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1 Introduction

Macroeconomic models with heterogeneous agents are ideal laboratory economies to quan-

titatively study a large set of issues that include household behavior under uncertainty,

inequality, and the effects of taxes, transfers, and social insurance reforms.1 Earnings risk is

a crucial source of heterogeneity in these models and its stochastic properties determine how

saving and consumption adjust to buffer the impact of earnings shocks on current and future

consumption. Appropriately capturing earnings risk is therefore important to understand

consumption and wealth inequality, the welfare implications of income fluctuations, and the

potential role for social insurance.

With few notable exceptions, most quantitative macroeconomic models adopt earnings

processes that imply that persistence and other second and higher conditional moments are

independent of age and earnings histories, and that shocks are normally distributed. The

canonical permanent/transitory process is a popular example.

A growing body of empirical work, though, provides evidence that households’ earnings

dynamics feature non-normality, age-dependence, and nonlinearities, and devises flexible sta-

tistical models that allow for these features. For instance, recent work takes advantage of

large, administrative datasets (e.g., W2 confidential Social Security Administration earn-

ings data in Guvenen, Karahan, Ozkan and Song, 2016) and new methodologies applied to

survey data sets like the Panel Study of Income Dynamics (PSID) (Arellano, Blundell and

Bonhomme, 2017) to show that changes to pre-tax, individual male earnings display sub-

stantial skewness and kurtosis and that the persistence of shocks depends both on age and

current earnings.

We show that all of these rich dynamics are present not only in individual pre-tax earn-

ings, both in the W2 tax data and the PSID, but also in household, post-tax earnings, which

1For instance, Scholz, Seshadri and Khitatrakun (2006) study the adequacy of savings at retirement,
Storesletten, Telmer and Yaron (2004a); Krueger and Perri (2006); Heathcote, Storesletten and Violante
(2010) study the evolution of consumption and Castañeda, Dı́az-Giménez and Ŕıos-Rull (2003); De Nardi
(2004); Cagetti and De Nardi (2009) study the evolution of wealth inequality over the life cycle, while Conesa,
Kitao and Krueger (2009) study the optimal taxation of capital income.
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are the relevant source of labor income risk at the household level.2

Incorporating a flexible earnings process that accounts for these features of the data in a

standard life-cycle model is nontrivial. That partly explains why, despite their economic rel-

evance, the implications of these richer earnings dynamics have not received much attention

so far.

This paper aims at bridging this gap. Our main contribution is to analyze the effects of

richer earnings dynamics on consumption, wealth, and welfare, both in the cross-section and

over the life cycle. We use the econometric framework recently proposed by Arellano et al.

(2017) that allows to separately identify the distributions of the persistent and transitory

components of earnings while allowing for non-normality of shocks, non-linear persistence,

and, in general, a rich dependence of the distributions on age and previous earnings. We

use PSID data on post-tax, household earnings to estimate two different earnings processes:

a richer earnings process along the lines of Arellano et al. (2017) and a “canonical” linear

earnings process with a persistent and transitory component and normal innovations, like

the one used in Storesletten et al. (2004a). We then compare the implications of the two

estimated processes for consumption, wealth, and welfare in the context of a standard life-

cycle model of consumption and savings with incomplete markets.

Our main findings are as follows. First, compared to the canonical earnings process, the

richer earnings process better fits the observed evolution of consumption inequality over the

life cycle. More specifically, under the canonical earnings process, the growth in the variance

of consumption substantially overshoots its data counterpart at all ages, while our richer

process generates a realistic profile up to ages 50-55, when early and partial retirement start

being important. The improved fit is due to the rich features of the earnings data that we

model and to the households’ precautionary saving response to them. In particular, age-

2These features are consistent with several factors that affect the working lives of individuals. For instance,
younger people tend to change jobs more frequently and this implies that the persistence of their earnings
is lower. In addition, for most workers, earnings vary little from year to year and shocks are infrequent but
can be of large magnitude, such as job loss or a career change, when they happen. This is captured by the
high level of kurtosis displayed by earnings changes.
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dependent persistence and variance of earnings innovations account for the main share of

the improvement of the fit between age 25 and 45, while non-normality and nonlinearity

(for instance, the fact that persistence varies with the level of previous earnings) drive the

improvement between age 45 and 55.

An alternative, and possibly more intuitive, measure of self-insurance is related to the

extent of consumption passthrough of shocks to disposable earnings onto consumption. Our

second finding is that the richer earnings process implies a consumption passthrough of

persistent earnings shocks broadly consistent with the data. Its value is 0.57 which is within

one standard deviation of the point estimate of 0.64 by Blundell, Pistaferri and Preston

(2008). Conversely, and in line with the findings in Kaplan and Violante (2010), the canonical

process implies a counterfactually high passthrough of 0.86.

Our third finding is that our rich earnings process does not improve the fit of the right tail

of the wealth distribution with respect to the canonical earnings process.3 This is perhaps

not so surprising given an established literature, surveyed in De Nardi and Fella (2017),

pointing to the fact that accounting for the saving of the rich requires mechanisms—such

as a non-homothetic bequest motive, medical-expense risk and entrepreneurship—that go

beyond idiosyncratic earnings risk.

Finally, from a normative perspective we find that the welfare costs of earnings risk—as

measured by the yearly consumption equivalent—are 1.5 percentage points lower under the

richer than under the canonical earnings process. The main reason for this finding is that,

while under the canonical process earnings have a permanent, random-walk, component, the

richer process implies a lower persistence, particularly in the first part of the working life and

at low earnings levels. As a result, life-cycle risk can be more effectively self-insured under

the richer earnings process.

An additional contribution of this paper is to propose a simple, simulation-based, method

3In De Nardi, Fella and Paz-Pardo (2016) we show that this conclusion still holds if we estimate a similar
richer process on synthetically generated W2 data from the parametric processes proposed in Guvenen et al.
(2016). It is thus not related the the issues of lack-of-oversampling and non-participation by higher income
people that are usually associated with most survey data sets.
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to discretize nonlinear and nonnormal stochastic processes to introduce them in a compu-

tational model. Standard discretization methods used in macroeconomics, such as Tauchen

(1986) and Rouwenhorst (1995), require the continuous process to be approximated to be lin-

ear, typically an AR(1), and, in the case of Tauchen (1986), normal.4 Our method applies to

any, otherwise unrestricted, age-dependent, first-order Markov process. It relies on simulat-

ing a panel of individual earnings histories using the continuous process to be approximated

and estimating an age-specific, first-order Markov chain on it. This is achieved by discretizing

the simulated marginal distribution of earnings at each age—e.g. into percentiles—and by

replacing the (heterogeneous) values of earnings in each rank percentile with their median.

The associated, age-specific transition matrix is then obtained by computing the proportion

of observations transiting from each percentile rank of the earnings distribution at age t to

that at age t+ 1. The result is a non-parametric representation of the process that follows a

Markov chain with an age-dependent transition matrix and a fixed number of age-dependent

earnings states.5

Our paper is related to the empirical literature on earnings dynamics6 as well as the

macroeconomic literature on the relationship between income and consumption inequality

over the life cycle. Deaton and Paxson (1994) is the seminal empirical contribution. Storeslet-

ten et al. (2004a), Guvenen (2007), Primiceri and Van Rens (2009), Huggett, Ventura and

Yaron (2011) and Guvenen and Smith (2014) analyze lifetime inequality from the perspective

of the standard, incomplete markets model as we do here. Within this literature, many of

the consequences of richer earnings processes on consumption, savings and welfare in struc-

tural models are still unexplored, with few exceptions. Castañeda et al. (2003) propose an

“awesome or superstar” shock to earnings that is unlikely to be observed in the data but that

4Fella, Gallipoli and Pan (2017) show how Tauchen (1986) and Rouwenhorst (1995) can be extended to
allow for age dependence. Their method still requires linearity though.

5This method can be generalized to allow for Markov processes of order higher than one.
6Besides Arellano et al. (2017) and Guvenen et al. (2016), discussed above, it includes Geweke and Keane

(2000), Lillard and Willis (1978), Bonhomme and Robin (2009), Meghir and Pistaferri (2004), Blundell,

Graber and Mogstad (2015), Browning, Ejrnaes and Álvarez (2010), and Altonji, Smith and Vidangos
(2013). Recent developments are discussed in Meghir and Pistaferri (2011).
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can help to explain the emergence of super-rich people. Karahan and Ozkan (2013) study

the implications of age-dependent persistence and variance of shocks. Civale, Dı́ez-Catalán

and Fazilet (2016) study the implications of skewness and kurtosis for the aggregate capital

stock in an economy à la Aiyagari (1994).

The rest of the paper is organized as follows. Section 2 describes the main features of

the data on earnings dynamics for both individuals and households. Section 3 details the

methods we use to estimate the canonical and nonlinear earnings processes and their impli-

cations. Section 4 explains the discretization procedure we propose to tractably introduce

rich nonlinear earnings dynamics in a quantitative life-cycle model. Section 5 presents the

model and its calibration. Section 6 discusses the consumption, wealth, and welfare impli-

cations of the two earnings processes that we consider, and decomposes the determinants of

their differences. Section 7 concludes. Appendix A discusses key features of the PSID data,

our sample selection, and earnings definition. Appendix B explains the procedure we use to

compute the variances of earnings and consumption by age. Appendix C details the fit of

our nonlinear earnings process to important features of the data and shows the robustness

of our results to alternative discretization procedures.

2 Earnings data and their features

Recent empirical literature has called into question the established view that (log-)earnings

dynamics are well approximated by a linear model of which the canonical random-walk per-

manent/transitory model (Abowd and Card, 1989) with normal innovations is a popular

example. Linear models imply that persistence and other second and higher moments are

independent of earnings histories. Instead, Guvenen et al. (2016) and Arellano et al. (2017)

document that, contrary to the implications of the canonical model, individual pre-tax earn-

ings display both substantial deviations from log-normality and non-linearity.

6



Guvenen et al. (2016) use confidential Social Security Administration (W2) tax data to

establish these facts. The W2 data set has both advantages and disadvantages compared to

the PSID data (and household survey data sets more generally). Regarding its advantages,

the W2 data set has a large number of observations, is less likely to be contaminated by

measurement error, and is not affected by top-coding and differential survey responses. Thus,

it could provide better information on the top earners to the extent that they do not respond

to surveys but do pay taxes on all of their earnings. An important disadvantage of the W2

data set is that it is collected at the individual level and lacks the information to identify

households and thus to construct household earnings.

The latter is an important shortcoming. In the U.S., the majority of adults are married,

95% of married couples file their income taxes jointly, and taxation of couples and singles is

different. Therefore, one needs to know the earnings of both people in a household in order

to compute disposable earnings. In this respect household survey data sets that keep track of

household structure, like the PSID, have a distinct advantage. This is particularly important

if, as we do here, one wants to understand the implications of earnings risk for consumption

insurance, which requires taking into account that households and taxes provide insurance

against earnings shocks. For such a purpose, disposable household earnings is the relevant

variable of interest.

The data used in this paper are from the Panel Study of Income Dynamics (PSID), 1968-

1992. Our sample consists of households who are in the representative core sample, whose

head is between the ages 25 and 60. Given the paper’s focus on the implications of earnings

risk for consumption insurance, our main variable of interest is disposable, household labor

earnings, although we also discuss the properties of individual, pre-tax labor earnings for the

purpose of comparison with some closely related work (e.g. Arellano et al., 2017; Guvenen

et al., 2016).

Disposable, household labor earnings are defined as the sum of household labor income
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Figure 1: Standard deviation, skewness, and kurtosis of male pre-tax earnings growth in the PSID
(top panel) and W2 (bottom panel)

and transfers, such as welfare payments, net of taxes paid. 7

We adjust our earnings measure for demographic differences by regressing log earnings on

year and age fixed effects and family composition. We use the residuals from these regressions

in the analysis below.

2.1 Individual pre-tax earnings in the PSID and the W2 data

We now turn to comparing the properties of individual pre-tax earnings data in the PSID

with those in the W2 data reported by Guvenen et al. (2016).

Figure 1 compares the second to fourth moments of the W2 data and the PSID. The top

panel of Figure 1 plots the conditional standard deviation, skewness and kurtosis (measured

as third and fourth standardized moments) of individual pre-tax log earnings growth in the

PSID by age and decile of previous earnings.8 The bottom panel of the same figure, taken

from Guvenen et al. (2016), reports the same moments, by age and percentile of previous

7Appendix A contains a more detailed description of the PSID data we use, our definition of household
earnings and how we estimate taxes on labor following Guvenen and Smith (2014).

8For comparability with Guvenen et al. (2016), we report moments for households whose head is a male.
All moments are very close to those including female head of households.
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earnings, for their W2 data.

Comparing these two sets of figures shows that, overall, the moments in the PSID data

are both qualitatively and quantitatively close to those computed from the W2 data. More

specifically, the conditional standard deviation of individual pre-tax log earnings growth is

U-shaped across all age groups, declining until the 40th percentile and increasing again from

the 90th onwards. The increase is more pronounced in the W2 for the top percentiles likely

reflecting the coarser partition of the distribution in the PSID data. The most notable

difference is the much higher variance at all percentiles above the 20th in the W2 data.

The figures also show that in both datasets individual pre-tax log earnings growth has

strong negative skewness and very high kurtosis, and that these moments depend both on

age and previous earnings. The skewness is more negative for individuals in higher earnings

percentiles and for individuals between 35 and 45 years of age. This indicates that individuals

face a larger downward risk as they approach middle age.9 The comparison of the implications

of the two data sets also reveals that, if anything, there is more negative skewness in the

PSID data than in the W2 data, except perhaps at the lowest earnings percentiles.

The kurtosis of individual pre-tax log earnings growth is hump-shaped by earnings per-

centile, and increases until age 35-45 to then decrease thereafter. Even for kurtosis, the

maximum value is higher in the PSID, 40, against 30 in the W2 data (compared to 3 for a

standard normal distribution).

The top and bottom panels of Figure 2 reveal that the levels and profiles of skewness and

kurtosis of individual pre-tax log earnings growth are similar in the two datasets also when

looking at report robust measures that exclude outliers (Kelly skewness and Crow-Siddiqui

kurtosis). The main difference is a higher level of kurtosis in the W2 data once the outliers

have been discounted.

Taken together, these moments provide strong evidence against the standard assumption

of a log-normal and linear earnings process in the PSID data as well as the W2 data for

9Graber and Lise (2015) account for this kind of earnings behavior in the context of a search and matching
model with a job ladder.
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Figure 2: Kelly skewness and Crow-Siddiqui kurtosis of male pre-tax earnings growth in the PSID
(top panel) and W2 (bottom panel)

individual pre-tax log earnings growth.

2.2 Individual pre-tax and household disposable earnings in the

PSID

Now that we have shown that the implications of the W2 and PSID data for nonlinear

earnings dynamics are remarkably similar, we turn to contrasting the properties of individual

pre-tax and disposable household earnings in the PSID.

Figures 3 and 4 compare the relevant moments for individual pre-tax log earnings growth

(top panel) versus disposable household log earnings growth (bottom panel) in the PSID.

Comparing the two sets of figures reveals that, as one might have expected, disposable

household earnings display much lower variance, skewness, and kurtosis. More specifically,

the standard deviation of disposable household earnings is 0.8 times as large at the lower

end of the distribution of previous earnings, the skewness is half as large at the higher end

of the distribution of previous earnings, and the kurtosis is half as large at its peak. Thus,

households and taxes perform an important insurance role in buffering individuals from pre-
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Figure 3: Standard deviation, skewness, and kurtosis of male, pre-tax log earnings growth (top
panel) and disposable household log earnings growth (bottom panel) in the PSID.

tax earnings changes (as shown by Blundell, Pistaferri and Saporta-Eksten (2016)). This

has to be taken into account when considering the economic implications of earnings shocks.

The above discussion has shown that, even after taking into account the insurance implied

by pooling at the household level and the tax and welfare system, labor earnings display

features that contrast with the age-independence, normality and linearity (independence of

variance, skewness and kurtosis of previous earnings realizations) implied by the canonical

earnings process.

The same is true of another aspect on nonlinearity, nonlinear persistence, that has been

documented by Arellano et al. (2017) using pre-tax earnings from the PSID. Figure 5 shows

how this same feature is prominent also for disposable household earnings. It reports earnings

persistence as a function of both the previous- and current-earnings rank in our PSID sample.

In line with Arellano et al.’s (2017) findings, we also find that earnings persistence is lower

(about 0.6) when previous earnings are highest and the current earning shock is lowest and

when previous earnings are lowest and the current earning shock is highest (0.4).
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Figure 4: Kelly skewness and Crow-Siddiqui kurtosis of male, pre-tax log earnings growth (top
panel) and disposable household log earnings growth (bottom panel) in the PSID.
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3 Earnings processes and their estimation

3.1 Earnings processes

We start by introducing the canonical linear model of earnings dynamics used in macroeco-

nomics before presenting its nonlinear generalization in Arellano et al. (2017).

Consider a cohort of households indexed by i and denote by t = 1, . . . , T the age of the

household head. Let yit denote the logarithm of (residual) disposable household earnings for

household i at age t which can be decomposed as

(1) yit = ηit + εit, i = 1, . . . , N, t = 1, . . . , T

where η and ε are assumed to have an absolutely continuous distribution. The first compo-

nent, ηit, is assumed to be persistent and follows a first-order Markov process. The second

component, εit, is assumed to be transitory, have zero mean, be independent over time and

of ηis for all s.

The canonical (linear) model used in macroeconomics is described by

ηi,t = ρηi,t−1 + ζit,(2)

ηi1
id∼ N(0, ση1), ζit

iid∼ N(0, σζ), εit
iid∼ N(0, σε).(3)

Thus, the persistent component ηit is an autoregressive process of order one with the inno-

vation ζit independent of ηi,t−1, while the transitory component εit is white noise.

Equations (2)-(3) impose three types of restrictions

1. Age-independence (stationarity) of the autoregressive coefficient ρ and of the shock

distributions, which imply age-independence of the second and higher moments of the

conditional distributions of both the transitory and the persistent component. This is

clearly at odds with the strong age-dependence in figures 1-4.
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2. Normality of the shock distributions, which is inconsistent with the negative skewness

and high kurtosis discussed above.

3. Linearity of the process for the persistent component. Linearity implies: (a) the addi-

tive separability of the right hand side of equation (2) into the conditional expectation—

the first addendum—and an innovation ζit independent of ηi,t−1, and (b) the linearity

of the conditional expectation in ηi,t−1. Under separability, deviations of ηit from its

conditional expectation are just a function of the innovation ζit. As a consequence, all

conditional centered second and higher moments are independent of previous realiza-

tions of η. This is clearly inconsistent with the dependence of the moments reported in

figures 1-5 on previous earnings realizations.

The evidence discussed in Section 2.1 is what motivates us to consider a more general process

that relaxes the above three restrictions while maintaining the first-order Markov assumption

for η. The question of how to easily introduce a richer and yet tractable earnings process in

a structural model is non-trivial and part of what we propose in this paper.

We proceed in two steps. First, we use the quantile-based panel data method proposed by

Arellano et al. (2017) to estimate a non-parametric model that allows for age-dependence,

non-normality and nonlinearity, and that can be applied in datasets of moderate sample

size like the PSID. This step gives us quantile functions for two components of earnings, a

persistent one and a transitory one. Second, we use the two quantile functions to simulate

histories for the two earnings components and proceed to estimate, for each of them, a

discrete Markov-chain approximation, which can then be easily introduced in a structural

model (the latter is discussed in detail in Section 4).

Let Qz(q|·), the conditional quantile function for the variable z, denote the qth conditional

quantile of z.10 The process for η can be written in a very general form by replacing equation

10Intuitively, the conditional quantile function is the inverse of the conditional cumulative density function
of the variable z mapping from the (0, 1) interval into the support of z. Namely, zq = Qz(q|·) satisfies
P [z ≤ zq|·] = q, where P [·|·] denotes the conditional probability.
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(2) with

(4) ηit = Qη(vit|ηi,t−1, t), vit
iid∼ U(0, 1), t > 1.

Intuitively, the quantile function maps random draws vit from the uniform distribution over

(0, 1) (cumulative probabilities) into corresponding random (quantile) draws for η. In the

linear case in equation (2) the quantile function specializes to the linearly separable form

Qη(vit|ηi,t−1, t) = ρηi,t−1 + φ−1(vit;σζ), where φ−1(vit;σζ) is the inverse of the cumulative

density function of a normal distribution with zero mean and standard deviations σζ . So,

age-independence, normality and linearity can be seen as restrictions on the quantile function

in equation (4).

In particular, one way to understand the role of nonlinearity is in terms of a generalized

notion of persistence

(5) ρ(q|ηi,t−1, t) = ∂Qη(q|ηi,t−1, t)
∂ηi,t−1

which measures the persistence of ηi,t−1 when it is hit by a shock that has rank q. In the

canonical model, ρ(q|ηi,t−1, t) = ρ, independently of both the past realization of ηi,t−1 and of

the shock rank q. Instead, the general model allows persistence to depend both on the past

realization ηi,t−1, but also on the realization on the sign and magnitude of the shock to it.

Basically, in the nonlinear model shocks are allowed to wipe out the memory of past shocks

or, equivalently, the future persistence of a current shock may depend on future shocks.

Of course, a similar unrestricted representation can be used for the transitory component

εit and the initial condition η1, with the only difference that they are not persistent.
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σ2
ε σ2

η1 σ2
ζ ρ

0.0675 0.2363 0.0059 1

Table 1: Estimates for the canonical earnings process.

3.2 Estimating the canonical linear earnings process

We estimate the canonical process for residual earnings in equations (1)-(3) using GMM.11

Table 1 reports our results. As common in the literature, we find that the persistent com-

ponent has a unit root. For this reason, though we have allowed for individual fixed effects

at the estimation stage, their variance cannot be identified separately from the variance of

the initial condition σ2
η1 and we have normalized it to zero.

3.3 Estimating the nonlinear earnings process

Following Arellano et al. (2017), we parameterize the quantile functions for the three variables

as low order Hermite polynomials

Qε(q|ageit) =
K∑
k=0

aεk(q)ψk(ageit)(6)

Qη1(q|agei1) =
K∑
k=0

aη1
k (q)ψk(agei1)(7)

Qη(q|ηi,t−1, ageit) =
K∑
k=0

aηk(q)ψk(ηi,t−1, ageit)(8)

where the coefficients aik, i = ε, η1, η, are modelled as piecewise-linear splines on a grid

{q1 < . . . < qL} ∈ (0, 1).12 The intercept coefficients ai0(q) for q in (0, q1] and [qL, 1) are

specified as the quantiles of an exponential distribution with parameters λi1 and λiL.

If the two earnings components εit and ηit were observable one could compute the poly-

nomial coefficients simply by quantile regression for each point of the quantile grid qj. To

11Appendix A.3.4 provides more information about our estimation method.
12Following Arellano et al. (2017), we use tensor products of Hermite polynomials of degrees (3,2) in ηi,t−1,

and age for Qη(q|ηi,t−1, ageit) and second-order polynomials in age for Qε(q|ageit) and Qη1(q|agei1).
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Figure 6: Age dependence of second moments: nonlinear vs canonical process. Top left, standard
deviation of the innovation to the persistent component. Top right, standard deviation of the
transitory shock. Bottom left, autocorrelation of the persistent component. Bottom right, cross-
sectional variance of log earnings.

deal with the latent earnings components, the estimation algorithm starts from an initial

guess for the coefficients and iterates sequentially between draws from the posterior distribu-

tion of the latent persistent components of earnings and quantile regression estimation until

convergence of the sequence of coefficient estimates.

3.4 Comparing the implications of the nonlinear and canonical

earning processes

To understand the economic implications of the nonlinear and canonical earnings processes,

it is useful to compare their implications in terms of (a) age-dependence of second moments;

(b) non-normality; (c) nonlinearity.

Starting from the age-dependence of second moments, the upper panel of Figure 6

plots the age profile of the standard deviations of the shocks to the persistent and transitory
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components of earnings. Both are age-independent by construction in the canonical process.

The standard deviation of shocks to the persistent component is substantially higher for

the nonlinear process and follows a U-shaped pattern by age. In contrast, the standard

deviation of the transitory component of the nonlinear process displays little age variation

and is lower in the nonlinear than in the canonical model. The bottom left panel of Figure 6

reports the age-profile of the first-order autocorrelation of the persistent earnings component

for the two processes. In the nonlinear earnings process it is lower than in the canonical

case for all ages, but it does increase between age 25 and 45. Given these differences, it

is not surprising that the nonlinear process provides a substantially better fit of the age

profile of the cross-sectional earnings dispersion, which we display in the bottom right panel

of Figure 613. More specifically, the canonical earnings process cannot capture the convex

shape of the cross-sectional variance of earnings by age while the nonlinear process provides

an extremely close fit, thanks to the combination of increasing persistence and declining

variance of the persistent component over the ages 25 to 45. It is also apparent that the

canonical model requires a low variance of the persistent shocks relative to the transitory

ones to match the relatively low rate of growth of the cross-sectional variance of earnings

over the life-cycle. Figure 7 displays more evidence on age-dependence, which also manifests

itself in the skewness and kurtosis of the shocks.

Turning to non-normality, Figure 7 reports skewness and kurtosis for the innovation to

the transitory (top panel) and persistent component of earnings (bottom panel) by age and

highlights that the earnings data display deviations from normality (the turquoise line) by

age. However, they also highlight limited skewness but much larger kurtosis than a normal

distribution.

Turning to nonlinearity, Figure 8 plots the standard deviation of shocks to the inno-

vation to the persistent component of earnings by previous earnings, while the right panel

plots the persistence measure in equation (5)—namely the correlation between the percentile

13See Appendix B for details on the computation of this variance.
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Figure 7: Skewness and kurtosis (by age) of the innovations to (a) the transitory component of
earnings (top) and (b) the persistent component of earnings (bottom).

of ηt−1 and of the innovation to it—averaged by age. In the right panel of this figure, we do

not plot the persistence of the canonical model (which is constant at 1) for picture clarity.

These two panels clearly illustrate that the constant variance and persistence implied by the

canonical process are strongly at odds with the highly nonlinear patterns in Figure 8 and

the features of the observed data.

4 The discretized nonlinear earnings process

To use the estimated process (1)-(3) in the life-cycle model, we discretize it using an age-

dependent Markov chain.

We start by simulating a large set of histories for the persistent and transitory component

of earnings. For each component in the simulated sample, we estimate a Markov chain of

order one, with age-dependent state space Zt = {z̄1, . . . , z̄N}, t = 1, . . . , T and an age

dependent transition matrices Πt, of size (N × N). That is, we assume that the dimension

N of the state space is constant across ages but we allow the set of states and the transition
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Figure 8: Standard deviations of persistent shocks by previous earnings (left) and nonlinear persis-
tence of the persistent component, by quantile of previous earnings and quantile of shock received
in the current period (right).

matrices to be age-dependent.

We determine the points of the state-space and the transition matrices at each age in the

following way.

1. At each age, we order the realizations of each component by their size and we group

them into N bins. Due to the limited sample size of the PSID, we want to strike a

balance between a rich approximation of the earnings dynamics by earnings level (a

large number of bins) and keeping the sample size in each bin sufficiently large. In our

main specification we report the results for bins representing deciles, with the exception

of the top and bottom deciles, that we split in 5. Thus, bins 1 to 5 and 14 to 18 include

2% of the agents at any given age, while bins n = 6, . . . , 13 include 10% of the agents

at any given age. This implies a total of 18 bins.

2. The points of the state space at each age t are chosen so that point znt is the median in

bin n at age t. Kennan (2006) proves that setting the gridpoint at the median of the

bin (in the specific case of equally-sized bins) and attributing a weight of 1/N to each

of the N bins constitutes the best discrete approximation of an arbitrary distribution.

3. The initial distribution at model age 0 is the empirical distribution at the first age we

consider.
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4. The elements πtmn of the transition matrix Πt between age t and t+1 are the proportion

of individuals in bin m at age t that are in bin n at age t+ 1.

Allowing for an age-dependent Markov chain allows to capture the non-constancy of

moments of the earnings distribution over the life-cycle. The flexible form of the transition

matrix allows to capture nonlinearities as a function of current earnings. The use of this

kind of transition matrices is well established in the literature. Krueger and Perri (2003)

use them to study the welfare consequences of an increase in earnings inequality. Studies of

income mobility (e.g. Jäntti and Jenkins (2015)) and consumption mobility (e.g. Jappelli

and Pistaferri (2006)) rely on them to analyze intra- or inter- generational mobility across

relative rankings in the distributions. In this paper, instead, we are interested in capturing

movements across earnings levels.

5 The model

The model is based on Huggett (1996)’s paper. There is no aggregate uncertainty. The

economy is populated by overlapping generations of individuals who are equal at birth but

receive idiosyncratic shocks to earnings throughout their working lives. We restrict attention

to stationary equilibria.

5.1 Demographics

Each year, a positive measure of agents is born. People start life as workers and work until

retirement at age T ret. The population grows at rate n.

An agent of age t faces a positive probability of dying (1− st) by the end of the period,

where st denotes the one-period survival probability for an agent of age t. Agents die with

probability one by age T.
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5.2 Preferences and technology

Preferences are time separable, with a constant discount factor. The intra-period utility is

CRRA: u(ct) = c1−σ
t /(1− σ).

Agents are endowed with one indivisible unit of labor which they supply inelastically at

zero disutility. Their earnings are subject to random shocks and follow the process described

by equations (1)-(3).

5.3 Markets and the government

Asset markets are incomplete. Agents cannot borrow and can only invest in the risk-free

asset at an exogenous rate of return r. There are no annuity markets to insure against the

risk of premature death. As a result, there is a positive flow of accidental bequests in each

period. We assume these are lost to the economy and thus are not received by any individual

or the government.

Retired individuals receive an after-tax pension p from the government until they die.

The pension is a function of the last realization of their earnings.

5.4 The household’s problem

In any given period, a t-year old agent chooses consumption c and risk-free asset holdings

for the next period a′, as a function of the relevant state vector. The optimal decision rules

for consumption and savings solve the dynamic programming problems described below.

(i) Agents of working age t < Tret solve the recursive problem

V (t, z, η) = max
c,a′

{
u(c) + βstEtV (t+ 1, z′, η′)

}
(9)

s.t. a′ = z − c, a′ ≥ 0,

z = (1 + r)a+ η + ε,
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where z denotes total cash at hand.14

(ii) From the retirement age T ret to the terminal age T agents no longer work and live off

their pension p and accumulated wealth. Their value function satisfies:

W (t, z, p) = max
c,a′

{
u(c) + stβW (t+ 1, z′, p)

}
(10)

s.t. a′ = z − c, a′ ≥ 0,

z = (1 + r)a+ p.

The agent’s pension p enters the state vector because it is a function of the agent’s

earnings pre-retirement. The terminal value function W (T, a, p) is equal to zero (agents

do not derive utility from bequests).

The definition of equilibrium is standard.

5.5 The model calibration

The model period is one year. Agents enter the labor market at age 25. The retirement and

terminal ages are T ret = 60 and T = 85. The population growth rate n is set to 1.2% per

year. The survival probabilities st are from Bell, Wade and Goss (1992).

The coefficient of relative risk aversion is set to 2, a standard value. The risk-free rate

is 6% and the discount factor β is calibrated to match a wealth to income ratio of 3.1. It

equals 0.944 under the canonical earnings process and 0.927 under the nonlinear one.

As described in Section 2, our earnings processes are based on disposable earnings, hence

we do not explicitly include taxation in the model.15 In both cases, we impose the same

average income profile, which we estimate from our PSID sample.

We discretize the two earnings processes as follows. In the case of the canonical earnings

14The choice of state vector does not require separately keeping track of the transitory component of
earnings ε which is independently distributed over time.

15Appendix A provides more details about the earnings definition.

23



process, whose estimates we report in Table 1, we discretize the persistent component using

the modified version of the Rouwenhorst method for non-stationary processes proposed by

Fella et al. (2017). We use 18 gridpoints at each age. We use 8 grid for the transitory, i.i.d.

component. In the case of the nonlinear earnings process, we apply the procedure described

in Section 4.

The social security pension benefit p are a function on the last realization of disposable

earnings yret = ηret + εret. The function is meant to mimic the US system and is based on

Kaplan and Violante (2010). Namely, the replacement rate is: (a) 90 percent for the fraction

of the last earnings below 0.18 of cross-sectional average gross earnings, (b) 32 percent for the

fraction between 0.18 and 1.10, and (c) 15 percent for the fraction above 1.10. Benefits are

then (very slightly) scaled up proportionately so that a worker that makes average earnings

is entitled to a 45 percent replacement rate.

6 Consumption, wealth, and welfare implications

This section studies the model’s implications for consumption under the canonical and non-

linear earnings processes and compares them to U.S. consumption data. To do so, we first

analyze the growth in consumption dispersion over the working life and then turn to mea-

suring self-insurance insurance as proposed by Blundell et al. (2008). Finally, we compare

the implications of these earnings processes for wealth inequality and welfare.

6.1 Consumption inequality over the working life

We start by studying the rise in cross-sectional consumption dispersion over the lifecycle.

Following Deaton and Paxson (1994) and Storesletten, Telmer and Yaron (2004b), it is

common to interpret it as a measure of risk sharing.

A number of studies analyze the variance of (log) equivalized, household consumption in

the U.S. by regressing its variance across households in different age-year groups on age and

24



25 30 35 40 45 50 55 60

age

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

va
ria

nc
e 

of
 lo

g 
co

ns
um

pt
io

n 
(v

ar
 in

 t 
- 

va
r 

at
 2

5)

SCF Data
Canonical
NL process

Figure 9: Growth in the cross-sectional variance of log consumption, data and implications of two
earnings processes.

time dummies or age and cohort dummies. The coefficients of the age dummies are then used

as a measure of the age profile of cross-sectional consumption dispersion. The green line in

Figure 9 plots the age profile of the cross-sectional variance of (log) equivalized nondurable

consumption between ages 25 and 60 computed from the CEX during the period 1980-2007,

controlling for time effects and using the same data and procedure as Heathcote, Perri and

Violante (2010). Given the relatively small sample size, we group observations in 5-year age

groups. The series are normalized so that each starts at zero at age 27, which is the midpoint

of the first 5-year age group (25–29). The dashed and solid lines plot the increase in the

variance of consumption generated by the model under the canonical and nonlinear earnings

processes, respectively.16

Because the increase in consumption inequality over the working period is informative

about peoples’ ability to insure against earnings risk, it provides a useful benchmark against

which to assess the ability of the model to capture the degree of insurability of earning shocks

in the data. The canonical earnings process fails to match both the overall growth and the

shape of the profile of consumption dispersion. Its overall growth rate is more than double

that in the data and its profile is monotonically increasing. Conversely, in the data, con-

sumption dispersion dips between age 25 and 47. The nonlinear process, instead, matches

16We perform this comparison recalibrating beta so as to keep the wealth to income ratio constant across
earnings processes.
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well the overall growth in consumption dispersion and captures the non-monotonic pattern

in the first part of the life cycle. The one part that it misses is the flattening out after age

47. The finding that the estimated richer earnings processes implies a profile of consump-

tion dispersion in line with the data is remarkable. Standard models with linear earnings

processes (see Storesletten et al. (2004a)) generate a profile similar to the one implied by the

canonical earnings process in Figure 9, and thus overstate the rate of growth of consumption

dispersion, unless the process for earnings has an idiosyncratic deterministic time trend, or

Heterogeneous Income Profile (Guvenen, 2007; Primiceri and Van Rens, 2009). Intuitively,

heterogeneity in individual, life-cycle trend growth generates a substantially smaller rise in

consumption dispersion because the individual-specific trend growth is known to consumers

but not to the econometrician. Huggett et al. (2011) show that heterogeneity in earnings

growth rates can be also generated by the endogenous response of human-capital investment

over the life cycle to heterogeneity in initial human capital levels.

Our findings suggest a novel explanation: the age profile of cross-sectional consumption

dispersion can be generated by the response of saving to the richer earnings dynamics that we

consider, without resorting to heterogeneity in income profiles. It should also be noted that

allowing for heterogeneity in income profiles cannot generate (cfr. Guvenen, 2007; Primiceri

and Van Rens, 2009) the strong non-monotonicity that characterizes the consumption data

(green line in Figure 9).

As we have discussed in Section 3.1, our rich earnings process deviates from the canonical

linear process along three main dimensions: (1) age-dependence, (2) non-normality, and

(3) nonlinearity. To understand the contribution of each of these factors to the growth of

consumption dispersion over the life cycle, we conduct a series of counterfactual experiments,

simulating the model under progressively richer stochastic processes for earnings.

We start by restricting the functional form of the earnings process to be the sum of an

AR(1) plus a white noise component, as in the canonical process, but allowing for both

age-dependent persistence and variance of shocks (as in Karahan and Ozkan (2013)), as well
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as non-normality of their distributions. Compared to the fully general nonlinear earnings

process, this one imposes linearity in ηi,t−1; namely, that persistence and other second and

higher conditional moments are independent of ηi,t−1. We estimate this process on our

PSID data, following the procedure described in Section 3.1 for the nonlinear process, but

restricting the quantile function for the persistent component in equation (4) to be linear in

its past value.

To further disentangle the effect of the age dependence of persistence and variance from

that of non-normality, we perform two set of simulations using the restricted estimates that

we have just described. In the first one, we simulate earnings using the estimated persistence

and variances but drawing shocks from a normal distribution. In the second experiment, we

simulate earnings using the estimated distribution (i.e. quantile function), that also allows for

non-normality. We discretize each of the resulting processes using the method in Section 4.

The recalibrated value of the discount factor equals 0.926 in the economy with normal shocks

and 0.927 in the other one.

Figure 10 plots the cross-sectional variance profiles reported in Figure 9, with the addition

of the two profiles implied by (a) only age-dependence and (b) age-dependence together with

non-normality.

The solid dark blue line in Figure 10 corresponds to the case of an age-dependent linear

process with normal innovations. Compared to the canonical case, allowing for age depen-

dence substantially improves the fit of consumption dispersion in the first part of the life

cycle, but counterfactually implies an even larger growth rate of consumption dispersion

from age 43 onwards. The net effect for the age-dependent earnings process is an overall rate

of growth in consumption dispersion between ages 25 and 60 that is three percentage points

higher than in the canonical case.

The intuition behind the above finding is the following. Allowing for age-dependence

implies that the estimated process for earnings matches the age-profile of the cross-sectional

earnings variance in the bottom right panel of Figure 6; namely, relatively flat until age
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Figure 10: Growth in the cross-sectional variance of log consumption. Contribution of (1) age-
dependence, (2) non-normality and (3) nonlinearity to the growth of the cross-sectional variance of
log consumption.

43 but growing at a rate substantially above its working-life average afterwards. The forces

underpinning this pattern are: (a) the U-shaped profile of the variance of the persistent com-

ponent of earnings; and (b) a persistence below one that increases until age 45 but flattens

out afterwards (see Figure 6). Compared to the canonical process with a unit root and con-

stant shock variance, the interaction of these two forces implies that self-insurance through

precautionary saving is more effective and, as a consequence, the growth in consumption dis-

persion is lower until middle age. In the second half of the working life, though, the increase

in the variance of the persistent earnings shocks reduces the ability to self-insure and results

in a substantial increase in consumption dispersion. This is confirmed by comparing the age

profile of average wealth reported in the left panel of Figure 11 under the canonical (turquoise

curve) and age-dependent earnings process with normal shocks (blue curve). Though the

aggregate wealth-to-earnings ratio is the same in the two economies, average saving is higher

before and lower after age 50 in the economy with age-dependent earnings process.

We now turn to the linear process with the same (age-dependent) first and second mo-

ments as above but with non-normal innovations. The dashed pink line in Figure 10 plots
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the associated age profile of variance. Compared to the normal case, the rate of growth

of the consumption variance is everywhere lower. The difference is particularly pronounced

towards the end of the working life. To understand the mechanism at work, it is important

to understand the impact of negative skewness and kurtosis on precautionary saving and

the wealth distribution. Civale et al. (2016) study the issue in an Aiyagari economy and

show that, everything else equal, negative skewness reduces both the cross-sectional mean

and dispersion of wealth while kurtosis increases both.

The effect of higher kurtosis is in line with intuition. By increasing the probability of

tail events higher kurtosis increases precautionary saving for all agents and therefore the

mean and variance of the wealth distribution. The effect of negative skewness, though, is

less intuitive. Basically, for a distribution to have higher negative skewness keeping the other

moments constant, some probability mass has to move towards the top of the distribution.

Wealthy agents are not sensitive to left skewness but, confronted with a higher probability of

positive shocks, save less. Conversely, agents who are close to the borrowing constraint are

more sensitive to skewness than to the higher probability of positive shocks and save more.

In the aggregate, the response of wealth-rich agents dominates that of the wealth-poor and

average wealth falls. More intuitively, so does the variance of wealth holdings. Comparing

the solid blue and dashed red lines in Figure 11 reveals that, in our model, the net effect

of negative skewness and kurtosis hardly affects the life-cycle profile of average wealth (left

panel), but substantially reduces the rate of growth of the variance of wealth holdings (right

panel) compared to the case with normal shocks. This fall in wealth dispersion accounts for

the fall in consumption dispersion in Figure 10 when skewness and kurtosis of shocks are

introduced.

Finally, comparing the dashed pink and red solid lines in Figure 10 shows allowing for

nonlinearity brings the overall fit of life-cycle inequality closest to the data, compared to all of

the earnings processes that we consider. Figure 8 provides insight into the effects of earnings

nonlinearities. For individuals with previous earnings realizations below the median, positive
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Figure 11: Cross-sectional average wealth (left) and variance of wealth holdings (right), by age and
earnings process.

shocks (above the median) reduce the persistence of previous earnings. This implies that the

memory of previous bad realizations is erased and effectively reduces earnings risk, even at a

constant variance. Intuitively, in the full nonlinear process it is much more likely to change

from a history of bad realizations to a history of good earnings realizations by means of one

single shock (that could be thought of as joining a new company, or starting a new career).

In the canonical earnings process, the fact that earnings are a random walk and that all past

realizations are permanent makes such a transition much more difficult. This effect is present

in reverse, though much less pronounced, for individuals with last earnings realizations in the

top two deciles for which very negative shocks (below the first percentile) reduce earnings

more than additively (this could be thought of as health shocks, for instance). The net

effect is to increase the overall insurability of bad shocks and reduce growth of consumption

dispersion over the life-cycle, bringing it much closer to the data, particularly for ages up to

50.

None of our earnings processes captures the flattening out in the variance of consumption

that we measure after age 47 because the variance of earnings in the data keeps increasing.

Our structural model misses two aspects of the data that could be important in this regard.

The first one is early retirement. For retirees, income is mainly composed of Social Security
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payments and does not vary much. Thus, consumption is no longer exposed to earnings

fluctuations and medical expense risk is not very high until well into retirement age, as

shown by De Nardi, French and Jones (2010). The second one is the role of durables and

housing, that become substantial by that age and might affect both measured consumption

(we only look at nondurable consumption) and one’s ability to self-insure.

6.2 Measuring self-insurance against earnings shocks

An alternative, and possibly more intuitive, measure of self-insurance is related to the extent

of pass through from shocks to disposable earnings onto consumption. Blundell et al. (2008)

propose estimating consumption insurance coefficients on persistent and transitory earning

shocks by positing the following equation

(11) ∆cit = (1− ψp)νit + (1− ψtr)εit + ξit,

where νit = ηit−E[ηit|t, ηi,t−1] denotes the innovation to the persistent component of earnings

and εit the transitory component. The insurance coefficients with respect to persistent (ψp)

and transitory (ψtr) shocks

(12) ψp = 1− cov(∆cit, νit)
var(νit)

, ψtr = 1− cov(∆cit, εit)
var(εit)

capture the fraction of the variance of either type of shock that does not translate into

movements in consumption. Similarly, one can compute age-specific insurance coefficients

ψpt , ψ
tr
t where moments are computed only over agents of age t.

To compute the insurance coefficients implied by our model, we simulate a panel of

working lives under both the benchmark and nonlinear processes and compute the associated

consumption cit and insurance coefficients in equation (12) on the simulated data.

Computing the coefficients in equation (12) within the model is straightforward since the

shocks are observable. In contrast, estimating them from the data requires identifying the two
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types of earning shocks at the individual level. Blundell et al. (2008) propose an identification

strategy under the assumption that earnings follow the canonical linear process (1)-(3). The

estimators for the insurance coefficients based on the BPP methodology are given by

(13) ψpBPP = 1− cov(∆cit, yi,t+1 − yi.t−2)
var(yi,t+1 − yi.t−2) , ψtrBPP = 1− cov(∆cit,∆yi,t+1)

var(∆yi,t+1) .

As pointed out by Kaplan and Violante (2010), comparing the coefficients in equation (13)

estimated within the model to the estimates in Blundell et al. (2008) conveys information

on the degree of shock insurability in the model relative to the data.

The coefficients in equation (13), though, may provide biased estimates of the true coef-

ficients in equation (12) to the extent that the identification assumption on which they are

based is violated. The assumption can be violated for two reasons. First, if earnings do not

follow the canonical linear process in equation (1)-(3). This is obviously true in the more

flexible cases we consider. Second, as pointed out by Kaplan and Violante (2010), even if

earnings follow a canonical linear process the ψpBPP estimator may be biased whenever con-

sumption does not equal permanent income, as is the case in the presence of a precautionary

saving motive.17 For this reason, we compute both types of coefficients. Table 2 reports

their values under the alternative income processes.

Columns 1 and 2 in Table 2 report the coefficients in equation (13). As a reference, the

first row reports the estimates by Blundell et al. (2008)—respectively 0.36 for permanent and

0.95 for transitory shocks—on the PSID using similar data to ours.18 The corresponding

values for the model, when earnings follow the canonical earnings process, are 0.14 and

0.88, which confirms the finding by Kaplan and Violante (2010) that the extent of self-

insurance of permanent earnings shocks implied by the model is substantially lower than

17Formally, the bias is present whenever present consumption responds to past persistent income changes,
which implies that cov(∆cit, yi,t+1−yi.t−2) is a biased estimator of cov(∆cit, νit). Kaplan and Violante (2010)
show that this is indeed the case in a life-cycle model similar to ours with a canonical earnings process and
occasionally-binding borrowing constraints.

18Blundell et al. (2008) conduct their analysis using disposable household earnings for continuously married
coupled headed by a male head.
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Process/Coefficients ψpBPP ψtrBPP ψp ψtr

Data: BPP (2008)

Canonical (S.E. in parenthesis) 0.36 0.95 – –

(0.09) (0.04)

Model

Canonical 0.14 0.88 0.30 0.91

Nonlinear process 0.43 0.81 0.46 0.89

Normal, age-dependent 0.41 0.82 0.46 0.88

Non-normal, age-dependent 0.41 0.82 0.45 0.84

Table 2: Insurance coefficients

the degree of insurance in the data. On the other hand, the estimates for the model with a

nonlinear earnings process imply an insurance coefficient for persistent shocks of 0.46 which

is substantially more in line with, and even marginally larger than, the BPP estimate.

From a qualitative perspective, this result is very much in line with our findings in Section

6 that agents are more able to self-insure against income fluctuations when earnings follow

the nonlinear process than in the canonical case. Interestingly, our finding that allowing for

a richer earnings process implies a substantially different estimate of the insurance coefficient

for persistent shocks is confined to disposable household earnings. Using the same earnings

process we use here, Arellano et al. (2017) estimate an average insurance coefficient for

persistent shocks to pre-tax household earnings between 0.6 and 0.7 which is in line with an

estimate of 0.69 in Blundell et al. (2008) under the identifying assumption that earnings follow

the canonical process. As discussed in Blundell et al. (2008), the nearly double magnitude

of the insurance coefficients with respect to pre-tax rather than disposable earnings is due to

the of insurance implied by the tax and transfer system.

Turning to the insurance coefficient for transitory shocks in column 2, it may seem sur-

prising that it is higher under the canonical than under the nonlinear earnings process. As

pointed out in Kaplan and Violante (2010), though, the intuition is that the increased insur-

ability of persistent shocks induces households to shift the use of savings from the smoothing

of transitory shocks to the smoothing of persistent shocks.
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Columns 3 and 4 in Table 2 report the estimates of the true insurance coefficients in

equation (12) within the model. Comparing them to the BPP estimates in columns 1 and

2 reveals that the downward bias of the insurance coefficient for persistent shocks implied

by the BPP procedure is sizeable (0.14 against 0.3) in the case of the canonical income

process but small (0.43 against 0.46) for the nonlinear process. The intuition is that, as

pointed out by Kaplan and Violante (2010), the bias is exacerbated in an economy in which

the borrowing constraint is occasionally binding. As discussed above, when earnings follow

the nonlinear process shocks are more insurable, and precautionary saving larger. For this

reason, the economy spends less time close to the borrowing constraint and the bias is lower.

Finally, the last two lines reports the same coefficient for the case with age dependence

and normal shocks and the one that also allows for non-normality. Comparing the three set

of estimates reveals that the feature that drives the better match of the insurance coefficient

for persistent shock estimated by BPP is essentially the age dependence of the earnings

process. This is consistent with the finding in Karahan and Ozkan (2013) that the (true)

insurance coefficient for persistent shocks in a life-cycle economy with an age-dependent

earnings process with normal shocks is 0.38.19

While Table 2 reports the average insurance coefficients, Figure 12 plots the true insurance

coefficient for persistent shocks ψpt at each age. The coefficients are increasing with age,

as: (a) wealth is accumulated; and (b) the fall in the residual working life reduces the

effective shock persistence. The degree of insurability at all ages but the last working age

is substantially higher under the nonlinear earnings process than under the canonical one.

For the same reason, the age profile of the coefficients is substantially flatter in the former

case. In line with the discussion above, most of the difference is due to the age-dependence

of earnings. It is only from age 45 onwards that the coefficients are marginally higher under

the nonlinear process than under the age-dependent earnings process with normal shocks.

19The earnings process used by Karahan and Ozkan (2013) is similar to our age-dependent process with
normal shocks. Their estimate of 0.38 for the true coefficient ψp is in the ballpark of our estimate of 0.46 in
Table 2.
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Figure 12: Partial insurance coefficients on persistent shocks, ψpt , by age

Percentage wealth in the top

Wealth

Gini 1% 5% 20% 40% 60% 80%

Data (SCF 1989) .79 30 54 81 94 99 100

Model: Canonical .62 9 27 63 85 96 99.5

Model: Nonlinear process .59 7 24 59 84 95 99.3

Table 3: Wealth distribution

6.3 Wealth

Table 3 compares the implied wealth distribution of the canonical and nonlinear earnings

processes with data from the U.S 1989 SCF (Kuhn and Ŕıos-Rull, 2015).

As known in the literature (see Quadrini and Ŕıos-Rull (2014), Cagetti and De Nardi

(2008), and De Nardi and Fella (2017)), the model with a canonical earnings process is

unable to generate the substantial level of wealth concentration that we observe in the data.

For instance, the top 1% of agents holds about 30% of total wealth in the data, while the

corresponding share is only holds 9% in the model. Comparing the second and third rows in

the table reveals that allowing for nonlinear earnings does not improve the fit of the wealth

the distribution. If anything it marginally reduces the degree of wealth concentration at the

35



Welfare cost

Canonical process 28.91%

Nonlinear process 27.35%

Table 4: Consumption measure of welfare costs

top.20 One may think that this may be due to the nature of the PSID data, which top-codes

earnings and does not oversample the rich. However, De Nardi et al. (2016) conduct a similar

exercise using synthetically-generated W2 Social Security Administration tax data, which do

not suffer from those top-coding and lack of oversampling, and they imply very similar results

for the concentration of wealth at the top. As pointed out by De Nardi and Fella (2017), non-

homothetic preferences for bequests, entrepreneurship, and medical-expense risk are crucial

for life-cycle models to be able to account for top wealth concentration.

6.4 Welfare

The differences in the evolution of the variance of log consumption and the pass-through of

income shocks to consumption show that income risk affects households in a different way

in the two economies. A natural question is to which extent these differences affect welfare.

To measure welfare, Table 4 displays the constant fraction of consumption that households

are willing to give up to live in a world with no income uncertainty; i.e., a world where

earnings are equal to the common and deterministic average earnings profile. We compute

this measure under the veil of ignorance (before people enter the labor market and draw the

first earnings realization) and, for comparability, we keep the discount factor the same for

both processes and fix it to its calibrated value for the nonlinear process.

The nonlinear process features larger variance of shocks, negative skewness and high

kurtosis, but also nonlinear persistence, that, as we have discussed in Section 6.1, improves

shock insurability. Viceversa in the canonical model, the lower variance of shocks at all

ages after the first one is counteracted by their high persistence (unit root) and the higher

20We target a wealth to income ratio of 3.1, but this has little effect on wealth concentration.
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variance of the initial condition. The net effect of all these forces is that overall risk is higher

under the canonical process. In particular, households be willing to give up 28.91% of their

consumption in every state to eliminate earnings risk under the canonical earnings process

compared to 27.35% under the nonlinear earnings process.

7 Conclusions

We estimate a richer stochastic process for household disposable earnings featuring a transi-

tory and persistent component and allowing for age-dependence, non-normality and nonlin-

earity. We use a standard life-cycle model with incomplete markets to compare the impli-

cations of our richer process to those of canonical permanent/transitory linear process with

age-independent, normally-distributed shocks. Our main findings are as following. Com-

pared to the canonical process, the richer process implies a much better fit of the growth in

cross-sectional consumption dispersion over the life cycle and a degree of self-insurance of

persistent earnings shocks in line with the empirical estimates in Blundell et al. (2008). It

also implies smaller welfare costs of earnings fluctuations. In terms of wealth inequality, we

find that the two earnings processes have similar implications, including at the upper tail of

the wealth distribution.
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Browning, Martin, Ejrnaes, Mette and Álvarez, Javier (2010), ‘Modelling income processes

with lots of heterogeneity’, Review of Economic Studies 77, 1353–1381.

Cagetti, Marco and De Nardi, Mariacristina (2008), ‘Wealth inequality: Data and models’,

Macroeconomic Dynamics 12(S2), 285–313.

Cagetti, Marco and De Nardi, Mariacristina (2009), ‘Estate taxation, entrepreneurship, and

wealth’, American Economic Review 99(1), 85–111.
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A Appendix: PSID data

A.1 The PSID

The Panel Study of Income Dynamics (PSID) follows a large number of U.S. households

over time and reports information about their demographic characteristics and sources of

income. The PSID was initially composed of two major subsamples. The first of them,

the SRC (Survey Research Center) or core subsample, was designed to be representative

of the U.S. population and is a random sample itself. The second, the SEO (Survey of

Economic Opportunity) subsample, was created to study the characteristics of the most

deprived households. Later, Immigrant and Latino subsamples were also added to the PSID.

From 1968 to 1997, the survey was yearly. After 1997, it started having a biennial

structure. We only consider the SRC or core subsample because the SEO oversamples the

poor. After dropping the SEO and Latino samples we are left with a random sample, which

makes computations simpler since weights are not needed (Haider, 2001) 21.

A.2 Sample selection

Since the model period is one year, we restrict ourselves to the yearly part of the survey,

and focus on the years 1968-1992. In our main results we do not consider the period 1993-

1997 because the procedure via which information was collected was substantially redesigned

(with the introduction of computer-based surveys) and there were changes in some of the

variable definitions we rely on (for instance, asset income of other family members is no

longer available, and wife labor income is redefined). We have verified that results are not

sensitive to including these five years.

Following standard practice in the literature, we only consider individuals between ages

25 and 60. This also allows us to have a relatively large amount of data per age group, which

21It must be taken into account that the weighting of our final dataset can be affected by attrition and by
the fact that we are neglecting observations of yearly income under $ 1500 (expressed in 2015 dollars)
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is necessary for our binning procedure.

Unlike many other papers, but similarly to Krueger, Mitman and Perri (2016) we consider

all households, whether or not male-headed. We do not impose any restrictions regarding

e.g. family composition or its changes, as we consider that, once we have properly equivalized

earnings, all remaining changes due to family composition shocks are also possible sources

of income risk that we wish to capture.

We deflate values to 2013 dollars, and only keep observations above $1500. This is also

in accordance with standard practice in the literature, where observations below a minimum

earnings threshold are dropped (De Nardi (2004) or Guvenen et al. (2016), for instance).

A.3 Income definition

Our main income definition is post-tax equivalized household earnings. We obtain it by com-

puting nonfinancial household earnings in the PSID, estimating and using a tax function to

predict post-tax earnings, and finally running a regression on the number of family members

for the purposes of equivalization.

A.3.1 Nonfinancial tax income

We construct nonfinancial pre-tax income closely following Guvenen and Smith (2014).

Namely, before the 1976 wave we construct it by subtracting head+wife taxable income

(which includes asset income) from total family income and then adding back earnings for

the head and the wife. Between 1976 and 1983, we construct it by subtracting asset income

of head and wife from total family income. Asset income is formed of farm income, business

income, rent and interests, with the addition of gardening and roomers income (from 1978).

Between 1984 and 1992, asset income of family members other than head and wife becomes

available, so we subtract that as well.

We keep top-coded observations, but drop the very small number (8) of households who,

probably due to measurement error, would have nonfinancial income below zero.
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A.3.2 Tax function

To obtain nonfinancial disposable income, we run a regression of the federal income tax

variable (which is available in the PSID until 1990) on nonfinancial income and its square,

and asset income and its square. This also follows Guvenen and Smith (2014). We use the

estimated coefficients to predict post-tax labor income.

A.3.3 Equivalization

We then regress log post-tax nonfinancial disposable income on year fixed effects and a

dummy for the number of family members in the household, and keep the residuals. Age

fixed effects are controlled for when we implement the Arellano et al. (2017) procedure, but

could otherwise be controlled for at this stage.

To finally implement the Arellano et al. (2017) procedure, we create a sample with all sets

of subsequent three-year observations (without replacement: once an observation in the PSID

sample is in a 3-year set in our sample we drop it). This implies that we are also dropping

all of those households that do not have three consecutive valid income observations in the

PSID.

A.3.4 Estimating the canonical earnings process

In Storesletten et al. (2004a) (and in many other papers in the literature, e.g. Krueger et al.

(2016)) the earnings process is estimated by fitting a parametric process to the variance of

earnings profile that we observe in the data. The standard way is to compute the variance

of earnings by age-cohort-year cells, and then get the coefficients of a regression of those

on either age and year or age and cohort. For consistence with our approach and with the

consumption data we rely on, we use the one that controls for year effects (see discussion

below).

We follow a GMM procedure in which we minimize the distance of the estimated process
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to the profile of variances and first-order autocovariances of earnings over the life cycle22.

The weighting matrix is the identity matrix.

The canonical earnings process in equations (1)-(3) implies (for t > 1)

(14) yit = ρt−1ηi1 +
t∑

j=2
ρt−jζij + εit

from which

(15) var(yit) = ρ2(t−1)σ2
η1 +

t∑
j=2

ρ2(t−j)σ2
ζ + σ2

ε .

and

(16) cov(yit, yi,t+1) = ρ2t−1σ2
η1 +

t∑
j=2

ρ1+2(t−j)σ2
ζ

follow, allowing to identify moments.

B Appendix: Computation of the variances of log earn-

ings and log consumption.

We estimate the canonical earnings process described in Section 3.2 by matching the variance

and first autocovariance of log earnings.

To compute the variance of log earnings, which we report in Figure 6, we use the procedure

described in Kaplan (2012) (Appendix C.3), controlling for year effects. More specifically,

we take log disposable and equivalized labor income ỹit, where i indexes the household and

22We describe in Appendix B how we compute these variances.
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t is the age of its head, and run the regression

(17) ỹit = β′tDt + β′dDd + yit,

where Dt and Dd are matrices with columns corresponding to a full set of age and year (date)

dummies, respectively. The vectors βt and βd are the corresponding coefficients and yit the

earnings residuals0.23

We compute the variance of yit by age group as

(18) V art(y) = 1
D

D∑
d=1

Nd,t∑
i=1

y2
it

Nd,t

 ,
where D is the number of years in the dataset, and Nd,t is the numerosity of each age-year

cell. This implies that the variance of earnings at age t weighs equally the corresponding

conditional variances of earnings in each year.

We also compute the variance of yit by age group controlling for cohort instead of year

effect, s using the coh01ort counterpart of equation (18)

(19) V art(y) = 1
K(t)

K(t)∑
k=1

Nk,t∑
i=1

y2
it

Nk,t

 ,
where K(t) is the number of cohorts containing individuals of age t and Nk,t is the numerosity

of each cohort-age cell.24 This approach weighs the conditional variances from each cohort

equally.

Under both approaches, we obtain very similar age profiles (Figure 13) and parameter

estimates for the canonical process (Table 5).

Turning to consumption, we compute the variance of log consumption using data from the

23As described in Appe0ndix A, we use the earnings residuals from equations (17) to estimate our earnings
processes.

24The residuals used in equations (18) and (19) are the same. Given that year, age and cohort are linearly
dependent, the residuals from equation (17) are the same that would obtain from projecting onto age and
cohort dummies.

47



0.35

0.40

0.45

0.50

0.55

30 40 50 60
Age

V
ar

ia
nc

e 
of

 lo
g 

ea
rn

in
gs

Cohort effects Year effects

Figure 13: Cross-sectional variance of log earnings over the life cycle, cohort effects vs year effects

σ2
ε σ2

η1 σ2
ζ ρ

Year effects 0.0675 0.2363 0.0059 1

Cohort effects 0.0675 0.2304 0.0059 1

Table 5: Estimates for the canonical earnings process: cohort vs. year effects

CEX for the period 1980-2007. Nondurable consumption includes food, clothing, gasoline,

household operation, transportation, medical care, recreation, tobacco, and education.

We perform our computations of the variance of consumption using two different methods.

First we apply to the same procedure proposed by Kaplan (2012) that we use for earnings.

Second, for comparability, we also compute it as in Heathcote, Perri and Violante (2010)

(HPV10). Figure 14 shows that the implied variances of consumption by age are very similar.

More specifically concerning our computations to mimic HPV10, we use (log) equivalized

nondurable consumption for households whose head is between ages 25 and 60 and form 5-

year age groups. More specifically, we first compute the variance of equivalized consumption

by age-cohort-year cells. The coefficients by age are then obtained by running a regression

of those variances on age and year dummies, and reporting the former (which are by con-

struction differences with respect to the first age group). The implied profile is extremely
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similar to that obtained if we were to use the same procedure as we used for earnings (see

Figure 14).
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Figure 14: Cross-sectional variance of consumption over the life cycle, HPV10 vs Kaplan (2012).

C Appendix: Fit of the earnings process to the data

and robustness of the discretization

To sum up, our procedure for earnings requires two steps:

1. Apply the Arellano et al. (2017) decomposition to PSID data to obtain the persistent

and transitory components of earnings. This is described in Sections 3.1 and 3.3.

2. Discretize the simulated persistent component and transitory component using an age-

dependent Markov chain to obtain the discretized persistent and discretized transitory

components. This is described in Section 4.

In this appendix we show that (1) the central features of the data that we are interested

in replicating are preserved by the discretized process that we use in the structural model
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and (2) that our main findings are robust to increasing the number of grid points for the two

components of earnings.

C.1 Fit of the earnings process to the data

C.1.1 Conditional moments of earnings changes

Figure 15 plots the second, third, and fourth standardized moments of earnings changes.

The top panel refers to our PSID sample (and thus replicates the bottom panel of Figure

3). The central panel displays the same measures computed on earnings (i.e. the sum of the

persistent and transitory components), simulated using the estimated nonlinear process as-

sociated with the quantile functions in (6)-(8). The bottom panel reports the corresponding

moments computed on earnings simulated using our discrete approximation of such contin-

uous processes.

The polynomial quantile functions and their discretization smooths the skewness and

kurtosis graphs (which are very noisy and affected by outliers). Yet, the main patterns of the

data (negative skewness, large kurtosis and variation over previous earnings) are preserved.

Figure 16 zooms in on just the estimated persistent component of earnings and compares

its features of the persistent component (top) with those its discretized counterpart. It

suggests that our flexible discretization, despite only having 18 bins per age group, captures

these feature of the data.

Figure 17 conducts the same comparison for the estimated transitory component and

shows that our discretization reproduces the observed age-dependence, high negative skew-

ness, and large kurtosis. The 8-gridpoints discretization (top panel) generates much larger

kurtosis than that of a normal distribution but falls a bit short of that in the data because

it cannot accurately capture the effect of outliers. A finer, 16-gridpoints, discretization (bot-

tom panel), which has additional bins on the tails, does match the kurtosis in the data. In

Appendix C.2, we describe this alternative discretization more in detail and we show it does

not make a difference for our results from our structural model.
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Figure 15: Conditional moments of earnings changes. From top to bottom: standard deviation,
skewness, kurtosis. Left: PSID data; center: simulated earnings using estimated nonlinear process;
right: simulated earnings using discretized nonlinear process.

Finally, Figure 18 reports persistence by previous-earnings (percentile τinit) and current-

shock (percentile τshock) rank. The top left panel refers to the PSID data, the top right panel

to earnings simulated using the discretized process (persistent plus transitory component),

the bottom left panel to the estimated persistent component, and the bottom right panel to

its discretized counterpart. The discretization makes the graph for nonlinear persistence less

smooth, but it preserves most of its important features. Namely, earnings are less persistent

for high earners who receive a very bad shock and and low earners who receive a very good

shock, while they are most persistent for high earners who receive a good shock and low

earners who receive a bad shock.
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Figure 16: Conditional moments of earnings changes (persistent component). From left to right:
standard deviation, skewness, kurtosis. Top: persistent component; bottom: discretized persistent
component.

C.1.2 Unconditional moments of persistent earnings

Figure 19 plots the unconditional moments of the persistent earnings distribution, as opposed

to the conditional moments of earnings changes in the previous sections. Our discretization

captures very well their levels and variations by age, but similarly to Figure 17 we need a

finer discretization to match the very high levels of kurtosis in the data. We describe this

finer discretization in Section C.2, where we also show that it generates very similar results

to our main discretization.
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Figure 17: Moments for the transitory shock. From left to right, standard deviation, skewness and
kurtosis (top: main 8-gridpoint discretization; bottom: 16-gridpoint discretization).
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Figure 18: Nonlinear persistence by quantile of previous earnings and quantile of the shock received
in the current period (top left, PSID data; top right, persistent component; bottom left, discretized
persistent + transitory component; bottom right, discretized persistent component).
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Figure 19: Unconditional moments of the persistent earnings distribution: from left to right, stan-
dard deviation, skewness and kurtosis (top: main 18-gridpoint discretization; bottom: 36-gridpoint
discretization).
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C.2 Robustness to the number of earnings gridpoints

In our main results, at each age, we discretize the persistent component of earnings with 18

gridpoints and the transitory one with 8 gridpoints, as described in Section 4. These are the

smallest grid sizes beyond which adding additional grid points makes little difference for the

economic implications discussed in Section 6.

In this section, we report results on simulating our model with finer grids and show that

our results are robust to this changes. The finer discretization has the advantage that it

fits some moments of the data better (like the unconditional moments of the transitory and

persistent earnings shocks, as seen in Figures 17 and 19).

Figure 20 and Table 6 show the growth in the variance of log consumption and the

BPP coefficients under finer discretization for the transitory component. More specifically,

the transitory component is divided into, respectively, 8 gridpoints as in our main results

(corresponding to the bottom 2.5%, next 2.5%, next 5%, next 40%, next 40%, next 5%, next

2.5% and top 2.5%) and 16 gridpoints (bottom 0.1%, next 0.4%, next 0.5%, next 2%, next

2%, next 5%, four quintiles, next 5%, next 2%, next 2%, next 0.5%, next 0.4% and finally

top 0.1%). The differences between the 8- and 16- gridpoints specification are very small.

Figure 21 and Table 7 show the results for alternative discretizations of the persistent

component. Namely, it compares our main results with a 36-gridpoints discretization which

adopts a very thin division of the bottom and top percentiles (for the top, there is a bin for

the top 0.05%, following 0.05%, 0.2%, 0.2% and 0.5% and symmetrically for the bottom),

percentiles for the rest of the top and bottom 5% and groups of 5% for the rest of the

persistent earnings distribution. Differences are, again, minor.

55



25 30 35 40 45 50 55 60

age

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

ca
lib

 v
ar

 o
f l

og
 c

on
su

m
pt

io
n 

(v
ar

 in
 t 

- 
va

r 
at

 2
5)

Data
8 gridpoints
16 gridpoints

Figure 20: Growth in the variance of log consumption, different discretizations for the transitory
component.

Coefficients ψpBPP ψtrBPP ψp ψtr

Data 0.36 0.95 – –

NL process 0.43 0.81 0.46 0.89

NL process, 16 gridpoints 0.42 0.82 0.46 0.88

Table 6: BPP coefficients, different discretizations for the transitory component.
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Figure 21: Growth in the variance of log consumption, different discretizations for the persistent
component.
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Coefficients ψpBPP ψtrBPP ψp ψtr

Data 0.36 0.95 – –

NL process 0.43 0.81 0.46 0.89

NL process, 36 gridpoints 0.41 0.82 0.44 0.9

Table 7: BPP coefficients, different discretizations for the persistent component.
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C.3 Alternative discretization of the canonical process

As described in Section 5.5, for our main results we discretize the canonical process using

the modified version of the Rouwenhorst method for non-stationary processes proposed by

Fella et al. (2017). Here we show that our findings that the nonlinear process provides a

substantially better fit are not due to using to different discretizations for the canonical and

the nonlinear processes. To this effect, we discretize the canonical process by taking the

parametric estimates in Table 1, simulating a panel of earnings histories and applying the

same the same age-varying Markov chain procedure as we followed for the NL process.

Figure 22 and Table 8 show the implied consumption profiles and BPP coefficients. Both

discretizations give rise to qualitatively similar results. Under the alternative discretization,

the canonical earnings process overshoots the growth in the variance of log consumption over

the life-cycle by an even larger amount.

C.4 Results without persistent-transitory decomposition

In Section 3.1 we describe the flexible earnings process that we estimate, which is based

in the persistent-transitory decomposition proposed by Arellano et al. (2017). However, an

alternative, computationally less costly choice is to apply directly our Markov-chain flexible

discretization method to the raw data. Figure 23 and Table 9 provide the results of applying

that simpler method to our PSID sample.

Neglecting the persistent-transitory decomposition implies a substantial underestimation

of the growth of the variance of log consumption over the life cycle and, consistently, an

overestimation of the ability of households to self-insure against earnings shocks. This can

partially reflect the existence of measurement error in the PSID, and provides further sup-

port to the procedure we follow in our main results. With administrative data, where the

measurement error issue is smaller, we also the expect differences in implications when we

take our the transitory shock to be smaller.
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Figure 22: Growth in the variance of log consumption, different discretizations for the canonical
process.

Coefficients ψpBPP ψtrBPP ψp ψtr

Data 0.36 0.95 – –

Canonical 0.14 0.88 0.30 0.91

Canonical, alternative discretization 0.2 0.88 0.34 0.91

Table 8: BPP coefficients, different discretizations for the canonical process.

C.5 Average consumption

Figure 24 plots average log consumption by age from our life cycle model under the two

earnings processes that we consider, the canonical and nonlinear one. (We pick the discount

factor in each economy to generate the same wealth to income ratio that we use for our main

results.) In the data, consumption peaks between ages 45-55 (Attanasio, Banks, Meghir and

Weber (1999)). Thus, even though we impose that average labor earnings by age are the

same for both earnings processes, our nonlinear implies that consumption peaks at an age

closer the one in the data than the one implied by the canonical earnings process.
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Figure 23: Growth in the variance of log consumption, no permanent-transitory decomposition.

Coefficients ψpBPP ψtrBPP ψp ψtr

Data 0.36 0.95 – –

NL process 0.43 0.81 0.46 0.89

NL process, no pers-transitory 0.54 – 0.57 –

Table 9: BPP coefficients, no permanent-transitory decomposition.
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Figure 24: Average cross-sectional log consumption. Income is normalized so that its mean value
in levels is 1.
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