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Abstract

This paper develops a new asymptotic theory for two-step GMM estimation and inference
in the presence of clustered dependence. The key feature of alternative asymptotics is the
number of clusters G is regarded as small or fixed when the sample size increases. Under the
small-G asymptotics, this paper shows the centered two-step GMM estimator and the two
continuously-updating GMM estimators we consider have the same asymptotic mixed normal
distribution. In addition, the J statistic, the trinity of two-step GMM statistics (QLR, LM
and Wald), and the ¢ statistic are all asymptotically pivotal, and each can be modified to have
an asymptotic standard F' distribution or ¢ distribution. We suggest a finite sample variance
correction to further improve the accuracy of the F' and t approximations. Our proposed
asymptotic F' and t tests are very appealing to practitioners because our test statistics are
simple modifications of the usual test statistics, and critical values are readily available from
standard statistical tables. A Monte Carlo study shows that our proposed tests are more
accurate than the conventional inferences under the large-G asymptotics.
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1 Introduction

Clustering is a common feature for many cross-sectional and panel data sets in applied economics.
The data often come from a number of independent clusters with a general dependence structure
within each cluster. For example, in development economics, data are often clustered by geo-
graphical regions, such as village, county and province, and, in empirical finance and industrial
organization, firm level data are often clustered at the industry level. Because of learning from
daily interactions, the presence of common shocks, and for many other reasons, individuals in
the same cluster will be interdependent while those from different clusters tend to be indepen-
dent. Failure to control for within group or cluster correlation often leads to downwardly biased
standard errors and spurious statistical significance.

Seeking to robustify inference, many practical methods employ clustered covariance estima-
tors (CCE). See White (1984, Theorem 6.3, p. 136), Liang and Zeger (1986), Arellano (1987) for
seminal methodological contributions, and Wooldridge (2003) and Cameron and Miller (2015)
for overviews of the CCE and its applications. It is now well known that standard test statis-
tics based on the CCE are either asymptotically chi-squared or normal. The chi-squared and
normal approximations are obtained under the so-called large-G asymptotic specification, which
requires the number of clusters G to grow with the sample size. The key ingredient behind these
approximations is that the CCE becomes concentrated at the true asymptotic variance as G
approaches to infinity. In effect, this type of asymptotics ignores the estimation uncertainty in
the CCE despite its high variation in finite samples, especially when the number of clusters is
small. In practice, however, it is not unusual to have a data set that has a small number of
clusters. For example, if clustering is based on large geographical regions such as U.S. states
and regional blocks of neighboring countries, (e.g., Bertrand, Duflo, and Mullainathan, 2004;
Ibragimov and Miiller, 2015), we cannot convincingly claim that the number of cluster is large
so that the large-G asymptotic approximations are applicable. In fact, there is ample simulation
evidence that the large-G' approximation can be very poor when the number of clusters is not
large (e.g., Donald and Lang, 2007; Cameron, Gelbach, and Miller, 2008; Bester, Conley, and
Hansen, 2011; Mackinnon and Webb, 2017).

In this paper, we adopt an alternative approach that yields more accurate approximations,
and that works well whether or not the number of clusters is large. Our approximations work
especially well when the chi-squared and normal approximations are poor. They are obtained
from an alternative limiting thought experiment where the number of clusters G is held fixed.
Under this small (fixed)-G asymptotics, the CCE no longer asymptotically degenerates; instead, it
converges in distribution to a random matrix that is proportional to the true asymptotic variance.
The random limit of the CCE has profound implications for the analyses of the asymptotic
properties of GMM estimators and the corresponding test statistics.

We start with the first-step GMM estimator where the underlying model is possibly over-
identified and show that suitably modified Wald and ¢ statistics converge weakly to standard F
and t distributions, respectively. The modification is easy to implement because it involves only
a known multiplicative factor. Similar results have been obtained by Hansen (2007) and Bester,
Conley and Hansen (2011), which employ a CCE type HAC estimator but consider only linear
regressions and M-estimators for an exactly identified model.

We then consider the two-step GMM estimator that uses the CCE as a weighting matrix.
Because the weighting matrix is random even in the limit, the two-step estimator is not asymp-
totically normal. The form of the limiting distribution depends on how the CCE is constructed.
If the CCE is based on the uncentered moment process, we obtain the so-called uncentered two-



step GMM estimator. We show that the asymptotic distribution of this two-step GMM estimator
is highly nonstandard. As a result, the associated Wald and ¢ statistics are not asymptotically
pivotal. However, it is surprising that the J statistic is still asymptotically pivotal and has a
Beta limiting distribution, and the critical values are readily available from standard statistical
tables and canned software packages.

Next, we establish the asymptotic properties of the “centered” two-step GMM estimatorﬂ
whose weighting matrix is constructed using recentered moment conditions. Invoking centering
is not innocuous for an over-identified GMM model because the empirical moment conditions, in
this case, are not equal to zero in general. Under the traditional large-G asymptotics, recentering
does not matter in large samples because the empirical moment conditions are asymptotically
zero and here are ignorable, even though they are not identically zero in finite sample. In contrast,
under the small-G asymptotics, recentering plays two important roles: it removes the first order
effect of the estimation error in the first-step estimator, and it ensures that the weighting matrix
is asymptotically independent of the empirical moment conditions. With the recentered CCE as
the weighting matrix, the two-step GMM estimator is asymptotically mixed normal. The mixed
normality reflects the high variation of the feasible two-step GMM estimator as compared to the
infeasible two-step GMM estimator, which is obtained under the assumption that the ‘efficient’
weighing matrix is known. The mixed-normality allows us to construct the Wald and ¢ statistics
that are asymptotically nuisance parameter free.

To relate the nonstandard small-G asymptotic distributions to standard distributions, we
introduce simple modifications to the Wald and ¢t statistics associated with the centered two-
step GMM estimator. We show that the modified Wald and t statistics are asymptotically F
and t distributed, respectively. This result resembles the corresponding result that is based on
the first-step GMM estimator. It is important to point out that the proposed modifications are
indispensable for our asymptotic F' and ¢ theory. In the absence of the modifications, the Wald
and t statistics converge in distribution to nonstandard distributions, and as a result, critical
values have to be simulated. The modifications involve only the standard J statistic, and it is
very easy to implement because the modified test statistics are scaled versions of the original Wald
test statistics with the scaling factor depending on the J statistic. Significantly, the combination
of the Wald statistic and the J statistic enables us to develop the F' approximation theory.

We also consider two types of continuous updating (CU) estimators. The first type continu-
ously updates the first order conditions (FOC) underlying the two-step GMM estimator. Given
that FOC can be regarded as the empirical version of generalized estimating equations (GEE)
which is first studied by Liang and Zeger (1986), we call this type of CU estimator the CU-GEE
estimator. The second type continuously updates the GMM criterion function, leading to the
CU-GMM estimator, which was first suggested by Hansen, Heaton and Yaron (1996). Both CU
estimators are designed to improve the finite sample performance of two-step GMM estimators.
Interestingly, we show that the continuous updating scheme has a built-in recentering feature.
Thus, in terms of the first order asymptotics, it does not matter whether the empirical moment
conditions are recentered or not. We find that the centered two-step GMM estimator and the
two CU estimators are all first-order asymptotically equivalent under the small-G asymptotics.
This result provides a theoretical justification for using the recentered CCE in a two-step GMM
framework.

Finally, although the recentering scheme removes the first order effect of the first-step esti-

LOur definition of the centered two-step GMM estimator is originated from the recentered (or demeaned) GMM
weighting matrix, and it should not be confused with “centering” the estimator itself.



mation error, the centered two-step GMM and CU estimators still face some extra estimation
uncertainty in the first-step estimator. The main source of the problem is that we have to esti-
mate the unobserved moment process based on the first-step estimator. To capture the higher
order effect, we propose to retain one more term in our stochastic approximation that is asymp-
totically negligible. The expansion helps us develop a finite sample correction to the asymptotic
variance estimator. Our correction resembles that of Windmeijer (2005), which considers variance
correction for a two-step GMM estimator but valid only in an i.i.d. setting. We show that the
finite sample variance correction does not change the small-G limiting distributions of the test
statistics, but they can help improve the finite sample performance of our tests.

Monte Carlo simulations show that our new tests have a much more accurate size than existing
tests via standard normal and chi-squared critical values, especially when the number of clusters
G is not large. An advantage of our procedure is that the test statistics do not entail much extra
computational cost because the main ingredient for the modification is the usual J statistic.
There is also no need to simulate critical values because the F' and t critical values can be readily
obtained from standard statistical tables.

Our small-G asymptotics is related to fixed-smoothing asymptotics for a long run variance
(LRV) estimation in a time series setting. The latter was initiated and developed in econometric
literature by Kiefer, Vogelsang and Bunzel (2002), Kiefer and Vogelsang (2005), Miiller (2007),
Sun, Phillips and Jin (2008), Sun (2013, 2014), Zhang (2016), among others. Our new asymptotics
is in the same spirit in that both lines of research attempt to capture the estimation uncertainty
in covariance estimation. With regards to orthonormal series LRV estimation, a recent paper
by Hwang and Sun (2017a) modifies the two-step GMM statistics using the J statistic, and
shows that the modified statistics are asymptotically F' and t distributed. The F and ¢ limit
theory presented in this paper is similar, but our cluster-robust limiting distributions differ from
those of our predecessors in terms of the multiplicative adjustment and the degrees of freedom.
Moreover, we propose a finite sample variance correction to capture the uncertainty embodied
in the estimated moment process adequately. To our knowledge, the finite sample variance
correction provided in this paper ant its first order asymptotic validity has not been considered
in the literature on the fixed-smoothing asymptotics.

There is also a growing literature that uses the small-G asymptotics to design more accurate
cluster-robust inference. For instance, Ibragimov and Miiller (2010, 2016) recently proposes a
subsample based t test for a scalar parameter that is robust to heterogeneous clusters. Hansen
(2007), Stock and Watson (2008), and Bester, Conley and Hansen (2011) propose a cluster-robust
F or t tests under cluster-size homogeneity. Imbens and Kolesér (2016) suggest an adjusted ¢ crit-
ical value employing data-determined degrees of freedom. Recently, Canay, Romano and Shaikh
(2017) establishes a theory of randomization tests and suggests an alternative cluster-robust test.
For other approaches, see Carter, Schnepel and Steigerwald (2017) which proposes a measure of
the effective number of clusters under the large-G asymptotics; Cameron, Gelbach and Miller
(2008) and MacKinnon and Webb (2017) which investigate cluster-robust bootstrap approaches.
All these studies, however, mainly focus on a simple location model or linear regressions that are
special cases of exactly identified models.

The remainder of the paper is organized as follows. Section [2| presents the basic setting
and establishes the approximation results for the first-step GMM estimator under the small-G
asymptotics. Sections [3| and [4] establish the small-G asymptotics for two-step GMM estimators
and develop the asymptotic F' and t tests based on the centered two-step GMM estimator.
Section [f] extends the first-order small-G asymptotics to the CU-type GMM estimators. Section []



proposes a finite sample variance correction. The next section reports a simulation evidence. The
last section concludes. Proofs are given in the appendix, and an online supplemental appendix
available at the author’s Websiteﬂ contains practical implementations of the GMM procedures
considered in this paper in the context of dynamic panel model and applies them to an empirical
study in Emran and Hou (2013).

2 Basic Setting and the First-step GMM Estimator

We want to estimate the d x 1 vector of parameters # € ©. The true parameter vector g is
assumed to be an interior point of parameter space ® C R?. The moment condition

Ef(Y;,6) = 0 holds if and only if 6§ = 6, (1)

where f;(0) = f(Y;,60) is an m x 1 vector of twice continuously differentiable functions. We
assume that ¢ =m — d > 0 and the rank of I' = E [0f(Y;,00)/06'] is d. So the model is possibly
over-identified with the degree of over-identification q. The number of observations is n.

Define g,,(0) = n=1>°" | fi(). Given the moment condition in , the initial “first-step”
GMM estimator of 8 is given by

N . Iy —1
0, = arg gélél gn(0) W, g, (0),

where W,, is an m X m positive definite and a symmetric weighting matrix that does not depend
on the unknown parameter 6y and plim,_..oW, = W > 0. In the context of instrumental vari-
able (IV) regression, one popular choice for W, is (Z/,Z,/n)~! where Z,, is the data matrix of
instruments.

Let f(@) =n"! Sy 8](,;"9(,0 ). To establish the asymptotic properties of 01, we assume that for
any \/n-consistent estimator 0, plimnﬁoof(é) =T and that T is of full column rank. Also, under
some regularity conditions, we have the following Central Limit Theorem (CLT)

V1ign(60) < N(0,9), where
0= lim ~F (Z ﬁ(eo)) (Z fz-(e())) -
=1 =1

Here € is analogous to the long run variance in a time series setting but the components of 2 are
contributed by cross-sectional dependences over all locations. For easy reference, we follow Sun
and Kim (2015) and call §2 the global variance. Primitive conditions for the above CLT in the
presence of cross-sectional dependence are provided in Jenish and Prucha (2009, 2012). Under
these conditions, we have

V(b — 60) % N[0, WD) W low T in@w o ir) .

Since I' and W can be accurately estimated by f‘(él) and W, relative to €2, we only need to
estimate €2 to make reliable inference about 6y. The main issue is how to properly account for
cross-sectional dependence in the moment process {f;(6o) ip- In this paper, we assume that
the cross-sectional dependence has a cluster structure, which is popular in many microeconomic

http://hwang.econ.uconn.edu/research/



applications. More specifically, our data consists of a number of independent clusters, each of
which has an unknown dependence structure. Let G be the total number of clusters and L,
be the size of cluster g. For simplicity, we assume that every cluster has the common size
L,ie, L = L; = Ly = .... = Lg. The identical cluster size assumption can be relaxed to
the assumption that each cluster has approximately same size relative to the average cluster
size, i.e., limy o0 Lg/(G™! Zle Ly) =1 for every g = 1, ..., G. Equivalently, we can express this
approximately equal cluster size assumption by L = L, +o(L) for each g = 1, ..., G. The following
assumption formally characterizes the cluster dependence.

Assumption 1 (i) The data {Y;}!'; consists of G clusters. (ii) Observations are independent
across clusters. (iii) The number of clusters G is fized, and the size of each cluster L grows with
the total sample size n.

Assumption[I}i) implies that the set {fi(#o),i = 1,2, ...,n} can be partitioned into G nonover-
lapping clusters u?zlgg where G = {f7(6o) : kK = 1,...,L}. In the context of the clustered
structure, Assumption ii) implies that the within-cluster dependence for each cluster can be
arbitrary but Ef{(0o)f'(60) = 0 if g # h for any k,l = 1,..., L. That is, f{(6y) and f}'(6o) are
independent if they belong to different clusters. The independence across clusters in Assumption
ii) can be generalized to allow weak dependence among clusters by restricting the number of
observations located on the boundaries between clusters. See Bester, Conley and Hansen (2011,
BCH hereafter) for the detailed primitive conditions. Under Assumption ii)7 we have

Q= nhgo%E (Z fi(00)> (Z fi(90)>
i=1 =1

1 n n
= lim - ZZ 1(¢, j € same cluster)E f;(6o)f;(60)". (2)
i=1 j=1

Assumption [I}ii) specifies the direction of asymptotics we consider. Under this small-G
asymptotic specification, we have

1< 1 & 1<
0= lim var ( Zf,f(&@) == ZQQ‘
Gotee VLS G
Thus, the global covariance matrix € can be represented as the simple average of {1y, g = 1,..., G,
where ,’s are the limiting variances within individual clusters. Motivated by this, we construct

the clustered covariance estimator (CCE) as follows:

. 1 n o n o . .
Q(01) = - Z Z 1(i,j € the same group) fi(61) f;(01)’
i=1 j=1

1 & 1 i 1 s '
= G; <ﬁ;fk<el>> <ﬁ;fk<el>>

To ensure that €2(0;) is positive definite, we assume that G > m, and maintain this condition
throughout the rest of the paper.



Suppose we want to test the null hypothesis Hy : Rfy = r against the alternative Hy : Rfy # r,
where R is a p X d matrix. In this paper, we focus on linear restrictions without loss of generality
because the Delta method can be used to convert nonlinear restrictions into linear ones in an
asymptotic sense. The F' test version of the Wald test statistic is given by

F(by) = ;(Rél vy {REG )R} (B ), (3)
where
gar(fn) = = [FO0 W, T 00| Ry W, a@w, Toy] [Feyw, T@n)]

In constructing F' statistic in , it is not necessary to divide it by the number of hypothesis p
to develop the small-G asymptotic theory in this paper. We use it only because we anticipate
more convenient F' approximation once the conventional F' statistic without the division factor
has been divided by p. We will apply the same division rules to the two-step GMM statistics in
Sections [3] and [4] to develop F' limit theory.

When p = 1 and the alternative is one sided, we can construct the ¢ statistic:

HBy) = L—f’_
Roar(0y) R

To formally characterize the asymptotic distributions of F(61) and ¢(f;) under the small-G as-
ymptotics, we further maintain the following high level conditions.

Assumption 2 6, 2 6.

Assumption 3 (i) For each g =1,...,G, let I'y(0) :=lim; oo & [% Zé:l 611;,59(/9) . Then,

S
=
(o5}
=2
S
~—
|
)1
s}
D
~—

sup
0N (6o)

k=1

holds, where N'(6p) is an open neighborhood of 6y and |-|| is the Euclidean norm. (ii) T'y(0) is
continuous at 6 = 0y, and for 'y =T,(0), I = G} Zle L'y has full rank.

Assumption 4 Let By, 4 g N(0,1I,) forg=1,...,G, then

L
1
P <ﬁ2f,f(00) < :c) =P (AgBpmg <z )+o0(l) as L — oo,
k=1
for each g =1,...,G where x € R™ and Ay is the matriz square root of €.
Assumption 5 (Homogeneity of I'y) For allg=1,...,G,T'y=T.

Assumption 6 (Homogeneity of Q) For allg=1,...,G, Q4 = (.



Assumption [2] is made for convenience, and primitive sufficient conditions are available from
the standard GMM asymptotic theory. Assumption [3|is a uniform law of large numbers (ULLN),
from which we obtain I'(0;) = G~* ZQGZI I'y+0p(1) ='+o0p(1). Together with Assumption(ii),
Assumption 4| implies that L—1/2 Zﬁzl f2(6p) follows a central limit theorem jointly over g =
1, ..., G with zero asymptotic covariance between any two clusters. The homogeneity conditions
in Assumptions[f] and [6] guarantee the asymptotic pivotality of the cluster-robust GMM statistics
we consider. Similar assumptions are made in BCH (2011) and Sun and Kim (2015), which
develop asymptotically valid F' tests that are robust to spatial autocorrelation in the same spirit
as our small-G' asymptotics. Let

G G
Bi=G 1Y By and §:= G S (Bug — Bun) (Bung — Bim)
g=1 g=1
where B, 4 as in Assumption Also, let W, (K, II) denote a Wishart distribution with K degrees
of freedom and p x p positive definite scale matrix II. By construction, vVGB,, ~ N 0,1,),
S ~ G_lwp(G —1,1I,), and B, LS. To present our asymptotic results, we partition B,, and S
as follows:

By Bp dgd?l qu
> dx1 5 px1 & X dxgq
B = R ) By = >, ) S = Q Q )

" Bq d Bd—p Sqd Sqq
gx1 (d—p)x1 gxd qxq

Spp Sp(d—p) Spq

S — _PXP X d—p ’ and S _ _pxq
aa Sd—p,p Sd—p,d—p a Sd—p.q
(d=p)xp  (d—p)x(d—p) (d—p)xq

Proposition 1 Let Assumptions hold. Then,

(@) F(01) % Fro = (g) . B/S;1By;

H.y 4 . _N@O,1) 2
b) t(01) — T1eo := ——=== where N(0,1) L x&_;.
( ) ( 1) loo \/}m ( ) XG-1
Remark 2 The limiting distribution Fiss follows Hotelling’s T?distribution. Using the well-
known relationship between the T? and standard F distributions, we obtain Fis 4 (G/)G —

p)Fp.c—p where Fp g—p is a random variable that follows the F' distribution with degree of freedom

(p, G — p). Similarly, T1co 4 (G/G — )tg—1 where tg—1 is a random variable that follows the t
distribution with degree of freedom G — 1.

Remark 3 As an example of the general GMM setting, consider the linear regression model y; =
zi0+€;. Under the assumption that E|z;¢;] = 0, the moment function is f;(0) = z;(y; — x}0). With
the moment condition E f;(0g) = 0, the model is exactly identified. This set up was employed in
Hansen (2007), Stock and Watson (2008), and BCH (2011); indeed, our F' and t approximations
in Proposition [1] are identical to what is obtained in these papers.

Remark 4 Under the large-G asymptotics where G — oo but L is fixed, one can show that the
CCE Q(61) converges in probability to Q for



The convergence of Q(él) to € does not require the homogeneity of Q4 in Assumption@ (Hansen,
2007; Carter et al., 2017). Under this type of asymptotics, the test statistics F(01) and t(61) are
asymptotzcally Xp/p and N(0,1). Let }';Zfip and X}f"‘ be the 1 — o quantiles of the Fpc—p and
Xp distributions, respectively. As G/(G —p) > 1 and F ;& > le)_a/p, it is easy to see that

p,G—p
G
G _plrar” Xp /P
Howewver, the difference between the two critical values G(G — p)~ 1]:; Go‘p and Xl_o‘/p shrinks to
zero as G increases. Therefore, the small-G critical value G(G—p)~ lf p U8 asymptotically valid

under the large-G asymptotics. The asymptotic validity holds even zf the homogenezty conditions
of Assumptions [5 and [f] are not satisfied. The small-G critical value is robust in the sense that
it works whether G is small or large.

Remark 5 Let A the matriz square root of Q, that is, AN = Q. Then, it follows from the proof
of Pmposz’tz’on that Q(01) converges in distribution to a random matriz Q1. given by

G
- - 1 -~
Qoo = ADA" where D= = % DDy and

[)g = Bmy - FA(Pﬁxwger)ilP?\W/;le (4)

for Tpy = A™IT and Wy = A_lW(A’)fl. ]_N)g is a quasi-demeaned version of By, 4 with quasi-
demeaning attributable to the estimation error in 0,. Note that the quasi-demeaning factor I‘A(F’AVVA_lFA)_l
F’Ang depends on all of I',Q2 and W, and cannot be further simplified in general. The esti-

mation error in 61 affects Q100 in a complicated way. However, for the first-step Wald and t
statistics, we do not care about 2(01) per se. Instead, we care about the scaled covariance matrix
(01)' W, 1Q(61)W, 1T(61), which converges in distribution to T'W ~1Q oW1, But

WWilDy =T\Wi! (Bimg — Bn),

and thus

G

_ 1 - =\

D'W QWD = T\ W 1 DW 1Ty = e > T\W,'D, (F’AWA’ng)
g=1

G
41 _ _ _
Wi %S (B = Bun) (B = B) (CAW3 Y.
g=1

Therefore, to the first order small-G asymptotics, the estimation error in 0, affects T'W 1 oW ™I
via simple demeaning only. This is a key result that drives the asymptotic pivotality of F(01) and

t(61).

3 Two-step GMM Estimation and Inference

In an overidentified GMM framework, we often employ a two-step procedure to improve the
efficiency of the initial GMM estimator and the power of the associated tests. It is now well-
known that the optimal weighting matrix is the (inverted) asymptotic variance of the sample



moment conditions, see Hansen (1982). There are at least two different ways to estimate the
asymptotic variance, and these lead to two different estimators ©(61) and 2(6;), where

-s& (Gegae) (Eae)

- LS om0 -sia]} o

k:

P
-

and

While (A1) employs the uncentered moment process U?Zl uk_ {f7 (01)}, Q¢(A1) employs the
recentered moment process U? LUk (A (01) — gn(61)}. For inference based on the first-step
estimator 91, it does not matter which asymptotic variance estimator is used. This is so be-

cause for any asymptotic variance estimator Q(61), the Wald statistic depends on () only via
D(01)W,;71Q(6,)W,;'T(0,). Tt is easy to show that the following asymptotic equivalence:

L0 W, 100 W, T (61) = T(0,)' W, 1 Qe(0)W, T (0y) + 0, (1)
= T'W, 1Q°(00) W, 1T + 0, (1).

Thus, the limiting distribution of the Wald statistic is the same whether the estimated moment
process is recentered or not. It is important to point out that the asymptotic equivalence holds
because two asymptotic variance estimators are pre-multiplied by f(él)’ W, ! and post-multiplied
by Wﬁlf‘(él) In the next subsections, we will show that the two asymptotic variance estimators
in and @ are not asymptotlcally equlvalent by themselves under the small-G' asymptotics.
Dependlng on whether we use (0;) or Q¢(6,), we have different two-step GMM estimators:

~ ~ o~ —1
0, = axgmin g, (9)' [9(91)} g (0)

and .
~C . . 1 TACH -
0, = arg Ienelggn(@) [Q (91)} gn(0).

Given that (61) and Q¢(;) are not asymptotically equivalent and that they enter the definitions
~ ~C

of O3 and 0, by themselves, the two estimators have different asymptotic behaviors, as proved in

the next two subsections.

3.1 Uncentered Two-step GMM estimator

In this subsection, we consider the two-step GMM estimator 05 based on the uncentered moment
process. We establish the asymptotic properties of 05 and the associated Wald statistic and J
statistic. We show that the J statistic is asymptotically pivotal, even though the Wald statistic
is not.

It follows from standard asymptotic arguments that

L
Z £7(00) | + op(1). (7)

QH
MQ

Vn(fs —0y) = — [F’Q_l(él)l“} a1

10



Using the joint convergence of the followings

G L
A A d ~ 1 1 d —
Q(01) = Qoo = ADA’ d—g —E 9(0 — VGAB,,, 8
( 1) ! o VG \/Z]::L f]( 0) ( )

we obtain »
V(B — 8) & — {F’Aﬁp—lrd )\ D VG B,

where D :~G*1 Zlel [)gf); is defined in . i

Since I is random, the limiting distribution is not normal. Even though both D, and B,, are
normal, there is a nonzero correlation between them. As a result, D and B,, are correlated, too.
This makes the limiting distribution of /n(f2 — o) highly nonstandard.

To understand the limiting distribution, we define the infeasible estimator 0y by assuming
that (o) is known, which leads to

N . 1H—1
0y = arg gélélgn(ﬁ) Q7 (00)gn(0).

Now

Vi(fs — 0g) % — [ThS™TA] ' THS'VGB,,
where S = G~! 25:1 Bm’gB;mg. The only difference between the asymptotic distributions of
Vn(fy — 6p) and \/n(B2 — 6) is the quasi-demeaning embedded in the definition of D,. This
difference captures the first order effect of having to estimate the optimal weighting matrix,
which is needed to construct the feasible two-step estimator 0.

To make further links between the limiting distributions, let’s partition S in the same way
that S is partitioned in the previous section. Also, define U to be the m x m matrix of the
eigen vectors of I\T'y = I"Q 71" and ULV’ be a singular value decomposition (SVD) of I's. By
construction, U'U = UU’ = I,,, V'V = V'V = I, and ¥’ = [ Agxa Oudxq |- We then define
W = U'WAU and partition W as before. We also introduce

Bs = SaSyq By = WagW,,', and

qq
o /
ke = G-BIS'B,.

By construction, Bg is the “random” regression coefficient induced by S while 33, is the regression
coefficient induced by the constant matrix W. Also, k¢ is the quadratic form of normal random
vector \/@Bq with random matrix Syy. Finally, on the basis of 05, the J statistic for testing
over-identification restrictions is

~ N —1
J(02) := ngn(Bs)’ (9(91)) 9n(02). 9)

The following proposition characterizes and connects the limiting distributions of the three esti-
mators: the first-step estimator 01, the feasible two-step estimator 02, and the infeasible two-step
estimator 5.

Proposition 6 Let Assumptions [ hold. Then
(@) Vi(br — 60) % ~VA~VG(Ba ~ By By);
(b) V(B2 ~ o) > ~VA~'VG(By ~ s By);
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(©) V(s — 09) - —VA NGBy — BsB,) — (%) - VA WG(By — By By):
(d) v/n(02 — 90) = v/n(f2 — bo) + (&) - Vn(01 — o) + 0p(1);
(e) J(@g) el Beta({, G2 1), where (a), (b), (c), and (e) hold jointly.

Part (d) of the proposition shows that \/n (92 — tp) is asymptotically equivalent to a linear
combination of the infeasible two-step estimator \/n(fz —6g) and the first-step estimator v/n(6; —
o). This contrasts with the conventional GMM asymptotics, wherein the feasible and infeasible
estimators are asymptotically equivalent.

It is interesting to see that the linear coefficient in Parts (c¢) and (d) is proportional to the
limit of the J statistic. Given kg = O,(1) as G increases, the limiting distribution of v/n(fz — 6g)
becomes closer to that of \/ﬁ(ég — 6p). In the special case where ¢ = 0, i.e., when the model is
exactly identified, kg = 0 and /n(fy — 0) and /n(f2 — 0) have the same limiting distribution.
This is expected given that the weighting matrix is irrelevant in the exactly identified GMM
model.

Using the Sherman—Morrison formulaEL it is straightforward to show

1
. B«;Sqq B, 4. 4F4,G—q '
1+ B!Sqq B, (G —q) +qFq0-4

kg =G

While the asymptotic distributions of 0y is complicated and nonstandard, the limiting dis-
tribution of the J statistic is not only pivotal but is also an increasing function of the standard
F distribution. Furthermore, the equivalent Beta representation in Part (e) enables us to ap-
proximate the non-standard limit of J statistic by a (scaled) Beta random variable. For the
practitioners, it is important to point out that the Beta limit of J statistic is valid only if the J
statistic is equal to the GMM criterion function evaluated at the two-step GMM estimator 0,.
This effectively imposes a constraint on the weighting matrix. If we use a weighting matrix that
is different from Q(él), then the resulting J statistic does not have the Beta limit and is not even
asymptotically pivotal any longer.

Define the F statistic and variance estimate for the two-step estimator 0y as

. 1 . - . -1
Feya,(02) = E(RQQ Y <Rvarﬂ(é1)(82) R/> (R — 1) for

g 5 1o/as a1 vavn )L
T g 3y (02) = ~ (F(ez)/g (el)r(92)) .

In the above definitions, we use a subscript notation Q(@l) to clarify the choice of CCE in F

statistic and asymptotic variance estimator above. Now the question is, is the above F' statistic

asymptotically pivotal as the J statistic J(f2)? Unfortunately, the answer is no, as implied by

the following proposition which uses the additional notation:

_ _ “P 5 B/ HP 2P B D
5 ( E?p Epq > _ < %m Spq > n By BBy (Byy)" By BB, . (10)
p+a.p+q E,, Eq Shy Sgq BB, (6y,) ByB,

where B%, is the p x ¢ matrix and consists of the first p rows of V' By, where V is the d x d matrix
of the eigen vector of (RVA_l)/ RVA~L

S(C+ab)y t=Ct Hb‘,’% for any invertable square matrix C' and conforming column vectors such that
14+ Cta#0.
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Proposition 7 Let Assumptions[1~6 hold. Then

~ d _ — 1 =
Q(6 )(92) = —(By, — By, By 1B 0)' (Eppq) ' (Bp _quququ)

G

p

— -1 _

B, Epp Epg B, B'E
m) (i) (B)-omen,

1
Epp.g = Epp — ququ Equ

where

Due to the presence of the second term of 4 p4q in |D which depends on yir» the result of
Proposition indicates that the I statistic is not asymptotically pivotal, and it depends on several
nuisance parameters including 2. To see this, we note that the second term in is the same
as G - B;Sqqqu = kqg. Thus, the second term is the limit of the J statistic, which is nuisance
parameter free. However, the first term in is not pivotal because we have

() (s =) (3)
B, E,, Egq B,

_ / _ _ —1 _ _ — 2

( By, ) ( Spp  Spq > < By, ) _ ( p+qu+q7p+qu )
! i

Bq Spq Sqq Bq I+ Bq p+qu+qu

=G

where @ = ((Byy ), I, ¢) - Here, as in the case of the J statistic, the first term in the above equation

is nuisance parameter free. But the second term is clearly a nonconstant function of BW, which,
in turn, depends on R, I', W and ).

3.2 Centered Two-step GMM estimator

Given that the estimation error in 6, affects the limiting distribution of Q(6;), the Wald statistic
based on the uncentered two-step GMM estimator 0 is not asymptotically pivotal. In view of
, the effect of the estimation error is manifested via a location shift in Dg; the shifting amount
depends on 0,. A key observation is that the location shift is the same for all groups under
the homogeneity Assumptions [5] and [6] Therefore, if we demean the empirical moment process,
we can remove the location shift that is caused by the estimator error in 61. This leads to the
recentered asymptotic variance estimator and a pivotal inference for both the Wald test and J
test.

It is important to note that the recentering is not innocuous for an over-identified GMM model
because n= !> fi(él) is not zero in general. In the time series HAR variance estimation, the
recentering is known to have several advantages. For example, as Hall (2000) observes, in the
conventional increasing smoothing asymptotic theory, the recentering can potentially improve the
power of the J test using a HAR variance estimator when the model is misspecified.

In our small-G asymptotic framework, the recentering plays an important role in the CCE
estimation. It ensures that the limiting distribution of 90(91) is invariant to the initial estimator
6,. The following lemma proves a more general result and characterizes the small-G limiting
distribution of the centered CCE matrix for any \/n-consistent estimator 6.

Lemma 8 Let Assumptzonslil«@ hold. Let 0 be any \/n-consistent estimator of 0. Then
(a) Q9(0) = Qc(90) + op(1);
(b) °(6o) LA QS where Q°, = ASA'.
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Lemma [§ indicates that the centered CCE Q¢(6,) converges in distribution to the random
matrix limit Q¢ = ASA’, which follows a (scaled) Wishart distribution G™'W,, (G —1,). Using
Lemma [§] it is possible to show

VAl —05) = - (r' o] r)l )] Viga(00) +o,(1)  (12)
4@ ] @) AVEB,,

Since (2¢,)~! is independent with VGAB,, ~ N(0,Q), the limiting distribution of 05 is mixed
normal.

On the basis of 9;, we can construct the “trinity” of GMM test statistics. The first one is the
normalized Wald statistic defined by

Foe(d,)(02) = (Rég — 1)/ {RUaT o e (03) R’} (RO — 1), where (13)

_— ~C 1 A AC A 1. . -t
e B5) = (P (9000) " TE))
When p = 1, corresponding ¢ statistic ety )(92) can be constructed similarly.

The second test statistic is the Qua51-L1kehhood Ratio (QLR) type of statistic. Define the
restricted and centered two-step estimator 92

~C,T L . / AC ~ -1 .
0y := arg min gn(0) [Q (91)} gn(0) such that RO = r.
The QLR statistic is given by
AC ~C,T n ~C,T Aerh -1 ~C,T ~cvr [Ach ~
LRey (0,057 = 2 3 9a(85") [0°00)]  9n(037) = gu(@2) [0°B0)]  gn(@) ¢

The last test statistic we consider is the Lagrangian Multiplier (LM) or score statistic in the
GMM setting. Let SAC(.)(H) be the gradient of the GMM criterion function 1'()’[Q¢(-)] ~1gn(0),
then the GMM score test statistic is given by

~C,T ~C,T

LMge(p,)(05") :=Z[SQC(91)<6>§””>]'{ 05"y [ (0] rw;”)}_l [Saran @3] -

In the definition of all three types of the GMM test statistics, we plug the first-step estimator 0,
into Q°(-), but Lemmalndlcates that replacing 6, with any /n-consistent estimator (e.g., 3 and
92) does not affect the small-G' asymptotic results. This contrasts with the small-G asymptotics
for the uncentered two-step estimator 0. Lastly, we also construct the standard J statistic based

on 92
~cC

~C ~C A -1
J(05) = ngn(05) (2°(B1))  ga(6),

where Q¢(61) can be replaced by €°(05) without affecting the limiting distribution of the J
statistic.
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Using (12) and Lemma we have Fy. 5 (05) 5 Fas where
Faoo = j - [R (M\S711,) " F’AS*lém}' [R (M§7110) " R’}_l (14)
x |R (T4S7T8) ' ThS ™' B -
When p = 1, we get £, ;) (f3) > Tao with

R(D,S7'Ty) ' 1,5~ 1\FB

Taoo = (15)
VR[OS, R
Also, it follows in a similar way that
J(05) % Joo = G- { B~ Tp (ThS7'T0) ' T48 7B, } 67
2 o0 =Gy bm A(LA A A m (16)

x { By =T (TAS™'TA) ' TAS ™ B}

The remaining question is whether the above representations for Foo, and J., are free of
nuisance parameters. The following proposition provides a positive answer.

Proposition 9 Let Assumptzons “ hald and define Sppq = Spp SpqS S

@) Fae(o,)(0) % § - (By — Sy 13) Sprg (Bo = 80Sy By)' £ Facol

~ d _ d
tﬁc(él)w;)_)\/é(BP_S qq )/ ppq:T?oofOszl;

¢) J(05) % G- BS; By L Jew.

To simplify the representations of Fou, and To, in the above proposition, we note that

G

S,p S ) _
G |: Szz SZZ :| i gz:; (Bp-HLg - Bp+q) (Bp+q,g _ Bp+q)/,

where Byiq4 := (B, ,, B, ). The above random matrix has a standard Wishart distribution
Wpiq(G—1, Ipﬂ) It follows from the well-known properties of a Wishart distribution that Sp., ~
W, (G —1—q,1,)/G and S, is independent of Sy, and Sy,.See Bilodeau and Brenner (2008,
Proposition 7. 9) Therefore, if we condition on A := Spquql VGB G By, the limiting distribution Fay
satisfies

—p— B, + A B, + A
Gop-up, 4Gp=(VOB+ S5l VOB 4y (18F).  an

where fp’G_p_q(||AH2) is a noncentral F distribution with random noncentrality parameter || A% .
Similarly, the limiting distribution of (scaled) T2 can be represented as

G-1-q, d G-1-q¢VGB,+A 4
— &~ 1200 =

G G N

15

=tg_1-¢(4), (18)



which is a noncentral ¢ distribution with a noncentrality parameter A. These nonstandard limiting
distributions are similar to those in Sun (2014) which provides the fixed-smoothing asymptotic
result in the case of the series LRV estimation. However, in our setting of clustered dependence,
the scale adjustment and degrees of freedom parameter in and are different from those
in Sun (2014).

The critical values from the nonstandard limiting distribution Fso, can be obtained through
simulation, but Sun (2014) shows that Fao, can be approximated by a noncentral F' distribution.
With regard to the QLR and LM types of test statlstlcs Proposition @]— ) and (d) shows that
they are asymptotically equivalent to F¢ e(d 1)(0 ). ThlS also implies that all three types of test
statistics share the same small-G limit as given in (|17 and ( . Similar results are obtained by
Sun (2014) and Hwang and Sun (2017), which focus on the two-step GMM estimation and HAR
inference in a time series settlng

For the J statistic J (0 ), it follows from Proposition @ that

G —q ~c. d G —
<Gq> DS <G> BIS7B, 2 Foc

This is consistent with Sun and Kim’s (2012) results except that our adjustment and degrees of
freedom parameter are different. A recent study by Hayakawa (2016) also discusses the Beta and
F limiting distributions of uncentered and centered J statistics, respectively. Comparing to what
we develop in Propositions [6] and [0] however, his approximations are built upon the assumption
of independent Gaussian moment process which are quite restrictive in empirical modeling.

4 Asymptotic F and t Tests for Centered Two-step GMM Pro-
cedures

The limiting distributions of the centered two-step GMM test statistics in Section [3| are non-
standard under the small-G asymptotics, and hence the corresponding critical values have to
be simulated in practice. This contrasts with the conventional large-G' asymptotics, where the
limiting distributions are the standard chi-squared and normal distributions. In this section, we
show that a simple modification of the two-step Wald and ¢ statistics enables us to develop the
standard F' and t asymptotic theory under the small-G asymptotics. The asymptotic F' and ¢t
tests are more appealing in empirical applications because the standard F' and ¢ distributions are
more accessible than the nonstandard Foo, and Ts, distributions.
The modified two-step Wald, QLR and LM statistics are

P—q QL(@ (92)

G 14+ 50y
G—p—q LRQL(Q )(92»‘927 )
G 1+ 47065

G-

ey (05) =

LR (g, (05,05") =

_— ~C,T G —

b
G 1+ £ J(0y)
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and the corresponding version of the t statistic is

{‘ . (éc) o G - 1 - q tﬁc(él)(62)
Qe(b)\V2) T\ G ’ N
1+ &J(03)

The modified test statistics involve a scale multiplication factor that uses the usual J statistic
and a constant factor that adjusts the degrees of freedom.
It follows from Proposition [9] that

~AC ~C d
(Fae oty (85), T(0)) % (Fano: Juc) (20)
d (G ,5 & cac1s Vel (5 & c-15\/ S
= <p (Bp— pquqlBQ) pp1~q (Bp—SpquqlBQ) G BZJSqqqu) (21)
Thus,
= g d G=p—q Fas a4 G—p—q s
FQ(:(@[Q’)(HZ) G 1+ L0 e EpSppalps
where _
€ = VG(B, SpqSeq Ba)
P ——
\/1+ B.Sy By
Similarly,

- sevd |G—1—¢q T2 a £
tﬁc(ég)(‘%) - a : \/1 £

+ &0 /S
In the proof of Theorem [10| we show that &, follows a standard normal distribution N (0, 1),

and that ¢, is independent of S’Ij;q. Thus, the limiting distribution of Fx, (ég)(é;) is proportional

to a quadratic form in the standard normal vector £, with an independent inverse-Wishart dis-

-1

tributed weighting matrix S It follows from a theory of multivariate statistics that the

ppq_
limiting distribution of F, c(é;)(eg) is Fp.G—p—q- Similarly, the limiting distribution of fﬁc(é;)(ﬁg)

is tg—1—¢. This is formalized in the following theorem.

Theorem 10 Let Assumptions hold. Then the modified Wald, QLR and LM all converge
in distribution to Fp g—p—q. Also, the t statistic has limiting distribution tg—1—q.

The equivalence relationship between the modified Wald, LR,LLM is consistent with the recent
paper by Hwang and Sun (2017a) which establishes the asymptotic F' and ¢ limit theory of two-
step GMM in a time series setting. But our cluster-robust limiting distributions in Theorem
are different from Hwang and Sun (2017a) in terms of the multiplicative adjustment and the
degrees of freedom correction.

It follows from the proofs of Theorem [I0] and Proposition [9] that

V(@ — 09) 5 MN (0, (o)t (1 + B;S;;Bq)) and (22)
J(63) % G- BS,'B,

hold jointly under small-G asymptotics. Here, M N (0, V) denotes a random variable that follows
a mixed normal distribution with conditional variance V. The random multiplication term (1 +
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B;Sqq B q) in 1} reflects the estimation uncertainty of CCE weighting matrix on the limiting

distribution of \/ﬁ(ég —6p). The small-G limiting distribution in is in sharp contrast to that
of under the conventional large-G asymptotics as the latter completely ignores the variability in
the cluster-robust GMM weighting matrix. By continuous mapping theorem,

/0> —0) ‘9?) 4N (0, (F’Q’ll“)_l) . (23)
1+ £J(65)

and this shows that the J statistic modification factor in the denominator effectively cancels out
the uncertainty of CCE to recover the limiting distribution of /n (9; o) under the conventional
large-G' asymptotics. In view of , the finite sample distribution of \/n (02 — 0y) conditional
on the J statistic J(65), can be Well approx1mated by N(0, vach( )(02)) where

UCL’I”QC( )(92) = varQC( )(92) <1+ éJ(@g)) (24)

The modification term (1 + (1/G)J(65))~! degenerates to one as G increases so that the two
variance estlmates in . become close to each other. Thus, the multiplicative term (1 +
(1/G)J(A5)~! in can be regarded as a finite sample modification to the standard vari-
ance estimate varﬂc(e )(92) under the large-G asymptotics. For more discussions about the role
of J statistic modification, see Hwang and Sun (2017b) which casts the two-step GMM problems
into OLS estimation and inference in classical normal linear regression.

5 Iterative Two-step and Continuous Updating Schemes

Another class of popular GMM estimators is the continuous updating (CU) estimators, which
are designed to improve the poor finite sample performance of two-step GMM estimators. See
Hansen, Heaton, and Yaron (1996) and Newey and Smith (2004) for more discussion on the CU-
type estimators. Here, we consider two types of continuous updating schemes first suggested in
Hansen et al. (1996). The first is motivated by the iterative scheme that updates the FOC of

two-step GMM estimation until it converges. The FOC for @{E is
Db (01 g (Brg) = 0 for j = 1.

In view of the above FOC, @{E can be regarded as a generalized-estimating-equations (GEE)
estimator, which is a class of estimators first proposed by Liang and Zeger (1986) and further
studied by Jiang, Luan, and Wang (2007). When the number of iterations j goes to infinity until

@fE converges, we obtain the continuously update GEE estimator QCU_GEE. The FOC for @CU_GEE
is given by o o )

L(Ocu-cer) Q" (Ocu-cer)gn(@cu-cer) = 0. (25)
We employ the uncentered CCE, Q() in the definition of 9CU_GEE, but it is not difficult to show
that

[(Acu-cer)Q  (Ocu.cer)gn(Bcu-cer)

. L -1 1
=T'(0cu-cer)’ (QC(GCU-GEE)) gn(0cu.cER) -

1+ vn(fcu-cee)
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where

. . L 1
vn(Ocu-cer) = L - gn(fcu-cer)’ (QC(9CU-GEE)> gn(0cu.-cER)-

Since 1/(1+ v, (Acu.ger)) is always positive, the first-order condition in holds if and only if

. o 1
I'(Ocu-cer)’ [QC(HCU—GEE)} gn(fcu-geg) = 0, (26)

which indicates that the recentering CCE weight in has no effect on the iteration GMM
estimator.

The second CU scheme continuously updates the GMM criterion function, which leads to the
familiar continuous updating GMM (CU-GMM) estimator:

Ocu-anu = argming, (6)'Q " (6)gn (6).
0O
Although we use the uncentered CEE Q(#) in the above definition, the original definition of

Ocu.cym in Hansen, Heaton and Yaron (1996) is based on the centered CCE weighting matrix
Q¢(0). It is easy to show that

Thus, we have

N

c -1 L'gnelﬁ_legne
Lo gu0) (260)) " gal) = L@ 0@
1-L- gn(e)/Q I(Q)gn(e)
The above equation reveals the fact that the CU-GMM estimator will not change if the uncentered
weighting matrix 2(0) is replaced by the centered one 2¢(0), that is,

. . -1

fov-can = argming,(6)' |2°(6)] g (0). (27)
0cO

Similar to the centered two-step GMM estimator, the two CU estimators can be regarded as

having a built-in recentering mechanism. For this reason, the limiting distributions of the two

CU estimators are the same as that of the centered two-step GMM estimator, as is shown below.

Proposition 11 Let Assumptions M hold. Assume that @CU_GEE and 9CU_GMM are \/n-
consistent. Then

N -1 _
Va@cv.crr — 00) > — [r' Q) r] I (Q5,) ' AVGE,,

and
~ —1 _
VOcu-can — 00) 5 — [r’ Q) ! r} T (Q°) " AVG By

The proposition shows that the CU estimators and the centered two-step GMM estimator are
asymptotically equivalent under the small-G asymptotics. Based on the two CU estimators, we
construct the Wald statistics as

1, . _
Fx = 5 (RQCU—GEE —T‘)I{RUG,TQC

QC(%L‘-GEE)( éCU-GEE)

(Ocv-cee)R'} N (ROcu.cee—r) (28)

(bcu-cer)
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and

R 1 . - . P

FQC(éCU-GMl\l)(eécU-GMM) - E(RGCU_GMM N T)/{Rvarﬁc( (QCU-GMM)R/} (ROcu-amm — 7")'

R R (29)

éCUGEE)(@CU_GEE) and tQC(écU,GMM)(HCU'GMM) in 81 similar way jzvhen p = 1.

It follows from Proposition that the Wald statistics based on Ocy.grr and Ocu.cmMm are
~C

asymptotically equivalent to FAC((;A)(OQ). As a result,

Ocu-ann)

We construct tQC(

F

, d , d
e (bo.cpp) (0CU-GEE) = Faco and Fo. y(Ocu-aam) = Fase.

éC U-GMM
Similarly,

5 d
t (Ocu-cmm) = Taso.

)(éCU-GEE) < Toso and th(

Qe(fcu-cEE Ocv-aMM

In summary, we have shown that all three estimators 9;, éCU_GEE and 9CU_GMM, and the cor-
responding Wald test statistics converge in distribution to the same nonstandard distributions.
Proposition [O}(c) and (d) continues to hold for the CU-GEE and CU-GMM estimators, lead-
ing to the asymptotic equivalence of the three test statistics based on the CU-type estimators.
That is, the CU-GMM estimator shares the first order fixed-smoothing limit with the two-step
GMM estimator in our paper. Similar results have been found in a recent paper by Zhang (2016)
in a time series setting who develops the fixed-smoothing asymptotic theory for the CU-GMM
estimator.

The findings in this section are quite interesting. Under the first order large-G' asymptotics,
the CU estimators and the default (uncentered) two-step GMM are all asymptotically equivalent.
In other words, the first-order large-G' asymptotics is not informative about the merits of the CU
estimators. One may develop a high order expansion under the large-G asymptotics to reveal the
advantages of CU estimators. In fact, Newey and Smith (2004) develop the stochastic expansion
of CU estimators in an i.i.d setting and show that the CU schemes automatically remove the high
order estimation error of two-step estimator which is caused by the non-optimal weighting matrix
in the first-step estimator. We could adopt these approaches, instead of the small-G asymptotics,
to capture the estimation uncertainty of the first-step estimator in the default (uncentered) two-
step GMM procedures. But the high order asymptotic analysis is technically very challenging
and often requires strong assumptions on the smoothness of moment process. Although the
small-G' asymptotics we develop here is just a first order theory, it is powerful enough to reveal
the asymptotic difference between the CU and the plain uncentered two-step GMM estimators.
Moreover, the built-in recentering function behind the CU estimators provides some justification
for the use of the centered CCE in a two-step GMM framework.

Lastly, together with Theorem [I0] Proposition [I1] imply that the modified of Wald, LR,LM,
and t statistics based on the CU estimators are all asymptotically F' and ¢ distributed under the
small-G' asymptotics.

6 Finite Sample Variance Correction

The recentering scheme we investigate in the previous sections enables us to remove the first order
effect of the first-step estimation error, but the centered two-step GMM estimator still faces some
extra estimation uncertainty in the first-step estimator. The main source of the problem is that
we have to estimate the unobserved moment process based on the first-step estimator. To be
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more specific, define the infeasible two-step GMM estimator with the centered CCE weighting
matrix Q°(0p) as

0, = arg min g, (0)' (520(00)>_1 gn(0).
Then ) ) o A B
Vil ~0) = - |1 ((00) 1| T (@(60) Vi 00) + 0,01

. But we also have

-1

~C A~ A —1 n A —1
V(B — 8o) = — [r’ (@) r] I (0°B1))  Vinga(6o) + 0p(1), (30)
Together with Lemma [§] this implies that
V(B — 00) = /(05 — 60) + 0, (1).

That is, the estimation error in 6 has no effect on the asymptotlc distribution of /n (02 —0p)
in the first-order asymptotic analysis. However, in finite samples 02 does have higher variation
than 65, and this can be attributed to the high variation in Q¢(;) than Q°(6). To account
for this extra variation, we could develop a higher order asymptotic theory under the small-G
asymptotics. But this is a formidable task that requires new technical machinery and lengthy
calculations. Instead, we keep one additional term in the stochastic expansion of \/ﬁ(ég —0p) in
hopes of developing a finite sample correction to our asymptotic variance estimator.

To this end, we first introduce the notion of asymptotic equivalence in distribution &, ~ n,
for two stochastically bounded sequences of random vectors &, € R and n,, € R when ¢, and
n,, converge in distribution to each other. Now under the small-G asymptotics we have

e . -1 11 . -1 .
Vil - o) & = {1 [0(60)] T} 1 [0600)] " Viga(00) + (610 -+ E20) Vil — 00,

where

0 {r/ [QC(Q)}_lr}l o

7 I [2°00)]  9u(00)

gln:_

0=069

~ -1
Fan = {F' [QC(H)]lr}_l or |9 ((2; 9n(00)

6=0¢

are d x d matrices. In finite samples, if we estimate the term T'[Q(00)] L gn(fo) in Ern by
[(65)[Q2(61)] 2 gn(03), then the estimate will be identically zero because of the FOC. For this
reason, we drop &1, and keep only &, which leads to the following distributional approximation

e . -1 1! . -1 .
(05— 6) & — {r’ [90(90)] r} I [90(90)} Vgn(00) + Eanv/n(B1 — 0g).  (31)
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Using element by element differentiation with respect to 6; for 1 < j < d, we can write the j-th
column of &y, as

e {F/ {00(90)]_1F}_1 )] 8?9;(.9) 200 0a00). (32
7 lo=0,
where
8%66(?50) = T;(00) + T;(0o) and

-G

g:l

) (

=1
Note that the term Sgn\/ﬁ(él — 0p) has no first order effect on the asymptotic distribution of
AcC

n(6y — 0p). This is true because &, converges to zero in probability. In fact, it follows from

1l» 33

L 1 n
Z( )—anzwo))
VL & .
1y 8@290)) ] - (33)

2) and (33) that &y, = O,(n~1/2).
It follows from that

Vil = 00) & = ([ (95,) ' 1]

I (Q) 'AZ > | (34)

En(F’W—lr)—l ) < 'W-lAZ

where Z ~ N (0, I;), Z is independent of QS , and &, has the same marginal distribution as £,
~C

but it is independent of Z and Q. It then follows that \/n(8, — ) is asymptotically equivalent

in distribution to the mixed normal distribution with the conditional variance given by

_ /
= _( [r@tr] Y (reo e regTtew i (et
~\ oweiny-ig Wl Q)T T I'wolaw ol (T'wW-r)-1g!

Motivated by the above approximation, we propose to use the following corrected variance
estimator:

—adj 50 _
Uach(gl)(HZ) =

1 R N . -1 —1 A R i/ c al —17
:< [F’ [90(01)} F} En(T'W ) ) < 1 [Q (91)1 " R FAW’K . 5
I W, tQe(0)w, 1T
P A -1,
[r/ [96(01)] r/}
(W, D) E,

= DT gy, (0) + Ea0Tq 5, (0) + 00T e 5, (02)E, + Envar (B1)E}, (35)
where
P o Tae s L -1 s -1 99°(6 s 11 e
R L r’{[ﬂ )2 ) }gnwg) and
T lo=p,
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The last three terms in , which are of smaller order, serve as a finite sample correction to the
original variance estimator.

Windmeijer (2005), too, has used the idea of variance correction, and his proposed correction
has been widely implemented in applied work for simple models such as linear IV models and
linear dynamic panel data models. However, Windmeijer (2005) considers only an i.i.d. setting,
and there are two principal differences between Windmeijer’s approach and ours. First, our
asymptotic variance estimator involves a centered CCE; in contrast, Windmeijer’s involves only
a plain variance estimator. Second, we consider the small-G' asymptotics; Windmeijer (2005)
considers the traditional asymptotics. More broadly, we often have to keep higher-order terms
to develop a high order Edgeworth expansion. Here we choose to focus on variance correction
instead of distribution correction, which is often the real target behind the Edgeworth expansion.
In addition to the technical reasons, a principal reason for our choice is that we have already
developed more accurate small-G asymptotic approximations.

With the finite sample corrected variance estimator, we can construct the variance-corrected
Wald and t statistics:

adi ~C 1 ~C ~C
adj _ . / -
Fartan @) = - (Rdy vy [RWQ (01)(92)3] (ROS — 7).

R@g -
\/Rva% o) ))R

£2dj _
QL (91) (02) -

Given that the variance correction terms are of smaller order, the variance-corrected statistic will
have the same limiting distribution as the original statistic.

Assumption 7 For each g=1,...,G and j = 1,...,d, define Q?(&) as

. 1~ 9 (0f(0)
Q%)= lim E ,< k >]
L—oo ; 00
Then,
Lo [ari0) .
E - — 090
ees/lflpo) — 6 ( > QJ( )

holds for each g = 1,...,G and j = 1, ...,d, where N (6,) is an open neighborhood of 0y, and ||-||
is the Euclidean norm. Also, Q?(Gg) =Q;(0o) forg=1,..G.

This assumption trivially holds if the moment conditions are linear in parameters.
Theorem 12 Let Assumptions [IM7 hold. Then
dj
FLY (92) Qe (d )(92) + op(1) and

Qc(e )
adj
tQCJ(gl)(QQ) = th( )(‘92) + Op(l)
In the proof of Theorem l we show that &, = (1 + 0p(1))E2p,. That is, the high order

correction term has been consistently estimated in a relative sense. This guarantees that &L isa
reasonable estimator for £, which is of order op(1).
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As a direct implication of Theorem [I2] together with Theorem [I0] the Wald and ¢ statistics
coupled with the J statistic modification and the finite sample variance correction have the
standard F' and ¢ limiting distributions found in Theorem [I0] That is,

adj A€
.o ~c G—p—q Qc(@) 2] 4
F2U () = : DA e 36
Qc(el)( 2) G ]_—’—é(](e;) - p,G—p—q ( )
and G e
tx) . (67)
pdi ey, [Go1—a ey 4
Qc(él)( 2) T G - tG—l—q~ (37)

1+ £7(6)
For the CU-GEE estimator, we have the following expansion
Vn(Bcu-cer — 0o)

—— (1 (o) r)l o (9°00)) " Viign(Bo) + EanviBov-are — 60) +0, (1) (39)

This can be regarded as a special case of wherein the first-step estimator 0, is replaced by
the CU-GEE estimator. Thus,

Vitlou a0 &~ (a0 (1 (@00) ) (000) " Vg0, @9

We can obtain the same expression for the CU-GMM estimator \/ﬁ(éCU_GMM —6p).
In view of the representation in , the corrected variance estimator for the CU type esti-
mators can be constructed as follows:

. 1 1
/\adJ ~ ( -~ N =
vars > . Ocu- =(I;—Ecuy. ) var (0 : ) (I — Eqpr. )
QC(HCU»GEE)< CU-GEE) d — EcU-GER cu-cek ) (1a — Ecvu-gER
/\adJ ~ o = -1 Y a7 -1
vary? (Ocu-cmm) = (1g — Ecv.amm ) var (Ocu-gmm ) (1a — Ecv-avm )
Q¢(Ocu-cEE)

where

~ T —1.)°!
Ecvu-GEE[, j] = {F’ [QC(%U-GEE)] F'}

-1 9Q°(Acu.aEE)

x I { [Qc(éCU—GEE)} 20,

[QC(éCU—GEE)} _1} gn(Ocu-cer)

and ECU_GM\,I is defined in the same way but with 9CU_GEE replaced by éCU_GMM. With the finite
sample corrected and adjusted variance estimators in place, the Wald and ¢ statistics based on
the CU estimators also converge in distribution to the same nonstandard distributions in
and , respectively. The multiplicative modification provided in Section 4| can then turn the
nonstandard distributions into the standard F' and ¢ distributions in and , respectively.
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7 Simulation Evidence

7.1 Design

This section compares the finite sample performance of our new tests by focusing on the following
linear dynamic panel data model:

Yit = VYit—1 + T1301 + .. + 21,483 + n; + Uit

The unknown parameter vector is 8 = (v, 81, ..., 84_1)" € R?, and the corresponding covariates
are wir = (Yir—1, i)’ € R? with 2 = (w1, o Ta—1,t) € R4!. In all our simulation work, we
fix the number of parameters d as 4 and set the true value of 6 as 0y = (0.5,1,1,1)". We denote

sl =(sY ., si ;)| as any vector valued observations in cluster g, and stack all observations at

same period by cluster to define s, ; = (s%, ceey s%’t)’. The k-th predetermined regressor m%it are

generated according to the following process:
g _ .9 g g g
Tpit = Py p1 T M5 T PU_1 + € i

fork=1,2,d—1,i=1,...,L,and t = 1,...,T. Setting the number of time periods to be T' = 4,
we characterize the within-cluster dependence in 1), €.y, and wu() by spatial locations that
are indexed by a one-dimensional lattice. Define ¥, and 3, to be L x L matrices whose (i, j)-th
elements are a?j = A=7l and a;?‘j = \i=J |, respectively, and Y. to be a 3L x 3L block diagonal
matrix with diagonal matrix ¥y . of size L x L for k =1,...,d — 1. The (4, j)-th element of ¥ .
is az?ij = Nl for | = 1,...,d — 1. The parameter A governs the degree of spatial dependence
in each cluster. When A = 0, there is no clustered dependence and our model reduces to that of
Windmeijer (2005) which considers a dynamic panel data model with only one regressor.
The individual fixed effects and shocks are generated by
ii.d. ii.d.
gy = N(0,5y), vec(erg) ) =" N(0, %), (40)

ugg) ¢ = 7%y 2 (w6708,

59 " U10.5,1.5], and wf, K 3 — 1,
overg=1,...G,i=1,...L,and t =1,...,T, where 74 = 0.5+ 0.1(t — 1). The DGP of individual
shock ug) + in features a non-Gaussian process which is heteroskedastic over both time ¢ and
individual 4. Also, the clustered dependence structure implies

{ng)» vecle(g) 1)s 09y, wigy,t b L {n(ny> vecleny,s)s d(nys Winy,s b

for g # h at any ¢ and s.

Before we draw an estimation sample for ¢t = 1,...,7, 50 initial values are generated with
7¢ = 0.5for t = —49,...,0, 27 ; 4 N Nl /(1=p),(1=p) '8pc) fork =1,...,d=1,and y{ ;4 =
(23:1 Tai—a98q+n] +uf~’7_49)/(1 —7). We fix the values of A and p at 0.60; thus each observation

is reasonably persistent with respect to both time and spatial dimensionsﬁ The parameters are

When the panel data are persistent with p being close to one, the lagged instruments are only weakly correlated
with the endogenous changes in the first differenced data, and the GMM inferences considered in our paper can
suffer a weak identification problem (e.g., Blundell and Bond, 1998; Stock and Wright, 2000; Bun and Windmeijer,
2010). It will be interesting to extend our approach to develop weak identification robust GMM inferences under
clustered dependence, and we leave this as a future research.
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estimated by the first differenced GMM (Arellano and Bond estimator). In the supplemental
appendix, we describe in details how to implement the GMM inference procedures considered in
this section. With all possible lagged instruments z;; = (vio, ..., Yit—2, 51, . Thy 1), 2 < t < T,
the number of moment conditions for the Arellano and Bond estimator is m = dT'(T — 1)/2.
It could be better to use only a subset of full moment conditions because using this full set of
instruments may lead to poor finite sample properties, especially when the number of clusters
G is small. Thus, we also employ a reduced set of instruments; that is, we use the most recent
lag zit = (yit—2,x},_)’, leading to d(T — 1) moment conditions. The initial first-step estimator is
chosen by 2SLS with W, = n=1 Y0 | Z!Z; where Z; = diag(zly, ..., 2l is a (T — 1) X m matrix.

7.2 Choice of tests

We focus on the Wald type of tests, as the Monte Carlo results for other types of tests are
qualitatively similar. We examine the empirical size of a variety of testing procedures, all of
which are based on the first-step or two-step GMM estimators. For the first-step procedures,
we consider the unmodified F' statistic F; := Fl(él) and the degrees-of-freedom modified F
statistic [(G — p) /G] F1, where the associated critical values x,,~/p justified under the large-G
asymptotics, and .7:;7_00‘_1) under the small-G asymptotics, respectively. Note that these two tests
have the same size-adjusted power, because the modification only involves a constant multiplier
factor.

For the two-step GMM estimation and related tests, we examine the four different procedures
that are based on the centered CCE. The first test uses the “plain” F' statistic Fy := Fﬁc(él)(ég)

in , where its critical value Xllfa /p is justified by the large-G asymptotics. The second test
uses Fy 1= Fﬁc(él)(ég) in . Note that

G 1+ La@s)

Compared to the plain two-step GMM F statistic, F, has the additional J statistic correction
factor (1 + (q/G)J(03))~ . The third test uses the most refined version of the F' statistic cou-
pled with the J statistic modification, degrees-of-freedom, and finite sample corrected variance
estimator which is defined by

adj ne
~adj . (G—p—2q) QM&%%)
F2 - G : 1 AC\
where F;(P(a )(@;) is defined in |D These two tests employ the new F critical value }';Efip_ ‘
C 1 b

which is justified under the small-G asymptotics. Lastly, we consider a bootstrap procedure of
the centered two-step GMM test originally proposed by Hall and Horowitz (1996). See the online
supplementary appendix for the details about how to implement the bootstrap procedure of Hall
and Horowitz (1996) in the presence of clustered dependence. It is important to point out that
the consistency and the higher-order refinement of Hall-Horowitz bootstrap procedure require
the number of cluster G tends to infinity. This is contrast to the previous two tests that are valid
under the small-G asymptotics.

Lastly, we consider the CU types of GMM procedures considered in Sections [5/and 6l Fgg the

CU-GEE tests, we implement Fcy.ggg := FQC(éCU-GEE)(ééU'GEE), Fcu.geg = FQC(éCU_GEE)(HCU_GEE),
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radj . adj ne . P
and Foy gpg = F. (é(JU—GEE)(QCU_GEE) which are constructed similarly to the two step GMM
tests. The tests with CU-GMM estimators are also formulated in the same way as the CU-GEE

tests.

7.3 Results with balanced cluster size
7.3.1 Size experiment

We consider the case when all clusters have an equal number of individuals and take different
values of G € {35, 50, 70,100}, and the number of cluster size L € {50,100}. The null hypotheses

of interests are

Hoy : 510 =1,
Hos : 510 = 520 =1,
Hos : B19 = Bog = B3p = 1,

with the corresponding number of joint hypotheses p = 1,2 and 3, respectively, and the signif-
icance level is 5%. All of our of simulation results are based on 5,000 times of Monte Carlo
repetition, and the number of bootstrap replication is 1, 000.

Tables report the empirical size of the first-step and two-step tests for different values
of G's we consider and L = 50. We only report the results when L = 50 and provide the results
with L = 100 in the supplemental appendix, as the qualitative observations for L = 100 remain
quite similar. The results first indicate that both the first-step and two-step tests based on
unmodified statistics F; and F5 suffer from severe size distortions, when the conventional chi-
squared critical values are used. For example, with G = 50 and p = 3, the empirical size of
the first-step chi-squared test (using the full set of IVs, and m = 24) is 24.5% which becomes
more severe, especially, as the number of clusters becomes smaller, for example, 29.9% when G
is 35. The empirical sizes of the first-step F' test reduce to 21.5% for G = 35 when the F' critical
values are employed. This finding is consistent with the findings in BCH (2011) and Hansen
(2007), which highlight the improved finite sample performance of the small-G' approximation in
the exactly identified models. Tables also indicate that the finite sample size distortion of all
tests become less severe as the number of moment conditions decreases or the number of cluster
size GG increases.

For the two-step tests that employ the plain two-step statistic F» with the chi-squared crit-
ical values, the empirical sizes are between 23.4%~65.8% for m = 24, and p = 3 . In view of
the large size distortion, we can conclude that the two-step chi-squared test suffers more size
distortion than the first-step chi-squared test. This relatively large size distortion reflects the
additional cost in estimating the weighting matrix, which is not captured by the chi-square ap-
proximation. This motivates us to implement additional corrections via degrees of freedom and
the J statistic multiplier coupled with the new critical value f;,aoip, . Tables show that the
additional modifications with the standard F' critical value significantly alleviate the distortion.
The size distortions in the previous example are reported to be between 4.9% and 6.3% which
are much closer to the targeted level 5%. Lastly, we find evidence that the most refined statistic
15'2& dJ, equipped with the finite sample variance correction, results in the empirical sizes between
3.5%~5.8%. This indicates the most refined two-step F test successfully captures the higher order
estimation uncertainty and yields more accurate finite sample size. We find similar conclusions
for other values of L, m, and p. Note that the corrected variance estimator is not necessarily
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larger than the original estimator in finite samples and in some cases we observe that the smaller
value of corrected variance estimate rather deteriorates the finite sample performance of variance-
corrected statistics. To aV01d this undesirable situation, we may make an extra adjustment to
W;j(a )(92) so that var var ( )(92) WQC(@I)(@;) is guaranteed to be positive semidefinite which
is in a similar spirit with Politis (2011). The additional adjustment is not implemented in our
simulation work, however, as the size distortions of the refined statistic ﬁ’; 4 become worse from
the unrefined one F, only up to 0.05%, and the refined tests result in more accurate finite sample
sizes than the unrefined ones in most of the cases we consider.

Tables also show the empirical rejection probabilities of the two-step GMM bootstrap
procedure by Hall and Horowitz (1996), which is denoted HH-Bootstrap in the tables. We find
that the HH-bootstrap is severely undersized when the number of clusters G is small, for example,
when G's are 35 and 50 with m = 24 and p = 1, the empirical sizes are 0% and 1.9%, respectively.
This fragility of the HH-Bootstrap procedure has been also observed by Bond and Windmeijer
(2005) and Windmeijr (2005) in their Monte Carlo analysis of the cross-sectionally independent
dynamic panel data estimated by GMM. They point out that the GMM inferences based on
the bootstrap procedures become less reliable when there is a problem in estimating the GMM
weighting matrix with the sample moment process. Our simulation results extend their findings
in the two-step GMM procedures to those in the presence of clustered dependence. We also note
that the empirical rejection probabilities of the GMM bootstrap procedure become close to the
nominal size when the reduced set of IV (m = 12) is used or the number of cluster G increases.

Next, we report the finite sample performances of the CU-type procedures considered in
Sections [§ and [6] The results in Tables indicate that the CU-type GMM inferences under
the small G asymptotics clearly outperform those under the large G asymptotics. For instance,
with the values of m = 24, and p = 3, the empirical sizes of the chi-squared test with the plan
Fou.amm statistic are 23.0% and 81.7% for G = 100 and 35, respectively, but the empirical sizes
of the most refined CU-GMM F test are 5.2% and 6.8%, respectively, which are very close to
the nominal size of 5%. When the number of cluster is small, say G = 35, we also find that the
CU-type GMM procedures are oversized compared to the first-order equivalent two-step GMM
procedures. However, the difference vanishes when the number of cluster become larger. We also
find similar conclusions for CU-GEE tests.

Lastly, Tables (1 show that the finite sample size distortions of the (centered) J test,
J¢ = J(5), and the (uncentered) J test, J = J(f3), are also substantially reduced and close
to the nominal size of 5% when we employ the F critical values and the Beta critical values,
respectively, instead of the conventional chi-squared critical values and the GMM bootstrap
procedure by Hall and Horowitz (1996).

7.3.2 Power experiment

We investigate the finite sample power performances of the first- step procedure, the two-step
procedures Fy, b, F dj , and the CU-type procedures FCU qpp and FCU oMy We use the finite
sample critical Values under the null, so the power is size-adjusted and the power comparison is
meaningful. The DGPs are the same as before except that the parameters are generated from the
local null alternatives 8, = 8¢ + ¢/+/n for ¢ € [0,15] and p = 1. Figures report the power
curves for the first-step and two-step tests for G € {35,50, 70,100} and L = 50. The results first
indicate that there is no real difference between power curves of the modified (F3) and unmodified
(F») two-step tests. In fact, some simulation results not reported here indicate the modified F test
can be slightly more powerful as the number of parameters gets larger. Also, the finite sample
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corrected test F; 4 does not lead to a loss of power compared with the uncorrected one F,. We
also observe that the CU-GMM tests are less powerful than other types of two-step GMM tests,
especially when G is small, but become as powerful as the other ones when G gets larger.

Figures also indicate that the two-step tests are more powerful than the first-step tests
in most cases of G,m, and p we consider. The power gain of the two-step GMM procedures
becomes more significant as the number of G increases. This can be justified by the asymptotic
efficiency of the two-step GMM estimator under the large-G asymptotics. However, under the
small-G asymptotics, there is a cost in estimating the CCE weighting matrix, and the power of
first-step procedures might dominate the power of the two-step ones when the cost of employing
CCE weighting matrix outweighs the benefit of estimating it. In fact, Figures [I| shows that the
power of the first-step test can be higher than that of two-step tests when G is small and m is
large, say, for example, G = 35 and m = 24. See Hwang and Sun (2016) who compare these
two types of tests in a time series GMM framework by employing more accurate fixed-smoothing
asymptotics which are in the same spirit of the small-G' asymptotics.

In sum, our simulation evidence clearly demonstrates the size accuracy of our most refined F
test regardless of whether the number of clusters G is small or moderate.

7.4 Results with unbalanced cluster size

Although our small-G asymptotics is valid as long as the cluster sizes are approximately equal,
we remain wary of the effect of the cluster size heterogeneity on the quality of the small-G
approximation. In this subsection, we turn to simulation designs with heterogeneous cluster
sizes. Each simulated data set consists of 5,000. Each simulated data set consists of 5,000
observations that are divided into 50 clusters. The sequence of alternative cluster-size designs
starts by assigning 120 individuals to each of first 10 clusters and 95 individuals to each of next
40 clusters. In each succeeding cluster-size design, we subtract 10 individuals from the second
group of clusters and add them to the first group of clusters. In this manner, we construct a series
of four cluster-size designs, in which the proportion of the samples in the first group of clusters
grows monotonically from 24% to 48%. The design is similar to Carter, Schnepel and Steigerwald
(2017) which investigates the behavior of cluster-robust ¢ statistic under cluster heterogeneity.
Table |3| describes the heterogeneous cluster-size designs we consider. All other parameter values
are the same as before.

Tables [4~6] report the empirical sizes of the GMM procedures we considered in the previous
subsections. The results immediately indicate that the two-step tests suffer from severe size
distortion when the conventional chi-squared critical value is employed. For example, under the
design II, the empirical size of the “plain” two-step chi-squared test is 56.9% for m = 24, and
p = 3. This size distortions become more severe when the degree of heterogeneity across cluster-
size increases. However, our small-G asymptotics still performs very well even with unbalanced
cluster sizes as they substantially reduce the empirical sizes. For example, under the design II,
the most refined two-step Wald statistic F; 4 results in the empirical size 6.0% for the above
mentioned values of m and p, which is much closer to the nominal size. Similar results for other
types of GMM tests are reported in Tables [@M6] The results of J tests are omitted here as they
are qualitatively similar to those of the F' tests.
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8 Conclusion

This paper studies GMM estimation and inference under clustered dependence. To obtain more
accurate asymptotic approximations, we utilize an alternative asymptotics under which the sam-
ple size of each cluster is growing, but the number of cluster size G is fixed. The paper is
comprehensive in that it covers the first-step GMM, the second-step GMM, and continuously-
updating GMM estimators. For the two-step GMM estimator, we show that only if centered
moment processes are used in constructing the weighting matrix can we obtain asymptotically
pivotal Wald statistic and ¢ statistic. We also find that the centered two-step GMM estimator
and CU estimators are all first-order equivalent under the small-G asymptotics. With the help
of the standard J statistic, the Wald statistic and ¢ statistic based on these estimators can be
modified to have to standard F' and ¢ limiting distributions. A finite sample variance correction
is suggested to further improve the performance of the asymptotic F' and ¢ tests. The advantages
of our procedures are clearly reflected in finite samples as demonstrated by our simulation study
and empirical application.

In an overidentified GMM model, the set of moment conditions can be divided into two
blocks: the moment conditions that are for identifying unknown parameters, and the rest of
ones for improving the efficiency of the GMM estimator. We expect that the spatial dependence
between these two blocks of moment conditions is the key information to assess the relative power
performance of first-step and two-step tests. Recently, Hwang and Sun (2016) compare these two
types of tests by employing more accurate asymptotic approximations in a time series GMM
framework. We leave the extension of this analysis to a spatial setting to future research.

30



References

1]

2]

Arellano, M. (1987): “Computing Robust Standard Errors for Within-Group Estimators.”
Ozford Bulletin of Economics and Statistics, 49, 431-434.

Arellano, M. and Bond, S. (1991): “Some tests of specification for panel data: Monte Carlo
evidence and an application to employment equations.” The Review of Economic Studies,
58(2), 277-297.

Bertrand, M., Duflo, E., and Mullainathan, S. (2004): “How Much Should We Trust
Differences-in-Differences Estimates?” The Quarterly Journal of Economics, 119(1), 249-
275.

Bester, C. A., Conley, T. G., and Hansen, C. B. (2011): “Inference with Dependent Data
Using Cluster Covariance Estimators.” Journal of Econometrics 165(2), 137-151.

Bilodeau, M., and Brenner, D. (2008): “Theory of multivariate statistics.” Springer Science
& Business Media.

Bond, S., and Windmeijer, F. (2005). Reliable inference for GMM estimators? Finite sample
properties of alternative test procedures in linear panel data models. Econometric Reviews,
24(1), 1-37.

Blundell, R., and Bond, S. (1998): “Initial conditions and moment restrictions in dynamic
panel data models.” Journal of Econometrics, 87(1), 115-143.

Bun, M. J., and Windmeijer, F. (2010): “The weak instrument problem of the system GMM
estimator in dynamic panel data models.” The Econometrics Journal, 13(1), 95-126.

Canay, I. A., Romano, J. P.,; and Shaikh, A. M. (2017). Randomization tests under an
approximate symmetry assumption. Econometrica, 85(3), 1013-1030.

Cameron, A. C., Gelbach, J. B., and Miller, D. L. (2008): “Bootstrap-based improvements
for inference with clustered errors.” Review of Economics and Statistics, 90(3), 414-427.

Cameron, A. C. and Miller, D. L. (2015): “A practitioner’s guide to cluster-robust inference.”
Journal of Human Resources, 50(2), 317-372.

Carter, A. V., Schnepel, K. T. , and Steigerwald, D. G. (2017): "Asymptotic behavior of at
test robust to cluster heterogeneity." Review of Economics and Statistics, Forthcoming.

Emran, M. S., and Hou, Z. (2013): “Access to markets and rural poverty: evidence from
household consumption in China.” Review of Economics and Statistics, 95(2), 682-697.

Hall, A. R. (2000): “Covariance matrix estimation and the power of the overidentifying
restrictions test.” Econometrica, 68(6), 1517-1527.

Hall, P., and Horowitz, J. L. (1996): “Bootstrap critical values for tests based on generalized-
method-of-moments estimators.” Econometrica: Journal of the Econometric Society, 891-
916.

Hansen, C. B. (2007): “Asymptotic properties of a robust variance matrix estimator for
panel data when T is large.” Journal of Econometrics, 141(2), 597-620.

31



[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Hansen, L. P. (1982): “Large Sample Properties of Generalized Method of Moments Esti-
mators.” Econometrica 50, 1029-1054.

Hansen, L. P., Heaton, J. and Yaron, A: (1996): “Finite-sample properties of some alternative
GMM estimators.” Journal of Business & Economic Statistics, 14(3), 262-280.

Hayakawa, K. (2016): “On the effect of weighting matrix in GMM specification test.” Journal
of Statistical Planning and Inference, 178, 84-98.

Hwang, J. and Y. Sun (2016): “Should We Go One Step Further? An Accurate Comparison
of One-Step and Two-Step Procedures in a Generalized Method of Moments Framework”
Working paper, Department of Economics, UC San Diego.

Hwang, J., and Sun, Y. (2017a): “Asymptotic F and t Tests in an Efficient GMM Setting.”
Journal of Econometrics, 198(2), 277-295.

Hwang, J., and Sun, Y. (2017b): “Supplementary Appendix to ‘Asymptotic F' and t Tests
in an Efficient GMM Setting’.” Journal of Econometrics Online Supplementary Appendiz,
http://dx.doi.org/10.1016/j.jeconom.2017.02.003.

Ibragimov, R., and Miiller, U. K. (2010): “t-Statistic based correlation and heterogeneity
robust inference.” Journal of Business & Economic Statistics, 28(4), 453-468.

Ibragimov, R. and Miiller, U.K. (2016): “Inference with few heterogeneous clusters.” Review
of Economics and Statistics, 98(1), 83-96.

Imbens, G. W., and Kolesar, M. (2016): “Robust standard errors in small samples: Some
practical advice.” Review of Economics and Statistics, 98(4), 701-712.

Jenish, N., and Prucha, I. R. (2009): “Central limit theorems and uniform laws of large
numbers for arrays of random fields.” Journal of econometrics, 150(1), 86-98.

Jenish, N.; and Prucha, I. R. (2012): “On spatial processes and asymptotic inference under
near-epoch dependence.” Journal of econometrics, 170(1), 178-190.

Jiang, J., Luan, Y., and Wang, Y. G. (2007): “Iterative estimating equations: Linear con-
vergence and asymptotic properties.” The Annals of Statistics, 35(5), 2233-2260.

Kiefer, N. M., Vogelsang, T. J. and Bunzel, H. (2002): “Simple Robust Testing of Regression
Hypotheses” FEconometrica 68 (3), 695-714.

Kiefer, N. M. and Vogelsang, T. J. (2005): “A New Asymptotic Theory for
Heteroskedasticity- Autocorrelation Robust Tests.” Fconometric Theory 21, 1130-1164.

Liang, K.-Y. and Zeger, S. (1986): “Longitudinal Data Analysis Using Generalized Linear
Models.” Biometrika 73(1):13-22.

MacKinnon, J. G., and Webb M. D. (2017): “Wild bootstrap inference for wildly different
cluster sizes.” Journal of Applied Econometrics 32, 233-254.

Miiller, U. K. (2007): “A theory of robust long-run variance estimation.” Journal of Econo-
metrics, 141(2), 1331-1352.

32



[34]

[35]

[36]

[37]

Newey, W. K., and Smith, R. J. (2004): “Higher order properties of GMM and generalized
empirical likelihood estimators.” Econometrica 72, no. 1 : 219-255.

Politis, D. N. (2011): “Higher-order accurate, positive semidefinite estimation of large-sample
covariance and spectral density matrices.” Econometric Theory, 27(04), 703-744.

Stock, J. H., and Wright, J. H. (2000): “GMM with weak identification. Econometrica.”,
68(5), 1055-1096.

Stock, J. H. and Watson, M. W. (2008): “Heteroskedasticity-Robust Standard Errors for
Fixed Effects Panel Data Regression.” FEconometrica, 76: 155-174.

Sun, Y. (2013): “A Heteroskedasticity and Autocorrelation Robust F Test Using Orthonor-
mal Series Variance Estimator.” Econometrics Journal 16(1), 1-26.

Sun, Y. (2014): “Fixed-smoothing Asymptotics in a Two-step GMM Framework.” Econo-
metrica 82(6), 2327-2370.

Sun, Y., and Kim, M. S. (2012): “Simple and powerful GMM over-identification tests with
accurate size.” Journal of Econometrics, 166(2), 267-281.

Sun, Y., and Kim, M. S. (2015): “Asymptotic F-Test in a GMM Framework with Cross-
Sectional Dependence.” Review of Economics and Statistics, 97(1), 210-223.

Sun, Y., Phillips, P. C. B. and Jin, S. (2008): “Optimal Bandwidth Selection in
Heteroskedasticity-Autocorrelation Robust Testing.” Econometrica 76(1), 175-94.

White, H. (1984), “Asymptotic Theory for Econometricians” (San Diego: Academic Press).

Windmeijer, F. (2005): “A finite sample correction for the variance of linear efficient two-step
GMM estimators.” Journal of Econometrics, 126(1), 25-51.

Wooldridge, J. M. (2003): “Cluster-sample methods in applied econometrics.” American
FEconomic Review, 133-138.

Zhang, X. (2016): "Fixed-smoothing asymptotics in the generalized empirical likelihood
estimation framework." Journal of Econometrics, 193(1), 123-146.

33



Table 1: Empirical size of GMM tests based on the centered CCE when the number of clusters
G = 35,50, the number of population within cluster L = 50, the number of joint hypothesis
p =1~ 3, and the number of moment conditions m = 12,24, with T' = 4.

G =35  Test statistic  Critical values m =24 m =12
p=1 p=2 p=3 p=1 p=2 p=
First-step F X5/ p 0.286 0.295 0.299 0.210 0.206 0.214
P Foc, 0.250 0.238 0.215 0.183 0.159 0.139
Fy xi=a/p 0.399 0.534 0.658 0.167 0.207 0.272
Two-step Fy T pa 0.059 0.049 0.049 0.062 0.059 0.057
I Foct,_, 0042 0033 0035 0050 0050 0.055
Fy HH-Bootstrap ~ 0.000  0.000 0.000 0.036 0.024 0.014
Fov rr xi=/p 0501 0.691 0.805 0.204 0.261 0.330
Fovaue T a 0.080 0.070 0.070 0.075 0.070  0.066
CU-type el ape J-';‘Gci b 0.083 0.071 0.070 0.060 0.058 0.058
Fey.au Xp—a /p 0.522 0.709 0.817 0.200 0.252 0.318
Fov cu T g 0.083 0.076 0.072 0.079 0.071  0.070
FA f; Ga ba 0.082 0.070 0.068 0.059 0.056 0.058
J Xa e — 0002 - — 0035  —
&J Bis g 013 - — 0058  —
J test Je Xg ® — 0.816 — — 0.209 —
g2 Fi s — 0058 - — 0050 —
J¢ HH-Bootstrap — 0.743 — — 0.124 —
G =50  Test statistic Critical values m = 24 m =12
p=1 p=2 p=3 p=1 p=2 p=3
First-step F X ~%/p 0.242 0242 0245 0.189 0.181 0.175
Sy ) Fd 0.222 0.207 0.187 0.173 0.146 0.133
Fy x=/p 0.308 0437 0540 0.141 0174 0.211
Two-step Fy oy 0.072 0.070 0.067 0.066 0.061 0.061
I oy 0.062 0.060 0.058 0.048 0.049  0.052
Fy HH-Bootstrap  0.019  0.004 0.001 0.052 0.039  0.033
Fev arr Xs~%/p 0.315 0443 0.548 0.152 0.182 0.218
) - F oy 0.080 0.082 0.077 0.071 0.066 0.067
CU-type ) . F oy 0.070  0.069 0.067 0.055 0.050 0.052
Fov cun xi=a/p 0.333 0461 0.561 0.142 0.175 0.211
Fev g i 0.087 0.084 0.083 0.067 0.059 0.061
Fi Fp{gﬁ ba 0.064 0.068 0.066 0.051 0.048 0.051
J Xg */q - 0015 — - 0040 —
5J B, Y g 0069 — — 0058  —
J test Je Xg */a — 0561  — - 0152  —
gare Fla, — 0054  — — 0055 —
J HH-Bootstrap — 0.284 — — 0.119 —

Notes: The first-step tests are based on the first-step GMM estimator 91 with the associated F’ statistic
F) = Fi(6,). The J tests employ the statistics J = J(6,) and J¢ = J(G ) with or without degree of freedom
(d.f.) correction. All two-step tests are based on the centered two-step GMM estimator 02 but use different
test statistics : the unmodified Fo= Fg. ;. )( ) J statistic and d.f. corrected Fh= FQ“(GI)(GZ)’ and J

statistic, d.f., and finite-sample-variance corrected F pdl = ;;J( 5 )(9C). The test statistics with CU-type

GMM estimators are constructed similarly.



Table 2: Empirical size of GMM tests based on the centered CCE when L = 50, number of
clusters G = 70,100, number of joint hypothesis p = 1 ~ 3 and number of moment conditions
m = 12,24, with T' = 4.

Test
G =70 statistics Critical values m =24 m =12
p=1 p=2 p=3 p=1 p=2 p=
First-step F X5 /p 0.191 0191 0.186 0.150 0.143  0.140
GPRy Fplgﬁp 0.180 0.166 0.154 0.140 0.125 0.111
Fy Xy */p 0.218 0.281 0.340 0.102 0.122 0.141
Two-step Fy Fplgi - 0.076  0.067 0.063 0.055 0.056 0.055
I F,}a‘i - 0.068 0.059 0.057 0.048 0.051  0.049
Fy HH-Bootstrap ~ 0.045  0.029  0.017  0.046 0.044  0.041
) p— X5 /p 0.217 0.286 0.342 0.107 0.127 0.144
) A p— Fl}gi - 0.080 0.072 0.068 0.059 0.057 0.057
CU-type  F2 ..p Fz}gj - 0.069 0.063 0.059 0.050 0.052 0.047
Fovanu xi=e/p 0.217 0.280 0.337  0.097 0.116 0.135
Fov o Ea oy 0.074 0.071 0.062 0.052 0.051 0.049
Fal Fl}gﬁ - 0.060 0.058 0.053 0.042 0.047 0.044
1J 1;(;*& /q — 0026 — — 0044  —
—
&J B,y a2 — 0060 @ — — 0055 @ —
J test Je Xy “/q - 0.364  — - 0.121 -
G- 1—
e F,&, - 0055 @ — — 0054  —
Je HH-Bootstrap - 0.225 — — 0.103 —
Test
G =100 statistics Critical values m =24 m=12
p=1 p=2 p=3 p=1 p=2 p=3
First-step F Xy /p 0.163 0.153 0.151 0.133 0.131 0.127
GPRy Fl}gﬁp 0.155 0.140 0.127 0.128 0.118  0.109
Fy Xy */p 0.159 0.197 0.234  0.097 0.109 0.116
Two-step Fy Fga‘i - 0.072 0.070 0.063 0.065 0.061 0.056
3 I};;i - 0.068 0.064 0.058 0.057 0.056 0.051
Fy HH-Bootstrap ~ 0.055 0.041  0.034  0.058 0.053  0.046
Fovcrr X5 */p 0.161 0201 0.238 0.099 0.112 0.117
Fouges Fp{gi - 0.073 0.070 0.064 0.067 0.062 0.058
CU-type  EF38 ope plgﬁ - 0.068 0.065 0.059 0.056 0.057 0.051
Fov.anu xi=e/p 0.151 0191 0.230 0.091 0.098 0.107
Fov Eat ey 0.070  0.063 0.056 0.056 0.056  0.050
Fal Fp{g’i - 0.063 0.059 0.052 0.050 0.051 0.048
qJ 1;(;—& /q - 0030 - — 0.047 -
—«
zJ B, g2 - 0.051 — - 0055  —
J test Je X “/q — 0.248  — — 0.098  —
Gage i, — 0048 — — 0034 -
J¢ HH-Bootstrap — 0.186 — — 0.092 —

See footnote to Table [1I
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Full instrument set with G=35,L =50, andp=1 Reduced instrument set with G = 35,L =50, and p=1
1 i " - 1 : ,

Figure 1: Size-adjusted power of the first-step (2SLS) and two-step tests with G=35 and L=50.

Full instrument set with G =50, L =50, andp =1 Reduced instrument set with G = 50, = 50, and p=1
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Figure 2: Size-adjusted power of the first-step (2SLS) and two-step tests with G = 50 and L = 50.
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Full instrument set with G =70,L = 50, and p =1 Reduced instrument set with G = 70,L =50, and p=1
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Figure 4: Size-adjusted power of the first-step (2SLS) and two-step tests with G = 100 and
L =50.
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Table 3: Design of heterogeneity in cluster size

G =50 L1 :---:LIO L11 :...:L50 n
Design I 120 95 5000
Design 11 160 85 5000
Design III 200 75 5000
Design IV 240 65 5000

Table 4: Empirical size of first-step and two-step tests based on the centered CCE when there is
a heterogeneity in cluster size: Design 1

Design 1
Test statistic  Critical values m =24 m =12

p=1 p=2 p=3 p=1 p=2 p=
First-step Fy xi/p 0.175 0.182 0.188 0.143 0.149 0.152
GPRy Fois 0.158 0.153 0.137 0.130 0.120 0.112
Fy X5 /p 0.306 0430 0532 0.132 0.174 0.216
Two-step Fy Fodt,_, 0067 0068 0070 0057 0064 0.063
Fy Foctpg 0051 0051 0048 0047 0.051 0.050
Fy HH-Bootstrap  0.016  0.005 0.001 0.039 0.032  0.028
) - X2 ~%/p 0.297 0425 0529 0.126 0.169 0.202
Fovare f;,éci - 0.067 0.068 0.067 0.055 0.060 0.059
CU-type ) . S g 0052 0052 0.048 0.046 0.049 0.048
Fov g i /p 0.306 0426 0527 0.118 0.157 0.195
Fev.arr Foctpg 0068 0065 0063 0053 0056 0.056
) S g 0053 0049 0.047 0044 0046  0.046

J Xg */a - 0013  — - 0052  —

5J By g 0062 — — 0068  —

J test Je Xg */a — 0.564 — — 0.153 —

g2y Fidt, — 0052 — — 0051 —

Je HH-Bootstrap - 0.285 - - 0.103 -

See footnote to Table [l
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Table 5: Empirical size of first-step and two-step tests based on the centered CCE when there is
a heterogeneity in cluster size: Designs II and III

Design 11
Test statistic ~ Critical values m =24 m =12

p=1 p=2 p=3 p=1 p=2 p=3
First-step F XL /p 0.166 0.171 0.173 0.148 0.145 0.153
Grp Fod, 0.151 0.140 0.134 0.133 0.117 0.111
Fy L= /p 0.326 0455 0.569 0.135 0.185 0.231
Two-step Fy Fotpg 0078 0082 0081 0065 0.069 0.069
Fy Fot,_, 0058 0059 0060 0052 0.055 0.055
Fy HH-Bootstrap ~ 0.017  0.005 0.002 0.039 0.031  0.028
Fev ape XL /p 0.319 0448 0.563 0.131 0.177 0.216
Fov gre Focpg 0077 0076 0076 0.064 0062 0.064
CU-type ) . Foctyy 0061 0057 0061 0051 0.050 0.054
Fey.ars Xy “/p 0.333 0457 0.567 0.127  0.172  0.209
Fev ane Foct,y 0081 0080 008 0060 0.060 0.062
FA9 Fot,_, 0066 0060 0063 0050 0049 0.053

J Xg /4 — 0.013 — — 0.045 —

&J By g 0060 — - 0064 —

J test Je Xg */a — 0616 - 0163  —

gaye Frcs — 0074  — — 0057

J¢ HH-Bootstrap — 0.310 — — 0.098 —

Design III
Test statistic  Critical values m =24 m =12

p=1 p=2 p=3 p= p= p=
First-step F X5~%/p 0.168 0.178 0.187 0.148 0.149 0.158
Grp Frd, 0.156  0.148 0.139 0.133 0.122  0.117
Fy X5~ %/p 0.340 0492 0.603 0.155 0.197  0.247
Two-step Fy Foctpg 0085 0089 0092 0074 0077 0.076
Fy Foct,_y 0063 0065 0067 0057 0.060 0.060
Fy HH-Bootstrap  0.014  0.003  0.001  0.037  0.029  0.025
Fevcen X5 ~%/p 0334 0484 0594 0.150 0.192  0.240
) - Ty 0082 0086 0090 0069 0075 0071
CU-type ) . f]}zﬁ - 0.065 0.062 0.066 0.055 0.057  0.058
Fev aun XL /p 0.334 0484 0.592 0.143 0.188  0.236
Fev.cer Foct,_y 0081 0087 0090 0067 0068 0.068
Foiio T pq 0.063 0.064 0.071 0.052 0.053  0.055

1J 837210’[(_%7‘1) o~ 0010 - — 0046  —

&J Xe %/a - 0055 @ — —  &0.064 —

J test Je Xq “/a — 0.672 — — 0.182 -

gaye Frcty — 0108 — — 0069  —

JC HH-Bootstrap — 0.348 — — 0.103 —

See footnote to Table [l
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Table 6: Empirical size of first-step and two-step tests based on the centered CCE when there is
a heterogeneity in cluster size: Design IV

Design IV
p=1 p=2 p=3 p=1 p=2 p=
First-step Fy xXi~%/p 0.181 0.183 0200 0.157 0.159 0.175
P Focs 0.165 0.155 0.152 0.140 0.133 0.130
Fy Xy~ %/p 0.383  0.525 0.653 0.172 0.236 0.297
Two-step Fy Foctpq 0102 0105 0116 0093 0.093 0.103
I Focpq 0077 0079 0082 0073 0076 0.081
Fy HH-Bootstrap ~ 0.013  0.004  0.001  0.038 0.031  0.024
Fevcrn x\=/p 0.378 0518 0.639 0.168 0.226 0.288
Feveee  Fpatpg 0099 0105 0113 0088 0.087 0.097
CU-type  Fof ope S 0077 0077 0082 0.072 0072 0077
Fey.cee X5 ~%/p 0.384 0528 0.647 0.173 0.222 0.284
Feveee  Fpgtp_y 0099 0111 0112 0081 0084 0.093
FA ;,E;Oi - 0.080 0.083 0.085 0.066 0.067 0.073
J X “/q —  0.011 — — 0040 —
& Biyagp - 0052 - - 0060 —
J test Je Xy “/q - 0754 — - 0219 -
g Frdt, - 0163 — — 0091 -
J¢ HH-Bootstrap — 0.401 — — 0.108 —

See footnote to Table 1]
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9 Appendix of Proofs

Proof of Proposition Part (a). For each g =1, ..., G,
L L ~ %
! by 1 ofE")
Z-flg(el):Z{f}?(e())"f'k,(el—go) s
\/E k=1 \/E k=1 o6

where 6" is between 1 and 6. Here, § may be different for different rows of 9 fe (87)/0¢'. For
notational simplicity, we do not make this explicit. By Assumptions [2| and [5] we have

0 L L oL@ G Lo
lLZf;f(@):lLZf,?(eo)—i fgé, )(F’W—lr)—lr’w— ( Z 12 (%0 )+0p (1)

k=1 k=1 k=1 g= VL -1
1 < g 1y —1 11 - £
:\/Z;fk(eo) r,(C'Win)~tr'w- Z(fk i )+op 1. (41)
Using Assumptions we then have
1 & a

—N"901) S ABy, — T (D'WID) ' I'WAB,,
\/> k g g
=ABp, —T('W D) 'I'WAB,,

where B, :== G~1 Ele By, 4. It follows that
A 1 R _
L6)w,t— Z £(01) 4 -l [ABj g — T('W D) 'YW AB,, |

='W~ 1ABmg —T'W'AB,, =T'W A (Bimg — Bi) -
So, the scaled CCE matrix converges in distribution to a random matrix:

(01 W, (01) W, 'T(6y)

= l S f(é )IW71 (1if9(é )) (1ifg(é ))lwlf\(é )
Gg:l v Lk:lk 1 Lk:lk 1 " 1
d 1 G 5 / /
STWIA {G > (Bmg — Bm) (Bmg — Bm) } (T'W~'A)
g=1

n- Rvar(0))R = R {f(%)'W{l [ A1)} - {f(el)/Wﬁlg(Hl)Wilf(él)} [f(él)lwﬁlf(él)} TR

(
1 G
=R['W T 7 T'W AL =S (Big — Bim) (B — Bm) p AWTIT ['WIT] T R + 0,(1)



where R := R [F’ W‘lF] oA, Also, it follows by Assumption |4{ that

V(RO —7) = —RO'W D) I'W = /ng, (o) + 0,(1)

11y —1pvp—1 L S L §
= —RI'WID)"'I'W lﬁz (\FLfo(Ho)) +op(1)

g=1 =1
d 1 &
% —-R——) Bpg=—-RVGB.
VG ; ?
Combining the results so far yields:
-1
gl — v ] a1 & _ o, o
P (R\/éBm) R (Bug = Bu) (Bng — Bu) R p - RVGB = Fie.
g=1

Define the p x p matrix A such that AN’ = RR’. Then we have the following distributional
equivalence

G
RVGBp, RGN (Bmg —Bum) (Bmg — Bn)' R | £ [ VGAB,, &S\ ].
g=1

Using this, we get

as desired for Part (a). Part (b) can be similarly proved. m

Proof of Proposition [l Parts (a), (b) and (c). All three estimators can be represented
in the following form

—('M7ID) 'Y M AVG B, + 0,(1),

for some weighing matrix M which may be random. Let My = A~1M (A))"' and Ty = AT
Then,
—(O'M ) MM TIAVGB,, = —(TAMy'TA) 'TAM WG By,
Let UXV’ be a singular value decomposition (SVD) of I'. By construction, U'U = UU’ = I,,,,
V'V = V'V = I, and

5 [ Adxd } 7
Oq><d
where A is a diagonal matrix. Denoting
My My ML pri2
M=UMU-= | &I dxa qar-l o | dxa dxg
A Moy Moo an M2 |
qxq gxd axq gxd
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we have
(CAM;'TA) ' TaAM ! = [VSUMUSV] T Ve U Myt
-1
= V¥ (UMW) V| Vs (U M)
it g 7t / / Iy =1
=V (AM A) (Ausar Opwa ) (U'MpU) U
S VAT (Y, S ) U = VAT (I, (1)U ) U
=VA (15, —MpMy U
, where the last line follows by the partitioned inverse formula that M2 =\ 11M12M2_21. Thus,
—(CAM'TA) TAM WG B,y = ~VA™Y (I, —MipM;,' ) U'NG B,

For 91, the matrix M is W, and so

~ ~ ' } }
M=W =(AU)"'Ww [(AU>_1] - ( vai %2 > '
Therefore,

\/ﬁ(él — 90) i —\/EVAil (Bd - BVVBq) )

where we have used U’ By, < By, = (Bl), B))' for any orthonormal matrix U.

For é, the matrix My is S, and so
V(s — 60) & — VYU MIUSV] T VEU M WGU' By,
= —V(EU'ST'UY)'SU'S T UVGU' B,y
4 _y(usTY) s WG B,

using the asymptotic equivalence (S, B,,) 4 (U'SU,U’'By,) for any orthonormal matrix U. There-
fore,

Vn(fy — 00) 5 —VAWG (B, — BsBy).

For the estimator 92, the matrix M, is ]TDOO. We have

-1

_on—1 171 o\ —1 _

-y [2’( OUO) z] 2% (]D)OUO> UGBy,
R | _

:_VA—l(Id, —DY, [m)gg} )U’J@Bm, (42)

where ~ _
Df;, D%
]IDU — /Iﬁ)oo _ @xd ci><q
== U=V by By,
gxd gxq
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To investigate each component of DY = G~1 25:1 U’ f)gf);U, we first look at the term U’D,
foreachg=1,....G:

U'Dy=U'Byy— UTA(T\WiTy) ' T\W By,
= U'By — UUSV (AW IT) VU WL IUU' By,
=Bl , - S(XUWUS) 'S U'WLUBY,

where BY | = U'By, 4 and BY, = U'B,,. But,

BY , — (W)W Bl

A . - W2\
_B%,g—[o](AWHA) I[A O/] (W21 W22 )B%
U ( <W11) o' ) < Wi )BU

m.g W2 22 m
N
11 12\ _
gy (! (Wn) W po

@) 0]

BY — 3~ BY _ _

U U U U
_Bm,g_[ ! OW ! ] = (B — Bn) +wBy

for

From this, the block matrix components of ]]3)2]0 are
DY) = S% + By By (B By,
DY, =S4 + 6WB§J(B§])’,
DY, = S%, + BY(BY) 8.,
)

U
q
DY, = S5, + BY (B

44

! = Sa. (43)



Using these representations, we can rewrite as
~ ~ ~ -1 _
Vil —00) 5 -va~ (1, —BY, [55] ) VGB,
_ U I
= VA WG (Bg — DY, [m)gg} BqU)
= —VATWG B — (8% + BBy (BY)) Sy B
= VA WG {BY - [V, — (BY - BBV )(BY)] Sy B }
_ _ K _ _ _
L _VAWG (By— Bs_B,) — (EG> . VAWG(By - By By).

(d) It is easy to check that the weak convergences in (a)~(c) hold jointly. By continuous
mapping theorem we have

Vil = o) = /(02 — b0) — (%5 ) - V(01 — 60) =0,

which implies that
V(02 — 09) — /n(02 — 6o) — (2?) V(61 — o) = 0, (1).

That is,
V(s = 00) = V(B2 = 00) + (%) V(B1 — 00) + 0, (1).

e) Using the same argument in the proof of Proposition |1, we have
g g

Vngn (02 \fz<\f2fif )

4 AVG <UU’Bm—FA [F’Aﬁn;jm DB )

—

_ _ ~ ~ -1 _
4AVG [UB% N <B£{ — DY, []D)gg} BY )]

with DY, and DY, given in . Therefore,

_ ~ -1 _
x {UB% ~T\VA™' (B < -0 DY) BY }

_ 11 _ rol
Sy {Bg ~UT\WVA™ (B ( — DY, []D) ] Bé’)} U'DLU

_ ~ -1 _
x {B%—UTAVA_1< — DY, [Dn} BY }
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where the second last equality follows from straightforward calculations. The joint convergence
can be proved easily. Lastly, we obtain the Beta representation of the non-standard limit for J

statistic kg using the fact diFq, 4,/(d2 + di1Fq, d,) g Beta(di/2,d2/2). =
Proof of Proposition [7} It follows from

~ _ ~ ~ -1 _ ~ A~ ~
V(s —0o) % —vVAWG (Bg — DY, [}D)gg} Bgf> and Q(01) % AD A,

jointly that

Feyp,(02) = 11) : [R(éz - 90)}' (Rmﬁ(@l)(égm')_l {R(éQ _ 90)}

NG
R(F’ (A]TDOOA’) F) R

—1
G _ ~ ~ -1 _
< > -(BY - DY, [mgg} BYYAT'W'R

_ ~ ~ —1

x RVA~Y(BY - DY, [mgg} BY)
G au_ U [u]7t pUy 4-1 -1 By N

= (Bg — Diy [Dm} B/YATYV'R'- (R [P’ (A) U(U’]DJOOU> UA™ F} R

_ ~ r~,,7—1 _
x RVA~Y(BY — DY, _]1)>2U2_ BY)
G S B . 1
= (B - B, B%|  BUyA VR {RVATDY A7 VR

« RVAT\BY - B, [B%] ' BY).

Let UpxpXVj,, be a SVD of RVA~!, where & = (Apxp, Opx(a—p))- By definition, V is the
matrix of eigenvectors of (RV A1) (RVA™Y). Let

and define
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Then,

g=1
and
= ]ﬁ)pq a1 & > / / B Dl
Do = ( £ = (Bay = Ba)(Byy — By + (V') BB, (45)
—b,q g:1
Now
o _ o _ o~ ~ o~ ~a~ Y1 o
Foyo,y(82) % i (BY — Dyaiy BYY VST { TSV Do VST USV/(BY — Drab BY)
= G (BY ~ Dby BYYVS SV D) SV(BY — Doyl BY
= o, (P 12055 By) 11-2 (Bg 12055 By)
d G 5 s w1n i i B 1T AN B =15
£ By = By By| &' {4 (Byy — Byglby Byp) &'} A [ By — BB, By
4 G 1= v =1 e v v 1 -1r_ Gy o
L2 By — By By| (B — BBy By) By — Byaldy By

where ]Tqu, ]f))qq, and ]Tqu in the last two equalities are understood to equal the corresponding
components on the right hand sides of and . Here we have abused the notation a little

bit. We have 5 y
Dpp Dy \ 4 Spp S =
o o =K = L B,B 46
( }D);, . Dy p+q,p+q Sfu . Sa twhe b w (46)
for

=p
W = < By > e Rpra)xq
1q

We have therefore shown that the first representation of the limit of Fmél)(ég) holds. Direct cal-
culations show that the second representation is numerically identical to the first representation.
This completes the proof of Proposition[7] =

Proof of Lemma The centered CCE Qc(é) can be represented as:

1 G 1 L 1 G L _
=D BRSNS SN AC)
) LG L !
7 9( L £
\/Z —~ k nzz:gk



To prove Part (a), it suffices to show that

L G L
v I L OEED IO IZ 72(00) - %22590 (1+0p(1)  (47)

holds for each g = 1, ..., G. By Assumption [3] and using a Taylor expansion, we have
(1 7(6o) 10 VL0 — 6y
Using v/n(f — p) = O,(1) and Assumptlonl we have
1 & 1 &
90\ — g i
N7 Z fi(0) = (1 +0p(1)) <\E kZ:1 f(60) + TVL( - 90))

for each g = 1,...,G. That is, the effect of the estimation uncertainty in 6 does not change with
the cluster. It then follows that

1 9.7 1 L 57 1 L g 1 1 L .
\ﬁ; fk(e)—ﬁg DRO) ) = | =X S0 = gD =D 00 | (1+0p(1)),

which completes the proof of part (a).
To prove Part (b), we apply CLT in Assumption || together with @] to obtain:

where the convergence holds jointly for g = 1, ..., G. As a result,
. a1 [S _ v
Q°(00) = 5A ; (Bm.g — Bm) (Bm,g — Bm) | A
|

Proof of Proposition @]. The proof of part (a) is essentially the same as the proof of Proposition
The only dlfference is that the second term in will not be present for the centered two-step
GMM estimator 5. The proof of part (b) is sumlar. The proof of part (e) is similar to that of
Proposition @

To prove part (¢), it sufficies to show the asymptotic equivalence between LRQC(Q )(92,92 )

and Fo. g )(92) holds under the small-G' asymptotics. Recall that the restricted two-step GMM

estimator 02 minimizes

ga(0) [0°(0)]  9a(8)/2+ X, (RO — 7).
The first order conditions are

NP -1 ~c,T
(65") [90(91)} gn(057) + R'A\p = 0 and RO =r-.
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Using a Taylor expansion and Assumption [3} we can combine two FOC’s to get
~C,T _ Ao -1
Vi(0;" = 60) =~ [(01)|  Vnga(60) (48)

—_ R (RquR')‘1 RO IT {Qg(él)} - Vngn(0o) + op(1)

and
N ~ —1
Vi, = —(ROIR)IRGITY [Q;;(el)] Vgn(00) + 0,(1), (49)
n A —1
where @ :=T" [90(91)} I'. Subtracting from , we have
~c,r ~c — A -1

V(s —03) = —o 'R (ROT'R) T RO [90(91)} Vign(00) +0,(1)  (50)
= 0p(1), (51)

where the equation (51)) comes from Lemma (b) and Assumption [4 Thus, we can approximate
~c,r ~C
gn(0y ) around 0, as

g, (05") = g,(05) — (05" — 65)'T(93) + 0p(n~"/2),
Plugging this into the definition of L RQc(él)(é;, é;,r)’

AC  AC,T n ~C,T PYANTES /A 1. .c ~C,T ~C
LRaay @85 = 2405 ~dym@ [oeon] teE -8 62

~C Aerh -1. ¢ ~C,T ~C
20, 05) [Q60)] DI -8} + 0,00,
where the last term in is always zero from the FOC of 9; Combining and , we have
n  ~c,r AC\ 2y nC e/ 1. . ~c,T ~C
) = BT [°B0)] PO - 8) + op()

= % [@—IR/ (R(I)—lR/)*l RO [QC(@I)} - \/ﬁgn(eo)]/ X

o [@13’ (RoR) " RO [QC(?)l)] o \/ﬁgn(Go)} + 0p(1)

as desired.
~CT ~AC AC,T
To prove part (d), we show LMQC(él)(%’ ) = LRQC(él)(HZ,%’ ) + 0p(1). From the first order

condition of @ST and the equation , we expand the score vector by
~C,T A aC,T Aern -1 ~C,T
VitSaean03) = T [0400]  Vaga®y') = —RvaA,
A .11
— R/(R®'R)7'RoIT [Qg(el)} Vgn(00) + 0,(1)

= —®Vn(0y" —05) + 0,(1)
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and so

~C,T

LMg, 5, (057) = (05" — 05y ®(05" — 05)/p+ 0,(1)
= LRg.(p,(02,65") + 0p(1)
= Faep,)03) +0p(1)

, which leads the desired result. m

Proof of Theorem Define B, = (B, 1, ..., B;

7.c) and denote

-1
G

Vg = (Bq,g - Bq)l Z (Bq,g - Bq) (Bq,g - Bq), By
g=1

Then, the distribution of \/égpng_qqu conditional on B, can be represented as

-1

G G
va Z (Bp,g - Bp) (Bq,g - Bq)/ Z (Bq,g - BQ) (Bw - BQ)/ Bq
g=1 g=1
~ G ~ G
= \/éz (Bng — Bp) Vg = \@Z By gvg — \@Bp ng
g=1 g=1 g=1

-1

g=1
G ra
_ _ _
- GB{] Z (Bq,g Bq) (Bq,g - Bq) Z (Bq,g - Bq)
g=1 g=1

So conditional on By, \/@Spng_qlgq is distributed as N (0, Bc’zggqqu - Ip,). It then follows that the
distribution of vG(B, — SpqS;qqu) conditional on By is

e (Bp - Spqgr;;BQ) ~ N (07 (1+ B;S;qlgq) ) Ip) )

50



using the independence of Bp from Spqggqqu conditional on B,. Therefore the conditional dis-
tribution of &, is
VG(B, —S,,S;'B
&p = Ly _ij 1qq— v ~ N (0, I).
\/ 1+ BiSqq By
Given that the conditional distribution of , does not depend on B, the unconditional distribu-
tion of £, is also N (0, I). )
Using &, ~ N(0,1p), Spp.q ~ G™'W,(G —q—1,1,), and ¢, which is independent of Sp,.q, we
have

GSppg \ '
E; <G—2p—ql) £, ~ Hotelling’s T? distribution Tz?,G—q—l‘

It then follows that

G-p—q GSpp-q ¢ ~F
p(G—q—1)P\G—q—1 P p,G—p—q-
That is,
G—p—q,,«_
G 5;0810101'11519 ~ FpG—p—q-

Together with Proposition |§|(c) and (d), this completes the proof of the F' limit theory in parts
(a), (b) and (c). The proof of the ¢ limit theory is similar and is omitted here. m
Proof of Proposition For the result with CU-GEE estimator 8cy.qcrg, we have

Vn(Bcucer — o) = — (T' [QC(éCU—GEE)] - F) B I [QC(éCU-GEE)} - Vngn(6o) + op(1).

Since fcy.gEg is v/n-consistent, we can apply Lemma |8 to obtain Q¢(8cu.arr) = Q°(80) + 0p(1).
Invoking the continuous mapping theorem yields

Vileu ae —00) % — {17 (@5) 7 T} {17 (05) 7 AVGB

as desired.
For the CU-GMM estimator, we let rJ (9CQ_GMM) be the j-th column of fj(éCU_GMM). Then,
the FOC with respect to the j-th element of Ocuy.gn 18
i . -1
0 =T1YOcu-cmm)’ {QC(QCU-GMM)} gn(Ocu-amm)

R o 1 o 1,
— gn(Ocu-cmm)’ [QC(GCU-GMM)} T;(0cu-cvm) [QC(QCU-GMM)} gn(fcu-gvm), (53)

where

G L L / .
= 3 (3] (%67 om0 (%)

k=1



The second term in (53) can be written as

. o 1
gn(Bcu-avn)’ [QC(GCU-GMM)} T(GCUGMM[ QCUGMM)} gn(Bcu-caim)

< f(Ocu. GMM)>
k=1

)5l

= VLgn(Ocu-aum)’ [QC(éCU-GMM

s

g=1
: {Qc(écU-Gl\dM)y VLgn(0cu-ca)-
Given that éCU—GMM =60+ Op(L_l/Q), we have

Q°(Acu-anm) = Op(1

~—

G L
R 1 1
VLgn(Ocu-aam) = el > (L dof (90)> + TV L(Ocu-aam — 00) + 0p(1) = Op(1),
g=1 k=1
1, 1 af9(0) 1
7 Z (Bou-can) =7 > fi60) + I > 59 (Peu-cau —bo) = Op (f) :
k=1 k=1 L

and for each ¢ =1, ..., G,

L L Yy, ’ G
(3 S e { (13 280 g0m0) 1 &

ogwna

Combining these together, the second term in FOC in is op(L_l/z). As a result,

=

1 <= 99 (Bcu-avm) ,
<L 2 kae) }

. A 1. 1
I'(Ocu-cmm) [QC(QCU—GMM)] gn(Bcu-cmm) = 0p (\/f> ,

and so
. . -1 YL .. 1
Vn(Ocu.aum — 0o) = — {F’ {QC(QCU-GMM)} T} I’ [QC(GCU-GMM)} Vngn(0o) + op(1)
—1 _
4 _ {r' (Qe)™ r} I () AVG By
n

Proof of Theorem 12|
We first show that &, = &, (14 0, (1)) . For each j =1, ...,d, we have

Eulorj) = {f' [Qc@g}‘lf} i [oray] " 220

%5 s,
o L 0 I S ) [ L P Ree)
0=61
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where the second equality holds by Assumption and Lemma [8| Using a Taylor expansion
we have

an(@5) = 000~ {1 0] "} o)) )1 0y,

Thus,

~

Enl ] = {F’ [QC(Go)]IF}_lr’ [00(90)}71 8229)

- {F’ [oron)] r}l [ 22X
x {I" {Qc(eo)} - r}l r [QC(QO)]_lgn(eo)

for each j = 1,...,d. For the term, 690(9) ., recall that
00 0=0,

[0900)] g (00)(1 + 0y(1)

0=0,

—
—~
—_
+
’EQ
—~
—_
N—
~—

8%;59) i =T;(01) + 1)(61),
G L n L g n ) '
oot 5 (- L) (5 (42 - 15 20))]
g=1 | k=1 i=1 k=1 J i=1 J

(1)). From the proof of Lemma |8 we have

1 & . 1N .
ir > (f,f(ﬁl) -=>. fzwl))
k=1 =1
1 & 18
=77 ; (fi?(@o) - ;M%)) (1+0p(1)) (54)

for each g = 1,..., G. By Assumption [3| [7] and a Taylor expansion, we have:

L g .
f Z afk <f > 20 1 g3 o (e ) VI - eo>) (1+0,(1)

( } Z 8f§99° (00)VL(01 - eo>) (1+ 0p(1))

., G. This implies that

a2 (61) ofi(0 1 (o 1 <~ 9fi (o)
Fu () - (e aeo

a0,

forj=1,..,dand g =1,..

Combining these together, we have Y(6;) = Y(69)(1 + 0,(1)) from which we obtain the desired
result

En = Em(1+0,(1)). (55)
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Now, define the infeasible corrected variance
—adj,inf
UCLTQC (91) (02)
= varQC( )(92) + Sgnvarﬂc( )(02) + vach(e )(92)5% + 52nvar(91)52n,

and the corresponding infeasible Wald statistic

FSf‘};T)f(%) (Rég —r) [Rvar;d‘](;nf) (05)R'| (R@2 — 7).

The result in implies

Fadi, mf(92) Fadj (9;)(1 + op(1)).

Q°(9 ) Q‘(9 )
Also, &y, = 0p(1) and we have
adJ,mf dd] ¢ = ()"
var 90(91)(02) "G (6’1)<02)(1 +op(1)) = UC”"Qc(el)(eQ)(l + 0p(1)),

and so
ad Jinf ad o nC
PR (8h) = F, (85) + 0l(1) = Faegay) (85) + 0p(1),

as desired. m
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