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Abstract

How many levels do players reason about rationality? In simultaneous-move games, there is a well-

understood methodology for identifying reasoning about rationality—one based on iterated dominance.

However, there is a challenge in porting that methodology to extensive-form games: It would appear to

require that the researcher have information about the hierarchies of beliefs that players consider pos-

sible. Moreover, imposing (potentially incorrect) assumptions about those beliefs can have non-trivial

implications for identification—implications that do not arise in simultaneous-move games. We provide

a novel methodology to identify reasoning in a generic class of extensive-form games. Importantly, the

methodology does not require information about the hierarchies of beliefs players consider possible. The

centipede game illustrates that the methodology has non-trivial implications for experimental design.

1 Introduction

Interactive reasoning is an important aspect of behavior. To determine whether a particular course of

action is good or bad, a player Ann may need to form a belief about her co-player Bob’s behavior. In

forming such a belief, she may reason that Bob is “strategically sophisticated.” For instance, she may form

her belief about Bob’s behavior by reasoning that he is “rational,” i.e., that he maximizes his expected

utility given his belief about Ann’s behavior. Or, she may form her belief by reasoning that Bob is “rational

and reasons about rationality.” That is, she may form her belief by reasoning that Bob is rational and

that he, in turn, forms his belief (about Ann’s behavior) by reasoning that she is rational. And so on.

A natural theoretical benchmark is that players are rational and their beliefs (about behavior) are

consistent with “common belief of rationality.” Under this benchmark, each player believes that their

co-player is rational, that their co-player believes that they are rational, and so on, ad infinitum. More

loosely, this benchmark involves a player reasoning, at all levels, about their co-player’s rationality. But,
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in practice, players may depart from such a benchmark. For instance, Ann and Bob may have previously

interacted—either directly or with a population of likeminded players. In the course of that interaction,

Ann may have observed behavior that she could not rationalize. If so, she may, instead, form her belief

by reasoning that Bob is irrational. Or, she may form her belief by reasoning that “Bob is rational but

believes she is irrational.” And so on.

This raises the question: How many levels do players reason about rationality? Addressing this question

is fundamental to the analysis of games. In particular, the answer can serve to generate new—i.e., out-of-

sample—predictions. This, in turn, can have important normative implications for the design of markets,

institutions, and policies.

To address this question, we focus on the case where the researcher only observes behavior of the

players—or, perhaps, only observes the outcome of the game. We provide a methodology to identify

reasoning in a broad class of extensive-form games.

Benchmark: Simultaneous Move Games The methodology for identifying reasoning about rational-

ity is well understood in simultaneous move games. As such, it will be useful to begin with the simultaneous-

move benchmark.

In simultaneous move games, reasoning about rationality is typically formulated as rationality and mth-

order belief of rationality : A player is rational if she chooses a best response, given her belief about how

the game is played. A player is rational and 1st-order believes rationality, if she is rational and has a belief

that assigns probability one to her co-players’ rationality. Inductively, a player is rational and mth-order

believes rationality if she is rational and nth-order believes rationality, for all n = 1, . . . ,m− 1.

An epistemic framework can be used to formally capture rationality and mth-order belief of rationality.

(See, e.g., Brandenburger, 2007 and Dekel, Siniscalchi et al., 2014 for an overview.) The associated behavior

is captured by the (m+ 1)-rationalizable strategies (Bernheim, 1984; Pearce, 1984). Specifically:

Theorem: A strategy is consistent with rationality and mth-order belief of rationality if and

only if the strategy is (m + 1)-rationalizable. A strategy is consistent with rationality and

common belief of rationality if and only if the strategy is rationalizable.

(See, e.g., Tan and Werlang, 1988.) This standard result can be used to provide a bound on reasoning

about rationality: If the researcher observes a subject choose an m- but not (m+1)-rationalizable strategy,

the researcher can conclude that the subject’s behavior is consistent with rationality, (m−1)th-order belief

of rationality, but not mth-order belief of rationality. Likewise, if the researcher observes a subject choose

a rationalizable strategy, the researcher can conclude that her behavior is consistent with rationality and

common belief of rationality.

To sum up, in simultaneous games, we can use observed behavior to infer the maximum level of reasoning

(about rationality) consistent with observed behavior. In light of well-known results, this can be achieved

by inferring the maximum m so that the behavior is m-rationalizable.

Beyond Simultaneous Move Games The goal is to implement the previous methodology for a broad

class of extensive-form games. To do so, it is useful to highlight the structure behind the simultaneous-move

game analysis: First, we specify an epistemic framework. Within the framework, we formulate what it

means to reason about rationality. This corresponded to rationality and mth-order belief of rationality (or
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rationality and common belief about rationality). Finally, as a theorem, we derive behavioral implications

of such reasoning. This came in the form of the (m+ 1)-rationalizable strategies.

Strictly speaking, the epistemic framework is a prerequisite for specifying rationality and mth-order

belief of rationality. (This point will be highlighted in Section 3.) That said, one might wonder if it is

really necessary from the perspective of identifying reasoning about rationality. For instance, in the context

of simultaneous move games, one might intuite that m-rationalizability can be used to bound the level of

reasoning about rationality—that is, one would have intuitively come to that conclusion, even if one did

not take the steps of going through an epistemic framework.

Likewise, one might conjecture that, if the extensive-form game is sufficiently “simple,” then such an

epistemic approach is not needed. For instance, one might conjecture that, in the context of perfect-

information games, one can analogously skip the step of going through an epistemic framework: that the

backward induction algorithm can be used to provide such a bound. However, this idea cannot be done

quite generally—at least not in an obvious way.
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Figure 1.1: Reny (1992)

Consider the game in Figure 1.1. Observe that the strategy Ia-oa is dominated at the beginning of the

game by Oa. As such, there is no belief that A can hold, so that Ia-oa would be a best response for A.

So, if we observe a subject in the role of A play Ia-oa, we should conclude that this subject is irrational.

That said, the backward induction algorithm cannot easily be used provide such a bound. No strategy of

A is eliminated on the first round of the backward induction algorithm. Moreover, the second round of

the backward induction algorithm eliminates Ia-ia and not Ia-oa. In fact, Ia-oa is not eliminated until the

fourth and final round of the algorithm.

In Figure 1.1, we could not use backward induction to provide a bound on the level of reasoning.

This arose from a fundamental feature about backward induction: The algorithm does not eliminate all

dominated (i.e., all sequentially irrational) strategies on the first round of the procedure. (Note, then,

this conclusion does not rely on details of epistemic assumptions, i.e., details about how “reasoning about

rationality” is formulated.) Later we will also show that extensive-form rationalizability Pearce (1984)

cannot be used to provide such a bound. (See Examples 3.2-3.3.) That point will be more subtle and, in

particular, will depend on reasoning about rationality.

This Paper We will we specify an epistemic framework appropriate for studying extensive-form games.

This allows us to formalize how players reason about rationality. We focus on rationality and mth-order

strong belief of rationality (Battigalli and Siniscalchi, 2002). (We discuss this concept and choice in Sections

3 and 9.) Theorem 6.1 provides a behavioral characterization of rationality and mth-order strong belief

of rationality that applies to any generic game. In particular, it shows that, in such games, the behavior

is characterized by, what we will call, the m-best response property. Sections 4 and 8 use this result to

provide an algorithm for identifying the maximum the level of reasoning about rationality consistent with
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observed behavior.

Section 7 applies the results to the Centipede game and, in so doing, shows that there are non-trivial

implications for experimental design. We show that, by having a subject play a series of Centipede games

in the role of the first player, the researcher can disentangle any m from (m+ 1)th-order reasoning. How-

ever, importantly, the researcher cannot use behavior in the role of the second-player to make non-trivial

inferences about reasoning. At least, the researcher cannot do so absent imposing auxiliary assumptions

about the players’ beliefs.

Literature There is a long tradition of using behavior to infer levels of iterative reasoning. Specifically, a

prominent literature seeks to infer such iterative reasoning by using level-k and cognitive hierarchy models

(e.g. Nagel, 1995; Stahl and Wilson, 1995; Costa-Gomes, Crawford and Broseta, 2001; Camerer, Ho and

Chong, 2004; Costa-Gomes and Crawford, 2006). A central feature of their identification strategy is that

they impose auxiliary assumptions about beliefs.1 (This comes in the form of assumptions about the

behavior of Level-0 types, which pins down the beliefs of Level-1 types.) With this, their notion of iterative

reasoning can be conceptually distinct (in subtle ways) from rationality and mth-order belief of rationality

(i.e., even in simultaneous move games).2 However, often, there is a close relationship in terms of observed

behavior. (Appendix A in Friedenberg, Kets and Kneeland (2016) discusses this further.)

This paper differs from that literature, in that we do not impose auxiliary assumptions about players

beliefs. Examples 3.2-3.3 will highlight the fact that this is important in the context of dynamic games—

i.e., in a sense that does not arise in simultaneous move games. Thus, we seek to understand the extent

to which the researcher can identify levels of reasoning without imposing such auxiliary assumptions. In

certain games, the researcher will not be able to provide a meaningful identification of iterative reasoning

absent auxiliary assumptions. However, importantly, in other cases the researcher will be able to identify

iterative reasoning. See Section 7.

With this in mind, our approach is closer in spirit to Kneeland (2015). Kneeland identifies reasoning

about rationality without imposing auxiliary assumptions about beliefs. So, in Kneeland, iterative reason-

ing corresponds to rationality and mth-order belief of rationality. However, the two papers have distinct

goals: Whereas Kneeland seeks to identify levels of reasoning in a specific simultaneous-move game ex-

periment, this paper seeks to provide a methodology that would allow the researcher to design analogous

extensive-form game experiments.

This paper fits in a growing literature on inferring reasoning in dynamic games. For instance, Siniscalchi

(2016) and Healy (2015) seek to elicit players beliefs in extensive-form games. (Siniscalchi seeks to elicit

conditional hierarchies of beliefs about the strategies and Healy seeks to elicit beliefs about rationality,

etc.) By contrast, here, we assume that the researcher does not have access to information about beliefs,

only access to data on the play of the game.

2 Epistemic Games

Consider the game in Figure 2.1, Battle of the Sexes (BoS) with an Outside Option. Suppose that we

observe Ann play Out. We will want to identify the maximum level reasoning about rationality consistent

1Importantly, some papers provide evidence in favor of those assumptions, based on auxiliary data. (See, e.g., Costa-Gomes,
Crawford and Broseta, 2001, Costa-Gomes and Crawford, 2006, Rubinstein, 2007.)

2This arises because Level-0 types may play irrational strategies with positive probability. If so, Level-1 types correspond
to a player that is rational but does not believe rationality.
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with the observed behavior.
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Figure 2.1: Battle of the Sexes with an Outside Option

A starting point will be to formally define what we mean by reasoning about rationality. This will

involve describing the strategic situation by, what is called, an epistemic game. To understand why,

observe that the strategy Out is rational—i.e., a best response—for Ann, if she believes that Bob will play

R; it is irrational for her if she believes that Bob will play L. Thus, we cannot specify whether Out is

rational or irrational without specifying Ann’s beliefs about Bob’s play of the game.

Consider the case where Ann believes that Bob plays R. This strategy will be rational for Bob if,

conditional upon BoS being played, Bob believes that Ann plays In-D ; but this same strategy is irrational

for Bob if, conditional upon BoS being played, Bob believes that Ann plays In-U. Thus, to specify whether

Ann is “rational and reasons that Bob is rational” we not only need to specify Ann’s belief about the

strategy Bob plays but also her belief about Bob’s belief about her own play.

Continuing along these lines, we need to specify Ann’s hierarchies of beliefs about the play of the game.

In what follows, we will describe these hierarchies of beliefs by way of a type structure. This is what we

do below.

2.1 Extensive-Form Game

Write Γ for a finite two-player extensive-form game of perfect recall, in the sense of Kuhn (1953). The

players of the game are a (Ann) and b (Bob).3 Write c for an arbitrary player in {a, b} and −c for the

player in {a, b}\{c}. The underlying game tree has an initial node of φ and a set of terminal nodes Z.

Write Hc for the set of information sets at which player c moves. Assume the game is non-trivial, in the

sense that each player has at least two distinct actions at some h ∈ Hc. The set of information sets, viz.

H = Ha ∪ Hb, forms a partition of the non-terminal nodes. Player c’s extensive-form payoff function is

given by Πc : Z → R.

Let Sc be the set of strategies for player c and let S = Sa × Sb. There is a mapping ζ : S → Z so

that ζ(sa, sb) is the terminal node reached by (sa, sb). Player c’s strategic-form payoff function is given by

πc = Πc · ζ.

Say a strategy profile (sa, sb) reaches h ∈ H if the path from φ to ζ(sc, s−c) passes through some node

in h. Write S(h) for the set of strategy profiles that reach h and write Sc(h) = proj Sc
S(h). If a strategy

3The analysis extends to three or more players, up to issues of correlation. See Section 9f.
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sc ∈ Sc(h), then we say that sc allows h ∈ H.

In what follows it will be convenient to look at product sets. Say Q ⊆ S is a product set if Q =

proj Sa
Q× proj Sb

Q. We take the convention that, if Q = ∅, then both proj Sa
Q = proj Sb

Q = ∅.

2.2 Type Structure

As discussed above, a type structure will be used to model strategic uncertainty, i.e., uncertainty about

the play of the game. In a type structure, each player will have hierarchies of beliefs about the play of

the game. Because the focus is on extensive-form games, over the course of playing the game, players may

learn information inconsistent with their initial hypothesis. For an example of this, return to BoS with the

Outside Option: Bob may begin the game with a hypothesis that Ann exercises her outside option, but

may come to learn that this is false. If so, he will be forced to revise his belief about Ann’s strategy choice.

In light of this, we will need to specify conditional beliefs about the play of the game.

Refer to (Ω,B(Ω)) as a probability space, when Ω is a compact metric space and B(Ω) is the Borel

sigma-algebra on Ω. Write P(Ω) for the set of Borel probability measures on Ω. Endow P(Ω) with the

topology of weak convergence so that it is again a compact metric space.

Call (Ω,B(Ω), E) a conditional probability space if (Ω,B(Ω)) is a probability space and E ⊆
B(Ω)\{∅} is finite. The collection E will be referred to as (a finite set of) conditioning events. Since

B(Ω) is clear from the context, we will suppress reference to B(Ω) and simply write (Ω, E) for a conditional

probability space.

Definition 2.1. Fix a conditional probability space (Ω, E). An array on (Ω, E) is some p : B(Ω)×E → [0, 1]

so that, for each E ∈ E , p(·|E) ∈ P(Ω) with p(E|E) = 1.

Definition 2.2. Fix a conditional probability space (Ω, E). A conditional probability system (CPS)

on (Ω, E) is an array p : B(Ω)×E → [0, 1] that satisfies the following criterion: If E,F ∈ E with G ⊆ F ⊆ E,

then p(G|E) = p(G|F )p(F |E).

Write A(Ω, E) for the set of arrays on (Ω, E) and write C(Ω, E) for the set of CPS’s on (Ω, E). Note that

C(Ω, E) ⊆ A(Ω, E) ⊆ [P(Ω)]|E|. Endow [P(Ω)]|E| with the product topology and C(Ω, E) with the relative

topology, so that C(Ω, E) is a compact metric space.

In our analysis, player c’s set of conditioning events will correspond to

Ec = {S−c(h) : h ∈ Hc ∪ {φ}}.

So, Ann has a conditioning event that corresponds to the beginning of the game, viz. Sb(φ) = Sb. Moreover,

she also has conditioning events Sb(h) corresponding to each information set h ∈ Ha at which she moves.

Definition 2.3. A Γ-based type structure is some T = (Γ;Ta, Tb;βa, βb) where

(1) Tc is a compact metric type set for player c and

(2) βc : Tc → C(S−c × T−c, Ec ⊗ T−c) is a continuous belief map for player c.

A Γ-based type structure models hierarchies of conditional beliefs about the play of the game: A type of

Ann, viz. ta, is associated with a CPS βa(ta) on (Sb × Tb, Ea ⊗ Tb). As such, the type it also associated

with a CPS about Bob’s play, i.e., a first-order CPS on (Sb, Ea). (See Lemma A.1.) Since each type of Bob
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is also associated with a first-order CPS on (Sa, Eb), type ta of Ann is associated with a second-order CPS,

i.e., a system of beliefs about both (i) Bob’s play Sb and (ii) Bob’s first-order CPS’s on (Sa, Eb). And so

on.

For any given game Γ, there are many Γ-based type structures. Write T(Γ) for the class of Γ-based

type structures. Battigalli and Siniscalchi (1999) construct a canonical type structure, which induces all

possible hierarchies of conditional beliefs. Their type structure T ∗ = (Γ;T ∗a , T
∗
b ;β∗a, β

∗
b ) has the property

that it is type-complete (Brandenburger, 2003), i.e., for each CPS pc ∈ C(S−c × T ∗−c, Ec ⊗ T ∗−c), there is

a type tc with βc(tc) = pc. Other type structures model an assumption that some event is common (full)

belief. (See Appendix A in Battigalli and Friedenberg, 2009 for a formal treatment.) The following gives

an example.

Example 2.1. Consider BoS with an Outside Option. Suppose that it is commonly understood that “Bob

is a bully” and, so, whenever a BoS game is played, he attempts to go for his best option and play R.4 In

particular:

Bully-1: at each information set, Ann believes that Bob plays R,

Bully-2: at each information set, Bob believes “Bully-1,”

Bully-3: at each information set, Ann believes “Bully-2,”

etc. This is a restriction on the hierarchies of beliefs that the players consider possible.

This restriction on the hierarchies of beliefs can be captured by a type structure T = (Γ;Ta, Tb;βa, βb)

satisfying the following properties:

• Each βa(ta)(·|Sb × Tb) assigns probability one to {R} × Tb.

• For each CPS pa with pa({R} × Tb|Sb × Tb) = 1, there is a type ta with βa(ta) = pa.

• For each CPS pb, there is a type tb with βb(tb) = pb.

The fact that such a type structure exists follows from Battigalli and Friedenberg (2009). It captures the

contextual assumption that there is common (full) belief that Bob plays {R}. 2

Remark 2.1. As is standard, we identify a simultaneous-move game with an extensive-form game in

which all players move without information about past play. In that case, Ea = {Sb} and Eb = {Sa}. Thus,

C(S−c × T−c, Ec ⊗ T−c) = P(S−c), i.e., βc : Tc → P(S−c × T−c). 2

2.3 Epistemic Game

For a given game Γ, write T(Γ) for the set of Γ-based type structures. Since Γ is non-trivial, there is an

uncountable number of elements in T(Γ). An (extensive-form) epistemic game is some pair (Γ, T )

with T ∈ T(Γ). The epistemic game is the exogenous description of the strategic situation. An epistemic

game induces a set of states, viz. Sa × Ta × Sb × Tb.
In what follows, we will fix an extensive-form game Γ. With this, the epistemic game can be identified

with a type structure in T(Γ). As such, we often conflate ‘type structure’ with ‘epistemic game.’ No

confusion should result.

4We use the phrase “common understanding” for “common full belief.” Example 3.1 defines the concept of “full belief.”
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3 Epistemic Conditions

The set of states associated with a type structure T describes a set of possible strategy-type pairs that can

obtain. This alone imposes no restrictions on behavior or strategic reasoning. The epistemic conditions

will do just that. We begin by imposing the behavioral conditional of rationality. We then impose strategic

reasoning.

3.1 Rationality

Fix some Xc ⊆ Sc. Say sc ∈ Xc is a best response under µ ∈ P(S−c) given Xc if∑
s−c∈S−c

[πc(sc, s−c)− πc(rc, s−c)]µ(s−c) ≥ 0

for all rc ∈ Xc.

Definition 3.1. Say sc is a sequential best response under pc ∈ A(S−c, Ec) if, for each h ∈ Hc with

sc ∈ Sc(h), sc is a best response under pc(·|S−c(h)) given Sc(h).

Notice that each βc(tc) induces a CPS in C(S−c, Ec) via marginalization. Specifically, the marginal CPS

marg S−c
βc(t−c) ∈ C(S−c, Ec) is a CPS pc with pc(·|S−c(h)) = marg S−c

βc(tc)(·|S−c(h) × T−c) for each

S−c(h) ∈ Ec.

Definition 3.2. Say (sc, tc) is rational if sc is a sequential best response under the marginal CPS

marg S−c
βc(tc).

3.2 Reasoning about Rationality

We next impose the requirement that a player “reasons” that the other player is rational. We take

“reasons” to mean that a player maintains a hypothesis that the other player is rational, so long as she has

not observed evidence that contradicts rationality. This idea is captured by strong belief of rationality.

Definition 3.3 (Battigalli and Siniscalchi, 2002). Say a CPS p ∈ C(Ω, E) strongly believes an event F

if, for each conditioning event E ∈ E , E ∩ F 6= ∅ implies p(F |E) = 1.

Definition 3.4. A type tc strongly believes an event E−c ⊆ S−c × T−c if βc(tc) strongly believes E−c.

Notice, in the specific case of a simultaneous-move game, “strong belief” coincides with “belief,” i.e., a

type believes an event E−c if its single probability measure assigns probability one to the event E−c.

To better understand the concept of strong belief, it will be useful to contrast it with “full belief.” The

next example describes full belief and why we focus, instead, on strong belief.5

Example 3.1. Consider the game in Figure 3.1. Observe that, in this game, Ann’s choice of Ia is

dominated. Thus, for any associated epistemic game and any type ta, (sa, ta) is rational if and only if

sa = Oa. Similarly, for any epistemic game and any type tb, (sb, tb) is rational if and only if sb = Ob.

Say a type of Bob tb fully believes an event Ea ⊆ Sa × Ta if βb(tb) assigns probability one to Ea given

every conditioning event. For any type structure, there is no type of Bob that fully believes that Ann is

5See Section 9b for a discussion of why we focus on strong belief instead of the alternate concept of initial belief.
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Figure 3.1: Strong Belief versus Full Belief

rational. This is because, conditional upon Bob reaching the information set associated with Ann’s choice

of Ia, Bob must assign probability one to the event that Ann is irrational.

Suppose we were to take reasoning about rationality as “full belief of rationality.” In that case, when

we observe Bob play Ob, we would conclude that Bob’s behavior is consistent with rationality, but not not

reasoning about rationality. Thus, we would view Bob’s rationality bound as 1. However, this is an artifact

of the impossibility of believing Ann is rational, conditional upon observing Ann play an irrational move.

It does not reflect a lack of reasoning on Bob’s part.

Instead, consider the following type structure: There is one type for each player, i.e., Ta = {ta} and

Tb = {tb}. The belief map of Ann specifies βa(ta)((Ob, tb)|Sb × Tb) = 1. The belief map of Bob specifies

βb(tb)((Oa, ta)|Sa × Ta) = 1 and βb(tb)((Ia, ta)|{Ia} × Ta) = 1. In this case, (Oa, ta) and (Ob, tb) are both

rational, as they must be. Moreover, ta strongly believes “Bob is rational” and, importantly, now tb also

strongly believes “Ann is rational.” (That is, tb maintains this hypothesis, so long as it is not contradicted

by Ann’s behavior.) Inductively, we can see that at (Oa, ta, Ob, tb) there is “rationality and common strong

belief of rationality.” (The concept will be defined shortly.) 2

3.3 Rationality and mth-order Strong Belief of Rationality

Fix some type structure T ∈ T(Γ). Set R0
c(T ) = Sc × Tc. Let R1

c(T ) be the set of rational strategy-type

pairs (sc, tc) in T . Inductively define sets Rma (T ) and Rmb (T ) so that

Rm+1
c (T ) = Rmc (T ) ∩ [Sc × {tc : tc strongly believes Rm−c(T )}].

Write Rm(T ) = Rma (T )×Rmb (T ). The set Rm+1(T ) is the set of strategy-type pairs (in T ) at which there

is rationality and mth-order strong belief of rationality (RmSBR). The set R∞(T ) = ∩m∈NRm(T )

is the set of strategy-type pairs (in T ) at which there is rationality and common strong belief of

rationality (RCSBR).

Observe that proj Sa×Sb
Rm+1(T ) is the set of RmSBR predictions for the type structure T . One

natural conjecture is that this gives rise to the set of extensive-form rationalizable strategies (EFR, Pearce,

1984). Extensive-form rationalizability sequentially eliminates strategies that are not sequential best re-

sponses. Battigalli and Siniscalchi (2002, Proposition 6) show that, when the type structure is T is type-

complete, the set of RmSBR predictions is the set of strategies that survive (m+1) rounds of extensive-form

rationalizability. However, this need not be the case if T is type-incomplete. In that case, the predictions of

RmSBR may be disjoint from the extensive-form rationalizable (EFR) strategies. The following examples

illustrate this point.

Example 3.2. Consider BoS with an Outside Option. There is a CPS on Sa so that L (resp. R) is a
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sequentially best response—i.e., a CPS that assigns probability one to In-U (resp. In-D) conditional upon

In being played. Likewise, there is a CPS on Sb so that Out (resp. In-U ) is a sequential best response—i.e.,

a CPS that assigns probability one to R (resp. L). But there is no CPS so that In-D is a sequential best

response. Thus, one round of EFR gives

EFR1
a × EFR1

b = {Out , In-U } × {L,R}.

Now observe that there is no CPS on EFR1
a so that R is a sequential best response. Thus,

EFR2
a × EFR2

b = {Out , In-U } × {L}.

With this,

EFR3
a × EFR3

b = {In-U } × {L}.

Thus, there is one EFR strategy profile, (In-U,L).

Battigalli and Siniscalchi (2002) show that, if T ∗ is type-complete, then EFR corresponds round-for-

round to RmSBR in the associated epistemic game. That is, for each m,

proj Sa×Sb
Rm(T ∗) = EFRm

a × EFRm
b .

As such, the EFR predictions above are also RmSBR predictions, provided the epistemic game is type

complete. 2

Example 3.3. Again, consider BoS with an Outside Option. Let T be the type structure from Example

2.1, representing the case where it is commonly understood that “Bob is a bully.” Now

proj Sa×Sb
Rm(T ) = {Out} × {L,R}

for each m ≥ 1. So, for each m ≥ 1, there are types tma and tmb so that (Out , tma ,R, t
m
b ) ∈ Rm(T ).

To understand why, observe that (sa, ta) is rational if and only if sa = Out . Thus, R1
a(T ) = {Out}×Ta.

Now, observe that there is a type t2b ∈ Tb that, at the initial node, assigns probability one to {Out} × Ta
and, conditional upon Ann playing In, assigns probability one to {In-D}×Ta. Certainly (R, t2b) is rational.

In addition, t2b strongly believes the event that “Ann is rational”: At the initial node, the type assigns

probability 1 to the event that “Ann is rational;” moreover, this event is inconsistent with Ann playing In.

Thus, (R, t2b) ∈ R2
b(T ). Now observe that there is a type t3a ∈ Ta that assigns probability one to (R, t2b) at

each information set. With this, (Out , t3a) ∈ R3
a(T ). And so on. 2

4 Identifying Level-m Reasoning

The description of the game consists of both the game itself and the type structure. In the ideal case, the

researcher would observe the game, the type structure, and the actual state. With this, he could uniquely

deduce the level of reasoning consistent with observed behavior. For instance, if the researcher knew that

the epistemic game is characterized by T and the true state is

(sa, ta, sb, tb) ∈ (R2
a(T )\R3

a(T ))× (R1
b(T )\R2

b(T )),

10



then the researcher would conclude that Ann reasons (exactly) 2 levels about rationality and Bob reasons

(exactly) 1 level about rationality.

However, we are concerned with the case where the researcher only observes the game Γ and the strategy

played—or perhaps a signal of the strategy played (e.g., the outcome of the game). As such, the researcher

will be concerned with identifying the maximum level of reasoning consistent with observed behavior.

To understand what this involves, return to BoS with an Outside Option. Suppose the researcher

observes Ann play Out, but not Ann’s type. If the researcher knew that the players’ type structure were

type-complete, then the researcher would infer that the maximum level of reasoning consistent with Ann’s

behavior is 2. However, if the researcher knew that it was commonly understood that “Bob is a Bully,”

the researcher would instead infer that Ann’s behavior is consistent with common reasoning.

The issue is that the maximum level of reasoning consistent with Ann’s behavior depends on the type

structure. But, the researcher faces a challenge of not having information about the players’ actual type

structure. Thus, we will look at the maximum level of reasoning consistent with Ann’s behavior, across

all type structures. So, if we observe Ann play Out, we will identify Ann’s behavior as consistent with

common reasoning.

4.1 Approach to Identification

Consider a dataset that is indicative of players’ choices in a game Γ. Write D for the set of possible

realizations in this dataset and write δc : Sa×Sb → D for the mapping from strategies of c to data realiza-

tions. For instance, if the dataset is obtained by implementing the strategy method in a lab experiment,

the dataset would consist of the set of reported strategies for player c and the mapping δc would be the

projection of Sa × Sb onto Sc. Alternatively, the dataset might consist of information about the path of

play (resp. outcome) in the game—e.g., the researcher may observe a path of bids in an auction (resp. who

won the auction and at what price). In that case, D is the set of terminal nodes (resp. outcomes) and δc

maps strategy profiles to their induced paths of play (resp. induced outcomes).

The researcher will use the mapping δc to back out the maximum level of reasoning consistent with

the data, from the maximum level of reasoning consistent with a given strategy. With this in mind, say a

strategy sc is consistent with m levels of reasoning (resp. common reasoning) for c if there exists

some type structure T ∗ so that sc ∈ proj Sc
Rmc (T ∗) (resp. sc ∈ proj Sc

⋂
mR

m
c (T ∗)). Say the observed

data d is consistent with m levels of reasoning (resp. common reasoning) for c if there exists some

strategy profile (s∗a, s
∗
b) so that δc(s

∗
a, s
∗
b) = d and s∗c is consistent with m levels of reasoning (resp. common

reasoning) for c.

Definition 4.1. The observed data d ∈ D identifies player c as a Level-m Reasoner if d is consistent

with m levels of reasoning for c but inconsistent with (m+ 1) levels of reasoning for c. The observed data

d ∈ D identifies player c as a Level-∞ Reasoner if, for each m, the observed data d ∈ D is consistent

with m levels of reasoning for c.

Player c is identified as a Level-m Reasoner if (i) there is some strategy s∗c consistent with both the data

and R(m-1)SBR, but (ii) there is no strategy sc consistent with both the data and RmSBR. Player c is

identified as a Level-∞ Reasoner if, for each m, there is some strategy sc consistent with both the data

and RmSBR. That is, c is identified as a Level-∞ Reasoner if there is no bound on the levels of reasoning

consistent with the data.

11



Remark 4.1. Observe an important subtlety in the definitions: If the data is consistent with common

reasoning, then the data identifies the subject as being a Level-∞ Reasoner. However, the converse is not

obvious: A strategy sc may be consistent with RmSBR for all m (i.e., for each m, there may be some

type structure T m and associated (sc, t
m
c ) ∈ Rmc (T m)). But, this does not immediately imply that sc is

consistent with RCBR (i.e., there exists some epistemic game T and some (sc, tc) ∈
⋂
mR

m
c (T )).

Despite the above, in Section 9c, we will show that the converse also holds: If the data identifies the

subject as being a Level-∞ Reasoner, then the data must be consistent with common reasoning. That is,

if there is no bound on the number of levels of reasoning consistent with the data, then the data must, in

fact, be consistent with RCSBR. 2

4.2 A Key Step for Identification

The goal is to construct a partition L∗c = {L∗,0c , L∗,1c , . . . , L∗,mc , . . . , L∗,∞c } on the data, so that d ∈ L∗,mc if

and only if the data reflects a Level-m Reasoner. To do so, it suffices to construct an auxiliary partition

Lc = {L0
c , L

1
c , . . . , L

m
c , . . . , L

∞
c }

on the strategies of player c, viz. Sc, so that the following holds:

(i) For each finite m, sc ∈ Lmc if and only if sc is consistent with m levels of reasoning but not (m+ 1)

levels of reasoning, and

(ii) sc ∈ L∞c if and only if sc is consistent with common reasoning.

Thus, we focus on constructing the partition Lc.6

There is a natural approach to constructing the partition Lc. Refer to Figure 4.1. For each Γ-based

type structure T , define Sm(T ) (resp. Smc (T )) to be the projection of the strategy-type pairs in Rm(T )

onto S (resp. Sc). (Observe that Sm(T ) = Sma (T )× Smb (T ).) Then set

S
m

:=
⋃

T ∈T(Γ)

Sm(T ),

i.e., S
m

is the collection of strategies consistent with m-level reasoning in some type structure. Write

S
m

c := proj Sc
S
m

and observe that the set S
0

c , . . . , S
m

c , . . . are decreasing. Then, for each finite m, Lmc =

S
m

c \S
m+1

c , and L∞c = Sc\
⋃
m≥0 L

m
c . Moreover, S

∞
c ⊆ L∞c .

In practice, there is a challenge in implementing this approach: We defined the set S
m

c as the union

of the sets Smc (T ) across all type structures T associated with the given game Γ. Observe that this step

requires searching across all type structures T ∈ T(Γ). But, for a given finite extensive-form game, T(Γ)

is uncountable. Therefore, this step involves an infinite task.

To overcome the issue, we will seek to identify S
m

from properties of the game Γ alone. Theorem 6.1

will provide a method for doing so, provided the game is generic. Moreover, Proposition 6.1 will simplify

the method provided by Theorem 6.1. (See also Section 8.1.)

6From this, we obtain L∗c : Put d ∈ L∗,mc if and only if m = max{n : sc ∈ Ln
c and there exists s−c with δ(sc, s−c) = d}.
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Tc

Sc

R1
c(T )

R2
c(T )

R3
c(T )

R4
c(T )

S1
c (T )

S2
c (T ) = S3

c (T )

S4
c (T )

Figure 4.1: Projections of Rm(T )

5 Extensive-Form Best Response Property

In light of the above, we seek to identify properties based on the game Γ (alone) so that Qa×Qb ⊆ Sa×Sb
satisfies the properties if and only if, there exists a type structure T ∈ T(Γ), so that

Qa ×Qb = Sm(T ) := proj Sa×Sb
Rm(T ).

For the specific case of m =∞ (i.e., RCSBR) such properties are known. Specifically, Qa×Qb is consistent

with RCSBR if and only if it is an extensive-form best response set. (See Battigalli and Friedenberg, 2012.)

With this in mind, we will use the solution concept of extensive-form best response sets as a benchmark,

by which we think of addressing the broader issue.

5.1 Characterizing RCSBR

Given an array pc ∈ A(S−c, Ec), write BR[pc] for the set of strategies sc that are a sequential best response

under pc ∈ A(S−c, Ec).

Definition 5.1. Call Qa ×Qb ⊆ Sa × Sb an extensive-form best response set (EFBRS) if, for each

sc ∈ Qc, there exists some CPS pc ∈ C(S−c, Ec) so that the following hold:

(1) sc ∈ BR[pc],

(2) pc strongly believes Q−c, and

(3) if rc ∈ BR[pc], then rc ∈ Qc.

In BoS with an Outside Option, there are three EFBRS’s, viz. {Out}×{L,R}, {Out}×{R}, and {In-U}×
{L}.

Proposition 5.1 (Battigalli and Friedenberg, 2012). Fix a game Γ.

(i) For each type structure T , proj SR
∞(T ) is an EFBRS.

(ii) Given an EFBRS Qa ×Qb, there exist a type structure T so that proj SR
∞(T ) = Qa ×Qb.
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This result says that EFBRS’s characterize the behavior consistent with RCSBR. The EFBRS concept

involves a fixed point requirement: If Qa × Qb is an EFBRS then, for each sa ∈ Qa, there is a CPS pa

under which sa is optimal, so that pa strongly believes the ‘prediction’ Qb. This fixed-point requirement

naturally arises from characterizing RCSBR behavior. To see this, fix some type structure T and a

strategy-type pair (sa, ta) at which there is RCSBR. First, sa is optimal under marg Sb
βa(ta). Second,

since marg Sb
βa(ta) assigns probability one to each proj Sb

Rmb (T ), marg Sb
βa(ta) assigns probability one

to proj Sb
R∞b (T ). Third, if ra is also optimal under marg Sb

βa(ta), then (ra, ta) is also rational. It then

follows that (ra, ta) ∈ Rma (T ) for all m, i.e., ra ∈ proj Sa
R∞a (T ).

Proposition 5.1 allows us to identify the sets S∞a (T ) × S∞b (T ) based on properties of the game alone.

As a consequence:

Corollary 5.1. For each game Γ,

S
∞

:=
⋃

T ∈T(Γ)

S∞(T ) =
⋃

Qa×Qb is an EFBRS

(Qa ×Qb).

5.2 The m-BRP

A natural starting point is to turn this fixed-point definition into an iterative definition. Toward that end,

fix a type structure T and observe that the sets R0(T ), R1(T ), R2(T ), . . . satisfy the following:

(1) Each proj SR
m(T ) is a product set, i.e., proj SR

m(T ) = proj Sa
Rm(T )× proj Sb

Rm(T ).

(2) The sequence (proj SR
0(T ),proj SR

1(T ), . . .) is decreasing, i.e., proj SR
m+1(T ) ⊆ proj SR

m(T ).

With this in mind, we will focus on a sequence of strategy profiles that satisfy a decreasing property. Say

(Q0, . . . , Qm) is a decreasing sequence of strategy profiles if (i) Q0 = Sa×Sb, (ii) each Qn = Qna×Qnb
is a product set, and (iii) for each n = 0, . . . ,m− 1, Qn+1 ⊆ Qn.

Definition 5.2. Say X = Xa × Xb satisfies the (extensive-form) best response property relative

to (Q0, . . . ,Qm) if (Q0, . . . , Qm, X) is a decreasing sequence of strategy profiles satisfying the following

property: For each sc ∈ Xc, there exists a CPS pc ∈ C(S−c, Ec) so that

(BRP.1) sc ∈ BR[pc],

(BRP.2) pc strongly believes Q0
−c, . . . , Q

m
−c, and

(BRP.3) if rc ∈ BR[pc], then rc ∈ Xc.

Definition 5.3. Let m ≥ 1. Say (Q0, . . . , Qm) satisfies the m-(extensive-form) best response prop-

erty (m-BRP) if

(i) Q1 is non-empty and

(ii) for each n = 1, . . . ,m− 1, Qn+1 satisfies the best response property relative to (Q0, . . . , Qn).

The m-BRP is a natural analogue of the EFBRS, converting that definition from a fixed-point definition

to an iterative definition: If sc ∈ Qnc , then sc is sequentially optimal under an array that strongly believes

lower-order prediction sets Q0
−c, . . . , Q

n−1
−c , instead of the prediction of the same order Qn−c. This is reflected

by conditions (BRP.1)-(BRP.2). Condition (BRP.3) is the same maximality property of the EFBRS. (See

Example 5.1 in Battigalli and Friedenberg (2009) for an explanation of the maximality criterion.)
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Remark 5.1. Fix m ≥ 2 and (Q0, . . . , Qm). Then (Q0, . . . , Qm) satisfies the m-BRP if and only if

(i) (Q0, . . . , Qm−1) satisfies the (m−1)-BRP and (ii) Qm satisfies the extensive-form best response property

relative to (Q0, . . . , Qm−1). 2

5.3 Characterizing RmSBR: Challenges

Say Q is consistent with the m-BRP if there exists some (m− 1)-BRP, viz. (Q0, . . . , Qm−1), so that Q

satisfies the extensive-form best response property relative to (Q0, . . . , Qm−1). The natural conjecture is

that we can characterize the set S
m

as the union over the sets Q that are consistent with the m-BRP, i.e.,

S
m

=
⋃

Q is consistent with the m-BRP

Q. (1)

If so, we would have a method to compute the set S
m

, without making reference to type structures.

This section is devoted to exploring the extent to which the conjecture is vs. is not true. First, we begin

with a benchmark result (the proof of which is standard). The benchmark result is a step toward showing

the conjecture. We then point to challenges for establishing the conjecture. The next section provides the

characterization for a generic class of games.

We begin with a benchmark result: The RmSBR predictions induce a sequence of sets that satisfies the

(m+ 1)-BRP.

Proposition 5.2. Fix a type structure T . The sequence (proj SR
0(T ), . . . ,proj SR

m(T )) satisfies the

m-BRP.

Proposition 5.2 implies that each Sm(T ) ≡ proj SR
m(T ) is consistent with the m-BRP. As such, the left-

hand side of Equation (1) is contained in the right-hand side of Equation (1). The question is whether

the converse obtains: For each set Q consistent with the m-BRP, does there exists some T so that Q ⊆
proj SR

m(T )?

One might conjecture that, for each m-BRP (Q0, . . . , Qm), there exists a type structure T so that

Qn ⊆ proj SR
n(T ) for all n = 1, . . . ,m. (2)

If so, it would suffice to deliver the result. However, as the next series of examples show, this conjecture is

incorrect.

Example 5.1. Consider the game in Figure 5.1. Let (Q0, Q1, Q2) be the decreasing sequence of strategy

profiles with

Q1
a ×Q1

b = Sa × {y1q1, y1q2, y2} and Q2
a ×Q2

b = {x2} ×Q1
b

Note this is a 2-BRP.7 But, we show that there is no type structure T with Q1 ⊆ proj SR
1(T ) and

Q2 = proj SR
2(T ). Thus, Equation (2) cannot be strengthened to equality.

Suppose otherwise. Then there exists a type ta so that (x1z1, ta) ∈ R1
a(T ). Observe that βa(ta) must

assign probability one to {y2} × Tb at each information set. But, y2 is a sequential best response under

7Let us point to several features of the example: First, x1z1 and x2 are both optimal under a CPS that assigns probability
1 to y2, x1z2 is uniquely optimal under a CPS that assigns probability 1 to y3, and x2 is uniquely optimal under a CPS that
assigns probability 1 to {y1q1, y1q2}. Second, y1q1 (resp. y1q2) and y2 are the only strategies that are optimal under a CPS
that assigns probability 1 to x2 at the initial information set and then assigns probability one to x1z2 (resp. x1z1) conditional
upon observing x1. Third, y2 is uniquely optimal under a CPS that assigns probability 1 to x1z2.
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Figure 5.1

each CPS and, so, {y2} × Tb ⊆ R1
b(T ). With this, ta strongly believes R1

b(T ) and so (x1z1, ta) ∈ R2
a(T ).

Thus, Q2
a 6= R2

a(T ). 2

Example 5.1 shows that we may have a 2-BRP (Q0, Q1, Q2) so that, there is no type structure T , with

both Q1 = proj SR
1(T ) and Q2 = proj SR

2(T ). But, this is immaterial from the perspective of delivering

the desired result—i.e., from the perspective of delivering Equation (1). This is because there is a type

structure T , with both Q1 ⊆ proj SR
1(T ) and Q2 ⊆ proj SR

2(T ). In fact, this conclusion holds more

generally:

Proposition 5.3. Fix a game Γ.

(i) For each 1-BRP (Q0, Q1), there exists some T so that Q1 = proj SR
1(T ).

(ii) For each 2-BRP (Q0, Q1, Q2), there exists some T so that Q1 = proj SR
1(T ) and Q2 ⊆ proj SR

2(T ).

In light of Proposition 5.3, Equation (1) does indeed hold for m = 1, 2. However, we will next see that an

analogue of Proposition 5.3 does not hold for the 3-BRP.

Example 5.2. Return to the game in Figure 5.1. Let (Q0, Q1, Q2, Q3), where (Q0, Q1, Q2) is the 2-BRP

described in Example 5.1 and

Q3
a ×Q3

b = Q2
a × {y1q1, y2}.

We will show that there is no type structure T so that Qn ⊆ proj SR
n(T ) for each n = 1, 2, 3.

Suppose, contra hypothesis, that such a type structure T exists. Since Q3 ⊆ proj SR
3(T ), there exists

some tb with (y1q1, tb) ∈ R3
b(T ). Then, βb(tb) must assign positive probability to {x1z2} × Ta conditional

upon {x1z1, x1z2} × Ta. We will argue that ({x1z2} × Ta) ∩ R2
a(T ) = ∅ but ({x1z1} × Ta) ∩ R2

a(T ) 6= ∅,
contradicting the fact that tb strongly believes R2

a(T ).

First, observe that (x1z1) ∈ Q1
a and so, by assumption, (x1z1) ∈ proj Sa

R1
a(T ). Thus, repeating the

argument in Example 5.1 above, (x1z1) ∈ proj Sa
R2
a(T ). Second, observe that x1z2 is only a sequential
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best response under a CPS that assigns positive probability to {y3} × Tb at the initial information set.

Since y3 is dominated, no such CPS can strongly believe R1
b(T ). Thus, x1z2 6∈ proj Sa

R2
a(T ). 2

Let us review Example 5.2. It gives a 3-BRP so that, if Q1 ⊆ proj SR
1(T ), then there exists some strategy

in Q3 that is not contained in proj SR
3(T ). This key is that there is a strategy in Q3

b that is sequentially

optimal under a CPS that strongly believes Q2
a. But, that CPS cannot strongly believe proj Sa

R2
a(T ); this

arises because Q2
a must be a strict subset of proj Sa

R2
a(T ).

With this in mind, the next section restricts attention to a class of games that are generic. In that

class, we can guarantee that a strong variant of Equation (5.1): If (Q0, Q1, . . . , Qm) is an m-BRP, then we

can find a type structure T so that Qn = proj SR
n(T ) for each n = 1, . . . ,m.

6 Characterizing RmSBR: Generic Games

Say two strategies sc and rc are equivalent if they induce the same plan of action, i.e., ζ(sc, ·) = ζ(rc, ·).
Write [sc] for the set of strategies that are equivalent to sc, and observe that, since the game is non-trivial,

each [sc] ( Sc. So, if sc and rc are equivalent, then πc(sc, ·) = πc(rc, ·). It follows that sc ∈ BR[pc] if and

only if [sc] ⊆ BR[pc].
8

Definition 6.1. Call a game Γ generic if the following property holds: If there exists a CPS pc ∈ C(S−c, Ec)
so that sc ∈ BR[pc], then there exists a CPS qc ∈ C(S−c, Ec) so that [sc] = BR[qc].

Thus, a game is generic if any sequentially optimal strategy is “uniquely” sequentially optimal under some

(perhaps different) CPS. Here, unique is taken to mean “up to equivalent strategies.” Note, Example 5.1

is non-generic. The strategy x1z1 is only sequentially optimal under a CPS that assigns probability 1 to y2

at the initial information set. However, x2 is also sequentially optimal under that CPS. In 6.2 below, we

will point to classes of games that satisfy this genericity requirement. We first point out that, in generic

games, RmSBR is characterized by the (m+ 1)-BRP.

6.1 Characterization

When a game is generic, in the sense of this paper, the predictions of RmSBR are exactly captured by the

sets consistent with the (m+ 1)-BRP:

Theorem 6.1. Fix a generic game Γ. The following hold for each m.

(i) For each epistemic game T , (proj SR
0(T ), . . . ,proj SR

m(T )) satisfies the m-BRP.

(ii) If (Q0, . . . , Qm) satisfies the m-BRP, then there exists some type structure T so that

(proj SR
0(T ), . . . ,proj SR

m(T )) = (Q0, . . . , Qm).

Part (i) is a special case of Proposition 5.2. Part (ii) is specific to generic games. It says that, for a generic

game and an associated m-BRP, we can construct a type structure so that, for each n = 0, . . . ,m− 1, the

predictions of RnSBR are exactly captured by Qn+1.

Let us provide a sketch of the proof of Theorem 6.1(ii). The aim is to highlight the role of genericity.

Throughout, fix a generic game Γ and a 2-BRP (Q0, Q1, Q2). The goal is to construct a type structure T
8In BoS with an outside option, O-L and O-R are two equivalent strategies. We have simply been writing Out ; our

notation formally reflects an equivalence class of strategies.
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so that proj SR
1 = Q1 and proj SR

2 = Q2. (Note, here and in the sketch below, we surpress reference to

T . No confusion should result.)

Tc

Sc

Q1
c

Q2
c

Q1
c

Q2
c

[sc]

[s1c ]

(a) Type Sets

T−c

S−c

Q1
−c

Q2
−c

Q1
−c

Q2
−c

(b) Belief βc(tc)(·|S−c(h)× T−c) when Q1
−c = S−c

Figure 6.1: Construction of Type Structure

Begin by setting the type set for player c to be Tc = Q1
c

⊔
Q2
c . For each sc ∈ Q2

c ⊆ Q1
c , there will be two

associated types: a 1-type labeled s1
c and a 2-type labeled s2

c . The idea will be to construct belief maps so

that 1-strategy-type pairs (sc, s
1
c) are rational but do not strongly believe rationality, and 2-strategy-type

pairs (sc, s
2
c) are rational and strongly believe rationality. In fact, we will ask for somewhat more. Refer

to Figure 6.1a. We will seek to construct belief maps satisfying two requirements: First, R1
c\R2

c is ‘along

the diagonal’ of Q1
c ×Q1

c modulo equivalence classes, i.e.,

R1
c\R2

c = {[sc]× [s1
c ] : sc ∈ Q1

c}.

This diagonal is illustrated as the red squares in Figure 6.1a. Second, R2
c contains the diagonal of Q2

c ×Q2
c

and is contained in the square Q2
c ×Q2

c . The blue rectangles in Figure 6.1a illustrate this set.

Begin by constructing the beliefs associated with 2-types. By definition of a 2-BRP, for each sc ∈ Q2
c ,

there is a CPS jc(s
2
c) on (S−c, Ec) so that [sc] ⊆ BR[jc(s

2
c)] ⊆ Q2

c and jc(s
2
c) strongly believes Q1

−c. Choose

βc(s
2
c) so that (i) marg S−c

βc(s
2
c) = jc(s

2
c) and (ii) βc(s

2
c)((s−c, s

1
−c)|S−c(h) × T−c) = jc(s

2
c)(s−c|S−c(h)),

whenever s−c ∈ S−c(h)∩Q1
−c. So, if S−c(h)∩Q1

−c 6= ∅, then βc(s
2
c)(·|S−c(h)×T−c) is concentrated on the

diagonal of Q1
−c ×Q1

−c.

Next construct the beliefs associated with 1-types. For the purpose of illustrating the construction,
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we focus on two extreme cases: where Q1
−c is a singleton (i.e., Q1

−c = [s∗−c]) and where Q1
−c is the full

strategy set (i.e., Q1
−c = Sc). In both cases, for each sc ∈ Q1

c , there is a CPS jc(s
1
c) on (S−c, Ec) so

that [sc] = BR[jc(s
1
c)]. In the first case, we can and do choose this CPS so that jc(s

1
c) does not strongly

believe Q1
−c. (Lemma C.3 in the Appendix shows how this is done.) We then choose βc(s

1
c) so that

marg S−c
βc(s

1
c) = jc(s

1
c) and each βc(s

1
c)(·|S−c(h) × T−c) is concentrated on the diagonal of Q1

−c × Q1
−c,

when possible. In the second case, we instead adopt an anti-diagonal construction. Refer to Figure 6.1b.

Observe that each βc(s
2
c)(·|S−c(h) × T−c) is concentrated off the diagonal of Q1

−c × Q1
−c. Specifically, if

s−c ∈ [t−c] ⊆ Q1
−c, then βc(s

2
c)((s−c, t−c)|S−c(h)× T−c) = 0.

Observe that, under the construction, we have

R1
c = {[sc]× [s1

c ] : sc ∈ Q1
c} ∪

⋃
s2c∈Q2

c

(BR[jc(s
2
c)]× {s2

c}).

Now, by the diagonal construction, types in Q2
c strongly believe R1

−c. Moreover, types in Q1
c do not strongly

believe R1
−c. (If Q1

−c is a singleton, this follows from the fact that jc(s
1
c) does strongly believe Q1

−c. If

Q1
−c = S−c this follows from the anti-diagonal construction.) Thus, R2

c =
⋃
s2c∈Q2

c
(BR[jc(s

2
c)]× {s2

c}).

6.2 Generic Games

Genericity is a property stated in terms of sequential best responses. We now identify classes of games

that satisfy genericity. A natural starting point is games that satisfy no relevant ties (Battigalli, 1997):

Definition 6.2. A game satisfies no relevant ties if πc(sc, s−c) = πc(rc, s−c) implies ζ(sc, s−c) =

ζ(rc, s−c).

More informally, a game satisfies no relevant ties if, whenever player c is decisive over two distinct terminal

nodes z and z∗ (i.e., if there exists (sc, s−c) and (rc, s−c) with ζ(sc, s−c) 6= ζ(rc, s−c)), she is not indifferent

between those terminal nodes.

A perfect-information game satisfying no relevant ties is generic. (See Lemma D.8.) However, a non-

perfect information game may satisfy no relevant ties, even though it is not generic. (Appendix D provides

an example.) That is, beyond perfect-information games, no relevant ties is not sufficient for the game

to be generic. With this in mind, we will introduce a property called no relevant convexities. (Appendix

D notes that the condition can be weakened). This property implies no relevant ties, but is sufficient for

any finite game of perfect recall to be generic. Moreover, as we will see, if the game satisfies no relevant

convexities, then we will be able to simplify the procedure for identification.

Definition 6.3. Fix some X = Xc × X−c ⊆ Sc × S−c and some sc ∈ Xc. Say rc supports sc with

respect to Xc ×X−c if there exists σc ∈ P(Sc) with Suppσc ⊆ Xc such that

(1) rc ∈ Suppσc, and

(2) πc(σc, s−c) = πc(sc, s−c) for all s−c ∈ X−c.

A strategy rc supports sc on Xc×X−c, if it is in the support of a convex combination σc ∈ P(Xc), so that

the convex combination is payoff equivalent to sc on X−c. Thus, in a sense, if rc supports sc on Xc×X−c,
then rc can be viewed as “indifferent” to sc on X−c. No relevant convexities requires that, in that case, sc

and rc reach the same terminal node, whenever a strategy s−c ∈ X−c is played.
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Definition 6.4. The game satisfies no relevant convexities (NRC) if the following holds: If rc supports

sc with respect to some Sc ×X−c ⊆ Sc × S−c, then ζ(sc, s−c) = ζ(rc, s−c) for each s−c ∈ X−c.

The formal results only require a weaker version of NRC, described in Appendix D. Note that if a game

satisfies no relevant convexities, then it also satisfies no relevant ties: If it were to fail no relevant ties, there

would be some ζ(sc, s−c) 6= ζ(rc, s−c) with πc(sc, s−c) = πc(rc, s−c). It follows that sc, rc ∈ Sc, rc supports

sc with respect to some Sc × {s−c}, but ζ(sc, s−c) 6= ζ(rc, s−c). So, it also fails no relevant convexities.

If a game satisfies no relevant convexities, then it is generic. (See Corollary D.2.) Thus, Theorem 6.1

will apply. In fact, when the game satisfies NRC, we can simplify the definition of the m-BRP, in a way

that will serve useful for computational purposes.

Proposition 6.1. Fix a game that satisfies NRC. Then (Q0, . . . , Qm) satisfies the m-BRP if and only if

Q1 is non-empty and, for each n = 1, . . . ,m and each sc ∈ Qnc , there exists an array pc ∈ A(S−c, Ec) with

(i) sc ∈ BR[pc],

(ii) pc strongly believes Q0
−c, . . . , Q

n−1
−c , and

(iii) [sc] ⊆ Qnc .

Proposition 6.1 says that, when the game satisfies NRC, we can simplify the m-BRP definition in two

ways. First, we can replace the maximality criterion (BRP.3) with the requirement that does not depend

on the CPS’s: We now simply require that, if sc ∈ Qmc , then every strategy equivalent to sc is also in Qmc .

Second (and, arguably, more importantly) we can replace CPSs with arrays. This will prove useful, from

the perspective of computation. Appendix D shows that, when the game fails NRC, we may not be able

to replace CPS’s with arrays.

7 Illustration of Identification: Centipede Games

To illustrate the approach to identification, we apply the analysis to the Centipede game. Refer to Figure

7.1: We order the non-terminal nodes (or vertices) as 1, 2, . . . , V , where V ≥ 3. (So, 1 indicates the initial

node and V indicates the last non-terminal vertex.) The payoffs are as specified in the figure with x, y > 0.

The figure depicts the game when the number of non-terminal nodes (or vertices) V is odd; when the

number of non-terminal nodes (or vertices) V is instead even, Bob moves at V . In that case, the payoffs

from outV are (x+ (V − 3)y, x+ V y) and the payoffs from inV are (x+ V y, x+ (V − 1)y).9

rA in1

out1

x

x− y

rB in2

out2

x− y
x+ 2y

rA in3

out3

x+ 2y

x+ y

p p p rA inV

outV

x+ (V − 1)y

x+ (V − 2)y

x+ (V − 2)y
x+ (V + 1)y

Figure 7.1: Centipede Game

Let us point to three crucial features of the game: First, the player who moves at vertex v ≤ V − 1

strictly prefers outv+2 (resp. inV if v = V − 1) to outv and strictly prefers outv to outv+1. Second, the

9The first component in the payoff vector reflects Ann’s payoffs.
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player who moves at vertex V , strictly prefers outV to inV . Finally, the game has no relevant ties and, so,

is generic. Thus, we will be able to exploit Theorem 6.1 to identify reasoning in the game.

Write [out, v]c for the set of strategies of player c which play inv′ at vertices that v′ (strictly) precede v

and outv. Write [in]c for the set that contains the (unique) strategy of of player c, which specifies inv′ at

every node v′.

A Benchmark A useful benchmark will be m rounds of EFR. As in Example 3.2, write EFRm
c for the

m-EFR strategies for player c. The m-EFR strategy set will depend on whether m is odd versus even and

whether player c moves last (i.e., whether V is odd versus even). With this in mind, we take the notational

convention that, if V is odd then player ` (player ‘last’) is Ann and if V is even then player ` is Bob. We

write −` for the second-to-last player.

With this, EFR is characterized as follows:

• EFR1
` × EFR1

−` = (S`\[in]`)× S−`,

• EFR2
` × EFR2

−` = EFR1
` × (S−`\[in]−`),

• EFRm
` × EFRm

−` = (EFRm−1
` \[out, V + 3−m]`)× EFRm−1

−` if m = 3, . . . , V is odd, and

• EFRm
` × EFRm

−` = EFRm−1
` × (EFRm−1

−` \[out, V + 3−m]−`) if m = 4, . . . , V is even.

For all m ≥ V + 1, EFRm
` × EFRm

−` = EFR4
` × EFR4

−`. Note, this also corresponds round-for-round with

the backward induction algorithm.

The m-BRP Procedure The m-BRP procedure has very different implications for the first-mover

(Ann) and the second-mover (Bob). In particular, for the second-mover, it allows for ‘many predictions.’

Specifically:

Remark 7.1.

(i) If V is odd, then S
m

b = Sb for all m ≥ 1.

(ii) If V is even, then for S
m

b = (Sb\[in]b) for all m ≥ 1.

To understand this remark, note that, when V is odd (resp. even) [out, 1]a×Sb (resp. [out, 1]a× (Sb\[in]b))

is an EFBRS. Thus, for each m, it is contained in the union over the m-BRPs.

The situation is quite different for the first-player:

Proposition 7.1. In the centipede game, for each m, S
m

a = EFRm
a .

At first glance, this result might appear trivial: For each m, EFRm
a ×EFRm

b is consistent with the m-BRP.

Thus, EFRm
a ⊆ S

m

a . However, the key is showing that S
m

a ⊆ EFRm
a and, as we have seen, this is not the

case for the second-mover b. (Appendix E explains why it is true.)

Implications for Identifying Reasoning in Games The implications for identifying reasoning are

quite stark. Without imposing auxiliary assumptions about players’ beliefs, the researcher cannot identify

the second player’s reasoning. But, the researcher can identify the first-player’s reasoning.

To better understand these points, consider a lab experiment, in which the researcher has subjects

choose strategies via the strategy method. (This will allow the researcher to observe the full strategy of
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player i, even if the other player’s behavior prevents player i’s information set from being reached.) The

researcher can have subjects play centipede games of varying lengths. By observing the behavior only in the

role of Ann (i.e., the first player), the researcher can identify the maximum level of reasoning consistent

with observed behavior (for any given subject). Specifically, for any m, there is some centipede game

that will allow the researcher to infer whether the subject’s behavior in the role of Ann is consistent with

R(m-1)SBR. By observing behavior across centipede games of varying length, the researcher can separate

R(m-1)SBR from RmSBR.10

That said, absent auxiliary assumptions about beliefs, the researcher cannot use the data in the role

of Bob (i.e., the second player) to identify reasoning: If V is odd, then all observed behavior by Bob is

consistent with rationality and common strong belief of rationality. If V is even, then playing [in]b would

identify irrationality; playing any other strategy would again be consistent with rationality and common

strong belief of rationality. Thus, identifying Bob’s behavior as a Level-1 Reasoner requires imposing

auxiliary assumptions about Bob’s belief conditional upon an irrational move by Ann.

Remark 7.2. A word of caution: One might conclude that a computer can/should take the role of Bob.

However, to the extent that the subjects’ reasoning about rationality is not entirely determined by limits

on ability (Friedenberg, Kets and Kneeland, 2016), doing so may change how a subject reasons about

rationality. That is, it may very well be important to have real subjects play in the role of the second

player, even if the researcher will disregard their play. 2

8 An Algorithm for Identification

Refer to Theorem 6.1 and Section 4.2: In a generic games, we can identify the maximum m consistent with

RmSBR provided we can identify all sets consistent with the (m+ 1)-BRP. This provides a procedure for

identifying reasoning in dynamic games.

Q0 = S Q1 Q2 · · · Qm
Compute? Stop?

Figure 8.1: m-BRP Elimination Procedure

From a computational perspective, there are two obstacles that hinder implementing the procedure.

Refer to Figure 8.1: First, to determine if (Q0, Q1) is an 1-BRP, we need to compute the set of all BRc[pc]
for all CPS’s pc. However, there are potentially uncountably many such CPS’s. And, analogously, for

any higher-order m-BRPs. Second, we must determine that the procedure stops. Because the game is

finite, there must exist some M so that QM = Qm for all m ≥M , i.e., where the m-BRP stops shrinking.

However, from the perspective of implementing the identification procedure, the researcher must know

when it stops shrinking. We will see that this step is not obvious.

This section addresses both computational issues. In so doing, it provides an algorithm for identification—

at least for a wide class of games.

10A potential concern would be learning—i.e., if the subject learns how to play the game between different centipede games.
However, this concern can be mitigated by adopting some of the experimental design features in Kneeland (2015). Specifically,
the experimenter can give no feedback and allow the subject to ‘change play’ after reviewing the choices across a series of
centipede games.
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8.1 Computing Best Responses

Fix some decreasing sequence of strategies (Q0, . . . , Qm). We seek to identify the sets Q = Qa × Qb that

satisfy the best response property relative to (Q0, . . . , Qm). Toward that end, we will restrict attention to

games that satisfy NRC. In that case, we can identify all the sets Q by a simple test on the strategies in

Qm.

Specifically, a strategy sc ∈ Qmc will “pass the test” if there is an array pc ∈ A(S−c, Ec) so that

sc ∈ BRc[pc] and pc strongly believes Q0
−c, . . . , Q

m
−c. When the game satisfies NRC, a set Q satisfies the

best response property relative to (Q0, . . . , Qm) if each Qc can be written as a union over sets [sc] ⊆ Qmc

so that sc passes the test.

Fix some h ∈ Hc and write n(h) = max{n : Qn−c ∩ S−c(h) 6= ∅}. Then, enumerate

Q
n(h)
−c ∩ S−c(h) = {s1

−c, . . . , s
K
−c} and Sc(h) = {s1

c , . . . , s
L
c }.

Say a strategy sc ∈ Qmc passes the test at h if either sc 6∈ Sc(h) or, there exists (µ1, . . . , µK) ≥ (0, . . . , 0)

with
∑K
k=1 µ

k = 1, so that sc maximizes
∑K
k=1 πc(·, sk−c)µk amongst all strategies in Sc(h) = {s1

c , . . . , s
L
c }.

A strategy sc passes the test if it passes the test at each h ∈ Hc.

The key is that the simplex algorithm can be used to determine if sc passes the test at h. Specifically,

when sc ∈ Sc(h), the problem is equivalent to choosing (µ1, . . . , µK , σ1, . . . , σL) to solve

Maximize

K∑
k=1

πc(sc, s
k
−c)µ

k

subject to
∑K
k=1[πc(sc, s

k
−c)− πc(slc, sk−c)]µk + σl = 0 for each l = 1, . . . , L

µ1 + µ2 + · · ·+ µK = 1

(µ1, . . . , µK , σ1, . . . , σL) ≥ (0, . . . , 0)

We can apply the simplex algorithm to this linear programming problem. The algorithm terminates by

either (a) concluding that there is no feasible solution, (b) providing an optimal solution, or (c) concluding

that the objective function is unbounded over the feasible region. (See Chapter 2 in Bradley, Hax and

Magnanti, 1977.) In the first scenario sc fails the test and in the latter two scenarios sc passes the test.

8.2 Termination of the Procedure

Fix some decreasing sequence of strategies (Q0, Q1, Q2, . . .), where each (Q0, . . . , Qm) satisfies the m-BRP.

Since each Qm+1 ⊆ Qm, we can think of (Q0, Q1, Q2, . . .) as defining an elimination procedure. Since the

strategy set is finite, this procedure must terminate—i.e., there exists some M so that, for each m ≥ M ,

Qm = QM . If the researcher knew at which M this occurred, the researcher could use that fact to determine

that the elimination has stopped.

At first glance, there might appear to be straightforward route to determine this M . Typically, an

elimination procedure stops shrinking at the first round where no strategy is eliminated for either player.

However, this same principle does not apply to the m-BRP elimination procedure. We may have Qm =

Qm−1 even though Qm+1 ( Qm.

Example 8.1. Consider the simultaneous-move game given by Figure 8.2 and note that the game is generic.

Yet, for each m, there is an m-BRP with (Q0, . . . , Qm), so that (i) for each n ≤ m, Qn = {U,D}× {L,R},
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1,1 0,0

0,0 1,1

U

D

L R

Ann

Bob

Figure 8.2

and (ii) Qm+1 = {U,D}×{R}. Thus, the (m+ 1)-BRP procedure has no shrinkage up until round m, but

a shrinkage at round (m+ 1). 2

To understand why Example 8.1 can occur, refer to Figure 4.1. We can have proj SR
3 = proj SR

2, even

though R3(T ) ( R2(T ). Example 8.1 highlights the fact that we can have arbitrarily long pauses before

shrinkage: For any M , we can construct some m-BRP (Q0, . . . , QM , . . . , Qm) so that the (Q0, Q1, Q2, . . .)

procedure has not terminated within M steps.

Nonetheless, we can provide a bound on the elimination procedure (S
0
, S

1
, S

2
, . . .), i.e., we can find some

M so that, for all m ≥M , S
m

= S
M

. To understand why, consider an m-BRP procedure (Q0, Q1, Q2, . . .)

with a pause at round m, i.e., Qm+1 = Qm but Qn ( Qm+1 for some n ≥ m + 2. The key is that any

eliminated strategy—i.e., any strategy in Qm+1
c \Qnc—must be contained in S

n
. That is, there must exist

some other m-BRP procedure (Q̂0, Q̂1, Q̂2, . . .) so that Qm+1\Qn ⊆ Q̂n. This follows from the following

observation.

Observation 8.1. Fix some (Q0, Q1, Q2, . . .) where, for each m, (Q0, . . . , Qm) is an m-BRP. If Qm+1 =

Qm, then Qm is an EFBRS.

Thus, if Qm+1 = Qm, then we can define (Q̂0, Q̂1, Q̂2, . . .) with, for each n ≥ 1, Q̂n = Qm. This defines a

new m-BRP procedure. From this, it follows that Qm = Q̂n ⊆ Sn for all n ≥ 1.

Proposition 8.1. Fix a game Γ and set

M =

2 min{|Sa|, |Sb|} − 1 if |Sa| 6= |Sb|,

2 min{|Sa|, |Sb|} − 2 if |Sa| = |Sb|.

Then, for all m ≥M , S
m

= S
∞

.

Proposition 8.1 provides a bound M for the procedure (S
0
, S

1
, S

2
, . . .). Thus, it suffices to compute all the

M -BRPs, (Q0, . . . , QM ).

In practice, it is often not necessary to compute all the M -BRPs. Refer to Figure 8.3. We begin

with Q0 = S and identify all the 1-BRPs (Q0, Q1). We use these 1-BRP’s to identify all the 2-BRPs

(Q0, Q1, Q2). And so on. We know we can stop after we have identified all the M -BRPs. However, along

any given “BRP path” (Q0, Q1, . . . , QM ), it may be possible to stop prior to round M . Specifically, it may

be possible to stop at m < M if Qm = Qm+1.
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Q1
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Q2 Q2
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Figure 8.3: m-BRP Elimination Tree

9 Discussion

a. Bounded Reasoning about Rationality This paper focuses on bounded reasoning about ratio-

nality. With this in mind, we define Ann to be a Level-m Reasoner if her behavior is consistent with

R(m-1)SBR but inconsistent with RmSBR. Notice, we take no position on why Ann might exhibit such

bounded reasoning about rationality. For instance, Ann may face such bounds if she has interacted in

the past with a population of like-minded individuals and has observed behavior that leads her to bet on

“irrational” behavior. Or, alternatively, Ann may face such bounds if she faces limitations in her ability

to engage in interactive reasoning—i.e., if she finds it difficult to specify what she thinks “Bob thinks she

thinks etc. . .” about behavior.

At first glance, this latter interpretation may seem inconsistent with our analysis: Type structures

induce infinite hierarchies of beliefs about the play of the game—i.e., mth-order beliefs about play, for all

m. However, this contradiction is illusory. The key observation is that, if Ann is a Level-m Reasoner (as

defined in this paper), then hierarchies of beliefs beyond level m do not affect her behavior. Formally,

consider two types ta and ua with the same (m + 1)th-order beliefs about the strategies played in the

game. For any strategy sa, the strategy-type pair (sa, ta) is consistent with RmSBR if and only if (sa, ua)

is consistent with RmSBR. The higher-order beliefs become an artifact of our formalism and do not have

any behavioral significance.11

b. Strong Belief versus Initial Belief Example 3.1 explained why we focus on “strong belief of ratio-

nality” and not “full belief of rationality.” An alternate is to focus instead on “initial belief of rationality”

(Ben-Porath, 1997). A type initially believes rationality if, at the start of the game, the type assigns

probability one to the event that the other player is rational.

Initial belief relaxes what it means to reason about rationality throughout the game. In so doing, it

allows us to rationalize the data at higher levels: If a state is consistent with rationality and mth-order

strong belief of rationality, then the state is consistent with rationality and mth-order initial belief of

rationality. Thus, if a subject is identified as being a Level-m Reasoner according to “strong belief” and a

Level-n Reasoner according to “initial belief,” then n ≥ m.

The implication is that, under initial belief, it is more difficult to identify levels of reasoning. For

instance, refer back to the three-legged Centipede game. There, both [out]1 and [out]3 are consistent with

11So, in particular, we could instead adapt the type structure frameworks in Kets (2010) and Heifetz and Kets (N.d.)
(which allow for finite-order beliefs) to conditional beliefs; in doing so, we would reach analogous conclusions.
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“rationality and common initial belief of rationality.” Thus, under initial belief, we could not use the first

player’s behavior to identify levels of reasoning, absent imposing auxiliary assumptions.

c. Common Reasoning Remark 4.1 pointed out a subtlety in the definition of a Level-∞ Reasoner: A

strategy sc may be consistent with RmSBR for all m (i.e., for each m, there may be some type structure

T m and associated (sc, t
m
c ) ∈ Rmc (T m)). But, this does not immediately imply that sc is consistent with

RCBR (i.e., there exists some type structure T so that (sc, tc) ∈
⋂
mR

m
c (T ) for some type tc). However,

in light of Observation 8.1, we can conclude that Level-∞ reasoning and common reasoning are in fact

equivalent.

Corollary 9.1. The following are equivalent:

(i) For each m, there exists some T m so that sc ∈ proj Sc
Rmc (T m).

(ii) There exists some T so that sc ∈ proj Sc

⋂
mR

m
c (T ).

Proof. It is immediate that (ii) implies (i). Suppose that (i) hold and choose M ≥ 2 min{|Sa|, |Sb|}. Then

there exists some m ≤M − 1 so that

proj SR
m(T M ) = proj SR

m+1(T M ).

It follows from Proposition 5.2 and Observation 8.1 that proj SR
m(T M ) is an EFBRS. Thus, by Proposition

5.1, there exists some T so that

proj S
⋂
m≥1

Rm(T ) = proj SR
m(T M ).

It follows that

proj Sc
RMc (T M ) ⊆ proj SR

m(T M ) = proj S
⋂
m≥1

Rm(T ),

as desired.

With this, the data is consistent with Level-∞ Reasoning for c if and only if the data is consistent with

common reasoning for c.

d. Simultaneous Move Games Example 5.1 showed that we may have a 2-BRP (Q0, Q1, Q2) so that

there is no type structure T with Q1 = proj SR
1(T ) and Q2 = proj SR

2(T ). This can also be the case

for a simultaneous move game.12 However, if (Q0, Q1, Q2) is a 2-BRP, there exists a type structure T
with Q1 = proj SR

1(T ) and Q2 ⊆ proj SR
2(T ). (See Proposition 5.3.) In simultaneous move games,

this generalizes beyond the 2-BRP. Specifically, if (Q0, . . . , Qm) is a m-BRP, there exists a type structure

T with each Qn ⊆ proj SR
n(T ). As such, in any simultaneous move game, S

m
is the union over all Q

consistent with the m-BRP and this set coincides with the set of m-rationalizable strategies. (This fits

with well-known results.)

With this in mind, observe that there is no analogue of Example 5.2 for simultaneous move games. The

reason is because, in simultaneous move games, strong belief is monotonic, whereas, in dynamic games,

12An example is available upon request.
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strong belief is non-monotonic.13 Thus, in a simultaneous move game, if a CPS strongly believes Q2
−c and

Q2
−c ( proj S−c

R2
−c(T ), then the CPS also strongly believes proj S−c

R2
−c(T ). However, if in a dynamic

game, a CPS may strongly believe some Q2
−c with Q2

−c ( proj S−c
R2
−c(T ), even though the CPS does not

strongly believe proj S−c
R2
−c(T ).

e. Beyond Generic Games Example 5.2 illustrates that, for a given m-BRP (Q0, Q1, . . . , Qm), there

may not be a type structure T so that Qn ⊆ proj SR
n(T ) for each n = 1, . . . ,m. This can arise because the

game is non-generic. The example leaves open that there may be an alternate m-BRP (Q̂0, Q̂1, . . . , Q̂m)

so that the following hold:

(i) Q̂m = Qm, and

(ii) there exists some type structure T so that Q̂n ⊆ proj SR
n(T ) for each n = 1, . . . ,m.

If correct, it would say that Equation (2) holds for all games. We neither know this to be true nor have a

counterexample. Thus, we leave it as an open question.

f. Two versus Three Player Games We have restricted attention to two player games. When the

game has three (or more) players, two conceptual questions arise. First, do players have independent

or correlated beliefs about their co-players? (See Brandenburger and Friedenberg, 2008 on this issue.)

Second, do players engage in correlated versus independent rationalization? (See Section 9c in Battigalli

and Friedenberg, 2012 on this issue.) Our analysis applies to the n-player game verbatim, provided players

have correlated beliefs and engage in correlated rationalization.

Appendix A Preliminaries

This appendix provides preliminary results, which are used in subsequent results.

Marginalization Property of Belief

Lemma A.1. Fix epistemic game T . If βc(tc) strongly believes the event E−c ⊆ S−c × T−c, then

marg S−c
βc(tc) strongly believes proj S−c

E−c.

Proof. Suppose βc(tc) strongly believes the event E−c ⊆ S−c × T−c. Fix some S−c(h)× T−c ∈ Ec ⊗ T−c.
If proj S−c

E−c ∩ S−c(h) 6= ∅, then there exists (s−c, t−c) ∈ E−c so that s−c ∈ S−c(h). It follows that

E−c ∩ (S−c(h)× T−c) 6= ∅ and so βc(E−c|S−c(h)× T−c) = 1. Now note that

marg S−c
βc(proj S−c

E−c|S−c(h)× T−c) = βc(proj S−c
E−c × T−c|S−c(h)× T−c) ≥ βc(E−c|S−c(h)× T−c).

It follows that marg S−c
βc(proj S−c

E−c|S−c(h)× T−c) = 1, as desired.

Image CPS’s: Fix a CPS pc ∈ C(S−c, Ec) and some (measurable) mapping τ−c : S−c → S−c × T−c.
Define qc as follows: For each conditioning event S−c(h)× T−c ∈ Ec ⊗ T−c, set

qc(E−c|S−c(h)× T−c) = pc((τ−c)
−1(E−c)|S−c(h))

13In simultaneous move games, strong belief coincides with “belief,” i.e., ex ante assigning probability one to an event.
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for each Borel E−c ⊆ S−c × T−c. We refer to qc at the image CPS of pc under τ−c. So defined, qc

is indeed a CPS. See Battigalli, Friedenberg and Siniscalchi (2012, Part III, Chapter 4). Moreover, if

τ−c(s−c) ∈ {s−c} × T−c for each s−c, then the image CPS of pc under τ−c, viz. qc, has marg S−c
qc = pc.

As a consequence, for any given CPS pc ∈ C(S−c, Ec), we can find some CPS qc ∈ C(S−c × T−c, Ec ⊗ T−c)
so that marg S−c

qc = pc.

Structure of Games and Sequential Best Responses By perfect recall, we have the following:

(i) For each h, h′ ∈ Hc, either S(h) ⊆ S(h′), S(h′) ⊆ S(h), or S(h) ∩ S(h′) = ∅. (ii) For each h ∈ Hc,

S(h) = Sc(h)× S−c(h). The second of these implies the following:

Lemma A.2. Fix h, h′ ∈ Hc so that S(h) ∩ S(h′) = ∅. If S−c(h) ∩ S−c(h′) 6= ∅, then Sc(h) ∩ Sc(h′) = ∅.

Proof. Fix h, h′ ∈ Hc so that Sc(h) ∩ Sc(h′) 6= ∅ and S−c(h) ∩ S−c(h′) 6= ∅. Then there exists some

sc ∈ Sc(h) ∩ Sc(h′) and s−c ∈ S−c(h) ∩ S−c(h′). It follows that (sc, s−c) ∈ Sc(h)× S−c(h) and (sc, s−c) ∈
Sc(h

′) × S−c(h′). By perfect recall, S(h) = Sc(h) × S−c(h) and S(h′) = Sc(h
′) × S−c(h′). Thus, S(h) ∩

S(h′) 6= ∅.

Lemma A.3. Fix h∗, h∗∗ ∈ Hc so that S(h∗∗) ⊆ S(h∗). Let pc ∈ P(S−c) with pc(S−c(h
∗)) = 1 and

pc(S−c(h
∗∗)) > 0. If sc ∈ Sc(h∗∗) is optimal under pc given all strategies in Sc(h

∗), then sc is optimal

under pc(·|S−c(h∗∗)) given all strategies in Sc(h
∗∗).

Proof. Suppose that there exists some rc ∈ Sc(h∗∗) so that∑
s−c

[πc(rc, s−c)− πc(sc, s−c)]pc(s−c|S−c(h∗∗)) > 0.

Construct a strategy r̃c so that

r̃c(h) =

rc(h) if S(h) ⊆ S(h∗∗)

sc(h) otherwise.

Fix some s−c ∈ S−c(h∗∗) and observe that (sc, s−c) and (rc, s−c) are both contained in S(h∗∗) = Sc(h
∗∗)×

S−c(h
∗∗). (This follows from perfect recall.) Thus, (r̃c, s−c) ∈ S(h∗∗) and so r̃c ∈ Sc(h∗∗) ⊆ Sc(h∗).

We will show that

(i) ζ(rc, s−c) = ζ(r̃c, s−c) if s−c ∈ S−c(h∗∗), and

(ii) ζ(sc, s−c) = ζ(r̃c, s−c) if s−c ∈ S−c(h∗)\S−c(h∗∗).

From this, it follows that ∑
s−c

[πc(r̃c, s−c)− πc(sc, s−c)]pc(s−c) > 0.

contradicting the hypothesis that sc is optimal under pc given all strategies in Sc(h
∗).

First, fix some s−c ∈ S−c(h∗∗) and note that, by perfect recall,

(sc, s−c), (rc, s−c), (r̃c, s−c) ∈ Sc(h∗∗)× S−c(h∗∗) = S(h∗∗).

Suppose, contra hypothesis, that ζ(rc, s−c) 6= ζ(r̃c, s−c). Then there exists some h ∈ Hc so that (rc, s−c), (r̃c, s−c) ∈
S(h) = Sc(h) × S−c(h) but rc(h) 6= r̃c(h) = sc(h). By construction, ¬(S(h) ⊆ S(h∗∗)). Since S(h∗∗) ∩
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S(h) 6= ∅, it follows that S(h∗∗) ( S(h). Thus we have established that sc(h) 6= rc(h) and (sc, s−c), (rc, s−c) ∈
S(h∗∗); but this contradicts perfect recall.

Second, fix some s−c ∈ S−c(h∗)\S−c(h∗∗) and suppose, contra hypothesis, that ζ(sc, s−c) 6= ζ(r̃c, s−c).

Then there exists some h ∈ Hc with (sc, s−c), (r̃c, s−c) ∈ S(h) = Sc(h)×S−c(h) and sc(h) 6= r̃c(h) = rc(h).

By construction, S(h) ⊆ S(h∗∗), contradicting the assumption that s−c ∈ S−c(h∗)\S−c(h∗∗).

Appendix B Appendix for Section 5.3

We begin with the proof of Proposition 5.2.

Proof of Proposition 5.2. We will show that, for each m ≥ 1, (proj SR
0(T ), . . . ,proj SR

m(T )) satisfies

the m-BRP. The proof is by induction on m.

m = 1 : If sc ∈ proj Sc
R1
c , then there exists some tc ∈ Tc so that (sc, tc) ∈ R1

c(T ). Take pc = marg S−c
βc(tc).

Note that sc ∈ BR[pc]. Moreover, if rc ∈ BR[pc], then (rc, tc) ∈ R1
c and so rc ∈ proj Sc

R1
c .

m ≥ 2 : Assume the claim holds for m and fix some (proj SR
0(T ), . . . ,proj SR

m(T ),proj SR
m+1(T )).

Then, by the induction hypothesis, (proj SR
0(T ), . . . ,proj SR

m(T )) satisfies the m-BRP. Thus, it suf-

fices to show that proj SR
m+1 = proj Sa

Rm+1 × proj Sb
Rm+1 satisfies the extensive-form best response

property relative to (proj SR
0(T ), . . . ,proj SR

m(T )).

Fix some sc ∈ proj Sc
Rm+1(T ). There exists some tc ∈ Tc so that (sc, tc) ∈ Rm+1

c (T ). Take pc =

marg S−c
βc(tc). Since (sc, tc) ∈ R1

c(T ), sc ∈ BR[pc]. Moreover, βc(tc) strongly believesR0
−c(T ), . . . , Rm−c(T ).

So applying Lemma A.1, marg S−c
βc(tc) strongly believes proj S−c

R0
−c(T ), . . . ,proj S−c

Rm−c(T ). Finally, if

rc ∈ BR[pc], then (rc, tc) ∈ Rm+1
c (T ) and so rc ∈ proj Sc

Rm+1
c (T ).

We next prove Proposition 5.3. We divide the proofs into two parts.

Proof of Proposition 5.3(i). Fix a 1-BRP (Q0, Q1). Construct T as follows: Set Tc = Q1
c . For each

sc ∈ Tc = Q1
c , choose βc(sc) so that marg Sc

βc(sc) is a CPS pc with [sc] ∈ BR[pc] ⊆ Q1
c . (The fact that

such a CPS exists follows from the definition of a 1-BRP.) It follows that proj Sc
R1
c(T ) = Q1

c .

Proof of Proposition 5.3(ii). Fix a 2-BRP (Q0, Q1, Q2). For each sc ∈ Q1
c , there exists some CPS

jc[sc] so that sc ∈ BR[jc[sc]] ⊆ Q1
c . Moreover, if sc ∈ Q2

c , we can take jc[sc] to strongly believe Q1
−c and so

that BR[jc[sc]] ⊆ Q2
c .

With this in mind, set Tc = Q1
c and define βc(sc) as follows: For each s−c ∈ S−c(h) ∩Q1

−c,

βc(sc)((s−c, s−c)|S−c(h)× T−i) = jc[sc](s−c|S−c(h)).

For each s−c ∈ S−c(h) ∩ (S−c\Q1
−c),

βc(sc)({s−c} × T−c|S−c(h)× T−i) = jc[sc](s−c|S−c(h)).
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Then,

R1
c(T ) =

⋃
sc∈Q1

c

(BR[jc[sc]]× {sc})

and so proj Sc
R1
c(T ) = Q1

c . Moreover, if sc ∈ Q2
c , type sc strongly believes R1

−c(T ). As such, Q2
c ⊆

proj Sc
R2
c(T ).

Appendix C Proof of Theorem 6.1

To show Theorem 6.1, it will be useful to introduce a strong justification property. With this in mind,

refer to a set Xc ⊆ Qc as an effective singleton if there exists some sc so that Xc = [sc]. If Xc ⊆ Qc is

not effectively a singleton, then we simply say it is non-singleton.

Definition C.1. Fix an m-BRP (Q0, . . . , Qm). Say that the m-BRP satisfies the strong justification

property if, for each player c and each n = 1, . . . ,m, we can find a mappings jnc : Qnc → C(S−c, Ec)
satisfying the following criteria:

(j.a) For each sc ∈ Q1
c , BR[j1

c (sc)] = [sc]. Moreover, if Q1
−c if effectively a singleton, then j1

c (sc) does not

strongly believe Q1
−c.

(j.b) For each n = 2, . . . ,m and each sc ∈ Qnc , sc ∈ BR[jnc (sc)] ⊆ Qnc and jnc (sc) strongly believes

Q0
−c, . . . , Q

n−1
−c .

Observe that, by definition of an m-BRP, we can always find mappings jnc : Qnc → C(Q−c, Ec) satisfying

condition (j.b). But, condition (j.a) is stronger than that required by an m-BRP. If we find mappings

jc = (j1
c , . . . , j

m
c ) satisfying these requirements, we say that jc strongly justifies the m-BRP for player

c or ja and jb strongly justify the m-BRP.

Theorem 6.1 follows from the following two propositions.

Proposition C.1. Fix an m-BRP (Q0, . . . , Qm) satisfying the strong justification property. Then there

exists an associated epistemic game T so that, for each n = 1, . . . ,m, proj SR
n(T ) = Qn.

Proposition C.2. If the game is generic, then any m-BRP satisfies the strong justification property.

We now turn to proving these two results.

C.1 Proof of Proposition C.1

Throughout we fix an m-BRP (Q0, . . . , Qm) satisfying the strong justification property. Thus, for each

player c, there are mappings jc = (j1
c , . . . , j

m
c ) that strongly justify the m-BRP.

Description of the Type Structure For each player c and each n = 1, . . . ,m, set Umc ≡ Qmc and write

υnc : Qnc → Unc for the identity map. The type set for player c will be Tc =
⊔m
n=1 U

n
c . We will refer to types

in Unc as the n-types for player c.

It will be convenient to specify the diagonal of Qnc × Unc . This will be given by

diagnc =
⋃

sc∈Qn
c

([sc]× υnc ([sc]))
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Observe that, if [sc] = [rc] then υnc ([sc]) = υnc ([rc]) and so [sc] × υnc ([rc]) ⊆ diagnc . Moreover, if Qnc is

non-singleton then, for each sc ∈ Qnc , there exists a type tc ∈ Unc so that (sc, tc) ∈ (Qnc × Unc )\diagnc .

For each n = 1, . . . ,m, we will define a mapping τn−c : S−c → S−c × T−c with τn−c(s−c) ∈ {s−c} × T−c.
In addition, the mappings will satisfy the following properties: For n = 1, if Q1

−c is non-singleton, then the

range of τ1
−c is concentrated on S−c×U1

−c but off of diag1
−c, i.e., each τ1

−c(s−c) ∈ (S−c×U1
−c)\diag1

−c. For

n = 2, . . . ,m, for each s−c ∈ Q1
−c, τ

n
−c(s−c) is in the maximal diagonal consistent with s−c. Specifically,

for a given s−c ∈ Q1
−c, let ` = max{k = 1, . . . , n− 1 : s−c ∈ Qk−c} and set τn−c(s−c) = (s−c, υ

`
−c(s−c)).

The belief map is such that, for each υnc (sc) ∈ Unc , βc(υ
n
c (sc)) is the image CPS of jnc (sc) under τn−c.

Observe that, for each sc ∈ Qnc , margQ−c
βc(υ

n
c (sc)) = jnc (sc).

Analysis It will be convenient to define sets of n-strategy-type pairs of the players. In particular, for

each player c and each n = 1, . . . ,m, set

Qnc =
⋃

sc∈Qn
c

(BR[jnc (sc)]× {υnc (sc)}).

By Conditions (j.a)-(j.b) of strong justification, diagnc ⊆ Qnc .

Lemma C.1. For each n = 1, . . . ,m, proj Sc
Qnc = Qnc .

Proof. If sc ∈ Qnc , then sc ∈ BR[jnc (sc)] and so (sc, υ
n
c (sc)) ∈ Qnc . Fix some (sc, υ

n
c (rc)) ∈ Qnc . Then,

rc ∈ Qnc and sc ∈ BR[jnc (rc)]. It follows that sc ∈ BR[jnc (rc)] ⊆ Qnc , as required.

Lemma C.2. For each n = 1, . . . ,m, Rna (T )×Rnb (T ) =
⋃m
k=n(Qka ×Qkb ).

Proof. The case of n = 1 is immediate from the construction. Thus, we show n = 2, . . . ,m. The proof is

by induction on n. In the proof, we write Rnc instead of Rnc (T ) since the type structure T is as constructed

above.

Fix some n = 2, . . . ,m and some k = n, . . . ,m and some (rc, υ
k
c (sc)) ∈ BR[jkc (sc)] × {υkc (sc)} ⊆ Qkc .

Since the claim holds for n = 1 it suffices to show the following:

(i) If k = n− 1, then υkc (sc) does not strongly believe Rn−c.

(ii) If k = n, . . . ,m, then υkc (sc) strongly believes Rn−c.

n = 2 : Fix some k = 1, . . . ,m and some (rc, υ
k
c (sc)) ∈ BR[jkc (sc)] × {υkc (sc)} ⊆ Qkc . We will show (i)-(ii)

hold. To do so, we will make use of the following property: Having established this claim for n = 1, we

have that R1
−c =

⋃m
k=1 Qk−c and so, by Lemma C.1, Q1

−c = proj S−c

⋃m
k=1 Qk−c = proj S−c

R1
−c(T ).

First, suppose that k = 1 and Q1
−c is an effective singleton. By Condition (j.a) of strong justification,

j1
c (sc) does not strongly believe Q1

−c, i.e., there exists some information set h with Q1
−c ∩ S−c(h) 6= ∅

and j1
c (sc)(S−c\Q1

−c|S−c(h)) > 0. Since Q1
−c = proj S−c

R1
−c, R

1
−c ∩ (S−c(h) × T−c) 6= ∅. Moreover,

βc(υ
1
c (sc))((S−c\Q1

−c) × T−c|S−c(h) × T−c) > 0 and, again using the fact that Q1
−c = proj S−c

R1
−c,

((S−c\Q1
−c)× T−c) ∩R1

−c = ∅. Thus, υ1
c (sc) does not strongly believe R1

−c.

Next, suppose that k = 1 and Q1
−c is non-singleton. Observe that, in this case,

βc(υ
1
c (sc))(S−c × U1

−c)\diag1
−c|S−c × T−c) = 1.
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By Condition (j.a) of strong justification, if (s−c, t−c) ∈ (S−c ×U1
−c)\diag1

−c, then sc 6∈ BR[j1
−c(tc)] and so

(s−c, t−c) 6∈ R1
−c. Thus, υ1

c (sc) does not strongly believe R1
−c.

Finally, suppose that k = 2, . . . ,m. Fix a conditioning event S−c(h)×T−c so that R1
−c∩(S−c(h)×T−c) 6=

∅. Since Q1
−c = proj S−c

Q1
−c = proj S−c

R1
−c, it follows that Q1

−c ∩ S−c(h) 6= ∅. So, using the fact that

jkc (sc) strongly believes Q1
−c, it follows that jkc (sc)(Q

1
−c|S−c(h)) = 1. Now observe that, by construction,

βc(υ
k
c (sc))(

k−1⋃
l=1

diagl−c|S−c(h)× T−c) = jkc (sc)(Q
1
−c|S−c(h)) = 1.

Since
⋃k−1
l=1 diagl−c ⊆

⋃m
l=1 Q

k−1
−c and R1

−c =
⋃m
l=1 Ql−c (this result shown for n = 1), it follows that

βc(υ
k
c (sc))(R

1
−c|S−c(h)× T−c) = 1, as desired.

n ≥ 3 : Fix some n = 3, . . . ,m and some k = n, . . . ,m and some (rc, υ
k
c (sc)) ∈ BR[jkc (sc)]×{υkc (sc)} ⊆ Qkc .

We show (i)-(ii).

First, suppose that k = n− 1. Fix (s−c, t−c) with βc(υ
k
c (sc))((s−c, t−c)|S−c × T−c) > 0 and note that,

by construction, t−c = υk−1
−c (sc). By the induction hypothesis (part (i)), υk−1

−c (sc) does not strongly believe

Rn−2
c . Thus, υnc (sc) does not strongly believe Rn−1

−c .

Second, suppose that k = n, . . . ,m. Fix a conditioning event S−c(h) × T−c so that Rn−1
−c ∩ (S−c(h) ×

T−c) 6= ∅. By the induction hypothesis and Lemma C.1

proj S−c
Rn−1
−c = proj S−c

m⋃
k=n−1

Qk−c = Qn−1
−c

and so Qn−1
−c ∩ S−c(h) 6= ∅. Since jkc (sc) strongly believes Qn−c, it follows that jkc (sc)(Q

n
−c|S−c(h)) = 1.

Now observe that, by construction,

βc(υ
k
c (sc))(

k−1⋃
l=n

diagl−c|S−c(h)× T−c) = jkc (sc)(Q
n
−c|S−c(h)) = 1.

Since
⋃k−1
l=n diagl−c ⊆

⋃m
l=nQ

l
−c and, by the induction hypothesis, Rn−c =

⋃m
l=nQl−c, it follows that

βc(υ
k
c (sc))(R

n
−c|S−c(h)× T−c) = 1, as desired.

Proof of Proposition C.1. Immediate from Lemmata C.1-C.2.

C.2 Proof of Proposition C.2

Say a strategy sc is justifiable if there exists some CPS pc so that sc ∈ BR[pc]. Proposition C.2 follows

from the following lemma.

Lemma C.3. Suppose that the game is generic and let [s∗−c] ( S−c. If s∗c is justifiable, then there exists

some CPS pc so that [s∗c ] = BR[pc] and pc does not strongly believe [s∗−c].

To show the lemma, it will be useful to begin with a number of preliminary results.
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Lemma C.4. Fix a CPS pc ∈ C(S−c, Ec) so that [sc] = BR[pc] and some rc 6∈ [sc]. There exists some

h ∈ Hc ∪ {φ} so that sc, rc ∈ Sc(h) and sc(h) 6= rc(h). Moreover, for any such h,∑
s−c∈S−c(h)

[πc(sc, s−c)− πc(rc, s−c)]pc(s−c|S−c(h)) > 0.

Proof. Fix [sc] ⊆ BR[pc] and rc 6∈ [sc]. Then, for all h ∈ Hc ∪ {φ} with sc, rc ∈ Sc(h)∑
s−c∈S−c(h)

[πc(sc, s−c)− πc(rc, s−c)]pc(s−c|S−c(h)) ≥ 0. (3)

Since rc 6∈ [sc], there exists some h∗ ∈ Hc so that sc, rc ∈ Sc(h∗) and sc(h
∗) 6= rc(h

∗). We will suppose that

Equation (3) holds with equality at h = h∗ and construct a new strategy r∗c with r∗c 6∈ [sc] and r∗c ∈ BR[pc].

This establishes the result.

Construct the strategy r∗c as follows: First, for each information set h with either S(h) ∩ S(h∗) =

∅ or S(h) ( S(h∗), set r∗c (h) = sc(h). Second, for each information set h with S(h) ⊆ S(h∗) and

pc(S−c(h)|S−c(h∗)) > 0, set r∗c (h) = rc(h). Finally, for all remaining information sets, choose r∗c to satisfy

the following condition: If r∗c ∈ Sc(h), then r∗c solves

max
Sc(h)

∑
s−c∈S−c(h)

πc(·, s−c)pc(s−c|S−c(h)). (4)

The fact that we can choose r∗c in this way follows from Lemma A.3.14

Observe that r∗c 6∈ [sc]. Also observe that r∗c is a best response under pc(·|S−c(h∗)) given Sc(h
∗).

To see this, fix some s−c ∈ Supp pc(·|S−c(h∗)). Since (sc, s−c), (rc, s−c) ∈ Sc(h∗) × S−c(h∗) = S(h∗), it

follows from the construction that (r∗c , s−c) ∈ S(h∗). Thus, r∗c ∈ Sc(h
∗). Moreover, by construction, if

s−c ∈ Supp pc(·|S−c(h∗)) then ζ(r∗c , s−c) = ζ(rc, s−c). So, since rc is a best response under pc(·|S−c(h∗))
given Sc(h

∗), it follows that r∗c is also is a best response under pc(·|S−c(h∗)) given Sc(h
∗).

We will show that r∗c ∈ BR[pc]. Specifically, fix an information set h ∈ Hc\{h∗} with r∗c ∈ Sc(h). We

will show that r∗c is a best response under pc(·|S−c(h)) given Sc(h).

First, suppose that S(h∗) ∩ S(h) = ∅. Fix some pc(s−c|S−c(h)) > 0. By construction, ζ(r∗c , s−c) =

ζ(sc, s−c). Since sc is a best response under pc(·|S−c(h)) given Sc(h), it follows that r∗c is also a best

response under pc(·|S−c(h)) given Sc(h).

Second, suppose that h 6= h∗, S(h) ⊆ S(h∗), and pc(S−c(h)|S−c(h∗)) > 0. Since r∗c is a best response

under pc(·|S−c(h∗)) given Sc(h
∗), Definition 2.2 and Lemma A.3 give that r∗c is a best response under

pc(·|S−c(h)) given Sc(h). Third, suppose that h 6= h∗, S(h) ⊆ S(h∗), and pc(S−c(h)|S−c(h∗)) = 0. In that

case, by assumption, r∗c is a best response under pc(·|S−c(h)) given Sc(h).

Finally, suppose that S(h∗) ( S(h). Fix some pc(s−c|S−c(h)) > 0. If s−c 6∈ S−c(h∗), then ζ(r∗c , s−c) =

ζ(sc, s−c). (This is by construction.) If s−c ∈ S−c(h
∗), then ζ(r∗c , s−c) = ζ(rc, s−c): Observe that

S−c(h
∗) ⊆ S−c(h); so, by Definition 2.2, pc(s−c|S−c(h)) > 0 implies pc(s−c|S−c(h∗)) > 0. By construction,

for any s−c with pc(s−c|S−c(h∗)) > 0, ζ(r∗c , s−c) = ζ(rc, s−c).

14Specifically: Let H̄0
c be the set of all h ∈ Hc with S(h) ⊆ S(h∗), pc(S−c(h)|S−c(h∗)) = 0, and rc ∈ Sc(h). Choose some

h1 ∈ H̄0
c and note that r∗c ∈ Sc(h1). Choose r1c to solve Equation (4) for h = h1 and set r∗c (h) = r1c (h). Then define H̄1

c to be
the set h ∈ H̄0

c so that r1c ∈ Sc(h) and, if S−c(h) ⊆ S−c(h1), then pc(S−c(h)|S−c(h1)) = 0. Proceed inductively, until some
H̄K

c = ∅ has been constructed. Then, “fill in” r∗c (h) arbitrarily at all information sets h for which it has not been defined.
(Note, r∗c precludes those information sets.)
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Let α ≡ pc(S−c(h)\S−c(h∗)|S−c(h)) > 0. If α > 0, let µc be pc(·|S−c(h)) conditional on S−c(h)\S−c(h∗).
If α = 0, let µc0 be the zero measure. Then

∑
s−c∈S−c(h)

[πc(sc, s−c)− πc(r∗c , s−c)]pc(s−c|S−c(h)) =

α
∑

s−c∈S−c(h)

[πc(sc, s−c)−πc(r∗c , s−c)]µ(s−c)+(1−α)
∑

s−c∈S−c(h)

[πc(sc, s−c)−πc(r∗c , s−c)]pc(s−c|S−c(h∗)).

Note that

α
∑

s−c∈S−c(h)

[πc(sc, s−c)− πc(r∗c , s−c)]µ(s−c) = 0

since µc(s−c) > 0 implies ζ(sc, s−c) = ζ(r∗c , s−c). Also note that

(1− α)
∑

s−c∈S−c(h)

[πc(sc, s−c)− πc(r∗c , s−c)]pc(s−c|S−c(h∗)) = 0,

since both sc and r∗c are a best response under pc(·|S−c(h∗)). Thus,∑
s−c∈S−c(h)

[πc(sc, s−c)− πc(r∗c , s−c)]pc(s−c|S−c(h)) = 0.

Now, it follows from the fact that sc ∈ Sc(h∗) ⊆ Sc(h) is a best response under pc(·|S−c(h)) given Sc(h)

that rc is also a best response under pc(·|S−c(h)) given Sc(h).

Lemma C.5. Fix some h∗ ∈ Hc ∪ {φ} so that s∗c ∈ Sc(h∗), s∗−c 6∈ S−c(h∗) and, for all h ∈ Hc ∪ {φ} with

S(h∗) ( S(h), s∗−c ∈ S−c(h). Then ζ(s∗c , s
∗
−c) = ζ(rc, s

∗
−c) impies rc ∈ Sc(h∗).

Proof. We show the contrapositive. Suppose that rc 6∈ Sc(h∗). There exists some (s∗c , r−c) ∈ S(h∗) so

that (rc, r−c) 6∈ S(h∗). Let n be the last common predecessor of ζ(s∗c , r−c) and ζ(rc, r−c). Note that there

exists some h ∈ Hc so that n ∈ h and s∗c(h) 6= rc(h). Observe that S(h) ∩ S(h∗) 6= ∅. As such, either

S(h) ⊆ S(h∗) or S(h∗) ⊆ S(h). Since rc ∈ Sc(h) but rc 6∈ Sc(h
∗), it follows that S(h∗) ( S(h). By

construction, s∗−c ∈ S−c(h). Thus, ζ(s∗c , s
∗
−c) 6= ζ(rc, s

∗
−c).

Proof of Lemma C.3. Since the game is generic and s∗c is justifiable, there exists some CPS pc so that

[s∗c ] = BR[pc]. If pc does not strongly believe [s∗−c], then we are done. So throughout we suppose otherwise.

We will show that we can tilt pc to construct a new CPS that satisfies the desired properties. We divide

the argument into two cases.

Case A. Suppose that, for each h ∈ Hc with s∗c ∈ Sc(h), s∗−c ∈ S−c(h). So, for each h ∈ Hc with s∗c ∈ Sc(h),

pc(s
∗
−c|S−c(h)) = 1. Lemma C.4 then implies that πc(s

∗
c , s
∗
−c) > πc(sc, s

∗
−c) for all sc ∈ Sc\[s∗c ].

Choose some r∗−c ∈ S−c\[s∗−c]. For each ε ∈ (0, 1), construct a CPS qεc so that

qεc(s
∗
−c|S−c) = 1− ε and qεc(r

∗
−c|S−c) = ε

and, for each h ∈ Hc with S−c(h) ∩ {s∗−c, r∗−c} = ∅, qεc(·|S−c(h)) = pc(·|S−c(h)). Note, the unique CPS qεc

that satisfies these conditions does not strongly believe [s∗−c].
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Now observe that we can find some ε̄ > 0 so that for each ε ∈ (0, ε̄) the following holds: If h ∈ Hc with

s∗c ∈ Sc(h), then

∑
s−c∈S−c

[πc(s
∗
c , s−c)− πc(rc, s−c)]qεc(s−c|S−c) =

(1− ε)[πc(s∗c , s∗−c)− πc(sc, s∗−c)] + ε[πc(s
∗
c , r
∗
−c)− πc(sc, r∗−c)] > 0

for each rc ∈ Sc(h). Thus, BR[qεc] = [s∗c ] for all ε ∈ (0, ε̄).

Case B. Suppose that there exists some h∗ ∈ Hc so that s∗c ∈ Sc(h∗) but s∗−c 6∈ S−c(h∗). Choose h∗ so

that, if S(h∗) ( S(h), then s∗−c ∈ S−c(h). Let µ∗c = pc(·|S−c(h∗)) and observe that µ∗c([s
∗
−c]) = 0 since

s∗−c 6∈ S−c(h∗). For each ε ∈ (0, 1), construct a CPS qεc so that

qεc(s−c|S−c) =

1− ε if s−c = s∗−c

εµ∗c(s−c) if s−c 6= s∗−c.

and, for each h ∈ Hc, with S−c ∩ ({s∗−c} ∪ Suppµ∗c) = ∅, qεc(·|S−c(h)) = pc(·|S−c(h)). Note, the unique

CPS qεc that satisfies these conditions does not strongly believe [s∗−c].

Step 1: We begin by showing that, for each rc ∈ Sc, there exists some ε̄(rc) > 0 so that the following holds:

For all ε ∈ (0, ε̄(rc)),

∑
s−c∈S−c

[πc(s
∗
c , s−c)− πc(rc, s−c)]qεc(s−c|S−c)

> 0 if ζ(rc, s
∗
−c) 6= ζ(s∗c , s

∗
−c)

≥ 0 if ζ(rc, s
∗
−c) = ζ(s∗c , s

∗
−c).

(5)

First, suppose that ζ(rc, s
∗
−c) 6= ζ(s∗c , s

∗
−c). Then, there exists some h̃ so that (s∗c , s

∗
−c), (rc, s

∗
−c) ∈ S(h̃)

and s∗c(h̃) 6= rc(h̃). Moreover, pc(s
∗
−c|S−c(h̃)) = 1. Thus, applying Lemma C.4, πc(s

∗
c , s
∗
−c) > πc(rc, s

∗
−c).

It follows that there exists some ε̄(rc) > 0 so that, for all ε ∈ (0, ε̄(rc)),

∑
s−c∈S−c

[πc(s
∗
c , s−c)− πc(rc, s−c)]qεc(s−c|S−c) =

(1− ε)[πc(s∗c , s∗−c)− πc(rc, s∗−c)]+

ε
∑

s−c∈S−c

[πc(s
∗
c , s−c)− πc(rc, s−c)]µ∗c(s−c) > 0

Second, suppose that ζ(rc, s
∗
−c) = ζ(s∗c , s

∗
−c). In this case, πc(s

∗
c , s
∗
−c) − πc(rc, s∗−c) = 0. Moreover, if

s∗c ∈ Sc(h∗), then rc ∈ Sc(h∗). (See Lemma C.5.) Since s∗c is a best response under µ∗c given Sc(h
∗), it

follows that ∑
s−c∈S−c

[πc(s
∗
c , s−c)− πc(rc, s−c)]µ∗c(s−c) ≥ 0.
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As such,

∑
s−c∈S−c

[πc(s
∗
c , s−c)− πc(rc, s−c)]qεc(s−c|S−c) =

(1− ε)[πc(s∗c , s∗−c)− πc(rc, s∗−c)]+

ε
∑

s−c∈S−c

[πc(s
∗
c , s−c)− πc(rc, s−c)]µ∗c(s−c) ≥ 0

for all ε > 0.

Step 2: Take ε̄ = min{ε̄(rc) : rc ∈ Sc}. We will show that [s∗c ] ⊆ BR[qεc] for all ε ∈ (0, ε̄). To do so, begin by

noting that Equation (5) holds for all rc ∈ Sc, provided ε ∈ (0, ε̄). To complete the argument, it suffices to

show that, if h ∈ Hc with sc ∈ Sc(h) then either: qεc(·|S−c(h)) = qεc(·|S−c) or qεc(·|S−c(h)) = pc(·|S−c(h)).

From this the conclusion will follow.

First, suppose that S(h∗) ⊆ S(h). In that case, qεc(·|S−c(h)) = qεc(·|S−c). Second, suppose that

S(h) ( S(h∗). In that case, qεc(·|S−c(h)) = pc(·|S−c(h)). Finally, suppose that S(h∗) ∩ S(h) = ∅. In that

case, sc ∈ S(h∗)∩S(h) and, so, S−c(h
∗)∩S−c(h) = ∅. (See Lemma A.2.) From this, qεc(Suppµ∗c |S−c(h)) = 0

and so qεc(·|S−c(h)) = pc(·|S−c(h)).

Step 3: We now show that, for all ε ∈ (0, ε̄), BR[qεc] ⊆ [s∗c ]. To see this, fix some rc 6∈ [sc]. Then there

exists some h ∈ Hc ∪ {φ} so that sc, rc ∈ Sc(h) and∑
s−c∈S−c

[πc(s
∗
c , s−c)− πc(rc, s−c)]pc(s−c|S−c(h)) > 0.

(See Lemma C.4.) If qεc(·|S−c(h)) = pc(·|S−c(h)), then certainly rc 6∈ BR[qεc]. If qεc(·|S−c(h)) 6= pc(·|S−c(h)),

then S(h∗) ( S(h). In that case,∑
s−c∈S−c

[πc(s
∗
c , s−c)− πc(rc, s−c)]pc(s−c|S−c(h)) = πc(s

∗
c , s
∗
−c)− πc(rc, s∗−c) > 0.

Thus, ζ(s∗c , s
∗
−c) 6= ζ(rc, s

∗
−c) and, so, by Equation (5) rc 6∈ BR[qεc].

Appendix D Generic Games

The first half of the appendix focuses on no relevant convexities. We then turn to the condition of no

relevant ties.

D.1 No Relevant Convexities

In this appendix, we focus on a weaker version of NRC:

Definition D.1. The game satisfies weak no relevant convexities (WNRC) if, for each h ∈ Hc, the

following holds: If sc, rc ∈ Sc(h) and rc supports sc with respect to some Sc(h) × (X−c ∩ S−c(h)), then

ζ(sc, s−c) = ζ(rc, s−c) for each s−c ∈ X−c ∩ S−c(h).
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NRC requires the convexity condition hold for all subsets X−c in the strategic-form. It follows that it also

holds at each information set, as required by WNRC. Thus, if a game satisfies NRC, then it also satisfies

WNRC. We will show:

Proposition D.1. Fix a game that satisfies WNRC. Then (Q0, . . . , Qm) satisfies the m-BRP if and only

if Q1 is non-empty and, for each n = 1, . . . ,m and each sc ∈ Qnc ,

(i) there exists an array pc ∈ A(S−c, Ec) that strongly believes Q0
−c, . . . , Q

n−1
−c with sc ∈ BR[pc], and

(ii) [sc] ⊆ Qnc .

Remark D.1. The proof shows that Proposition D.1 obtains if the following weaker requirement is met:

Fix some h ∈ Hc and some sc ∈ Sc(h). Suppose that there exists some µc ∈ P(S−c(h)) so that sc is a

best response under µc given Sc(h). Then, rc ∈ Sc(h) supports sc with respect to Sc(h)× Suppµc only if

ζ(sc, s−c) = ζ(rc, s−c) for each s−c ∈ Suppµc. 2

To show this, it suffices to show the following:

Lemma D.1. Fix a game that satisfies WNRC. Let (Q0, . . . , Qm−1, Qm) be a decreasing sequence of

strategy profiles. Suppose that, for each sc ∈ Qmc ,

(i) there exists an array pc ∈ A(S−c, Ec) that strongly believes Q0
−c, . . . , Q

m−1
−c with sc ∈ BR[pc] and

(ii) [sc] ⊆ Qnc .

Then there exists a CPS qc ∈ C(S−c, Ec) so that

(a) sc ∈ BR[qc],

(b) qc strongly believes Q0
−c, . . . , Q

m−1
−c , and

(c) BR[qc] = [sc].

To show this result, we will take two steps. First, we will show that, if the premise of the Lemma holds,

then we can construct an array satisfying conditions (a)-(b) and a variant of (c). Second, we will show

that, if we have an array satisfying these conditions, then we can construct a CPS satisfying conditions

(a)-(b)-(c) of the Lemma.

Constructing the Array The following Lemma will of use. (It follows from Lemmata D.2-D.3-D.4 in

Brandenburger, Friedenberg and Keisler, 2008.)

Lemma D.2. Suppose that sc is optimal under µc ∈ P(S−c) amongst strategies in Xc ⊆ Sc. Then there

exists some νc ∈ P(S−c) with Supp νc = Suppµc so that the following holds: rc is a best response under νc

given Xc if and only if rc supports sc with respect to Xc × Suppµc.

Lemma D.3. Fix a game that satisfies WNRC. Suppose that sc is sequentially optimal under the array

pc = (pc(·|S−c(h)) : h ∈ Hc ∪ {φ}). Then there exists an array qc = (qc(·|S−c(h)) : h ∈ Hc ∪ {φ}) so that

the following hold:

(i) For each h ∈ Hc with sc ∈ Sc(h), if rc ∈ Sc(h) is a best response under qc(·|S−c(h)) given Sc(h),

then ζ(sc, s−c) = ζ(rc, s−c) for all s−c ∈ Supp qc(·|S−c(h)).
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(ii) Each rc ∈ [sc] is a sequential best reply under qc.

(iii) The array qc strongly believes E−c if and only if the array pc strongly believes E−c.

Proof. By Lemma D.2, we can construct an array qc so that, for each h ∈ Hc ∪ {φ}, the following hold:

(a) Supp qc(·|S−c(h)) = Supp pc(·|S−c(h)), and

(b) if sc ∈ Sc(h), then rc ∈ Sc(h) is a best response under qc(·|S−c(h)) given Sc(h) if and only if rc

supports sc with respect to Sc(h)× Supp pc(·|S−c(h)).

Observe that (a)-(b) and WNRC gives part (i), from which (ii) follows. Moreover, (a) gives part (iii).

Corollary D.1. Fix a game that satisfies WNRC. Let (Q0, . . . , Qm−1, Qm) be a decreasing sequence of

strategy profiles. Suppose that, for each sc ∈ Qmc , there exists an array pc ∈ A(S−c, Ec) so that

(i) sc ∈ BR[pc]

(ii) pc strongly believes Q0
−c, . . . , Q

m−1
−c , and

(iii) [sc] ⊆ Qnc .

Then there exists an array qc ∈ A(S−c, Ec) so that

(a) sc ∈ BR[qc],

(b) qc strongly believes Q0
−c, . . . , Q

m−1
−c , and

(c) for each h ∈ Hc with sc ∈ Sc(h), if rc ∈ Sc(h) is a best response under qc(·|S−c(h)) given Sc(h), then

ζ(sc, s−c) = ζ(rc, s−c) for all s−c ∈ Supp qc(·|S−c(h)).

Constructing the CPS In what follows, we will fix an array pc ∈ A(S−c, Ec) with sc ∈ BR[pc] that

satisfies the following property:

Property [*]: For each h ∈ Hc with sc ∈ Sc(h), if rc ∈ Sc(h) is a best response under pc(·|S−c(h))

then ζ(sc, s−c) = ζ(rc, s−c) for all s−c ∈ Supp pc(·|S−c(h)).

Lemma D.4. Fix a game that satisfies WNRC. Suppose there is an array pc ∈ A(S−c, Ec) with sc ∈ BR[pc]

that satisfies Property [*]. Then there exists a CPS qc ∈ C(S−c, Ec) so that the following hold:

(i) BR[qc] = [sc], and

(ii) if pc strongly believes E−c, then qc strongly believes E−c.

Fix some array pc ∈ A(S−c, Ec) satisfying Property [*]. We construct a CPS qc = (qc(·|S−c(h)) : h ∈
Hc ∪ {φ}) inductively: Let H0

c = Hc ∪ {φ} and choose h0 = φ ∈ H0
c and observe that S−c(φ) = S−c. Set

qc(·|S−c) = pc(·|S−c). Define H
0

c to be the set of h ∈ Hc so that S−c(h) ⊆ S−c and qc(S−c(h)|S−c) > 0.

For each h ∈ Hc

0, set

qc(s−c|S−c(h)) =
qc(s−c|S−c)

qc(S−c(h)|S−c)

for all s−c ∈ S−c(h). Note, h0 ∈ H0

c .

Assume the sets Hk
c and H

k

c have been defined. Set Hk+1
c = Hk

c \H
k

c . If Hk+1
c = ∅, then we are done.

If not, choose some hk+1 ∈ Hk+1
c that satisfies the following requirements:
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(i) Either sc ∈ Sc(hk+1) or, for all h ∈ Hk+1
c , sc 6∈ Sc(h).

(ii) There is no h ∈ Hk+1
c so that S−c(h

k+1) ( S−c(h).

(iii) If S−c(h
k+1) = S−c(h), then either Sc(h) ⊆ Sc(hk+1) or Sc(h) ∩ Sc(hk+1) = ∅.

Set qc(·|S−c(hk+1)) = pc(·|S−c(hk+1)). Define H
k+1

c to be the set of h so that S−c(h) ⊆ S−c(h
k+1) and

qc(S−c(h)|S−c(hk+1)) > 0. For each h ∈ Hc

k+1, set

qc(s−c|S−c(h)) =
qc(s−c|S−c)

qc(S−c(h)|S−c(hk+1))

for all s−c ∈ S−c(h).

It might be useful to recap the construction: We begin by identifying information sets h0, h1, . . . , hK .

In keeping with the terminology in Siniscalchi (2016), we refer to these as basic information sets. We

set qc(·|S−c(hk)) to coincide with the original CPS pc(·|hk). For any non-basic information set h, there is

exactly one basic information hk so that S−c(h) ⊆ S−c(hk) and qc(S−c(h)|S−c(hk)) > 0. Thus we construct

the belief qc(·|S−c(h)) from qc(·|S−c(hk)) by conditioning on S−c(h). The construction obviously yields a

CPS. We note the following:

Lemma D.5. If h ∈ Hk

c and sc ∈ Sc(h), then S(h) ⊆ S(hk).

Proof. Suppose, contra hypothesis, that S(h) is not contained in S(hk). Then either S(hk) ( S(h) or

S(h)∩S(hk) = ∅. The first of these cannot happen by construction. So, it must be that S(h)∩S(hk) = ∅.
Since h ∈ Hk

c , S−c(h)∩S−c(hk) 6= ∅; it follows that Sc(h)∩Sc(hk) = ∅. (See Lemma A.2.) Since sc ∈ Sc(h),

it follows that sc 6∈ Sc(hk). But this contradicts how we constructed the basic information sets hk.

We prove Lemma D.4 by showing that (i) BR[qc] = [sc], and (ii) if pc strongly believes E−c, then qc

strongly believes E−c.

Lemma D.6. BR[qc] = [sc].

Proof. First we show that [sc] ⊆ BR[qc]. To do so, it suffices to show that sc ∈ BR[qc]. Toward that

end, fix some h ∈ Hc with sc ∈ Sc(h). Observe that there exist a k so that h ∈ H
k

c , i.e., there exists

a basic hk so that qc(·|S−c(h)) is derived from pc(·|S−c(hk)) by conditioning. (Note, h may well be hk.)

By construction, sc is optimal under qc(·|S−c(hk)) given all strategies in Sc(h
k). It follows from Lemmata

D.5-A.3 that sc is a best response under qc(·|S−c(h)) given all strategies in Sc(h).

Next fix some rc ∈ BR[qc] and suppose that rc 6∈ [sc]. Then there is an information set h ∈ Hc so

that sc, rc ∈ Sc(h) and sc(h) 6= rc(h). Suppose that rc is a best response under qc(·|Sc(h)) given Sc(h).

Note, there exists k such that h ∈ H
k

c and, by Lemma D.5, S(h) ⊆ S(hk). Using Lemma A.3, rc is a

best response under qc(·|S−c(hk)) = pc(·|S−c(hk)) given Sc(h
k). But now observe that there exists some

s−c ∈ Supp pc(·|S−c(hk)) ∩ S−c(h) with ζ(sc, s−c) 6= ζ(rc, s−c). This contradicts Property [*].

Lemma D.7. If pc strongly believes E−c, then qc strongly believes E−c.

Proof. Fix an information set h ∈ Hc so that E−c ∩ S−c(h) 6= ∅. There exists some hk ∈ Hc so that

S−c(h) ⊆ S−c(hk), pc(S−c(h)|S−c(hk)) > 0 and, for every s−c ∈ S−c(h),

qc(s−c|S−c(h)) =
pc(s−c|S−c(hk))

pc(S−c(h)|S−c(hk))
.
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Since S−c(h) ⊆ S−c(h
k), E−c ∩ S−c(hk) 6= ∅. If pc strongly believes E−c then p(E−c|S−c(hk)) = 1 and so

q(E−c|S−c(h)) = 1.

Recap Let us sum up. Proposition D.1 (resp. Proposition 6.1) follows immediately from Lemma D.1. In

turn, Lemma D.1 follows from Corollary D.1 and Lemma D.4. Moreover, as an implication of Lemma D.1,

we have the following corollary.

Corollary D.2. If a game satisfies WNRC, then it is generic.

Proof. Fix some sc ∈ BR[pc] for some pc ∈ C(S−c, Ec). Then there exists a 1-BRP (Q0, Q1) such that

[sc] ∈ Q1
c . By Lemma D.1, it follows that there exists some qc ∈ C(S−c, Ec) with [sc] = BR[qc]. Thus the

game is generic.

One implication of Proposition D.1 (resp. Proposition 6.1) is that, when WNRC (resp. NRC) is satisfied,

we can forgo using CPS’s and focus on arrays. This would not be the case absent WNRC (resp. NRC).

The central difficulty comes from condition (BRP.3) of the m-BRP. Specifically, begin with a decreasing

sequence of strategy profiles (Q0, . . . , Qm−1, Qm). In addition, suppose that sc ∈ Qmc so that, for some array

pc ∈ A(S−c, Ec), conditions (BRP.1)-(BRP.2)-(BRP.3) are satisfied. We can use this array to construct a

CPS qc ∈ C(S−c, Ec) so that conditions (BRP.1)-(BRP.2) are satisfied. (This argument is standard.) But,

condition (BRP.3) may fail for the constructed CPS. The next example makes this point.

A
Out

In

B
Out

In

4,* 2,*

4,* 1,*

4,*

0,*

U

D

L R

Ann

Bob

Figure D.1: Arrays Do Not Suffice

Example D.1. Consider the game in Figure D.1, which fails WNRC. Write h for the information set at

which the simultaneous move game is played. Let pa be an array so that pa(I-L|Sb) = 1 and pa(I-L|Sb(h)) =

pa(I-R|Sb(h)) = 1
2 . Observe that BRa[pa] = {O, I-U}.

We can use this array to construct a CPS qa ∈ C(Sb, Ea): We set qa(I-L|Sb) = pa(I-L|Sb) = 1 and

qa(I-L|Sb(h)) = qa(I-L|Sb) = 1. However, BRa[qa] = {O, I-U, I-D}, i.e., it contains an additional strategy.

In fact, there is no CPS q̂a ∈ C(Sb, Ea) with BRa[q̂a] = BRa[pa]. 2

D.2 No Relevant Ties

A perfect information game can satisfy no relevant ties, even if it fails no relevant convexities. Nonetheless,

if a perfect information game satisfies no relevant ties, it is generic.

40



Lemma D.8. A perfect-information game satisfying no relevant ties is generic.

Perfect-information is important for the result. The next example highlights this fact.

Example D.2. The game in Figure D.2 satisfies no relevant ties. Yet it is not generic: Out is optimal

under a CPS pa if and only if pa(L|Sb) = pa(R|Sb) = 1
2 . Thus, BR[pa] = {Out, U,M} and there is no CPS

qa with BR[qa] = [Out ]. 2

A

Out

3

*

6, 1U

L

0, 0

R

2, 4M 4, 2

-1,-1D -2, 8

B

A

Figure D.2: No Relevant Ties

To show this lemma, we will need an auxiliary definition and result.

Definition D.2. Given a conditional probability space (Ω, E), call a CPS p ∈ C(Ω, E) degenerate if, for

each conditioning event E, there exists some ω ∈ E with p(ω|E) = 1.

The following Lemma follows almost immediately from Ben-Porath (1997, Lemma 1.2.1).

Lemma D.9. Fix a perfect-information game satisfying no relevant ties. If sc is justifiable, then there

exists some degenerate CPS pc ∈ C(S−c, Ec) so that sc ∈ BR[pc].

In a perfect-information game, we can identify an information set h with the unique node (or vertex) it

contains. In that case, we will say an information set h precedes an information set h′ if h = {v}, h′ = {v′},
and v precedes v′. We will say that h strictly precedes h′ if h precedes h′ and h 6= h′. We will say that h

weakly precedes h′ if h = h′.

Proof of Lemma D.9. Let sc be a justifiable strategy. Then, by Lemma 1.2.1 in Ben-Porath (1997),

for each S−c(h) ∈ Ec with sc ∈ Sc(h), we can find some sh−c ∈ S−c(h) so that πc(sc, s
h
−c) ≥ πc(rc, s

h
−c) for

all rc ∈ Sc(h). Use the collection (sh−c : h ∈ Hc ∪ {φ}) to form a CPS pc.

We will inductively define the measures pc(·|S−c(h)). For each S−c(h) with s
{φ}
−c ∈ S−c(h), set

pc(s
{φ}
−c |S−c(h)) = 1. Next, fix an information set h∗ ∈ Hc where pc(·|S−c(h)) has been defined for each

h that strictly precedes h∗ but for which pc(·|S−c(h∗)) has not been defined. Set pc(s
h∗

−c|S−c(h)) = 1 for

each S−c(h) with sh
∗

−c ∈ S−c(h). Proceeding along these lines, we define pc(·|S−c(h)) for each conditioning

event S−c(h).

It can be verified that, so defined, pc is a CPS. Moreover, sc is optimal under pc: Given an information

set h ∈ Hc with sc ∈ Sc(h), there exists an information set h∗ that precedes (perhaps weekly) h so that
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s−c ∈ S−c(h) and pc(s
h∗

−c|S−c(h)) = 1. Then, the claim follows from the fact that Sc(h) ⊆ Sc(h
∗) and the

fact that πc(sc, s
h
−c) ≥ πc(rc, sh−c) for all rc ∈ Sc(h).

Proof of Lemma D.8. Fix a perfect-information game satisfying no relevant ties and some strategy sc

that is justifiable. Then there exists some degenerate CPS pc ∈ C(S−c, Ec) so that sc ∈ BR[pc]. We will

show that, if rc 6∈ [sc], then rc 6∈ BR[pc].

Fix some rc 6∈ [sc]. Then there exists some h ∈ Hc with sc, rc ∈ Sc(h) and sc(h) 6= rc(h). Let

s−c ∈ S−c(h) with pc(s−c|S−c(h)) = 1. Since sc is sequentially optimal under pc, πc(sc, s−c) ≥ πc(rc, s−c).
But, since ζ(sc, s−c) 6= ζ(rc, s−c), no relevant ties implies πc(sc, s−c) > πc(rc, s−c). Thus, rc 6∈ BR[pc].

Remark D.2. The proof of Lemma D.9 constructs a CPS pc for which the property of Remark D.1 holds.

Thus, a perfect information game satisfying NRT satisfies the weaker condition discussed in Remark D.1.

This is an alternate route to show that the game is generic. 2

Appendix E Centipede

Throughout this Appendix, fix an m-BRP (Q0, Q1, . . . , Qm) of the centipede game. We will show that

Qma ⊆ EFRm
a . We begin with the following observation:

Observation E.1. Observe that [in]` ∩Q1
` = ∅ and so Q1

` ×Q1
−` ⊆ EFR1

` × EFR1
−`.

Lemma E.1. One of the following must hold:

(i) [in]−` ∩Q2
−` = ∅, or

(ii) [out,V`] ∩Q1
` = ∅ and V = 3.

Proof. First, suppose that [out,V]` ⊆ Q1
` . In that case, any CPS strongly believes Q1

` must assign

probability one to [out,V`] at node V − 1. (This uses Observation E.1, i.e., the fact that [in]` ∩Q1
` = ∅.)

Thus, [in]−` is not a best response at node V − 1. From this [in]−` ∩Q2
−` = ∅.

Second, suppose that [out,V]` ∩ Q1
` = ∅. Let p−` be a CPS that strongly believes Q1

` and note that

p−`(·|S`) must assign probability one to

{s` : s`(v) = outv for some v ≤ V − 2}.

(That is, ex ante, p−` assigns probability one to the game ending at some node v ≤ V − 2, independent

of the strategy that −` plays.) If V ≥ 4, then there is some node ṽ ≤ V − 3 at which −` moves

and p−`([out, ṽ + 1]`|S`(ṽ)) = 1. Thus, at node ṽ, [out, ṽ]−` is a unique best response. So certainly

[in]−` ∩Q2
−` = ∅.

Lemma E.2. Fix some m = 3, . . . , V . If m is odd then either

(i) [out, V + 3−m]` ∩Qm` = ∅, or

(ii) [out,V + 2−m]−` ∩Qm−1
−` = ∅ and V ≤ m+ 1.

And, if m is even then either

(i) [out, V + 3−m]−` ∩Qm−` = ∅, or
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(ii) [out,V + 2−m]` ∩Qm−1
` = ∅ and V ≤ m+ 1.

Proof. We show the base cases of m = 3, 4. The inductive step simply repeats those arguments up to

relabelling.

m = 3: Throughout, we suppose that [out, V ]` ⊆ Q1
` . (If not, then we are done.) From this, Lemma E.1

gives that [in]−` ∩Q2
−` = ∅. We divide the argument into two cases.

First, suppose that [out,V − 1]−` ⊆ Q2
−`. In that case, any CPS strongly believes Q2

−` must assign

probability one to [out,V − 1−`] at node V − 2. (This uses the fact that [in]−` ∩Q2
−` = ∅.) Thus, [out, V ]`

is not a best response at node V − 2. From this [out, V ]` ∩Q3
` = ∅.

Second, suppose that [out,V − 1]−` ∩Q2
−` = ∅. Thus,

([out,V − 1]−` ∪ [in]−`) ∩Q2
−` = ∅.

So, any CPS p` that strongly believes Q2
−` must have

p`({s−` : s−`(v) = outv for some v ≤ V − 3}|S−`) = 1.

(That is, ex ante, p` assigns probability one to the game ending at some node v ≤ V − 3, independent of

the strategy that ` plays.) If V ≥ 5, then there is some node ṽ ≤ V − 4 at which ` moves and p`([out, ṽ +

1]−`|S−`(ṽ)) = 1. Thus, at node ṽ, [out, ṽ]` is a unique best response. So certainly [out, V ]` ∩Q3
` = ∅.

m = 4: Throughout, we suppose that [out, V − 1]−` ⊆ Q2
−`. (If not, then we are done.) From this, the

base case of m = 3 gives that [out, V ]` ∩Q3
` = ∅. We divide the argument into two cases.

First, suppose that [out,V − 2]` ⊆ Q3
` . In that case, any CPS strongly believes Q3

` must assign prob-

ability one to [out,V − 2]` at node V − 3. (This uses the fact that ([out,V]` ∪ [in]`) ∩ Q3
` = ∅.) Thus,

[out, V − 1]−` is not a best response at node V − 3. From this [out, V − 1]−` ∩Q4
−` = ∅.

Second, suppose that [out,V − 2]` ∩Q3
` = ∅. Thus,

([out,V − 2]` ∪ [out,V]` ∪ [in]`) ∩Q3
` = ∅.

So, any CPS p−` that strongly believes Q3
` must have

p−`({s` : s`(v) = outv for some v ≤ V − 4}|S`) = 1.

(That is, ex ante, p−` assigns probability one to the game ending at some node v ≤ V − 4, independent

of the strategy that −` plays.) If V ≥ 6, then there is some node ṽ ≤ V − 5 at which −` moves

and p−`([out, ṽ + 1]−`|S`(ṽ)) = 1. Thus, at node ṽ, [out, ṽ]−` is a unique best response. So certainly

[out, V − 2]−` ∩Q4
−` = ∅.

Corollary E.1. If V = m, then either QVa = [out, 1]a or QVa = ∅.

Proof. We show the result for V odd. (The case of V even is analogous.) If QV−2
a = [out, 1]b or QV−2

a = ∅,
then we are done. So we suppose otherwise. Observe that, by Lemmata E.1-E.2, [in]a ∩QV−2

a = ∅ and, for

each m = 3, . . . , V − 2 odd,

[out, V + 3−m]a ∩QV−2
a = ∅.
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Thus, we must have

QV−2
a ∈ {[out, 1]b ∪ [out, 3]b, [out, 3]b}.

In either of these cases, QV−1
b ∈ {[out, 2]b, ∅}. From this, it follows that QVa ∈ {[out, 1]b, ∅}.

Appendix F Algorithm

Proof of Proposition 8.1. Fix some game Γ. Let Q = (Q0, Q1, . . .) be a BRP-sequence, i.e., for

each finite m, (Q0, . . . , Qm) is an m-BRP. Since the game is finite, there is some M(Q) so that, QM(Q) =

QM(Q)+1. We can and do choose M(Q) so that

M(Q) =

2 min{|Sa|, |Sb|} − 1 if |Sa| 6= |Sb|,

2 min{|Sa|, |Sb|} − 2 if |Sa| = |Sb|.

Then take M to be the maximum of all such M(Q) and observe that it, too, is less than or equal to

2 min{|Sa|, |Sb|} − 1 (resp. 2 min{|Sa|, |Sb|} − 2) if |Sa| 6= |Sb| (resp. |Sa| = |Sb|).
It remains to show that S

M
= S

∞
. Certainly S

∞ ⊆ SM . Observe that that

S
M ⊆

⋃
BRP-sequences S

S
M(Q)

.

For each BRP-sequence Q, S
M(Q)

= S
M(Q)+1

and so S
M(Q)

is itself an EFBRS. With this S
M(Q) ⊆ S

∞
,

establishing that S
M ⊆ S∞.
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