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Abstract

We consider a model of joint venture where agents are organized on
a hierarchical network and each agent produces her revenue through
collaborating with her superiors. We study the problem of allocating
the total revenue among these agents. A hierarchy is represented
by a directed tree. We investigate allocation rules that are robust
to reallocation of revenues within any coalition that includes all the
superiors of its members. We obtain characterizations of such rules
imposing standard axioms in the literature of fair allocation theory.

1 Introduction

Hierarchies are commonly observed in most organizations. Members in an
organization take different levels of responsibilities, which give rise to a hi-
erarchical decision structure. A hierarch may also describe a structure of
command or permission that the organization relies on for her functionings.
The organization can achieve stability when her members cooperate on a
hierarchy as shown by Demange [1]. We consider a model of joint ven-
ture where agents are organized on a hierarchical network. Each agent in
our model produces her revenue through collaborating with her superiors.
For example, superiors supervise subordinates and offer advice or guidance,
which plays a role in generating revenues. We investigate rules of allocating
the total revenue among the agents in this model.

∗Department of Economics, Seoul National University. E-mail: bgju@snu.ac.kr
†Department of Economics, Seoul National University.
‡Department of Economics, Seoul National University.

1



The allocation rules of our interest are the family of transfer rules that
are described by “upward transfer” of revenues (in a hierarchy) suggested by
Hougaard et al. [2] and their extension. In transfer rules, each agent receives
a fixed fraction of the sum of her revenue and the transferred revenues from
her subordinates and transfers the rest to her immediate superiors equally.
Hougaard et al. [2] provide an axiomatic characterization of these rules.
Their conclusion relies on the feature of population variability in their model.
By considering a suitable weakening of their axioms in our setup without
population variability, we provide an axiomatic characterization of a larger
family of rules that include all transfer rules as well as their extensions that
allow different transfer rates at different positions in the hierarchy.

Hougaard et al. [2] investigate what rules are non-manipulable when a
group of agents and all their superiors can merge into a single representative
agent or when the representative agent can split into herself and dummies.
They show that such a merging or a splitting cannot increase the payoff under
any transfer rule and moreover, transfer rules are the only non-manipulable
rules satisfying some other standard axioms. In our model, the set of agents is
fixed and so a group of agents cannot merge or split. Nevertheless, they may
reallocate their revenues by forming a coalition inclusive of all superiors. Our
non-manipulability by such a reallocation is called reallocation-proofness. A
well-behaved rule from a normative point of view may fail to achieve its
normative goal, if it is not reallocation-proof, due to tactical reallocation of
revenues. Ju [3] characterizes reallocation-proof rules in the setting where
a coalition is made feasible by its connectivity in a network structure. In
our investigation, a coalition can form only if they are connected, and in
addition, it includes all the superiors of its members. Thus our reallocation-
proofness is weaker than his. This stricter restriction arises from the hier-
archical structure and its nature of directed permission. This restriction in
coalition formation allows us to obtain much more diverse reallocation-proof
rules than in Ju [3].

Types of hierarchies we consider in this paper are extensive enough to
include those represented by a directed tree. Agents can have not only one
immediate superior, but multiple immediate superiors; hierarchical networks
here are any directed network not containing any undirected cycle. We char-
acterize a family of rules called here the generalized transfer rules. They are
asymmetric variants of transfer rules; two symmetry conditions of transfer
rules are relaxed. First, when each agent gets a share of collected revenues
from her subordinates including herself, she is allowed to take the share at

2



her own rate, not necessarily at the same rate as other agents. Second, when
each agent then transfers the rest of revenues to her immediate superiors,
she is allowed to distribute it at different ratio; an immediate superior may
receive more than another immediate superior.

2 Model

We consider a problem of allocating revenues generated by a set of agents
through their hierarchical collaboration. Let N = {1, 2, . . . , n} be the set of
agents. These agents form a hierarchy given by a directed tree, a directed
network not containing any undirected cycle. The hierarchy is represented
by a correspondence S : N → 2N that maps each agent i ∈ N to her
immediate superiors S(i) ⊂ N . When agent i has no immediate superior,
that is, S(i) = ∅, agent i is referred to as a top agent. Note that there can
be multiple top agents. Agent j is an immediate subordinate of agent i if
i ∈ S(j). For each pair i, j ∈ N , i is a superior of j, if i = j or there is
a finite sequence of agents (a1, a2, . . . , am) such that a1 = i, am = j, and
ak ∈ S(ak+1) ∀k = 1, . . . ,m− 1. In this case, we also call j a subordinate of
i. Let sp : N → 2N be the correspondence that maps each agent i ∈ N to
all her superior agents (including herself), and sp0(i) ≡ sp(i) \ {i}. Similarly
let sb : N → 2N be the correspondence that maps each agent i ∈ N to
all her subordinates and sb0(i) ≡ sb(i) \ {i}. Refer to an agent who has
no subordinate other than herself (i.e., sb(i) = {i}) as a bottom agent. A
(undirected) path is a finite sequence of different agents (a1, a2, . . . , am) such
that either ak ∈ S(ak+1) or ak+1 ∈ S(ak) holds for all k = 1, . . . ,m− 1. This
sequence is called a path from a1 to am, and we say that agent ak is on the
path for every k. The path is unique as the network is a directed tree. A
subset of agents T ⊂ N is (weakly) connected if for every i, j ∈ T , we can
find a path from i to j such that any agent on the path is a member of T .

In what follows, we fix hierarchy (N,S) and consider allocation prob-
lems associated with (N,S). Agents generate individual revenues over the
hierarchy through cooperating with their superiors. More precisely, at each
position i ∈ N in the hierarchy, agent i together with her superiors generate
revenue ri ∈ R+. Denote the profile of revenues by r = (ri)i∈N . The problem
is to allocate the total revenue

∑
i∈N ri among n agents. We denote this

(revenue sharing) problem by r. A (feasible) allocation for r is a profile of
non-negative payoffs x ∈ Rn

+ satisfying
∑

i∈N xi ≤
∑

i∈N ri. A (budget) bal-
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anced allocation is an allocation satisfying
∑

i∈N xi =
∑

i∈N ri. An allocation
rule is a function f : Rn

+ → Rn
+ associating with each problem r an allocation

f(r). It satisfies efficiency if it always selects a balanced allocation.
The following notation will be used. For a vector x ∈ Rn

+ and a subset of
agents T ⊂ N , x(T ) ≡

∑
i∈T xi and xT ≡ (xi)i∈T . For all i ∈ N , let (x′i, x−i)

be the revenue profile obtained by replacing the i-th component xi with x′i.
We now present a family of allocation rules crucial in our investigation.

Under these rules, each agent in the hierarchy keeps a fraction of her gross
revenue, the sum of her own revenue and the transferred revenues from her
immediate subordinates, and transfers the rest to her immediate superiors.
A simple case of these rules called here as transfer rules is suggested by
Hougaard et al. [2]. Sole parameter λ ∈ [0, 1] is the rate at which each agent
keeps her gross revenue. First, consider a bottom agent i. The gross revenue
is just her revenue, Ri(r; f

λ) = ri. She receives a fraction of her gross revenue,
and allocates the rest (1− λ)Ri(r; f

λ) equally to her immediate superiors;

fλi (r) = λRi(r; f
λ) = λri.

Next, consider agent j whose all immediate subordinates are bottom
agents. She first collects her gross revenue, which is her revenue plus trans-
ferred amounts from immediate subordinates.

Rj(r; f
λ) = rj +

∑
h: j∈S(h)

1− λ
|S(l)|

Rh(r; f
λ).

She then takes λ fraction of gross revenue,

fλj (r) = λRj(r; f
λ) = λ

rj +
∑

h: j∈S(h)

1− λ
|S(l)|

Rh(r; f
λ)

 ,

and again transfers the rest of gross revenue to her immediate superiors
equally. Payoffs of other agents are recursively computed. If t is a top agent,
she receives all her gross revenue; fλt (r) = Rt(r; f

λ).
An alternative representation of transfer rules that follows does not im-

pose recursive argument.

Definition. [Transfer rule]
An allocation rule is a transfer rule with λ if, for some λ ∈ [0, 1], it holds

that for all r ∈ Rn
+,
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Figure 1: An example of hierarchy.

if i ∈ N is not a top agent,

fi(r) = λ

ri +
∑

j∈sb0(i)

 ∏
l∈sp(j)∩sb0(i)

(1− λ)

|S(l)|

 rj
 ,

and if t ∈ N is a top agent,

ft(r) = rt +
∑

j∈sb0(t)

 ∏
l∈sp(j)∩sb0(t)

(1− λ)

|S(l)|

 rj.
We call the transfer rule with λ = 0 as the full transfer rule and the one

with λ = 1 as the zero-transfer rule.

Example 1. Consider a set of agentsN = {1, 2, 3, 4, 5, 6} with r = (4, 1, 11, 3, 6, 9),
and S(3) = {1, 2}, S(5) = {2}, S(4) = {3}, S(6) = {5}. The hierarchy is
represented as in Figure 1.

The transfer rule with λ allocates f4(r) = 3λ, f6(r) = 9λ, f5(r) = 6 +
3
2
(1−λ), f3(r) = λ(11+ 3

2
(1−λ)), f1(r) = 4+ 1

2
(1−λ)(11+ 3

2
(1−λ)), f2(r) =

1 + 1
2
(1−λ)(11 + 3

2
(1−λ)) + 9(1−λ). When λ = 1/3, the allocation vector is

f(r) = (8, 11, 4, 1, 7, 3). The full transfer rule allocates (41
4
, 65

4
, 0, 0, 15

2
, 0) and

the zero-transfer rule allocates (4, 1, 11, 3, 6, 9).

Another family of allocation rules is a generalized version of the family
of transfer rules. The family of generalized transfer rules relaxes symmetry
in two ways; first, upward transfers of gross revenue at differentiated rates
across agents are allowed, and second, each agent may divide the upward
transfer at any rate among her immediate superiors. For

Definition. [Generalized Transfer rule]
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An allocation rule is a generalized transfer rule with λ and µ if, for some
λ ≡ (λi) ∈ [0, 1]n with λt = 1 ∀t ∈ T whereT is a set of top agents, and

µ ≡ (µi)i∈N\T where µi = (µip)p∈S(i) ∈ R|S(i)|+ satisfies µip ≥ 0 for all p ∈ S(i)
and

∑
p∈S(i) µip = 1, it holds that for all r ∈ Rn

+, and for all i ∈ N ,

fi(r) = λi

ri +
∑

j∈sb0(i)

 ∏
k∈sp(j)∩sb0(i)

(1− λk)µki

 rj
 .

By abuse of notation, we write µki instead of µkp(k,i) , where p(k,i) is defined

as the immediate superior of k that lies between k and i.1

Let us revisit the hierarchy in Example 1. The set of top agents is T =
{1, 2, 5}. Let λ3 = 3

5
, λ4 = 1

3
, λ6 = 2

3
so that λ = (1, 1, 3

5
, 1
3
, 1, 2

3
), and

µ31 = 3
7
, µ32 = 4

7
, µ43 = 1

3
, µ45 = 2

3
, µ62 = 1, so that µ = (3

7
, 4
7
, 1
3
, 2
3
, 1). The

generalized transfer rule with λ and µ allocates f(r) = (6, 20
3
, 7, 1, 22

3
, 6).

Note that generalized transfer rules with λ and µ are transfer rules when
for all i ∈ N \ T , λi = λ̄ and µip = 1

|S(i)| for all p ∈ S(i). When

Definition. [Hierarchical Equal Sharing rule]
The hierarchical equal sharing rule fHES allocates for all r ∈ Rn

+, and all
i ∈ N ,

fHESi (r) =
∑
j∈sb(i)

1

|sp(j)|
rj.

3 Axioms

In this section, we introduce axioms. The first one prevents advantageous
coalitional manipulation. It requires that any feasible coalition should not
gain from reallocating revenues within the coalition. To be concrete, the
total payoff allocated to the coalition cannot change by any reallocation of
revenues among its members. In the hierarchy, an agent generates revenue
by collaborating with its superiors. Superiors supervise subordinates and
take responsibility of their performances. Hence, a coalition is feasible if it is
connected, and contains all superiors of each member. We denote the set of
all these feasible coalitions by F(N,S). Formally, F ∈ F(N,S) if and only
if F ⊂ N is connected and ∀j ∈ F, sup(j) ⊂ F .

1This is possible because we are considering directed trees, in which any undirected
path between two agents are unique.
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Figure 2: (a) An example of a hierarchy (N,S). (b) The edge between agent
2 and 3 is removed and N separates into two components.

Definition. [Superiors-Reallocation-Proofness, SRP]: For all r, r′ ∈ Rn
+, and

all F ∈ F(N,S), if r(F ) = r′(F ) and rN\F = r′N\F , then∑
i∈F

fi(r) =
∑
i∈F

fi(r
′).

The next axiom states that any top agent’s revenue is irrelevant for the
payoff of all other agents. It is exactly the same as the one in Section 4 of
Hougaard et al. [2].

Definition. [Highest Rank Revenue Independence, HRRI] For all r ∈ Rn
+, if

i ∈ N is a top agent, then for all r̂i ∈ R+,

fN\{i}(r) = fN\{i}(r̂i, r−i).

The following property states that for each agent, only the revenues of
her superiors and subordinates is relevant.

Definition. [Independence of Irrelevant Agents, IIA] For all i ∈ N , all r ∈
Rn

+, and all r̂ ∈ R|N\(sp(i)∪sb(i))|+ ,

fi(r) = fi(r̂, rsp(i)∪sb(i)).

The family of generalized transfer rules, and thus the family of transfer
rules, satisfy all three axioms above.

We observe that if agent i is an immediate superior of agent j, removing
the edge between them leaves us with two components.2 N separates into

2Let us say a set of agents C ⊂ A is a (connected) component of a bigger set of agents
A if C is connected, and C ∪ {i} is not connected for any i ∈ A \ C.
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two connected components, one including j and the other one including i.
Pick the set of agents in the connected component including j, and denote
it by Cj,i. Similarly name the subset of agents linked to i as Ci,j. Surely
Cj,i ∪ Ci,j = N . For example, see the hierarchy in Figure 2a. If we remove
the edge between agent 2 and 3, two connected components consisting N are
C2,3 = {2, 5, 6} and C3,2 = {1, 3, 4} as we observe in Figure 2b .

Consider an agent i and her immediate subordinate j. The next axiom
says that if agents linked to j (members of Cj,i) transfer any surplus from
the component to i, and generate zero revenue instead, then the payoffs of
agents linked to i (members of Ci,j) remain unchanged. This property is very
similar to that in Section 4 of Hougaard et al. [2] . The difference is that in
this paper the set of agents is fixed therefore the revenue of leaving agents
are nulled instead.

Definition. [Component Null-Consistency, CNC] For all r ∈ Rn
+, all i ∈ N ,

and all p ∈ S(i), if r′ is defined as

r′j =


rj +

∑
k∈Ci,p

(rk − fk(r)), for j = p.

0, for j ∈ Ci,p.
rj, otherwise.

then
fCp,i

(r) = fCp,i
(r′).

The following is a standard axiom.

Definition. [Scale Invariance, SI] For all r ∈ Rn
+, and all α > 0,

f(αr) = αf(r).

Note that the two families of generalized transfer rules and transfer rules
satisfy component null-consistency and scale invariance.

We next consider two symmetry axioms. First, for a given agent i, con-
sider the ith unit vector, (1, 0−i). The axiom requires that every agent i ∈ N
should get the same payoff when the revenue profile is ith unit vector.

Definition. [Unit Revenue Symmetry, URS] For all r ∈ Rn
+, and all pair

i, j ∈ N , if both are not top agents,

fi(1, 0−i) = fj(1, 0−j).
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For the second one, consider an agent i, and her immediate superiors p
and p′ with identical revenues. Suppose that all agents in Cp,i except p have
zero revenue, and all agents in Cp′,i except p′ have zero revenue too. Then
the axiom says that the payoff of the two immediate superiors are the same.

Definition. [Superiors Symmetry, SS] For all r ∈ Rn
+, all i ∈ N , and each

pair p, p′ ∈ S(i), if rj = 0 for all j ∈ Cp,i \ {p} and j ∈ Cp′,i \ {p′}, and
rp = rp′ , then ∑

l∈Cp,i

fl(r) =
∑
l∈Cp′,i

fl(r).

The two symmetries help us pin down the family of generalized transfer
rules to the family of transfer rules. The last axiom states that agents with
zero revenue gets zero payoff.

Definition. [No Award for Null, NA] For all r ∈ Rn
+, and all i ∈ N , if ri = 0,

then
fi(r) = 0.

The zero-transfer rule satisfies this property whereas the family of transfer
rule does not. A top agent, for example, earns positive payoff if the transfer
rate λ is positive and at least one of her subordinates creates positive revenue.

Definition. [Null Superior Symmetry, NSS] For all i ∈ N , and all rsb(i) ∈
R|sb(i)|+ , if j, k ∈ sp(i), then

fj(0−sb(i), rsb(i)) = fk(0−sb(i), rsb(i)).

The followings are two examples of allocation rules that satisfy superiors-
reallocation-proofness.

Example 2. Equal division rule fi(r) = 1
N
r(N) for every i ∈ N satisfies

SRP, SI, URS. It does not satisfy HRRI, IIA, CNC, SS, NA.

Example 3. Any agent who is not a top agent gets fi = λri and the top
agents that are superiors of i shares the rest, (1−λ)ri. Assume they share it
equally. This rule satisfies SRP, HRRI, IIA, SI, URS, SS. It does not satisfy
CNC, NA.
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4 Results

We will now give a representation of rules satisfying superiors-reallocation-
proofness, highest rank revenue independence, and independence of irrelevant
agents. To that end, let us introduce new notations. For a set of agents S,
let sb0(S) ≡ {i /∈ S : i ∈ sb(j) for some j ∈ S}. An agent belongs to sb0(S)
when the agent herself is not a member of S but is a subordinate of some
member of S. Proposition ?? states that an allocation rule satisfies SRP,
HRRI, and IIA if and only if every agent’s payoff depends only on revenues
of its subordinates.

Proposition 1. Let f be an allocation rule. The following are equivalent.
1. The rule f satisfies Superiors-Reallocation-Proofness, Highest Rank

Revenue Independence, Independence of Irrelevant Agents, and Scale Invari-
ance.

2. There exist α ∈ R+, and nonnegative and degree-1-homogeneous func-

tions {gF : R|sb
0(F )|

+ → R+}F∈F(N,S)\{N} such that for all r ∈ Rn
+,∑

i∈N

fi(r) = αr(N),

and all F ∈ F(N,S)\{N},∑
i∈F

fi(r) = αr(F ) + gF (rsb0(F )).

3. There exist α ∈ R+, and nonnegative and degree-one homogeneous

functions {hi : R|sb(i)|+ → R+}i∈N such that for all r ∈ Rn
+, and all i ∈ N ,

fi(r) = hi(rsb(i)), (1)

and ∑
i∈N

hi(rsb(i)) = αr(N). (2)

Proof. (1 ⇒ 2) Fix r ∈ Rn
+. If r = 0N , because of SI we must have∑

i∈N fi(r) = 0 = r(N). Otherwise, define r̂ = 1
r(N)

r, then by SI,
∑

i∈N fi(r) =

r(N)
∑

i∈N fi(r̂). Note that by SRP, there exists some α ∈ R+ such that for
all r̂(N) = 1,

∑
i∈N fi(r̂) = α. For this α,∑

i∈N

fi(r) = αr(N). (3)
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For F ∈ F(N,S) \ {N}, pick a top player t ∈ F from the coalition.
Consider another problem r′ where the total revenue of F is reallocated to
t: r′t = r(F ), r′F\{t} = 0, and r′N\F = rN\F . By SRP, this reallocation should
not change total payoff given to F ,∑

i∈F

fi(r) =
∑
i∈F

fi(r
′). (4)

For every i 6= t, by HRRI, fi(r
′) = fi(0, r

′
−t) = fi(0F , rN\F ). Since by (3) we

have ∑
i∈N

fi(r
′) = αr(N)

and ∑
i∈N

fi(0F , rN\F ) = α[r(N)− r(F )],

we may write ft(r
′) = αr(F ) + ft(0F , rN\F ), hence∑
i∈F

fi(r) = αr(F ) +
∑
i∈F

fi(0F , rN\F ).

Next, IIA tells us that for all i ∈ F , fi(0F , rN\F ) = fi(0N\sb0(F ), rsb0(F )). To
see why, compare the revenue profile of i’s superiors and subordinates in two
problems (0F , rN\F ) and (0N\sb0(F ), rsb0(F )). If j ∈ sp(i) ⊂ F or j ∈ sb(i)∩F ,
j’s revenue is the same in two problems (as zero). If j ∈ sb(i) ∩ F c, then
j ∈ sb0(F ), therefore j’s revenue is rj in both problems.

We then may write∑
i∈F

fi(r) = αr(F ) +
∑
i∈F

fi(0N\sb0(F ), rsb0(F )), (5)

and naturally define gF as for x ∈ R|sb
0(F )|

+ ,

gF (x) ≡
∑
i∈F

fi(0N\sb0(F ), x).

Clearly gF is nonnegative, and is homogeneous of degree one: for β > 0, by
SI,

gF (βx) = β
∑
i∈F

fi(0N\sb0(F ), x) = βgF (x).
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(2⇒ 3) For α, we may just pick the same α from 2. Next, fix r ∈ Rn
+. If

i ∈ N is a top agent, {i} is feasible. By 2, fi(r) = αri + g{i}(rsb0(i)). Define

hi as for x ∈ R|sb(i)|+ , hi(x) = αxi+g{i}(x−i). Showing that hi is homogeneous
of degree one is straightforward.

If i ∈ N is not a top agent, let P ≡ {i} ∪ (∪p∈S(i)Cp,i) be the union
of components connected to her immediate superiors, and herself (note that
{{i}} ∪ {Cp,i : p ∈ S(i)} is a partition of P ). Then, we may write i’s payoff
as the following difference:

fi(r) =
∑
j∈P

fj(r)−
∑
p∈S(i)

∑
k∈Cp,i

fk(r).

Because each Cp,i and P are all feasible, we may use 2 to write

fi(r) = αr(P ) + gP (rsb0(P ))−
∑
p∈S(i)

[αr(Cp,i) + gCp,i(rsb0(Cp,i))],

which reduces to

fi(r) = αri + gP (rsb0(P ))−
∑
p∈S(i)

gCp,i(rsb0(Cp,i)).

Observing sb0(Cp,i) = {i}∪sb0(i) = sb(i) for all p ∈ S(i), and sb0(P ) = sb0(i),
this is rewritten as

fi(r) = αri + gP (rsb0(i))−
∑
p∈S(i)

gCp,i(rsb(i)).

Because the right hand side is fully decided once rsb(i) is known, we can define

hi as for x ∈ R|sb(i)|+ , hi(x) = αxi + gP (x−i) −
∑

p∈S(i) g
Cp,i(x). Also, hi is

homogeneous of degree one because gP and gCp,i are.
(3 ⇒ 1) HRRI and IIA are immediately verified. For SRP, fix F ∈

F(N,S) and r ∈ Rn
+, and let r′ ∈ Rn

+ be another problem that satisfies
r′(F ) = r(F ), and r′N\F = rN\F . First, define the immediate subordinate

set for F as: K(F ) = {k ∈ N : k /∈ F, sp(p) ⊂ F for some p ∈ S(k)}.3
An agent k is a member of K(F ) when k is not a member of F but is an
immediate subordinate of a member of F . For i ∈ N \F , i is connected to a
member of immediate subordinate set of F ; i ∈ Ck,q for some k ∈ K(F ) and

3This K set is similar to that in the proof of theorem 1 in Demange [1].
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q ∈ S(k) ∩ F . It follows that sb(i) ⊂ N \ F . From 3, this implies that for
all i ∈ N \ F , fi(r) = fi(r

′). Since
∑

i∈N fi(r) =
∑

i∈N fi(r
′) = αr(N), we

have
∑

j∈F fj(r) =
∑

j∈F fj(r
′).

Because a generalized transfer rule allocates each agent the value that
only depends on revenues of her own and her subordinates, it is now clear
that generalized transfer rules satisfy SRP, HRRI and IIA.

The following result is a characterization of the family of generalized
transfer rules.

Proposition 2. (Directed trees, not including rooted trees) An allocation rule
f satisfies Superiors-Reallocation-Proofness, Highest Rank Revenue Indepen-
dence, Independence of Irrelevant Agents, Scale Invariance, and Component
Null-Consistency if and only if it is a generalized transfer rule, or for all
i ∈ N and r ∈ Rn

+, fi(r) = 0.

Proof. It is easy to see the rules satisfy axioms. For the converse, suppose
that f satisfies five axioms. When the hierarchy is a directed tree, we may
pick an agent i ∈ N who has two or more immediate superiors. With abuse of
notation, for the proof we use the notation S instead of S(i). Let k = |S| ≥ 2
be the number of i’s immediate superiors. Consider a problem where all
other agents except i’s immediate superiors make zero revenue: r̂ = (r, 0N\S)
for some r ∈ Rk

+, and let x = f(r̂). If j /∈ ∪p∈SCp,i, then in problem r̂,
revenue of all her subordinates including herself is zero, so by Proposition 1,
xj = f(0N) = 0 (especially, xi = 0). Therefore, the Proposition tells us that
there exists α ≥ 0 such that∑

p∈S

x(Cp,i) = αr̂(N) = αr(S). (6)

For p ∈ S, by SRP, x(Cp,i) = y(Cp,i) for y = f(r̂p + r̂(Ci,p)−x(Ci,p), 0−p).
Because r̂p + r̂(Ci,p) = r(S) and x(Ci,p) =

∑
p′∈S,p′ 6=p x(Cp′,i), by SI,

x(Cp,i) = [r(S)−
∑

p′∈S,p′ 6=p

x(Cp′,i)]
∑
j∈Cp,i

fj(1, 0−p0).

Note that by Proposition 1, for j ∈ Cp,i, fj(1, 0−p) = 0, so
∑

j∈Cp,i
fj(1, 0−p0) =

α. The argument applies to any agent in S, therefore, for all p ∈ S(i),

x(Cp,i) + α[
∑

p′∈S,p′ 6=p

x(Cp′,i)] = αr(S).
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Sum up all k equations, then

[1 + (k − 1)α][
∑
p∈S

x(Cp,i)] = kαr(S).

If we multiply (6) by 1 + (k − 1)α and subtract the previous equation from
it, we get

α(1 + (k − 1)α− k)r(S) = α(α− 1)(k − 1)r(S) = 0.

Because k ≥ 2, and the equation holds for arbitrary r ∈ Rk
+, either α = 0

or α = 1. If α = 0, equation (2) and non-negativity of payoff imply that for
any r′ ∈ Rn

+, fi(r
′) = 0. If α = 1, f is efficient.

When f is efficient, we will show that f is a generalized transfer rule. Let
T denote the set of top agents. Construct λ and µ as follows: λi ≡ fi(1, 0−i)
for each i ∈ N \ T , λt = 1 for each t ∈ T , and

µip ≡

{∑
k∈Cp,i

fk(1,0−i)

1−λi , if λi 6= 1.
1
|S(i)| , if λi = 1.

for each i ∈ N \ T and each p ∈ S(i). Clearly we must have 0 ≤ λi ≤ 1
and 0 ≤ µip ≤ 1 for such i and p. To see why for each i,

∑
p∈S(i) µip = 1,

assume λi 6= 1 (it is trivial if λi = 1). By the way µip are defined, we
must have

∑
k∈Cp,i

fk(1, 0−i) = µip(1− λi).4 As a consequence of proposition

1, fj(1, 0−i) = 0 for each j ∈ Cb,i for every immediate subordinate b of i.
Then it follows from balance fi(1, 0−i) +

∑
p∈S(i)

∑
k∈Cp,i

fk(1, 0−i) = 1. By

substituting, we may rewrite the equality as λi + (1 − λi)
∑

p∈S(i) µip = 1

which reduces to
∑

p∈S(i) µip = 1.
We now argue that f is a generalized transfer rule with λ and µ.
Claim: For all r ∈ Rn

+ and all i ∈ N ,

fi(r) = λi

ri +
∑

j∈sb0(i)

 ∏
k∈sp(j)∩sb0(i)

(1− λk)µki

 rj
 . (7)

Proof of Claim. If i ∈ N is a bottom agent, by proposition 1 and SI,
fi(r) = fi(ri, 0−i) = rifi(1, 0−i) = λiri. Define r̂ = (ri, 0−i) and x = f(r̂),

4Note that this equality also holds even when λi = 1 because both sides equal zero.

14



then for i’s immediate superior p ∈ S(i), r̂(Ci,p) = ri. By balance, SI, and
definition of µip, we may write ri = x(Cp,i) +x(Ci,p) = µip(1−λi)ri+x(Ci,p).
Hence, r̂(Ci,p)− x(Ci,p) = µip(1− λi)ri. Note that the last equality holds for
every bottom agent i, and every immediate superior p ∈ S(i).

Next, we argue that for an agent i ∈ N who is neither a bottom agent
nor a top agent, if the following two statements hold,

1. For each j ∈ sb0(i), fj(r) equals the payoff from the generalized transfer
rule with λ and µ.

2. For each j ∈ sb0(i), and for each q ∈ S(j), define r̃ = (rsb(j), 0N\sb(j))
and y = f(r̃), then

r̃(Cj,q)− y(Cj,q) =
∑
k∈sb(j)

 ∏
l∈sp(k)∩sb(j)

(1− λl)µlq

 rk. (8)

then the followings hold.
1. fi(r) equals the payoff from the generalized transfer rule with λ and

µ.
2. Define r̂ = (rsb(i), 0N\sb(i)) and x = f(r̂). For each p ∈ S(i),

r̂(Ci,p)− x(Ci,p) =
∑
k∈sb(i)

 ∏
l∈sp(k)∩sb(i)

(1− λl)µlp

 rk.
Assume that the first two statements hold, and let B denote the set of

immediate subordinates of i. Let r̂ = (rsb(i), 0N\sb(i)) and x = f(r̂). Then

fi(r) = fi(r̂) = fi(ri +
∑
b∈B

(r̂(Cb,i)− x(Cb,i)), 0−i) (9)

holds by CNC. For b ∈ B, let r̃ = (rsb(b), 0N\sb(b)) and y = f(r̃). Then
r̂(Cb,i) = r̃(Cb,i), and since an agent’s payoff depends only on revenues of her
subordinates, x(Cb,i) = y(Cb,i).

5 By (8) and SI, (9) equals

fi(r) =

ri +
∑
b∈B

∑
k∈sb(b)

 ∏
l∈sp(k)∩sb(b)

(1− λl)µli

 rk
 fi(1, 0−i). (10)

5If l ∈ Cb,i is not a superior of b, xl = fl(0N ) = 0 because sb(i) ∩ sb(l) = ∅.

15



Because λi = fi(1, 0−i), this is rewritten as

fi(r) = λi

ri +
∑

k∈sb0(i)

 ∏
l∈sp(k)∩sb0(i)

(1− λl)µli

 rk


which proves the first part.
For the second part, let us compute r̂(Ci,p) − x(Ci,p) for every p ∈ S(i).

Obviously r̂(Ci,p) = r(sb(i)) and by balance, r(sb(i)) = x(Cp,i) + x(Ci,p)
holds. By CNC and SI,

x(Cp,i) =
∑

l∈Cp,i
fl(ri +

∑
b∈B(r̂(Cb,i)− x(Cb,i), 0−i)

=
[
ri +

∑
k∈sb0(i)

[∏
l∈sp(k)∩sb0(i)(1− λl)µli

]
rk

]
µip(1− λi).

Therefore we have r̂(Ci,p)−x(Ci,p) =
∑

k∈sb(i)

[∏
l∈sp(k)∩sb(i)(1− λl)µli

]
rk.

Using the above argument, we can sequentially show that for agents that
are not top agents, f gives the payoff from the generalized transfer rule with
λ and µ. What remains is to verify the statement also holds for top agents.
Let i ∈ N be a top agent. Following the argument above similarly, we can
reach the equality (10). In addition, because i is a top agent, fi(0−i, 1) = 1

by HRRI. Then, fi(r) = ri +
∑

k∈sb0(i)

[∏
l∈sp(k)∩sb0(i)(1− λl)µli

]
rk, which

completes the proof. ♦
Proposition 3. (Rooted trees) An allocation rule f satisfies Superiors-Reallocation-
Proofness, Highest Rank Revenue Independence, Independence of Irrelevant
Agents, Scale Invariance, and Component Null-Consistency if and only if it
is a generalized transfer rule, or there is α ≥ 0 such that for all r ∈ Rn

+,
ft(r) = αr(N) for the top agent t and fi(r) = 0 for all i 6= t.

Proof. Suppose that f satisfies five axioms, and fix r ∈ Rn
+. Because the

hierarchy is a rooted tree, there is only one top agent t, and each other
agent has only one immediate superior. Let λi ≡ fi(1, 0−i) for each i ∈ N .
For all i 6= t, fi(1, 0−t) = fi(0) by part 3 of Prop. 1. Also by (2), for all
i ∈ N , fi(0) = 0. Therefore, for all i 6= t, fi(1, 0−t) = 0 and ft(1, 0−t) =∑

i∈N fi(1, 0−t) = α, for α ≥ 0, given in part 3 of Prop. 1. Thus

λt = ft(1, 0−t) = α. (11)

Claim: For all r ∈ Rn
+ and all i ∈ N ,

fi(r) = λi

ri +
∑

j∈sb0(i)

 ∏
k∈sp(j)∩sb0(i)

(1− λk)

 rj
 . (12)

16



Proof of Claim. If i ∈ N is a bottom agent, applying Proposition 1 and
SI, fi(r) = fi(ri, 0−i) = λiri. Next, we show that for all i ∈ N , if i is not a
bottom agent and for all j ∈ sb0(i),

fj(r) = λj

rj +
∑

l∈sb0(j)

 ∏
k∈sp(l)∩sb0(j)

(1− λk)

 rl
 , (13)

we have

fi(r) = λi

ri +
∑

j∈sb0(i)

 ∏
k∈sp(j)∩sb0(i)

(1− λk)

 rj
 .

Let j be i’s immediate subordinate. Then by CNC, fi(r) = fi(r̂), when
in problem r̂, agents linked to j transfer any surplus from the component
to i, and generate zero revenue instead: r̂ = (ri + x, 0sb(j), rN\sb(i)), where
x =

∑
k∈sb(j) rk −

∑
k∈sb(j) fk(r). (Note that Cj,i = sb(j) in rooted trees.)

Substituting (13), x =
∑

l∈sb(j)

[∏
k∈sp(l)∩sb0(j)(1− λk)

]
rl. Now applying sim-

ilar argument for other immediate subordinates of i, we get fi(r) = fi(ri +
y, 0sb0(i), rN\sb(i)), where

y =
∑

j:S(j)={i}

∑
l∈sb(j)

 ∏
k∈sp(l)∩sb0(j)

(1− λk)

 rl =
∑

j∈sb0(i)

 ∏
k∈sp(j)∩sb0(i)

(1− λk)

 rj.
The last equality holds because sb0(i) = ∪j:S(j)={i}sb(j) in rooted trees.

Proposition 1 then tells us fi(r) = fi(ri+y, 0−i) = λi

[
ri +

∑
j∈sb0(i)

[∏
k∈sp(j)∩sb0(i)(1− λk)

]
rj

]
.

♦
Moreover, by Proposition 1, for all r′ ∈ Rn

+,∑
i∈N

fi(r
′) = αr′(N). (14)

When r′ = (1, 0−t), the left-hand side of (14) equals ft(1, 0−t) = λt = α by
(11).

When r′ = (1, 0−i) for i 6= t, using Claim, the left-hand side of (14) is
given by∑
j∈sp(i)

fj(r
′) = λi+

∑
j∈sp0(i)

λj
∏

k∈sp(i)∩sb0(j)

(1−λk) =
∑
j∈sp(i)

λj[
∏

k∈sp(i)∩sb0(j)

(1−λk)],

(15)
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where
∏

k∈sp(i)∩sb0(j)(1− λk) = 1 if sp(i) ∩ sb0(j) = ∅.
Using (11), we obtain:

λt[
∏

k∈sp(i)\{t}

(1− λk)] = α[1−
∑

l∈sp(i)\{t}

λl
∏

k∈sp(i)∩sb0(l)

(1− λk)].

Therefore we may rewrite (15) as

α + (1− α)[
∑

j∈sp(i)\{t}

λj[
∏

k∈sp(i)∩sb0(j)

(1− λk)],

which equals α, the right-hand side of (14). Then we obtain: for all i 6= t,

(1− α)[
∑

j∈sp(i)\{t}

 ∏
k∈sp(i)∩sb0(j)

(1− λk)

λj] = 0. (16)

Suppose α = 1. Then it follows from non-negativity and
∑

j∈N fj(1, 0−i) =
α that 0 ≤ λi = fi(1, 0−i) ≤ 1 for each i 6= t, and λt = α = 1. This
means that f is a generalized transfer rule. Now suppose α 6= 1. We show
that λi = 0 for each i ∈ N \ {t}. To see this, start from agent i who
has only one superior (the top agent) other than herself, then (16) becomes
(1− α)λi = 0, which implies λi = 0. It is easy to see that if λj = 0 holds for
all j ∈ sp0(i) \ {t}, then λi = 0 as well.

If we in addition add the two symmetries, the family of transfer rules is
singled out from the family of generalized transfer rules.

Proposition 4. An efficient allocation rule f satisfies Superiors-Reallocation-
Proofness, Highest Rank Revenue Independence, Independence of Irrelevant
Agents, Component Null-Consistency, Scale Invariance, Superior Symmetry,
and Unit Revenue Symmetry if and only if it is a transfer rule.

Proof. Verifying that a transfer rule satisfies SS and URS are straightforward.
For the inverse, first we recall that f is a generalized transfer rule with λ and
µ as defined in the proof of Proposition ??. For i ∈ N that is not a top
agent, since λi = fi(0−i, 1), by URS λi = λ for all such i. Next, given two
immediate superiors p, p′ ∈ S(i), suppose r is a problem such that rj = 0 for
all j ∈ Cp,i \ {p}, j ∈ Cp′,i \ {p′}, and rp = rp′ . Because µip is defined as to
satisfy

∑
l∈Cp,i

fl(0−i, 1) = µi,p(1− λ), by SS, µip = µip′ . Since this holds for

any i and any pair p, p′ ∈ S(i), µip = 1
|S(i)| for all i and p ∈ S(i).
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The last result offers a characterization of zero-transfer rules. The no
award for null axiom together with superiors-reallocation-proofness and high-
est revenue independence is strong enough to allow us drop three axioms,
independence of irrelevant agents, component null consistency, and scale in-
variance.

Proposition 5. An efficient allocation rule f satisfies Superiors-Reallocation-
Proofness, Highest Rank Revenue Independence, and No award for Null if and
only if it is the zero-transfer rule.

Proof. Apparently the zero-transfer rule satisfies all three axioms. To show
the inverse, we start by showing that if i ∈ N is a top agent, then fi(r) = ri
for every r ∈ Rn

+. For all j 6= i, by HRRI, fj(r) = fj(0, r−i). By balance,
we have two equalities

∑
k∈N fk(r) = r(N) and

∑
k∈N fk(0, r−i) = r(N)− ri.

Then, fi(r) = ri + fi(0, r−i) = ri holds by NA.
When i is not a top agent, if fj(r) = rj for every j ∈ sp0(i) then fi(r) = ri.

To see this, pick a top agent among superiors of i, t ∈ sp(i). Let r′ be a new
problem where the total revenue of i’s superiors is reallocated as t generating
r(sp(i)), and other agents making zero revenue: r′t = r(sp(i)), r′sp(i)\{t} = 0,

and r′N\sp(i) = rN\sp(i). Because sp(i) ∈ F(N,S), by SRP, r(sp0(i)) + fi(r) =

r′(sp0(i)) + fi(r
′). NA then implies r(sp0(i)) + fi(r) = r(sp(i)). Therefore,

fi(r) = ri.
Now we are ready to show that fi(r) = ri holds for every i that is not a

top agent. For given i, if all superiors of i other than herself are top agents,
i must be in the second position from the top, so that fi(r) = ri. If every
superior of i other than herself is either a top agent or in the second position
from the top, again we see fi(r) = ri. Repeatedly, we can show that fi(r) = ri
holds wherever i lies on hierarchy.

Proposition 6. An efficient allocation rule f satisfies Reallocation-Proofness,
Highest Rank Revenue Independence, Independence of Irrelevant Agents and
Null Superior Symmetry if and only if it is the Hierarchical Equal Sharing
rule.

Proof. If part is easy to see. Conversely, suppose that f satisfy the four
axioms. If i ∈ N is a bottom agent, by proposition ??, fi(r) = fi(0−i, ri). By
NSS, for each j ∈ sp(i), fj(0−i, ri) = fi(0−i, ri). For k /∈ sp(i), fk(0−i, ri) =
fk(0N) = 0 by IIA and balance. Then by balance, it follows that fi(r) =

1
|sp(i)|ri = fHESi (r).
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Next we claim that for each i ∈ N who is not a bottom agent, if fj(r) =
fHESj (r) ∀j ∈ sb0(i) then fi(r) = fHESi (r). First, define x = f(0−sb(i), rsb(i)),
then proposition ?? tells us fi(r) = xi. For i’s superior k ∈ sp(i), by NSS,
xk = xi. For an irrelevant agent l /∈ sp(i) ∪ sb(i), by IIA xl = yl if we
denote y = f(0−sb0(i), rsb0(i)). There are two cases; first assume that (i) l is
a superior to a subordinate of i. Since an agent’s payoff only depends on
revenue profile of her subordinates by proposition ??, we must have yl = zl
for z = (0−(sb0(i)∩sb(l)), rsb0(i)∩sb(l)). By NSS this equals

∑
j∈sb0(i)∩sb(l)

1
|sp(j)|rj.

If it is the case that (ii) l is not a superior to any of i’s subordinates, so
that l /∈ sp(j)\sp(i) for any j ∈ sb0(i), then by IIA and balance we have
yl = fl(0N) = 0.

Taking sum of payoff given to all agents other than superiors of i, we see∑
j∈N\sp(i) xj =

∑
j∈sb0(i)

|sp(j)|−|sp(i)|
|sp(j)| rj. By balance, xi = 1

|sp(i)|(
∑

j∈sb(i) rj −∑
j∈sb0(i)

|sp(j)|−|sp(i)|
|sp(j)| rj) =

∑
j∈sb(i)

1
|sp(j)|rj. That is, fi(r) = fHESi (r). The

proof becomes complete by using the claim in order starting from bottom
agents.

5 Conclusion

In a revenue sharing model with a hierarchy, transfer rules and their asym-
metric multiple-parameter extensions comprise the family of generalized trans-
fer rules. We offer a characterization of this family with superiors-reallocation-
proofness and some other axioms. As a corollary, we obtain an alternative
characterization of transfer rules suggested by Hougaard et al. [2].

Similar results for generalized transfer rules establishes for hierarchies
where each agent has a single immediate superior. For those simpler hierar-
chies, parameters of generalized transfer rules are only the rates at which an
agent transfers to her immediate superior, and we may drop independence
of irrelevant agents.
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