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Abstract

We are indifferent between two cups of coffee when one differs from the other

in having only one more grain of sugar. But such an indifference is not transitive,

because eventually, after many enough grains of sugar are added, we will become

able to tell one cup is sweeter than the other. When consumers feature intransitive

indifference, putting a bad deal alongside a good deal can boost the sale of the latter by

helping consumers to better appreciate it. When sellers compete for these consumers,

they tend not to undercut each other, because undercutting often go un-appreciated.

Instead, sellers segregate into providers of good deals and bad deals, with the formers

free-riding the latters in helping consumers better appreciate their good deals, and the

latters free-riding the formers in making consumers less hesitant to buy.
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1 Introduction

We are indifferent between two cups of coffee when one differs from the other in

having only one more grain of sugar. But such an indifference is not transitive, because

eventually, after many enough grains of sugar are added, we will become able to tell one

cup is sweeter than the other. Ever since Luce (1956), economists have developed various

utility representations of a decision maker featuring intransitive indifference,1 but never

explored how they may affect classical economic analyses. This paper makes a first step

in filling this gap. Specifically, it studies sellers’ equilibrium behavior when consumers

feature intransitive indifference.

In exploring the implications of intransitive indifference, we are forced to make an

explicit choice over two competing interpretations. When a coffee drinker expresses in-

difference between two cups of coffee, A and B, is he merely having too dull an instrument

to distinguish two alternatives that he otherwise would have strict preferences over, or is

he genuinely indifferent between the two? To paraphrase the question, suppose he is told

that A actually contains less sugar than B does, would he be so health-conscious that he

then strictly prefers A to B, or would he remain indifferent on the basis that difference too

small to detect is also immaterial to health? Let’s call the corresponding interpretations

the dull-instrument and the genuine-indifference interpretations, respectively.

Some authors apparently favor the dull-instrument interpretation. For example, Luce

(1956) envisions that a decision maker’s expressed preferences may change when he has

access to better instruments, and Fishburn (1970a) speaks of the possibility that a coffee

drinker breaking his earlier indifference after further taste tests a few moments later.

Other authors, however, seem to favor the genuine-indifference interpretation. For

example, when Jamison and Lau (1973) and Fishburn (1975) characterize possible choice

functions that may arise from intransitive indifference, they implicitly have in mind a

health-conscious coffee drinker who, when choosing among three cups of coffee—with

B indistinguishably sweeter than A, C indistinguishably sweeter than B, but C distin-

guishably sweeter than A—may nevertheless choose B on the basis that it is dominated

by none. He does so notwithstanding the fact that he should have inferred from these

pairwise comparisons that B contains more sugar than A does, presumably because he is

1See, among others, Fishburn (1970a, 1970b) and Beja and Gilboa (1992).
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genuinely indifferent.2

In this paper, we explicitly espouses the dull-instrument interpretation. This is not

to say that we consider the genuine-indifference interpretation implausible. But we con-

jecture that little change in classical economic analyses arises from the latter kind of

intransitive indifference. For example, suppose a coffee drinker buying a cup of Arabica

coffee is genuinely indifferent if up to 5% of the Arabica coffee bean is replaced by the

cheaper Robusta coffee bean, then the optimal strategy of a monopolist is to simply offer

him at the same price a cup of coffee that is 95% Arabica and 5% Robusta.

We hence have in mind a husband shopping for a gift for his wife (or a wife for her

husband) during a business trip. He cares about her utility, and hence is not genuinely

indifferent between two scarfs that look almost the same to him. Not willing to ask his

wife on the phone and inadvertently give away the surprise, he has to make a decision

given the limited sense data he has, limited by his inability to discern small differences

in quality. Traditional game-theoretic tools continue to be applicable in analyzing the

strategic interaction between sellers and such a consumer, but ample new results arise

from the specific information structure of this game.

Behind many of these new results is the phenomenon that the presence of an inferior

product can help a consumer appreciate a better product. To see this, let’s return to the

example two paragraphs above, where there are three alternatives, with A indistinguish-

ably better than B, B indistinguishably better than C, but A distinguishably better than C.

Suppose B is the consumer’s outside option, and the seller is trying to sell A to him. In

the absence of C, the consumer is not able to appreciate the superiority of A. By letting

him examine the inferior C, the seller can convince him that A indeed is the best. This

phenomenon is the driving force behind, for example, the result that sellers of good deals

coexist with sellers of bad deals, with the former free-riding the presence of the latter

(see below). We shall review evidences of this phenomenon from the psychology and

marketing literature in the next subsection.

In modelling a consumer featuring intransitive indifference, we follow the decision-

theory literature and introduce the notion of just noticeable difference (jnd). For example,

2Kamada (2016), to our best knowledge, is the first to point out this implicit interpretation underlying
the kind of choice functions studied by Jamison and Lau (1973) and Fishburn (1975). He then proceeds to
characterize an alternative kind of choice functions (called sophisticated choice functions) that are more in
line with the dull-instrument interpretation.
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suppose a coffee drinker cannot distinguish the sweetness of any two cups of coffee that

differ by fewer than 100 grains of sugar, then 100 grains of sugar is his jnd. Much of the

decision-theory literature postulates a deterministic jnd, which is admittedly unrealistic.

In this paper, we follow the discussion in Gilboa (2009) and postulate a probabilistic jnd

instead—as we add more and more sugar to cup B, the probability that the coffee drinker

can tell that B is sweeter than A increases gradually instead of jumping from 0 to 1. One

way to model such a probabilistic jnd is to assume that how sharp the coffee drinker’s

taste buds are depends on the quality of his previous-night’s sleep, which in turn contains

much randomness beyond the grasp of the coffee drinker himself as well as the others.

Equivalently, we can also think of a continuum of consumers, each having a different jnd.

While the overall distribution of these jnd’s is commonly known, the jnd of any specific

consumer is not (and not even to that consumer himself).

Section 2 provides further details of our model. In Section 3, we first study the

case of a monopolist marketing a single brand of some indivisible products to these

consumers. Under some regularity condition that guarantees that enough consumers

have non-trivial jnds, there exists a unique equilibrium, which is necessarily in mixed

strategies—the monopolist randomizes between offering a good deal and a bad deal, and

consumers randomize between buying and not when they cannot compare the offered

deal with their outside option. Non-degenerate price distribution from a single seller

thus can arise for a purpose different from screening. When consumers’ jnd’s increase,

the monopolist’s equilibrium profit decreases. Intuitively, consumers are aware of their

inability to compare, and hence are justifiably suspicious. When more consumers are

suspicious, it is more difficult for the monopolist to sell, which explains its lower profit.

In Section 4, we study the case when the monopolist can at negligible costs market a

second brand. The common knowledge that it can do so changes the strategic interaction

between it and its suspicious consumers, and as a result its equilibrium profit may be even

lower.

However, we show in Section 5 that, if the monopolist can at negligible costs market a

sufficiently large number of brands, almost all of which are not meant to make any sale,

its equilibrium profit must be close to the full surplus. Intransitive indifference plays a

crucial role in this result. Intuitively, when consumers have difficulties in appreciating

a genuinely good deal due to dull instruments, putting some bad deals alongside with
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the good deal can help these consumers make the necessary comparison. The reason

why many different bad deals are needed to approximate full surplus extraction is that

consumers with different jnd’s have to be helped by different bad deals. This result can

potentially address a puzzle posted in the marketing literature, namely that sellers are

observed to place inexplicably many different brands on the shelf, notwithstanding the

well-known effect that too many choices can potentially bring consumers headaches.3

The most interesting case arises when there are two ex ante identical sellers, each mar-

keting one brand to these consumers, which we study in Section 6. Compared with the

earlier case with a monopolist marketing two different brands, in this case the same num-

ber of brands are marketed, but by different sellers, and hence arguably the market is more

competitive. However, we show that competition does not always increase consumers’

surplus (Proposition 9). The intuition is that, when consumers feature intransitive indif-

ference, competing sellers tend not to undercut each other, because undercutting often

goes un-appreciated by consumers with dull instruments. Instead, in equilibrium, one

seller specializes in offering a good deal, while another in offering a bad deal. The former

free-rides the latter because the latter helps some consumers to appreciate the good deal

the former offers. The latter also free-rides the former because the existence of a good deal

make consumers less hesitant to buy. In short, free-riding, instead of undercutting, is the

keyword in understanding sellers’ behavior when consumers feature intransitive indiffer-

ence. With the opportunity to free-ride the bad-deal seller, the good-deal seller does not

need to sweeten its deal too much to make sale, which limits the benefit of competition

for the consumers.

Section 7 concludes.

1.1 Related Literature

Evidences that a bad deal can help consumers better appreciate a good deal can be

found both in the mass media and in the psychology and marketing literature. In a

case study reported on the Wall Street Journal,4 when Willimans-Sonoma brought the

3Mochon (2013) articulates the puzzle as follows: “Indeed, one Best Buy store surveyed displayed 114
different TVs in their store. While preference heterogeneity likely accounts in part for this vast array of
options, it is unlikely that consumers’ preferences are so refined that they require 15 different models of
32-inch televisions, suggesting that something else may be at play here.”

4“Paul Lee: The Williams-Sonoma Bread Maker: A Case Study”, Wall Street Journal, 10 April 2013,
https://blogs.wsj.com/accelerators/2013/04/10/paul-lee-the-williams-sonoma-bread-maker-a-case-study/
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very first bread maker to the market at US$275 in the 1990s, sales was very bad. After

the introduction of a slightly better model at twice the price, sale of the original model

skyrocketed. In the psychology literature, Kim, Novemsky, and Dhar (2012) find that the

probability of a sale increases when two types of gums are priced at 620 and 640 Korean

wons, respectively, than when both are priced at 630 Korean wons. In the marketing

literature, Mochon (2013) finds that a brand is more likely to be purchased when it is

presented with a competitor’s brand than when it is presented alone.

Our results that a monopolist would in equilibrium permit a non-degenerate distribu-

tion of quality-adjusted-price—either by randomizing in the one-brand case, or by setting

different prices for different brands in the two-brands case—resemble that of Salop (1977).

However, the mechanisms are different. In Salop (1977), consumers differ in their price

elasticities, and the monopolist would like to charge those who have lower price elas-

ticities a higher price. If consumers who have lower price elasticities also have higher

search costs, then the monopolist can achieve this goal by permitting a non-degenerate

price distribution, because consumers who search less will on average pay a higher price,

effecting the sorting pattern the monopolist wants. In our model, consumers differ in

their ability to discern nearby quality-adjusted-prices, but their ability is not correlated

with any other characteristic. As such, a non-degenerate price distribution arises not as

a screening device of the monopolist, but rather as an equilibrium phenomenon: had the

monopolist always priced low, consumers will be too willing to purchase even when they

cannot tell for sure it is a good deal, generating incentives for the monopolist to price high;

but had the monopolist always priced high, consumers will be too unwilling to purchase,

generating incentives for the monopolist to price low.

Our model is also similar to Rubinstein (1993) in that consumers differ neither in

their preferences nor in the information they possess, but rather in their ability to process

information. Like Salop (1977) and our model, Rubinstein’s (1993) monopolist also permits

a non-degenerate price distribution. However, in terms of the underlying mechanism,

Rubinstein (1993) is closer to Salop (1977) than to us. In particular, in Rubinstein (1993),

consumers differ in their ability to process information, with less able consumers also

being more costly to serve, and hence a non-degenerate price distribution serves as the

monopolist’s screening device to preclude these consumers. In our model, no correlation

of this kind is assumed, and hence the equilibrium non-degenerate price distribution has
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nothing to do with screening.5

Our result that a non-degenerate price distribution arises in equilibrium in the multi-

sellers case resembles that of Salop and Stiglitz (1977), Varian (1980), and Rob (1985).

However, our findings that competition (between two identical sellers) does not drive

down average price (compared to the case with a monopolist marketing up two different

brands) and consequently does not necessarily benefit consumers (Proposition 9) does not

have a natural counterpart in these previous studies.

Our paper also contributes to an emerging literature on consumers who have difficul-

ties in comparing prices. One popular way to model such difficulties is called categoriza-

tion, where consumers partition prices into a few categories, and react to different prices

within the same category in the same way (see, e.g., Chen, Iyer, and Pazgal (2010) and Gul,

Pesendorfer, and Strzalecki (2017)). Since a partition structure dictates that consumers’

indifference must be transitive, some of the phenomena that arise only in an environment

with intransitive indifference (such the good-deal seller free-riding the bad-deal seller)

hence cannot arise in this literature.

Another approach to model consumers’ difficulties in comparing prices is to postulate

that they may simply ignore a competing seller, either because of inattention (de Clippel,

Eliaz, and Rozen (2014)), or because the competing seller frames its price in a format that

these consumers find too unfamiliar (Piccione and Spiegler (2012)). A recurring theme of

this literature is that, when multiple sellers compete, consumers’ surplus is decreasing in

their ability to compare prices. This common finding resonates with some of our results

(see Proposition 10). However, since the settings in these studies are so different from each

other, it is not easy to tell whether some common force is at work. We leave this question

for future research.

Finally, our paper is also related to Natenzon (forthcoming), who studies an environ-

ment where the choice between two options may be affected by the presence of a third

one. We share the premise that consumers only obtain imperfect information about their

true utilities from different options. We differ however in both our focus and the driving

force. Our paper focuses on sellers’ strategic choices of their products’ true utilities, while

5See also Piccione and Rubinstein (2003), where consumers differ both in their preferences and in their
ability to process information. Again, when these two characteristics are correlated in certain way, the
monopolist can use a non-degenerate price distribution (or more precisely a deterministic price sequence
that looks random to some consumers) as a screening device to separate consumers with different willingness
to pay.
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Natenzon (forthcoming) assumes an exogenously fixed distribution of these true utilities.

In Natenzon (forthcoming), some pairs of options are inherently easier to compare, in the

sense that consumers obtain more precise information about the ranking with these pairs

than within other pairs. Such asymmetry is absent in our paper, where every pair is a

priori similar, and contextual inference comes solely from true utility gap.

2 The Model

There is a unit mass of consumers,6 each demands one and only one unit of an indi-

visible good, provided by a single seller called the monopolist. Consumers have identical

reservation price, R. The cost of production per unit is c. Conditional on trade at price

p, a consumer’s payoff is R − p, and the monopolist’s payoff is p − c. Their payoffs are 0

if there is no trade. We assume R > c, and hence gain of trade is certain. Consumers are

heterogeneous only in their ability to discern two (quality-adjusted) prices.

We shall carefully distinguish two different concepts: a consumer’s ability to discern

two prices, and his ability to compare them. A consumer’s ability to discern two prices

depends on how sharp his receptors are. An analogy is that, when we are given two cups

of coffee, whether we can tell which one is sweeter depends on how sharp our taste buds

are. It may seem to the reader that discerning two numbers is very different in nature

from discerning two cups of coffee. After all, any one who can count should be able to tell

which of two numbers is higher. However, “prices” in our model are always intended to

be shorthands for “quality-adjusted prices”. Since discerning two quality-adjusted prices

inevitably involves discerning the two corresponding products by their quality, it can be

quite similar in nature to discerning two cups of coffee.7

Specifically, each consumer is of a different type d ∈ [0,∞). When a type-d consumer

is given two prices, p1 and p2, he is able to discern them if and only if |p1 − p2| > d; i.e., if

and only if the two prices are far enough apart. The type d is hence an inverse measure of

6As explained in the Introduction, an equivalent model is that there is a single consumer, with his jnd
determined by the quality of his previous-night’s sleep, which in turn contains much randomness beyond
his grasp.

7It will be interesting to explicitly model a seller as choosing both quality and price—with the problem
of intransitive indifference arising only in the quality dimension—instead of collapsing them into a one-
dimensional variable called quality-adjusted price (as we do in this first-pass exercise). Such a model will
be more realistic, but also more complicated due to the higher dimensionality. We leave the exploration of
this alternative model for future research.
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the consumer’s ability to discern two prices. If the consumer can discern the two prices,

we write p1�̂p2 (respectively, p2�̂p1) if he feels that p1 is higher (respectively, lower) than

p2. If he cannot discern the two prices, we write p1∼̂p2 (i.e., p1∼̂p2 if and only if p1�̂p2 and

p2�̂p1).

A consumer who cannot discern two prices (possibly because of poor receptors) may

nevertheless still be able to compare them, especially if he receives certain aid. An especially

interesting aid he may receive is the existence of a third price, p3. For example, if he cannot

discern p1 and p2 (i.e., p1∼̂p2) and cannot discern p2 and p3 (i.e., p2∼̂p3), but nevertheless

feels that p1 is higher than p3 (i.e., p1�̂p3), then by some simple logical deduction he should

be able to infer that p1 is actually higher than p2. We shall assume that consumers are

always able to make such kind of inference. In other words, while a consumer may have

poor receptors, his rationality is undamaged.

Formally, we follow Kamada (2016) and construct inferred ordering, �, from the more

primitive �̂ as follows: p1 � p2 if and only if at least one of the following holds:8

1. p1�̂p2;

2. ∃p3 such that p1�̂p3 but p2�̂p3;

3. ∃p3 such that p3�̂p2 but p3�̂p1.

We write p1 ∼ p2 if and only if p1 � p2 and p2 � p1.

An implicit assumption here is that p3, which helps the consumer compare p1 and

p2, has to come with an actual (as in contrast to fictitious) alternative. Without such an

implicit assumption, our model would readily collapse into a traditional one. This is

because, for example, a consumer with d = 5, though not being able to discern p1 = 10

and p2 = 7, would (had the implicit assumption relaxed) be able to compare them if he

manages to imagine a fictitious product with price p3 = 4.9 One can think of a consumer’s

ability to discern two prices as already including his limited ability to imagine fictitious

alternatives.
8Kamada (2016) shows that further iterations of this logic would not result in new inferences. More

precisely, if we define �∗ using the same method (with � in place of �̂), the new binary relation �∗ will
remain the same as �.

9With d = 5, the consumer’s primitive sense data are p1�̂p2 and p2�̂p3 but p1�̂p3. From these primitive
sense data the consumer can derive p1 � p2, inferring that p1 is higher than p2.
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While the information a consumer possesses at the time of purchase is ordinal, his

payoff remains cardinal. For example, he may find two different brands on the shelf, with

prices p1 and p2, which he cannot discern (i.e., p1∼̂p2), while he feels that both are lower

than his reservation price R (i.e., R�̂p1 and R�̂p2). These are the only primitive sense data

he possesses at the time of purchase. However, his payoff of purchasing the first brand

will still be R − p1, as in any traditional model. In other words, the consumer’s receptors

are poor only at the time of purchase, but not when he actually consumes the good at

home. It will be interesting to study consumers who feature intransitive indifference even

at the time of actual consumption. But that will be a different model, and we shall leave

that for future research.

We assume that both consumers and sellers are risk neutral. Therefore, a consumer

makes his purchase decision based on expected prices, where expectation is taken condi-

tional on the primitive sense data he possesses, and his knowledge of the sellers’ pricing

strategies. Similarly, a seller maximizes expected profit, where the profit from selling one

unit of the good at the price p is p − c.

We assume that consumers do not know their own types (and hence, in particular, a

consumer’s purchasing strategy is independent of his type). It is commonly known that

the distribution, F, of types among consumers has support R+,10 and admits a density

function, f , which in turn satisfy the following assumption:

Assumption 1 The density function f is weakly decreasing and satisfies the monotone hazard

rate property; i.e., f/(1 − F) is weakly increasing.

Examples of a density function satisfying Assumption 1 include that of an exponential

distribution.11

If F is a point mass at 0, then our model collapses to a traditional one, where in

equilibrium a monopolist would set price p = R, and the consumer would purchase for

sure. Gain of trade will be realized for sure, and the monopolist captures all the surplus.

We shall refer to this outcome as the first best for short.

10Throughout this paper, we assume that F has full support on R+. This assumption is not necessary for
any of our results. We can easily handle distributions with finite supports of the form [0,D], where D < ∞,
at the expenses of slightly messier proofs.

11As explained in Footnote 10, we can easily handle distributions with finite support at the expenses of
messier proofs. Examples of a finite-support density function satisfying Assumption 1 include that of a
uniform distribution.

10



It turns out that the first best remains an equilibrium outcome when the probability

mass nearby 0 is sufficiently close to 1. The intuition is that consumers with d close to

0 impose a discipline on the monopolist, discouraging it from raising its price beyond R

and exploiting consumers with larger d. In order for our model to generate results that are

qualitatively different from a traditional one, we need F to be sufficiently different from a

point mass at 0. The dividing line turns out to be the following condition.12

Assumption 2 The density at d = 0 is sufficiently small; specifically, f (0)(R − c) < 1.

Throughout this paper, our solution concept is the standard perfect Bayesian equilib-

rium, which we shall simply refer to as the equilibrium.

3 A Monopolist Marketing A Single Brand

In this section, we start with the simplest possible case where there is a monopolist

who markets only a single brand. We can think of the costs of marketing a second brand

as being prohibitively high, an assumption that we shall relax in the next two sections.

The monopolist’s strategy is a distribution of the (quality-adjusted) price p. A consumer’s

strategy is his probability of purchasing the good conditional on his primitive sense data

(recall that he does not know his own type and hence cannot contingent his purchase

probability on it). Since he is faced with only two prices (p, and his reservation price, R) at

the time of purchase, � is the same as �̂. Utility maximization dictates that the consumer

purchases with probability 1 (respectively, with probability 0) when his primitive sense

data is R�̂p (respectively, p�̂R). Therefore, the consumer’s strategy can be reduced to his

purchase probability when his his primitive sense data is p∼̂R, which we shall denote by

q.

Given the consumer’s strategy q, the monopolist’s profit as a function of its (pure-

12While we shall provide more intuition for the meaning of Assumption 2 in Section 3, let’s promptly
point out one particular implication of this assumption. For any finite-support F (see Footnote 10) that
satisfies Assumptions 1 and 2, the upper limit of its support, D, is larger than R − c. This is because, since
f is weakly decreasing, we have F(R − c) ≤ f (0)(R − c) < 1, and hence D > R − c. An implication of this
observation is that, even when a product is priced as low as its marginal production cost, c, some consumers
will still not be able to discern its price and his reservation price, R.
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strategy) price is

π(p; q) =

(p − c)[1 − F(p − R)]q if p ≥ R

(p − c)
(
F(R − p) + [1 − F(R − p)]q

)
if p ≤ R

,

where, in the case of p ≤ R for example, F(R−p) is the mass of consumers who can discern

p and R and hence would purchase with probability 1, and 1−F(R−p) is the mass of those

who cannot and hence would purchase with probability q.

Since the profit function has a kink at p = R, we maximize it over the upper sub-

ranges [R,∞) and the lower sub-range [c,R] separately, and then compare the maximized

profit over each sub-range. In the proof of Proposition 1 below, we show that a unique

maximizer exists in each sub-range, which we denote by p and p(q), respectively. Note

that the maximizer in the upper sub-range does not depend on q, which can be readily

verified by inspection of the profit function in that sub-range. The first best will be an

equilibrium outcome iff p = R = p(1). In the Appendix, we show that this is indeed the

case if Assumption 2 is violated. In this sense a distribution F that violates Assumption 2

is not different enough from a point mass at 0.

To understand why Assumption 2 guarantees that the first best cannot be an equi-

librium outcome, it suffices to understand why p > R under this assumption. Suppose

consumers purchases for sure even when they cannot discern p and R; i.e., suppose q = 1.

Suppose the monopolist raises its price from p = R to p = R + ε. For ε small, almost no

consumer can detect the raise, and hence almost everyone pays εmore to the monopolist.

There are approximately ε f (0) consumers whose receptors are very sharp (i.e., with d < ε),

who will be able to detect the raise and hence refuse to purchase. The lost profit from this

small group of consumers amounts to ε f (0)(R− c). Under Assumption 2, the lost profit is

smaller than the grain from exploiting the rest of the consumers (i.e., ε f (0)(R− c) < ε), and

hence the monopolist cannot resist the temptation of secretly raising its price beyond R.

Indeed, for q sufficiently close to 1, consumers with poor receptors are so trusting and

so willing to purchase that it is better for the monopolist to choose the high price p to exploit

these consumers. On the contrary, when q is sufficiently close to 0, consumers with poor

receptors are so untrusting and so unwilling to purchase that the only way to do business

with them is to choose the low price p(q) in the hope of convincing them that the deal
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is good. Neither case can be an equilibrium, because consumers’ best response against

p is q = 0 and that against p(q) is q = 1. In equilibrium, q must take some intermediate

value q∗ so that the monopolist is willing to randomize between p and p(q∗), and the

monopolist must randomize in a way that makes the consumers willing to randomize

between purchasing or not.

Y 
Ax

is

q*
q

0

profit 
under F

profit
under F

Profit of setting p(q) 

Profit of setting p -

-

q*q+

+

Figure 1: the monopolist’s profits in the one-brand case

Figure 1 illustrates how the equilibrium is uniquely determined. In Figure 1, the solid

line passing through the origin represents the monopolist’s profit if it sets the high price

p, which in turn increases linearly in q. The solid curve represents the monopolist’s profit

if it sets the low price p(q), which is convex in q because the monopolist re-optimizes its

price when it faces a different q. The convex curve is strictly above the linear line at q = 0,

and is strictly below at q = 1. The shapes of the two profit functions dictate that they cross

once and only once at q∗, at which point the monopolist is willing to randomize between

the high and the low prices.

Proposition 1 In the case of a monopolist marketing up to only one brand, the unique equilibrium

is a mixed-strategy equilibrium, where

• consumers purchase with a probability q∗ that is strictly between 0 and 1/2 when they cannot

discern the price of the product and their reservation price R, and
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• the monopolist randomizes between a high price p∗ that is strictly above the consumers’

reservation price R, and a low price p∗ that is strictly between R and the marginal production

cost c.

In equilibrium, gain of trade is not always realised. Some consumers (those with d ≥ p∗ − R)

sometimes (when the monopolist sets the high price p∗) obtain strictly negative surplus. But on

average consumers obtain strictly positive surplus, meaning that the monopolist does not extract

the full surplus even conditional on trade.

From Proposition 1, we can also obtain a very rough estimate of how much gain of

trade is lost in equilibrium due to intransitive indifference. Notice that every time the

monopolist sets a high price, the consumer either can tell that it is a bad deal (in which

case there will be no sale), or cannot tell (in which case he purchases with probability

q∗ < 1/2). Therefore, conditional on a high price, gain of trade is realised with probability

at most 1/2. Suppose the monopolist randomized between the high and low prices with

roughly equal probabilities. Then at least about 1/4 of gain of trade is lost in equilibrium

due to intransitive indifference.

It will be interesting to see how the monopolist’s equilibrium profit changes when

consumers become less able to discern two prices. To answer that question, we compare

the monopolist’s equilibrium profit under two different distributions of consumers’ types,

F and F†, where both satisfy Assumptions 1 and 2, but F† first-order stochastically domi-

nates (FOSD) F. In a market featuring F†, consumers have higher types and hence are less

able to discern two prices. Our next proposition says that consumers’ inability to discern

prices actually hurts the monopolist.

Proposition 2 In the case of a monopolist marketing up to only one brand, the monopolist’s

equilibrium profit decreases with an FOSD shift in F.

Figure 1 provides a pictorial proof of Proposition 2. When the distribution of con-

sumers’ types undergoes an FOSD shift from F to F†, consumers are less able to discern

prices. This raises the monopolist’s profit from setting a high price, because consumers

are less able to tell a bad deal. This results in an anti-clockwise tilt of the linear line. On the

contrary, the monopolist’s profit from setting a low price is now lower, because consumers

are also less able to tell a good deal. This results in a downward shift of the convex curve.
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In the new equilibrium, consumers are less trusting (q† < q∗), and the monopolist’s profit

is lower.

This may seems a bit surprising. After all, consumers who are less able to discern two

prices seem vulnerable to exploitation, and hence should be welcomed by the monopolist.

Such an intuition is incomplete, however. Recall that a consumer with difficulty in

discerning two prices is a person equipped with some poor receptors. Although his

instruments are poor, he is by no means irrational. He is aware that his instruments

poor, and is rationally untrusting when he finds a product’s (quality-adjusted) price

indiscernable from his reservation price. A monopolist fares worse when more of its

consumers are untrusting, because they cannot be easily convinced even when it is indeed

offering them a good deal.

While consumers’ inability to discern prices hurts the monopolist, it does not always

benefit the consumers. Indeed, it is easy to see that the effect of an FOSD shift in F

on consumer surplus is necessarily non-monotonic. Consider again the distributions F

and F†, where the latter dominates the former in FOSD sense. In particular, this implies

F(R − c) ≥ F†(R − c). At the limit when F†(R − c) ↘ 0, consumers almost surely cannot

identify a good deal even when one exists (because the monopolist will never price below

c, and hence R − p cannot be larger than R − c), and recall that whenever consumers

cannot identify a good deal they walk home with 0 surplus. Therefore, consumer surplus

decreases with an FOSD shift from F to F†.

On the other hand, consider yet another distribution F††, which also satisfies Assump-

tions 1 and 2, and is dominated by F in FOSD sense. In particular, this implies f (0) ≤ f ††(0).

At the limit when f ††(0)↗ 1/(R − c), the first best is an equilibrium outcome, where con-

sumers walk home with 0 surplus.13 Therefore, consumer surplus increases with an FOSD

shift from F†† to F.

Proposition 3 In the case of a monopolist marketing up to only one brand, consumers’ inability

to discern prices does not always benefit the consumers. Indeed, the effect of an FOSD shift in F

on consumer surplus is necessarily non-monotonic.
13Continuity holds at the limit, meaning that when f ††(0) ≈ 1/(R − c) while still satisfying Assumption 2,

consumers still walk home with approximately 0 surplus. See the proof of Proposition 3 for details.
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4 A Monopolist Marketing Two Different Brands

In this section, we continue to study the case where there is only one seller, the

monopolist. However, we now assume that the costs of marketing a second brand is

negligible, while those of marketing more than two brands remain prohibitively high. We

shall show that this improvement in the monopolist’s marketing ability may paradoxically

hurt its profit.

Formally, we assume that the costs of marketing a second brand are commonly known

to be 0. The monopolist can market either a single brand or two different brands. In

the case the monopolist markets two different brands, it can set potentially a different

(quality-adjusted) price for each brand. We shall name those two brands “brand 1” and

“brand 2”, with associated prices p1 and p2, respectively. Every consumer continues to

demand one and only one unit of the good.

By allowing prices to take the value of∞, we can wlog proceed as if both brands are on

the shelf. Marketing a single brand would then correspond to the case where p1 < ∞ = p2,

whereas marketing two different brands would correspond to the case where both prices

are finite.

Some care should be taken in describing a game with two brands on the shelf. It makes

more sense to think of the brands as “anonymous”, in the sense that the consumers’

purchase decisions can only depend on the inferred ordering, �, of R, p1, and p2, but

otherwise cannot depend on the brand names. This precludes, for example, the strategy of

purchasing brand 1 with probability 4/5 when p2 � R ∼ p1, while purchasing brand 2 with

only probability 1/3 when p1 � R ∼ p2. Similarly, it precludes the strategy of purchasing

brand 1 and brand 2 with probabilities 1/10 and 9/10, respectively, when R � p1 ∼ p2.

In other words, brand names are artificial constructs that are for the convenience of we

analysts only, but are otherwise meaningless to consumers. All a consumer can learn

about a specific brand is already summarized by the inferred ordering �.

Since brand names are just artificial constructs that are meaningless to consumers,

we shall follow the convention that “brand 2” is the brand with a higher price; i.e.,

p2 ≥ p1 by our convention. This convention does not preclude positive sales for brand

2 in equilibrium. This is because, even though consumers know that brand 2 is more

expensive than brand 1, a consumer who cannot compare p1 and p2 cannot tell which

brand is brand 2 (recall the assumption of anonymity above), and hence may end up
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purchasing brand 2 by chance.

Under the convention of p2 ≥ p1, there can only be 11 different configurations of primi-

tive sense data a consumer may possibly encounter.14 For 8 out of these 11 configurations,

there is an unambiguous lowest-price option in the resulting inferred ordering�, and util-

ity maximization dictates that the consumer chooses this lowest-price option.15 Among

the remaining 3 configurations, the consumer’s best response is also straightforward when

the primitive sense data are R�̂p2∼̂p1≺̂R (in which case the inferred ordering � is the same

as �̂): in this case, anonymity dictates that the best the consumer can do is to purchase

each brand with probability 1/2.

Therefore, the only two non-trivial cases are

1. the single-contender case, where the primitive sense data are p2�̂R∼̂p1≺̂p2, and hence

brand 1 is the only possible good deal for the consumer; and

2. the all-tied case, where the primitive sense data are p2∼̂R∼̂p1∼̂p2, and hence both

brands 1 and 2 are possibly good deal for the consumer.

How the consumer behave in these two cases will be determined in equilibrium. Let’s

denote by q1 ∈ [0, 1] the probability that a consumer purchases brand 1 (i.e., the single

contender) in the single-contender case, and by q2/2 ∈ [0, 1/2] the probability that he

purchases each contender in the all-tied case.

The reader may wonder why the monopolist may ever be hurt by its ability to market

a second brand at negligible costs. Couldn’t it guarantee at least its equilibrium profit in

the one-brand case by simply marketing a single brand? The answer is no. If consumers

anticipate that the monopolist markets two different brands, then the event that it markets

a single brand will be an off-equilibrium event, and consumers’ off-equilibrium beliefs in

such an event can be quite different from their equilibrium beliefs in the one-brand case.

14There are 3 configurations where the primitive sense data already form a linear order; for example,
p2�̂R�̂p1. For each of these 3 configurations, the inferred ordering � is the same as �̂. There are 4
configurations where exactly one pair of prices are indiscernible; for example, p2�̂R∼̂p1≺̂p2. For each
of these 4 configurations, the inferred ordering � is still the same as �̂. There are 3 configurations where
exactly two pairs of prices are indiscernible; for example, p1∼̂R∼̂p2�̂p1. For each of these 3 configurations, the
inferred ordering� becomes a linear order; for example, from p1∼̂R∼̂p2�̂p1 the consumer obtains p2 � R � p1.
Finally, there is 1 configuration where all three pairs of prices are indiscernible. For this configuration, the
inferred ordering � is also the same as �̂.

15There are 6 out of 11 configurations where the inferred ordering� is a linear order (see Footnote 14), and
hence an unambiguous lowest-price option exists. The other two configurations where an unambiguous
lowest-price option exists are R≺̂p2∼̂p1�̂R and p1≺̂p2∼̂R�̂p1.
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We present an equilibrium with such a flavor below in Proposition 4. We then provide an

example of F such that the monopolist’s profit in the equilibrium described in Proposition

4 is lower than its equilibrium profit in the one-brand case.

Proposition 4 In the case of a monopolist marketing up to two different brands, there exists an

equilibrium where

• consumers refuse to purchase whenever there is no apparent least-price option (i.e., q∗1 = q∗2 =

0),

• the monopolist markets two different brands, with prices being mirror images of each other

around R (i.e., p∗1 < R < p∗2 and (p∗1 + p∗2)/2 = R), and

• given consumers’ behavior (i.e., q∗1 = q∗2 = 0), (p∗1, p
∗

2) is the unique maximizer of the

monopolist’s profit over all pairs of prices that are mirror images of each other around R.

In this equilibrium, the monopolist’s prices are deterministic. Yet gain of trade is still not always

realized. Consumers purchase only if they can compare R and p∗1, and hence they always obtain

strictly positive surplus conditional on a purchase.

To further elaborate on the point we made in the paragraph immediately before Propo-

sition 4, let’s consider what would happen if the monopolist deviates from its equilibrium

behavior by marketing a single brand. Specifically, suppose the monopolist, instead of

setting prices (p∗1, p
∗

2) as described in Proposition 4, deviates and sets p2 = ∞ and random-

izes between p1 = p∗ and p1 = p∗ as in Proposition 1. Given the consumers’ equilibrium

strategy q∗1 = q∗2 = 0, the monopolist cannot make any sale when the random price p1 takes

the value of p∗. Even when the random price p1 takes the value of p∗, the monopolist

makes a sale only if the consumer can discern p1 and R. Its profit from such a deviation is

hence much lower than its equilibrium profit in the one-brand case.

The reason behind this dismal deviation profit is that consumers are very untrusting

in the single-contender case (q∗1 = 0). In the equilibrium described in Proposition 4,

the single-contender case is an off-equilibrium event, and in such an event consumers’

off-equilibrium beliefs can be quite pessimistic.

Note that, in the equilibrium described in Proposition 4, the monopolist never makes

any sale from brand 2. The only role of brand 2 is to convince consumers that brand 1
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is a good deal (it is). Specifically, consumers with types R − p∗1 ≤ d < p∗2 − p∗1, although

unable to discern p∗1 and R, are nevertheless able to compare the two. The primitive sense

data received by these consumers are R∼̂p∗2�̂p∗1∼̂R, which induce the inferred ordering of

p∗2 � R � p∗1, convincing them to purchase brand 1.

Paradoxically, this helping hand from the second brand can backfire. In the one-brand

case, it cannot be an equilibrium for consumers to be totally untrusting. If consumers were

totally untrusting (i.e., if q = 0), the monopolist would not be able to make any sale unless

it set a price strictly lower than R, but then consumers should be totally trusting (i.e., q = 1)

instead. This is no longer the case when there is a second brand that can be priced above

R purely to help some consumers to compare prices. Now consumers who still cannot

compare prices despite this helping hand can justifiably remain totally untrusting (i.e.,

q∗1 = q∗2 = 0), worrying that they may inadvertently purchase the over-priced brand 2.

Figure 2: equilibrium profits in the one-brand and two-brand cases

That consumers are more untrusting in the equilibrium described in Proposition 4

than in the unique equilibrium described in Proposition 1 is the main reason why the

monopolist’s profit can be lower in the former than in the latter. As an illustration, we

compute the monopolist’s profit in each of these two equilibria by letting R = 1, c = 0,

and letting F be a member of the exponential class; i.e., F(d) = 1 − e−λd. Let Π∗1 denote

the monopolist’s profit in the equilibrium described in Proposition 1, and Π∗2 that in

the equilibrium described in Proposition 4. In Figure 2, we plot Π∗2 − Π∗1 against λ, the

parameter of the exponential distribution. Note that F satisfies Assumption 2 only ifλ < 1.
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Asλ increases towards 1, consumers’ ability to discern prices improves.16 In the one-brand

case, this generates more discipline on the monopolist, decreases its incentive to set a high

price, and increases its incentive to set a low price. Consumers who cannot discern prices,

by free-riding those who can, can hence afford to be more trusting, resulting in a higher

q∗ (see the proof of Proposition 2). Meanwhile, consumers in the equilibrium described

in Proposition 4 remain totally untrusting. As a result, Π∗2 − Π∗1 becomes negative as λ

increases towards 1.

Proposition 5 A monopolist’s ability to market a second brand at negligible costs may para-

doxically hurt its profit. Specifically, there exists an equilibrium (as described in Proposition 4)

where its profit may be even lower than its equilibrium profit when marketing a second brand is

prohibitively costly.

While there is a unique equilibrium in the one-brand case, there are multiple equilibria

in the two-brand case, with the one described in Proposition 4 being merely one of

them. For the sake of completeness, we fully characterize an important sub-class of

equilibria, namely the pure-pricing-strategy equilibria, in Proposition 6 below. These are

equilibria where the monopolist plays pure pricing strategies, in contrast to the mixed

pricing strategy played in the unique equilibrium in the one-brand case. Note that the

equilibrium described in Proposition 4 is an example of pure-pricing-strategy equilibrium,

where the monopolist sets prices (p1, p2) = (p∗1, p
∗

2) with probability 1.

Proposition 6 In the case of a monopolist marketing up to two different brands, there is an

qmax
2 ∈ (0, 1) such that

• every pure-pricing-strategy equilibrium features an q∗2 ≤ qmax
2 ;

• there exists a strictly increasing function p1(·) that maps [0, qmax
2 ] into (c,R) such that, in the

pure-pricing-strategy equilibrium featuring q∗2 ∈ [0, qmax
2 ], the monopolist sets deterministic

prices p∗1 = p1(q∗2) and p∗2 = 2R − p∗1;

• comparing any two pure-pricing-strategy equilibria, monopolist’s profit is higher and con-

sumer surplus is lower in the one with a higher q∗2; and

• if, in addition to Assumption 2, f further satisfies f (0)(R − c) > 1/2, then
16Formally, an exponential distribution with a smaller λ dominates one with a larger λ in the FOSD sense.
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– for every q∗2 ∈ [0, qmax
2 ], there exists a pure-pricing-strategy equilibrium featuring that

specific q∗2; and

– in the pure-pricing-strategy equilibrium featuring q∗2 = qmax
2 , the monopolist’s profit is

higher than its equilibrium profit in the one-brand case.

In other words, every pure-pricing-strategy equilibrium resembles the one described

in Proposition 4, in the sense that the monopolist markets two different brands, with prices

being mirror images of each other (i.e., p∗1 < R < p∗2 and (p∗1 + p∗2)/2 = R). As a result, the

single-contender case is always an off-equilibrium event, rendering the exact description

of q∗1 payoff-irrelevant. Each pure-pricing-strategy equilibrium described in Proposition 6

hence is more precisely an equivalent class of equilibria featuring the same q∗2 but different

q∗1’s.

Comparing different pure-pricing-strategy equilibria, consumers are more trusting in

those featuring higher q∗2. When consumers are more trusting, the monopolist’s profit is

higher, at the expenses of consumer surplus. The equilibrium described in Proposition 4

is hence the worse for the monopolist and the best for consumers among all pure-pricing-

strategy equilibria.

Consumers, however, will never be totally trusting in any pure-pricing-strategy equi-

librium. This is shown by the fact that q∗2 is capped from above by an upper bound qmax
2

that is strictly smaller than 1. Therefore, once again, the first best cannot be achieved.

Finally, one may wonder whether there exists any (mixed-pricing-strategy) equilibrium

where the monopolist does not market brand 2 at all; i.e., p2 = ∞with probability 1. Such

an equilibrium, if exists, must look exactly like the unique equilibrium in the one-brand

case as described in Proposition 1; i.e., the monopolist plays a mixed-pricing-strategy and

randomizes between p1 = p∗ and p1 = p∗, and a consumer purchases with probability

q1 = q∗ when he finds himself in the single-contender case. Let’s call such an equilibrium,

if exists, the single-brand equilibrium.17

When the monopolist can market up to two different brands at negligible costs, the

single-brand equilibrium may not exist. The reason is that, whenever the monopolist is

to set p1 = p∗—which is a good deal for consumers because p∗ < R—it would lament the

17The single-brand equilibrium is more precisely an equivalent class of equilibria featuring different q∗2.
This is because p2 = ∞with pobability 1 implies that the all-tied case is an off-equilibrium event, and hence
many different q∗2’s can be supported by appropriately chosen off-equilibrium beliefs.
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fact that too few consumers can discern p∗ and R and hence appreciate this good deal, and

would have incentives to bring in the second brand in order to help more consumers to

compare p∗ and R.

Characterizing exactly when the single-brand equilibrium fails to exist turns out to be

both tedious and non-illuminating. This is because there are many possible deviations

involving “bringing in the second brand”, and the single-brand equilibrium will fail to

exist as long as one of these deviations is profitable. We shall hence provide only an

easy sufficient condition for the non-existence of the single-brand equilibrium, focusing

on only one particular deviation, namely the deviation to setting (p1, p2) = (p∗1, p
∗

2), where

(p∗1, p
∗

2) is as defined in Proposition 4. In the following proposition, Π1∗ and Π∗2 are as

defined in the paragraph immediately before Proposition 5.

Proposition 7 In the case of a monopolist marketing up to two different brands, the single-brand

equilibirum does not exist whenever Π∗2 > Π∗1.

Proof: This is because the monopolist’s equilibrium profit in the single-brand equilib-

rium, if exists, must equal to Π∗1, while its deviation profit is at least Π∗2 if it deviates to

setting (p1, p2) = (p∗1, p
∗

2), where (p∗1, p
∗

2) is as defined in Proposition 4.18 �

For example, we can see from Figure 2 that, when R = 1, c = 0, and F is an exponential

distribution with parameter λ < 1/2, the single-brand equilibrium does not exist.

5 A Monopolist Marketing Many Brands

While a monopolist’s ability to market a second brand at negligible costs may para-

doxically hurt its profit (Proposition 5), we can however prove that, its ability to market

at negligible costs a sufficiently large number of brands, almost all of which are not meant

to make any sale, will necessarily help its profit.

Formally, we assume that the costs of marketing the first n brands are commonly

known to be 0, while those of of marketing more than n brands remain prohibitively high.

We shall show that, for n sufficiently large, the monopolist’s profit in any equilibrium is

18Recall from Footnote 17 that the single-brand equilibrium can feature many different q∗2. The deviation
profit is exactly Π∗2 if q∗2 = 0, and is strictly higher than Π∗2 if q∗2 > 0. (See Proposition 6.) Note that q∗1 is
irrelevant in calculating the deviation profit.
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arbitrarily close to its first-best profit R− c, and hence is higher than its equilibrium profit

in the one-brand case. Since the proof is short and constructive, we include it here in the

main text and let it help explain the underlying intuition.

Proposition 8 For any ε > 0, there exists n such that, for any n ≥ n, in the case of a monopolist

marketing up to n different brands, the monopolist can achieve a profit higher than R − c − ε in

any equilibrium.

Proof: Pick any δ small enough and n big enough so that (R − c − δ)F (nδ) > R − c − ε.

Suppose the monopolist is to market n ≥ n brands, with prices p1 = R − δ, p2 = R + δ,

p3 = R + 2δ, . . . , and pn = R + (n − 1)δ, respectively. A consumer with d < δ will be

able to discern p1 and R and hence tell that p1 is lower than R, and will purchase brand

1 at price p1. A consumer with d ∈ [δ, 2δ) cannot discern p1 and R, and cannot discern R

and p2, but is able to discern p1 and p2, and hence can infer that p1 is lower than R, and

will also purchase brand 1 at price p1. More generally, a consumer with d ∈ [(k − 1)δ, kδ),

k ∈ {2, . . . ,n}, cannot discern p1 and R, and cannot discern R and pk, but is able to discern

p1 and pk, and hence can infer that p1 is lower than R, and will purchase brand 1 at price

p1. The monopolist’s profit is hence at least (p1 − c)F(nδ) ≥ (R − c − δ)F (nδ) > R − c − ε. �

6 Two Sellers Marketing One Brand Each

In Section 4, we study the case of a single seller marketing up to two different brands.

In this section, we study the case where the ability to market the second brand comes

from a second seller instead of from the original seller. Specifically, we study the case

where there are two identical sellers, each marketing up to only one brand. Arguably

the marketing capacity available to the society is the same, in the sense that the costs

of marketing two or fewer brands are negligible, while those of marketing more than 2

brands are prohibitively high. The only change from the setting in Section 4 to the current

setting is how this marketing capacity is distributed. Which this marketing capacity is

evenly distributed between two identical sellers instead of being concentrated in the hands

of one, the market is more competitive. We shall, however, show that more competition

does not always benefit consumers.

We shall name the two sellers “seller 1” and “seller 2”, with associated prices p1 and p2

for their respective brands. Every consumer continue to demand one and only one unit
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of the good. Following the second half of Section 4, we focus on pure-pricing-strategy

equilibria, meaning those equilibria where each seller plays a pure pricing strategy.

As in Section 4, we assume that brands are “anonymous”, in the sense that brand

names are artificial constructs that are for the convenience of we analysts only, but are

otherwise meaningless to consumers. All a consumer can learn about a specific brand

is already summarized by the inferred ordering �. As such, and since sellers play pure

pricing strategies, we can follow the convention in Section 4 that “brand 2” is the brand

with a higher equilibrium price; i.e., p∗2 ≥ p∗1 by our convention. As before, this convention

does not preclude an asymmetric equilibrium where the two sellers set different (quality-

adjusted) prices. This is because, even though consumers know that brand 2 is more

expensive than brand 1, a consumer who cannot compare p1 and p2 cannot tell which

brand is brand 2, and hence may end up purchasing brand 2 by chance.

As in Section 4, to describe a consumer’s strategy, it suffices to describe his behavior

in the single-contender case and the all-tied case, which are defined in exactly the same

way as in Section 4. Let’s continue to denote by q1 ∈ [0, 1] the probability that a consumer

purchases brand 1 (i.e., the single contender) in the single-contender case, and by q2/2 ∈

[0, 1/2] the (necessarily common) probability that he purchases each contender in the

all-tied case.

The reader may wonder why more competition does not always benefit consumers.

Wouldn’t competing sellers undercut each other and lead to lower prices as in the tradi-

tional Bertrand model? The answer is no. For starter, when consumers feature intransitive

indifference, undercutting one’s opponent does not enable it to capture the whole mar-

ket, because many consumers are not able to tell that its (quality-adjusted) price is lower

than its opponent’s. This reduces one’s incentives to undercut its opponent. Indeed, if

sellers are anticipated to undercut each other aggressively, consumers will become fairly

trusting, and will be fairly willing to purchase even when they cannot compare prices.

Sellers hence will have incentives to raise their prices in order to exploit these trusting

consumers, invalidating the original anticipation.

When consumers feature intransitive indifference, sellers actually free-ride instead

of undercut each other. There are two different kinds of free-riding behavior, and are

respectively adopted by the two sellers. In a pure-pricing-strategy equilibrium, one seller

will under-price its brand relative to R, while the other will over-price its. Seller 2 free-rides
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seller 1’s low price, which keeps consumers trusting, and sets a high price to exploit these

trusting consumers.19 Seller 1, on the other hand, free-rides seller 2’s high price, which

enables some consumers to recognize the good deal offered by seller 1—those consumers

who cannot discern p1 and R, but can compare them with the help of p2—and avoids the

need to set an even lower price to win over these consumers.20 As a result, both sellers

manage to alleviate some downward pressure on their prices by free-riding each other,

albeit free-riding in very different manners.

A pure-pricing-strategy equilibrium in this two-seller case ends up being very similar

to one in the two-brand case studied in Section 4, in the sense that the prices of the two

brands are mirror images of each other around R. Consumers purchase either when

they can compare prices—in which case they purchase the lower-priced brand and obtain

strictly positive surplus—or when they find themselves in the all-tied case—in which case

they randomize between purchasing or not, and randomize between the two brands when

they do purchase, and obtain zero surplus on average. Consumers’ surplus hence depends

solely on how low brand 1 is priced, same as in a pure-pricing-strategy equilibrium in

the two-brand case. It turns out that the free-riding logic mentioned in the previous

paragraph will push p1 so high that consumers’ surplus in this two-seller case is even

19More formally, p2 > R can be a best response for seller 2 only when q2 > 0 (because seller 2 can make a
sale at a price p2 > R only when the consumer finds himself in the all-tied case), and q2 > 0 can be part of
the consumer’s best response only when p1 ≤ R (otherwise (p1 + p2)/2 ≥ p1 > R and hence the consumer’s
best response must feature q2 = 0).

20More formally, consder the case where q1 = 0 < q2 (which, as we shall argue soon, can be assumed
wlog in our search for pure-pricing-strategy equilibria). Suppose seller 2 sets p2 = ∞, effectively dropping
out from the market. Then seller 1’s best response is to set p1 = p(0), where p(·) is as defined in Section
3. Suppose seller 2 now lowers its price, but not too low as to offer consumers a genuine good deal.
Specifically, suppose seller 2 lowers its price from∞ to some finite p2 ∈ (R, 2R− p1). Such a move of seller 2,
instead of imposing competitve pressure on seller 1, actually raises seller 1’s profit from (p1 − c)F(R − p1) to
(p1 − c){F(p2 − p1) + q2[1− F(p2 − p1)]}. More importantly for consumers, seller 1 would now have incentives
to even further raise its price, because

∂π1

∂p1

∣∣∣∣∣
p1=p(0)

= {F(p2 − p1) + q2[1 − F(p2 − p1)]} − (p1 − c)(1 − q2) f (p2 − p1)

= q2 + (1 − q2) f (p2 − p1)
[

F(p2 − p1)
f (p2 − p1)

−
F(R − p1)
f (R − p1)

]
> 0,

where the second equality makes use of the first-order condition that characterizes p1 = p(0), and the
inequality makes use of Assumption 1. Intuitively, with the help of a finite p2, more consumers can
appreciate the good deal that seller 1 is offering them. With a bigger consumer base, seller 1 now has
incentives to raise its price.
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lower than that in the pure-pricing-strategy equilibrium described in Proposition 4.

Proposition 9 In the case of two sellers marketing up to only one brand each, in any pure-pricing-

strategy equilibrium,

• the two sellers set prices that are mirror images of each other around R; specifically, (p∗1, p
∗

2) =

(R − x∗,R + x∗), where x∗ > 0 is the unique solution to

1 − F(2x∗)
f (2x∗)

= x∗ + R − c;

• consumers’ surplus is strictly lower than in the equilibrium described in Proposition 4 for

the case of a monopolist marketing up to two different brands.

In the special case where F belongs to the exponential class, consumers’ surplus in any

pure-pricing-strategy equilibrium is especially easy to calculate. First, using the equation

in Proposition 9, we have

x∗ + R − c =
1 − F(2x∗)

f (2x∗)
=

exp(−λ(2x∗))
λ exp(−λ(2x∗))

=
1
λ
,

which gives us x∗ = 1/λ − (R − c). Consumers with d < 2x∗ are able to compare p∗1 and R

(either by directly discerning them, or by comparing them with the help of p∗2) and hence

will walk home with surplus R − p∗1 = x∗. Consumers with d ≥ 2x∗, on the other hand,

cannot compare p∗1 and R, and hence will purchase both brands 1 and 2 with the same

probability if they ever do any purchases. These consumers hence walk home with zero

surplus, given that p∗1 and p∗2 are mirror images of each other around R. On average,

consumers’ surplus is hence

x∗F(2x∗) = x∗[1 − exp(−λ(2x∗))] =
[ 1
λ
− (R − c)

] [
1 − exp(−2 + 2λ(R − c))

]
,

which is strictly decreasing in λ. Recall that, in the special case of the exponential class, a

smaller λ represents an FOSD shift in F, meaning that consumers are less able to discern

prices. We hence have the conclusion that consumers’ surplus is increasing in their

inability to discern prices, echoing similar results in Piccione and Spiegler (2012) and

de Clippel, Eliaz, and Rozen (2014). Intuitively, when more consumers have difficulty
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in discerning prices, there are two opposite effects on consumers’ surplus. On the one

hand, fewer consumers can recognize the good deal offered by seller 1, which reduces

consumers’ surplus. On the other hand, seller 1 is pressured to further lower its price in

order to convince consumers that its deal is good, which increases consumers’ surplus.

Depending on the distribution of consumers’ types, it is possible that the second effect

dominates the first effect.

Proposition 10 Suppose F belongs to the exponential class. In the case of two sellers marketing

up to only one brand each, consumers’ pure-pricing-strategy-equilibrium surplus increases with

and FOSD shift in F.21

A pure-pricing-strategy equilibrium, however, may not exist. Indeed, one can prove

that it does not exist if f (0)(R − c) < 1/3. In order to make sure that Proposition 9 above

is not a characterization of the empty set, we numerically demonstrate the existence of

a pure-pricing-strategy equilibrium given some values of parameters R and c, and some

distribution F that satisfies Assumptions 1 and 2.

Specifically, let R = 1, c = 0, and F be the exponential distribution with parameter

λ = 0.8. Plugging these into the equation in Proposition 9, one readily computes that

x∗ = 0.25. By Proposition 9, a pure-pricing-strategy equilibrium, if exists, must feature

(p∗1, p
∗

2) = (R − x∗,R + x∗) = (1 − 0.25, 1 + 0.25) = (0.75, 1.25). We can plot seller 1’s profit

π1(p1, p2) (respectively, seller 2’s profit π2(p1, p2)) as a function of its price p1 (respectively,

p2), given the opponent’s price p2 = 1.25 (respectively, p1 = 0.75), and given any (q1, q2).

A pure-pricing-strategy equilibrium exists iff there exists some (q1, q2) such that p1 = 0.75

and p2 = 1.25 are global optima of π1 and π2, respectively. A familiar argument we once

21As explained in Footnote 10, we can easily handle distributions with finite supports (such as uniform
distributions) at the expenses of messier proofs. In the special case where F belongs to the uniform class
U[0,D], the equation in Proposition 9 becomes

x∗ + R − c =
1 − F(2x∗)

f (2x∗)
= D − 2x∗,

which gives us x∗ = (D − R + c)/3. Therefore, consumers’ surplus is

x∗F(2x∗) = x∗
2x∗

D
=

2(D − R + c)2

9D
,

which is strictly increasing in D if D > R − c, which in turned is guaranteed by Assumption 2 (see Footnote
12). Recall that, in the special case of the uniform class, a bigger D represents an FOSD shift in F. We hence
once again arrive at the same conclusion that consumers’ surplus is increasing in their inability to discern
prices.
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F=exponential distribution with lambda equal to 0.8,
consumers choose q1=0 and q2=0.8

Figure 3: the solid line is seller 1’s profit as a function of p1, given opponent’s price
p2 = R + x∗; the line with little triangles is seller 2’s profit as a function of p2, given
opponent’s price p1 = R − x∗; both are drawn with R = 1, c = 0, F being the exponential
distribution with parameter λ = 0.8 (which implies x∗ = 0.25), and (q1, q2) = (0, 0.8)

used in the proof of Proposition 6 suggests that, in our search for such (q1, q2), it is wlog

to let q1 = 0, because this does not affect either seller’s profit at its candidate-equilibrium

price, while weakly lowers its profit at other prices.

This leaves us only one variable to tune with. As we tune q2, the shapes of π1 and

π2 change. In the neighborhood of q2 = 0.8, p1 = 0.75 and p2 = 1.25 indeed become the

global optima of π1 and π2, respectively, as shown in Figure 3, verifying the existence of

a pure-pricing-strategy equilibrium for such R, c, and F.

Figure 3 is robust to perturbation in q2, meaning that (p∗1, p
∗

2, q
∗

1, q
∗

2) = (0.75, 1.25, 0, q∗2)
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remains a pure-pricing-strategy equilibrium for an open set of q∗2 containing 0.8. Indeed,

π1 has a kink at p1 = 0.75. As we perturb q2, the left and right derivatives of π1 at p1 = 0.75

will be perturbed, and similarly for the values of π1 at the two local optima, but p1 = 0.75

will remain the unique global optimum. The case for π2 is slightly different: its slope at

p2 = 1.25 remains flat regardless of the value of q2. Indeed, this property is the geometric

meaning of the equation in Proposition 9, which we used earlier to compute x∗. Therefore,

as we perturb q2, p2 = 1.25 remains a local optimum. Since the value of π2 at p2 = 1.25

is strictly higher than that at the other local optimum, p2 = 1.25 will remain the unique

global optimum upon perturbation of q2.

It is also worth highlighting some interesting features of Figure 3 that are not mentioned

in Proposition 9. First, the two sellers earn different profits, with the one over-pricing its

products earning strictly less than the one under-pricing. While seller 2 may envy seller

1, it cannot mimic the latter by also under-pricing its products. If it were to do so, the best

way to do it is to undercut seller 1, which is shown by the fact that the left local optimum

of π2 is located on the left of 0.75. However, by doing so, seller 2 actually will earn even

less than free-riding seller 1 and exploiting the trusting consumers.

Second, sellers’ profits as functions of own prices are not quasi-concave. This explains

why it is difficult to provide interesting sufficient conditions for the existence of a pure-

pricing strategy equilibrium beyond numerical examples such as the one depicted in

Figure 3.

7 Conclusion

In this paper, we made a first step in exploring the implications of intransitive indif-

ference in some classical economic analyses. Many of these implications are driven by the

phenomenon that the presence of an inferior product can help a consumer appreciate a

better product—a phenomenon that is the signature of intransitive indifference.

To keep our first-pass exercise tractable, we have made the simplifying assumption that

quality and price can be collapsed into a one-dimensional variable called quality-adjusted

price. In future research, it will be desirable to disentangle the two, with intransitive

indifference arising in the quality dimension but not in the price dimension. New ques-

tions arising in this more realistic setting include how sellers’ competition in the quality
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dimension interacts with their competition in the price dimension, and how consumers’

inability to discern small differences in quality affect the equilibrium prices.

It will also be desirable to consider multiple dimensions of quality, with intransitive

indifference arising in different degrees in each dimension. We conjecture that many

informal concepts in the marketing literature can be formalized and refined in this setting.

Two examples of such concepts that immediately come to mind are the range and frequency

effects (Huber, Payne, and Puto (1982)). Consider two products, A and B, each is better than

the other in a different dimension. For example, A scores 10 in dimension I, but scores only

6 in dimension II; similarly, B scores 10 in dimension II, but scores only 6 in dimension

I. A seller who wants to promote product A would like to manipulate consumers into

downplaying dimension II (the dimension along which product A is weaker) and paying

more attention to dimension I (the dimension along which product A is stronger). One

way to do it, according to the marketing literature, is to add to the choice set a third product

C that scores 2 in dimension II. This increases the range of scores along dimension II from

4 points (10 − 6 = 4) to 8 points (10 − 2 = 8), and hence gives consumers the illusion

that every incremental point along dimension II is less important (the range effect), thus

increases the sales of product A. Another way to promote product A is to add to the choice

set a third product C that scores 8 in dimension I. The range of scores along dimension

I does not change, but the increased frequency gives consumers the illusion that every

incremental point along dimension I is more important (the frequency effect), thus also

increases the sales of product A. While range and frequency effects are often explained

in terms of manipulation and illusion, we conjecture that they may also be explained in

terms of intransitive indifference, and hence be given a rigorous foundation based on

economic theory.
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Appendix A: Omitted Proofs in Section 3

The following lemma will be used in the proof of Proposition 1.

Lemma 1 Consider the function π(p) = (p− c)[1− F(p−R)]. Then π is quasi-concave and has a

unique maximizer in the sub-range p ∈ [R,∞).

Proof: At any p ∈ (R,∞), we have π(p) > 0 and

dπ
dp

= f (p − R)
[
1 − F(p − R)

f (p − R)
− (p − c)

]
.

By Assumption 1, the term in the square parentheses is strictly decreasing in p. This proves

quasi-concavity ofπ and the existence of a unique maximizer in the sub-range p ∈ [R,∞). �

Proof of Proposition 1: By Lemma 1, for any q > 0, π is quasi-concave and has a

unique maximizer in the sub-range p ∈ [R,∞). Let p ≥ R denote this unique maximizer.

Apparently p does not depend on q.22 Moreover, we have

p > R iff
∂π
∂p

∣∣∣∣∣
p=R+

> 0 iff f (0)(R − c) < 1.

In the sub-range p ∈ (c,R),

∂π
∂p

= q + F(R − p)(1 − q) − (p − c) f (R − p)(1 − q),

∂2π
∂p2 = −2 f (R − p)(1 − q) + (p − c) f ′(R − p)(1 − q) < 0,

where the last inequality follows from Assumption 1. Therefore, π is strictly concave in

p, and has a unique maximizer in the sub-range p ∈ [c,R]. Let p(q) ≤ R denote this unique

maximizer. Since
∂2π
∂p∂q

= 1 − F(R − p) + (p − c) f (R − p) > 0,

p is increasing in q (strictly so if p ∈ (c,R)). It attains its upper bound R iff

∂π
∂p

∣∣∣∣∣
p=R−

= q − f (0)(R − c)(1 − q) ≥ 0 iff f (0)(R − c) ≤
q

1 − q
.

22If q = 0, π ≡ 0 for any p ∈ [R,∞), and hence p remains a maximizer.
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Let q be the unique solution of f (0)(R − c) = q/(1 − q). Note that 0 < q < 1/2 by

Assumption 2.

At q = 0, π = 0 for any p ∈ [R,∞), and hence π(p, q) = 0 < π
(
p(q); q

)
. At any q ∈ [q, 1],

we have p(q) = R, and hence π(p; q) > π(R; q) = π
(
p(q); q

)
. At any q ∈ (0, q), π(p; q) is linear

in q, while π
(
p(q); q

)
is convex in q:

dπ
(
p(q); q

)
dq

=
∂π

(
p(q); q

)
∂q

=
(
p(q) − c

) [
1 − F

(
R − p(q)

)]
,

which is increasing in q. Therefore, π(p; ·) crosses π
(
p(·); ·

)
once and only once, and crosses

from below. Let q∗ ∈ (0, q) denote the unique solution of π(p, q) = π
(
p(q); q

)
.

Any equilibrium must have q = q∗. Indeed, if q < q∗ in equilibrium, p(q) < R will be

the unique maximizer of π in the sub-range p ∈ [c,∞), leading to q = 1 as the consumers’

best response, a contradiction. Similarly, if q > q∗ in equilibrium, p > R will be the

unique maximizer of π in the sub-range p ∈ [c,∞), leading to q = 0 as the consumers’

best response, a contradiction again. At q = q∗, the monopolist is indifferent between

setting the price at p and at p(q∗). In equilibrium it must randomize between these two in a

way that makes consumers willing to randomize between purchasing and not purchasing

when they cannot discern the price of the product and their reservation price.

Let α be the probably that the monopolist sets the high price p in equilibrium. Condi-

tional on the event that a consumer cannot discern the product price and his reservation

price, the conditional expectation of the product price is

α
[
1 − F

(
p − R

)]
p + (1 − α)

[
1 − F

(
R − p(q∗)

)]
p

α
[
1 − F

(
p − R

)]
+ (1 − α)

[
1 − F

(
R − p(q∗)

)] .

In order for the consumer to be indifferent between purchasing and not purchasing, this

conditional expectation must be the same as his reservation price, or equivalently,

α =

(
R − p(q∗)

) [
1 − F

(
R − p(q∗)

)]
(
p − R

) [
1 − F

(
p − R

)]
+

(
R − p(q∗)

) [
1 − F

(
R − p(q∗)

)] .
Consumers on average obtain strictly positive surplus because they break even either

when they feels the price of the good is above their reservation price, or when they cannot
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discern the two, yet with strictly positive probability (more precisely, with probability

(1 − α)F
(
R − p(q∗)

)
> 0) they obtain a strictly positive surplus of R − p(q∗) > 0. �

Proof of Proposition 2: Suppose F† is a distribution that also satisfies Assumptions

1 and 2, and dominates F in the FOSD sense. Let’s write the distribution explicitly as an

argument of the profit function. Then π(p; q,F†) > π(p; q,F) for any q > 0 and any p > R

(this is because when the monopolist sets a price higher than consumers’ reservation price,

it will fare better if more consumers cannot discern these two prices and hence cannot tell

for sure that this is a bad deal), and hence π(p†; q,F†) > π(p; q,F) for any q > 0, where p† is

the unique maximizer of π(p; q,F†) in the range p ∈ [R,∞).

On the other hand, π(p; q,F†) < π(p; q,F) for any q and any p < R (this is because when

the monopolist sets a price lower than consumers’ reservation price, it will fare worse if

more consumers cannot discern these two prices and hece cannot appreciate this good

deal), and hence π(p†(q); q,F†) > π(p(q); q,F) for any q, where p†(q) is the unique maximizer

of π(p; q,F†) in the range p ∈ [c,R].

Recall that π
(
p; ·,F

)
and π

(
p(·); ·,F

)
are both increasing functions of q, with the former

crossing the latter once and only once and from below at some q∗ ∈ (0, 1/2). Similarly

π
(
p; ·,F†

)
and π

(
p(·); ·,F†

)
are both increasing functions of q, with the former crossing the

latter once and only once and from below at some q† ∈ (0, 1/2). The facts that π
(
p; ·,F

)
lies pointwise below π

(
p; ·,F†

)
and that π

(
p(·); ·,F

)
lies pointwise above π

(
p(·); ·,F†

)
hence

implies q∗ ≥ q†. The monopolist’s equilibrium profit under distribution F† is hence

π
(
p†(q†); q†,F†

)
≤ π

(
p†(q†); q†,F

)
≤ π

(
p†(q†); q∗,F

)
≤ π

(
p(q∗); q∗,F

)
,

where the first inequality follows from the fact that the monopolist benefits from having

more consumers appreciating its good deal, second inequality follows from the fact that

π(p; q,F) is strictly increasing in q for any p > c, and the third inequality follows from the

optimality of p(q∗) given q∗ and F. This proves that the monopolist’s equilibrium profit

decreases with a FOSD shift in F. �
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Proof of Proposition 3: Start with any arbitrary distribution F that satisfies As-

sumptions 1 and 2. By Proposition 1 consumer surplus is strictly positive. Construct

an increasing sequence of distributions {Fn}n≥0 satisfying Assumptions 1 and 2 such that

F0 = F and fn(0) ↗ 1/(R − c). Note that, along this sequence, we have Fn dominates Fn+1

in the FOSD sense for all n. We shall prove that, for n sufficiently large, consumer surplus

in an economy featuring Fn is lower than that in an economy featuring F. To this end, it

suffices to prove that consumer surplus converges to 0 as n→∞.

Let p∗n, p∗
n
, and q∗n be the corresponding equilibrium variables in an economy featuring

Fn. Recall that p∗n maximizes πn
(
p; q∗n

)
= (p − c)[1 − Fn(p − R)]q∗n over the sub-range [R,∞),

and that q∗n > 0. Therefore, p∗n solves the following first-order condition:

p∗n − c =
1 − Fn

(
p∗n − R

)
fn

(
p∗n − R

) ≤
1 − Fn(0)

fn(0)
=

1
fn(0)

↘ R − c,

where the inequality follows from Assumption 1. We hence have p∗n ↘ R, which implies

lim
n→∞

πn

(
p∗n; q

)
= q(R − c).

We next prove that q∗n ↗ 1/2. Recall from the proof of Proposition 1 that πn

(
p∗n; ·

)
crosses πn

(
p

n
(·); ·

)
from below at q∗n < 1/2. Therefore, it suffices to prove that, for any

q < 1/2, πn

(
p∗n; q

)
< πn

(
p

n
(q); q

)
for n sufficiently large.

Recall from the proof of Proposition 1 that p
n
(q) < R for all q < qn, where qn is the

unique solution of fn(0)(R − c) = qn/
(
1 − qn

)
. Apparently qn ↗ 1/2. Therefore, for any

q < 1/2, we have p
n

(
q
)
< R for n sufficiently large. Moreover, for such q and n, we have

πn

(
p

n
(q); q

)
> πn(R; q) = q(R − c) = lim

m→∞
πm(p∗n; q),

where the inequality follows from the fact that p
n
(q) is the unique maximizer of π(·; q)

in the sub-range of [c,R]. For any m > n, πm

(
p

m
(q); q

)
> πn

(
p

n
(q); q

)
(recall the proof of

Proposition 2). Therefore, we have

lim
m→∞

πm

(
p

m
(q); q

)
≥ πn

(
p

n
(q); q

)
> lim

m→∞
πm(p∗n; q),
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and hence we have πm

(
p

m
(q); q

)
> πm

(
p∗m; q

)
for m sufficiently large. Since q < 1/2 is

arbitrary, we hence have q∗n ↗ 1/2 as claimed.

Finally, we prove that p∗
n
↗ R. Since p∗

n
= p

n

(
q∗n

)
, it maximizes πn

(
p; q∗n

)
= (p −

c)
(
Fn(R − p) + [1 − Fn(R − p)]q∗n

)
over the sub-range [c,R], and hence solves the following

first-order condition:

p∗
n
− c =

Fn

(
R − p∗

n

)
fn

(
R − p∗

n

) +
q∗n(

1 − q∗n
)

fn

(
R − p∗

n

) > q∗n(
1 − q∗n

)
fn

(
R − p∗

n

) ≥ q∗n(
1 − q∗n

)
fn(0)

.

Take limit on both sides, we have

lim
n→∞

p∗
n
− c ≥ R − c = lim

n→∞

q∗n(
1 − q∗n

)
fn(0)

,

and hence p∗
n
↗ R as claimed.

That consumer surplus converges to 0 as n→∞ now follows from p∗
n
↗ R.

Similarly, we can construct a decreasing sequence of distributions {Fn}n≥0 satisfying

Assumptions 1 and 2 such that F0 = F and Fn(R − c)↘ 0. Note that, along this sequence,

we have Fn dominates Fn−1 in the FOSD sense for all n. As explained in the main text,

consumer surplus converges to 0 as n→ ∞, and hence consumer surplus in an economy

featuring Fn is lower than that in an economy featuring F for n large enough. �
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Appendix B: Omitted Proofs in Section 4

We first prove three lemmas that will be used in the proofs of both Proposition 4 and

Proposition 6. Define

P := {(p1, p2) | p1 ≤ R, p2 = 2R − p1}.

Lemma 2 Consider the case of a monopolist marketing up to two different brands. Suppose

consumers’ strategy (q1, q2) is such that q1 = 0. Then, for every (p1, p2) such that p1 < R and

p1 ≤ p2 < 2R − p1, there exists (p′1, p
′

2) ∈ P such that the monopolist makes strictly higher profit

(i.e., π(p1, p2) < π(p′1, p
′

2)).

Proof: Fix any p1 < R. If the monopolist is to set p2 ∈ [R, 2R − p1), its profit will be

π(p1, p2) = (p1 − c)F(p2 − p1) + q2

(p1 + p2

2
− c

) [
1 − F(p2 − p1)

]
<

(
R −

p2 − p1

2
− c

)
F(p2 − p1) + q2 (R − c)

[
1 − F(p2 − p1)

]
= π

(
R −

p2 − p1

2
,R +

p2 − p1

2

)
,

where the strict inequality follows from p1 < R − (p2 − p1)/2.

If the monopolist is to set p2 ∈ [(p1 + R)/2,R), its profit will be

π(p1, p2) = (p1 − c)F(R − p1) + q2

(p1 + p2

2
− c

)
[1 − F(p2 − p1)],

which is weakly increasing in p2 (strictly so if q2 > 0), and hence according to the last

paragraph is also strictly worse than (p′1, p
′

2) =
(
R − (R − p1)/2,R + (R − p1)/2

)
∈ P.

If the monopolist is to set p2 ∈ [p1, (p1 + R)/2), its profit will be

π(p1, p2) = (p1 − c)F(p2 − p1)

+
(p1 + p2

2
− c

) [
F(R − p2) − F(p2 − p1)

]
+ (p1 − c)

[
F(R − p1) − F(R − p2)

]
+ q2

(p1 + p2

2
− c

) [
1 − F(R − p1)

]
≤

(p2 + p2

2
− c

) (
F(R − p1) + q2

[
1 − F(R − p1)

])
.
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However, if the monopolist is to set prices (p′1, p
′

2) = (p2, 2R − p2) ∈ P, its profit will be

π(p′1, p
′

2) = π(p2, 2R − p2)

= (p2 − c)F(2R − 2p2) + q2(R − c)[1 − F(2R − 2p2)]

>
(p1 + p2

2
− c

)
F(2R − 2p2) + q2

(p1 + p2

2
− c

)
[1 − F(2R − 2p2)]

>
(p2 + p2

2
− c

) (
F(R − p1) + q2

[
1 − F(R − p1)

])
≥ π(p1, p2),

where the second inequality follows from 2R − 2p2 > 2R − 2(p1 + R)/2 = R − p1. �

Lemma 3 Consider the case of a monopolist marketing up to two different brands. Suppose

consumers’ strategy (q1, q2) is such that q1 = 0. Suppose, furthermore, either q1 = 0 or f (0)(R−c) ≥

1/2. Then, for every (p1, p2) such that p1 < R and p2 > 2R − p1, there exists (p′1, p
′

2) ∈ P such that

the monopolist makes weakly higher profit (i.e., π(p1, p2) ≤ π(p′1, p
′

2)).

Proof: Fix any p1 < R. If the monopolist is to set p2 > 2R − p1, its profit will be

π(p1, p2) = (p1 − c)F(R − p1)

+ (p1 − c)
[
F(p2 − p1) − F(p2 − R)

]
+ q2

(p1 + p2

2
− c

) [
1 − F(p2 − p1)

]
.

Partial-differentiating wrt p2, we have

∂π
∂p2

= (p1 − c)
[

f (p2 − p1) − f (p2 − R)
]

+ q2

[
1 − F(p2 − p1)

2
−

(p1 + p2

2
− c

)
f (p2 − p1)

]
≤

q2 f (p2 − p1)
2

[
1 − F(p2 − p1)

f (p2 − p1)
− 2

(p1 + p2

2
− c

)]
≤

q2 f (p2 − p1)
2

[
1

f (0)
− 2(R − c)

]
≤ 0,
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where the first and the second inequalities follow from Assumption 1, and the third in-

equality follows from the supposition that either q2 = 0 or f (0)(R − c) ≥ 1/2. Therefore,

(p1, p2) is weakly worse than (p′1, p
′

2) = (p1, 2R − p1) ∈ P. �

Lemma 4 Consider the case of a monopolist marketing up to two different brands. Consider the

following constrained maximization problem: the monopolist is to maximize its profit by seting

(p1, p2), subject to the constraints that (p1, p2) ∈ P, and given the consumers’ strategy (q1, q2). The

monopolist’s problem has a unique solution that depends only on q2 but not on q1. There exists a

strictly increasing function p1(·), with p1(0) > c and p1(1) = R, such that, for any q2 ∈ [0, 1], the

monopolist’s unique solution is p1 = p1(q2) and p2 = 2R − p1(q2).

Proof: Fix any (q1, q2). For any (p1, p2) ∈ P, the monopolist’s profit is

π = (p1 − c)F(2R − 2p1) + q2(R − c)[1 − F(2R − 2p1)],

which apparently depends only on q2 but not on q1.

Differentiating π wrt p1, we have

dπ
dp1

= F(2R − 2p1) − 2(p1 − c) f (2R − 2p1) + 2q2(R − c) f (2R − 2p1)

= f (2R − 2p1)
[
F(2R − 2p1)
f (2R − 2p1)

− 2(p1 − c) + 2q2(R − c)
]
. (1)

By Assumption 1, F/ f is weakly increasing, and hence F(2R−2p1)/ f (2R−2p1) is weakly

decreasing in p1. Therefore, the term inside the square brackets is strictly decreasing in p1.

This shows that π is quasi-concave in p1, and hence admits a unique maximizer, denoted

by p1(q2).

Since the term inside the square brackets is strictly positive at p1 = c and strictly

negative (unless q2 = 1) at p1 = R, we have p1(q2) ∈ (c,R) for all q2 ∈ [0, 1). As for q2 = 1,

the term inside the square brackets is strictly positive at any p1 < R and is 0 at p1 = R.

Therefore, we have p1(1) = R.

Finally, since an increase in q2 strictly increases the term inside the square brackets,

p1(·) is strictly increasing in q2. �
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Proof of Proposition 4: If the monopolist always sets prices that are mirror images of

each other around R, then q2 = 0 is apparently a best response of the consumers contingent

on the all-tied case. Moreover, the single-contender case will never arise, and hence we

are free to specify a consumer’s (off-equilibrium) belief contingent on such an event. In

particular, one possible (off-equilibrium) belief contingent on the single-contender case is

that p1 is strictly higher than R, while at the same time the consumer’s type d is strictly

larger than p1−R. Against such a belief, q1 = 0 is the consumer’s best response contingent

on the single-contender case.

On the other hand, if q1 = q2 = 0, a consumer will never make a purchase unless

he finds at least one brand priced strictly below R. The monopolist will then make 0

sales if it sets p1 ≥ R (recall that p2 ≥ p1 by our convention). Therefore the monopolist’s

optimal pricing strategy must have p1 < R. By Lemmas 2 and 3, for every (p1, p2) such

that p1 < R and p1 ≤ p2 , 2R − p1, there exists (p′1, p
′

2) ∈ P such that the monopolist makes

weakly higher profit. Therefore, solutions of the constrained maximization problem de-

scribed in Lemma 4 are also the monopolist’s unconstrained best responses. By Lemma 4,

the constrained maximization problem admits a unique solution, namely p∗1 = p1(0) and

p∗2 = 2R − p1(0), where p1(0) ∈ (c,R). �

We prove Proposition 6 through a series of lemmas.

Lemma 5 In the case of a monopolist marketing up to two different brands, in any pure-pricing-

strategy equilibrium, (p∗1 + p∗2)/2 ≥ R.

Proof: Suppose not. Then the monopolist’s equilibrium profit is bounded from above

by (p∗1 + p∗2)/2 − c < R − c, because any consumer who purchases brand 2 with positive

probability must also purchase brand 1 with the same probability.

Note that in equilibrium consumers know the monopolist’s pricing strategy. Therefore,

q∗2 = 1, as a consumer’s unique best response is to purchase either brand randomly when

he finds himself in the all-tied case. Given q∗2 = 1, however, the monopolist can profit from

deviating to p1 = p2 = R, because its profit will increase to R − c, a contradiction. �

Lemma 6 In the case of a monopolist marketing up to two different brands, in any pure-pricing-

strategy equilibrium, if (p∗1 + p∗2)/2 > R, then p∗1 = R, p∗2 = ∞, and q∗1 > 0.
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Proof: Suppose there is a pure-pricing-strategy equilibrium where (p∗1 + p∗2)/2 > R.

Then q∗2 = 0 (when a consumer finds himself in the all-tied case, he rationally refrains from

purchasing any brand). Apparently p∗1 ≤ R, otherwise we would have had q∗1 = 0 as well,

and the monopolist’s equilibrium profit would have been 0, and would have profited

strictly from deviating to, say, p1 = p2 = (R + c)/2.

We claim that, if q∗1 = 1, then p∗2 = ∞. The presumption of (p∗1 + p∗2)/2 > R implies

p∗2 > 2R − p∗1. For any p2 > 2R − p∗1, given q∗1 = 1 and q∗2 = 0, the monopolist’s profit is

π(p∗1, p2) = (p∗1 − c)F(p2 − p∗1),

which is maximized by setting p2 = ∞.

Suppose p∗1 < R. Then q∗1 = 1 indeed (a consumer who finds himself in the one-

contender case would know for sure that the only contender is a good deal). Then,

according to the claim in the above paragraph, we have p∗2 = ∞. However, by setting

p1 < R and p2 = ∞, given q∗1 = 1, the monopolist’s profit is p1− c (a consumer will purchase

brand 1 for sure regardless whether he can discern p1 and R), which is increasing in p1.

Hence the only possible candidate for p∗1 is R.

It remains to prove that p∗2 = ∞. Note that q∗1 = 0 is not an equilibrium, otherwise

the monopolist”s equilibrium profit would have been 0, and would have profited strictly

from deviating to, say, p1 = p2 = (R + c)/2. For any q∗1 > 0, the monopolist’s profit is

π(p∗1, p2) = π(R, p2) = q∗1(R − c)F(p2 − R),

which is maximized by setting p2 = ∞. �

Corollary 1 In the case of a monopolist marketing up to two different brands, in any pure-pricing-

strategy equilibrium, (p∗1 + p∗2)/2 = R.

Proof: By Lemma 5, it suffices to show that (p∗1 +p∗2)/2 > R is impossible. By Lemma 6, if

(p∗1 + p∗2)/2 > R, then p∗1 = R, p∗2 = ∞, and q∗1 > 0. Given p∗2 = ∞ and q∗1 > 0, the monopolist’s

profit from setting any p1 ≥ R is

π(p1, p∗2) = π(p1,∞) = q∗1(p1 − c)
[
1 − F(p1 − R)

]
.
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By the same argument as in the proof of Proposition 1, there exists some p > R such

that π
(
p,∞

)
> π(R,∞) = π(p∗1, p

∗

2), a contradiction. �

Lemma 7 Consider the case of a monopolist marketing up to two different brands. Consider the

following constrained maximization problem: the monopolist is to maximize its profit by setting

(p1, p2), subject to R ≤ p1 ≤ p2, and given consumers’ strategy (q1, q2) is such that q1 = 0. A

solution of the monopolist’s problem is (p1, p2) =
(
p, p

)
, where p > R is as defined in Proposition 1.

Proof: For any (p1, p2) such that R ≤ p1 ≤ p2, the monopolist’s profit is

π(p1, p2) = q2

(p1 + p2

2
− c

)
[1 − F(p2 − R)]

≤ q2(p2 − c)[1 − F(p2 − R)]

≤ q2
(
p − c

) [
1 − F

(
p − R

)]
= π

(
p, p

)
,

where the second inequality follows from the definition of p in the proof of Proposition 1. �

Proof of Proposition 6: By Corollary 1, all pure-pricing-strategy equilibria resemble

the one described in Proposition 4, in the sense that (p∗1+p∗2)/2 = R. Therefore, if (q∗1, q
∗

2) is the

consumers’ equilbirium strategy, the monopolist’s equilibrium strategy must also solves

the constrained maximization problem described in Lemma 4. That is, any pure-pricing-

strategy equilibrium must take the form of (p∗1, p
∗

2, q
∗

1, q
∗

2) =
(
p1(q∗2), 2R − p1(q∗2), q∗1, q

∗

2

)
.

Apparently, if the monopolist is to set (p1, p2) such that (p1 + p2)/2 = R, any (q1, q2)

would be a consumer’s best response (see the proof of Proposition 4). Therefore, a

candidate equilibrium (p∗1, p
∗

2, q
∗

1, q
∗

2) =
(
p1(q∗2), 2R − p1(q∗2), q∗1, q

∗

2

)
is a valid equilibrium as

long as (p∗1, p
∗

2) is also the monopolist’s unconstrained optimal choice given (q∗1, q
∗

2).

Note that, if
(
p1(q∗2), 2R − p1(q∗2), q∗1, q

∗

2

)
is a pure-pricing-strategy equilibrium, then(

p1(q∗2), 2R − p1(q∗2), 0, q∗2
)

will also be a pure-pricing-strategy equilibrium. This is because

(i) the single-contender case is an off-equilibrium event, and any q1 can be supported by

some pessimistic enough off-equilibrium beliefs (see the proof of Proposition 4), and (ii)

lowering q1 to 0 does not affect the monopolist’s equilibrium profit, but weakly lowers its

profit if it were to deviate. In what follows we shall hence focus on equilibria of the form
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(p∗1, p
∗

2, q
∗

1, q
∗

2) =
(
p1(q∗2), 2R − p1(q∗2), 0, q∗2

)
.

Let Q2 denote the compact23 set of q2’s such that
(
p1(q2), 2R − p∗1(q2), 0, q2

)
is a pure-

pricing-strategy equilibrium. From Proposition 4 we know that Q2 is not empty, and

contains the point 0.

For any q2, q′2 ∈ Q2 such that q2 < q′2, the monopolist’s equilibrium profits are

π∗(q2) =
(
p1(q2) − c

)
F
(
2R − 2p1(q2)

)
+ q2(R − c)

[
1 − F

(
2R − 2p1(q2)

)]
<

(
p1(q2) − c

)
F
(
2R − 2p1(q2)

)
+ q′2(R − c)

[
1 − F

(
2R − 2p1(q2)

)]
≤

(
p1(q′2) − c

)
F
(
2R − 2p1(q′2)

)
+ q′2(R − c)

[
1 − F

(
2R − 2p1(q′2)

)]
= π∗(q′2),

where the second inequality follows from the definition of p1(·). Therefore, different

equilibria are rankable in terms of the monopolist’s equilibrium profit, with higher q∗2
implies higher profit.

On the other hand, in any pure-pricing-strategy equilibrium, a consumer gets a positive

surplus only when he has a type d < R − p1(q∗2), which enables him to compare p∗1 and R

and hence identify brand 1 out of the two brands. His expected surplus is hence

CS =
(
R − p1(q∗2)

)
F
(
2R − 2p1(q∗2)

)
, (2)

which is strictly decreasing in q∗2. Therefore, different equilibria are also rankable in terms

of consumer surplus, with higher q∗2 implies lower consumer surplus.

Let qmax
2 := sup Q2. We shall now prove that qmax

2 < 1.

Recall from the proof of Proposition 1 that p is the unique solution of maxp≥R(p− c)[1−

F(p − R)]. Since p > R, we have

(
p − c

) [
1 − F

(
p − R

)]
> (R − c).

Suppose qmax
2 = 1, then by compactness of Q2 there is a pure-pricing-strategy equilib-

rium featuring q∗2 = 1. In such an equilibrium, by Lemma 4, we must have p∗1 = p∗2 = R.

The monopolist’s equilibrium profit is hence R − c.

If the monopolist deviates to p1 = p2 = p, its profit will increase to
(
p − c

) [
1 − F

(
p − R

)]
23Compactness follows from the usual continuity argument.
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thanks to q∗2 = 1, a contradiction.

In the remainder of this proof, suppose f (0)(R − c) ≥ 1/2. Then, by Lemmas 2, 3, 4,

and 7, when consumers’ strategy (q1, q2) is such that q1 = 0, the monopolist’s profit is

maximized either at (p1, p2) = (p1(q2), 2R − p1(q2)), or at (p1, p2) =
(
p, p

)
.

Y 
Ax

is

q
2q*

q  or q
2max0

eq profits
w/ 1 brand

max profits
w/ 2 brands

min profits
w/ 2 brands

Eq profit (2-brand case)

Profit of setting p(q)  (1-brand case)

Profit of setting p (1-brand case)-

-

Figure 4: equilibrium profits in the one-brand and two-brand cases

In Figure 4, we plot the monopolist’s profits at each of these two candidate maximizers

as functions of q2. The profit at (p1, p2) =
(
p, p

)
is depicted by the straight line passing

through the origin. Incidentally, it is the same straight line in Figure 1, with q2 replacing q

in the expression of π = q
(
p − c

) [
1 − F

(
p − R

)]
.

The profit at (p1, p2) = (p1(q2), 2R − p1(q2)) is depicted by the upper convex curve, and

has the expression of π =
(
p1(q2) − c

)
F
(
2R − 2p1(q2)

)
+ q2(R − c)

[
1 − F

(
2R − 2p1(q2)

)]
. That

it is strictly increasing and convex can be seen by totally differentiating it wrt q2 using the

Envelope Theorem, yielding

dπ
dp2

= (R − c)
[
1 − F

(
2R − 2p1(q2)

)]
,

which is strictly positive and strictly increasing in q2.

The convex curve is strictly above the straight line at q2 = 0, and is strictly below

at q2 = 1 (recall that p1(1) = R). The shapes of the two profit functions dictate that the
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convex curve crosses the straight line once and only once, and crosses from above, at some

qmax
2 ∈ (0, 1). Therefore, the candidate equilibrium (p∗1, p

∗

2, q
∗

1, q
∗

2) =
(
p1(q2), 2R − p1(q2), 0, q2

)
is a valid equilibrium if and only if q2 ∈

[
0, qmax

2

]
.

We also superimpose onto Figure 4 the monopolist’s profit if it sets the low price p(q) in

the one-brand case . It is depicted by the lower convex curve. Indeed, it is strictly below

the upper convex curve at every q < 1, because it has the expression of

π =
(
p(q) − c

) (
F
(
R − p(q)

)
+ q

[
1 − F

(
R − p(q)

)])
≤

(
p(q) − c

) (
F
(
2R − 2p(q)

)
+ q

[
1 − F

(
2R − 2p(q)

)])
≤

(
p(q) − c

)
F
(
2R − 2p(q)

)
+ q(R − c)

[
1 − F

(
2R − 2p(q)

)]
≤

(
p1(q) − c

)
F
(
2R − 2p1(q)

)
+ q(R − c)

[
1 − F

(
2R − 2p1(q)

)]
where the first two inequalities are strict if p(q) < R, and the third inequality is strict if

p(q) = R , p1(q), and hence at least one of these inequalities is strict for every q < 1.

Note that the last expression is exactly the same as the monopolist’s profit at (p1, p2) =

(p1(q2), 2R − p1(q2)) if we replace q with q2, which proves that the upper and the lower

convex curves touch only at q = 1.

It becomes apparent from Figure 4 that q∗ < qmax
2 , and that in the pure-pricing-strategy

equilibrium featuring q∗2 = qmax
2 , the monopolist’s profit is higher than its equilibrium profit

in the one-brand case. �
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Appendix C: Omitted Proofs in Section 6

We prove Proposition 9 through a series of lemmas.

Lemma 8 In the case of two sellers marketing up to only one brand each, in any pure-pricing-

strategy equilibrium, if p∗1 = p∗2 = p∗, then p∗ < R.

Proof: Suppose p∗ > R. Then we must have q∗2 = 0 (a consumer who finds himself in the

all-tied case would rationally refuse to purchase either brand), resulting in 0 equilibrium

profit for both sellers. Seller 1, for example, can profit from deviating to p1 = (R+ c)/2 < R.

After such deviation, seller 1 can sell to at least F((R − c)/2) consumers at a margin of

(R − c)/2, which yields strictly positive profit, a contradiction.

Suppose p∗ = R. Then p1 = R must be a best response against p2 = R. When p2 = R,

seller 1’s profit as a function of p1 is

π1(p1) =

(p1 − c)[1 − F(p1 − R)]q2/2 if p1 ≥ R

(p1 − c)
(
F(R − p1) + [1 − F(R − p1)]q2/2

)
if p1 ≤ R

.

which is exactly the same profit function as that in the one-brand case (with q replaced by

q2/2, and p replaced by p1). However, from the proof of , we know that p1 = R is never a

best response regardless of q2/2, a contradiction. �

Lemma 9 In the case of two sellers marketing up to only one brand each, in any pure-pricing-

strategy equilibrium, we have c < p∗1 < p∗2.

Proof: By Lemma 8, it suffices to prove that there is no pure-pricing-strategy equilib-

rium with p∗1 = p∗2 = p∗ < R. Suppose, on the contrary, such an equilibrium exists. Then

we must have q∗2 = 1 (a consumer who finds himself in the all-tied case can guarantee a

strictly positive surplus of R − p∗ by purchasing randomly from one of the two sellers).

Note that, since the single-contender case is an off-equilibrium event, any q∗1 can be sup-

ported by some off-equilibrium belief. It is wlog to set q∗1 = 0, because that leaves the

sellers’ equilibrium profits intact, while makes their deviation profits weakly lower.

Given (q∗1, q
∗

2) = (0, 1) and p∗1 = p∗2 = p∗, seller 1’s equilibrium profit is

π∗1 = (p∗ − c)/2.
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If seller 1 deviates to p1 = R, its profit will become

π1 = (R − c)[1 − F(R − p∗)]/2.

We shall show that π1 > π∗1, which will be a contradiction. Let H(p∗) := 2(π1 − π∗1), and

differentiate it wrt p∗, we have

H′(p∗) = (R − c) f (R − p∗) − 1 ≤ (R − c) f (0) − 1 < 0,

where the first and the second inequalities follows from Assumption 1 and 2, respectively.

Therefore, H(p∗) > H(R) = 0 for any p∗ < R, and hence π1 > π∗1 as claimed.

If p∗1 ≤ c, seller 1 makes non-positive profit, and can strictly profit from deviating to

p1 = (c + p∗2)/2, a contradiction. �

Lemma 10 In the case of two sellers marketing up to only one brand each, in any pure-pricing-

strategy equilibrium, we have (p∗1 + p∗2)/2 ≤ R.

Proof: By Lemma 9, we have c < p∗1 < p∗2. Suppose (p∗1 + p∗2)/2 > R. Then p∗2 > R,

and hence the only chance that seller 2 can make a sale is to sell to consumers who find

themselves in the all-tied case. However, (p∗1 + p∗2)/2 > R also implies that any consumer

who finds himself in the all-tied case would rationally refuse to purchase; i.e., q∗2 = 0.

Therefore, seller 2 makes 0 equilibrium profit, and can strictly profit from deviating to

p2 = (p∗1 + c)/2, a contradiction. �

Lemma 11 In the case of two sellers marketing up to only one brand each, in any pure-pricing-

strategy equilibrium, we have p∗2 > R.

Proof: By Lemma 9, we have c < p∗1 < p∗2. Suppose p∗2 ≤ R. Then (p∗1 + p∗2)/2 < R, and

hence any consumer who finds himself in the all-tied case would rationally purchase for

sure; i.e., q∗2 = 1.

Divide consumers into two (disjoint and exhaustive) groups. The first group are

consumers who purchases from seller 1 for sure; i.e., consumers with type d in the set

D1 :=
{
d

∣∣∣ d < p∗2 − p∗1
}
∪

{
d

∣∣∣ max{p∗2 − p∗1,R − p∗2} ≤ d < R − p∗1
}
.
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The second group are consumers who purchase from each seller with probability 1/2;

i.e., consumers with type d in the set

D2 :=
{
d

∣∣∣ p∗2 − p∗1 ≤ d < R − p∗2
}
∪

{
d

∣∣∣ d ≥ R − p∗1
}
.

Seller 1’s equilibrium profit is

π∗1 = (p∗1 − c)[Pr(D1) + Pr(D2)/2].

If seller 1 deviates to p1 = p∗2, it will share the market with seller 2, resulting in profit

π1 = (p∗2 − c)/2 = (p∗2 − c)[Pr(D1)/2 + Pr(D2)/2].

Equilibrium requires that such deviation is not profitable; i.e.,

(p∗1 − c)[Pr(D1) + Pr(D2)/2] ≥ (p∗2 − c)[Pr(D1)/2 + Pr(D2)/2]. (3)

On the other hand, seller 2’s equilibrium profit is

π∗2 = (p∗2 − c)Pr(D2)/2.

If seller 2 deviates to p2 = p∗1, it will share the market with seller 1, resulting in profit

π2 = (p∗1 − c)/2 = (p∗1 − c)[Pr(D1)/2 + Pr(D2)/2].

Equilibrium requires that such deviation is not profitable; i.e.,

(p∗2 − c)Pr(D2)/2 ≥ (p∗1 − c)[Pr(D1)/2 + Pr(D2)/2]. (4)

Adding (3) and (4), we have p∗1 ≥ p∗2, a contradiction. �

Lemma 12 In the case of two sellers marketing up to only one brand each, in any pure-pricing-

strategy equilibrium, we have (p∗1, p
∗

2) = (R − x∗,R + x∗), where x∗ > 0 is the unique solution
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to
1 − F(2x∗)

f (2x∗)
= x∗ + R − c.

Proof: By Lemmas 10 and 11, we have (p∗1 + p∗2)/2 ≤ R and p∗2 > R, which together imply

p∗1 < R < p∗2 and q∗1 = 1 (any consumer who finds himself in the single-contender case

would rationally purchase for sure). Suppose (p∗1 + p∗2)/2 < R. Then any consumer who

finds himself in the all-tied case would rationally purchase for sure; i.e., q∗2 = 1. Against

p∗1 < R and (q∗1, q
∗

2) = (1, 1), seller 2’s profit for any p2 > R is

π2 = (p2 − c)[1 − F(p2 − p∗1)]/2,

which implies that p∗2 satisfies the FOC of

1 − F(p∗2 − p∗1) = (p∗2 − c) f (p∗2 − p∗1). (5)

Similarly, against p∗2 > R and (q∗1, q
∗

2) = (1, 1), seller 1’s profit for any p1 < R is

π1 = (p1 − c) − (p1 − c)[1 − F(p∗2 − p1)]/2,

which implies that p∗1 satisfies the FOC of

1 − [1 − F(p∗2 − p∗1)]/2 = (p∗1 − c) f (p∗2 − p∗1)/2. (6)

Multiply (6) by 2, and subtract (5) from it, we have 2F(p∗2 − p∗1) = (p∗1 − p∗2) f (p∗2 − p∗1) < 0,

a contradiction. This proves that (p∗1 + p∗2)/2 = R.

Recall that seller 2 must make strictly positive equilibrium profit (otherwise it can

strictly profit from deviating to p2 = (c + p1)/2), hence we must have q∗2 > 0 (because the

only chance that seller 2 makes a sale is when a consumer finds himself in the all-tied

case). Against p∗1 < R and q∗2 > 0, for any p2 > R, seller 2’s profit is

π2 = (p2 − c)[1 − F(p2 − p∗1)]q∗2/2,
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which implies that p∗2 satisfies the same FOC as (5). Rewrite (5) as

1 − F(2x∗)
f (2x∗)

= x∗ + R − c, (7)

where x∗ := R − p∗1 = p∗2 − R > 0. Since the LHS of (7) is weakly decreasing in x∗ by

Assumption 1, while the RHS is strictly increasing in x∗ without bound, a solution to (7)

is unique if it exists. Existence of a strictly positive solution follows from the fact that, by

Assumption 2, we have the LHS strictly bigger than the RHS at x∗ = 0. �

Proof of Proposition 9: The first half of Proposition 9 follows from Lemma 12. It

remains to prove the second half.

By the first half of the Proposition 9, in any pure-pricing-strategy equilibrium, a con-

sumer gets a positive surplus iff he has a type d < 2x∗ (in which case he can compare prices

and is able to identify the lower-price brand 1). His expected surplus is hence

CS = x∗F(2x∗).

In the equilibrium described in Proposition 4 for the case of a monopolist marketing

up to two different brands, by (2) in the proof of Proposition 6, consumers’ surplus is

CS = (R − p1(0))F(2R − 2p1(0)) = xF(2x),

where x := R − p1(0) is the unique solution to the first-order condition

F(2x)
f (2x)

= 2(R − c − x) (8)

by (1) in the proof of Lemma 4 (where we have simplified using q2 = 0). To prove the

second half of Proposition 9, it suffices to prove that x∗ < x.

Note that the LHS of (8) is strictly increasing and the RHS is strictly decreasing, and

they are equal to each other when evaluated at x. Therefore, to prove that x∗ < x, it suffices

to prove that the LHS of (8) is strictly smaller than the RHS when they are evaluated at x∗.
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That is, it suffices to prove that

F(2x∗)
f (2x∗)

< 2(R − c − x∗). (9)

Step 1: We first give a lower bound for (R − c − x∗).

Let π1(p1, p∗2) and π2(p∗1, p2) be sellers 1’s and 2’s profits as functions of their own prices,

where we have suppressed their dependence on (q1, q2). Recall from Figure 3 thatπ1(·,R+x

has a kink at p1 = R − x∗. In order for p = R − x∗ to be a local optimum for π1(p1, p∗2), the

right derivative at p = R − x∗ must be non-positive.

For p1 ∈ [R − x∗,R],

π1(p1, p∗2) = (p1 − c)
(
F(R − p1) + q1

[
F(p∗2 − R) − F(R − p1)

]
+

[
F(p∗2 − p1) − F(p∗2 − R)

]
+

q2

2
[
1 − F(p∗2 − p1)

])
= (p1 − c)

(
F(p∗2 − p1) +

q2

2
[
1 − F(p∗2 − p1)

]
− (1 − q1)

[
F(p∗2 − R) − F(R − p1)

])
.

Therefore, for p1 ∈ (R − x∗,R),

∂π1(p1, p∗2)
∂p1

=
(
F(p∗2 − p1) +

q2

2
[1 − F(p∗2 − p1)] − (1 − q1)[F(p∗2 − R) − F(R − p1)]

)
− (p1 − c)

[(
1 −

q2

2

)
f (p∗2 − p1) + (1 − q1) f (R − p1)

]
≥

(
F(p∗2 − p1) +

q2

2
[1 − F(p∗2 − p1)] − [F(p∗2 − R) − F(R − p1)]

)
− (p1 − c)

[(
1 −

q2

2

)
f (p∗2 − p1) + f (R − p1)

]
.

Local optimality of p1 = R − x∗ hence requires that

0 ≥
∂π1(p1, p∗2)

∂p1

∣∣∣∣∣∣
p1=p∗1+

≥

(
F(2x∗) +

q2

2
[1 − F(2x∗)]

)
−

[(
1 −

q2

2

)
f (2x∗) + f (x∗)

]
(R − c − x∗)

=
[
F(2x∗) +

q2

2
f (2x∗)(R − c + x∗)

]
−

[(
1 −

q2

2

)
f (2x∗) + f (x∗)

]
(R − c − x∗)

= F(2x∗) + q2 f (2x∗)(R − c) −
[

f (2x∗) + f (x∗)
]

(R − c − x∗),
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where the first equality follows from (7). This implies

q2 ≤
[ f (2x∗) + f (x∗)](R − c − x∗) − F(2x∗)

f (2x∗)(R − c)
. (10)

Rearranging terms, we can express (10) as a lower bound for (R − c − x∗):

R − c − x∗ ≥
F(2x∗) + q2 f (2x∗)(R − c)

f (2x∗) + f (x∗)
≥

F(2x∗)
f (2x∗) + f (x∗)

. (11)

Step 2: We next give an upper bound for F(2x∗).

In order for p2 = R + x∗ to be a global optimum for π2(p∗1, p2), we must have

π2(R − x∗,R + x∗) ≥ π2(R − x∗,R − x∗)

⇐⇒
q2

2
[1 − F(2x∗)] (R − c + x∗) ≥

(1
2

F(x∗) +
q2

2
[1 − F(x∗)]

)
(R − c − x∗)

which requires

q2 ≥
F(x∗)(R − c − x∗)

[1 − F(2x∗)] (R − c + x∗) − [1 − F(x∗)] (R − c − x∗)
≥ 0. (12)

Combining (10) and (12), we have

F(x∗)(R − c − x∗)
[1 − F(2x∗)] (R − c + x∗) − [1 − F(x∗)] (R − c − x∗)

≤
[ f (2x∗) + f (x∗)](R − c − x∗) − F(2x∗)

f (2x∗)(R − c)
.
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Rearranging terms, we have

F(2x∗) ≤ [ f (2x∗) + f (x∗)](R − c − x∗) −
F(x∗)(R − c − x∗) f (2x∗)(R − c)

[1 − F(2x∗)] (R − c + x∗) − [1 − F(x∗)] (R − c − x∗)

= f (2x∗)(R − c − x∗)
(
1 +

f (x∗)
f (2x∗)

−
F(x∗)(R − c)

[1 − F(2x∗)] (R − c + x∗) − [1 − F(x∗)] (R − c − x∗)

)
≤ f (2x∗)(R − c − x∗)

×

(
1 +

f (x∗)
f (2x∗)

−
x∗ f (x∗)(R − c)

[1 − F(2x∗)] (R − c + x∗) −
[
1 − F(2x∗) + x∗ f (2x∗)

]
(R − c − x∗)

)
= f (2x∗)(R − c − x∗)

(
1 +

f (x∗)
f (2x∗)

−
x∗ f (x∗)(R − c)

2x∗ [1 − F(2x∗)] − x∗ f (2x∗)(R − c − x∗)

)
= f (2x∗)(R − c − x∗)

(
1 +

f (x∗)
f (2x∗)

−
f (x∗)(R − c)

2 f (2x∗)(R − c + x∗) − f (2x∗)(R − c − x∗)

)
= f (2x∗)(R − c − x∗)

[
1 +

f (x∗)
f (2x∗)

(
1 −

R − c
2(R − c + x∗) − (R − c − x∗)

)]
= f (2x∗)(R − c − x∗)

[
1 +

f (x∗)
f (2x∗)

(
1 −

R − c
R − c + 3x∗

)]
,

where the second inequality follows from Assumption 1,24 and the third equality follows

from (7). Therefore, to prove (9), it suffices to prove that

f (x∗)
f (2x∗)

(
1 −

R − c
R − c + 3x∗

)
< 1. (13)

Step 3: We shall now prove (13).

By (11), we have

[
f (2x∗) + f (x∗)

]
(R − c − x∗) ≥ F(2x∗)

= 1 − f (2x∗)(R − c + x∗),

where the equality follows from (7). Rearranging, we have

1 ≤ 2 f (2x∗)(R − c) + f (x∗)(R − c − x∗)

≤ 2 f (0)(R − c) + f (0)(R − c)

= 3 f (0)(R − c), (14)

24By Assumption 1, f is weakly decreasing. Hence F(x∗) ≥ x∗ f (x∗) and F(2x∗) − F(x∗) ≥ x∗ f (2x∗).
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where the second inequality follows from Assumption 1.

By (7), we have

x∗ =
1 − F(2x∗)

f (2x∗)
− (R − c) ≤

1
f (0)
− (R − c),

where the inequality follows from Assumption 1. Therefore,

x∗

R − c + x∗
≤

1/ f (0) − (R − c)
R − c + 1/ f (0) − (R − c)

= 1 − f (0)(R − c) ≤
2
3
, (15)

where the last inequality follows from (14).

By (11) again, we have

R − c − x∗ ≥
F(2x∗)

f (2x∗) + f (x∗)
≥

2x∗ f (2x∗)
f (2x∗) + f (x∗)

,

where the second inequality follows from Assumption 1. Therefore,

R − c ≥ x∗
(
1 +

2 f (2x∗)
f (2x∗) + f (x∗)

)
x∗

R − c
≤

f (2x∗) + f (x∗)
3 f (2x∗) + f (x∗)

. (16)

By Assumption 1,

0 ≤
(

f
1 − F

)′
=

f ′

1 − F
+

(
f

1 − F

)2

=
f

1 − F

(
f ′

f
+

f
1 − F

)
=

f
1 − F

(
(ln f )′ +

f
1 − F

)
.

Therefore, for any x ∈ [x∗, 2x∗],

d ln f (x)
dx

≥ −
f (x)

1 − F(x)
≥ −

f (2x∗)
1 − F(2x∗)

,

where the second inequality follows from Assumption 1. Therefore,

ln f (2x∗) − ln f (x∗) =

∫ 2x∗

x=x∗

d ln f (x)
dx

dx ≥ −
x∗ f (2x∗)

1 − F(2x∗)
= −

x∗

R − c + x∗
≥ −

2
3
,

where the second equality follows from (7), and the last inequality follows from (15). We
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hence have
f (x∗)

f (2x∗)
≤ exp

( x∗

R − c + x∗

)
≤ exp(2/3), (17)

and, by (16),

x∗

R − c
≤

f (2x∗) + f (x∗)
3 f (2x∗) + f (x∗)

=
1 + f (x∗)/ f (2x∗)
3 + f (x∗)/ f (2x∗)

≤
1 + exp(2/3)
3 + exp(2/3)

. (18)

The upper bound (18) allows us to give an even tighter upper bound for f (x∗)/ f (2x∗)

than (17):

f (x∗)
f (2x∗)

≤ exp
( x∗

R − c + x∗

)
= exp

(
x∗/(R − c)

1 + x∗/(R − c)

)
≤ exp

(
1 + exp(2/3)

4 + 2 exp(2/3)

)
. (19)

Plugging (16) and (19) into the LHS of (13), we then have

f (x∗)
f (2x∗)

(
1 −

R − c
R − c + 3x∗

)
=

f (x∗)
f (2x∗)

(
3x∗/(R − c)

1 + 3x∗/(R − c)

)
≤ exp

(
1 + exp(2/3)

4 + 2 exp(2/3)

)
×

(
3 + 3 exp(2/3)
6 + 4 exp(2/3)

)
= 0.9314

< 1,

as claimed. �
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Appendix D: When Assumption 2 is Violated

This appendix contains the complementary analysis for the case when Assumption 2

is violated. We start with a monopolist marketing a single brand.

Proposition 11 Consider a monopolist marketing up to only one brand. In the case of f (0)(R−c) ≥

1, there exists a continuum of equilibria, indexed by different q∗ ∈ [q, 1] with some q ≥ 1/2, where

the monopolist sets the price p∗ = R, and consumers purchase with probability q∗ whenever they

cannot discern the price of the product and their reservation price. Among these equilibria, the

most efficient one is the one with q∗ = 1, which also achieves the first best.

Proof: Define p and p(q) as in the proof of Proposition 1; i.e., p is the unique maximizer

of π(p; q) in the sub-range p ∈ [R,∞), while p(q) is that in the sub-range p ∈ [c,R]. Since
∂π
∂p

∣∣∣∣∣
p=R+

= 1 − f (0)(R − c) ≤ 0, we have p = R, and hence p(q) is also the unique maximizer

of π in the whole range p ∈ [c,∞).

Define q as in the proof of Proposition 1; i.e., q is the point at which p(q) as an increasing

function of q first reaches R (in other words, p(q) = R iff q ≥ q). Suppose q∗ < q < 1 in

equilibrium. Then we must have p∗ = p(q∗) < R in equilibrium as well. But then a consumer

who is unable to discern p∗ and R can still infer from his knowledge of the monopolist

equilibrium strategy that p∗ = p(q∗) < R. His best response is hence to purchase the

product for sure (i.e., q∗ = 1), contradicting the presumption that q∗ < q < 1.

On the other hand, any q∗ ∈ [q, 1] can be part of an equilibrium, with the monopolist’s

best response being p∗ = R. �

We then move on to the case of a monopolist marketing up to two different brands.

When Assumption 2 is violated, there are more pure-pricing-strategy equilibria. Not only

that there are more pure-pricing-strategy equilibria where the monopolist markets two

different brands (and sets prices that are mirror images of each other around R), there is

also a pure-pricing-strategy equilibrium where the monopolist markets only one brand.

Proposition 12 Consider a monopolist marketing up to two different brands. In the case of

f (0)(R − c) ≥ 1,

• there exists a strictly increasing function p1(·) that maps [0, 1] into (c,R], with p1(1) = R,
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such that, for every q∗2 ∈ [0, 1], there exists a pure-pricing-strategy equilibrium featuring that

specific q∗2, in which the monopolist sets deterministic prices p∗1 = p1(q∗2) and p∗2 = 2R − p∗1;

• there also exists a pure-pricing-strategy equilibrium featuring (p∗1, p
∗

2) = (R,∞) and (q∗1, q
∗

2) =

(1, 0).

Proof: Note that Lemmas 2, 3, 4, 5, 6, 7 (with “p > R” replaced by “p = R”), and

Proposition 4 remain valid, because their proofs do not rely on Assumption 2. However,

the proof of Corollary 1 falls apart, because it relies on an argument made in the proof of

Proposition 1, which in turn relies on Assumption 2. Therefore, we continue to have pure-

pricing-strategy equilibria of the form described in Proposition 6, but we can no longer

use Corollary 1 to rule out pure-pricing-strategy equilibria featuring (p∗1, p
∗

2) = (R,∞).

Let qmax
2 be defined as in the proof of Proposition 6. Since f (0)(R − c) > 1/2 when

Assumption 2 is violated, the same argument as in the last part of the proof of Proposition

6 suggests that (i) for every q∗2 ∈ [0, qmax
2 ], there exists a pure-pricing-strategy equilibrium

featuring that specific q∗2, in which the monopolist sets deterministic prices p∗1 = p1(q∗2) and

p∗2 = 2R − p∗1 (where p1(·) is defined in Lemma 4), and (ii), qmax
2 is the maximum q2 such

that profit at (p1, p2) = (p1(q2), 2R − p1(q2)) is weakly higher than profit at (p1, p2) = (p, p).

However, when Assumption 2 is violated, p = R, and hence the former profit is weakly

higher than the latter profit for every q2 by the definition of p1(·). Therefore, we have

qmax
2 = 1, which implies the first half of the proposition.

To prove the second half of the proposition, note that if (p∗1, p
∗

2) = (R,∞), then any q1

is a best response, and any q2 is a best response against some off-equilibrium belief. So

it suffices to prove that (p1, p2) = (R,∞) is a best response against (q∗1, q
∗

2) = (1, 0). The

proof, however, is almost the same as that for p = R being a best response against q = 1 in

the one-brand case when Assumption 2 is violated (see the proof of Proposition 11), and

hence is omitted. �
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