, and ŴT is a k × k positive semidefinite weighting matrix.6

6Jordà and Kozicki (2011) develop a projection minimum distance estimator that is based on restrictions
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It should be noted that the condition for identifying VAR-IRFs must be satisfied in

DSGE models. For example, if short-run restrictions are used to identify VAR-IRFs,

the restrictions must be satisfied in the DSGE model. Otherwise, IRF matching does

not yield a consistent estimator and model selection based on IRF matching may

become invalid.

Let

qA(α) =
1

2
(γ0 − f(α))′W (γ0 − f(α)), (13)

qB(β) =
1

2
(γ0 − g(β))′W (γ0 − g(β)), (14)

where γ0 is a vector of population VAR-IRFs and W is a positive definite matrix.

While our model selection depends on the choice of weighting matrices, if one is to

calculate standard errors from MCMC draws, ŴT needs to be set to the inverse of the

asymptotic covariance matrix of γ̂T , which eliminates the arbitrariness of the choice

of the weighting matrix. When the optimal weighting matrix is not used, the formula

in Chernozhukov and Hong (2002) and Kormilitsina and Nekipelov (2016) should be

used to calculate standard errors.

For CMD estimators, we make the following assumptions:

Assumption 4.

(a)
√
T (γ̂T − γ0)

d→ N(0k×1,Σ) where Σ is positive definite.

(b) A is compact in <pA [B is compact in <pB ].

(c) f(α) = fs(αs) + T−1/2fw(α) if pA > 0 and f(α) = T−1/2fw(α) if pA = 0, where

fs : As → <k and fw : A→ <k are three times continuously differentiable in the

interior of A. The Jacobian matrix of fs, Fs(αs) = ∂fs(αs)/∂α
′
s, has rank pAs at

αs = αs,0 [g : B→ <k is three times continuously differentiable in the interior of

B, and its Jacobian matrix Gs(βs) = ∂g(βs)/∂β
′
s has rank pBs at βs = βs,0].

(d) ŴT is positive semidefinite with probability one and converges in probability to

a positive definite matrix W .

of the form of h(γ, α) = 0. While we could consider a quasi-Bayesian estimator based on such restrictions,

we focus on the special case in which h(γ, α) = γ − f(α).
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(e) If pAs > 0, there is a unique αs,0 ∈ int(As) such that αs,0 = argminαs∈As
fs(αs)

′Wfs(αs).

If pAs = 0, f(α) = T−1/2fw(αw) [If pBs > 0, g(β) = gs(βs) + T−1/2gw(β), and

there is a unique βs,0 ∈ int(Bs) such that βs,0 = argminβs∈Bsgs(βs)
′Wgs(βs). If

pBs = 0, g(β) = T−1/2gw(βw).

(f) If pAs > 0,

Fs(αs,0)′WFs(αs,0)− [(γ − fs(αs,0))′W ⊗ IpAs,0 ]
∂vec(Fs(αs,0)′)

∂α′s,0

is positive definite [ If pBs > 0,

Gs(βs,0)′WGs(βs,0)− [(γ − gs(βs,0))′W ⊗ IpBs ]
∂vec(Gs(βs,0)′)

∂β′s

is positive definite].

(g) There is A0 = {α0} ×Ap,0 ⊂ A such that, for any α ∈ A0, (γ − f(α))′W (γ −

f(α)) = minα̃∈A(γ − f(α̃))′W (γ − f(α̃)) < (γ − f(ᾱ))′W (γ − f(ᾱ)) for any

ᾱ ∈ A ∩ Ac
0 [There is B0 = {β0} × Bp,0 ⊂ B such that, for any β ∈ B0,

(γ−g(β))′W (γ−g(β)) = minβ̃∈B(γ−g(β̃))′W (γ−g(β̃)) < (γ−g(β̄))′W (γ−g(β̄))

for any β̄ ∈ B ∩Bc
0].

(h) If pAs > 0, there is αp,0 ∈ Ap,0 such that

Fs(α)′WFs(α)− [(γ − f(α))′W ⊗ IpAs ]
∂vec(Fs(α)′)

∂α′s
,

is positive definite at α = [α′s,0 α
′
p,0]′ [ If pBs > 0, there is βp,0 ∈ Bp,0 such that

Gs(β)′WGs(β)− [(γ − g(β))′W ⊗ IpBs ]
∂vec(Gs(β)′)

∂β′s
,

is positive definite at β = [β′s,0 β
′
p,0]′].

Remarks.

1. The root T consistency and asymptotic normality of VAR-IRFs follow from station-

ary data and restrictions that structural IRFs are point-identified.

2. Assumption 4(e) follows Guerron-Quintana, Inoue and Kilian’s (2013) definition of

weak identification in the minimum distance framework.

The model selection based on the QML computed from quasi-Bayesian CMD Esti-

mators is justified by the following proposition.

Proposition 1.
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(a) Under Assumptions 4(a)–(f), Assumptions 1 and 2 hold.

(b) Under Assumptions 4(a)–(d), (g) and (h), Assumptions 1 and 3 hold.

Remark. In our framework, the VAR-IRF, γ̂T , is common across different DSGE models

and our proposed QML is designed to select a DSGE model. When it is used to select

VAR-IRFs given a DSGE model, the QML will select all the valid impulse responses,

that is, all the VAR-IRFs that equal the corresponding DSGE-IRFs (see Hall, Inoue,

Nason and Rossi, 2012, on this issue). When it is used to select the number of lags in

the VAR model given an IRF and a DSGE model, the QML will select enough many

lags so that the implied VAR-IRF equals the DSGE-IRF provided that the population

VAR-IRF equals the corresponding DSGE-IRF for sufficiently many lags. Because the

criterion function is not used in the VAR parameter estimation, however, it will not

necessarily choose the smallest lag for which the implied VAR-IRF equals the DSGE-

IRF with probability approaching one. If the goal is to select the number of lags, the

criterion function and the parameter vector need to be modified.

3.3 Quasi-Marginal Likelihood for GMM Estimators

Another important class of the estimator we consider is the GMM estimator. For GMM

estimators, the criterion functions of models A and B are respectively given by

q̂A,T (α) =
1

2
fT (α)′ ŴA,T fT (α),

q̂B,T (β) =
1

2
gT (β)′ ŴB,T gT (β),

where fT (α) = (1/T )
∑T

t=1 f(xt, α), gT (β) = (1/T )
∑T

t=1 g(xt, β) and ŴA,T and ŴB,T

are k × k positive semidefinite weighting matrices.

Let

qA(α) =
1

2
E[f(xt, α)]′WAE[f(xt, α)], (15)

qB(β) =
1

2
E[g(xt, β)]′WBE[g(xt, β)], (16)

where WA and WB are positive definite matrices.

For the GMM estimation, we impose the following assumptions:

Assumption 5.
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(a) supα∈A ‖T−1
∑T

t=1{f(xt, α)−E[f(xt, α)]}‖ = Op(T
−1/2), supα∈A ‖T−1

∑T
t=1{(∂/∂α′)f(xt, α)−

E[(∂/∂α′)f(xt, α)]}‖ = op(1), and supα∈A ‖T−1
∑T

t=1{(∂/∂α′)vec((∂/∂α′)f(xt, α)−

E[(∂/∂α′)vec((∂/∂α′)f(xt, α))]}‖ = op(1) [supβ∈B ‖T−1
∑T

t=1{g(xt, β)−E[g(xt, β)]}‖ =

Op(T
−1/2), supβ∈B ‖T−1

∑T
t=1{(∂/∂β′)g(xt, β) − E[(∂/∂β′)g(xt, β)]}‖ = op(1),

and supβ∈B ‖T−1
∑T

t=1{(∂/∂β′)vec((∂/∂β′)g(xt, β)−E[(∂/∂β′)vec((∂/∂β′)g(xt, β))]}‖ =

op(1)].

(b) A is compact in <pA [B is compact in <pB ].

(c) f : X ×A → <k is three times continuously differentiable in α in the interior of

A, and Fs(αs) = ∂E[f(xt, αs)/∂α
′
s] has rank pAs at αs = αs,0 [g : X ×B → <`

is three times continuously differentiable in β in the interior of B, and Gs(βs) =

E[∂g(xt, βs)/∂β
′
s] has rank pBs at βs = βs,0].

(d) ŴA,T is positive semidefinite with probability one and converges in probability

to a positive definite matrix WA [ŴB,T is positive semidefinite with probability

one and converges in probability to a positive definite matrix WB].

(e) If pAs > 0, E[f(xt, α)] = fs(αs) + T−1/2fw(α), and there is a unique αs,0 ∈

int(As) such that αs,0 = argminαs∈As
fs(αs)

′WAfs(αs). If pAs = 0, E[f(xt, α)] =

T−1/2fw(αw) [If pBs > 0, E[g(xt, β)] = gs(βs) + T−1/2gw(β), and there is a

unique βs,0 ∈ int(Bs) such that βs,0 ∈ argminβs∈Bsgs(βs)
′WBgs(βs). If pBs = 0,

E[g(xt, β)] = T−1/2gw(βw)].

(f) If pAs > 0,

Fs(αs,0)′WAFs(αs,0) + [E(fs(xt, αs,0))′WA ⊗ IpAs ]
∂vec(Fs(αs,0)′)

∂α′s

is positive definite [ If pBs > 0,

Gs(βs,0)′WBGs(βs,0) + [(γ − gs(βs,0))′WB ⊗ IpBs ]
∂vec(Gs(βs,0)′)

∂β′s

is positive definite].

(g) There is A0 = {α0}×Ap,0 ⊂ A such that, for any α ∈ A0, E[f(xt, α)]′WAE[f(xt, α)] =

minα̃∈AE[f(xt, α̃)]′WAE[f(xt, α̃)] < E[f(xt, ᾱ)]′WAE[f(xt, ᾱ)] for any ᾱ ∈ A ∩

Ac
0 [There is B0 = {β0}×Bp,0 ⊂ B such that, for any β ∈ B0, E[g(xt, β)]′WBE[g(xt, β)] =

minβ̃∈BE[g(xt, β̃)]′WBE[g(xt, β̃)] < E[g(xt, β̄)]′WBE[g(xt, β̄)] for any β̄ ∈ B ∩

Bc
0].
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(h) If pAs > 0, there is αp,0 ∈ Ap,0 such that

Fs(α)′WAFs(α) + [E(f(xt, α))′WA ⊗ IpAs ]
∂vec(Fs(α)′)

∂α′s

is positive definite at α = [α′s,0 α
′
p,0]′ [ If pBs > 0, there is βp,0 ∈ Bp,0 such that

Gs(β)′WBGs(β) + [E(g(xt, β))′WB ⊗ IpBs ]
∂vec(Gs(β)′)

∂β′s

is positive definite at β = [β′s,0 β
′
p,0]′.

The model selection based on the QML computed from quasi-Bayesian GMM Es-

timators is justified by the following proposition.

Proposition 2.

(a) Under Assumptions 5(a)–(f), Assumptions 1 and 2 hold.

(b) Under Assumptions 5(a)–(d), (g) and (h), Assumptions 1 and 3 hold.

Remark. It can be shown that the Laplace approximation to the QML has a bonus

term that is increasing in the number of overidentifying restrictions, i.e., the number

of moment conditions minus the number of strongly identified parameters, which is

similar to the moment selection criterion of Andrews (1999). Therefore, when our

QML criterion is used for selecting moment conditions, it will select as many correctly

specified moment conditions as possible, as Andrews’ (1999) criterion does. While the

selected moment conditions are valid, they are not necessarily relevant. If the goal is to

select correctly specified and relevant moments, the QML cannot accomplish it alone.

4 Discussions

Although our method is applicable to more general problems, one main motivation

for our proposed QML model selection is IRF matching. IRF matching is a limited-

information approach and is an alternative to full-information likelihood based ap-

proaches, such as the MLE and Bayesian approaches. Estimators based on the full-

information likelihood are more efficient when the likelihood function is correctly spec-

ified, while IRF matching estimators may be more robust to potential misspecification
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that does not affect the IRF, such as misspecification of distributional forms. In addi-

tion to this usual tradeoff between efficiency and robustness, we discuss very particular

features the IRF matching estimators have.

(a) Bayesian and frequentist inferential frameworks for IRF matching: The

use of priors not only alleviates such numerical challenges inherent in IRF matching but

also gives a limited-information Bayesian interpretation to IRF matching (Kim, 2002;

Zellner, 1998). Because the QML is a function of data, the model selection is also a

function of the data. Because the quasi-posterior distribution is conditional on the data

and the result of model selection is a function of the conditioning set, the posterior

distribution remains the same. Therefore, there is no issue of post model selection

inference in the limited-information Bayesian inferential framework. See Dawid (1994)

in the full-information Bayesian inferential framework.

It is often useful to have a frequentist interpretation of Bayesian estimators, es-

pecially if the practitioner is not strictly a Bayesian. Chernozhukov and Hong (2002)

provide consistency and asymptotic normality of LTE that includes IRF matching esti-

mators as a special case. Our paper shows the consistency of the QML model selection

criterion in a frequentist inferential framework. When we interpret inference based on

the model selected by our model selection criterion in a frequentist inferential frame-

work, it is likely to suffer from the problem with post model selection inference (Leeb

and Pötscher, 2005, 2009), which is typical in model selection.

(b) Identification of structural IRFs: To implement IRF matching, VAR-IRFs

and DSGE-IRFs must be identical when the latter is evaluated at the true structural

parameter value. Consider two cases. In the first case, the number of structural shocks

in a DSGE model and the number of observed variables are the same. Fernández-

Villaverde, Rubio-Ramı́rez, Sargent and Watson (2007) find a sufficient condition for

the two sets of structural IRF to match. One of their conditions is that matrix D in

the measurement equation is square and is nonsingular. Even when this condition is

not satisfied (e.g., no measurement error), there are cases in which the two structural
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IRFs coincide. For example, consider

xt+1 = Axt +But+1, (17)

yt+1 = Cxt, (18)

where xt is a n × 1 vector of state variables, yt and ut are k × 1 vectors of observed

variables and economic shocks, respectively, and ut is Gaussian white noise vector with

zero mean and covariance matrix Ik. Provided the eigenvalues of A are all less than

unity in modulus, yt has an MA(∞) representation:

yt = C(I −AL)−1But = CBut + CABut−1 + CA2But−2 + · · · (19)

and it is invertible. Thus, the structural IRFs, CB, CAB, CA2B, ..., can be obtained

from a VAR(∞) process together with the short-run restriction that the impact matrix

is given by CB. In practice, the VAR(∞) process is approximated by a finite-order

VAR(p) model where p is obtained by AIC, for example. In the IRF matching literature

it is quite common to build a DSGE model in such a way that CB is lower triangular

so that the recursive identification condition can be used to identify structural IRFs

from a VAR model. Many DSGE models do not satisfy typical short-run conditions for

identifying structural impulse responses. There are at least two approaches. First, one

can match IRFs without matching the impact period matrix. Let Aj denote the jth

step ahead structural impulse response matrix implied by a DSGE model with A0 being

the impact matrix. Let Bj denote the jth step ahead reduced-form impulse response

matrix obtained from a VAR model. Then we have Σ = A0A
′
0 and BjA0 = Aj , which

in turn can be written as g(γ, θ) = 0, where γ is a vector that consists of the elements

of Bj ’s and the distinct elements of Σ and θ is a vector of DSGE parameters. In the

second approach, one can match moments (e.g., Andreasen, Fernández-Villaverde and

Rubio-Ramı́rez, 2016; Kormilitsina and Nekipelov, 2016).

(c) The dimensions of VAR and IRF: The Monte Carlo experiments in Hall,

Inoue, Nason and Rossi (2012) show that the performance of IRF matching estimators

deteriorates as the number of IRFs increases. Guerron-Quintana, Inoue and Kilian

(2017) show that, when the number of impulse responses is greater than the number of

VAR parameters, IRF matching estimators have nonstandard asymptotic distributions

because the delta method fails. We conjecture that asymptotic properties of the QML
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model selection criterion may be affected because the bootstrap covariance matrix

estimator is asymptotically singular.

In general, we recommend to select the order of VAR models by information criteria,

such as AIC, as done in section 6 because the true VAR representation is likely to be of

infinite order. We then suggest choosing the maximum horizon so that the number of

impulse response does not exceed the number of VAR parameters to avoid the above

issue.

(d) The choice of weighting matrices: The optimal weighting matrix and diago-

nal weighting matrices are common choices for the weighting matrix. There are two

arguments for the optimal weighting matrix. First, when the optimal weighting ma-

trix is used, the IRF matching estimation criterion function can be interpreted as an

approximate (log-)likelihood function where the IRF estimate is viewed as “an observa-

tion” because the optimal weighting matrix is the inverse of the bootstrap covariance

matrix of that observation. Thus, it is natural to interpret estimation results from

the limited-information Bayesian inferential framework when the optimal weighting

matrix is used. Second, when the optimal weighting matrix is used, the generalized

information matrix equality of Chernozhukov and Hong (2003) is satisfied. Standard

errors can be obtained from standard deviations of MCMC draws in the frequentist

inferential framework. When the optimal weighting matrix is not used, one needs to

use the sandwich formula in Chernozhukov and Hong (2003) or bootstrap the entire

MCMC algorithm to obtain correct standard errors. The main argument for diagonal

weighting matrices is based on computational tractability of the resulting estimation

criterion function. Even if a proposal density is poorly chosen because of the numerical

behavior of the estimation criterion function based on the optimal weighting matrix,

MCMC draws should still converge to the quasi posterior distribution although it may

require a larger number of draws. Third, one can multiply the estimation criterion

function by any number without changing its optimum. Using the optimal weighting

matrix eliminates such arbitrariness in the CMD and GMM frameworks.

(e) The use of modified QMLs: There may be some cases the modified QMLs are

recommended over the (unmodified) QMLs in model selection because of the possible

inconsistency. One possibility is the case of point mass mixture priors which include
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a mass at a point mixed with a continuous distribution. For example, suppose two

alternative models of nominal exchange rates, St, as

Model A (IMA(1) model) α = θ: ∆St = εt + θεt−1.

Model B (AR(2) model) β = (φ1, φ2): St = φ1St−1 + φ2St−2 + εt.

The two models are non-nested but are equivalent under the random walk speci-

fication, namely, if θ = 0 in model A and (φ1, φ2) = (1, 0) in model B. Because the

random walk model is known to be supported by many previous empirical studies as

a preferred model for the nominal exchange rate, it make sense to employ point mass

priors at θ = 0 in model A and (φ1, φ2) = (1, 0) in model B. If the true model is the

random walk model, the (unmodified) QML will select model B with positive probabil-

ity. The modified QML will select model A over model B with probability approaching

one, however, because the former is more parsimonious.

5 Guide for practitioners

In this section, we describe how to implement our procedure. First, we specify a quasi-

likelihood function and estimate the model by the random-walk Metropolis Hasting

algorithm. As discussed in the previous section, we recommend using the optimal

weighting matrix, the inverse of the covariance matrix for bootstrap IRF estimates,

although we also consider the diagonal weighting matrix in the Monte Carlo experi-

ments in section 6. As suggested in An and Schorfheide (2007), we set the proposal

distribution to N(α(j−1), cĤ−1) where α(0) = α̂, c = 0.3 for j = 1, c = 1 for j > 1 and

Ĥ is the Hessian of the log-quasi-posterior evaluated at the quasi-posterior mode. The

draw α from N(α(j−1), c[∇2q̂A,T (α̂)]−1) is accepted with probability

min

(
1,

e−T q̂A,T (α)πA(α)

e−T q̂A,T (α(j−1))πA(α(j−1))

)
. (20)

In section 6, we use 50,000 draws.

Second, we compute the QML using the last half of the draws. We consider four

methods for computing the QML: Laplace approximations, modified harmonic estima-

tors of Geweke (1998) and Sims, Waggoner, and Zha (2008) and the estimator of Chib
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and Jeliazkov (2001). For the Laplace approximation, we evaluate the QML by

e−TqA(α̂)

(
T

2π

) k−pA
2

πA(α̂)|ŴT |
1
2 |∇2q̂A,T (α̂)|−

1
2 , (21)

at the quasi-posterior mode, α̂ (here subscript T is omitted for notational simplicity).

In our Monte Carlo experiment, we use 20 randomly chosen starting values for a nu-

merical optimization routine to obtain the posterior mode. We use 1,000 bootstrap

replications to obtain the bootstrap covariance matrix of IRF estimators in the Monte

Carlo experiments.

In the modified harmonic mean method, the QML is computed as the reciprocal of

E

[
w(α)

exp(−T q̂T (α))πA(α)

]
, (22)

which is evaluated using MCMC draws, given a weighting function w(α). We consider

two alternative choices of weighting functions that have been proposed in the literature.

The first choice is suggested by Geweke (1999), who sets w(α) to be the truncated

normal density

w(α) =
exp[−(α− α̃)′Ṽ −1

α (α− α̃)/2]

(2π)pA/2|Ṽα|1/2
1{(α− α̃)′Ṽ −1

α (α− α̃) < χ2
pA,τ
}

τ
,

where α̃ is the quasi-posterior mean, Ṽα is the quasi-posterior covariance matrix, 1{·}

is an indicator function, χ2
pA,τ

is the 100τth percentile of the chi-square distribution

with pA degrees of freedom, and τ ∈ (0, 1) is a constant. The second choice is the one

proposed by Sims, Waggoner, and Zha (2008). They point out that Geweke’s (1999)

method may not work well when the posterior distribution is non-elliptical, and suggest

a weighting function given by

w(α) =
Γ(pA/2)

2πpA/2|V̂α|1/2
f(r)

rpA−1

1{−T q̂(α) + lnπA(α) > L1−q}
τ̄

,

where V̂α is the second moment matrix centered around the quasi-posterior mode α̃,

f(r) = [vrv−1/(cv90/0.9 − cv1)] 1{c1 < r < c90/(0.9)1/v}, v = ln(1/9)/ ln(c10/c90), r =

[(α− α̂)′V̂ −1
α (α− α̂)]1/2, cj is the jth percentile of the distance r, L1−q is the 100(1−q)

percentile of the log quasi-posterior distribution, q ∈ (0, 1) is a constant, and τ is

the quasi-posterior mean of 1{−T q̂(α) + lnπA(α) > L1−q}1{c1 < r < c90/(0.9)1/v}.

Following Herbst and Schorfheide (2015), we consider τ = 0.5 and 0.9 in the estimator

of Geweke (1999) and q = 0.5 and 0.9 in the estimator of Sims, Waggoner, and Zha
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(2008). In the Monte Carlo and empirical application sections, we only report the

results for τ = 0.9 and q = 0.9 to save space.7

For the estimator of Chib and Jeliazkov (2001), the log of the QML is evaluated by

lnπA(α̃)− T q̂A,T (α̃)− ln p̂A(α̃) (23)

where

p̂A(α) =
(1/J)

∑J
j=1 r(α

(j), α̃)φα̃,c2Σ̃(α(j))

(1/K)
∑K

k=1 r(α̃, α
(k))

, (24)

φα̃,c2Σ̃(·) is the pdf of N(α̃, c2Σ̃) and r(α̃, α(k)) is the acceptance probability of moving

α̃ to α(k) in the Metropolis Hasting algorithm. The numerator of (24) is evaluated

using the last 50% of MCMC draws and the denominator is evaluated using α(k) from

N(α̃, c2Σ̃). In our Monte Carlo experiment, K is set to 25,000 so that K = J . c2Σ̃

is either set to the one used in the proposal density or estimated from the posterior

draws.

The modified QML (11) requires minimizing the estimation criterion function,

which may defeat the purpose of using the quasi-Bayesian approach. Instead we ap-

proximate it by averaging the values of the log of the quasi-posterior density over

quasi-posterior draws:

E[ln(πA(α))− T q̂A,T (α)], (25)

where the expectation is with respect to the quasi-posterior draws. This procedure is

computationally tractable because it can be calculated from MCMC draws. Because

the quasi-posterior distribution will concentrate around α̂ asymptotically, and the log

prior is O(1) and does not affect the divergence rate of the modified QML, the resulting

modified QML model selection criterion remains consistent as analyzed in the previous

section. Our Monte Carlo results show that this approximation works well.

7The Monte Carlo results for τ = 0.5 and q = 0.5 are reported in Tables A5–A9 in Inoue and Shintani

(2017).
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6 Monte Carlo Experiments

We investigate the small-sample properties of the QML using the small-scale DSGE

model considered in Guerron-Quintana, Inoue and Kilian (2017) that consists of

yt = E(yt+1|It−1)− σ [E(Rt|It−1)− E(πt+1|It−1)− zt] , (26)

πt = δE(πt+1|It−1) + κyt, (27)

Rt = ρrRt−1 + (1− ρr)(φππt + φyyt) + ξt, (28)

where yt, πt and Rt denote the output gap, inflation rate and nominal interest rate,

respectively, and It denotes the information set at time t. The technology and monetary

policy shocks follow

zt = ρzzt−1 + σzεzt , (29)

ξt = σrεrt , (30)

where εzt and εrt are independent iid standard normal random variables. Note that the

timing of the information is nonstandard, e.g., E(πt+1|It−1) instead of E(πt+1|It) in

the NKPC. The idea behind these information restrictions is to capture the fact that

the economy reacts slowly to a monetary policy shock while it reacts contemporane-

ously to technology shocks. Specifically, inflation does not contemporaneously react to

monetary policy shocks but it does, in this model, to technology shocks. We impose

such recursive short-run restrictions to identify VAR-IRFs. In the data generating

process, we set κ = 0.025, σ = 1, δ = 0.99, φπ = 1.5, φy = 0.125, ρr = 0.75, ρz = 0.90,

σz = 0.30, σr = 0.20 as in Guerron-Quintana, Inoue and Kilian (2017).

We consider four cases. In cases 1 and 3, κ, σ−1 and ρr are estimated in model A,

and κ and ρr are estimated in model B with σ−1 = 3. The other parameters are set to

the true parameter values. In cases 2 and 4, σ−1 and ρr are estimated in model A with

κ set to its true parameter value and κ, σ−1 and ρr are estimated in model B. In other

words, model B is misspecified in cases 1 and 3. and model A is more parsimonious

than model B in cases 2 and 4.

We use a bivariate VAR(p) model of inflation and the nominal interest rate to

estimate structural impulse responses. To identify structural impulse responses, we

use the short-run restriction that inflation does not contemporaneously respond to
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the monetary policy shock, which is satisfied in the above model. In cases 1 and

2, all the structural impulse responses up to horizon H are used in LTE. In cases 3

and 4, only the structural impulse responses to the technology shock (up to horizon

H) are used. We use the AIC to select the VAR lag order where p is selected from

{H,H + 1, ..., [5(T/ ln(T ))0.25]} where [x] is the integer part of x. We set the lower

bound on p to H. When p is smaller than H, the asymptotic distribution of VAR-IRFs

is singular and our theoretical results do not hold. See Guerron-Quintana, Inoue and

Kilian (2017) for the results in such cases.

We consider T = 50, 100, 200 and H = 2, 4, 8. The number of Monte Carlo simula-

tions is set to 1,000, the number of random-walk Metropolis-Hasting draws is 50,000,

the number of bootstrap draws for computing the weighting matrix is 1,000.

Tables 2 and 3 report the probabilities of selecting model A in cases 1 and 2 and

those in cases 3 and 4, respectively. The lower parts of Tables 2 and 3 show that the

method of selecting a model based on the value of the estimation criterion function

performs poorly when two models are both correctly specified and one model is more

parsimonious than the other. The tables show that the probabilities of the QML’s

selecting the right model tend to increase as the sample size grows. As conjectured in

section 3, the QML performs better than the modified QML when one model is correctly

specified and the other is misspecified, and the modified QML outperforms the QML

when both are correctly specified and one model is more parsimonious than the other.

Using a fewer IRFs, that is, using the IRFs to the technology shock only, improves the

performance of the QML. These tables show that the different methods for computing

the QML do not produce a substantial or systematic difference in the performance in

large samples. The diagonal weighting matrix provides better performance than the

optimal weighting matrix but the difference becomes smaller as the sample size grows.8

To shed light on the accuracy of QML estimates further, we report the means

and standard deviations of 100 QML estimates from a realization of data in Table 4.

Except when many impulse responses are used when the sample size is small (the third

row in the table), the standard deviations appear reasonably small. Furthermore, the

differences across the methods are small.

8As shown in Tables A5–A8 in Inoue and Shintani (2017), the results are not sensitive to the choice of

the turning parameters q and τ .
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7 Empirical Applications

7.1 New Keynesian Phillips Curve: GMM Estimation

In this section, we apply our procedure to choose between alternative specifications

of the structural Phillips curve under nonzero trend inflation when the models are

estimated using quasi-Bayesian GMM. Let π̂t = πt−π be the log-deviation of aggregate

inflation πt from the trend inflation π, and ûlct = ulct − ulc be the log-deviation of

unit labor cost ulct from its steady-state ulc.

In Gaĺı and Gertler (1999), the hybrid New Keynesian Phillips Curve (hereafter

NKPC) is derived from a Calvo (1983) type staggered price setting model with firms

set prices using indexation to trend inflation π with probability ξp (see also Yun, 1996).

For the remaining 1−ξp fraction of the firms, 1−ω fraction of firms set prices optimally

but the remaining ω fraction are rule-of-thumb (ROT) price setters who set their prices

equal to the average price set in the most recent round of price adjustments with a

correction based on the lagged inflation rate. Under these conditions, a hybrid NKPC

can be derived as

π̂t = γbπ̂t−1 + γfEtπ̂t+1 + κûlct (31)

with its coefficients given by

γb =
ω

ξp + ω[1− ξp(1− δ)]
, γf =

δξp
ξp + ω[1− ξp(1− δ)]

, κ =
(1− ξp)(1− δξp)(1− ω)

ξp + ω[1− ξp(1− δ)]
,

where δ ∈ (0, 1) is a discounted factor.

In Smets and Wouters (2003, 2007), a partial indexation specification is used instead

of the ROT specification of Gaĺı and Gertler (1999). In their specification, firms set

prices at an optimal level with probability 1− ξp. For the remaining ξp fraction of the

firms, prices are determined as a weighted sum of lagged inflation and trend inflation

(or steady state inflation) with an weight ιp on the lagged inflation. Under these

conditions, an alternative hybrid NKPC can be derived as (31) with coefficients given

by

γb =
ιp

1 + ιpδ
, γf =

δ

1 + ιpδ
, κ =

(1− ξp)(1− δξp)
ξp(1 + ιpδ)

,

where ιp ∈ [0, 1] is the degree of partial indexation to lagged inflation. Note that when

ω = 0 in the ROT specification and ιp = 0 in the partial indexation specification, both
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hybrid NKPCs become the baseline NKPC with only forward looking firms (γb = 0

and γf = δ).

In the previous empirical literature, the classical GMM has often been employed to

estimate the hybrid NKPC. In our quasi-Bayesian GMM estimation, we utilize the or-

thogonality condition of expectation error to past information, as well as the definition

of π̂t = πt − π, and estimate structural parameters α = [ξp, ω, π]′ for the first model

and β = [ξp, ιp, π]′ for the second model. In particular, for the first model, the objec-

tive function is q̂A,T (α) = (1/2)fT (α)′ ŴA,T fT (α) where fT (α) = (1/T )
∑T

t=1 f(xt, α),

f(xt, α) = [z′tut, π̂t]
′,

ut = π̂t − γbπ̂t−1 − γf π̂t+1 − κûlct

and zt is a vector of instruments. The objective function for the second model can

be similarly defined. The optimal weighting matrix Ŵ is computed from the HAC

estimator with the Bartlett kernel and Andrews’ (1991) automatic bandwidth.

For the estimation, we use US quarterly data of the inflation rate based on the

GDP implicit price deflator for πt and the labor income share in the non-farm business

sector for ulct. As for the choice of instruments zt, we follow Gaĺı and Gertler (1999):

four lags of inflation, labor income share, long-short interest rate spread, output gap,

wage inflation and commodity price inflation. We use the same set of instruments

so that the number of moment conditions is the same for the two NKPCs. For the

sample periods, we consider the Great Inflation period (from 1966:Q1 to 1982:Q3) and

Post-Great Inflation period (from 1982:Q4 to 2016:Q4). δ is fixed at 0.99.

The list of the structural parameters in our analysis, quasi-Bayesian estimates and

prior distributions are reported in Table 5 and the posterior distributions are shown

in Figure 1 for both ROT specification and partial indexation specification. The prior

and posterior means tend to differ which may suggest that the parameters are strongly

identified in these models. The trend inflation rate became substantially lower after the

Great Inflation period, as expected. The slope of the Phillips curve (κ) was flattened

in the post Great Inflation period compared to the Great Inflation period mainly due

to the increased degree of price stickiness (ξp). The figure also shows that the slope of

the Phillips curve has a wider spread. However, in general, both estimates of structural

and reduced form parameters differ between the two specifications. 9

9While the number of parameters is the same between the two models, the joint restrictions on the range
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Table 6 reports the QMLs for the two specifications, along with the value of the

estimation criterion function and Andrews’(1999) criterion. The results based on com-

paring QMLs suggest that the ROT specification of Gaĺı and Gertler (1999) outper-

forms the partial indexation specification of Smets and Wouters (2003, 2007) for both

sample periods we consider. In particular, according to Jeffreys’(1961) terminology,

the former model is decisively better than the latter model.10 For the value of the

estimation criterion function and Andrews’(1999) criterion, the model with a smaller

value should be selected. When these alternative methods are employed, the ROT

specification are selected for the first subsample as in the case of QMLs, but conflict-

ing results are obtained for the second subsample. However, since our Monte Carlo

results suggest that QMLs are more accurate than the value of the estimation criterion

function for selecting correctly specified models in moderate sample sizes, the ROT

specification is likely to be the better-fitting specification in the second subsample.

7.2 The Medium-Scale DSGE Model: IRF Matching Es-

timation

As a second empirical application of our procedure, we consider quasi-Bayesian IRF

matching estimation of the medium-scale DSGE Model. For the purpose of evaluating

the relative importance of various frictions in the model estimated by the standard

Bayesian method, Smets and Wouters (2007) utilize the marginal likelihood. Their

question is whether all the frictions introduced in the canonical DSGE model are really

necessary in order to describe the dynamics of observed aggregate data. To answer

this question, they compare marginal likelihoods of estimated models when each of the

frictions was drastically reduced one at time. iThe claim that, among the sources of

nominal frictions, both price and wage stickiness are equally important while indexation

is relatively unimportant in both goods and labor markets. Regarding the real frictions,

of parameters are different. For example, the ratio of the forward-looking parameter and backward-looking

parameter (γf/γb) for the ROT specification depends on three parameters (ξp, ω, δ) while the ratio for the

the partial indexation specification depends only on two parameters (ιp, δ). Such a tighter restriction for the

latter model can make the difference in the empirical performance of two models.
10Provided the prior probabilities are equal, the difference in the QML is decisive and very strong according

to Jeffreys (1961, p.433) and Kass and Raftery (1995, p.777), respectively.
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they claim that the investment adjustment costs are most important. They also find

that, in the presence of wage stickiness, the introduction of variable capacity utilization

is less important.

Here, we conduct a similar exercise using QMLs based on the standard DSGE

model estimated by Christiano, Trabandt and Walentin (2011). Based on an estimated

VAR(2) model of 14 variables using the US quarterly data from 1951Q1 to 2008Q4,

they employ short-run and long-run identifying restrictions to compute IRF to (i) a

monetary policy shock, (ii) a neutral technology shock and (iii) an investment-specific

technology shock. The model is then estimated by matching the first 15 responses of

selected 9 variables to 3 shocks, less 8 zero contemporaneous responses to the monetary

policy shock (so that the total number of responses to match is 397). Since our purpose

is to evaluate the relative contribution of various frictions, we estimate some additional

parameters, such as the wage stickiness parameter ξw, wage indexation parameter

ιw and price indexation parameter ιp, which are fixed in the analysis of Christiano,

Trabandt and Walentin (2011).11 The list of estimated structural parameters in our

analysis, quasi-Bayesian estimates and the prior distribution, are reported in Table 7.

This estimated model serves as the baseline model when we compare with other models

using QMLs.

Following Smets and Wouters (2007), the sources of frictions of the baseline model

are divided into two groups. First, nominal frictions are sticky prices, sticky wages,

price indexation and wage indexation. Second, real frictions are investment adjustment

costs, habit formation, and capital utilization. We estimate additional submodels,

which reduces the degree of each of the seven frictions. The computed QMLs for

8 models, including the baseline model, are reported in Table 8. For the reference,

also included in the table are the original marginal likelihoods obtained by Smets and

Wouters (2007) based on the different estimation method applied to the different data

set. Let us first consider the role of nominal frictions. According to Jeffreys’(1961)

terminology, QMLs are decisively reduced when the degree of nominal price and wage

stickiness (ξp and ξw) is set at 0.10. In contrast, even if the price and wage indexation

parameters (ιp and ιw) are set at a very small value of 0.01, the values of QMLs are

quite similar to that of the baseline model. Thus, we can conclude that Calvo-type

11In our analysis, both price markup and wage markup parameters are fixed at 1.2.
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frictions in price and wage settings are empirically more important than the price

and wage indexation to past inflation. Let us now turn to the role of real frictions.

The remaining three columns show the results when each of investment adjustment

cost parameter (S′′), consumption habit parameter (b) and capital utilization cost

parameter (σa) is set at some small values. The results show that restricting habit

formation in consumption significantly reduces the QML compared to other two real

frictions, suggesting the relatively important role of the consumption habit. Overall,

our results seem to support the empirical evidence obtained by Smets and Wouters

(2007), despite the fact that our analysis is based on a very different model selection

criterion.

8 Concluding Remarks

In this paper we establish the consistency of the model selection criterion based on the

QML obtained from Laplace-type estimators. We consider cases in which parameters

are strongly identified and are weakly identified. Our Monte Carlo results confirm our

consistency results. Our proposed procedure is also applied to select an appropriate

specification in New Keynesian macroeconomic models using US data.

Our proposed model selection criterion is useful when one selects a model, estimates

the structural parameters of the selected model and interprets them. While Bayesian

model averaging will select the correct model asymptotically, weights are nonzero in

finite samples. It is not clear how to interpret structural parameters of different DSGE

models that are estimated simultaneously. Bayesian model averaging may be more

useful for forecasting. The application of Bayesian model averaging to IRF matching

is beyond the scope of this paper and is left for future research.
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Table 1: Frequencies of selecting model A when the estimation criterion function alone is

used

Design T Diagonal Optimal

1 50 1.000 1.000

100 1.000 1.000

200 1.000 1.000

2 50 0.000 0.003

100 0.000 0.000

200 0.000 0.000

Notes. The restrictions

f(σ, κ) = [1 + σ2, κ+ σ2κ, −σ, 1 + κ2 + σ2κ2, −σκ]′,

and the corresponding elements of the covariance matrix are used. In design 1, Model A

is correctly specified while Model B is misspecified. In design 2, Models A and B are both

correctly specified and Model A is more parsimonious than Model B. T denotes the sample

size. “Optimal” refers to cases in which the weighting matrix is set to the inverse of the

bootstrap covariance matrix of impulse responses. “Diagonal” refers to cases in which the

weighting matrix is diagonal and their diagonal elements are the reciprocals of the bootstrap

variances of impulse responses.
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Table 2: Frequencies of selecting model A when all impulse responses are used

Weight Marginal Likelihood Modified Marginal Likelihood

T H Matrix q̂T Laplace Geweke SWZ CJ Geweke SWZ CJ

Case 1: Model A is correctly specified and Model B is misspecified

50 2 Diag 0.76 1.00 0.99 1.00 0.97 0.66 0.98 0.73

Opt 0.70 0.84 0.84 0.86 0.83 0.30 0.65 0.33

50 4 Diag 0.80 1.00 0.99 1.00 0.98 0.64 0.94 0.71

Opt 0.69 0.72 0.77 0.76 0.77 0.29 0.56 0.28

50 8 Diag 0.79 0.97 0.97 0.98 0.96 0.61 0.84 0.65

Opt 0.52 0.26 0.45 0.34 0.41 0.28 0.26 0.25

100 2 Diag 0.74 1.00 1.00 1.00 0.98 0.87 1.00 0.91

Opt 0.66 0.91 0.93 0.92 0.90 0.42 0.79 0.44

100 4 Diag 0.76 1.00 1.00 1.00 0.99 0.84 1.00 0.91

Opt 0.74 0.88 0.93 0.90 0.88 0.50 0.83 0.55

100 8 Diag 0.82 1.00 1.00 1.00 0.99 0.92 1.00 0.95

Opt 0.65 0.78 0.85 0.81 0.81 0.48 0.72 0.50

200 2 Diag 0.71 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Opt 0.63 0.93 0.94 0.93 0.91 0.45 0.85 0.56

200 4 Diag 0.79 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Opt 0.75 0.94 0.96 0.94 0.93 0.65 0.90 0.73

200 8 Diag 0.84 1.00 1.00 1.00 1.00 0.99 1.00 1.00

Opt 0.71 0.92 0.95 0.93 0.93 0.72 0.89 0.78

Case 2: Model A is more parsimonious than model Model B

50 2 Diag 0.03 1.00 0.98 0.96 0.98 1.00 1.00 1.00

Opt 0.23 0.92 0.89 0.88 0.88 0.96 0.92 0.96

50 4 Diag 0.03 1.00 0.97 0.95 0.96 1.00 1.00 1.00

Opt 0.32 0.91 0.86 0.85 0.85 0.92 0.90 0.93

50 8 Diag 0.07 0.99 0.96 0.95 0.92 0.98 0.98 0.98

Opt 0.39 0.78 0.69 0.68 0.67 0.80 0.81 0.81

100 2 Diag 0.03 1.00 0.98 0.97 0.97 1.00 1.00 1.00

Opt 0.29 0.92 0.89 0.89 0.89 0.94 0.93 0.95

100 4 Diag 0.05 1.00 0.98 0.97 0.96 1.00 1.00 1.00

Opt 0.38 0.93 0.90 0.90 0.90 0.93 0.93 0.94

100 8 Diag 0.05 1.00 0.97 0.96 0.98 1.00 1.00 1.00

Opt 0.37 0.83 0.82 0.81 0.81 0.89 0.86 0.88

200 2 Diag 0.04 1.00 0.97 0.97 0.94 1.00 1.00 1.00

Opt 0.25 0.90 0.86 0.87 0.89 0.93 0.92 0.93

200 4 Diag 0.03 1.00 0.98 0.98 0.97 1.00 1.00 1.00

Opt 0.35 0.94 0.92 0.92 0.92 0.95 0.94 0.94

200 8 Diag 0.04 1.00 0.97 0.97 0.95 1.00 1.00 1.00

Opt 0.36 0.88 0.87 0.86 0.88 0.92 0.89 0.90

Notes: T denotes the sample size and H denotes the maximum horizon for impulse responses. “Diag” refers to cases in which

the weighting matrix is diagonal and their diagonal elements are the reciprocals of the bootstrap variances of impulse responses.

“Opt” refers to cases in which the weighting matrix is set to the inverse of the bootstrap covariance matrix of impulse responses.

q̂T refers to the method that chooses the model whose estimated criterion function is smaller. “Laplace”, “Geweke”, “SWZ”

and “CJ” refer to Laplace approximations, Geweke’s (1998) modified harmonic estimator, Sims, Waggoner and Zha’s (2008)

estimator and the estimator of Chib and Jeliazkov (2001), respectively. The numbers in the table are the actual probabilities

of selecting Model A over Model B over 1,000 Monte Carlo iterations.
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Table 3: Frequencies of selecting model A when only impulse responses to the technology

shock are used
Weight Marginal Likelihood Modified Marginal Likelihood

T H Matrix q̂T Laplace Geweke SWZ CJ Geweke SWZ CJ

Case 3: Model A is correctly specified and Model B is misspecified

50 2 Diag 1.00 1.00 0.98 0.99 0.97 0.58 0.95 0.62

Opt 0.98 0.99 0.97 1.00 0.97 0.38 0.83 0.45

50 4 Diag 0.98 1.00 0.99 1.00 0.98 0.63 0.97 0.68

Opt 0.92 0.93 0.93 0.93 0.92 0.36 0.81 0.41

50 8 Diag 0.95 0.99 0.99 0.98 0.98 0.63 0.92 0.64

Opt 0.64 0.46 0.61 0.53 0.56 0.30 0.47 0.29

100 2 Diag 1.00 1.00 1.00 1.00 0.97 0.77 1.00 0.84

Opt 0.99 1.00 1.00 1.00 0.98 0.65 0.98 0.75

100 4 Diag 1.00 1.00 1.00 1.00 0.97 0.81 1.00 0.87

Opt 0.97 0.99 1.00 1.00 0.98 0.67 0.98 0.77

100 8 Diag 0.99 1.00 1.00 1.00 0.98 0.83 1.00 0.89

Opt 0.84 0.85 0.91 0.86 0.89 0.66 0.81 0.68

200 2 Diag 1.00 1.00 1.00 1.00 0.97 0.91 1.00 0.94

Opt 1.00 1.00 1.00 1.00 0.98 0.87 1.00 0.94

200 4 Diag 0.99 1.00 1.00 1.00 0.98 0.91 1.00 0.96

Opt 0.97 1.00 1.00 1.00 0.98 0.90 1.00 0.92

200 8 Diag 1.00 1.00 1.00 1.00 0.98 0.93 1.00 0.96

Opt 0.85 0.96 0.98 0.96 0.96 0.83 0.89 0.86

Case 4: Model A is more parsimonious than model Model B

50 2 Diag 0.05 1.00 0.97 0.95 0.97 1.00 1.00 1.00

Opt 0.09 1.00 0.97 0.95 0.98 1.00 1.00 1.00

50 4 Diag 0.04 0.99 0.95 0.94 0.94 1.00 1.00 1.00

Opt 0.31 0.99 0.97 0.97 0.96 0.99 0.99 0.99

50 8 Diag 0.06 0.99 0.97 0.96 0.96 0.99 0.99 1.00

Opt 0.54 0.86 0.84 0.81 0.82 0.88 0.85 0.90

100 2 Diag 0.05 0.99 0.97 0.95 0.97 1.00 1.00 1.00

Opt 0.07 1.00 0.99 0.98 0.97 1.00 1.00 1.00

100 4 Diag 0.05 0.98 0.95 0.93 0.94 1.00 1.00 1.00

Opt 0.22 1.00 0.99 0.99 0.97 1.00 1.00 1.00

100 8 Diag 0.05 0.98 0.96 0.94 0.96 1.00 1.00 1.00

Opt 0.59 0.97 0.96 0.96 0.95 0.97 0.98 0.97

200 2 Diag 0.05 0.96 0.93 0.91 0.91 1.00 1.00 1.00

Opt 0.12 1.00 0.98 0.98 0.98 1.00 1.00 1.00

200 4 Diag 0.09 0.96 0.94 0.93 0.93 1.00 1.00 1.00

Opt 0.18 1.00 0.99 0.99 0.99 1.00 1.00 1.00

200 8 Diag 0.07 0.98 0.96 0.95 0.94 1.00 1.00 1.00

Opt 0.63 0.98 0.97 0.97 0.97 0.99 0.99 0.98

Notes: See the notes for Table 2.
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Table 4: The mean and standard deviation of the QML estimates

T H Geweke SWZ CJ

All impulse responses are used

50 2 -44.51 [ 0.75] -41.83 [ 0.68] -41.60 [ 0.68]

50 4 -69.38 [ 7.91] -72.32 [ 7.39] -67.06 [ 7.36]

50 8 -148.54 [ 5.00] -151.33 [ 2.12] -146.40 [ 4.32]

100 2 -85.68 [ 0.76] -83.01 [ 0.67] -82.74 [ 0.65]

100 4 -81.17 [ 0.78] -78.55 [ 0.67] -78.28 [ 0.64]

100 8 -85.30 [ 0.81] -82.72 [ 0.68] -82.49 [ 0.64]

200 2 -113.45 [ 0.80] -110.86 [ 0.66] -110.59 [ 0.64]

200 4 -85.42 [ 0.78] -82.99 [ 0.60] -82.79 [ 0.63]

200 8 -102.28 [ 0.81] -99.83 [ 0.63] -99.61 [ 0.63]

Only impulse responses to the technology shock are used

50 2 -24.07 [ 0.77] -21.37 [ 0.68] -21.16 [ 0.65]

50 4 -39.71 [ 0.82] -37.21 [ 0.67] -36.98 [ 0.66]

50 8 -58.66 [ 0.69] -56.23 [ 0.70] -56.10 [ 0.72]

100 2 -27.70 [ 0.70] -25.06 [ 0.68] -24.85 [ 0.64]

100 4 -27.94 [ 0.72] -25.33 [ 0.68] -25.10 [ 0.63]

100 8 -29.19 [ 0.73] -26.58 [ 0.68] -26.35 [ 0.63]

200 2 -31.40 [ 0.71] -28.90 [ 0.66] -28.76 [ 0.64]

200 4 -30.54 [ 0.72] -28.08 [ 0.63] -27.90 [ 0.64]

200 8 -34.65 [ 0.73] -32.22 [ 0.64] -32.02 [ 0.66]

Notes: The means and standard deviations (SD) in each row are calculated from 100 QML

estimates given a realization of data. See the notes to table 2.
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Table 5: Prior and posteriors of parameters of hybrid NKPCs

Prior Quasi-posterior

Great Inflation Post Great Inflation

Parameter Dist Mean Std Mean [5%, 95%] Mean [5%, 95%]

(a) ROT specification (Gaĺı and Gertler, 1999)

Trend inflation π Norm 3.50 1.50 5.91 [5.37, 6.45] 2.24 [2.06, 2.42]

Price stickiness ξp Beta 0.50 0.10 0.68 [0.61, 0.76] 0.88 [0.83, 0.91]

ROT fraction ω Beta 0.50 0.10 0.56 [0.47, 0.65] 0.52 [0.38, 0.67]

Backward-looking γb,A - 0.50 0.07 0.45 [0.40, 0.51] 0.37 [0.30, 0.44]

Forward-looking γf,A - 0.50 0.07 0.55 [0.49, 0.60] 0.63 [0.56, 0.70]

Slope of NKPC κA - 0.14 0.09 0.037 [0.019, 0.056] 0.006 [0.003, 0.009]

(b) Partial indexation specification (Smets and Wouters ,2003, 2007)

Trend inflation π Norm 3.50 1.50 5.82 [5.28, 6.37] 2.25 [2.07, 2.43]

Price stickiness ξp Beta 0.50 0.10 0.79 [0.75, 0.84] 0.91 [0.89, 0.93]

Price indexation ιp Beta 0.50 0.10 0.65 [0.54, 0.75] 0.48 [0.35, 0.62]

Backward-looking γb,B - 0.33 0.05 0.39 [0.35, 0.43] 0.32 [0.26, 0.38]

Forward-looking γf,B - 0.67 0.04 0.60 [0.57, 0.65] 0.67 [0.61, 0.74]

Slope of NKPC κB - 0.40 0.26 0.036 [0.020, 0.053] 0.006 [0.003, 0.009]

Note: Quasi-posterior distribution is evaluated using the random walk Metropolis-Hastings

algorithm.
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Table 6: QML estimates of hybrid NKPCs

QML

Laplace Geweke SWZ CJ q̂T Andrews

Great Inflation Period

(a) ROT -15.6 -15.3 -12.7 -17.2 0.0600 -88.7

(b) Partial indexation -20.3 -20.0 -17.4 -21.9 0.0605 -88.6

Post Great Inflation Period

(a) ROT -30.2 -28.8 -26.1 -31.7 0.0489 -99.8

(b) Partial indexation -33.4 -32.1 -29.4 -35.0 0.0507 -99.3

Note: “Laplace”, “Geweke”, “SWZ” and “CJ” refer to Laplace approximations,

Geweke’s (1998) modified harmonic estimator, Sims, Waggoner and Zha’s (2008)

estimator and the estimator of Chib and Jeliazkov (2001), respectively. q̂T refers

to the estimated criterion function and “Andrews” refers to Andrews’ (1999)

model selection criterion.
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Table 7: Prior and posteriors of parameters of the baseline DSGE model

Prior Quasi-posterior

Parameter Dist. Mean Std Mean [5%, 95%]

Price-setting rule

Price stickiness ξp Beta 0.50 0.15 0.66 [0.60, 0.72]

Price indexation ιp Beta 0.50 0.15 0.49 [0.32, 0.72]

Wage stickiness ξw Beta 0.50 0.15 0.85 [0.83, 0.87]

Wage indexation ιw Beta 0.50 0.15 0.30 [0.11, 0.46]

Monetary policy rule

Interest smoothing ρR Beta 0.70 0.15 0.89 [0.88, 0.91]

Inflation coefficient rπ Gamma 1.70 0.15 1.51 [1.37, 1.65]

GDP coefficient ry Gamma 0.10 0.05 0.15 [0.10, 0.19]

Preference and technology

Consumption habit b Beta 0.50 0.15 0.75 [0.73, 0.78]

Inverse labor supply elast φ Gamma 1.00 0.50 0.14 [0.04, 0.25]

Capital share α Beta 0.25 0.05 0.25 [0.22, 0.28]

Cap util adjustment cost σa Gamma 0.50 0.30 0.32 [0.23, 0.46]

Investment adjustment cost S ′′ Gamma 8.00 2.00 10.4 [8.30, 12.9]

Shocks

Autocorr invest tech ρΨ Beta 0.75 0.15 0.55 [0.42, 0.61]

Std dev neutral tech shock σZ InvGamma 0.20 0.10 0.23 [0.21, 0.26]

Std dev invest tech shock σΨ InvGamma 0.20 0.10 0.17 [0.15, 0.20]

Std dev monetary shock σR InvGamma 0.40 0.20 0.48 [0.43, 0.54]

Note: Quasi-posterior distribution is evaluated using the random walk Metropolis-

Hastings algorithm.
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Table 8: Empirical importance of the nominal and real frictions

Nominal frictions Real frictions

Base ξp=0.1 ξw=0.1 ιp=0.01 ιw=0.01 S ′′=2 b=0.1 σa=0.1

Quasi-marginal likelihood

Laplace 370 341 146 369 373 327 279 366

Geweke 366 340 143 368 371 326 276 364

Quasi-posterior mean

ξp 0.66 0.10 0.95 0.68 0.67 0.74 0.68 0.66

ιp 0.49 0.53 0.69 0.01 0.51 0.48 0.52 0.52

ξw 0.85 0.88 0.10 0.85 0.87 0.80 0.86 0.85

ιw 0.30 0.32 0.53 0.34 0.01 0.43 0.37 0.29

S ′′ 10.4 10.3 2.74 9.37 9.23 2.00 8.07 9.81

b 0.75 0.74 0.53 0.76 0.75 0.69 0.10 0.75

σa 0.32 0.44 0.62 0.35 0.32 0.39 0.26 0.10

SW -923 -975 -973 -918 -927 -1084 -959 -949

Note: QMLs based on the Laplace approximation (Laplace approx.) and

the modified harmonic mean estimator of Geweke. SW denotes

marginal likelihood estimates from Smets and Wouters (2007).
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Figure 1: Posterior distribution of hybrid NKPCs

(a) ROT specification

(b) Partial indexation specification
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