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Abstract

We propose nonparametric definitions of absolute and comparative naiveté.

These definitions leverage ex-ante choice of menu to identify predictions of future

behavior and ex-post (random) choices from menus to identify actual behavior.

The main advantage of our definitions is their independence from any assumed

functional form for the utility function representing behavior. An individual is

sophisticated if she is indifferent between choosing from a menu ex post or commit-

ting to the actual distribution of choices from that menu ex ante. She is naive if

she prefers the flexibility in the menu, reflecting a mistaken belief that she will act

more virtuously than she actually will. We propose two definitions of comparative

naiveté and explore the restrictions implied by our definitions for several prominent

models of time inconsistency. Finally, we discuss the implications of general naiveté

for welfare and the design of commitment devices.
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1 Introduction

Models of dynamic inconsistency play an important role in a wide-ranging set of economic

applications, and there is strong and increasing interest in the implications of naiveté

when individuals mispredict their future behavior.1 While naiveté often yields surprising

and significant consequences, so far these effects are usually understood within the context

of specific utility representations, where the existence and comparison of naiveté are

defined and tested through parameters like discount factors or probabilities.

In this paper, we introduce general nonparametric definitions of naiveté and sophisti-

cation, as well as comparative measures of naiveté. We then characterize the implications

of these definitions for a broad class of utility specifications. Our behavioral definitions

leverage two pieces of choice data. First, we use preference for commitment to measure

anticipated behavior from an ex-ante perspective before the realization of temptation.

Formally, the individual’s preferences over different option sets (or menus) capture her

demand for commitment and allow an inference of her beliefs regarding her future behav-

ior. Second, we use choices from option sets to measure actual behavior from an ex-post

perspective under the influence of temptation and after the level of commitment is fixed.

Since uncertainty about future behavior seems especially compelling under naiveté and

is increasingly relevant in applied work, we formally accommodate this uncertainty by

modeling ex-post behavior as a random choice rule.

For a simple illustration of our approach, consider first an individual who makes

deterministic choices. Her ex-ante ranking of option sets is given by a preference %,

and her ex-post choice from any menu is given by a choice function C.2 When choosing

between two options p and q, an individual may prefer p if committing ex ante, {p} � {q},
yet choose q if given the option ex post, C({p, q}) = q. This pattern is indicative of

time inconsistency and has been documented in numerous contexts, e.g., a preference to

maintain a healthy diet, decrease spending, or engage timely effort in a difficult task that

goes unfulfilled ex post. Still, additional information is needed to determine whether the

individual is sophisticated or naive about this inconsistency. If we also observe a strict

preference to retain the option p ex ante, {p, q} � {q}, then we can further infer that she

(incorrectly) anticipates that p will be her ex-post choice from the menu {p, q} and hence

she is naive. In the more general case of stochastic choice, if p is chosen with probability

1A recent survey of empirical applications can be found in Section 2.1 of DellaVigna (2009) and a
survey of some theoretical applications in contract theory can be found in Koszegi (2014).

2We focus throughout the paper on choice functions rather than correspondences, which presumes the
individual uses some tie-breaking procedure to select between equally attractive options. Our primitives
for stochastic choice make similar implicit assumptions. Importantly, our results do not depend in any
way on how ties are broken. Hence, while our results can easily be extended to deal with choice corre-
spondences (and their stochastic generalizations), it is a strength of the current analysis that knowledge
of the complete set of possible options that the individual is willing to choose from a menu is not required.
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α from the menu {p, q} at the ex-post stage, then the relevant ex-ante comparison is

between the menu {p, q} and commitment to the mixture {αp + (1 − α)q}. A strict

preference for the former indicates biased beliefs that overestimate the probability of

choosing the ex-ante more appealing alternative p.

Our behavioral definitions extend the same approach to arbitrary choice sets. To test

absolute naiveté and sophistication, we compare an individual’s predicted value for a

menu x of different options against the actual value of her ex-post choice C(x) from that

menu. Ex ante, a sophisticate correctly anticipates her future choice and is indifferent

between maintaining the flexibility to choose from x later or committing to her eventual

choice C(x) now, i.e., x ∼ {C(x)}. In contrast, a naif mistakenly anticipates making a

more virtuous choice and prefers to maintain the flexibility in x, i.e., x % {C(x)}. In the

case of uncertain temptations and random choice, we maintain this basic intuition by

comparing her preference for the menu versus committing to the lottery over outcomes

induced by her distribution of choices. As we discuss later in the introduction, our

definitions are closely related to several recent empirical studies of time inconsistency

and naiveté.

While the behavioral implications of absolute naiveté have received some attention

in the literature, the behavior associated with increases in naiveté has not been nearly

so well explored—especially in the case of stochastic choice. As a result, even within

specific models, the proper parametric restrictions that capture increased naiveté are

not fully understood or agreed upon. To shed some light on this issue, we propose two

behavioral definitions of comparative naiveté. For ease of illustration, consider first the

special case of deterministic choice. Our first definition compares beneficial commitment

opportunities that are naively declined. A commitment to the singleton menu {p} is

beneficial if {p} % {C(x)}, that is, if p is more virtuous than the outcome C(x) that

would be chosen from x. A naive agent may nonetheless prefer x to {p}; that is, instead

of taking the opportunity to commit to {p}, she maintains the flexibility of x, anticipating

making a more virtuous choice, but ends up with the more indulgent C(x). So a beneficial

commitment is declined if x % {p} % {C(x)}. Our first definition is that an individual is

more naive than another if she declines more advantageous commitments.

Our second definition compares individuals’ anticipated and actual indirect utilities

for a menu. A naive individual overvalues flexibility. Correspondingly, our second pro-

posal is that an individual is more naive than another if the difference between her

believed and actual indirect utilities for a menu is always larger. We provide a primitive

behavioral condition that characterizes this comparison. We prove that this notion is less

demanding than our first comparative measure and hence more completely ranks naiveté

across individuals. In the case of random choice, both comparative definitions extend by

replacing the deterministic choice with the induced lottery over outcomes.
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Using one of the most comprehensive models of time-inconsistent preferences avail-

able, the random Strotz representation, we show that our definitions of absolute and

comparative naiveté characterize sharp and intuitive parametric restrictions. As we will

illustrate using examples and applications throughout the paper, this representation is

general enough to include the majority of all utility representations for time-inconsistent

preferences that appear in the applied literature.3 Our approach therefore unifies dis-

parate models in the literature and illuminates a basic common behavior that undergirds

their evaluations of naiveté: underdemand for commitment.

As an illustration, consider the following stochastic generalization of the Strotzian

quasi-hyperbolic representation. An individual would like to choose a consumption

stream to maximize her exponentially discounted stream of instantaneous utility u with

discount factor δ. Instead, future utility is discounted against the present by an additional

present-bias factor β that is random and follows a distribution F on [0, 1]. Her possibly

mistaken belief is that her present-bias will instead follow distribution F̂ . For this model,

our absolute definition of naiveté turns out to be equivalent to the first-order stochastic

dominance relation F̂ ≥FOSD F , i.e., F̂ (β) ≤ F (β) for all β ∈ [0, 1]. A naive individual

is therefore overoptimistic about her virtue in the statistical sense of overweighting more

patient present-bias factors. In addition, individual 1 is more naive than individual 2 in

our first stronger sense if and only if F̂1 ≥FOSD F̂2 ≥FOSD F2 ≥FOSD F1. That is, a more

naive agent has more optimistic beliefs (F̂1 ≥FOSD F̂2) while simultaneously engaging in

less virtuous behavior (F2 ≥FOSD F1). Under our weaker second comparison, individual

1 is more naive than individual 2 if and only if F1(β) − F̂1(β) ≥ F2(β) − F̂2(β) for all

β ∈ [0, 1]. In other words, the more naive individual underestimates the probability of

greater impatience (low values of β) by more than the less naive individual.

This general stochastic representation has two important special cases. First, suppose

F̂ and F are supported on β and 1. That is, there is some chance an individual succumbs

to present-bias β and some chance she takes the virtuous action and maximizes exponen-

tial discounted utility. In actuality, the chance of being virtuous is θ = 1−F (β), but the

decision maker thinks the chance of being virtuous is θ̂ = 1− F̂ (β). This corresponds to

a model of frequency naiveté originally proposed by Eliaz and Spiegler (2006). Absolute

naiveté in this special case is equivalent to θ̂ ≥ θ. Individual 1 is more naive than 2 in our

stronger first sense if and only if β1 = β2 and θ̂1 ≥ θ̂2 ≥ θ2 ≥ θ1. Thus both individuals

share the same potential levels of realized present-bias, but the more naive one believes

she is less likely to succumb to temptation (θ̂1 ≥ θ̂2) while in reality she is more likely

to be present-biased (θ2 ≥ θ1). Our weaker second comparison requires either that 2 is

sophisticated (so β2 = 1 or θ̂2 = θ2) or that β2 ≥ β1 and θ̂1 − θ1 ≥ θ̂2 − θ2, which is

3One important exception is models that incorporate costly self-control. We apply our definitions
to the random self-control representation as an extension in Section 7.2, and we explore alternative
definitions of naiveté for self-control preferences in a companion paper Ahn, Iijima, and Sarver (2016).
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more general since the level of present-bias can be strictly more severe for the more naive

individual and only the differences in their beliefs need to be ordered.

As a second special case, suppose F̂ and F are deterministic and concentrated respec-

tively on β̂ and β. This is the naive quasi-hyperbolic model introduced by O’Donoghue

and Rabin (2001). Then an individual is naive if and only if β̂ ≥ β. An individual is

strongly more naive then another if and only if β̂1 ≥ β̂2 ≥ β2 ≥ β1. However, in contrast

to the prior special case with more optimistic probability weights, the weaker second

definition of comparative naiveté is here equivalent to the first, excepting the case where

individual 2 is sophisticated (β̂2 = β2). In particular, β̂1 − β1 ≥ β̂2 − β2 does not imply

individual 1 is weakly more naive.

As these cases show, our approach can bring to light unifying themes and subtle

distinctions across models. But beyond improved theoretical understanding, behavioral

definitions of naiveté provide relevant substantive benefits. They permit an examination

of which positive predictions in applications rely on functional-form assumptions and

which predictions are inherent features of naiveté. For example, a more risk-accepting

investor will always choose a risky equity position over a risk-free bond whenever a more

risk-averse investor does. Similarly, we can ask whether predictions regarding savings or

procrastination are artifacts of an assumed utility or are robust implications of naiveté. In

turn, a deeper understanding of the mechanics of naive choice also improves normative

analysis. In particular, effective design of commitment devices can hinge crucially on

the assumed level of sophistication. Duflo, Kremer, and Robinson (2011) examine a

theoretical model where the optimal timing of when to offer a commitment depends on

whether individuals are sophisticated or naive regarding the degree of their present bias,

and they provide evidence from Kenyan fertilizer adoption that individuals are naive and

would benefit from earlier and time-limited commitments. Nonparametric definitions

of naiveté provide a language broad enough to understand the consequence of policy

interventions when citizens have qualitatively different forms of naiveté and are best

approximated by a variety of formal models, and to understand which policies work for

which assumed models.

Our use of ex-ante and ex-post behavior has several precedents in recent empirical

studies of time inconsistency and naiveté. For example, DellaVigna and Malmendier

(2006) study both the choice of gym membership, which determines the feasible set of

attendance/payment pairs, and subsequent attendance levels; Shui and Ausubel (2005)

observe consumers’ choices of credit card contracts and their subsequent borrowing be-

havior; Giné, Karlan, and Zinman (2010) offer subjects commitment contracts that in-

centivize smoking cessation and later test whether or not the subjects smoked; Kaur,

Kremer, and Mullainathan (2015) allow subjects to choose wage contracts that constrain

their feasible future effort/consumption pairs and then observe actual effort ex post; Au-

genblick, Niederle, and Sprenger (2015) ask subjects to choose an intertemporal allocation
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of effort and a probability of being committed to it and then observe whether subjects

wish to revise that plan when the first date of task completion arrives. Not only do these

papers use similar choice data, but those that test for naiveté identify it using behavior

that is closely related to our definition. In fact, if individuals satisfy a basic dominance

condition—they prefer more money to less—then the evidence of naiveté found in several

of these papers can be mapped exactly into our definition. For example, purchasing an

unlimited gym membership and failing to attend the gym would be classified as naive

under our definition, since purchasing the membership is revealed ex-ante preferred to not

joining the gym, which is preferred by dominance to committing to pay for a membership

and not attend.4

There are also papers in decision theory that use behavior at different time periods to

capture sophistication under time inconsistency, as surveyed by Lipman and Pesendorfer

(2013). Noor (2011) considers preferences over a recursive domain that includes ex-ante

and ex-post choice preferences as projections; he pioneered the approach of using tempo-

ral choice as a domain for explicitly testing the sophistication implicitly assumed in most

ex-ante axiomatic models of temptation. Kopylov (2012) relaxes Noor’s sophistication

condition and considers agents who choose flexibility ex ante that is subsequently unused

ex post. Kopylov eschews mistaken or naive beliefs, but rather interprets the relaxation

of sophistication as reflecting a direct psychic benefit of maintaining positive self-image.

Finally, Dekel and Lipman (2012) observe that ex-ante and ex-post choice can be com-

bined to empirically distinguish random Strotz representations from others that involve

costly self-control. Much of the technical apparatus from Dekel and Lipman (2012) ends

up being useful in studying naiveté, as we will explain in the body of the paper.

The next section describes our formal primitives. Section 3 introduces our absolute

definition of naiveté. We begin with the special deterministic case to introduce and

ground concepts, and then move on to the general random case. Section 4 introduces our

strong and weak comparisons of naiveté. In both sections, we explore the implications

of these absolute and comparative definitions for general random Strotz representations.

In Section 5, we examine several popular specifications of dynamic inconsistency, such

as quasi-hyperbolic discounting and general diminishing impatience, and establish the

parametric restrictions implied by our definitions in these special cases. Section 6 applies

our setup to analyze the general welfare implications of naiveté for policies that introduce

4Two other types of data are also sometimes used as evidence of naiveté: The first is procrastina-
tion in completing tasks that have immediate costs and delayed rewards. We discuss in Section 3.1
how procrastination is a special case of our definition of naiveté. The second is surveys that directly
ask subjects to predict their future behavior. For example, a recent experiment by Augenblick and
Rabin (2015) incentivized direct reports of subjects’ predictions of future behavior. Importantly, since
prediction-accuracy bonuses allow subjects to use their predictions as soft commitment devices for their
future behavior, Augenblick and Rabin (2015) invoke a structural model that allows them to correct for
the resulting bias in belief estimates. It is not obvious how to adapt a nonparametric approach like the
one in this paper to their data.
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new commitment devices. Finally, Section 7 discusses areas where our model could be

generalized, including extensions to models of costly self-control and uncertain normative

preferences.

2 Primitives

We study a two-stage model with an agent who initially decides a menu of several options

and subsequently selects a particular option from that menu.

Let C be a compact and metrizable space of outcomes. Let ∆(C) denote the set of

lotteries (countably-additive Borel probability measures) over C, with typical elements

p, q, . . . ∈ ∆(C). When it causes no confusion, we slightly abuse notation and write c

in place of the degenerate lottery δc ∈ ∆(C) supported on c. Let K(∆(C)) denote the

family of nonempty compact subsets of ∆(C) with typical elements x, y, . . . ∈ K(∆(C)).

An expected-utility function is a continuous function u : ∆(C) → R such that u(αp +

(1 − α)q) = αu(p) + (1 − α)u(q) for all lotteries p, q. A function is nontrivial if it is

not constant. We write u ≈ v when u and v are expected-utility functions and u is a

positive affine transformation of v. For a fixed expected-utility function u and menu x,

let Bu(x) ≡ argmaxp∈x u(p).

We consider a pair of behavioral primitives. The first primitive is a preference relation

% on K(∆(C)), with indifference ∼ and strict preference � defined as usual. The behavior

encoded in % is taken before the direct experience of temptation but while (possibly

incorrectly) anticipating its future occurrence. The second primitive is a random choice

rule λ : K(∆(C))→ ∆(∆((C)) such that λx(x) = 1, where ∆(∆(C)) denotes the space of

lotteries over ∆(C). The behavior encoded in λ is taken while experiencing temptation.

For each x ∈ K(∆(C)), λx is a probability measure over lotteries, with λx(y) denoting

the probability of choosing a lottery in the set y ⊂ x when the choice set is the menu x.

We refer to the first stage of choice of a menu as occurring “ex ante” and the second stage

of choice from a menu as occurring “ex post,” that is, before and after the realization of

temptation.

We sometimes specialize to choice functions without randomization for their substan-

tive importance and expositional clarity. A random choice function λ is deterministic if λx

is degenerate for all menus x, that is, λx = δp for some p ∈ x. Identifying the Dirac mea-

sure δp with p itself, we can notate λ as a standard choice function C : K(∆(C))→ ∆(C).5

In that case, C(x) = p for δp = λx.

These primitives echo prior work by Ahn and Sarver (2013) on unforeseen contingen-

5Recall the final outcomes are themselves lotteries. The determinacy here is in the sense that the
decision maker does not randomize her selection among these lotteries.
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cies. That paper inferred unawareness of future taste contingencies by comparing choices

before and after the realization of subjective uncertainty: Observing ex-ante demand for

flexibility and ex-post exercise of flexibility can reveal unawareness and provide posi-

tive foundations for the measurement of an unforeseen contingency, while the standard

approach of using only ex-ante preferences cannot. Similarly, here we use demand for

commitment in the first stage and then indulgence of temptation in the second stage to

infer naiveté. Very broadly speaking, under-demand for flexibility can reveal unaware-

ness of future taste contingencies, while under-demand for commitment can reveal naiveté

about future temptations.

3 Absolute Naiveté

3.1 Benchmark Case: Deterministic Choice

To facilitate intuition, we begin by specializing attention to the important case of choice

without randomization and tabling the general random case until the next subsection.

For now, assume a deterministic choice function C. We propose the following definitions

of absolute sophistication and naiveté for deterministic choice.

Definition 1. An individual is sophisticated if x ∼ {C(x)} for all menus x. An individual

is naive if x % {C(x)} for all menus x. An individual is strictly naive if she is naive and

not sophisticated.

A sophisticated individual correctly anticipates choosing C(x) from x. A naive indi-

vidual erroneously values the option to make more virtuous choices, thinking her final

choice will be more virtuous than C(x). Many decisions that open or restrict future

options can be modeled as menus and can therefore be related to our definitions. For

example, as we discussed in the introduction, purchasing an unlimited gym membership

can be modeled as the option set that includes any number of monthly visits, each paired

with the fixed cost of the membership. Similarly, many financial decisions, like opening

a line of credit or putting money into a restricted retirement account, can be viewed as

adding or removing options from future decisions. In these examples, we argue that some

consumers may strictly prefer x to C(x), indicating a lack of sophistication in predict-

ing their future choices. Our definition of sophistication is similar to Independence of

Redundant Alternatives by Gul and Pesendorfer (2005) that studies deterministic choice

in a finite-outcome setting, but the definition of naiveté has not been considered in the

literature.6

6Grant, Kajii, and Polak (2000) and Siniscalchi (2011) employed similar ideas to formalize sophisti-
cation in different settings of belief updating.
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Another set of problems where naiveté can manifest is decisions about the timing of

completion of a task. O’Donoghue and Rabin (1999, 2001) explored the theoretical impli-

cations of naiveté in this class of problems and found that it can lead to procrastination

in completing tasks that have immediate costs and delayed rewards. Their predictions

have since been used to explain empirical evidence of procrastination, ranging from delay

in setting up 401(k) accounts with employer matching contributions (Madrian and Shea

(2001)) to delay in canceling unused gym memberships (DellaVigna and Malmendier

(2006)). Decisions about the timing of task completion are a special case of our frame-

work of choice between and from option sets. To illustrate, let d1, d2, d3 denote doing it

now, tomorrow, or in two periods. The choice of whether or not to complete the task in

the first period is a choice between the menus {d1} (committing by doing it now) and

{d2, d3} (having the option of doing it tomorrow or delaying again). Procrastination cor-

responds to {d2, d3} � {d1} � {d3} in the first period and C({d2, d3}) = d3 in the second.

The individual prefers delaying the task by exactly one period and mistakenly believes

that delaying today will result in completion of the task tomorrow. Note that procrasti-

nation implies strict naiveté according to our definition, since {d2, d3} � {C({d2, d3})}.7
This mapping from procrastination into our definition of naiveté can be generalized to

any number of periods by taking the appropriate three-period snapshot: Select any three

periods such that on the subtree consisting of only these periods the individual procras-

tinates on date 1 due to the mistaken belief that she will complete the task on date 2.8

In our definition, inferring sophistication from x ∼ {C(x)} assumes consequentialism;

that is, the individual is indifferent between committing to her (correctly) anticipated

choice C(x) from x at the ex-ante stage or selecting the menu x with the belief that

she will choose C(x) ex post. Put differently, adding or removing unchosen options has

no effect on the evaluation of a menu. In contrast, an individual who exerts costly

willpower to avoid choosing tempting options as in Gul and Pesendorfer (2001) does not

evaluate a menu only by its choice consequences. In this case, she may strictly prefer to

remove these unchosen temptations.9 In Section 7.2, we show that if individuals can exert

costly self-control, our behavioral test of naiveté can lead to false negatives but not false

positives: Satisfying our definition of naiveté in the presence of costly self-control implies

a fortiori that the individual is naive; however, satisfying our definition of sophistication

does not guarantee that an individual with Gul and Pesendorfer (2001) preferences is in

7Similarly, by interpreting d1 as a beneficial commitment opportunity that is naively declined by a
procrastinating individual, greater tendency to procrastinate is a special case of the comparative measure
of naiveté that will be introduced in Section 4.1.

8In a recent paper developed independently of, but subsequent to, previously circulated drafts of this
paper (Ahn and Sarver (2015); Le Yaouanq (2015)), Freeman (2016) adopts similar conditions to study
naiveté in this special case of deterministic stopping problems and procrastination.

9Alternatively, an agent that derives self-satisfaction from exercise willpower may strictly prefer to
include tempting options that she will not consume.
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fact sophisticated.10

The opposite violation of the suggested indifference for sophistication, where {C(x)} �
x and individuals underestimate their future virtue, is also possible.11 Many of our results

have analogous statements for this case, as recorded in Section S.1 of the Supplemental

Appendix. This direction receives less attention and seems less empirically relevant, so

the main text focuses on traditional naiveté.

The ubiquitous Strotz model of dynamic inconsistency offers a general application

for these concepts. The sophisticated Strotz model is specified by two preferences. The

first is her ex-ante commitment preference over future consumption, as represented by

the utility function u. The second is her temptation preference that governs her actual

consumption choices at the ex-post stage, as represented by the utility function v. Naiveté

requires divergence between believed and actual consumption. Specification of a naive

Strotz individual therefore requires a third preference to capture her possibly erroneous

beliefs about her future behavior, as represented by the utility function v̂.12

Definition 2. A Strotz representation of (%, C) is a triple (u, v, v̂) of nontrivial expected-

utility functions such that the function U : K(∆(C))→ R defined by

U(x) = max
p∈Bv̂(x)

u(p)

is a utility representation of % and

C(x) ∈ Bu(Bv(x)).

While she anticipates maximizing v̂, a naive Strotzian agent’s ex-post behavior C
actually maximizes v. Note that both the domain of choice and the representation itself

are quite general. For example, C could be a set of infinite-horizon consumption streams,

and hence quasi-hyperbolic discounting (β-δ preferences) is a special case of the Strotz

representation (see Section 5).

The following result demonstrates that the basic definition of naiveté characterizes

sharp parametric restrictions on v̂ and v. A naive individual believes that her future

behavior will be more virtuous than it actually is. For the parameters of the Strotz

10In a companion paper Ahn, Iijima, and Sarver (2016), we modify the definition of sophistication from
Noor (2011) to provide a tight behavioral characterization of naiveté for both deterministic self-control
preferences and deterministic Strotz preferences. However, the trade-off is that the definition of naiveté
in Ahn, Iijima, and Sarver (2016) cannot be extended to random choice, which is a principal objective
of the current paper.

11Ali (2011) shows that such a pessimistic belief can arise and persist in a model of Bayesian experi-
mentation.

12Recall that a utility function is nontrivial if it is not constant, and Bv(x) was defined as
argmaxq∈x v(q).
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model, this means that the anticipated utility v̂ is more aligned with the commitment

utility u than the actual utility v that will govern future consumption. The alignment

has a specific structure: v̂ is a linear combination of u and v, that is, v̂ ≈ αu+ (1− α)v.

The belief v̂ puts additional unjustified weight on the normative utility u, but aggregates

u with v in a linear manner. This excludes the case where the believed temptation is

orthogonal to the actual temptation. For example, our definition excludes an individual

who actually will be tempted to indulge in sweet treats but believes she will be tempted

to indulge in salty treats. This structure also relies crucially on the linear structure of

the domain of lotteries and the assumed expected-utility functions.

Definition 3. Let u, v, v̂ be expected-utility functions. Then v̂ is more u-aligned than v,

written as v̂ �u v, if either v̂ ≈ αu+ (1− α)v for some α ∈ [0, 1] or v ≈ −u.

Any strict convex combination of u and v is more u-aligned than v. We also classify

any expected-utility function as more u-aligned than −u, since −u is maximally divergent

from u.13

Theorem 1. Suppose (%, C) has a Strotz representation (u, v, v̂). Then the individual is

naive if and only if v̂ �u v (and is sophisticated if and only if v̂ ≈ v).

Theorem 1 is a special case of the main result of the next section, where we turn to

the more general case of random choice and uncertain beliefs.

3.2 General Results

In many environments, temptation is sensibly modeled as a random phenomenon. For

example, someone might be motivated to work out at the gym on some days but lack

enough willpower on other days. Even without temptation or naiveté, random choice

provides a cleaner fit with noisy data in many applications. Uncertainty about future

behavior is arguably more compelling when considering naiveté about temptation: Even

if her actual future behavior is deterministic, a naive agent who cannot precisely predict

her behavior might more naturally be modeled as having uncertainty about her future

temptation, rather than making a resolute but incorrect prediction.

As is standard in ubiquitous applications, random choice data should be interpreted

as an idealization of repeated observations of choices from menus. We stress that the

case of random choice is a pure generalization of deterministic choice, since deterministic

choice is the special case where the distribution of choices is concentrated on a single

object. That is, only increases the range of observable environments relative to the

13The special exception for this boundary case also has the technical benefit of avoiding tedious
exceptions in the following characterization theorems.
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deterministic case and for environments where only a single choice is observed still falls

under the purview of our model. That all said, we choose to study the general case

because the literature suggests compelling reasons to accommodate randomness, and

random temptation has been a part of many recent applications of time inconsistency

and naiveté, ranging from optimal contracting (Eliaz and Spiegler (2006); Spiegler (2011))

to credit markets (Heidhues and Koszegi (2010)) to the design of commitment devices

(Duflo, Kremer, and Robinson (2011)).

On the other hand, while we accommodate random choice from menus, we do not

generalize to random choice of menus. That is, our model assumes that the choice of

commitment is deterministic.

The conceptual apparatus just introduced for the deterministic case extends to ran-

dom choice. For any (compound) lottery λx ∈ ∆(∆(C)), its average choice m(λx) is

the expectation of the identity function under λx or, formally, m(λx) =
∫
p dλx ∈ ∆(C).

That is, m(λx) reduces the compound lottery λx into a single lottery in ∆(C). This

reduction from a distribution over multiple lotteries to a single lottery does not assume

any attitude towards risk, such as risk neutrality, over deterministic outcomes in C.14

Definition 4. An individual is sophisticated if x ∼ {m(λx)} for all menus x. An

individual is naive if x % {m(λx)} for all menus x. An individual is strictly naive if she

is naive and not sophisticated.

A sophisticate is indifferent between choosing from a menu x tomorrow and com-

mitting to the average choice m(λx) from that menu. A naif anticipates making more

virtuous choices, on average, than she actually will make. As noted above, deterministic

second-stage choice formalized as a choice function C : K(∆(C)) → ∆(C) is a special

case of the random choice framework. The corresponding random choice rule λ satisfies

λx({p}) = 1 ⇐⇒ C(x) = p,

and hence m(λx) = C(x). In this case our definitions of sophistication and naiveté reduce

to x ∼ {C(x)} and x % {C(x)}, respectively.

Our definitions lend themselves to simple tests of violations of sophistication and

naiveté. Consider a binary menu {p, q} where {p} � {q}, and let α = λ{p,q}({p}). Then,

m(λ{p,q}) = αp+ (1− α)q and thus sophistication (naiveté) implies

{p, q} ∼ (%) {αp+ (1− α)q}.
14Our analysis does implicitly assume indifference to compounding. However, indifference to com-

pounding can be relaxed by considering appropriate certainty equivalents rather than assuming indiffer-
ence between λx and m(λx).

11



In other words, a sophisticate is indifferent between the option set {p, q} and a mixture of

these lotteries that matches her ex-post choice frequencies, whereas a naif prefers keeping

her options open. One possible experimental design that implements our approach would

be to elicit the ranking of {p, q} and {α̂p+ (1− α̂)q} for various values of α̂ and compare

these rankings to the actual choice frequencies α of a group of subjects.15

We now apply our general definitions to the random Strotz model, which generalizes

the classic Strotz model to allow uncertainty about future temptations. For example, a

quasi-hyperbolic discounter may be uncertain of her degree of present bias. Dekel and

Lipman (2012) provide a thorough analysis of the random Strotz model. Since a single

temptation is parametrized as a single utility vector, a random temptation is analogously

parametrized as a probability measure over utility vectors. Formally, let V denote the

set of all continuous functions v : C → R. Endow V with the supremum norm and

corresponding Borel σ-algebra. We can identify V with the set of all expected-utility

functions on ∆(C) by letting v(p) ≡
∫
C
v(c) dp.

Definition 5. A probability measure µ on V has finite-dimensional support if there

exists a finite set of expected-utility functions {v1, . . . , vn} ⊂ V such that supp(µ) ⊂
span({v1, . . . , vn}).

We restrict attention to random Strotz representations with finite-dimensional sup-

port. This is arguably a mild restriction, as we are unaware of any application of the

random Strotz model without finite-dimensional support. For example, any deterministic

Strotz representation (see Definition 2) or any uncertain intensity random Strotz repre-

sentation (see Appendix B) such as random quasi-hyperbolic discounting (see Section 5.1)

has finite-dimensional support. In addition, if the consumption space C is finite, then

any probability measure µ on V trivially has finite-dimensional support.

Without loss of generality, we also restrict attention to probability measures on V
that are nontrivial, in the sense of assigning probability zero to constant functions.16

Definition 6. A random Strotz representation of (%, λ) is a triple (u, µ, µ̂) of a nontrivial

expected-utility function u and nontrivial probability measures µ and µ̂ over V with finite-

dimensional support such that the function U : K(∆(C))→ R defined by

U(x) =

∫
V

max
p∈Bv(x)

u(p) dµ̂(v)

15This design is implemented in Le Yaouanq (2015) to measure individual-level naiveté about memory
lapses.

16The restriction to nontrivial measures in the definition of the random Strotz representation is also
without loss of generality since any weight assigned to constant functions can be moved to the commit-
ment utility u without altering the ex-ante preference or ex-post random choice rule.
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is a utility representation of % and, for all menus x and all measurable y ⊂ x,

λx(y) = µ(p−1x (y))

for some measurable selection function px : V → x with px(v) ∈ Bu(Bv(x)) for all v ∈ V.17

The interpretation of the representation of the ex-ante preference % is straightforward.

To understand the representation of the ex-post random choice rule λ, note that after the

realization of a temptation utility v ∈ V , the individual’s choice of lottery is an element

of the set Bu(Bv(x)) of lexicographic maximizers of v then u. There may be multiple

elements in this set for a fixed v, and the individual’s tie-breaking procedure among

these is modeled using a selection function px from the correspondence v 7→ Bu(Bv(x))

mapping temptations to possible choices.18 Given this mapping from temptation utilities

to choices, the distribution of temptation utilities then determines the stochastic choice

of the individual. The probability of choosing an element of the subset y ⊂ x is equal to

the probability under µ of an ex-post expected-utility function v for which the optimal

choice is in y, λx(y) = µ({v ∈ V : px(v) ∈ y}).
The definition of naiveté for random Strotz is the stochastic generalization of the

definition for deterministic Strotz. In the degenerate case, naiveté implies the believed

v̂ is more u-aligned than v: v̂ �u v. In the random case, the believed distribution over

all possible temptations stochastically dominates the actual distribution of temptations,

where stochastic dominance is with respect to the�u order. As is standard, a stochasti-

cally dominant measure puts more weight on the upper contour sets of the basic ordering

�u over the state space. The following definitions adapt the technology developed by

Dekel and Lipman (2012).

Definition 7. Let u be an expected-utility function. A measurable set U ⊂ V is a u-upper

set if, for any v ∈ U and v′ ∈ V, if v′ �u v then v′ ∈ U .

We let �u notate both the basic ordering over expected-utility functions and the

induced stochastic order over measures on expected-utility functions.

Definition 8. Let u be an expected-utility function, and let µ, µ̂ be probability measures

over V. Then µ̂ is more u-aligned than µ, written as µ̂ �u µ, if µ̂(U) ≥ µ(U) for all

u-upper sets U .

17Note that Definition 2 is equivalent to the special case of Definition 6 where µ = δv and µ̂ = δv̂
for some fixed v, v̂. The latter implies λx({px(v)}) = 1 in this case or, equivalently, C(x) = px(v) ∈
Bu(Bv(x)).

18Since there may be a multiplicity of selection functions, there may in turn be multiple maximizing
choice probabilities over x for a fixed probability measure µ over V. That is, just as there can be a
multiple choice functions induced by a choice correspondence, there can be multiple random choice rules
that maximize the same random Strotz representation. However, this multiplicity is not important for
our results since observing any maximizing random choice rule provides sufficient information for our
comparatives.
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Note that v̂ �u v (in the determinate sense) is equivalent to δv̂ �u δv (in the stochastic

sense). We write µ̂ ≈ µ whenever both µ̂ �u µ and µ �u µ̂, that is, when µ̂(U) =

µ(U) for all u-upper sets U . In this case, it can be shown that the measures induce

identical distributions over ex-post expected-utility preferences and can differ only by

affine transformations of the utility functions in their supports.19 They are therefore

identical in every respect that is relevant for both ex-ante and ex-post choice.

Generalizing our earlier result, absolute naiveté is equivalent to µ̂ dominating µ in

the stochastic order generated by �u.

Theorem 2. Suppose (%, λ) has a random Strotz representation (u, µ, µ̂). Then the

individual is naive if and only if µ̂�u µ (and is sophisticated if and only if µ̂ ≈ µ).

The proof of this result makes use of a characterization by Dekel and Lipman (2012)

of comparative temptation aversion for ex-ante preferences with random Strotz represen-

tations. They say that %2 is more temptation averse than %1 if, for all menus x and

lotteries p,20

{p} �1 x =⇒ {p} �2 x.

Dekel and Lipman (2012) show that if %i has a random Strotz representation (u, µi)

for i = 1, 2, then %2 is more temptation averse than %1 if and only if µ1 �u µ2. To

prove Theorem 2, we apply this comparative to the measures µ̂ and µ in our two-period

random Strotz representation for a single individual. In particular, we show that naiveté

is equivalent to the condition∫
V

max
p∈Bv(x)

u(p) dµ̂(v) = U(x) ≥ u(m(λx)) =

∫
V

max
p∈Bv(x)

u(p) dµ(v), ∀x.

This condition implies that the hypothetical ex-ante preference %∗ generated by the

representation with correct beliefs (u, µ) is more temptation averse than the actual ex-

ante preference % with representation (u, µ̂), and hence µ̂�u µ.

Two special cases of the random Strotz representation will be useful for illustrating

the conditions in this theorem, as well as our subsequent results on comparative naiveté.

The first is the deterministic Strotz representation already described in Definition 2:

Theorem 1 follows as a corollary of Theorem 2 by taking µ̂ = δv̂ and µ = δv. The second

is a simple stochastic model proposed by Eliaz and Spiegler (2006) in which the individual

has temptation utility v with probability 1 − θ and no temptation with probability θ.21

19The formal statement and proof of this claim can be found in Dekel and Lipman (2012); in particular,
see their Theorem 3 and its proof.

20This formal definition appears with different interpretations in Ahn (2007) and Sarver (2008). It
is also similar in spirit to the behavioral comparisons of ambiguity aversion in Epstein (1999) and
Ghirardato and Marinacci (2002), who compare arbitrary acts to unambiguous acts in the same manner
that we compare arbitrary menus to singleton menus.

21 Chatterjee and Krishna (2009) axiomatized this model in terms of menu preferences.
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We say that two expected-utility functions u and v are independent if they are nontrivial

and it is not the case that v ≈ u or v ≈ −u.

Definition 9. An Eliaz-Spiegler representation of (%, λ) is a quadruple (u, v, θ, θ̂) of

independent expected-utility functions u and v and scalars θ, θ̂ ∈ [0, 1] such that the

function U : K(∆(C))→ R defined by

U(x) = θ̂max
p∈x

u(p) + (1− θ̂) max
p∈Bv(x)

u(p)

is a utility representation of % and, for all menus x,

λx = θδpu + (1− θ)δpv

for some pu ∈ Bu(x) and pv ∈ Bu(Bv(x)).

Theorem 2 yields the following corollary by taking µ = θδu + (1 − θ)δv and µ̂ =

θ̂δu + (1 − θ̂)δv and observing that µ(U) = θ and µ̂(U) = θ̂ for the u-upper set U
containing only the positive affine transformations of u.

Corollary 1. Suppose (%, λ) has an Eliaz-Spiegler representation (u, v, θ, θ̂). Then the

individual is naive if and only if θ̂ ≥ θ (and is sophisticated if and only if θ̂ = θ).

4 Comparisons of Naiveté

In this section, we introduce two definitions for comparing naiveté across agents. The first

naturally extends our proposed test for absolute naiveté by counting passed opportunities

for beneficial commitment; the second directly measures the difference in anticipated and

actual indirect utilities for menus. As with the case of risk aversion, different comparisons

can be useful depending on the application at hand.

4.1 A Strong Comparison of Naiveté

Having proposed a behavioral definition of absolute naiveté, we naturally consider the

comparison of naiveté across heterogeneous individuals. Recall that a naive agent satisfies

x % {m(λx)}, that is, there is a potential gap between her value for the the menu x above

her eventual expected choice m(λx). To compare the degree of naiveté across agents, we

propose measuring the size of this gap through preference for commitment.

Definition 10. Individual 1 is more naive than individual 2 if, for all menus x and

lotteries p,

x %2 {p} %2 {m(λx2)} =⇒ x %1 {p} %1 {m(λx1)}.
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Any commitment p that is ex-ante ranked between x and {m(λx)} indicates naiveté,

because p is more virtuous than the expected choice m(λx) yet the individual prefers to

maintain the flexibility in x. So, the welfare-improving opportunity to commit to p will

be naively rejected. If another individual is more naive, then she would also reject that

commitment.22

In the random Strotz model, this definition imposes sharp and intuitive restrictions

on the believed and actual temptations of both agents.

Theorem 3. Suppose (%1, λ1) and (%2, λ2) are naive and have random Strotz represen-

tations (u, µ1, µ̂1) and (u, µ2, µ̂2). Then individual 1 is more naive than individual 2 if

and only if

µ̂1 �u µ̂2 �u µ2 �u µ1.

While they share common normative preferences over singleton commitments, indi-

vidual 1 is more optimistic about her future behavior than individual 2, as reflected in

the requirement µ̂1 �u µ̂2. However, individual 1’s actual ex-post choices are even less

virtuous than individual 2’s choices, as reflected in µ2 �u µ1. A more naive individual is

more optimistic about her future virtuous behavior while actually exercising less virtue.

Taking µi = δvi and µ̂i = δv̂i in Theorem 3 yields the following corollary for determin-

istic Strotz representations.

Corollary 2. Suppose (%1, C1) and (%2, C2) are naive and have Strotz representations

(u, v1, v̂1) and (u, v2, v̂2). Then individual 1 is more naive than individual 2 if and only if

v̂1 �u v̂2 �u v2 �u v1.

As illustrated in Figure 1, comparative naiveté implies that both individuals’ antic-

ipated temptations v̂i and actual temptations vi are convex combinations of the shared

commitment utility u and the more naive individual’s actual temptation v1, progressively

located on the arc connecting u and v1.

Theorem 3 yields the following corollary for the Eliaz-Spiegler representation by taking

µi = θiδu + (1− θi)δv and µ̂i = θ̂iδu + (1− θ̂i)δv.

Corollary 3. Suppose (%1, λ1) and (%2, λ2) are naive and have Eliaz-Spiegler represen-

tations (u, v, θ1, θ̂1) and (u, v, θ2, θ̂2). Then individual 1 is more naive than individual 2

if and only if θ̂1 ≥ θ̂2 ≥ θ2 ≥ θ1.
23

22An alternative formulation of more naive based on strict preferences is also possible:

x �2 {p} �2 {m(λx2)} =⇒ x �1 {p} �1 {m(λx1)}.

Our results will carry over to this case, as long as individual 2 is strictly naive (the condition is vacuously
satisfied if individual 2 is sophisticated).

23This result can also be extended to Eliaz-Spiegler representations (u, v1, θ1, θ̂1) and (u, v2, θ2, θ̂2)
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Figure 1: Alignment of believed and actual utilities implied by comparative naiveté
in the (deterministic) Strotz representation (Corollary 2).

4.2 Quantitative Measures and a More Complete Ordering

In many applications of time inconsistency and naiveté to industrial organization and

contract theory, the firm’s ability to extract excess surplus is tied to the extent to which

the individual overestimates the utility that she will receive from a set of options or

contract.24 This motivates the following construction.

Definition 11. Suppose (%, λ) has a random Strotz representation (u, µ, µ̂). The coeffi-

cient of over-valuation of a menu x is defined by:

OV (x) =

∫
V

max
p∈Bv(x)

u(p) dµ̂(v)︸ ︷︷ ︸
believed indirect utility

−
∫
V

max
p∈Bv(x)

u(p) dµ(v)︸ ︷︷ ︸
actual indirect utility

.

This measure of over-valuation has appeared in the analysis of two-part tariffs in

DellaVigna and Malmendier (2004); they find that the monopolist’s profit from any ac-

ceptable contract is equal to the sum of social surplus and the agent’s over-valuation of

the contract.25 A natural conjecture is that our prior definition of more naive is equiv-

alent to having a higher over-valuation for every menu x. This is false: Our behavioral

where v1 6= v2 is permitted. In this case, individual 1 is more naive than individual 2 if and only if
θ̂1 ≥ θ̂2 ≥ θ2 ≥ θ1 and, in addition, v2 �u v1 whenever θ2 < 1 and v2 ≈ v1 whenever θ̂1 < 1.

24Some applications are reviewed in Spiegler (2011) and Koszegi (2014, Section 6).
25They consider the agent with deterministic quasi-hyperbolic discounting with possibly stochastic

opportunity cost. While the stochastic-cost case cannot be written as a Strotz representation, the
randomness of cost is not essential to their analysis. Also, the characterization of the monopoly profit
in terms of the over-valuation measure holds even under random quasi-hyperbolic discounting.
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comparative is sufficient but not necessary. Individual 1 is more naive than individual 2

if and only if, for every menu x,26∫
V

max
p∈Bv(x)

u(p) dµ̂1(v)︸ ︷︷ ︸
1’s believed indirect utility

≥
∫
V

max
p∈Bv(x)

u(p) dµ̂2(v)︸ ︷︷ ︸
2’s believed indirect utility

≥
∫
V

max
p∈Bv(x)

u(p) dµ2(v)︸ ︷︷ ︸
2’s actual indirect utility

≥
∫
V

max
p∈Bv(x)

u(p) dµ1(v)︸ ︷︷ ︸
1’s actual indirect utility

.

(1)

The inequalities in Equation (1) exclude some cases where individual 1 is more suscep-

tible to exploitation than individual 2. For example, suppose two individuals’ random

temptations µ1 and µ2 are not comparable under the�u order, but individual 2 is sophis-

ticated while individual 1 is strictly naive. Individual 1 is not more naive than individual

2 according to Definition 10 because their ex-post behaviors are not �u-ranked, but the

over-valuation of any menu x is higher for 1 than for 2, OV1(x) ≥ OV2(x) = 0, with strict

inequality for some menu.

In this section, we examine the weaker comparison of naiveté based on over-valuation

and establish its equivalence to several other behavioral and quantitative measures. As

just mentioned, having higher over-valuation is weaker than our previous definition of

more naive, so a correspondingly less stringent behavioral comparative is needed.

Our model incorporates all relevant dimensions of consumption—potentially includ-

ing goods, effort, and money—into the space C. But for the sake of developing intuition

for how to calibrate over-valuation from choice data, consider a special quasilinear en-

vironment where ex-ante choices are over pairs of a menu x ∈ K(∆(C)) and a money

transfer t ∈ R, and ex-ante utility takes the form V (x, t) = U(x) + t. By its definition,

the over-valuation of the menu x must satisfy

(x, 0) ∼ (m(λx), OV (x)).

The required monetary premium for x relative to m(λx) immediately quantifies over-

valuation for quasilinear preferences. Then an immediate behavioral comparative is that

individual 1 is willing to overpay more for any menu x than individual 2:

(x, 0) %2 (m(λx2), t) =⇒ (x, 0) %1 (m(λx1), t).

This condition is equivalent to OV1(x) ≥ OV2(x).

26It is easy to verify that individual 1 is more naive than individual 2 if and only if U1(x) ≥ U2(x) ≥
u(m(λx2)) ≥ u(m(λx1)) for every menu x. Using Lemma 2 in Appendix C.1, this condition is equivalent
to Equation (1).
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Since our general model does not assume quasilinearity, we must take a different

approach to calibrating over-valuation. As a side benefit of assuming expected utility, we

can replace the numeraire with linearity in probabilities to measure the value of x relative

to m(λxi ). The following definition takes this approach to converting over-valuation into

a behavioral measure.

Definition 12. Fix any lotteries p, q such that {q} � {p}. The probability premium of

a menu x is defined by:

P (x; p, q) = sup
{
α ∈ [0, 1] : (1− α)x+ α{p} % (1− α){m(λx)}+ α{q}

}
.

The probability premium indicates how much a menu x can be mixed with an inferior

alternative with the individual still preferring it to m(λx) mixed with a superior alterna-

tive. To see its implications, suppose that % admits an affine utility representation. Then

note that P (x; p, q) < 1 for any menu x since {q} � {p}, and P (x; p, q) = 0 if and only

if x ∼ {m(λx)}. In particular, the individual is sophisticated if and only if P (x; p, q) = 0

for all x.

The following definition defines another behavioral comparative of naiveté based on

a similar approach. The definition exploits the separability across events afforded by the

independence axiom to use the outcomes in other events (the half-probability events that

p or q are the relevant lottery) to measure the value of x relative to m(λxi ).

Definition 13. Individual 1 is weakly more naive than individual 2 if, for all menus x

and lotteries p, q,

1

2
x+

1

2
{p} %2

1

2
{m(λx2)}+

1

2
{q} =⇒ 1

2
x+

1

2
{p} %1

1

2
{m(λx1)}+

1

2
{q}.

As the name suggests, this comparative measure is indeed weaker than our previous

definition of more naive. The next results clarifies that, under mild technical conditions,

Definition 13 is implied by Definition 10 and hence provides a more complete ordering

across agents.

Lemma 1. Suppose %1 and %2 satisfy independence and share the same commitment

preference.27 Suppose also that individual 2 is naive and that, for all menus x, there

exists a lottery p such that x ∼2 {p}. If individual 1 is more naive than individual 2,

then 1 is weakly more naive than 2.

While more permissive than the first definition of naiveté, the weak definition still

yields several useful equivalent characterizations for random Strotz preferences, unifying

27The preference %i satisfies independence if for any menus x, y, z and α ∈ (0, 1), x %i y implies
αx + (1 − α)z %i αy + (1 − α)z. We say %1 and %2 share the same commitment preference if for all
lotteries p, q, {p} %1 {q} ⇐⇒ {p} %2 {q}.
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comparisons of naiveté based on probability premia, over-valuations of contracts, and

stochastic ordering of the differences between believed and actual random temptations.

Theorem 4. Suppose (%1, λ1) and (%2, λ2) are naive and have random Strotz represen-

tations (u, µ1, µ̂1) and (u, µ2, µ̂2). Fixing any lotteries p, q with {q} �i {p}, the following

are equivalent:

1. Individual 1 is weakly more naive than individual 2.

2. P1(x; p, q) ≥ P2(x; p, q) for all menus x.

3. OV1(x) ≥ OV2(x) for all menus x.

4. µ̂1(U) − µ1(U) ≥ µ̂2(U) − µ2(U) for all u-upper sets U ; equivalently, µ̂1 − µ1 �u

µ̂2 − µ2.

Specializing condition (4) to Eliaz-Spiegler preferences yields the following comparison

that ranks naiveté by the difference in the believed and actual probabilities of being

virtuous.

Corollary 4. Suppose (%1, λ1) and (%2, λ2) are naive and have Eliaz-Spiegler representa-

tions (u, v, θ1, θ̂1) and (u, v, θ2, θ̂2). Then individual 1 is weakly more naive than individual

2 if and only if θ̂1 − θ1 ≥ θ̂2 − θ2.28

While the two comparisons are generally different for random choices, there is one

prominent case where the weak and strong notions of comparative naiveté align: deter-

ministic Strotz. The next result follows from considering the special case of condition (4)

in Theorem 4 where each measure is a deterministic point mass.

Corollary 5. Suppose (%1, C1) and (%2, C2) are naive and have Strotz representations

(u, v1, v̂1) and (u, v2, v̂2). Then individual 1 is weakly more naive than individual 2 if and

only if either

v̂1 �u v̂2 �u v2 �u v1

or v̂2 ≈ v2 (individual 2 is sophisticated).

Comparing differences in probability parameters has a behavioral justification for

random choice, as evidenced in the implications for Eliaz-Spiegler preferences. But com-

paring differences in parameters is not sensible for deterministic models. For example,

we will show in Section 5.1 that a consequence of Corollary 5 for the quasi-hyperbolic

discounting model is that ranking naiveté by the restriction β̂1 − β1 ≥ β̂2 − β2 does not

correspond to either definition of comparative naiveté.

28This result can also be extended to Eliaz-Spiegler representations (u, v1, θ1, θ̂1) and (u, v2, θ2, θ̂2)
where v1 6= v2 is permitted. In this case, individual 1 is weakly more naive than individual 2 if and only
if θ̂1 − θ1 ≥ θ̂2 − θ2 and, in addition, v2 �u v1 whenever θ̂2 > θ2 (individual 2 is strictly naive).
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5 Applications to Present Bias

To illustrate the general appropriateness of our definitions, we consider their implications

for two models of present bias that generalize the ubiquitous quasi-hyperbolic discounting

model. In Section 5.1, we apply our results to a stochastic generalization of quasi-

hyperbolic discounting that permits uncertainty about the degree of time inconsistency.

In Section 5.2, we analyze a deterministic model of present bias that permits more general

patterns of time discounting, such as true hyperbolic discounting. The results in these

sections show that our definitions of absolute and comparative naiveté not only confirm

known parametric formulations of naiveté (as in the special case of deterministic quasi-

hyperbolic discounting), but also generate new insights for other well-known models for

which comparisons of naiveté are still outstanding.

5.1 Random Quasi-Hyperbolic Discounting

As a specific application of the previous characterizations, we consider the random quasi-

hyperbolic model in which time inconsistency is parameterized by a present-bias factor β

and the individual may be uncertain about the value for this parameter. Let C = [a, b]N

be a set of infinite-horizon consumption streams, with elements c = (c1, c2, . . . ) ∈ C.29

A lottery p ∈ ∆(C) resolves immediately and yields a consumption stream. We focus on

the simple case with one-shot resolution of uncertainty for expositional parsimony, but all

of the following results generalize to richer settings that incorporate temporal lotteries or

true dynamic choice.30 In these more general dynamic environments, simple atemporal

lotteries over consumption streams provide sufficient choice observations to apply the

following comparative statics. Note that our treatment here is not fully dynamic, because

the entire stream of consumption is settled immediately. This allows us to ignore the

agent’s assessments of her behavior at further time periods. Our point here is that

sophistication and naiveté can be distinguished without appeal to these assessments.

Suppose the commitment preference is represented by an expected-utility function

whose values u(c) = u(δc) over deterministic streams (that is, whose Bernoulli utility

indices) comply with exponential discounting,

u(c) =
∞∑
t=1

δt−1w(ct), (2)

for some instantaneous utility function w : [a, b] → R. The quasi-hyperbolic discount-

29The product topology on C is compact and metrizable.
30Kreps and Porteus (1978) were the first to provide a complete analysis of dynamic choice with

uncertainty that resolves gradually through time (i.e., temporal lotteries). The models of temptation in
Gul and Pesendorfer (2004) and Noor (2011) used an infinite-horizon version of such a setting.
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ing model captures present bias with an additional discount factor applied to all future

periods: If the present-bias factor is β, then ex-post (period 1) choice from a menu of

consumption streams x will maximize

vβ(c) = w(c1) + β
∞∑
t=2

δt−1w(ct). (3)

We begin by defining the quasi-hyperbolic discounting representation for deterministic

choice before proceeding to its stochastic generalization. In the deterministic model, the

individual’s ex-ante (period 0) behavior may reflect an incorrect belief that her future

present-bias parameter is β̂, while her ex-post behavior actually uses the present-bias

parameter β. It is immediate that this choice procedure corresponds to a special case of

the deterministic Strotz representation.

Definition 14. A quasi-hyperbolic (QH) representation of (%, C) is a tuple (w, β, β̂, δ)

of a continuous and nontrivial function w : [a, b] → R and scalars β, β̂ ∈ [0, 1] and

δ ∈ (0, 1), such that (u, vβ, vβ̂) defined as in Equations (2) and (3) for these parameters

is a Strotz representation for (%, C).

The standard quasi-hyperbolic discounting model assumes completely confident be-

liefs about future behavior, an assumption that seems less palatable under naiveté when

these beliefs are incorrect. We explore a generalization of the QH representation that

allows for naive and uncertain beliefs about β. Several applications in different areas em-

ploy naive uncertainty about future present bias. Heidhues and Koszegi (2010, Section 4)

employ random quasi-hyperbolic discounting to explain the structure of credit markets

and its consequent welfare implications. In their study of fertilizer adoption decisions by

Kenyan farmers, Duflo, Kremer, and Robinson (2011) estimate a specification of random

quasi-hyperbolic discounting where naiveté is parameterized by a mistakenly believed

positive chance of virtuous exponential discounting. Admitting uncertainty about in-

tertemporal substitution often usefully serves as a reduced-form proxy for a shock in

the economy, like wage uncertainty, or for heterogeneity across agents in an aggregate

economy, like the distribution of wealth. Similarly, random present-bias can provide a

parsimonious channel for capturing uncertainty about external factors that affect present-

bias.

Definition 15. A random quasi-hyperbolic (RQH) representation of (%, λ) is a quadru-

ple (w,F, F̂ , δ) of a continuous and nontrivial function w : [a, b]→ R, a scalar δ ∈ (0, 1),

and cumulative distribution functions F and F̂ on [0, 1] such that when u and vβ are

defined as in Equations (2) and (3), the function U : K(∆(C))→ R defined by

U(x) =

∫ 1

0

max
p∈Bvβ (x)

u(p) dF̂ (β)
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is a utility representation of % and, for all menus x and all measurable y ⊂ x,

λx(y) = F (p−1x (y))

for some measurable selection function px : [0, 1] → x with px(β) ∈ Bu(Bvβ(x)) for all

β ∈ [0, 1].31

The RQH representation is a member of a more general subclass of the random Strotz

representation where the possible temptations are ordered by a one-dimensional param-

eter. We analyze this subclass, called the uncertain intensity Strotz representation, in

Appendix B. The corollaries presented below follow directly from the results in that

section.

A naive individual underestimates the degree of her present bias, which is reflected

in her belief F̂ putting more likelihood on larger values of β than the actual distribution

F that governs her ex-post choices. Let ≥FOSD denote the usual first-order stochastic

dominance order, with F̂ ≥FOSD F if F̂ (β) ≤ F (β) for all β ∈ [0, 1].

Corollary 6. Suppose (%, λ) has a RQH representation (w,F, F̂ , δ). Then the individual

is naive if and only if F̂ ≥FOSD F (and is sophisticated if and only if F̂ = F ).

Corollary 7. Suppose (%1, λ1) and (%2, λ2) are naive and have RQH representations

(w,F1, F̂1, δ) and (w,F2, F̂2, δ).

1. Individual 1 is more naive than individual 2 if and only if

F̂1 ≥FOSD F̂2 ≥FOSD F2 ≥FOSD F1.

2. Individual 1 is weakly more naive than individual 2 if and only if

F1(β)− F̂1(β) ≥ F2(β)− F̂2(β), ∀β ∈ [0, 1].

In the case of deterministic quasi-hyperbolic discounting, both of our comparative

measures collapse to the same condition, excepting the special case where individual 2 is

sophisticated.

Corollary 8. Suppose (%1, C1) and (%2, C2) are naive and have QH representations

(w, β1, β̂1, δ) and (w, β2, β̂2, δ).

1. Individual 1 is more naive than individual 2 if and only if β̂1 ≥ β̂2 ≥ β2 ≥ β1.

31We are abusing notation slightly and using F to also denote the probability measure on [0, 1] that
has F as its distribution function. That is, for any measurable set A ⊂ [0, 1], we write F (A) to denote∫
A
dF (β). Hence λx(y) =

∫ 1

0
1[px(β)∈y] dF (β).
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2. Individual 1 is weakly more naive than individual 2 if and only if either β̂1 ≥ β̂2 ≥
β2 ≥ β1 or β̂2 = β2 (individual 2 is sophisticated).

Corollary 8 provides another set of intuitive comparative restrictions. First, the more

naive individual has more optimistic beliefs about her future patience: β̂1 ≥ β̂2. Second,

the more naive individual’s behavior is more present-biased: β1 ≤ β2. In contrast to Eliaz

and Spiegler (2006) preferences (cf. Corollaries 3 and 4), the weaker second comparison

of naiveté does not greatly generalize the strong definition, adding only comparisons

with purely sophisticated agents. For example, while β̂1 − β1 ≥ β̂2 − β2 may seem

like an appealing comparison of naiveté, this inequality alone is generally insufficient to

guarantee individual 1 is more naive than individual 2.

5.2 Diminishing Impatience

The prior analysis of the quasi-hyperbolic representation extends to more general patterns

of discounting, such as true hyperbolic discounting. We now relate several properties of

discount functions to properties of the perceived discount functions for individuals who

satisfy our definition of naiveté. While our definition corroborates the existing parameter

restriction β̂ ≥ β for naiveté with deterministic quasi-hyerbolic discounting, the analo-

gous formulation for general diminishing impatience is less understood.32 This section

introduces the appropriate restrictions and uncovers structural relationships between the

underestimation of impatience and actual impatience that declines over time.

Say that D : N∪ {0} → (0, 1] is a discount function if D(0) = 1 and
∑∞

t=0D(t) <∞.

Suppose as before that consumption in periods t = 1, 2, . . . is given by (c1, c2, . . . ) ∈
C = [a, b]N. Period 0 commitment preferences over deterministic consumption streams

starting in period 1 are represented by

u(c) =
∞∑
t=1

D(t)w(ct). (4)

Suppose that preferences over consumption streams are stationary, so period 1 choices

maximize

v(c) =
∞∑
t=1

D(t− 1)w(ct). (5)

However, in period 0 the individual believes that she will apply the discount function D̂

in the subsequent period, which yields the following anticipated temptation utility for

32Prelec (2004) studies the degree of time inconsistency for a single discount function D, as captured
by log-concavity. He suggests this as a criterion for evaluating sophistication, but this approach is
clearly conceptually remote from our notion of sophistication that relies on comparing D with a believed
discount funtion D̂.
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deterministic consumption streams:

v̂(c) =
∞∑
t=1

D̂(t− 1)w(ct). (6)

Definition 16. A discounting representation of (%, C) is a triple (w,D, D̂) of a contin-

uous and nontrivial function w : [a, b] → R and discount functions D and D̂, such that

(u, v, v̂) defined as in Equations (4), (5), and (6) is a Strotz representation for (%, C).

The deterministic quasi-hyperbolic representations discussed in the previous section

are special cases of the discounting representations where

D(t) =

{
1 if t = 0

βδt if t > 0.

and

D̂(t) =

{
1 if t = 0

β̂δt if t > 0.

Two general properties of discount functions will be important.

Definition 17. A discount function D : N∪{0} → (0, 1] exhibits diminishing impatience

if
D(0)

D(1)
>

D(t)

D(t+ 1)
(∀t ∈ N),

and exhibits strong diminishing impatience if

D(t)

D(t+ 1)
>
D(t+ 1)

D(t+ 2)
(∀t ∈ N ∪ {0}).

Diminishing impatience requires that the discount rate for any pair of successive

periods in the future is strictly more balanced than the discount rate between today

and tomorrow. Strong diminishing impatience further requires that the discount rate

between successive periods is strictly declining over time. Quasi-hyperbolic discount

functions exhibit diminishing impatience but not strong diminishing impatience because

the discount rate between t and t+1 is constant at 1/δ after t = 1, whereas true hyperbolic

discounting, on the other hand, exhibits strong diminishing impatience.

The following corollary of Theorem 1 uncovers the implications of diminishing and

strong diminishing impatience on the perceived future impatience of a naive individual.

The individual believes that her ex-post intertemporal rate of substitution between period

1 and period t+ 1 will be governed by the discount factor D̂(t). This discount factor is a
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convex combination of the ex-ante discount factor D(t+ 1)/D(1) that would be applied

if committing in period 0 and the actual tempting discount factor D(t) that governs the

intertemporal consumption stream that the individual will actually choose tomorrow.

Corollary 9. Suppose (%, C) has a discounting representation (w,D, D̂). Then the in-

dividual is naive if and only if there exists α ∈ [0, 1] such that

D̂(t) = α
D(t+ 1)

D(1)
+ (1− α)D(t) (∀t ∈ N ∪ {0}), (7)

and the individual is sophisticated if and only if α = 0. In addition, if the individual is

strictly naive (i.e., α > 0), then

1. The discount function D exhibits diminishing impatience if and only if

D(0)

D(t)
>
D̂(0)

D̂(t)
(∀t ∈ N).

2. The discount function D exhibits strong diminishing impatience if and only if

D(t)

D(t+ 1)
>

D̂(t)

D̂(t+ 1)
(∀t ∈ N ∪ {0}).

The two equivalences under strict naiveté are surprising because they relate (strong)

diminishing impatience of the actual temptation, as captured in D, with the intertempo-

ral rate of substitution in the believed temptation, as captured in D̂. The first claim says

that for a strict naive individual, diminishing impatience is equivalent to beliefs being

biased toward saving desirable consumption for a later date t rather than in the present

period 0, as reflected in D̂(0)/D̂(t) < D(0)/D(t). In other words, under-appreciating the

temptation for immediate consumption versus later consumption is an inherent feature of

naiveté with diminishing impatience. If beliefs are ever biased in the opposite direction

(with projected undersaving) then the individual cannot exhibit diminishing impatience

in her virtuous utility. Similarly, under-appreciation of the temptation to shift good con-

sumption to immediately prior time periods is an inherent feature of strong diminishing

impatience with naiveté. Note that the results do not suggest a relationship between the

diminishing impatience of the actual temptation and the diminishing impatience of the

believed temptation.
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6 Welfare

Our behavioral definitions of naiveté provide a parsimonious language to conduct welfare

analysis without relying on a particular representation. As its illustration, in this section

we consider a setup that explores the welfare implications of policies that introduce new

commitment devices to naive consumers. Suppose the government contemplates whether

to provide an illiquid forced-savings device. This is equivalent to introducing an additional

commitment device or menu x to the family of existing available menus; the new menu

excludes immediate consumption beyond a certain level. A pervasive finding is that

the take-up of new commitment devices is minimal under naiveté.33 Beyond mitigating

the effectiveness of new commitment devices, we find that new commitment devices can

strictly decrease welfare when consumers are naive. In fact, the existence of such strictly

deleterious commitment devices characterizes naiveté. Moreover, the marginal welfare

effects of such interventions fail to be monotone in sophistication, except for the usage of

complete commitments to a single outcome.

Formally, we consider families of menus to understand the effects of introducing

additional commitment devices. For finite X ⊂ K(∆(C)), let x∗(X) = {x ∈ X :

x % y for all y ∈ X} denote the set of %-maximal menus from the family X. Let

C(X) ∈ C(x∗(X)) ≡ {C(x) : x ∈ x∗(X)}. That is, C(X) is the final consumption from

the family of menus X when the individual adheres to the following protocol: first,

she selects a %-maximal menu x ∈ x∗(X), and second, she consumes C(x). This al-

lows us to compare the final welfare from different families of commitment devices by

comparing their induced final choices, that is, X is better for an individual than Y if

{C(X)} % {C(Y )}.34 We focus on the deterministic case for simplicity, but the stochas-

tic generalization is straightforward (except for Theorem 6 that makes explicit use of

deterministic Strotz representations).

The next result makes the straightforward but important observation that adding

additional commitment devices always makes sophisticated individuals better off. The

converse result, that strictly naive individuals can always be made strictly worse off by

introducing available commitments devices, requires that singleton menus are dense in

the ex-ante preference as they are, for example, whenever a Strotz representation exists.

The literature already observed many specific situations where providing flexibility to

naive individuals makes them worse off. Our point is that this is a general phenomenon:

33Several studies in this line are surveyed by Bryan, Karlan, and Nelson (2010).
34We follow the commonly employed approach of using ex-ante commitment preferences over singletons

as the welfare criterion over final consumption ∆(C). Another established benchmark is the Pareto
welfare (partial) order based on improvements with respect to both ex-ante and ex-post preferences.
Since Theorems 5 and 7 involve changing ex-ante utility u with possible reciprocal changes to ex-post
utility v, they are no longer valid with respect to the Pareto welfare criterion. Theorem 6 involves losses
to both ex-ante and ex-post utility, and therefore holds with respect to either welfare criterion.
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the possibility of such welfare loss is a necessary consequence of strict naiveté. Recall

that an individual is strictly naive if she is naive but not sophisticated.

Theorem 5. If an individual is sophisticated, then {C(X)} % {C(Y )} whenever X ⊃ Y .

If singleton menus are %-dense and the individual is strictly naive, then there exist X ⊃ Y

with {C(X)} ≺ {C(Y )}.

The prior theorem is intuitive because the additional menu that leads to a less virtu-

ous final selection is possibly a superset of an already available menu. Clearly, increasing

flexibility for individuals who mistakenly believe they will virtuously exercise that flexi-

bility can decrease their welfare. The next result is sharper, but requires the additional

structure of the Strotz model. Under Strotz preferences, there always exists a subset of

an existing menu that leaves the individual worse off when added to the family of com-

mitments. That is, there exists a scenario where welfare is harmed by adding stronger

commitments (rather than more flexibility) that exclude choices which are otherwise

available in some existing forward plan in the status quo.

A natural question is whether the harmful effect of commitment devices is monotone

with respect to the naiveté ordering. Excluding the extreme cases of sophistication and

full naiveté, the second part of the result shows this is not the case. More specifically,

for a generic pair of comparable individuals, there exists a new commitment device that

leaves the more sophisticated individual strictly worse off while having no effect on the

more naive individual.

Say an individual has a preference for commitment if there exist menus y and x ⊂ y

such that x � y. If an individual has a preference for commitment, then she is not

fully naive in the sense of believing that her future tastes will be identical to her current

commitment preference.

Theorem 6.

1. Suppose (%, C) admits a Strotz representation (u, v, v̂), where u and v are indepen-

dent.35 If the individual is strictly naive and has a preference for commitment, then

there exist menus y and x ⊂ y such that {C({x, y})} ≺ {C({y})}.

2. Suppose (%1, C1) and (%2, C2) admit Strotz representations (u, v1, v̂1) and (u, v2, v̂2).

Suppose individual 2 is strictly naive and has a preference for commitment, and

that u2 and v2 are independent. If individual 1 is strictly more naive than individual

2,36 then there exist menus y and x ⊂ y such that {C1({x, y})} ∼1 {C1({y})} and

{C2({x, y})} ≺2 {C2({y})}.
35That is, it is not that case that v ≈ u or v ≈ −u.
36That is, individual 1 is more naive than individual 2, but it is not the case that individual 2 is also

more naive than individual 1. This restriction still permits a shared ex-ante or a shared ex-post Strotz
representation, but not both.
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Example 1. For a concrete illustration of Theorem 6, consider an individual facing a

three-period consumption-savings problem. In period 0, she initially chooses to invest

money in a liquid savings account or in a retirement account. In period 1, she then

decides whether to make a withdrawal from her savings. If she initially invested in the

retirement account, then her early withdrawal results in a tax penalty. In period 2,

she finally consumes the remaining balance of the savings or retirement account. For

simplicity of exposition, we assume linear utility over static consumption and focus on

deterministic consumption streams.

Suppose that (%, C) has a Strotz representation (u, v, v̂) where

u(c1, c2) = c1 + c2, v(c1, c2) = c1 + βc2, and v̂(c1, c2) = c1 + β̂c2.

As standard, assume 0 < β < β̂ ≤ 1. If the gross interest rate is R > 1 and the individual

initially has unit wealth, then investing in the liquid savings account is equivalent to

choosing the menu

y = {(c1, c2) ∈ R2
+ : c1 + c2/R ≤ 1}.

The retirement account has a proportional early withdrawal penalty τc1 associated with

a withdrawal of c1 in period 1, where τ ≥ 0. Thus investing in the retirement account is

equivalent to choosing the menu

xτ = {(c1, c2) ∈ R2
+ : (1 + τ)c1 + c2/R ≤ 1}.

Note that xτ ⊂ y, and that xτ = y if τ = 0. The actual choices from y and xτ are

C(y) =

{
(1, 0) if 1 > βR

(0, R) if 1 ≤ βR,
and C(xτ ) =

{
(1/(1 + τ), 0) if 1 > (1 + τ)βR

(0, R) if 1 ≤ (1 + τ)βR.

Suppose 1 > β̂R and (1+τ)β̂R > 1 > (1+τ)βR. In this case, the individual correctly

anticipates choosing (1, 0) from the menu y. However, she incorrectly anticipates choosing

(0, R) from xτ , when in fact she will choose (1/(1+τ), 0). She believes that the tax penalty

associated with the retirement account is high enough to deter her from making early

withdrawals in period 1, but in reality it is not. Since u(0, R) > u(1, 0), this incorrect

belief will lead the individual to initially invest in the illiquid retirement account xτ over

the liquid savings account y in period 0. Therefore, the availability of the retirement

account as a savings instrument is strictly detrimental, since

{C({xτ , y})} = {(1/(1 + τ), 0)} ≺ {(1, 0)} = {C({y})}.

Finally, consider a more naive individual who is parameterized by (β̂∗, β∗) such that
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β̂∗R ≥ 1. This individual does not have a strict incentive to switch to the retirement ac-

count because she anticipates choosing (0, R) even from y. Thus offering the commitment

device to this individual has no harmful effect.37 �

Example 1 illustrates the potentially detrimental impact of offering additional “soft”

commitments, that is, commitment devices that worsen tempting options by making

them more expensive (e.g., retirement accounts with early withdrawal penalties). In a

related field experiment by Giné, Karlan, and Zinman (2010), many participants who were

offered commitment contracts for smoking cessation put money in a blocked account as

a penalty for smoking, but failed to quit and lost their money.38 In contrast, more naive

individuals would pass up these commitment devices under the false belief that they can

quit smoking without any commitment, allowing them to avoid this penalty. Assuming

free disposal of money, any “soft” commitment device that uses monetary penalties can

be represented as a restriction on the set of feasible action/money pairs and hence takes

the form of committing to a subset x ⊂ y of the original option set, as in Theorem 6.39

The theme of Example 1 that soft commitment devices can prove harmful to partially

naive individuals—and potentially more so as naiveté decreases—has been explored in

other specific examples in the literature: Heidhues and Koszegi (2009) examine a setting

where quasi-hyperbolic discounters can pay an up-front cost to impose a penalty on

indulging future temptations. They show that welfare can fail to be monotonic in beliefs,

with more accurate values of β̂ sometimes leading to lower welfare. Spiegler (2011,

Section 4.1.2) considers the choice of contract by a time-inconsistent consumer, with one

contract delivering less favorable transfers but higher-powered incentives to choose the

ex-ante preferred option. Similar to the main intuition in our savings example, he shows

that decreases in naiveté may lead a consumer to choose the more expensive contract

under the false belief that it will discipline future behavior, only to end up choosing the

tempting option ex post at greater expense.40 Theorem 6 shows the generality of these

37It is possible that the more naive individual could select the retirement account in spite of her
indifference between the two menus. However, modifying this example to include an arbitrarily small
cost of setting up the retirement account will cause the more naive individual to strictly prefer the menu
y without changing the less naive individual’s strict preference for xτ . Similarly, the conclusions in
Theorem 6 in no way rely on how indifferences are broken.

38Relatedly, John (2016) offers commitment contracts to low-income households in the Philippines
and lets them choose the default penalty. A majority of participants default on their contract, which
suggests that they overestimated the effect of the penalty on their future behavior.

39In fact, a variation of Theorem 6 can be proven that shows the welfare loss for a partially naive
individual can always take the form of a penalty that is foregone due to a failed attempt at self-control.
Specifically, under the assumptions of part 1 of Theorem 6, there exists a menu y and lotteries p ∈ y, q /∈ y
such that {p} � {q}, y ∪ {q} \ {p} � y, C(y) = p, and C(y ∪ {q} \ {p}) = q. For example, p is a harmful
temptation and q is the same tempting good together with a penalty; the individual prefers trading p
for q ex ante, but ultimately chooses the worsened option q ex post. The analogue of the comparative
result in part 2 of Theorem 6 holds as well.

40In contrast, holding beliefs fixed, welfare is monotonically increasing with more virtuous actual
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negative results: For any pair of partially naive individuals who are strictly ranked in

terms of their naiveté, there exist a pair of commitment devices, one stronger than the

other, such that making the stronger commitment device available is harmful only to the

less naive individual. This result suggests caution when considering the distribution of

welfare effects induced by policy changes affecting individuals with heterogeneous levels

of naiveté.

While some forms of partial commitment can make naive individuals worse off, some

classes of commitments can unambiguously improve welfare. In Example 1, increasing

the early withdrawal penalty magnifies the strength of the commitment device xτ . When

τ is small and the commitment device is weak, the welfare effect of this commitment

device is neutral or negative. Once τ exceeds some threshold, the exact value of which

depends on the preference parameters, the commitment device becomes strong enough

to discipline future behavior and deliver a positive welfare impact. Expanding on this

observation, the following result shows there is a class of commitment devices that will

unambiguously improve welfare for any preference: complete commitments to a single

outcome. In addition, the second part of the result shows that, in contrast to the case of

partial commitments, the beneficial effect of offering complete commitments is monotone

with respect to the naiveté ordering.

Theorem 7.

1. Assume C(X ∪ {x}) /∈ x implies C(X ∪ {x}) = C(X).41 If an individual is naive,

then {C(X ∪ {p})} % {C(X)} for all lotteries p.

2. Suppose individuals 1 and 2 are naive and share the same commitment preference,

and suppose 1 is more naive than 2. Then, for any menu y and lottery p, {p} 6∼1 y

and {C1({{p}, y})} �1 {C1({y})} imply {C2({{p}, y})} �2 {C2({y})}.

When menu choice is driven purely by temptation, adding extreme commitment de-

vices is never harmful. Of course, such extreme commitment can be rejected if individuals

have uncertain virtuous tastes that lead them to demand flexibility. Optimal design of

commitment devices for naive individuals with some demand for flexibility remains an

important open question.42 In Section 7.3 we discuss the possibility of detecting naiveté

in the presence of uncertain virtuous tastes.

behavior. Trivially, if two individuals share the same ex-ante preference (u1 ≈ u2 and v̂1 ≈ v̂2) and
individual 2 is more virtuous (v2 �u v1), then individual 2 is is better off in any fixed two-stage decision
problem X than individual 1.

41This property simply implies that the tie-breaking procedure used in the selection function C to
decide among multiple maximal elements remains unchanged when not-maximal options are added.
This avoids spurious welfare conclusions that are artifacts of changes in the tie-breaking protocol.

42Amador, Werning, and Angeletos (2006) study a consumption-savings problem combining flexibility
and temptation, but under the assumption of full sophistication.
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7 Extensions

7.1 Comparative Naiveté with Non-Common Normative Pref-

erences

In the previous sections, we have focused on comparing individuals who share a common

normative ranking (commitment preference). In this section we relax this assumption

and provide a generalization of our definition of comparative naiveté (in the deterministic

case only). Recall that, in the deterministic case with common normative preferences,

individual 1 is more naive than individual 2 if

x %2 {p} %2 {C2(x)} =⇒ x %1 {p} %1 {C1(x)}.

Based on the same idea, the following definition also identifies gaps between commit-

ment behavior and actual ex-post choices. Whenever the more sophisticated individual

mistakenly prefers choosing later in the menu x to committing to her actual choice from

x, which indicates a misprediction, the more naive individual displays the same behavior.

Definition 18. Individual 1 is more naive∗ than individual 2 if, for all menus x,

x �2 {C2(x)} =⇒ x �1 {C1(x)}.

Theorem 8. Suppose (%1, C1) and (%2, C2) are strictly naive and have Strotz represen-

tations (u1, v1, v̂1) and (u2, v2, v̂2) such that individual 1 has a preference for commitment

and v1 6≈ v̂2. Then individual 1 is more naive∗ than individual 2 if and only if there exist

α, α′ ∈ [0, 1] such that

v2 ≈ αv1 + (1− α)v̂1 and v̂2 ≈ α′v1 + (1− α′)v̂1.

Theorem 8 characterizes the implications of this definition in terms of deterministic

Strotz representations, excluding special cases where tie-breaking can create spurious

counter-examples.43 The implication of comparative naiveté in this setting is that the

discrepancy between v̂1 and v1 is wider than that between v̂2 and v2. Note that, in contrast

to the common normative ranking case, the ranking v̂1 �u1 v̂2 �u1 v2 �u1 v1 does not

necessarily hold (the ordering of v̂2 and v2 can be reversed). We leave an extension to

the stochastic setting as an open question.

43Under v1 ≈ v̂2, the “if” direction might not hold. However, violations of the more naive∗ condition
can occur only at particular menus where tie-breaking is needed for both individuals.
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7.2 Costly Self-Control

So far we have not considered the possibility of an agent’s costly effort to resist temp-

tations. We now turn to analyzing the robustness of our results in the presence of such

costly self-control. In particular, following Gul and Pesendorfer (2001), the individual’s

self-control cost of choosing alternative p from the menu x is maxq∈x v(q) − v(p), the

difference between the temptation utility of the most tempting option and that of p. The

individual maximizes her commitment utility u subject to these self-control costs, and

therefore chooses the option that maximizes the compromise u(p) + v(p) of commitment

utility and temptation utility. The following definition permits uncertainty about the

temptation utility, as in Stovall (2010), as well as possibility of incorrect beliefs about

the distribution of temptation utilities.

Definition 19. A random Gul-Pesendorfer representation of (%, λ) is a triple (u, µ, µ̂)

of a nontrivial expected-utility function u and nontrivial probability measures µ, µ̂ over V
with finite-dimensional support such that the function U : K(∆(C))→ R defined by

U(x) =

∫
V

[
max
p∈x

(u(p) + v(p))−max
q∈x

v(q)
]
dµ̂(v)

represents % and

λx(y) = µ(p−1x (y))

for some measurable selection function px : V → x with px(v) ∈ Bu+v(x) for all v ∈ V .

Dekel and Lipman (2012) show that under a mild continuity assumption, the menu

preference alone cannot distinguish the random Gul-Pesendorfer model and the random

Strotz model. However, they also find that a random Gul-Pesendorfer representation of

% implies different ex-post choice probabilities than those implied by a random Strotz

representation of %. Analyzing whether our results can be extended to deal with self-

control preferences is therefore important since the identification of naiveté proposed in

Section 3 relies on a particular model of commitment behavior.44

The following theorem states that if the individual is naive and admits a random

Gul-Pesendorfer representation, then the ex-ante beliefs derived from the representation

are optimistic. More precisely, naiveté implies that any random Gul-Pesendorfer rep-

resentation predicts ex-post choices that are more virtuous than the actual ones. The

intuition is the following: Self-control costs increase the attractiveness of commitment

since tempting options can be undesirable ex ante even if they are not chosen ex post.

44Dekel and Lipman (2012) show that both representations can be distinguished with additional ob-
servation of ex-post choices if we require the agent’s belief to be correct under these representations.
Otherwise, the models are indistinguishable because of possible disagreement between actual and per-
ceived distributions.
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Thus the definition of absolute naiveté proposed in Section 3 serves as a conservative and

robust test to reveal an individual’s optimism even in the presence of costly self-control.

Theorem 9. Suppose that (%, λ) has a random Gul-Pesendorfer representation (u, µ, µ̂),

and that the individual is naive. Then, for any u-upper set U ,

µ̂({v ∈ V | u+ v ∈ U}) ≥ µ({v ∈ V | u+ v ∈ U}). (8)

In addition, if the individual is strictly naive, Equation (8) is satisfied with strict inequal-

ity for some U .

It is important to note that the converse of Theorem 9 fails. In particular, even if

µ̂ = µ and the individual has correct beliefs about her future behavior, the desire to

avoid self-control costs may result in {m(λx)} � x for some menus, in violation of both

our behavioral definitions of naiveté and sophistication. Thus our behavioral definition

of naiveté is sufficient but not necessary for overoptimistic beliefs when individuals have

self-control preferences. In a companion paper Ahn, Iijima, and Sarver (2016), we explore

alternative behavioral conditions that tightly characterize naiveté for deterministic self-

control preferences. We also show that there is an impossibility result when randomness is

permitted: It is impossible to construct a behavioral definition that tightly characterizes

naiveté for the random Gul-Pesendorfer representation. This is very related to the lack

of tight identification in these models when naiveté is allowed. Therefore, Theorem 9 is

perhaps the best result that one can hope for when self-control costs are random.

7.3 Uncertainty in Normative Preferences

The random Strotz interpretation of commitment preferences relies on the assumption

that normative preferences are certain ex ante. The elicitation of naiveté provided in

Section 3 is therefore suited to situations where long-term preferences are known and

where deviations are always undesirable (e.g., temptations, addictions, memory lapses).

In some situations, however, the individual might expect future shocks to her normative

preferences. In that case, her menu choices trade off commitment versus flexibility and

the condition x � {m(λx)} does not necessarily indicate unrealistic expectations: An

individual who anticipates receiving some information about her normative ranking prior

to selecting an option might rationally refuse to commit to her average choice.

Identifying the flexibility-loving part from the commitment-loving component of pref-

erences in order to detect naive anticipations requires additional assumptions. For in-

stance, Stovall (2014) assumes that the normative uncertainty (over u) is realized prior

to the temptation uncertainty (over v), in which case the individual’s beliefs can be iden-

tified from her preferences. In some contexts, the normative states are tied to objective
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contingencies that can be directly observed by the analyst (e.g., financial events, weather,

health status). In both of these cases, the identification of naiveté can be performed as

described in Section 3 conditional on each normative state.

In the general case, the sophistication hypothesis imposes some necessary properties

on choice data. In particular, options can be relevant ex ante only if they are chosen with

some probability ex post, an axiom that Ahn and Sarver (2013) call consequentialism:

x ∼ supp(λx) for all menus x is a necessary condition for the existence of a sophisticated

representation. In contrast, the condition x � supp(λx) indicates that the individual

overestimates the virtue of her choices inside x.

As an illustration, suppose that an individual is considering buying a membership

that gives her free access to the gym. Let x denote the option set that includes any

number of gym visits, and let p ∈ x denote zero visits. Observing that she values the

membership ex ante (x � {p}) but that she attends the gym with probability zero ex post

(λx({p}) = 1) is sufficient to conclude that she had unrealistic expectations regarding her

gym attendance.45 Relatedly, suppose that the individual can self-impose a penalty for

smoking, as described in Section 6. Her initial choice set is {p1, p2} (smoking or not) but

she can replace p1 by a contract p3 according to which smoking results in the payment

of a penalty. Observing that she selects the contract ({p3, p2} � {p1, p2}) but continues

smoking with probability one despite the penalty (λ{p
3,p2}({p3}) = 1) is sufficient to

conclude that her menu choice was led by naive anticipations.46 Note that in both of

these examples, one needs to observe repeated observations for a single individual or a

cross sectional distribution of a set of individuals who make the same ex-ante choices in

order to determine the support of λx and infer naiveté.

45Note that all of the options in x are in fact pairs consisting of a number of visits together with the
expense of the gym membership. Letting q denote zero visits without the paying for the membership,
the choice to join the gym corresponds to the preference x � {q}. Since {q} � {p} by dominance (the
individual prefers not to pay the cost of the membership without going), we have x � {p} = supp(λx).

46This argument implicitly assumes that the individual prefers having the option to quit to being
forced to smoke ({p1, p2} % {p1}) and that the individual prefers not to pay the penalty all else equal

({p1} � {p3}). Thus {p3, p2} � {p3} = supp(λ{p
3,p2}).
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A A Comparative from Dekel and Lipman (2012)

In this section, we summarize a relevant result from Dekel and Lipman (2012) that will play

a central role in our proofs of Theorems 2, 3, and 4. Recall the definition of comparative

temptation aversion: Individual 2 is more temptation averse than individual 1 if, for all menus

x and lotteries p,

{p} �1 x =⇒ {p} �2 x.

Theorem 10 (Dekel and Lipman (2012)). Suppose %1 and %2 have random Strotz representa-

tions (u, µ1) and (u, µ2). Then %2 is more temptation averse than %1 if and only if µ1 �u µ2.

Dekel and Lipman (2012) consider only a finite prize space C in their paper. In the Supple-

mental Appendix, we prove that their result can be extended to any compact metric space C

and any random Strotz representation (with finite-dimensional support) defined on that space.47

This extension to compact spaces is not merely a technical exercise, as it is critical for many of

the applications of our results, such as dynamic consumption problems where C = [a, b]N.

B Uncertain Intensity Random Strotz

In this section, we highlight a useful special case of the random Strotz representation where the

uncertainty over future behavior is only over the magnitude of the future temptation, and not in

its basic direction. For example, the individual may know that she will crave sweet snacks (but

not salty snacks) ex post, but is uncertain of how strong her craving for sweets will be. This

uncertain intensity Strotz representation encompasses the random quasi-hyperbolic discounting

model studied in Section 5.1 where the individual is uncertain of the intensity of her present

bias, and the corollaries presented below provide a bridge between our main theorems and the

results in that section.

Recall that two expected-utility functions u and v are independent if they are nontrivial

and it is not the case that v ≈ u or v ≈ −u.

Definition 20. An uncertain intensity Strotz representation of (%, λ) is a quadruple (u, v, F, F̂ )

of two independent expected-utility functions u, v and two cumulative distribution functions F, F̂

on [0, 1] such that the function U : K(∆(C))→ R defined by

U(x) =

∫ 1

0
max

p∈Bαu+(1−α)v(x)
u(p) dF̂ (α)

47Definition 6 imposes the restriction that the measure µ in the random Strotz representation must
have finite-dimensional support. It is an open question whether this comparative result can be extended
to probably measures with arbitrary support. Our proof in the Supplemental Appendix shows that the
“if” direction in Theorem 10 is true without the finite-dimensional support assumption. However, we
view the exploration of additional generalizations of this results as a purely technical question. As we
discussed in Section 3.2, we are not aware of any application of the random Strotz model that does not
have finite-dimensional support.
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is a utility representation of % and, for all menus x and all measurable y ⊂ x,

λx(y) = F (p−1x (y))

for some measurable selection function px : [0, 1] → x with px(α) ∈ Bu(Bαu+(1−α)v(x)) for all

α ∈ [0, 1].

For the case of an uncertain intensity Strotz representation, the direction of the temptation

is known to be v, but the magnitude of that temptation relative to the virtuous utility u is

uncertain. A naive individual underestimates the influence of v, and this bias is reflected in

her belief F̂ over the intensities in [0, 1] putting more likelihood on larger weighting of u (hence

lower weighting of v) than F .

Corollary 10. Suppose (%, λ) has a uncertain intensity Strotz representation (u, v, F, F̂ ). Then

the individual is naive if and only if F̂ ≥FOSD F (and is sophisticated if and only if F̂ = F ).

Corollary 11. Suppose (%1, λ1) and (%2, λ2) are naive and have uncertain intensity Strotz

representations (u, v, F1, F̂1) and (u, v, F2, F̂2).

1. Individual 1 is more naive than individual 2 if and only if

F̂1 ≥FOSD F̂2 ≥FOSD F2 ≥FOSD F1.

2. Individual 1 is weakly more naive than individual 2 if and only if

F1(α)− F̂1(α) ≥ F2(α)− F̂2(α), ∀α ∈ [0, 1].

C Proofs

C.1 Proof of Theorem 2

Suppose the random choice rule λ has a random Strotz representation (u, µ). Consider the

hypothetical sophisticated ex-ante preference %∗ that is also be represented by (u, µ). The

following lemma shows how this hypothetical preference can be determined from λ and u.

Lemma 2. Suppose λ has a random Strotz representation (u, µ). Then for any menu x,

u(m(λx)) =

∫
V

max
p∈Bv(x)

u(p) dµ(v).

In particular, if we define a binary relation %∗ on K(∆(C)) by

x %∗ y ⇐⇒ u(m(λx)) ≥ u(m(λy)),

then (u, µ) is a random Strotz representation for %∗.
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Proof. If (u, µ) represents λ then by definition there exists, for all menus x, a measurable

selection function px : V → x with px(v) ∈ Bu(Bv(x)) such that

λx(y) = µ(p−1x (y))

for all measurable y ⊂ x. Thus λx is the distribution on x induced by the random variable

px defined on the measure space (V, µ). Therefore, the standard change of variables formula

together with the linearity and continuity of u imply∫
V

max
p∈Bv(x)

u(p) dµ(v) =

∫
V
u(px(v)) dµ(v)

=

∫
x
u(p) dλx(p) = u

(∫
x
p dλx(p)

)
= u(m(λx)),

as desired. �

Turning now to the proof of Theorem 2, fix a random Strotz representation (u, µ, µ̂) for

(%, λ), and define %∗ as in Lemma 2. To establish sufficiency, suppose the individual is naive.

Then for all menus x and lotteries p,

{p} � x =⇒ {p} � {m(λx)} (naiveté)

=⇒ u
(
m
(
λ{p}

))
= u(p) > u(m(λx))

=⇒ {p} �∗ x.

Thus %∗ is more temptation averse than %. Since (u, µ) represents %∗ by Lemma 2, Theorem 10

implies that µ̂�u µ. If the individual is sophisticated, then a similar argument shows that the

converse also holds: % is also more temptation averse than %∗ (in particular, %=%∗) and hence

µ�u µ̂ also holds, i.e., µ̂ ≈ µ.

To establish necessity, suppose µ̂�u µ. By Theorem 10, %∗ is more temptation averse than

%. By contrapositive, this is equivalent to the condition

x %∗ {p} =⇒ x % {p}.

Note that for any menu x, if we take p = m(λx) then

u(m(λx)) = u(p) = u
(
m
(
λ{p}

))
and hence x ∼∗ {p} = {m(λx)}. Since %∗ is more temptation averse than %, this implies

x % {m(λx)}. Thus the individual is naive. If we also have µ �u µ̂ then another application

of Theorem 10 implies the condition above can be strengthened to x %∗ {p} ⇐⇒ x % {p}. In

this case, x ∼∗ {m(λx)} implies x ∼ {m(λx)} and hence the individual is sophisticated.
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C.2 Proof of Theorem 3

The following lemma decomposes our definition of more naive into two more basic conditions.

The comparative of being more temptation averse is defined in the main text. The comparative

of being more virtuous is defined for the first time in this lemma. Intuitively, individual 2 is

more virtuous than individual 1 if she makes “better” choices (as measured by her commitment

preference) from every menu than individual 1.

Lemma 3. Suppose (%1, λ1) and (%2, λ2) are naive, and suppose %1 and %2 share the same

commitment preference, i.e., {p} %1 {q} ⇐⇒ {p} %2 {q} for all lotteries p, q ∈ ∆(C). Then

individual 1 is more naive than individual 2 if and only if both of the following hold:

1. Individual 2 is more temptation averse than individual 1: {p} �1 x =⇒ {p} �2 x.

2. Individual 2 is more virtuous than individual 1: {p} �2 {m(λx2)} =⇒ {p} �1 {m(λx1)}.

Proof. More naive implies (1): Fix any menu x and lottery p such that {p} �1 x. Since

individual 1 is more naive than 2, we cannot have x %2 {p} %2 {m(λx2)}. Thus either {p} �2 x

or {m(λx2)} �2 {p}. To rule out the second possibility, note that since individual 2 is naive, we

must have x %2 {m(λx2)}. Since individual 1 is more naive than 2, this implies x %1 {m(λx2)} %1

{m(λx1)}. Therefore, {p} �1 {m(λx2)}, and hence {p} �2 {m(λx2)} since individuals 1 and 2

have the same commitment preference. Thus the only possibility is {p} �2 x, as desired.

More naive implies (2): Fix any menu x and lottery p such that {p} �2 {m(λx2)}. Since

individual 2 in naive, x %2 {m(λx2)}. Since individual 1 is more naive than 2, this implies

x %1 {m(λx2)} %1 {m(λx1)}. Individuals 1 and 2 share the same commitment preference, and

therefore {p} �1 {m(λx2)} %1 {m(λx1)}, as desired.

(1) and (2) together imply more naive: If individual 2 is more virtuous than individual 1,

then we must have {m(λx2)} %2 {m(λx1)}. Otherwise, taking p = m(λx1) in condition (2) would

lead to a contradiction. Therefore, since the individuals share the same commitment preference,

{p} %2 {m(λx2)} =⇒ {p} %1 {m(λx1)} for any lottery p. Combining this with the contrapositive

of condition (1), it follows directly that individual 1 is more naive than individual 2. �

We are now ready to prove Theorem 3. By Theorem 2, individual 2 is naive if and only if

µ̂2 �u µ2. Also by Lemma 3, individual 1 is more naive than individual 2 if and only if 2 is

both more temptation averse and more virtuous than 1. By Theorem 10, individual 2 is more

temptation averse than individual 1 if and only if µ̂1 �u µ̂2. The proof is therefore completed

if we can show that individual 2 is more virtuous than individual 1 if and only if µ2 �u µ1. To

see that this is true, define %∗1 and %∗2 as in Lemma 2 for λ1 and λ2, respectively. Then (u, µ1)

and (u, µ2) represent %∗1 and %∗2. Note that for all menus x and lotteries p,

{p} �i {m(λxi )} ⇐⇒ u(p) > u(m(λxi )) ⇐⇒ {p} �∗i x, i = 1, 2.

Therefore, individual 2 is more virtuous than individual 1 if and only if %∗1 is more temptation

averse than %∗2. By Theorem 10, this is true if and only if µ2 �u µ1.
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C.3 Proof of Lemma 1

Fix any x and p, q such that

1

2
x+

1

2
{p} %2

1

2
{m(λx2)}+

1

2
{q}.

Take a lottery r such that x ∼2 {r}. By independence,

1

2
{r}+

1

2
{p} ∼2

1

2
x+

1

2
{p} %2

1

2
{m(λx2)}+

1

2
{q}.

Note also that x %2 {r} %2 {m(λx2)} since 2 is naive, and hence Definition 10 implies x %1

{r} %1 {m(λx2)} %1 {m(λx1)}. By independence, and since %1 and %2 share the same commit-

ment preference,

1

2
x+

1

2
{p} %1

1

2
{r}+

1

2
{p} %1

1

2
{m(λx2)}+

1

2
{q} %1

1

2
{m(λx1)}+

1

2
{q},

as desired.

C.4 Proof of Theorem 4

(1) ⇔ (3): Let Ui denote the value function from the representation (u, µ̂i) for the ex-ante

preference %i for i = 1, 2. Also, recall from Lemma 2 that if λi has random Strotz representation

(u, µi), then

u(m(λxi )) =

∫
V

max
p∈Bv(x)

u(p) dµi(v).

Thus for any menu x and lotteries p, q,

1

2
x+

1

2
{p} %i

1

2
{m(λxi )}+

1

2
{q} ⇐⇒ 1

2
Ui(x) +

1

2
u(p) ≥ 1

2
u(m(λxi )) +

1

2
u(q)

⇐⇒ OVi(x) ≥ u(q)− u(p).

It follows directly from this observation that individual 1 is weakly more naive than individual

2 if and only if OV1(x) ≥ OV2(x) for all x.

(2) ⇔ (3): Fix any lotteries p, q with {q} �i {p} for i = 1, 2. For each menu x, define

Axi ≡
{
α ∈ [0, 1] : (1− α)x+ α{p} %i (1− α){m(λxi )}+ α{q}

}
=
{
α ∈ [0, 1] : (1− α)OVi(x) ≥ α(u(q)− u(p))

}
.

By definition, Pi(x; p, q) = supAxi . Note that Axi is a closed interval. Moreover, since both

individuals are naive, we have x %i m(λxi ) and therefore 0 ∈ Axi . Also, 1 /∈ Axi since {q} �i {p}.
This implies

α = Pi(x; p, q) ⇐⇒ (1− α)OVi(x) = α(u(q)− u(p)).

Therefore, OV1(x) ≥ OV2(x) if and only if P1(x; p, q) ≥ P2(x; p, q).
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(3) ⇔ (4): For any menu x,

OV1(x) ≥ OV2(x)

⇐⇒
∫
V

max
p∈Bv(x)

u(p) dµ̂1(v)−
∫
V

max
p∈Bv(x)

u(p) dµ1(v)

≥
∫
V

max
p∈Bv(x)

u(p) dµ̂2(v)−
∫
V

max
p∈Bv(x)

u(p) dµ2(v)

⇐⇒
∫
V

max
p∈Bv(x)

u(p) d
(1

2
µ̂1 +

1

2
µ2

)
(v) ≥

∫
V

max
p∈Bv(x)

u(p) d
(1

2
µ̂2 +

1

2
µ1

)
(v).

If this is true of all menus x, then the (hypothetical) preference represented by the random

Strotz representation (u, 12 µ̂2 + 1
2µ1) is more temptation averse than the preference represented

by (u, 12 µ̂1 + 1
2µ2). Thus by Theorem 10, OV1(x) ≥ OV2(x) for all x if and only if 1

2 µ̂1 + 1
2µ2 �u

1
2 µ̂2 + 1

2µ1 or, equivalently,

1

2
µ̂1(U) +

1

2
µ2(U) ≥ 1

2
µ̂2(U) +

1

2
µ1(U)

for every u-upper set U . Rearranging terms, this is precisely condition (4).

C.5 Proof of Corollaries 6 and 7

A maximally present-biased preference only values immediate consumption in period 1 and

ignores all subsequent consumption, which is equivalent to the extreme case where β = 0:

v0(c) = w(c1). Any convex combination of the virtuous utility u and maximally present-biased

v0 can be rewritten as the following familiar formula:

βu(c) + (1− β)v0(c) = w(c1) + β
∞∑
t=2

δt−1w(ct).

Therefore, uncertainty about the present-bias parameter β simply parameterizes uncertainty

about the intensity of u relative to v0, and β is the relative weighting of exponential discount-

ing versus extreme impatience. Thus an RQH representation (w,F, F̂ , δ) can equivalently be

expressed as an uncertain intensity Strotz representation (u, v0, F, F̂ ). With this observation,

the results follow directly from Corollaries 10 and 11 in Appendix B.

C.6 Proof of Corollary 9

By Theorem 1, the individual is naive if and only if v̂ ≈ αu+(1−α)v for some α ∈ [0, 1], where

u, v, and v̂ satisfy Equations (4), (5), and (6). This is equivalent to the condition

D̂(t− 1) = a
[
αD(t) + (1− α)D(t− 1)

]
, ∀t ∈ N,
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for some a > 0. Since D(0) = D̂(0) = 1, we have 1/a = αD(1) + (1− α) and therefore

D̂(t− 1) =
αD(t) + (1− α)D(t− 1)

αD(1) + (1− α)

= α′
D(t)

D(1)
+ (1− α′)D(t− 1),

where

α′ =
αD(1)

αD(1) + (1− α)
∈ [0, 1].

This establishes that the individual is naive if and only if Equation (7) is satisfied.

To prove claim 1, note that by Equation (7),

D̂(t) > D(t) ⇐⇒ D(t+ 1)

D(1)
> D(t) =

D(t)

D(0)
.

The latter holds for all t ∈ N if and only if D exhibits diminishing impatience.

To prove claim 2, note first that

D̂(t)

D̂(t+ 1)
=

αD(t+1)
D(1) + (1− α)D(t)

αD(t+2)
D(1) + (1− α)D(t+ 1)

=
αD(t+1)

D(t) + (1− α)D(1)

αD(t+2)
D(t+1) + (1− α)D(1)

· D(t)

D(t+ 1)
.

Therefore,
D̂(t)

D̂(t+ 1)
<

D(t)

D(t+ 1)
⇐⇒ D(t+ 1)

D(t)
<
D(t+ 2)

D(t+ 1)
.

The latter holds for all t ∈ N ∪ {0} if and only if D exhibits strong diminishing impatience.

C.7 Proof of Theorem 5

By the standard revealed-preference argument, X ⊃ Y implies x % y for any x ∈ x∗(X) and

y ∈ x∗(Y ). Under sophistication, {C(x)} ∼ x % y ∼ {C(y)}. But C(X) = C(x) for some

x ∈ x∗(X) and C(Y ) = C(y) for some y ∈ x∗(Y ), so in particular {C(X)} % {C(Y )}.

Now assume the individual is strictly naive: There exists a menu x with x � {C(x)}. By

%-denseness of the singletons, there exists some lottery p such that x � {p} � {C(x)}. Let

X = {x, {p}} and Y = {{p}}. Then C(Y ) = p and C(X) = C(x), so {C(Y )} � {C(X)}.
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C.8 Proof of Theorem 6

First part: Under the assumptions of the theorem, it can be shown that there exist lotteries

p1, p2, p3 such that48

u(p1) > u(p2) > u(p3)

v̂(p2) > v̂(p1) > v̂(p3)

v(p2) > v(p3) > v(p1).

Let y = {p1, p2, p3} and x = {p1, p3}. The rankings of the lotteries according to u and v̂ imply

that x ∼ {p1} � {p2} ∼ y. The ranking according to v implies that C(x) = p3 and C(y) = p2.

Therefore, {C({x, y})} = {p3} ≺ {p2} = {C({y})}.

Second part: By Corollary 2, v̂1 �u v̂2 �u v2 �u v1. There are two cases to consider, depending

on whether v1 ≈ v2 or not.

Case 1—v1 ≈ v2: Let v ≡ v2 ≈ v1. Since individual 1 is strictly more naive than individual

2, in this case we must have v̂1 �u v̂2, but not v̂1 ≈ v̂2. Therefore, it can be shown that there

exist lotteries p1, p2, p3, p4 such that49

u(p1) > u(p2) > u(p3) > u(p4)

v̂1(p
1) > v̂1(p

2) > v̂1(p
3) > v̂1(p

4)

v̂2(p
3) > v̂2(p

1), v̂2(p
2) > v̂2(p

4)

v(p3) > v(p4) > v(p1), v(p2).

Let y = {p1, p2, p3, p4} and x = {p2, p4}. The rankings of the lotteries according to u and v̂1, v̂2
imply that y ∼1 {p1} �1 {p2} ∼1 x and y ∼2 {p3} ≺2 {p2} ∼2 x. The ranking according to v

implies that Ci(y) = p3 and Ci(x) = p4 for i = 1, 2. Therefore, {C1({x, y})} = {p3} = {C1({y})}
and {C2({x, y})} = {p4} ≺2 {p3} = {C2({y})}.

Case 2—v1 is not an affine transformation of v2: Under these assumptions, it can be shown

48Proof: By Theorem 1, v̂ �u v. Since it is not the case that v ≈ −u, this implies v̂ ≈ αu+ (1− α)v.
Note that α > 0 since the individual is strictly naive, and α < 1 since % has preference for commitment.
Hence, it is not the case that v̂ ≈ u, so there exist lotteries p, q such that v̂(p) = v̂(q) and u(p) > u(q).
Since v̂ ≈ αu + (1 − α)v for α ∈ (0, 1), this also implies that v(p) < v(q). Since it is not the case that
v ≈ −u, there exist lotteries r, s such that u(r) > u(s) and v(r) > v(s), which also implies v̂(r) > v̂(s).
It is easy to show that the lotteries p1 = (1−ε)p+ε[(1/2)s+(1/2)r], p2 = (1−ε)q+εr, p3 = (1−ε)q+εs
have the desired properties for ε > 0 sufficiently small.

49The arguments needed to prove this claim are similar to those in footnote 48 and are omitted.
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that there exist lotteries p1, p2, p3 such that

u(p1) > u(p2) > u(p3)

v̂2(p
2) > v̂2(p

1) > v̂2(p
3)

v2(p
2) > v2(p

3) > v2(p
1)

v1(p
3) > v1(p

2) > v1(p
1).

The ranking of these lotteries according to v̂1 is not important for the result, although it is

true that the above rankings and v̂1 �u v̂2 imply v̂1(p
1), v̂1(p

2) > v̂1(p
3). Let y = {p1, p2, p3}

and x = {p1, p3}. The ranking according to v1 implies C1(y) = C1(x) = p3, so {C1({x, y})} =

{p3} = {C1({y})}. The rankings according to u and v̂2 imply that y ∼2 {p2} ≺2 {p1} ∼2 x. The

ranking according to v2 implies that C2(y) = p2 and C2(x) = p3. Thus {C2({x, y})} = {p3} ≺2

{p2} = {C2({y})}.

C.9 Proof of Theorem 7

First part: By the assumed properties of C, either C(X ∪{p}) = C(X), in which case the results

holds trivially, or C(X ∪ {p}) = p. In the latter case, we must have {p} % x for all x ∈ X.

Since C(X) = C(y) for some y ∈ x∗(X), naiveté then implies {p} % y % {C(y)}, and hence

{C(X ∪ {p})} % {C(X)}.

Second part: The conditions {p} 6∼1 y and {C1({{p}, y})} �1 {C1({y})} imply {p} �1 y. Since

individual 1 is more naive than 2, by Lemma 3 individual 2 is more temptation averse than 1

and therefore {p} �1 y implies {p} �2 y. In addition, since 2 is naive, y %2 {C2(y)}. Thus

{p} �2 y %2 {C2(y)} which in turn implies {C2({{p}, y})} �2 {C2({y})}.

C.10 Proof of Theorem 8

We first show the “only if” part, which is divided into two steps. The claim in Step 2 implies

the desired form by setting α = φ

φ+φ̂
and α′ = ψ

ψ+ψ̂
.

Step 1: v2 ≈ φv1 + φ̂v̂1 and v̂2 ≈ ψv1 + ψ̂v̂1 hold for some numbers φ, φ̂, ψ, ψ̂.

We first claim that v2 is affine equivalent to a linear combination of v̂2 and u1. If not, since

v2 6≈ v̂2 (by the strict naiveté of 2), we can find p, q such that u1(p) = u1(q), v̂2(p) > v̂2(q), and

v2(p) < v2(q) by the standard argument. This implies u2(p) > u2(q) by the naiveté of 2, and

thus {p, q} �2 {C2({p, q})}. But {p, q} ∼1 {C1({p, q})}, which is a contradiction.

We next claim that v̂2 is affine equivalent to a linear combination of v2 and v1. If not, as in the

above paragraph, we can find p, q such that v1(p) = v1(q), v̂2(p) > v̂2(q), and v2(p) < v2(q) by

the standard argument. Then C1({p, q}) ∈ argmaxr∈{p,q} u1(r) and thus {p, q} ∼1 {C1({p, q})}.
Since {p, q} �2 {C2({p, q})}, it leads to a contradiction.

Since u1 is affine equivalent to a linear combination of v1 and v̂1 (as 1 is naive), the above

two claims imply the desired formulas.
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Step 2: φ, φ̂, ψ, ψ̂ ≥ 0 such that φ+ φ̂, ψ + ψ̂ > 0.

If either φ < 0 or φ̂ < 0, because of v2 6≈ v̂2 (as 2 is strictly naive), we can find p, q from the

interior of ∆(C) such that v̂1(p) > v̂1(q), v1(p) > v1(q), and v2(p) < v2(q). First consider the

case v̂2(p) ≥ v̂2(q). This implies u2(p) ≥ u2(q) since 2 is strictly naive. Then we can find q′ close

to q such that strict inequalities v̂1(p) > v̂1(q
′), v1(p) > v1(q

′), u2(p) > u2(q
′), v̂2(p) > v̂2(q

′),

and v2(p) < v2(q
′) hold. We have {p, q′} ∼1 {C1({p, q′})} and {p, q′} �2 {C2({p, q′})}, a

contradiction. Next consider the case v̂2(p) < v̂2(q). Then, because of v2 6≈ v̂2 (as 2 is strictly

naive), we can find q′ close to q such that v̂2(q) > v̂2(q
′) and v2(q) < v2(q

′) hold. Take such

q′ to be sufficiently close to q such that strict inequalities v̂1(p) > v̂1(q
′), v1(p) > v1(q

′), and

v̂2(p) < v̂2(q
′) hold. Then we have {p, q, q′} ∼1 {C1({p, q, q′})} and {p, q, q′} �2 {C2({p, q, q′})},

a contradiction.

If either ψ < 0 or ψ̂ < 0, then there exist p, q such that v̂1(p) > v̂1(q), v1(p) > v1(q), and

v̂2(p) < v̂2(q). Then, depending on v2(p) ≥ v2(q) or v2(p) < v2(q), an analogous argument as in

the previous paragraph leads to a contradiction to the assumption that 1 is more naive∗ than

2.

We next show the “if” part. Take any x such that x �2 {C2(x)}. Denote pi = Ci(x) ∈
Bui(Bvi(x)) and p̂i ∈ Bui(Bv̂i(x)) for each i = 1, 2. We will show u1(p̂1) > u1(p1), which

ensures x �1 {C1(x)}. There are two cases to consider.

Case 1: v̂2 �u1 v2.

First, we have v̂1(p̂1) ≥ v̂1(p̂2) and v̂2(p̂1) ≤ v̂2(p̂2). If v̂1(p̂1) = v̂1(p̂2) then u1(p̂1) ≥ u1(p̂2),
since p1 ∈ Bu1(Bv̂1(x)). If v̂1(p̂1) > v̂1(p̂2) then u1(p̂1) > u1(p̂2) holds, since v̂1 �u1 v̂2.

Second, we have v̂2(p̂2) ≥ v̂2(p2) and v2(p̂2) ≤ v2(p2). Because at least one of them is

strict (otherwise x �2 {C2(x)} would not hold) and v̂2 ≈ αu1 + (1 − α)v2 with α ∈ [0, 1),

u1(p̂2) > u1(p2) follows.

Third, we have v2(p2) ≥ v2(p1) and v1(p2) ≤ v1(p1). If v2(p2) = v2(p1) then u2(p2) ≥ u2(p1)
since p2 ∈ Bu2(Bv2(x)). This implies u1(p2) ≥ u1(p1) because either u2 ≈ αu1 + (1 − α)v2 or

u1 ≈ αu2 + (1− α)v2 with α ∈ (0, 1]. If v2(p2) > v2(p1) then u1(p2) > u1(p1) since v2 �u1 v1.

Case 2: v2 �u1 v̂2.

This case is almost analogous to the previous case. First, we have v̂1(p̂1) ≥ v̂1(p2) and

v2(p̂1) ≤ v2(p2). If v̂1(p̂1) = v̂1(p2), then u1(p̂1) ≥ u1(p2), since p1 ∈ Bu1(Bv̂1(x)). If v̂1(p̂1) >

v̂1(p2) then u1(p̂1) > u1(p2) holds, since v̂1 �u1 v2.

Second, we have v2(p2) ≥ v2(p̂2) and v̂2(p2) ≤ v̂2(p̂2). Because at least one of them is strict

and v2 ≈ αu1 + (1− α)v̂2 with α ∈ [0, 1), u1(p2) > u1(p̂2) follows.

Third, we have v̂2(p̂2) ≥ v̂2(p1) and v1(p̂2) ≤ v1(p1). Because v̂2 ≈ αu1 + (1 − α)v1 with

α ∈ (0, 1] (by assumption v̂2 6≈ v1), u1(p̂2) ≥ u1(p1) follows.
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C.11 Proof of Theorem 9

Define the function σ : V → V by σ(v) = u + v, and define the measures ν̂ and ν on V by

ν̂(E) = µ̂(σ−1(E)) and ν(E) = µ(σ−1(E)) for any measurable set E. Observe that for any

menu x, ∫
V

min
p∈Bv(x)

u(p)dν̂(v) =

∫
V

min
p∈Bu+v(x)

u(p)dµ̂(v) (change of variables)

≥
∫
V

[
max
p∈x

(u(p) + v(p))−max
q∈x

v(q)
]
dµ̂(v)

= U(x)

≥ u(m(λx)) (naiveté)

=

∫
V
u(px(v))dµ(v)

≥
∫
V

min
p∈Bu+v(x)

u(p)dµ(v)

=

∫
V

min
p∈Bv(x)

u(p)dν(v). (change of variables)

(9)

Thus, ∫
V

min
p∈Bv(x)

u(p)dν̂(v) ≥
∫
V

min
p∈Bv(x)

u(p)dν(v),

which we rewrite as ∫
V

max
p∈Bv(x)

[−u(p)]dν̂(v) ≤
∫
V

max
p∈Bv(x)

[−u(p)]dν(v). (10)

Consider the binary relations %ν̂ and %ν defined by their Random Strotz representations

(−u, ν̂) and (−u, ν), respectively. Equation (10) shows that %ν̂ is more temptation-averse

than %ν . Theorem 10 applies since ν̂ and ν have finite-dimensional supports, and implies that

ν �−u ν̂.

Consider a u-upper set U , and v ∈ V \U , v′ ∈ V such that v′ �−u v. It is easy to show that

this latter condition is equivalent to v �u v
′. Suppose that v′ ∈ U . Since U is a u-upper set,

the condition v �u v
′ implies v ∈ U , which is a contradiction. Hence, v′ ∈ V \U for any v′ such

that v′ �−u v. This shows that V \ U is a (−u)-upper set, and therefore ν(V \ U) ≥ ν̂(V \ U),

or equivalently ν̂(U) ≥ ν(U).

We therefore have

µ̂({v ∈ V | u+ v ∈ U}) = ν̂(U) ≥ ν(U) = µ({v ∈ V | u+ v ∈ U}). (11)

To complete the proof, we show that Equation (11) is strict for some U if the individual

is strictly naive. Suppose, by contradiction, that Equation (11) is satisfied as an equality for

all u-upper sets. The arguments above imply that ν̂(U) = ν(U) for any (−u)-upper set U , i.e.,

46



by Theorem 10 that %ν̂ is more temptation-averse than %ν and vice versa. This implies that

Equation (10) is satisfied as an equality for all x, and therefore the system in Equation (9) only

contains equalities. In particular, U(x) = u(m(λx)) for all x, i.e., the individual is sophisticated.

C.12 Proof of Corollary 10

Lemma 4. Suppose u and v are independent expected-utility functions, and define a function

g : [0, 1]→ V by g(α) = αu+ (1− α)v.

1. Take any cumulative distribution functions F and F̂ on [0, 1], and define probability mea-

sures µ and µ̂ on V by µ ≡ F ◦ g−1 and µ̂ ≡ F̂ ◦ g−1.50 If (u, v, F, F̂ ) is an uncertain

intensity Strotz representation of a preference (%, λ), then (u, µ, µ̂) is a random Strotz

representation of (%, λ).

2. Take any cumulative distribution functions F1 and F2 on [0, 1], and define probability

measures µ1 and µ2 on V by µi ≡ Fi ◦ g−1. Then µ1 �u µ2 if and only if F1 ≥FOSD F2.

Proof. (1): Note that by assumption % is represented by

U(x) =

∫ 1

0
max{u(p) : p ∈ Bg(α)(x)} dF̂ (α).

By the standard change of variables formula, this implies

U(x) =

∫
V

max{u(p) : p ∈ Bṽ(x)} d(F̂ ◦ g−1)(ṽ)

=

∫
V

max{u(p) : p ∈ Bṽ(x)} dµ̂(ṽ),

and hence (u, µ̂) is a random Strotz representation of %.

Note also that by assumption there exists, for each menu x, a measurable selection function

px : [0, 1]→ x with px(α) ∈ Bu(Bg(α)(x)) for all α ∈ [0, 1] such that

λx(y) = F (p−1x (y))

for all measurable y ⊂ x. Take any measurable selection function p̃x : V → x with p̃x(ṽ) ∈
Bu(Bṽ(x)) for all ṽ ∈ V that also satisfies px(α) = p̃x(g(α)) for all α ∈ [0, 1].51 Therefore, for

50We are abusing notation slightly and using F to also denote the probability measure on [0, 1] that
has F as its distribution function. That is, for any measurable set A ⊂ [0, 1], we write F (A) to denote∫
A
dF (α). Thus µ(E) =

∫
{α′:g(α′)∈E} dF (α) for any measurable E ⊂ V.

51To see that such a selection function p̃x exists, fix any measurable selection function p̂x : V → x with
p̂x(ṽ) ∈ Bu(Bṽ(x)) for all ṽ ∈ V. Let V̄ = g([0, 1]) ⊂ V. When the codomain of g is restricted to V̄, i.e.,
g : [0, 1] → V̄, this function is a bijection. Now define p̃x(ṽ) = px(g−1(ṽ)) for ṽ ∈ V̄ and p̃x(ṽ) = p̂x(ṽ)
for ṽ /∈ V̄.
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any measurable y ⊂ x,

λx(y) = F (g−1(p̃−1x (y))) = µ(p̃−1x (y)),

and hence (u, µ) is a random Strotz representation of λ.

(2): Suppose µi ≡ Fi ◦ g−1 for i = 1, 2 and µ1 �u µ2. Fix any α ∈ [0, 1], and let

U = {v′ ∈ V : v′ �u αu+ (1−α)v}. By construction, U is a u-upper set, so µ1(U) ≥ µ2(U). In

addition, g−1(U) = [α, 1]. Therefore,

F1([α, 1]) = µ1(U) ≥ µ2(U) = F2([α, 1]).

Since this is true for all α ∈ [0, 1], F1 ≥FOSD F2.

Conversely, suppose F1 ≥FOSD F2. Fix any u-upper set U . Note that for any 0 ≤ α ≤ α′ ≤
1, we have g(α′)�u g(α) and hence

g(α) ∈ U =⇒ g(α′) ∈ U .

This implies that the set g−1(U) is an interval from some α∗ ∈ [0, 1] to 1.52 Therefore,

µ1(U) = F1(g
−1(U)) ≥ F2(g

−1(U)) = µ2(U).

Since this is true for all u-upper sets, µ1 �u µ2. �

Turning now to the proof of Corollary 10, suppose (%, λ) has an uncertain intensity Strotz

representation (u, v, F, F̂ ). Define g as in Lemma 4 for u and v, define measures µ ≡ F ◦ g−1

and µ̂ ≡ F̂ ◦ g−1 on V. By part 1 of Lemma 4, (u, µ, µ̂) is a random Strotz representation for

(%, λ). Therefore, by Theorem 2 together with part 2 of Lemma 4, the individual is naive if

and only if F̂ ≥FOSD F (and is sophisticated if and only if F̂ = F ).

C.13 Proof of Corollary 11

Suppose (%1, λ1) and (%2, λ2) are naive and have uncertain intensity Strotz representations

(u, v, F1, F̂1) and (u, v, F2, F̂2). Define g as in Lemma 4 for u and v, define measures µi ≡ Fi◦g−1

and µ̂i ≡ F̂i ◦ g−1 on V. By part 1 of Lemma 4, (u, µi, µ̂i) is a random Strotz representation

for (%i, λi) for i = 1, 2. The result follows from applications of Theorems 3 and 4, respectively,

together with part 2 of Lemma 4.

52That is, it is equal to either (α∗, 1] or [α∗, 1], where α∗ = inf g−1(U).
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Supplementary Appendix for

Behavioral Characterizations of Naiveté for
Time-Inconsistent Preferences

S.1 Pessimism about Self-Control

While our main focus is on naiveté in the traditional sense of underestimation of future

temptations, simple variations of our definitions can be used to model an individual who

overestimates her future temptations and is therefore overly cautious. In this section,

we summarize the implications of such pessimistic violations of sophistication. Formal

results are stated for the case the deterministic Strotz representation for simplicity, but

the analogous results for random choice are also true.

Definition S.1. An individual is pessimistic if {C(x)} % x for all menus x.

An individual who is pessimistic has an actual temptation utility than is more aligned

with her normative utility than her anticipated temptation utility.

Theorem S.1. Suppose (%, C) has a Strotz representation (u, v, v̂). Then the individual

is pessimistic if and only if v �u v̂.

The proof of this result is similar to that of Theorem 1 and is omitted.

Definition S.2. Individual 1 is more pessimistic than individual 2 if, for all menus x

and lotteries p,

{C2(x)} %2 {p} %2 x =⇒ {C1(x)} %1 {p} %1 x.

In contrast to the case of individual 1 being more naive than individual 2, now indi-

vidual 1 accepts more unnecessary (detrimental) commitments than individual 2. This

comparative corresponds to a reversal of the ordering of temptation utilities obtained in

Corollary 2.

Theorem S.2. Suppose (%1, C1) and (%2, C2) are pessimistic and have Strotz represen-

tations (u, v1, v̂1) and (u, v2, v̂2). Then individual 1 is more pessimistic than individual 2

if and only if

v1 �u v2 �u v̂2 �u v̂1.
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S.2 Proof of Theorem 10

S.2.1 Sufficiency: more temptation averse =⇒ less u-aligned

The following is the relevant result from Dekel and Lipman (2012), which they proved

for the case of finite C.

Theorem S.3 (Dekel and Lipman (2012)). Suppose C has finite cardinality. Suppose

%1 and %2 have random Strotz representations (u, µ1) and (u, µ2). Then %2 is more

temptation averse than %1 if and only if µ1 �u µ2.

Proof. Theorem 4 in Dekel and Lipman (2012) establishes the equivalence of %2 being

more temptation averse than %1 and another condition on the representations that they

refer to as conditional dominance. However, they also establish that µ1 �u µ2 as an

intermediate step in their proof.53 The equivalence asserted in Theorem 10 is also stated

explicitly in Theorem 4 of their working paper, Dekel and Lipman (2010).54 �

To prove the sufficiency part of Theorem 10, we now show that the sufficiency direction

in Theorem S.3 can be extended to any compact and metrizable space C and any random

Strotz representations (u, µ1) and (u, µ2) defined on that space, subject to our restriction

that each µi has finite-dimensional support. Our approach is to show that the relationship

between µ1 and µ2, specifically µ1 �u µ2, can be inferred from looking at the restriction

of the representations and preferences to a carefully chosen finite consumption space

C∗ ⊂ C.

The following preliminary result will be useful in the sequel. Recall that V denotes

the set of all continuous functions v : C → R, i.e., the set of all expected-utility functions.

Lemma S.1. Suppose the set {v1, . . . , vn} ⊂ V is linearly independent. Then there

exists a finite subset C∗ ⊂ C such that the set {v∗1, . . . , v∗n} is linearly independent, where

v∗i = vi|C∗ is the restriction of the function vi to C∗.

53To show that %2 being more temptation averse that %1 implies µ1 �u µ2, the relevant results in
Dekel and Lipman (2012) are the following: Lemma 3 shows that a partial order vCuv

′ used in their
paper is equivalent to our order v �u v

′ (ignoring their normalization of utility functions). Lemmas 4,
5, and 6 and the arguments on page 1296 show that for any set W that is closed under Cu (is a u-upper
set in our terminology), µ1(W ) ≥ µ2(W ).

54Dekel and Lipman (2010) impose a normalization on the set of utility functions used in their result.
However, by the uniqueness properties of the random Strotz representation established in Theorem 3
of Dekel and Lipman (2012), the probability of any u-upper set is the same for any random Strotz
representation of the same preference. Therefore, their normalization of utilities is inconsequential for
the result.
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Proof. Suppose to the contrary that for every finite B ⊂ C, the collection {v1|B, . . . , vn|B}
is linearly dependent. Then for any finite B ⊂ C, the set AB ⊂ Rn defined by

AB = {α ∈ Rn : ‖α‖ = 1 and α1v1(c) + · · ·+ αnvn(c) = 0 ∀c ∈ B}

is nonempty. Note that AB is also a closed subset of the unit ball in Rn, which is itself

compact because n is finite. Let B denote the set of all nonempty finite subsets of C.

For any B1, . . . , Bk ∈ B, we have

AB1 ∩ · · · ∩ ABk = AB1∪···∪Bk 6= ∅,

since B1 ∪ · · · ∪ Bk is finite and hence also in B. Thus the collection {AB}B∈B has the

finite intersection property. Since these sets are closed subsets of a compact set, this

implies
⋂
B∈B AB 6= ∅. However, since⋂
B∈B

AB = {α ∈ Rn : ‖α‖ = 1 and α1v1(c) + · · ·+ αnvn(c) = 0 ∀c ∈ C},

this implies the set {v1, . . . , vn} is linearly dependent, a contradiction. �

Since µ1 and µ2 have finite-dimensional support, there exists a finite set of expected-

utility functions {v1, . . . , vn} ⊂ V such that supp(µi) ⊂ span({v1, . . . , vn}) for i = 1, 2.

Consider the set of function {u,1, v1, . . . , vn}, where 1 denotes the constant function

with 1(c) = 1 for all c ∈ C. Without loss of generality, assume that this set of functions

is linearly independent. Otherwise, we can sequentially remove the functions vi until

we obtain a linearly independent set.55 To simplify notation in what follows, let Vs ≡
span({u,1, v1, . . . , vn}) ⊂ V . Thus µ1(Vs) = µ2(Vs) = 1.

Take C∗ as in Lemma S.1 for the set {u,1, v1, . . . , vn}. Let V∗ denote the set of

all continuous real-valued functions on C∗ and let V∗s ≡ span({u∗,1∗, v∗1, . . . , v∗n}) ⊂ V∗,
where u∗ = u|C∗ , 1∗ = 1|C∗ , and v∗i = vi|C∗ . Note that each of the functions u∗, v∗1, . . . , v

∗
n

must be nontrivial (i.e., not constant) since function 1∗ together with these functions

forms a linearly independent set.

Lemma S.2. Define a function g : Vs → V∗s by g(v) = v|C∗, and define a measure µ∗i on

V∗ by µ∗i (E) = µi(g
−1(E)) for any measurable set E ⊂ V∗ for i = 1, 2.56

55Note that the set {u,1} must be linearly independent since u assumed to be nontrivial (i.e., not
constant). Moreover, if span{u,1} = span{u,1, v1, . . . , vn}, then the support of the measures in the
random Strotz representations (u, µi) must assign all probability to the set of affine transformations of
u. In this case, the representations reduce to time-consistent expected-utility maximization, and we have
µ1 ≈ µ2. Except in this trivial case, the linearly independent set of expected-utility functions whose
span contains the support of µi must contain u, 1, and at least some of the vi functions.

56In the definition of µ∗i , we are implicitly treating g as a function from Vs into V∗. We could
equivalently define µ∗i by µ∗i (E) = µi(g

−1(E ∩ V∗s )).
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1. The function g is a homeomorphism. That is, g is bijection and both g and its

inverse function g−1 are continuous.

2. For any measurable set E ⊂ V, µi(E) = µ∗i (g(E ∩ Vs)).

3. For any proper u-upper set U in V (i.e., U ( V), the set U∗ = g(U ∩ Vs) is a

u∗-upper set in V∗.

4. Let %∗i denote the restriction of %i to sets of lotteries with support in C∗, which we

can identify with the set K(∆(C∗)). Then (u∗, µ∗i ) is a random Strotz representation

for %∗i for i = 1, 2.

Proof. (1): This is a standard application of the fundamental theorem of linear algebra

for finite-dimensional vector spaces. Note that g is a linear function from the linear

space Vs with basis vectors {u,1, v1, . . . , vn} to the linear space V∗s with basis vectors

{u∗,1∗, v∗1, . . . , v∗n}. Since g maps each basis vector for Vs to the corresponding basis

vector for V∗s and the number of basis vectors is the same for each space, g is a bijection.

Since any linear function between finite-dimensional spaces is continuous, both g and g−1

are continuous.57

(2): Fix any measurable set E ⊂ V . Then

µi(E) = µi(E ∩ Vs) = µi(g
−1(g(E ∩ Vs))) = µ∗i (g(E ∩ Vs)),

where the first equality follows from µi(Vs) = 1, the second follows from g−1(g(E∩Vs)) =

E ∩ Vs (which holds because g is a bijection), and the third follows from the definition

of µ∗i .

(3): First observe that for any v, v′ ∈ Vs,

v ≈ v′ ⇐⇒ v = av′ + b1 for some a > 0, b ∈ R
⇐⇒ g(v) = ag(v′) + b1 for some a > 0, b ∈ R
⇐⇒ g(v) ≈ g(v′).

(S.1)

Now fix any proper u-upper set U in V , and let U∗ = g(U ∩ Vs). To see that U∗ is

a u∗-upper set, fix any v∗ ∈ U∗ and v∗′ ∈ V∗ with v∗′ �u∗ v
∗. We need to show that

v∗′ ∈ U∗. Let v = g−1(v∗) ∈ U ∩ Vs. Note that we cannot have v∗ ≈ −u∗, as this would

imply by Equation (S.1) that v ≈ g−1(−u∗) = −u, which would in turn imply by the

57A more detailed argument is as follows: Define h : Rn+2 → Vs by h(α) = α1v1+ · · ·+αnvn+αn+1u+
αn+21 and define h∗ : Rn+2 → V∗s by h∗(α) = α1v

∗
1 + · · · + αnv

∗
n + αn+1u

∗ + αn+21
∗. By the linear

independence of these sets of functions, both h and h∗ are bijections. It is trivial that both functions are
continuous, and by Aliprantis and Border (2006, Corollary 5.24) both h−1 and h∗−1 are also continuous.
Note that g = h∗ ◦ h−1 and g−1 = h ◦ h∗−1, and hence these functions are continuous.
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definition of a u-upper set that U = V , contradicting our assumption that U is a proper

subset of V . Therefore, there exists some α ∈ [0, 1] such that

v∗′ ≈ αu∗ + (1− α)v∗.

Thus there exist a > 0 and b ∈ R such that

v∗′ = aαu∗ + a(1− α)v∗ + b1∗.

Let

v′ = aαu+ a(1− α)v + b1.

Clearly v′ ∈ Vs. Moreover, since v′ �u v we have v′ ∈ U . Thus v′ ∈ U ∩Vs, which implies

v∗′ = g(v′) ∈ U∗.

(4): We can treat a lottery p ∈ ∆(C∗) as a measure defined only on the space C∗, or

we treat this as a lottery in ∆(C) that assigns probability zero to the set C \ C∗. Thus

we will abuse notation slightly and evaluate the lotteries p ∈ ∆(C∗) using both functions

in V∗ and functions in V . Note that for any v ∈ Vs, v(p) = v∗(p) for v∗ = g(v) ∈ V∗s .

Therefore, for any x ∈ K(∆(C∗)),

U∗i (x) =

∫
V∗

max
p∈Bv∗ (x)

u∗(p) dµ∗i (v
∗)

=

∫
V∗s

max
p∈Bv∗ (x)

u∗(p) d(µi ◦ g−1)(v∗) (definition of µ∗i )

=

∫
Vs

max
p∈Bg(v)(x)

u∗(p) dµi(v) (change of variables)

=

∫
Vs

max
p∈Bv(x)

u(p) dµi(v)

= Ui(x).

Thus U∗i is the restriction of Ui to K(∆(C∗)). Also, note that µ∗i is nontrivial (i.e., assigns

probability zero to the set of constant functions) since

µ∗i ({α1∗ : α ∈ R}) = µi(g
−1({α1∗ : α ∈ R})) = µi({α1 : α ∈ R}) = 0,

by the nontriviality of µi. Hence (u∗, µ∗i ) is a random Strotz representation of %∗i . �

We now prove that µ1 �u µ2. By assumption, %2 is more temptation averse than %1.

Thus for any menu x and lottery p, {p} �1 x implies {p} �2 x. This implies a fortiori

that the same condition must hold for lotteries and menus of lotteries with support in

C∗, and hence %∗2 is more temptation averse than %∗1, where %∗i is defined as in part 4

5



of Lemma S.2. Since C∗ is finite and (u∗, µ∗i ) represents %∗i for i = 1, 2, Theorem S.3

implies that µ∗1 �u∗ µ
∗
2.

Now fix any u-upper set U in V . If U = V , then trivially µ1(U) = µ2(U) = 1.

Otherwise, by part 3 of Lemma S.2, g(U ∩ Vs) is a u∗-upper set in V∗ and therefore

µ1(U) = µ∗1(g(U ∩ Vs)) ≥ µ∗2(g(U ∩ Vs)) = µ2(U),

where the equalities follow from part 2 of Lemma S.2 and the inequality follows from

µ∗1 �u∗ µ
∗
2. Since this is true for any u-upper set U , conclude that µ1 �u µ2.

S.2.2 Necessity: less u-aligned =⇒ more temptation averse

In this section we prove that the more temptation averse comparative is implied by

µ1 �u µ2. It is worth noting that the proof of this direction does not rely on the

assumption that these measures have finite-dimensional support.

The following preliminary result will be useful.

Lemma S.3. Let u, v, v′ be expected-utility functions defined on ∆(C), and suppose v �u

v′. Then for any menu x,

max
p∈Bv(x)

u(p) ≥ max
q∈Bv′ (x)

u(q).

Proof. If v′ ≈ −u, then for any menu x,

max
q∈Bv′ (x)

u(q) = min
q∈x

u(q) ≤ u(p), ∀p ∈ x.

In particular,

max
q∈Bv′ (x)

u(q) ≤ max
p∈Bv(x)

u(p).

If we do not have v′ ≈ −u, then v �u v
′ implies v ≈ αu + (1− α)v′ for some α ∈ [0, 1].

First, consider α = 0. In this case, v ≈ v′. Therefore Bv(x) = Bv′(x), which implies

max
p∈Bv(x)

u(p) = max
q∈Bv′ (x)

u(q).

Finally, consider the case of α > 0. Note that for any menu x and any p ∈ Bv(x) and

q ∈ Bv′(x),

αu(p) + (1− α)v′(p) ≥ αu(q) + (1− α)v′(q) and v′(q) ≥ v′(p).
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Since α > 0, these inequalities imply u(p) ≥ u(q). Therefore,

max
p∈Bv(x)

u(p) ≥ max
q∈Bv′ (x)

u(q),

as claimed. �

Suppose (u, µ1) and (u, µ2) are random Strotz representations of %1 and %2, and

suppose µ1 �u µ2. Fix any menu x, and let [a, b] = u(x). Define fx : V → [a, b] by

fx(v) = max
p∈Bv(x)

u(p).

By Lemma S.3, v �u v
′ implies fx(v) ≥ fx(v

′). Therefore, for any α ∈ [a, b] and v �u v
′,

v′ ∈ f−1x ([α, b]) ⇐⇒ fx(v
′) ≥ α =⇒ fx(v) ≥ α ⇐⇒ v ∈ f−1x ([α, b]).

Thus f−1x ([α, b]) is a u-upper set. Therefore,

µ1(f
−1
x ([α, b])) ≥ µ2(f

−1
x ([α, b])).

Define distributions ηxi ≡ µi ◦ f−1x on [a, b] for i = 1, 2. By the preceding arguments, ηx1
first-order stochastically dominates ηx2 . Therefore, by the change of variables formula,

U1(x) =

∫
V
fx(v) dµ1(v) =

∫ b

a

α dηx1 (α) ≥
∫ b

a

α dηx2 (α) =

∫
V
fx(v) dµ2(v) = U2(x).

Since this is true for every x, and using the fact that U1({p}) = U2({p}) for any lottery

p, it follows immediately that %2 is more temptation averse than %1.
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