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Abstract

This paper develops a nonparametric model that represents how sequences of outcomes
and treatment choices influence one another in a dynamic manner. In this setting, we
are interested in identifying the average outcome for individuals in each period, had a
particular treatment sequence been assigned. The identification of this quantity allows
us to identify the average treatment effects (ATE’s) and the ATE’s on transitions, as
well as the optimal treatment regimes, namely, the regimes that maximize the (weighted)
sum of the average potential outcomes, possibly less the cost of the treatments. The main
contribution of this paper is to relax the sequential randomization assumption widely used
in the biostatistics literature by introducing a flexible choice-theoretic framework for a
sequence of endogenous treatments. We show that the parameters of interest are identified
under each period’s two-way exclusion restriction, i.e., with instruments excluded from the
outcome-determining process and other exogenous variables excluded from the treatment-
selection process. We also consider partial identification in the case where the latter
variables are not available. Lastly, we extend our results to a setting where treatments
do not appear in every period.

JEL Numbers: C14, C32, C33, C36
Keywords: Dynamic treatment effect, endogenous treatment, average treatment effect,
optimal treatment regime, instrumental variable.

1 Introduction

This paper develops a nonparametric model that represents how sequences of outcomes and
treatment choices influence one another in a dynamic manner. Often, treatments are en-
dogenously chosen multiple times over a horizon, affecting a series of outcomes. Examples
are medical interventions that affect health outcomes, educational interventions that affect

∗The author is grateful to Dan Ackerberg, Xiaohong Chen, Pedro Sant’Anna, Ed Vytlacil and Nese Yildiz
for their thoughtful comments and discussions.

1

mailto:sukjin.han@austin.utexas.edu


academic achievements, job training programs that affect employment status, or online ad-
vertisements that affect consumers’ preferences or purchase decisions. The relationship of
interest is dynamic in the sense that the current outcome is determined by past outcomes
as well as current and past treatments, and the current treatment is determined by past
outcomes as well as past treatments. Such dynamic relationships are clearly present in the
aforementioned examples. A static model misrepresents the nature of the problem (e.g., non-
stationarity, state dependence, learning) and fails to capture important policy questions (e.g.,
optimal timing and schedule of interventions).

In this setting, we are interested in identifying the dynamic causal effect of a sequence of
treatments on a sequence of outcomes or on a terminal outcome that may or may not be of
the same kind as the transition outcomes. We are interested in learning about the average
of the outcome in each period, had a particular treatment sequence been assigned up to that
period, which defines the potential outcome in the dynamic setting. We are also interested
in the average treatment effects (ATE’s) and the transition-specific ATE’s defined based
on the average potential outcome, unconditional and conditional on the previous outcomes,
respectively. For example, one may be interested in whether the success rate of a particular
outcome (or the transition probability) is larger with a sequence of treatments assigned in
relatively later periods rather than earlier, or with a sequence of alternating treatments rather
than consistent treatments. The treatment effect is said to be dynamic, partly because the
effect can vary depending upon the period of measurement, even if the same set of treatments
is assigned. Lastly, we are interested in the optimal treatment regimes, namely, sequences
of treatments that maximize the (weighted) sum of the average potential outcomes, possibly
less the cost of the treatments. For example, a firm may be interested in the optimal timing
of advertisements that maximizes its aggregate sales probabilities over time, or a sequence
of educational programs may be aimed to maximize the college attendance rate. We show
that the optimal regime is a natural extension of a static object commonly sought in the
literature, namely, the sign of the ATE. Analogous to the static environment, knowledge
about the optimal treatment regime may have useful policy implications. For example, a
social planner may wish to at least exclude specific sequences of treatments that are on
average suboptimal.

Dynamic treatment effects have been extensively studied in the biostatistics literature for
decades under the counterfactual framework with a sequence of treatments (Robins (1986,
1987, 1997), Murphy et al. (2001), Murphy (2003), among others). In this literature, the
crucial condition used to identify the average potential outcome is a dynamic version of a
random assignment assumption, called the sequential randomization. This condition assumes
that the treatment is randomized in every period within those individuals who have the same
history of outcomes and treatments.1 This assumption is suitable in experimental studies
(e.g., clinical trials, field experiments) with the perfect compliance of subjects, but is less
plausible in studies with partial compliance and in many observational contexts as in the
examples described above.

The main contribution of this paper is to relax the assumption of sequential randomiza-
tion widely used in the literature by introducing a flexible choice-theoretic framework for a

1This assumption is also called sequential conditional independence or sequential ignorability. In the
econometrics literature, Vikström et al. (2017) consider treatment effects on a transition to a destination
state, and carefully analyze what the sequential randomization assumption can identify in the presence of
dynamic selection.
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sequence of endogenous treatments. To this end, we consider a simple nonparametric struc-
tural model for a dynamic endogenous selection process and dynamic outcome formation.
In this model, individuals are allowed not to fully comply with each period’s assignment in
experimental settings, or are allowed to make an endogenous choice in each period as in obser-
vational settings. The heterogeneity in each period’s potential outcome is given by recursively
applying a switching-regression type of models with a sequential version of rank similarity.
The joint distribution of the full history of unobservable variables in the outcome and treat-
ment equations is still flexible, allowing for arbitrary forms of treatment endogeneity as well
as serial correlation. Relative to the counterfactual framework, the dynamic mechanism is
clearly formulated using this structural model, which in turn facilitates our identification
analysis.

We show that the average potential outcome, or equivalently, the average recursive struc-
tural function (ARSF) given the structural model we introduce, is identified under a two-way
exclusion restriction (Vytlacil and Yildiz (2007), Shaikh and Vytlacil (2011), Balat and Han
(2018)). That is, we assume there exist instruments excluded from the outcome-determining
process and exogenous variables excluded from the treatment-selection process. Examples
of the former include a sequence of randomized treatments or policy shocks. Examples of
the latter include factors that agents cannot anticipate when making treatment decisions
but that determine the outcome, the timing of which can be justified in this dynamic con-
text. Using the exclusion restriction, we gain certain knowledge of each period’s structural
function, which is then iteratively incorporated across periods for identification, obeying the
recursive structure of the potential outcome. The proof is constructive and provides a closed
form expression for the ARSF. The identification of each period’s ARSF allows us to identify
the ATE’s and the optimal treatment regimes. In this paper, we also consider cases where
the two-way exclusion restriction is violated in the sense that only a standard exclusion re-
striction holds or that the variation of the exogenous variables is limited. In these cases,
we can calculate the bounds on the parameters. As an extension of our results, we con-
sider another empirically relevant situation where treatments do not appear in every period,
while outcomes are constantly observed. We show that the parameters of interest and the
identification analysis can be easily modified to incorporate this situation.

This paper contributes to recent research on the identification of the effects of dynamic
endogenous treatments that allows for treatment heterogeneity. Abbring and Van den Berg
(2003) analyze the effect of a continuous endogenous treatment (i.e., a treatment duration)
on a outcome duration and take a parametric approach by considering a mixed proportional
hazard model. Cunha et al. (2007) and Heckman and Navarro (2007) consider a semipara-
metric discrete-time duration model for the choice of the treatment timing and associated
outcomes. Building on these works, Heckman et al. (2016) consider not only ordered choice
models but also unordered choice models for up-or-out treatment choices.2 An interesting
feature of their results is that dynamic treatment effects are decomposed into direct effects
and continuation values. Abraham and Sun (2018) and Callaway and Sant’Anna (2018) ex-
tend a difference-in-differences approach to dynamic settings without specifying fixed-effect
panel data models. They consider the effects of treatment timing on the treated, where

2As related works, the settings of Angrist and Imbens (1995) and Lee and Salanié (2017) for multiple (or
multi-valued) treatment effects may be applied to a dynamic setting. Also, see Abbring and Heckman (2007)
for a survey on dynamic treatment effects.
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the treatment process is irreversible. We consider nonparametric dynamic models for treat-
ment and outcome processes with a general form of evolution, where the processes can freely
change states. These models can include an irreversible process as a special case. Moreover,
we consider different identifying assumptions than those in the previous works and focus on
the identification of the ATE’s and related parameters.

This paper’s structural approach is only relative to the counterfactual framework of
Robins. A fully structural model of dynamic programming is considered in the seminal work
by Rust (1987) and more recently by, e.g., Blevins (2014) and Buchholz et al. (2016). This
literature typically considers a single rational agent’s optimal decision, whereas we consider
multiple heterogenous agents with no assumptions on agents’ rationality or strong parametric
assumptions. Most importantly, our focus is on the identification of the effects of treatments
formed as agents’ decisions. The robust approach of this paper is, in spirit, similar to Heck-
man and Navarro (2007) and Heckman et al. (2016). Unlike these papers, however, we do
not necessarily invoke infinite supports of exogenous variables, while remaining flexible for
the economic and non-economic components of the model. Lastly, Torgovitsky (2016) ex-
tends the literature on dynamic binary response models (with no treatment) by considering a
counterfactual framework without imposing parametric assumptions. In his framework, the
lagged outcome plays the role of a treatment for the current outcome, and the “treatment
effect” captures the state dependence. Here, we consider the effects of the treatments on the
outcomes, and introduce a selection equation for each treatment as an important component
of the model. As an extension of our analysis, we identify the transition-specific ATE, which
is related to the effect of a treatment on the state dependence.

In terms of notation, let W t ≡ (W1, ..,Wt) denote a row vector that collects r.v.’s Wt

across time up to t, and let wt be its realization. We sometimes write W ≡W T for conve-
nience. For a vector W without the t-th element, we write W−t ≡ (W1, ...,Wt−1,Wt+1, ...,WT )
with realization w−t. More generally, let W− with realization w− denote some subvec-
tor of W . Lastly, for r.v.’s Y and W , we sometimes abbreviate Pr[Y = y|W = w] and
Pr[Y = y|W ∈ W] to Pr[Y = y|w] (or P [y|w]) and Pr[Y = y|W], respectively.

2 Robins’s Framework

We first introduce Robins’s counterfactual framework and state the assumption of sequential
randomization commonly used in the biostatistics literature (Robins (1986, 1987), Murphy
et al. (2001), Murphy (2003)). For a finite horizon t = 1, ..., T with fixed T , let Yt be the out-
come at t with realization yt and let Dt be the binary treatment at t with realization dt. The
underlying data structure is panel data with a large number of cross-sectional observations
over a short period of time (and the cross-sectional index i suppressed throughout, unless
necessary). We call YT a terminal outcome and Yt for t ≤ T − 1 a transition outcome. Let Y
and D ⊆ {0, 1}T be the supports of Y ≡ (Y1, ..., YT ) and D ≡ (D1, ..., DT ), respectively.

Consider a treatment regime d ≡ (d1, ..., dT ) ∈ D, which is defined as a predetermined
hypothetical sequence of interventions over time, i.e., a sequence of each period’s assignment
decisions on whether to treat or not, or whether to assign treatment A or treatment B.3 Then,

3This is called a nondynamic regime in the biostatistics literature. A dynamic regime is a sequence of
treatment assignments, each of which is a predetermined function of past outcomes. A nondynamic regime
can be viewed as its special case, where this function is constant. See, e.g., Murphy et al. (2001); Murphy
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a potential outcome at t can be written as Yt(d). This can be understood as an outcome for
an individual, had a particular treatment sequence been assigned. Although the genesis of
Yt(d) can be very general under this counterfactual framework, the mechanism under which
the sequence of treatments interacts with the sequence of outcomes is opaque. The definition
of Yt(d) becomes more transparent later with the structural model introduced in this paper.

Given these definitions, we state the assumption of sequential randomization by Robins:
For each d ∈ D,

(Y1(d), ..., YT (d)) ⊥ Dt|Y t−1,Dt−1 (2.1)

for t = 1, ..., T . This assumption asserts that, holding the history of outcomes and treatments
fixed, the current treatment is fully randomized. In the next section, we relax this assumption
and specify dynamic selection equations for a sequence of treatments that are allowed to be
endogenous. Apart from this assumption, we maintain the same preliminaries introduced in
this section.

Remark 2.1 (Irreversibility). As a special case of our setting, the process of Dt may be
irreversible in that the process only moves from an initial state to a destination state, i.e., the
destination state is an absorbing state. The up-or-out treatment decision (or the treatment
timing) can be an example where the treatment process satisfies Dt = 1 once Dt−1 = 1
is reached, as in Heckman and Navarro (2007), Heckman et al. (2016), Abraham and Sun
(2018) and Callaway and Sant’Anna (2018). Although it is not the main focus of this paper,
the process of Yt may as well be irreversible. This case, however, requires caution due to
dynamic selection; see discussions later in this paper. The survival of patients (Yt = 0) in
discrete time duration models can be an example where the transition of the outcome satisfies
Yt = 1 once Yt−1 = 1. In this case, it may be that Dt is missing when Yt−1 = 1, which can
be dealt by conventionally assuming Dt = 0 if Yt−1 = 1. When processes are irreversible, the
supports D and Y are strict subsets of {0, 1}T .

Remark 2.2 (Terminal outcome of a different kind). As in Murphy et al. (2001) and
Murphy (2003), we may be interested in a terminal outcome that is of a different kind than
that of the transition outcomes. For example, the terminal outcome can be college attendance,
while the transition outcomes are secondary school performances. In this case, we replace
YT with a random variable RT to represent the terminal outcome, while maintaining Yt for
t ≤ T − 1 to represent the transition outcomes. Analogously, RT (d) denotes the potential
terminal outcome. Then, the analysis in this paper can be readily followed with the change of
notation.4

3 A Dynamic Structural Model and Objects of Interest

We now introduce the main framework of this paper. Consider a dynamic structural function
for the outcomes Yt’s that has the form of switching regression models: For t = 1, ..., T ,

Yt = µt(Yt−1, Dt, Xt, Ut(Dt)),

(2003) for related discussions.
4Extending this framework to incorporate the irreversibility of the outcome variables discussed in Remark

2.1 is not straightforward. We leave this for future research.
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where µt(·) is an unknown scalar-valued function, Xt is a set of exogenous variables, which
we discuss in detail later, and Y0 is assumed to be exogenously determined, with Y0 = 0 for
convenience.5 The unobservable variable satisfies Ut(Dt) = DtUt(1) + (1 −Dt)Ut(0), where
Ut(dt) is the “rank variable” that captures the unobserved characteristics or rank, specific
to treatment state dt (Chernozhukov and Hansen (2005)). We allow Uit(dt) to contain a
permanent component (i.e., individual effects) and a transitory component.6 Given this
structural equation, we can express the potential outcome Yt(d) using a recursive structure:

Yt(d) = Yt(d
t) = µt(Yt−1(d

t−1), dt, Xt, Ut(dt)),

...

Y2(d) = Y2(d
2) = µ2(Y1(d1), d2, X2, U2(d2)),

Y1(d) = Y1(d1) = µ1(Y0, d1, X1, U1(d1)),

where each potential outcome at time t is only a function of dt (not the full d). This is
related to the “no-anticipation” condition (Abbring and Heckman (2007)), which is implied
from the structure of the model in our setting. The recursive structure provides us with a
useful interpretation of the potential outcome Yt(d) in a dynamic setting, and thus facilitates
our identification analysis. Note that, conditional on Xt ≡ (X1, ..., Xt), the heterogeneity
in Yt(d) comes from the full vector U t(dt) ≡ (U1(d1), ..., Ut(dt)). By an iterative argument,
we can readily show that the potential outcome is equal to the observed outcome when the
observed treatments are consistent with the assigned regime: Yt(d) = Yt when D = d, or
equivalently, Yt =

∑
d∈D 1{D = d}Yt(d).

In this paper, we consider the average potential terminal outcome, conditional on X = x,
as the fundamental parameter of interest:

E[YT (d)|X = x]. (3.1)

We also call this parameter the average recursive structural function (ARSF) in the terminal
period, named after the recursive structure in the model for YT (d). Generally, in defining
this parameter and all others below, we can consider the potential outcome in any time
period of interest, e.g., E[Yt(d)|Xt = xt] for any given t. We focus on the terminal potential
outcome only for concreteness. The knowledge of the ARSF is useful in recovering other
related parameters.

First, we are interested in the conditional ATE:

E[YT (d)− YT (d̃)|X = x] (3.2)

for two different regimes, d and d̃. For example, one may be interested in comparing more
versus less consistent treatment sequences, or earlier versus later treatments.

5This assumption of an exogenous initial outcome is not necessary but only introduced to simplify our
analysis. Instead, for example, we can allow Y0 to be endogenous and assume it is independent of the
exogenous variables of the model.

6In this case, it may make sense that the permanent component does not depend on each dt, but that the
transitory component does.
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Second, we consider the optimal treatment regime:

d∗(x) = arg max
d∈D

E[YT (d)|X = x] (3.3)

with |D| ≤ 2T . That is, we are interested in a treatment regime that delivers the maximum
expected potential outcome, conditional on X = x. Notice that, in a static model, the
identification of d∗ is equivalent to the identification of the sign of the static ATE, which is
the information typically sought from a policy point of view. One can view d∗ as a natural
extension of this information to a dynamic setting, which is identified by establishing the
signs of all possible ATE’s defined as in (3.2), or equivalently, by ordering all the possible
ARSF’s. The optimal regime may serve as a guideline in developing future policies. Moreover,
it may be a realistic goal for a social planner to identify this kind of scheme that maximizes
the average benefit, because it may be too costly to find a customized treatment scheme for
every individual. Yet, the optimal regime is customized up to observed characteristics, as it
is a function of the covariates values x. More ambitious than the identification of d∗(x) may
be recovering an optimal regime based on a cost–benefit analysis, granting than each dt can
be costly:

d†(x) = arg max
d∈D

Π(d;x), (3.4)

where

Π(d;x) ≡ wE[YT (d)|X = x]− w̃
T∑
t=1

dt or Π(d;x) ≡
T∑
t=1

wtE[Yt(d)|X = x]−
T∑
t=1

w̃tdt

with (w, w̃) and (w, w̃) being predetermined weights. The latter objective function concerns
the weighted sum of the average potential outcomes throughout the entire period, less the cost
of treatments. Note that establishing the signs of ATE’s will not identify d†, and a stronger
identification result becomes important, i.e., the point identification of E[YT (d)|X = x] for
all d (or E[Yt(d)|X = x] for all t and d).

Lastly, we are interested in the transition-specific ATE :

E[YT (d)|YT−1(d) = yT−1,X = x]− E[YT (d̃)|YT−1(d̃) = yT−1,X = x] (3.5)

for two different d and d̃. The knowledge of the ARSF does not directly recover this parame-
ter, but the identification of it (and its more general form introduced later) can be paralleled
by the analysis for the ARSF and ATE.

In order to facilitate identification of the parameters of interest without assuming sequen-
tial randomization, we introduce a sequence of selection equations for the binary endogenous
treatments Dt’s: For t = 1, ..., T ,

Dt = 1{πt(Yt−1, Dt−1, Zt) ≥ Vt},

where πt(·) is an unknown scalar-valued function, Zt is the period-specific instruments, Vt is
the unobservable variable that may contain permanent and transitory components, and D0

is assumed to be exogenously given as D0 = 0. This dynamic selection process represents the
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agent’s endogenous choices over time, e.g., as a result of learning or other optimal behaviors.
However, the nonparametric threshold-crossing structure posits a minimal notion of optimal-
ity for the agent. We take an agnostic and robust approach by avoiding strong assumptions
of the standard dynamic economic models pioneered by Rust (1987), such as forward look-
ing behaviors and being able to compute a present value discounted flow of utilities. If we
are to maintain the assumption of rational agents, the selection model can be viewed as a
reduced-form approximation of a solution to a dynamic programming problem.

To simplify the exposition, we consider binary Yt and impose weak separability in the
outcome equation as in the treatment equation. The binary outcome is not necessary for
the result of this paper, and the analysis can be easily extended to the case of continuous
or censored Yt, maintaining weak separability; see Remark 3.3. Then, the full model can be
summarized as

Yt = 1{µt(Yt−1, Dt, Xt) ≥ Ut(Dt)}, (3.6)

Dt = 1{πt(Yt−1, Dt−1, Zt) ≥ Vt}. (3.7)

In this model, the observable variables are (Y ,D,X,Z). All other covariates are suppressed
in the equations for simplicity of exposition. Importantly, in this model, the joint distribution
of the unobservable variables (U(d),V ) for given d is not specified, in that Ut(dt) and Vt′ for
any t, t′ are allowed to be arbitrarily correlated to each other (allowing endogeneity) as well as
within themselves across time (allowing serial correlation, e.g., via time-invariant individual
effects). Note that, because we allow an arbitrary form of persistence in the unobservables,
(Yt, Dt) is not a Markov process even after conditioning on the observables. This is in contrast
to the standard dynamic economic models, where conditional independence assumptions or
Markovian unobservables are commonly introduced. By considering the nonparametric index
functions that depend on t, we also avoid other strong assumptions on parametric functional
forms or time homogeneity.

Remark 3.1 (Irreversibility—continued). A process that satisfies Dt = 1 if Dt−1 = 1 is
consistent with having a structural function that satisfies πt(yt−1, dt−1, zt) = +∞ if dt−1 =
1. Similarly, processes that satisfy Yt = 1 and Dt = 0 if Yt−1 = 1 are consistent with
µt(yt−1, dt, xt) = +∞ and πt(yt−1, dt−1, zt) = −∞ if yt−1 = 1. This implies that Yt(d

t) = 1
for any dt if Yt−1(d

t−1) = 1. When Yt is irreversible, the ARSF E[YT (d)|X] can be interpreted
as (one minus) a potential survival rate. An important caveat is that, with irreversible Yt,
the ATE we define contains not only the treatment effect (the intensive margin) but also the
effect on dynamic selection (the extensive margin), and the parameter may or may not be of
interest depending on the application.

Remark 3.2 (Terminal outcome of a different kind—continued). When we replace
YT with RT to represent a terminal outcome of a different kind, we assume that the model
(3.6) is only satisfied for t ≤ T − 1 and introduce RT = 1{µT (YT−1, DT , XT ) ≥ UT (DT )}
as the terminal structural function. The potential terminal outcome RT (d) can accordingly
be expressed using the structural functions for (Y1, ..., YT−1, RT ). The ARSF is written as
E[RT (d)|X], and the other parameters can be defined accordingly.

Remark 3.3 (Non-binary Yt). Even though we focus on binary Yt in this paper, we can
obtain similar identification results with continuous Yt or limited dependent variable Yt, by
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maintaining a general weak separability structure: Yt = mt(µt(Yt−1, Dt, Xt), Ut(Dt)). As in
the static settings of Vytlacil and Yildiz (2007) and Balat and Han (2018), we impose an
assumption that guarantees certain monotonicity of each period’s average structural function
with respect to the index µt: For each t, E[mt(µt, Ut(dt))|V t,U t−1] is strictly monotonic in
µt. Examples of the nonparametric model mt(µt(yt−1, dt, xt), ut) that satisfies this assumption
are additively separable models or their transformation models, censored regression models,
and threshold crossing models as in (3.6); see Vytlacil and Yildiz (2007) for more discussions.

4 Main Identification Analysis

We first identify the ARSF’s, i.e., E[Yt(d)|Xt] for every d and t, which will then be used to
identify the ATE’s and the optimal regimes d∗ and d†. We maintain the following assumptions
on (Z,X) and (U(d),V ) for every d. These assumptions are written for the identification
of E[YT (d)|X], and are sufficient but not necessary for the identification of E[Yt(d)|Xt] for
t ≤ T − 1.

Assumption C. The distribution of (U(d),V ) has strictly positive density with respect to
Lebesgue measure on R2T .

Assumption SX. (Z,X) and (U(d),V ) are independent.

Assumption C is a regularity condition to ensure the smoothness of relevant conditional
probabilities. Assumption SX imposes strict exogeneity. It is implicit that the independence is
conditional on the covariates suppressed in the model. The variable Zt denotes the standard
excluded instruments. Examples include a sequence of randomized treatments or policy
shocks. In addition to Zt, we introduce exogenous variables Xt in the outcome equation
(3.6), that are excluded from the selection equation (3.7). We make a behavioral/information
assumption that there are outcome-determining factors that the agent cannot anticipate when
making a treatment decision. For example, when Dt is a medical treatment that a patient
receives at every doctor visit, Yt−1 may be the health outcome measured by the doctor prior
to the treatment during the same visit. Then Yt is the outcome measured upon the next visit,
which may create enough time gap to prevent the doctor or the patient from predicting Xt.

7

Note that (Zt, Xt) are assumed to be excluded from the outcome and treatment equations
of all other periods as well. Next, we introduce a sequential version of the rank similarity
assumption (Chernozhukov and Hansen (2005)):

Assumption RS. For each t and d−t, {U(dt,d−t)}dt are identically distributed, conditional
on (U t−1(dt−1),V t).

Rank invariance (i.e., {U(d)}d being equal to each other) is particularly restrictive in the
multi-period context, because it requires that the same rank be realized across different treat-
ment states for all t. Instead, Assumption RS, which we call sequential rank similarity, states
that U(1,d−t) and U(0,d−t) are identically distributed conditional on (U t−1(dt−1),V t).
That is, holding the history of ranks (and treatment unobservables) fixed, this requires that

7In a static scenario, Balat and Han (2018) motivate this reverse exclusion restriction using the notion of
externalities. In their setting where multiple treatments are strategically chosen (e.g., firms’ entry decisions),
factors that determine the outcome (e.g., pollution) are assumed not to appear in the firms’ payoff functions.
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the joint distributions of the ranks are identical between two states that differ by dt = 1
and 0. Therefore, this allows an individual to have different realized ranks across different
d’s. Assumption RS can be stated in terms of the marginal distributions and conditional
distributions of the ranks: Conditional on (U t−1(dt−1),V t), (i) Ut(1) and Ut(0) are iden-
tically distributed, and (ii) (Ut+1(dt+1), ..., UT (dT ))|Ut(1) and (Ut+1(dt+1), ..., UT (dT ))|Ut(0)
are identically distributed.

Now, we are ready to derive a period-specific result. Define the following period-specific
quantity directly identified from the data, i.e., from the distribution of (Y ,D,X,Z):

ht(zt, z̃t, xt, x̃t; z
t−1,xt−1,dt−1, yt−1)

≡Pr[Yt = 1, Dt = 1|zt,xt,dt−1, yt−1] + Pr[Yt = 1, Dt = 0|zt, x̃t,x
t−1,dt−1, yt−1]

− Pr[Yt = 1, Dt = 1|z̃t, zt−1,xt,dt−1, yt−1]− Pr[Yt = 1, Dt = 0|z̃t, zt−1, x̃t,x
t−1,dt−1, yt−1]

for t ≥ 1, where (Z0,X0,D0) is understood to mean that there is no conditioning.

Lemma 4.1. Suppose Assumptions C, SX and RS hold. For each t and (zt−1,xt−1,dt−1, yt−1),
suppose zt and z̃t are such that

Pr[Dt = 1|zt,xt−1,dt−1, yt−1] 6= Pr[Dt = 1|z̃t, zt−1,xt−1,dt−1, yt−1]. (4.1)

Then, for given (xt, x̃t), the sign of ht(zt, z̃t, xt, x̃t; z
t−1,xt−1,dt−1, yt−1) is equal to the sign

of µt(yt−1, 1, xt)− µt(yt−1, 0, x̃t).

Without relying on further assumptions, the sign of µt(yt−1, 1, xt)−µt(yt−1, 0, x̃t) itself is
already useful for calculating bounds on the ARSF’s and thus on the ATE’s; we discuss the
partial identification in Section 6.

Proof of Lemma 4.1: For the analysis of this paper which deals with a dynamic model, it is
convenient to define the U -set and V -set, namely the sets of histories of the unobservable
variables that determine the outcomes and treatments, respectively. To focus our attention
on the dependence of the potential outcomes on the unobservables, we iteratively define the
potential outcome given (d,x) as

Yt(d
t,xt) ≡ 1{µt(Yt−1(dt−1,xt−1), dt, xt) ≥ Ut(dt)}

for t ≥ 2, with Y1(d1, x1) = 1{µ1(0, d1, x1) ≥ U1(d1)}. Now, define the set of U t(dt) as

U t(dt, yt) ≡ U t(dt, yt;x
t) ≡ {U t(dt) : yt = Yt(d

t,xt)}

for t ≥ 1. Then, Yt = yt if and only if U t(dt) ∈ U t(dt, yt;x
t), conditional on (Dt,Xt) =

(dt,xt). Realizing the dependence of Ys−1(d
s−1,xs−1) on (U s−1(ds−1),xs−1,ds−1), let

π∗s(U s−1(ds−1),xs−1,ds−1, zs) ≡ πs(Ys−1(ds−1,xs−1), ds−1, zs),

and define the set of V t as

Vt(dt,ut−1) ≡ Vt(dt,ut−1; zt,xt−1) ≡ {V t : ds = 1{Vs ≤ π∗s(us−1,xs−1,ds−1, zs)} for all s ≤ t}
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for t ≥ 2. Then, Dt = dt if and only if V t ∈ Vt(dt,U t−1(dt−1)), conditional on (Zt,Xt−1) =
(zt,xt−1). Fix t ≥ 3. Given (4.1), consider the case Pr[Dt = 1|zt,xt−1,dt−1, yt−1] > Pr[Dt =
1|z̃t, zt−1,xt−1,dt−1, yt−1]; the opposite case is symmetric. Using the definitions of the sets
above, we have

Pr[Dt = 1|zt,xt−1,dt−1, yt−1]

= Pr[Vt ≤ πt(yt−1, dt−1, zt)|zt,xt−1,Vt−1(dt−1,U t−2(dt−2)),U t−1(dt−1, yt−1)]

= Pr[Vt ≤ πt(yt−1, dt−1, zt)|Vt−1(dt−1,U t−2(dt−2)),U t−1(dt−1, yt−1)],

where the last equality is given by Assumption SX. Note that the sets Vt−1(dt−1,U t−2(dt−2))
and U t−1(dt−1, yt−1) do not change with the change in zt. Therefore, a parallel expression
can be derived for Pr[Dt = 1|z̃t, zt−1,xt−1,dt−1, yt−1]. Let πt ≡ (yt−1, dt−1, zt) and π̃t ≡
(yt−1, dt−1, z̃t) for abbreviation. Then, under Assumption C,

0 <Pr[Dt = 1|zt,xt−1,dt−1, yt−1]− Pr[Dt = 1|z̃t, zt−1,xt−1,dt−1, yt−1]

= Pr[Vt ≤ πt|Vt−1(dt−1,U t−2(dt−2)),U t−1(dt−1, yt−1)]

− Pr[Vt ≤ π̃t|Vt−1(dt−1,U t−2(dt−2)),U t−1(dt−1, yt−1)],

which implies πt > π̃t. Next, we have

Pr[Yt = 1, Dt = 1|zt,xt,dt−1, yt−1]

= Pr[Ut(1) ≤ µt(yt−1, 1, xt), Vt ≤ πt|Vt−1(dt−1,U t−2(dt−2)),U t−1(dt−1, yt−1)]

by Assumption SX. Again, note that Vt−1(dt−1,U t−2(dt−2)) and U t−1(dt−1, yt−1) do not
change with the change in (zt, xt), which is key. Therefore, similar expressions can be derived
for the other terms involved in ht, and we have

ht(zt, z̃t, xt, x̃t; z
t−1,xt−1,dt−1, yt−1)

= Pr[Ut(1) ≤ µt(yt−1, 1, xt), π̃t ≤ Vt ≤ πt|Vt−1(dt−1,U t−2(dt−2)),U t−1(dt−1, yt−1)]

− Pr[Ut(0) ≤ µt(yt−1, 0, x̃t), π̃t ≤ Vt ≤ πt|Vt−1(dt−1,U t−2(dt−2)),U t−1(dt−1, yt−1)],

the sign of which identifies the sign of µt(yt−1, 1, xt)− µt(yt−1, 0, x̃t) by Assumption RS. For
example, when this quantity is zero, then µt(yt−1, 1, xt)− µt(yt−1, 0, x̃t) = 0. The case t ≤ 2
can be shown analogously with V1(d1) ≡ V1(d1; z1) ≡ {V1 : d1 = 1{V1 ≤ π1(0, 0, z1)}}. �

For the point identification of the ARSF’s, the final assumption we introduce concerns
the variation of the exogenous variables (Z,X). Define the following sets:

St(dt, yt−1) ≡
{

(xt, x̃t) : µt(yt−1, dt, xt) = µt(yt−1, d̃t, x̃t) for d̃t 6= dt

}
, (4.2)

Tt(x−t, z−t) ≡ {(xt, x̃t) : ∃(zt, z̃t) such that (4.1) holds and

(xt, zt), (x̃t, zt), (xt, z̃t), (x̃t, z̃t) ∈ Supp(Xt, Zt|x−t, z−t)} , (4.3)

Xt(dt, yt−1;x−t, z−t) ≡ {xt : ∃x̃t with (xt, x̃t) ∈ St(dt, yt−1) ∩ Tt(x−t, z−t)} , (4.4)

Xt(dt;x−t, z−t) ≡ Xt(dt, 0;x−t, z−t) ∩ Xt(dt, 1;x−t, z−t), (4.5)
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where (4.2) is related to the sufficient variation of Xt and (4.3) is related to the rectangular
variation of (Xt, Zt).

Assumption SP. For each t and dt, Pr[Xt ∈ Xt(dt;x−t, z−t)|x−t, z−t] > 0 almost every-
where.

This assumption requires thatXt varies sufficiently to achieve µt(yt−1, dt, xt) = µt(yt−1, d̃t, x̃t),
while holding Zt to be zt and z̃t, respectively, conditional on (X−t,Z−t). This is a dy-
namic version of the support assumption found in Vytlacil and Yildiz (2007).8 Note that
even though this assumption seems to be written in terms of the unknown object µt(·),
it is testable because the sets defined above have empirical analogs, according to Lemma
4.1. Let Xt(dt;x−t) ≡ {xt : xt ∈ Xt(dt;x−t, z−t) for some z−t ∈ Supp(Z−t|x−t)} and
X (d) ≡ {x : xt ∈ Xt(dt;x−t) for some (xt+1, ..., xT ), for t ≥ 1}, which sequentially collect
xt ∈ Xt(dt;x−t, z−t) for all t. We are now ready to state the main identification result.

Theorem 4.1. Under Assumptions C, SX, RS and SP, E[YT (d)|x] is identified for d ∈ D
and x ∈ X (d).

Based on Theorem 4.1, we can identify the ATE’s. Since the identification of all E[Yt(d)|xt]’s
can be shown analogously to Theorem 4.1, we can identify the optimal treatment regimes
d∗(x) and d†(x) as well.

Corollary 4.1. Under Assumptions C, SX, RS and SP, E[YT (d)−YT (d̃)|x] is identified for
d, d̃ ∈ D and x ∈ X (d) ∩ X (d̃), and d∗(x) and d†(x) are identified for x ∈

⋂
d∈D X (d).

Proof of Theorem 4.1: To begin with, note that E[YT (d)|x] = Pr[YT (d) = 1|x] = Pr[U(d) ∈
UT (d, 1;x)|x] = Pr[U(d) ∈ UT (d, 1;x)|x, z] = E[YT (d)|x, z] by Assumption SX.9 As the
first step of identifying E[YT (d)|x, z] for given d = (d1, ..., dT ), x = (x1, ..., xT ) and z =
(z1, ..., zT ), we apply the result of Lemma 4.1. Fix t ≥ 2 and yt−1 ∈ {0, 1}. Suppose x′t is
such that µt(yt−1, dt, xt) = µt(yt−1, d

′
t, x
′
t) with d′t 6= dt by applying Lemma 4.1. The exis-

tence of x′t is guaranteed by Assumption SP, as xt ∈ Xt(dt, yt−1;x−t, z−t) ⊂ Xt(dt;x−t, z−t).
The implication of µt(yt−1, dt, xt) = µt(yt−1, d

′
t, x
′
t) for relevant U -sets is as follows: By the

definition of the U -set, U ∈ U(d, yT ;x) is equivalent to U ∈ UT (d′t,d−t, yT ;x′t,x−t) condi-
tional on Yt−1(d

t−1,xt−1) = yt−1 for all x−t and d−t.
10 Based on this result, in what follows

we equate the unobserved quantity E[YT (d)|x, z,dt−1, d′t, yt−1] with a quantity that partly
matches the assigned treatment and the observed treatment. Analogous to the U -set defined
earlier, define

U t(dt,yt) ≡ U t(dt,yt;xt) ≡ {U t(dt) : ys = Ys(d
s,xs) for all s ≤ t}.

8Although Assumption SP requires sufficient rectangular variation in (Xt, Zt), it clearly differs from the
large variation assumptions in Heckman and Navarro (2007) and Heckman et al. (2016), which are employed
for identification at infinity arguments. In our setting, it is possible that Xt(dt;x−t,z−t) is nonempty even
when Zt is discrete, as long as Xt contains continuous elements with sufficient support (Vytlacil and Yildiz
(2007)). In all these works, including the present one, the support requirement is conditional on the exogenous
variables in other periods; see also Cameron and Heckman (1998).

9When we are to identify the average potential outcome at t instead, the conditioning variables we use are
the vectors of exogenous variables up to t, i.e., E[Yt(d

t)|xt,zt]. Then the entire proof can be easily modified
based on this expression.

10The subsequent analysis is substantially simplified when µt(yt−1, dt, xt) = µt(yt−1, d
′
t, x
′
t) is satisfied for all

yt−1, but this situation is unlikely to occur. Therefore, it is important to condition on Yt−1(dt−1,xt−1) = yt−1

in the analysis.
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For t ≥ 2,

E[YT (d)|x, z,yt−1,dt−1, d′t]

= Pr

 U(d) ∈ UT (d, 1;x)

∣∣∣∣∣∣
x, z,

U t−1(dt−1) ∈ U t−1(dt−1,yt−1),
V t ∈ Vt(dt−1, d′t,U

t−1(dt−1))


= Pr

 U(d) ∈ UT (d, 1;x)

∣∣∣∣∣∣ U t−1(dt−1) ∈ U t−1(dt−1,yt−1),
V t ∈ Vt(dt−1, d′t,U

t−1(dt−1))

 , (4.6)

where the last equality follows from Assumption SX. Then, by Assumption RS and the
discussion above, (4.6) is equal to

Pr

 U(d′t,d−t) ∈ UT (d′t,d−t, 1;x′t,x−t)

∣∣∣∣∣∣ U t−1(dt−1) ∈ U t−1(dt−1,yt−1),
V t ∈ Vt(dt−1, d′t,U

t−1(dt−1))


= Pr

 U(d′t,d−t) ∈ UT (d′t,d−t, 1;x′t,x−t)

∣∣∣∣∣∣
x′t,x−t, z,

U t−1(dt−1) ∈ U t−1(dt−1,yt−1),
V t ∈ Vt(dt−1, d′t,U

t−1(dt−1))


=E[YT (d′t,d−t)|x′t,x−t, z,yt−1,dt−1, d′t], (4.7)

where the first equality is by Assumption SX. Note that the last quantity in (4.7) is still
unobserved, since ds for s ≥ t+ 1 are not realized treatments; e.g., when T = 3 and t = 2,

E[Y3(d)|x, z, y1, d1, d′2] = E[Y3(d1, d
′
2, d3)|x1, x′2, x3, z, y1, d1, d′2].

The quantity, however, will be useful in the iterative argument below. Recall the abbre-
viations Vt(dt−1, d′t,U

t−1(dt−1)) ≡ Vt(dt−1, d′t,U
t−1(dt−1); zt,xt−1) and U t−1(dt−1,yt−1) ≡

U t−1(dt−1,yt−1;xt−1). That is, in the derivation of (4.7), the key is to consider the average
potential outcome for a group of individuals that is defined by the treatments at time t or
earlier and the lagged outcome, for which xt is excluded. We use the result (4.7) in the next
step.

First, note that E[YT (d)|x, z,yT−1,dT ] = E[YT |x, z,yT−1,dT ] is trivially identified for
any generic values (d,x, z,yT−1). We prove by means of mathematical induction. For
given 2 ≤ t ≤ T − 1, suppose E[YT (d)|x, z,yt−1,dt] is identified for any generic values
(d,x, z,yt−1), and consider the identification of

E[YT (d)|x, z,yt−2,dt−1] = Pr[Dt = dt|x, z,yt−2,dt−1]E[YT (d)|x, z,yt−2,dt−1, dt]

+ Pr[Dt = d′t|x, z,yt−2,dt−1]E[YT (d)|x, z,yt−2,dt−1, d′t]. (4.8)

The first main term E[YT (d)|x, z,yt−2,dt−1, dt] in (4.8) is identified, by integrating over
yt−1 ∈ {0, 1} the quantity E[YT (d)|x, z,yt−1,dt], which is assumed to be identified in the
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previous iteration. The remaining unknown term in (4.8) satisfies

E[YT (d)|x, z,yt−2,dt−1, d′t] = Pr[Yt−1 = 1|x, z,yt−2,dt−1, d′t]E[YT (d)|x, z, (yt−2, 1),dt−1, d′t]

+ Pr[Yt−1 = 0|x, z,yt−2,dt−1, d′t]E[YT (d)|x, z, (yt−2, 0),dt−1, d′t].

By applying (4.7) to the unknown terms in this expression, we have

E[YT (d)|x, z, ỹt−1,dt−1, d′t] = E[YT (d′t,d−t)|x′t,x−t, z, ỹt−1,dt−1, d′t] (4.9)

for each ỹt−1, which is identified from the previous iteration. Therefore, E[YT (d)|x, z,yt−2,dt−1]
is identified. Note that when t = 2, Y 0 is understood to mean there is no conditioning. Lastly,
when t = 1,

E[YT (d)|x, z] = Pr[D1 = d1|x, z]E[YT (d)|x, z, d1] + Pr[D1 = d′1|x, z]E[YT (d)|x, z, d′1].

Noting that Y0 = 0, suppose x′1 is such that µ1(0, d1, x1) = µ1(0, d
′
1, x
′
1) with d′1 6= d1 by

applying Lemma 4.1. Then,

E[YT (d)|x, z, d′1] = Pr[U(d) ∈ UT (d, 1;x)|V1 ∈ V1(d′1)]
= Pr[U(d′1,d−1) ∈ UT (d′1,d−1, 1;x′1,x−1)|V1 ∈ V1(d′1)]
= E[YT (d′1,d−1)|x′1,x−1, z, d′1],

which is identified from the previous iteration for t = 2. Therefore, E[YT (d)|x, z] is identified,
which completes the proof of Theorem 4.1. 2

Note that this proof provides a closed-form expression for E[YT (d)|x] in an iterative
manner, which can immediately be used for estimation. For concreteness, we provide an
expression for E[YT (d)|x] when T = 2:

E[Y2(d)|x] =P [d|x, z]E[Y2|x, z,d] + P [d1, d
′
2|x, z]µ2,d1,d′2

+ P [d′1, d2|x, z]E[Y2|x′1, x2, z, d′1, d2] + P [d′1, d
′
2|x, z]µ2,d′1,d′2 , (4.10)

where

µ2,d1,d′2 ≡P [y1|x, z, d1, d′2]E[Y2|x1, x′2, z, d1, d′2, y1]
+ P [y′1|x, z, d1, d′2]E[Y2|x1, x′′2, z, d1, d′2, y′1],

µ2,d′1,d′2 ≡P [y1|x′1, x2, z, d′1, d′2]E[Y2|x′1, x′2, z, d′1, d′2, y1]
+ P [y′1|x′1, x2, z, d′1, d′2]E[Y2|x′1, x′′2, z, d′1, d′2, y′1]

for (x′1, x
′
2, x
′′
2) such that µ1(0, d1, x1) = µ1(0, d

′
1, x
′
1), µ2(y1, d2, x2) = µ2(y1, d

′
2, x
′
2), and

µ2(y
′
1, d2, x2) = µ2(y

′
1, d
′
2, x
′′
2).

Remark 4.1. In estimating the parameters identified in this section, one can improve ef-
ficiency by aggregating the conditional expectations (4.9) with respect to Xt = x′t over the
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following set:

λt(xt; z
t−1,xt−1,dt−1, yt−1) ≡ {x̃t : ht(zt, z̃t, xt, x̃t; z

t−1,xt−1,dt−1, yt−1) = 0 for some (zt, z̃t)}.

Similarly, one can aggregate the identifying equation for E[YT (d)|x] (e.g., equation (4.10))
with respect to Z = z conditional on X = x.

5 Treatment Effects on Transitions

In fact, the identification strategy introduced in the previous section can tackle a more general
problem. In this section, we extend the identification analysis of the ATE (Theorem 4.1 and
Corollary 4.1) and show identification of the transition-specific ATE. Given the vector Y (d) ≡
(Y1(d), ..., YT (d)) of potential outcomes, let Y−(d) ≡ (Yt1(d), ..., YtL(d)) ∈ Y− ⊆ {0, 1}L be
its 1×L subvector, where t1 < t2 < · · · < tL ≤ T−1 and L < T . Then, the transition-specific
ATE can be defined as E[YT (d)|Y−(d) = y−,X = x] − E[YT (d̃)|Y−(d̃) = y−,X = x] for
some sequences d and d̃.

Theorem 5.1. Under Assumptions C, SX, RS and SP, for each y−, E[YT (d)|Y−(d) =
y−,X = x]−E[YT (d̃)|Y−(d̃) = y−,X = x] is identified for d, d̃ ∈ D and x ∈ X (d) ∩ X (d̃).

The proof of this theorem extends that of Theorem 4.1; see the Appendix.11 The
transition-specific ATE defined in Theorem 5.1 concerns a transition from a state that is
specified by the value of the vector of previous potential outcomes, Y−(d). When YT (d)
is binary, E[YT (d)|Y−(d) = y−,X = x] can be viewed as a generalization of the transition
probability. As a simple example, with L = T−1, one may be interested in a transition to one
state when all previous potential outcomes have stayed in the other state until T − 1. When
L = 1 with Y−(d) = YT−1(d), the transition-specific ATE becomes Pr[YT (d) = 1|YT−1(d) =
0]− Pr[YT (d̃) = 1|YT−1(d̃) = 0] introduced in Section 3. This is a particular example of the
treatment effect on the transition probability. The treatment effects on transitions have been
studied by, e.g., Abbring and Van den Berg (2003), Heckman and Navarro (2007), Fredriksson
and Johansson (2008) and Vikström et al. (2017).12 Let Yt(dt) ≡ µt(Yt−1, dt, Xt, Ut(dt)) be
the period-specific potential outcome at time t. Since Yt−1 = Yt−1(D

t−1), the period-specific
potential outcome can be expressed as Yt(dt) = Yt(D

t−1, dt) using the usual potential out-
come. As a corollary of the result above, we also identify a related parameter that specifies
the previous state by the observed outcome: E[YT (1)− YT (0)|YT−1 = yT−1].

Corollary 5.1. Under Assumptions C, SX, RS and SP, for each yT−1, E[YT (1)|yT−1,x]−
E[YT (0)|yT−1,x] is identified for x ∈ X (d) ∩ X (d̃).

11As before, the parameters in Theorem 5.1 and Corollary 5.1 below can be defined for any given period
instead of the terminal period T . The identification analysis of such parameters is essentially the same, and
thus omitted.

12The definition of the treatment effect on the transition probability in this paper differs from those defined
in the literature on duration models, e.g., that in Vikström et al. (2017). Since Vikström et al. (2017)’s main
focus is on Yt that is irreversible, they define a different treatment parameter that yields a specific interpretation
under dynamic selection; see their paper for details. In addition, they assume sequential randomization and
that treatments are assigned earlier than the transition of interest.
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The corollary is derived by observing that YT (dT ) = YT (DT−1, dT ), and thus

E[YT (dT )|yT−1,x]

=
∑

dT−1∈DT−1

Pr[DT−1 = dT−1|x]E[YT (dT−1, dT )|YT−1(dT−1) = yT−1,D
T−1 = dT−1,x],

where each E[YT (dT−1, dT )|YT−1(dT−1) = yT−1,d
T−1,x] is identified from the iteration at

t = T − 1 in the proof of Theorem 5.1 by taking Y−(d) = YT−1(d
T−1).

6 Partial Identification

Suppose Assumption SP does not hold in that Xt does not exhibit sufficient rectangular
variation, or that there is no Xt that is excluded from the selection equation at time t. In
this case, we partially identify the ARSF’s, ATE’s and d∗(x) (or d†(x)).

We briefly illustrate the calculation of the bounds on the ARSF E[YT (d)|x] when the
sufficient rectangular variation is not guaranteed; the case where Xt does not exist at all can
be dealt in a similar manner, and so is omitted. For each E[YT (d)|x, z,yt−1,dt−1, d′t] in the
proof of Theorem 4.1, we can calculate its upper and lower bounds depending on the sign of
µt(yt−1, 1, xt) − µt(yt−1, 0, x̃t), which is identified in Lemma 4.1. Note that, in the context
of this section, x̃t does not necessarily differ from xt. For example, for the lower bound on
E[YT (d)|x] = E[YT (d)|x, z], suppose µt(yt−1, dt, xt)−µt(yt−1, d′t, x′t) ≥ 0 for given yt−1, where
x′t is allowed to equal xt. Then, by the definition of the U -set and under Assumption RS, it
satisfies that UT (d, yT ;x) ⊇ UT (d′t,d−t, yT ;x′t,x−t), conditional on Yt−1(d

t−1,xt−1) = yt−1.
Therefore, we have a lower bound on as E[YT (d)|x, z,yt−1,dt−1, d′t] as

E[YT (d)|x, z,yt−1,dt−1, d′t]

= Pr[U(d) ∈ UT (d, 1;x)|U t−1(dt−1) ∈ U t−1(dt−1,yt−1),V t ∈ Vt(dt−1, d′t,U
t−1(dt−1))]

≥Pr

 U(d′t,d−t) ∈ UT (d′t,d−t, 1;x′t,x−t)

∣∣∣∣∣∣ U t−1(dt−1) ∈ U t−1(dt−1,yt−1),
V t ∈ Vt(dt−1, d′t,U

t−1(dt−1))


=E[YT (d′t,d−t)|x′t,x−t, z,yt−1,dt−1, d′t]. (6.1)

Then, it is possible to calculate the lower bounds on E[YT (d)|x, z] using the iterative scheme
introduced in the proof of Theorem 4.1. That is, at each iteration, we take the previous
iteration’s lower bound as given, expand each main term in (4.8) as before, and apply (6.1)
for necessary terms.

Lastly, depending on the signs of the ATE’s, we can construct bounds on d∗(x) (or d†(x)),
which will be expressed as strict subsets of D. The partial identification of the optimal regimes
may not yield sufficiently narrow bounds unless there are a sufficient number of ATE’s whose
bounds are informative about their signs. In general, however, the informativeness of bounds
truly depends on the policy questions. Note that D is a discrete set. Even though the
bounds may not be informative about the optimal regime, they may still be useful from the
planner’s perspective if they can help her exclude a few suboptimal regimes, i.e., d◦ such that
E[YT (d)|x] ≥ E[YT (d◦)|x] for some d.
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7 Subsequences of Treatments

An important extension of the model introduced in this paper is to the case where treatments
do not appear in every period, while the outcomes are constantly observed. For example,
institutionally, there may only be a one-shot treatment at the beginning of time or a few
treatments earlier in the horizon, or there may be evenly spaced treatment decisions with a
lower frequency than outcomes. A potential outcome that corresponds to this situation can be
defined as a function of a certain subsequence d− of d. Let d− ≡ (dt1 , ..., dtK ) ∈ D− ⊆ {0, 1}K
be a 1 × K subvector of d, where t1 < t2 < · · · < tK ≤ T and K < T . Then, the
potential outcomes Yt(d−) and the associated structural functions are defined as follows: Let
dtk
− ≡ (dt1 , ..., dtk). A potential outcome in the period when a treatment exists is expressed

using a switching regression model as

Ytk(d−) = Ytk(dtk
− ) = µtk(Ytk−1(d

t(k−1)

− ), dtk , Xtk , Utk(dtk))

for k ≥ 1 with Yt1−1(d
t0
−) = Yt1−1, and a potential outcome when there is no treatment is

expressed as

Yt(d−) = Yt(d
tk
− ) = µt(Yt−1(d

tk
− ), Ut)

for t such that tk < t < t(k+1) (1 ≤ k ≤ K − 1). Lastly, Yt(d−) = Yt = µt(Yt−1, Ut) for t < t1
and Yt(d−) = Yt(d

tK
− ) = µt(Yt−1(d

tK
− ), Ut) for t > tK . Each structural model at the time of

no treatment is a plain dynamic model with a lagged dependent variable. Let T = 4 and
d− = (d1, d3) for illustration. Then the sequence of potential outcomes can be expressed as

Y4(d−) = Y4(d
3) = µ4(Y3(d

3), U4),

Y3(d−) = Y3(d
3) = µ3(Y2(d1), d3, X3, U3(d3)),

Y2(d−) = Y2(d1) = µ2(Y1(d1), U2),

Y1(d−) = Y1(d1) = µ1(Y0, d1, X1, U1(d1)).

The selection equations are of the following form: For k ≥ 1,

Dtk = 1{πtk(Ytk−1, Dt(k−1)
, Ztk) ≥ Vtk},

where the lagged outcome and the latest treatment enter each equation. The observable
variables are (Y ,D−,X−,Z−).13

Now all the parameters introduced in Section 3 can be readily modified by replacing
d with d− for some d−; we omit the definitions for the sake of brevity. Moreover, the
identification analysis of Section 4 can be easily modified in accordance with the extended
setting. Let U−(d−) ≡ (Ut1(dt1), ..., UtK (dtK )) and let U(d−) be the vector of all the outcome
unobservables that consists of U−(d−) and {Ut}t∈{1,...,T}\{t1,...,tK}.

Assumption C′. The distribution of (U−(d−),V−) has strictly positive density with respect
to Lebesgue measure on R2K .

13It may be the case that Xt is observed whenever Yt is observed, and thus is included in the Yt-equations
for t 6= tk as well. We ignore that case here.
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Assumption SX′. (Z−,X−) and (U(d−),V−) are independent.

Let d−,−tk be d− without the tk-th element.

Assumption RS′. For each tk and d−,−tk , {U−(dtk ,d−,−tk)}dtk are identically distributed

conditional on (U tk−1(d
t(k−1)

− ),V tk
− ).

Under these modified assumptions, Lemma 4.1 is now only relevant for t = tk. Restrict
the definitions of Xt(dt;x−t, z−t) in (4.5) and Xt(dt;x−t) to hold only for t = tk.

Assumption SP′. For each tk and dtk , Pr[Xtk ∈ Xtk(dtk ;x−,−tk , z−,−tk)|x−,−tk , z−,−tk ] > 0
almost everywhere.

Let X−(d−) ≡ {x− : xtk ∈ Xtk(dtk ;x−,−tk) for some (xt(k+1)
, ..., xtK ), for k ≥ 1}.

Theorem 7.1. Under Assumptions C′, SX′, RS′ and SP′, E[YT (d−)|x−] is identified for
d− ∈ D−, x− ∈ X−(d−).

Corollary 7.1. Under Assumptions C′, SX′, RS′ and SP′, E[YT (d−)− YT (d̃−)|x−] is iden-

tified for d−, d̃− ∈ D− and x− ∈ X−(d−) ∩ X−(d̃−), and d∗−(x−) and d†−(x−) are identified
for x− ∈

⋂
d−∈D− X−(d−).
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A Additional Proof

Proof of Theorem 5.1: We analyze the identification of E[YT (d)|Y−(d) = y−,x, z]. Since

E[YT (d)|Y−(d) = y−,x, z] = Pr[YT (d) = 1,Y−(d) = y−|x, z]/Pr[Y−(d) = y−|x, z],

we identify each term in the fraction. For each term, the proof is parallel to that of Theorem
4.1. Let ỹ− ≡ (y1, ..., ytL̃) be a subvector (not necessarily strict) of y, where t1 < t2 < · · · <
tL̃ ≤ T and L̃ ≤ T ; e.g., when L̃ = T , ỹ− = y. Generalizing the U -sets introduced in Section
4, define

U tL̃(dtL̃ , ỹ−) ≡ U tL̃(dtL̃ , ỹ−;xtL̃) ≡ {U tL̃(dtL̃) : ys = Ys(d
s,xs) for all s ∈ {t1, ..., tL̃}}.

In the first part of the proof, we identify Pr[YT (d) = 1,Y−(d) = y−|x, z]. Take Ỹ−(d) =
(Y−(d), YT (d)) with realization ỹ− = (y−, 1). Then, for 2 ≤ t ≤ T − 1, we have

Pr[YT (d) = 1,Y−(d) = y−,Y
t−1 = yt−1,Dt = (dt−1, d′t)|x, z]

= Pr[U(d) ∈ UT (d,y−, 1;x),U t−1(dt−1) ∈ U t−1(dt−1,yt−1),V t ∈ Vt(dt−1, d′t,U
t−1(dt−1))]

= Pr

 U(d′t,d−t) ∈ UT (d′t,d−t,y−, 1;x′t,x−t),
U t−1(dt−1) ∈ U t−1(dt−1,yt−1),
V t ∈ Vt(dt−1, d′t,U

t−1(dt−1))


= Pr[YT (d′t,d−t) = 1,Y−(d′t,d−t) = y−,Y

t−1 = yt−1,Dt = (dt−1, d′t)|x′t,x−t, z], (A.1)

where the second equality uses x′t such that µt(yt−1, dt, xt) = µt(yt−1, d
′
t, x
′
t) by applying

Lemma 4.1. First, Pr[YT (d) = 1,Y−(d) = y−,Y
T−1 = yT−1,DT = dT |x, z] = Pr[YT =

1,Y− = y−,Y
T−1 = yT−1,DT = dT |x, z] is trivially identified for any generic values

(d,x, z,yT−1). For given 2 ≤ t ≤ T − 1, suppose Pr[YT (d) = 1,Y−(d) = y−,Y
t−1 =

yt−1,Dt = dt|x, z] is identified for any generic values (d,x, z,yt−1), and consider identifica-
tion of

Pr[YT (d) = 1,Y−(d) = y−,Y
t−2 = yt−2,Dt−1 = dt−1|x, z]

= Pr[YT (d) = 1,Y−(d) = y−,Y
t−2 = yt−2,Dt = (dt−1, dt)|x, z]

+ Pr[YT (d) = 1,Y−(d) = y−,Y
t−2 = yt−2,Dt = (dt−1, d′t)|x, z]. (A.2)

The first term in the expression is identified, by summing over yt−1 the quantity Pr[YT (d) =
1,Y−(d) = y−,Y

t−1 = yt−1,Dt = dt|x, z], which is identified from the previous iteration.
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The second unknown term in (A.2) satisfies

Pr[YT (d) = 1,Y−(d) = y−,Y
t−2 = yt−2,Dt = (dt−1, d′t)|x, z]

= Pr[YT (d) = 1,Y−(d) = y−,Y
t−1 = (yt−2, 1),Dt = (dt−1, d′t)|x, z]

+ Pr[YT (d) = 1,Y−(d) = y−,Y
t−1 = (yt−2, 0),Dt = (dt−1, d′t)|x, z]. (A.3)

But note that, by (A.1), each term in (A.3) satisfies

Pr[YT (d) = 1,Y−(d) = y−,Y
t−1 = ỹt−1,Dt = (dt−1, d′t)|x, z]

= Pr[YT (d′t,d−t) = 1,Y−(d′t,d−t) = y−,Y
t−1 = ỹt−1,Dt = (dt−1, d′t)|x′t,x−t, z] (A.4)

for each ỹt−1, which is identified from the previous iteration. Therefore, Pr[YT (d) = 1,Y−(d) =
y−,Y

t−2 = yt−2,Dt−1 = dt−1|x, z] is identified. Lastly, when t = 1,

Pr[YT (d) = 1,Y−(d) = y−|x, z] = Pr[YT (d) = 1,Y−(d) = y−, D1 = d1|x, z]

+ Pr[YT (d) = 1,Y−(d) = y−, D1 = d′1|x, z].

The first term is identified from the iteration for t = 2. Noting that Y0 = 0, suppose x′1 is
such that µ1(0, d1, x1) = µ1(0, d

′
1, x
′
1) with d′1 6= d1 by Lemma 4.1. Then, similarly to (A.1),

Pr[YT (d) = 1,Y−(d) = y−, D1 = d′1|x, z]

= Pr[YT (d′1,d−1) = 1,Y−(d′1,d−1) = y−, D1 = d′1|x′1,x−1, z],

which is also identified from the previous iteration for t = 2. Therefore Pr[YT (d) = 1,Y−(d) =
y−|x, z] is identified.

In the second part of the proof, we identify Pr[Y−(d) = y−|x, z]. Take Ỹ−(d) = Y−(d) ≡
(Yt1(d), ..., YtL(d)) with realization ỹ− = y−. Then, for 2 ≤ t ≤ tL − 1, we can show the
following equivalence, analogous to (A.1):

Pr[Y−(d) = y−,Y
t−1 = yt−1,Dt = (dt−1, d′t)|x, z]

= Pr[U tL(dtL) ∈ U tL(dtL ,y−;xtL),U t−1(dt−1) ∈ U t−1(dt−1,yt−1),V t ∈ Vt(dt−1, d′t,U
t−1(dt−1))]

= Pr

 U tL(d′t,d
tL
−t) ∈ U tL(d′t,d

tL
−t,y−;x′t,x

tL
−t),

U t−1(dt−1) ∈ U t−1(dt−1,yt−1),
V t ∈ Vt(dt−1, d′t,U

t−1(dt−1))


= Pr[Y−(d′t,d−t) = y−,Y

t−1 = yt−1,Dt = (dt−1, d′t)|x′t,x−t, z].

The rest of the proof is an immediate modification of the iterative argument in the first part,
and hence is omitted. �
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