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Abstract

Behaviors and information often spread via person-to-person diffusion. I charac-
terize the extent and rate of diffusion in a large population linked in a fixed network.
I argue that standard simplifying assumptions in prior work lead to misguided predic-
tions, such as reversed comparative statics. Our study also uncovers a new strategic
effect: when large cascades are possible, exposure to the contagion conveys information
about a player’s network position, which facilitates coordination. The analysis requires
technical advances in the study of random graphs, and a key contribution is a pair of
limit theorems for a multi-type configuration model.

1 Introduction

Diffusion processes in disparate contexts share similar features. People are exposed to
something new through contact with others. They choose whether to adopt some behavior
or pass on information. Preferences are heterogeneous and can depend on neighbors’ choices.
The ultimate outcome is highly uncertain, occasionally producing “viral” cascades.

As one example, the spread of fake news featured prominently in the 2016 United States
elections. False stories targeted to particular groups spread almost exclusively on social
media, often reaching more readers than the most widely consumed mainstream stories
(Allcott and Gentzkow, 2017). Other important examples include the spread of rumors about
India’s demonetization policy (Banerjee et al., 2017), the spread of new products and services
through referrals (Lobel et al., 2015), and the spread of microfinance in developing countries
(Banerjee et al., 2013). Understanding these processes is therefore important for countering
misinformation, designing marketing campaigns, and encouraging economic development.
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Akbarpour, Benjamin Brooks, Emir Kamenica, Yuval Salant, and participants at the 2016 Workshop on
Information and Social Economics for comments and suggestions.
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The standard approach for studying these processes affords a tractable framework but
imperfectly captures key features of person-to-person diffusion. The approach entails two
simplifying assumptions:

(a) The effect of social interactions at any time depends only on population averages;

(b) The population is a continuum, so actions by one person are insignificant in aggregate.

I refer to these as the mean-field assumptions. If we take seriously the idea of person-to-
person transmission, assumption (a) means that we continually reshuffle links in the network.
This neglects the stability of real relationships over time and eliminates any variance in the
eventual outcome. Similarly, assumption (b) precludes viral phenomena. Choices within a
small group can never trigger widespread diffusion—we need a critical mass of early adopters.
Despite these shortcomings, mean-field models may still prove useful to the extent that their
predictions align with what a more realistic model could produce.

The present paper makes two main contributions to our understanding of diffusion pro-
cesses. First, I show that a more realistic model yields substantively different predictions.
I illustrate this in an example comparing a mean-field model with an analogous “diffusion
game.” In the diffusion game, players interact in a fixed network, so the extent of diffusion is
sensitive to the initial seeding—some seeds trigger large cascades, while others induce little
adoption. In a mean-field model, no one remains unexposed in the long run, while in the
diffusion game, there are two distinct reasons people fail to adopt: some make a choice, oth-
ers are never exposed. This distinction leads to more nuanced comparative statics. Changes
to the network structure can have different effects on the speed and extent of diffusion. In
some cases, we actually reverse the prediction of the mean-field model.

More significantly, the diffusion game exhibits a novel strategic effect. When large cas-
cades are possible, exposure to the contagion conveys information about a player’s network
position—being exposed is evidence that the player is in a large network component. When
adoption entails local complementarities, this information helps players coordinate their
choices. Despite players remaining unexposed in the diffusion game, this effect can some-
times sustain higher equilibrium adoption levels.

A second contribution is to render mean-field assumptions unnecessary for tractability: I
provide tools to analyze diffusion in a large class of random graphs called multi-type config-
uration models. Intuitively, a configuration model takes a uniform random draw among all
graphs that satisfy a given set of summary statistics. A pair of limit theorems characterizes
the component structure of these graphs as the number of players grows—in a large popu-
lation, essentially all graphs look roughly the same. This makes it meaningful to talk about
properties of a “generic” graph, which may prove useful beyond studies of diffusion.

The technical insight is to approximate the local network structure with a branching
process. This allows us to study network properties using more standard results for sums of
independent random variables. An extensive literature in statistical physics studies related
models, but much of this work relies on simulation and heuristic arguments to substantiate
its claims (See Durrett, 2007, Ch. 1). Molloy and Reed (1995), van der Hofstad et al.
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(2005), and Bollobás and Riordan (2015) provide versions of my limit theorems for the one-
type model. To the best of my knowledge, the present paper is the first to supply a formal
argument that applies to more general random graphs.

As data on networks becomes increasingly available, a richer modeling approach can help
build theories that are more useful to empirical researchers. Recent studies show that the
centrality of early adopters predicts uptake of microfinance (Banerjee et al., 2013), that
individuals know who is central in their networks (Banerjee et al., 2016), and that people
make strategic choices about gathering and sharing information (Bandiera and Rasul, 2006;
Banerjee et al., 2012). To fully engage with this work, theory needs to represent diffusion
processes in more detail with more realistic features. The present paper includes results that
are directly relevant to seeding applications, based on primitives that correspond to the kinds
of data that are typically gathered. If one wants to efficiently allocate limited seeds across
several communities, then it is important to get network comparative statics right. Section
4.2 illustrates how one can combine demographic data with distributional information about
a network to optimally target individual seeds.

After discussing related work, I begin with an example in a one-type model and a careful
comparison with the mean-field approach. The following sections develop the general theory
of diffusion on networks with heterogeneous players. Section 6 gives an overview of the
technical contribution, while formal proofs are in an appendix. Appendices also contain a
discussion of several extensions as well as background material on branching processes and
configuration models. I conclude with brief remarks.

1.1 Related Work

Mean-field models dominate the theoretical literature on diffusion. Canonical examples
assume all prior adopters influence current decisions equally (Bass, 1969; Granovetter, 1978),
so we can characterize adoption over time using a logistic curve. More recent work builds on
this approach, incorporating heterogeneous agents and interactions. A degree-based mean-
field approximation distinguishes individuals according to how many neighbors they have,
separately tracking adoption levels among agents with each possible degree (Jackson and
Rogers, 2007; López-Pintado, 2006, 2008, 2012). Jackson and López-Pintado (2013) go
further, allowing multiple types of agents and studying homophily. In each case, we obtain
distinct logistic curves that describe adoption levels for each distinguishable subpopulation,
and the degree distribution determines relationships between these curves.

The present paper addresses three limitations of these models. Since steady states are
deterministic functions of the degree distribution, long-run outcomes are independent of
the initial seeds. This limits our ability to capture the empirically documented role of
innovators and opinion leaders. In contrast, early adopters play a crucial role in diffusion on
a fixed graph. Relatedly, adoption is typically reversible in a mean-field model—without this
assumption, steady states become insensitive to the network structure.1 Sometimes adoption

1Young (2009) studies irreversible adoption in a mean-field diffusion model, but his focus is on the shape
of the adoption curve rather than the long-run steady state.
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constitutes a one-time consumption (e.g. watching a video or reading a news story), or
learning a piece of information. Even when adoption is reversible in the long-run, switching
costs—for instance, the need to invest captial or learn how to use a new technology—can
induce short-run irreversibility. Lastly, by rendering individual decisions insignificant for
global outcomes, the mean-field assumptions trivialize strategic effects. We find that, even
in large networks, a single decision can meaningfully affect the aggregate outcome.

The literature on static network games with incomplete information (e.g. Sundararajan,
2007; Galeotti et al., 2010) is closely related both to this paper and to mean-field diffusion
models. In these games, players act simultaneously, and payoffs depend on what a player’s
network neighbors do. Jackson and Yariv (2007) study a product adoption game in this
context, showing that Bayes-Nash equilibria of the network game correspond to the steady
states of a mean-field diffusion process. The diffusion game of section 3 features similar
decisions and payoff functions, and equilibrium strategies resemble those in the static game.
A difference arises because dynamic interactions affect a player’s beliefs about her network
position. Viral belief distortion facilitates coordination, resulting in equilibrium outcomes
that are difficult for static models to replicate.

Not all diffusion models rely on mean-field assumptions. In a canonical example, Mor-
ris (2000) studies a fixed network in which players adopt a behavior if enough neighbors
did so previously. The analysis reveals how cohesive subgroups act as barriers to diffusion
and explores conditions that facilitate diffusion. Watts (2002), Campbell (2013), and Ak-
barpour et al. (2017) are more closely related to this paper, studying diffusion in random
graphs.2 Watts (2002) studies irreversible adoption decisions based on a threshold rule, find-
ing that whether large cascades can occur depends crucially on agents who adopt after a
single neighbor does so. Campbell (2013) studies monopoly pricing when consumers learn
about a product through word-of-mouth—the information externality results in more elastic
demand and lower prices than in a standard model. Akbarpour et al. (2017) explore the
value of network information for seeding under a mechanistic transmission process.

I make several innovations on this literature. First, the agents here make strategic choices.
Second, by adapting newer mathematical tehcniques, our results permit the study of random
networks with heterogeneous agents. This important for applications as individuals often
have different preferences and different information, and neighbors’ attributes are typically
correlated. Moreover, the explicit link to branching processes provides a unifying conceptual
framework to study diffusion in random networks. In addition to characterizing the size of
large cascades, we can assess the rate of diffusion, the influence of different initial seeds on
the long-run outcome, and the microstructure of small components in the network.

The role of social networks in technology adoption is widely studied in the development
literature. Bandiera and Rasul (2006) look at social learning effects on the spread of sun-
flower cultivation in Mozambique. As more of a farmer’s friends and family adopt sunflower,
the farmer’s own propensity to adopt initially increases and later decreases. The authors
attribute the latter effect to informational free-riding: a farmer with many adopting friends
benefits from others’ accumulated knowledge and waits to adopt himself. Other studies ex-

2See also Chapter 7.2 of Jackson (2008).
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plore how different strategies to seed initial adopters influence the diffusion of an innovation
(Banerjee et al., 2013; Beaman et al., 2015). This work suggests that seeding based on
network centrality measures can significantly outperform alternative approaches.

Collectively, this research demonstrates that information about new technologies—about
both the technology’s existence and how best to use it—diffuses through social ties,3 that it
matters who the initial seeds are, and that individuals make strategic adoption decisions. The
present paper offers a microfounded theory of diffusion that captures all of these elements.
Applications may furnish richer sets of predictions to test and help us better understand
the mechanisms underlying these empirical phenomena. A parallel literature focuses on
other factors that influence technology adoption, like adoption costs (Comin and Hobijn,
2010), education and human capital (Caselli and Coleman, 2001; Skinner and Staiger, 2005),
political institutions (Comin and Hobijn, 2004), and geography (Comin et al., 2013). An
improved theoretical understanding of diffusion through social ties can help delineate when
we should expect social influence to be more or less important relative to these other factors.

Another branch of literature on diffusion lies at the intersection of marketing and com-
puter science. The explosion of internet-based data has allowed researchers to study diffusion
phenomena that occur in everyday life. Adoption cascades exhibit a heavy-tailed size dis-
tribution across a variety of domains, from product recommendations to communication
platforms to games to news stories (Leskovec et al., 2006; Goel et al., 2012). Large scale
experiments are able to demonstrate the causal influence of peers on adoption decisions
(Bakshy et al., 2012) and document the outsized role of central individuals (Tucker, 2008;
Bakshy et al., 2009). Cheng et al. (2014) study whether cascade sizes are predictable, finding
that greater breadth, rather than depth, is much more likely to generate a large cascade.
These patterns are consistent with the model in this paper, suggesting that the theory I
develop can tie together diffusion research in disparate domains.

2 Diffusion versus Steady State Adoption

I first illustrate the paper’s main theoretical contribution in the simplest setting with a
single type. To highlight the novel features, I present the model together with a mean-field
benchmark. For ease of exposition, I frame the benchmark as a simultaneous-move adoption
game. Its equilibria correspond to steady states of a mean-field diffusion process (See Jackson
and Yariv, 2007).

Two important differences stand out. First, we have a new reason why players fail to
adopt: some never get exposed. This small change has significant consequences. In contrast
with the mean-field model, whether we get little adoption or a viral cascade depends on a
seed’s exact location. Random seeds lead to random aggregate outcomes, even in the large
network limit. When a viral cascade occurs, some would-be adopters remain unexposed.
This proves important for comparative statics. For instance, a mean-preserving spread in

3A large literature on social learning and technology adoption that does not focus on network structure
corroborates this. See for instance Foster and Rosenzweig (1995), Munshi (2004), Conley and Udry (2010),
and Dupas (2014).
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the degree distribution might lead to more adoption in the mean-field benchmark but less in
the diffusion game. Such mistakes are costly in applications. Suppose we want to leverage
network information to seed adoption of a new technology in several communities. We might
wish to spend more seeds in the communities where viral cascades are less likely. Ignoring
the effects of non-exposure may lead to an inefficient allocation.

Second, players in the diffusion game are fully rational and forward looking. As a result,
players can learn about the network, and this informs their choices. The main insight here
is that viral cascades are self-reinforcing through the equilibrium strategies. Getting exposed
tells a player that her neighbors are more inclined to adopt. With strategic complementar-
ities, this strengthens the player’s own adoption incentives. The diffusion process serves as
a coordination device, and this weighs on a number of applications. For instance, under-
standing these effects may help us better assess the relative merits of different marketing
strategies—relying on word-of-mouth not only saves on advertising costs, potential customers
may better coordinate their purchases when a product exhibits complementarities.

2.1 The Mean-Field Benchmark

We have a unit mass of players who simultaneously decide whether to adopt some be-
havior. The players are linked a network with degree distribution D, and each has an i.i.d.
private value v drawn uniformly on [0, 1]. If a neighobrs adopt, the payoff from adoption is

u(v, a) = av − c,

where c > 0 is the cost of adoption. Non-adoption earns zero.
Each player observes her own value v and number of neighbors (hereafter, degree) d. We

consider symmetric equilibria: a strategy profile σ : [0, 1] × N → {0, 1} gives an adoption
decision for each value-degree pair. Each neighbor has a degree drawn independently from
the distribution D̃ with

P(D̃ = d) =
dP(D = d)

E[D]
.

This represents a standard correction for the friendship paradox: high-degree individuals are
overrepresented as neighbors.4 Therefore, if a player has d neighbors, the number who adopt
a follows a binomial distribution with d trials and success probability

qσ = E
[
σ(V, D̃)

]
. (1)

The strategy profile σ is an equilibrium if

σ(v, d) =

{
1 if vdqσ − c > 0

0 if vdqσ − c < 0

for all (v, d). A fraction pσ = E[σ(V,D)] of the population ends up adopting.

4See for instance Jackson and Yariv (2007).
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To understand how this seemingly static game represents diffusion, consider a form of
myopic best response dynamics. Suppose time is discrete, and σ describes behavior at the
end of a period. Next period, a player decides whether to adopt assuming each neighbor does
so with independent probability qσ. This encodes two assumptions. The first is myopia: a
player assumes that others follow the same strategy next period. The second is the mean-field
assumption: a player assumes her neighbors are a new random draw from the population.
The steady states of this process are exactly the static game equilibria. There are typically
two equilibria with positive adoption levels: a high stable equilibrium, and the lower “tipping
point.” If initial adoption is below the tipping point, we converge to no-adoption. To reach
the high steady state, we must seed a large fraction of players.

2.2 The Diffusion Game

There are n players in a random network, drawn according to a configuration model with
degree distribution D. That is, each player independently realizes a degree d according to
D, and we take a uniform random random draw of all graphs with the resulting n-vector of
degrees.5 In the limit as n→∞, a random player has degree drawn according to D, and a
random neighbor has degree drawn according to D̃ as defined above.

Initially, no player is aware of the new behavior. At time zero, a single player chosen
uniformly at random adopts the behavior, exposing her neighbors. In each subsequent
period, players who are aware make an irreversible choice whether to adopt. If a player
adopts, her neighbors become aware. The payoff from adoption is exactly as before. Players
have independent private values drawn uniformly on [0, 1], and adopting results in a payoff

u(v, a) = av − c,

where a is the number of neighbors who ever adopt.6

On exposure, each player observes her own value v and degree d—importantly, players do
not observe the period t.7 We consider perfect Bayesian equilibria in symmetric strategies
σ : [0, 1]×N→ {0, 1}. Write q̂σ for the probability, conditional on exposure, that a neighbor
is willing to adopt.8 The profile σ is an equilibrium if for all (v, d), we have

σ(v, d) =

{
1 if v(1 + q̂σ(d− 1))− c > 0

0 if v(1 + q̂σ(d− 1)) < 0,

where the leading 1 appears because a newly aware player knows one neighbor has adopted.

5We must of course condition on realizing a degree sequence for which a graph actually exists. For large
n, the only substance of this conditioning is that the sum of all degrees must be even.

6All decisions are irreversible. In particular, a player who chooses not to adopt after getting exposed
never revists the decision. As a result, when a player adopts and exposes her neighbors, all neighbors make
final choices within one additional period. Section 3.2 contains a more complete discussion of the modeling
assumptions.

7We interpret this as assuming the players do not know how long the diffusion process has been running.
Players are not ignorant of the calendar date; they are ignorant of when the seed adopts.

8In the large network limit, neighbor adoption decisions are independent.
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I give a brief summary analysis based on results proved later—all statements pertain to
the limit as n → ∞. Fix a strategy profile σ. I refer to players for whom σ(v, d) = 1 as
potential adopters. Let σd = E[σ(V, d)] denote the probability that a degree d player is a
potential adopter, and define the distribution Dσ by

P(Dσ = d) =
P(D = d)σd∑
k∈N P(D = k)σk

.

This adjusts for a selection effect, giving the degree distribution for a random potential
adopter. Let g and gσ denote the probability generating functions of D and Dσ respectively.
Recall qσ defined in (1), the unconditional probability that a neighbor is a potential adopter,
and let ξσ denote the minimal solution to

g′σ(1)ξ = g′σ(qσξ + 1− qσ). (2)

A giant component exists in the subnetwork of potential adopters if and only if ξσ < 1.9 The
value ξσ represents the probability that a neighbor does not connect to the giant component.

In the limit as n → ∞, the fraction of players who become exposed and adopt is a
random variable, taking the value zero with probability g(qσξσ + 1 − qσ) and the value
pσ (1− gσ(qσξσ + 1− qσ)) otherwise. Even when a giant component exists, with positive
probability the initial seed is not connected to it, and essentially no adoption takes place. If
the initial seed is in the giant component, we get a large cascade of adoption. In this case,
we still fail to reach the full population pσ of potential adopters—a fraction gσ(qσξσ +1− qσ)
of them are disconnected from the giant component.

Compared with the simultaneous-move game, the diffusion game shares the same choice
set, the same payoff structure, and the same essential network structure. The need to spread
awareness is an added barrier to adoption—for a player to adopt, the player must both
get exposed and have σ(v, d) = 1. Under many strategy profiles, diffusion reaches only a
negligible fraction of players. However, we need not start above a “tipping point” to ensure
self-sustaining adoption. A single seed may trigger a cascade that covers a positive fraction
of the network.

2.3 A New Effect: Viral Belief Distortion

Forward looking players can learn about their network position. This manifests as a dif-
ference between qσ, the unconditional probability that a neighbor is a potential adopter, and
q̂σ, the corresponding probability conditional on exposure. If ξσ = 1, there is no difference,
and qσ = q̂σ. If ξσ < 1, meaning viral cascades are possible, then a player’s ex ante likelihood
of exposure in a viral cascade dwarfs the corresponding likelihood in a small cascade. As a
result, conditional on being exposed, a player is convinced that

(a) A large cascade is in progress, and

9A giant component is one whose size grows linearly in n as n→∞.
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(b) She is connected to the giant component.

This is the effect I call viral belief distortion.
The degree distribution in the giant component is different from that in the network

overall because high-degree players are more likely to be in the giant component. An exposed
player learns that her neighbors have degrees drawn according to D̃(σ), with

P(D̃(σ) = d) =
P(D̃ = d)

(
1− (qσξσ + 1− qσ)d

)
∑

k∈N P(D̃ = k)
(

1− (qσξσ + 1− qσ)k
) . (3)

Relative to D̃, the distribution D̃(σ) is skewed towards higher degree players. The conditional
probability that a neighbor is a potential adopter is then

q̂σ = E
[
σ(V, D̃(σ))

]
.

Higher degree players are more likely to adopt, so when ξσ < 1, we have q̂σ > qσ: learning
facilitates coordination, allowing higher equilibrium strategies.

The best reply map illustrates the impact of learning on coordination. Figure 1 depicts
qBR(σ) as a function of qσ, where BR(σ) is a best reply profile. In the static game, a player
with d neighbors adopts if

v >
c

qσd
.

In the diffusion game, this player adopts if

v >
c

1 + q̂σ(d− 1)
.

There are two differences in the diffusion game. First, an exposed player knows one of her
neighbors has already adopted. Second, when σ crosses a critical threshold, viral belief
distortion appears. Looking at (3), we see that this selection effect is most significant when
ξσ is close to 1. Consequently, as σ increases, the best reply map exhibits a discontinuous
jump upwards.

2.4 Reversed Comparative Statics

Consider two degree distributions. The distribution D1 is degenerate, taking the value
3 for sure, while D2 is either 1 or 5 with equal probability. The distribution D2 is a mean
preserving spread of D1. In the mean-field benchmark, adoption is always higher under D2—
if the cost c is positive, adoption is strictly higher. Intuitively, a mean-preserving spread
exacerbates the friendship paradox. The neighbor degree distribution becomes more skewed
towards high degrees, making neighbors more likely to adopt, yielding stronger adoption
incentives. This effect is still present in the diffusion game, but the network also becomes
more fragmented, which may result in fewer exposed players. The latter effect can dominate:
for c in a neighborhood of zero, equilibrium adoption is higher under D1.
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Figure 1: Best reply maps for the simultaneous adoption game and the diffusion game.

If c = ε ≈ 0, and D1 = 3 with probability one, then nearly all players are potential
adopters in equilibrium, and essentially all are connected to the giant component. We
have ξσ ≈ 0, and nearly the entire population adopts with probabiliy close to one. If we
move to the distribution D2, then essentially all players are still potential adopters, but ξσ
approximately solves

6s = 1 + 5s4,

which gives ξσ ≈ 0.1673. The giant component no longer covers the entire network. We get
negligible adoption with probability g(ξσ) ≈ 0.084, and otherwise we get a fraction

1− gσ(ξσ) ≈ 1− 1

2

(
ξσ + ξ5

σ

)
≈ 0.916.

Under the distribution D2, any realization of the network contains many small components.
The population of potential adopters increases as in the mean-field model, but this frag-
mentation means that fewer become aware. Later analysis shows that the speed of diffusion
actually increases when we switch to D2, highlighting that the speed and extent of diffusion
can move in different directions.
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2.5 Higher Equilibrium Adoption

The need to spread awareness creates a barrier to adoption. Nevertheless, we can some-
times sustain higher equilibrium adoption levels than in the mean-field benchmark. Suppose
D takes the values 1 or 5 with equal probability. In the mean-field model, one can verify
that an equilibrium with positive adoption exists if and only if c ≤ 25

24
. In the diffusion game,

I show that viral equilibria exist even with higher costs.
For c above one, we know that players with degree 1 never adopt. I therefore abuse

notation letting σ denote the probability that a degree 5 player adopts under strategy profile
σ. We can compute qσ = 5σ

6
, and the distribution Dσ takes the value 5 with probability one,

so gσ(s) = s5. From (2), know that ξσ solves

ξ =

(
5σ

6
ξ + 1− 5σ

6

)4

,

and one can verify that ξσ < 1 if σ > 1
5
. From (3), we have

q̂σ = σP(D̃(σ) = 5) = σ
5 (1− (qσξσ + 1− qσ)5)

5 (1− (qσξσ + 1− qσ)5) + qσ(1− ξσ)
> qσ.

The profile σ corresponds to an equilibrium if the cutoff value satisfies

v = 1− σ =
c

1 + 4q̂σ
,

which has a solution σ∗ > 1
5

as long as

c < sup
σ∈[ 1

5
,1]

(1− σ)(1 + 4q̂σ) ≡ c.

To estimate c, note that

c > sup
σ∈[ 1

5
,1]

(1− σ)(1 + 4qσ)

= sup
σ∈[ 1

5
,1]

(1− σ)

(
1 +

10σ

3

)
=

(
1− 7

20

)(
1 +

10

3
· 7

20

)
=

169

120
>

25

24
.

Even without viral belief distortion, we could sustain adoption in equilibrium with c as high
as 169

120
. This is because newly aware players know that one neighbor has already adopted.

Viral belief distortion further enhances coordination, allowing us to push c even higher and
still obtain viral cascades in equilibrium.
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3 Diffusion Games with Local Externalities

This section presents the general model of diffusion games—the model with multiple
types and arbitrary correlation between neighbors’ types. The extension is valuable for two
reasons. First, in real networks, neighbors’ attributes are correlated. This correlation affects
both the mechanics of diffusion and individual decisions in equilibrium. Second, having
multiple types creates a clearer link to the empirical diffusion literature. Researchers often
gather data on individuals’ demographic or other attributes—which could correspond to
types—while network data are typically incomplete or noisy. The general framework offers
predictions based on the kind of information that is most often available.

Studying diffusion in discrete graphs presents three key challenges. First, tracking a small
set of state variables is insufficient—it matters exactly who has adopted and where they are
in the network. Second, not everyone adopts if exposed. The subnetwork among those who
are inclined to adopt determines the outcome, so we need to understand this subnetwork.
Finally, we must account for the inferences of forward-looking players. Beliefs about the
network impact behavior, and players can learn about the network during the game.

We get traction from the configuration model’s special structure. Locally, the network
converges in distribution to a multi-type branching process. Properties of the network—
the size of the giant component, typical distances within that component—are then tied to
properties of the branching process—its survival probability, its growth rate—which we can
assess using standard techniques for studying sums of independent random variables. Taking
the limit theorems as given, our analysis reduces to an accounting of selection effects. A
random neighbor is different from a random player. A random potential adopter is different
from a random neighbor. A potential adopter in the giant component is different from a
random potential adopter.

After presenting the model, I divide the analysis among subsequent sections. Section 4
fixes a strategy profile and evaluates the extent and rate of diffusion. I introduce the char-
acteristic branching process for the network and define parameters—the diffusivity and the
virality—that characterize outcomes. Section 4.2 highlights the application of the framework
to seeding problems, while section 4.3 gives basic comparative statics results. In section 5, I
address beliefs and best responses. Finally, section 6 presents the limit theorems on which
all of the analysis rests.

3.1 The Model

There are n players connected in an undirected network G. At time t = 0, we select
κ ∈ N players uniformly at random to adopt a new behavior. Neighbors of these seeds
become aware and make irreversible choices whether to adopt the behavior at time t = 1.
In each subsequent period, neighbors of those who adopted in the previous period become
aware and make their own irreversible choices.

We draw the network G according to a multi-type configuration model. Let Θ denote a
finite collection of types, and let T ∈ ∆(Θ) denote a distribution over types. For each type
θ ∈ Θ, let Dθ ∈ ∆(N) denote a degree distribution, and let Zθ ∈ ∆(Θ) denote a distribution
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over types. We realize G in four steps:

(a) Assign each player a type drawn independently according to T

(b) For each type θ player, independently draw a degree d according to Dθ and attach d
“link stubs” to the player

(c) Assign a type to each link stub, drawn independently according to Zθ

(d) Pair compatible stubs uniformly at random to form links—for each type θ′ link stub
attached to a type θ player, match with a type θ stub attached to a type θ′ player

Condition this process on realizing matching numbers of compatible stubs and realizing a
simple graph.10 We can interpret this procedure as a uniform random draw over graphs
matching the summary statistics T , {Dθ}θ∈Θ, and {Zθ}θ∈Θ. For limits to make sense, we
need a consistency condition on the distributions. Define

pθ = P(T = θ), µθ = E[Dθ], and q
(θ)
θ′ = P(Zθ = θ′).

We assume
pθµθq

(θ)
θ′ = pθ′µθ′q

(θ′)
θ

to ensure the expected number of type θ′ stubs attached to type θ players equals the expected
number of type θ stubs attached to type θ′ players.

Each type θ player draws a private value v ∈ [0, 1] independently from the distribution
Vθ. A player’s payoff depends on her private value v, her degree d, and the number of her
neighbors a who adopt—the player earns ud(v, a) from adopting and 0 otherwise. Assume
externalities are positive—the functions {ud}d∈N are increasing in a—and payoffs are strictly
increasing and differentiable in v. Each player observes her type, her private value, and her
degree. The network distribution and number of seeds are common knowledge. Importantly,
a player does not observe the period t in which she makes her choice.

We look at perfect Bayesian equilibria in symmetric strategies. A symmetric strategy
profile is a function σ(θ, v, d) : Θ × [0, 1] × N → {0, 1} giving an adoption decision for each
type, value, and degree. Fixing a profile σ, the probabilities

σ(θ, d) = E[σ(θ, Vθ, d)]

determine the distribution over outcomes and hence the players’ expectations about whether
neighbors will adopt. Write P(θ,d,n)

σ for the conditional probability measure from the perspec-
tive of a type θ player with degree d who gets exposed. The symmetric strategy profile σ is
an equilibrium for the n player game if for all (θ, v, d) and each x ∈ {0, 1}, we have

E(θ,d,n)
σ [σ(θ, v, d)ud(v, A)] ≥ E(θ,d,n)

σ [xud(v, A)] ,

where A denotes the random number of neighbors who will adopt if they become aware.

10A simple graph has no self-links and at most one link between any pair of nodes.
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Our tools concern limits of the outcome distribution, so we study equilibria under limiting
beliefs as n → ∞. Theorem 1 in section 6 implies that the limiting distribution P(θ,d)

σ over
neighbors’ actions is well defined. A strategy profile is a limit equilibrium if for all (θ, v, d)
and each x ∈ {0, 1}, we have

E(θ,d)
σ [σ(θ, v, d)ud(v, A)] ≥ E(θ,d)

σ [xud(v,A)] .

Under mild assumptions, equilibria for large n are necessarily close to limit equilibria, so for
ease of exposition, all formal statements pertain to limit beliefs and limit equilibria.

Our main questions are: how many players adopt, and how long does the process take?
If Xn(t) is the number of adopting players at time t in an n player game, define

αn = lim
t→∞

Xn(t)

n
, and τn(x) = min

{
t :

Xn(t)

Xn(∞)
≥ x

}
.

These random variables describe respectively the long-run fraction of the population that
adopts and the time it takes for a fraction x of these players to adopt. We characterize the
distributions αn and τn for large n.

3.2 Remarks on the Model

The multi-type configuration model as presented can capture many realistic network
features—power-law degree distributions, small-worlds, homophily. One missing feature is
clustering: in real networks, linked individuals likely share common neighbors. Clustering is
among several extensions I discuss in the appendices. The techniques I develop are robust
enough to handle this along with many other adjustments.

There are several ways to interpret types. An econometrician may view them as distinct
collections of observable attributes (e.g. demographic or socioeconomic variables), and we
could imagine estimating the model’s parameters from network data. We can also use types
to encode information that players possess—appendix C.1 shows how to incorporate signals
about neighbors by expanding the set of types.

I assume choices are irreversible, and players who choose not to adopt cannot reconsider.
One’s use of a technology or product clearly is reversible in the long run, though switching
costs may render this prohibitively expensive in the short run. Since the spread of new
technologies is often a slow process (Griliches, 1957; Skinner and Staiger, 2005), the “short
run” is economically important. Alternatively, the diffusion of information demands a model
of irreversible adoption. One cannot unread a news story or unwatch a video. In natural
examples, both the decision to consume information and the decision to share information
are important. I explore this in appendix C.2.

Since players do not observe whether neighbors have adopted, formally there is no reason
to revisit a decision. We might interpret the model assumption as either forgetfulness or
limited attention by the players. However, if players were to observe neighbors’ choices,
they might wait for several neighbors to adopt. In the absence of clustering, letting players
wait changes little because widespread adoption depends on players who adopt after just
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one neighbor does so. In a network with clustering, the option to adopt later becomes more
significant. I study an example in appendix C.4.

Although timing plays almost no role in the analysis—if a player adopts, all neighbors
become aware and immediately make decisions—we should be clear about how players form
beliefs about time. In equilibrium, a player knows the number of seeds, the network distri-
bution, and the equilibrium adoption propensities. This induces a distribution over whether
and when the player becomes aware. When a player becomes aware, her beliefs about the
time period correspond to this distribution conditional on becoming aware. This is a well-
defined distribution for any finite n, but in the limit as n goes to infinity, these beliefs do
not converge to a well-defined distribution. Nevertheless, the payoff relevant beliefs about
whether neighbors will adopt do converge, and these are the beliefs on which we focus.

4 Mapping Strategies to Outcomes

For now, we set aside the choice problem. Fixing a profile σ, the adoption propensities

σ(θ, d) = E[σ(θ, Vθ, d)]

fully characterize the outcome distribution. I find it useful to think about three layers
in the network. The outermost layer is the social network itself. Strategies determine a
subnetwork of potential adopters—players who adopt if they get exposed. The propensities
σ(θ, d) capture the likelihood of being in this subnetwork. The innermost layer is the network
of actual adopters. These players are in a connected component of potential adopters linked
to a seed. To characterize the extent of adoption αn, we need to assess component sizes
in the potential adopter network. To characterize diffusion times τn(x), we need to assess
typical distances within these components.

The subnetwork of potential adopters is itself a configuration model. This is clear after
conditioning on who the potential adopters are and which link stubs connect to them: each
possible pairing of stubs between potential adopters is equally likely. We first determine the
type and degree distributions in the network of potential adopters. We then apply our limit
theorems to understand the component structure in this network.

The techniques behind our theorems provide helpful intuition. Figure 2 depicts a network
in two ways. On the left is a more standard image, which we reorganize as a tree on the
right. A breadth first search defines a branching process—the central node is the root, nodes
at distance one are the first generation, nodes at distance two are the second, and so on.
For any finite n, the offspring distributions are correlated, and they change as we get further
from the root. However, in the limit as n→∞, the local structure converges in distribution
to a standard branching process with independent offspring. I call this limiting distribution
the characteristic branching process.

We realize the characteristic branching process in two stages. The root realizes a type θ
according to T , a number of offspring according to Dθ, and offspring types according to Zθ.
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Figure 2: Two representations of the same local network structure

Subsequent nodes realize offspring according to the forward distributions D′θ, defined by

P(D′θ = d) =
(d+ 1)P(Dθ = d+ 1)

µθ
. (4)

Equation (4) reweights Dθ to correct for the friendship paradox and shifts the distribution
by one to avoid double counting the link back to the parent. Understanding diffusion is
equivalent to understanding the characteristic branching process. The survival probability
of the branching process corresponds to the size of the largest network component. This
characterizes the extent of diffusion αn. The growth rate of the branching process tells us
about distances in the network. From this we obtain the diffusion times τn(x).

4.1 Diffusivity and Virality

To characterize the network of potential adopters, we account for selection into this
network. In the limit, a random player is a type θ potential adopter with probability

π
(σ)
θ = pθE [σ(θ,Dθ)] . (5)

A random type θ potential adopter has degree drawn according to Dσ,θ, which satisfies

P(Dσ,θ = d) =
P(Dθ = d)σ(θ, d)∑
k∈N P(Dθ = k)σ(θ, k)

. (6)

Each type θ link stub leads to a potential adopter with independent probability

σθ ≡ E [σ(θ,D′θ + 1)] ,

where D′θ is the forward distribution defined in (4).
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To obtain the degree distributions in the potential adopter network, first realize link stubs
according to Dσ,θ. Each stub then either receives a type or gets deleted. We assign type θ′

with probability q
(θ)
σ,θ′ = q

(θ)
θ′ σθ′ , and we delete the stub with probability

q
(θ)
σ,0 = 1−

|Θ|∑
θ′=1

q
(θ)
θ′ σθ′ .

Write q
(θ)
σ for the |Θ| + 1-vector with entries {q(θ)

σ,θ′}
|Θ|
θ′=0. We can think of a network with

|Θ|+ 1 types—the extra type (type 0) encompasses all non-adopters.
The probability generating functions for Dσ,θ and Dθ respectively are

gσ,θ(s) =
∞∑
d=1

P(Dσ,θ = d)sd and gθ(s) =
∞∑
d=1

P(Dθ = d)sd.

A simple exercise shows that the generating function for the forward distribution D′σ,θ is
g′σ,θ(s)

g′σ,θ(1)
. Standard results from branching process theory imply that the system

g′σ,θ(1)sθ = g′σ,θ(q
(θ)
σ · s), θ = 1, 2, ..., |Θ|, s0 = 1 (7)

has a unique minimal solution ξ(σ) ∈ [0, 1]|Θ|+1.11 This vector helps us define diffusivities.

Definition 1. Fix a strategy profile σ, and let ξ(σ) denote the minimal solution of (7). The
diffusivity of a player with type θ and degree d is

ζ
(σ)
θ,d = 1− (q(θ)

σ · ξ(σ))d. (8)

The diffusivity of a player with type θ is

ζ
(σ)
θ = 1− gθ(q(θ)

σ · ξ(σ)) θ = 1, 2, ..., |Θ|. (9)

The diffusivity of a potential adopter with type θ is

φ
(σ)
θ = 1− gσ,θ(q(θ)

σ · ξ(σ)) θ = 1, 2, ..., |Θ|. (10)

The diffusivity of the network is

ζσ = p · ζ(σ) =

|Θ|∑
θ=1

pθ

(
1− gθ(q(θ)

σ · ξ(σ))
)
. (11)

The diffusivity of the potential adopter network is

φσ = π · φ(σ) =

|Θ|∑
θ=1

πθ

(
1− gσ,θ(q(θ)

σ · ξ(σ))
)
. (12)

11The appendix provides statements of the relevant results along with references.
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The entries of ξ(σ) are the forward extinction probabilities. In the characteristic
branching process, if the root realizes a type θ offspring, that branch of the process dies with
probability ξ

(σ)
θ . Hence, the branch beginning from a random offspring of a type θ player

dies with probability q
(θ)
σ · ξ(σ). The different diffusivities correspond to different survival

probabilities conditional on particular realizations of the root node.
From the limit theorems in section 6, the diffusivities also correspond to probabilities

that particular players connect to the giant component of potential adopters. Our first
proposition uses ζσ and φσ to characterize the extent of diffusion αn. The player diffusivities
ζ

(σ)
θ,d , ζ

(σ)
θ , and φ

(σ)
θ provide additional information about who adopts in a large cascade, which

later allows us to assess players’ beliefs. These also function as centrality measures—the next
subsection shows how diffusivities can guide optimal seeding.

Proposition 1. As n grows, the extent of diffusion αn converges in distribution to a random
variable α taking the value 0 with probability (1− ζσ)κ and the value φσ otherwise.

Proof. This is immediate from Proposition 16 in the appendix.

Proposition 1 tells us how far adoption spreads in the network. Two features stand out.
First, even in the large network limit, the extent of adoption is stochastic. For generic
parameters, there is a positive probability that diffusion quickly halts, and few individuals
ever get exposed. Second, more seeds does not mean more adoption as α only ever takes one
positive value. This value depends on the network structure and the adoption propensities,
but not the number of seeds. An additional seed increases the likelihood of a large cascade
but not its size.

These features are intuitive if we recall what diffusivity represents: ζσ is the probability a
random player links to the giant component, and the size of this component is φσ. Each seed
links with probability ζσ, causing the entire component to adopt. With probability (1−ζσ)κ,
all seeds miss the giant component, and all other components are negligible in size. We also
know how many people get exposed in a large cascade: a fraction ζσ of players link to an
adopter while a fraction φσ actually adopt.

To define virality, we first define the mean offspring matrix for the characteristic branching
process. For each type θ potential adopter, the average forward degree is

νσ,θ =
E [Dσ,θ(Dσ,θ − 1)]

E[Dσ,θ]
=

Var[Dσ,θ]

E[Dσ,θ]
+ E[Dσ,θ]− 1. (13)

We then write Mσ for the |Θ| by |Θ| matrix with entries

m
(σ)
ij = νσ,iq

(i)
σ,j. (14)

After diffusion reaches a type i player, the entry m
(σ)
ij is the average number of type j

neighbors who are potential adopters.

Definition 2. The virality νσ of the network is the spectral radius of Mσ.
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Proposition 2. We have ζσ > 0 if and only if νσ > 1. In this case, for any x ∈ (0, 1) and
any sufficiently small ε > 0 we have

lim
n→∞

P
(∣∣∣ τn(x)

logνσ n
− 1
∣∣∣ ≥ ε

∣∣∣αn > ε

)
= 0.

Proof. This is immediate from Theorem 2.

In a large cascade, the time it takes to reach any fraction of eventual adopters is approx-
imately logνσ n. Put differently, most adoption happens in a narrow time window around
logνσ n. Virality is the growth rate of the characteristic branching process: the number of
offspring in each generation grows like νtσ, so it takes pproximately logνσ n generations to
get n total progeny. In the early periods, the number of adopters grows as in the branching
process. Once a significant fraction of the population adopts, diffusion finishes quickly.

The first part highlights a connection between diffusivity and virality: diffusivity is pos-
itive only if virality is sufficiently high. Beyond this, the two may not move in tandem.
Virality depends only on the first two moments of the degree distribution, but diffusivity
depends on the entire distribution. Virality typically moves in the direction a mean-field
model would predict. Ass we saw in the last section, diffusivity may move in the opposite
direction.

4.2 A New Approach to Optimal Seeding

I pause here to highlight an application that does not depend on strategic analysis. When
attempting to spread a new product or technology, a planner can leverage social influence by
targeting key individuals with subsidies or other incentives to adopt. An important question
is then how best to select these “seeds.” Standard approaches (e.g. Kempe et al. (2003))
face many challenges. They rely on detailed network data and are sensitive to small changes.
This is an issue because in most applications we do not have complete data on the relevant
network, and the data we do have is noisy. Even with perfect data, finding the optimal seeds
is computationally demanding.

The last section suggests a different approach. More often, we have data on demographic
or other attributes along with some incomplete information about social ties. We can imagine
a player’s type θ as a vector of observables. As long as we have data on:

(a) Neighbor adoption propensities σθ,

(b) Degree distributions Dθ, and

(c) Neighbor type distributions Zθ,

then we can compute a vector of diffusivities ζ
(σ)
θ and target individuals based on the ob-

servables θ. To simplify further, one might also impose parametric restrictions on the degree
distributions or neighbor type distributions. Targeting high-diffusivity types is obviously
less effective than what we could achieve through optimal seeding given perfect information
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about the network. However, this approach has clear advantages. We can say something
potentially useful based on more limited information about the network. Moreover, solving
for the diffusivities is far more computationally tractable—it entails numerically solving a
system of |Θ| equations in |Θ| unknowns.

Consider the following example with three types θ ∈ {l,m, h}. Type l will never adopt
(σl = 0), type h will always adopt (σh = 1), and type m adopts with probability 1

2
(σm = 1

2
).

Suppose all types have 5 neighbors for sure, and we have

q
(m)
l = q

(m)
h = q(l)

m = q(h)
m = ε, q

(h)
l = q

(l)
h = 1− ε, q(m)

m = 1− 2ε

for some small ε. That is, types l and h preferentially link to each other and form occasional
links with type m, while type m predominantly forms own-type links.

For small values of ε, the giant component is almost entirely comprised of type m players,
and these are the ones to target for seeding. While type h players are more likely to adopt,
and type l players have neighbors who are more likely to adopt, cascades from these types
are sure to end within a few steps of the seed. In contrast, starting from a type m individual,
we get in expectation two new adopters at each step. These assumptions are extreme, but
they highlights in stark terms that the correlation structure between neighbor types matters,
and we can productively use this information to guide seeding.

4.3 Comparative Statics

We now explore how the extent and rate of diffusion vary with the degree distributions
{Dθ}, the neighbor type distributions {Zθ}, and the adoption propensities σ(θ, d). What
matters is how these jointly affect the network of potential adopters. Let {Dθ, Zθ, σ(θ, d)}
and {D̂θ, Ẑθ, σ̂(θ, d)} denote two distinct sets of parameters—variables with a hat relate to
the second set. In this section, we fix the collection of types Θ and the type distribution T .

When the network of potential adopters gets more dense, we clearly get higher diffusivity
and virality. However, the degree distribution in the network of potential adopters depends
non-trivially on all three fundamental parameters. Proposition 3 parses the effects of dif-
ferent changes. I abuse notation slightly, letting D denote both a degree distribution and a
cumulative distribution function. I write D FOSD D̂ to mean D(m) ≤ D̂(m) for all m ∈ N.

Proposition 3. Any of the following changes results in higher diffusivity and virality (i.e.
ζσ ≥ ζ̂σ̂ and νσ ≥ ν̂σ̂).

(a) We increase adoption propensities, holding all else fixed (i.e. σ(θ, d) ≥ σ̂(θ, d)).

(b) Adoption propensities are non-decreasing in d, and we increase network density, holding
all else fixed (i.e. Dθ FOSD D̂θ for each type θ).

(c) We increase network density, and neighbor adoption probabilities satisfy

(1− q̂(θ)
σ,θ′)

dD̂−1
θ (Dθ(m))e ≥ (1− q(θ)

σ,θ′)
m (15)

for each m ∈ N and each pair of types θ and θ′.
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Proof. See Appendix.

Condition (a) is intuitive: adding potential adopters causes adoption to spread further
and faster. Condition (b) looks at changes in the total degree distributions {Dθ}θ∈Θ. As long
as adoption propensities weakly increase in degree, a denser network leads to higher ζσ and νσ.
If the propensities decrease in degree, this could offset the additional connectivity. Condition
(c) characterizes the tradeoff between adding links and increasing adoption propensities. If
Dθ FOSD D̂θ, then the exponent dD̂−1

θ (Dθ(m))e is (weakly) less than m, providing room to

have q̂
(θ)
σ,θ′ > q

(θ)
σ,θ′ while still satisfying the condition.

Changes in degree variance have ambiguous effects on the extent of diffusion, but a clear
effect on the rate. Equation (13) shows that average forward degrees are increasing in the
variance of the degree distributions, so mean preserving spreads tend to increase virality.

Proposition 4. If any of the following conditions hold, we have νσ ≥ ν̂σ̂:

(a) We have m
(σ)
ij ≥ m̂

(σ̂)
ij for all i, j ∈ Θ

(b) We have that σθ,d = σ̂θ,d is weakly convex in d, that Zθ = Ẑθ for each type θ, and Dθ

is a mean preserving spread of D̂θ for each type θ

Proof. Part (a) is trivial. For part (b), convexity implies that a mean-preserving spread

results in (weakly) higher adoption propensities σ
(θ)
θ′ . From the definition, a mean preserving

spread also increases νθ. The result follows from (14) together with part (a).

We can interpret higher variance degrees as higher network centralization: a smaller
number of players account for a larger fraction of total links. This reduces path lengths,
allowing adoption to spread more quickly. However, more low-degree players may also mean
more isolated components. Recalling the example in Section 2.4, Proposition 4 implies we
get faster diffusion after a mean preserving spread, but the extent of diffusion may decline.

5 Limit Beliefs and Viral Belief Distortion

I distinguish two types of strategy profiles—non-viral and viral profiles. In a non-viral
profile, we have νσ ≤ 1, which means adoption can never spread beyond a tiny fraction of the
population. In a viral profile, we have νσ > 1, which means that cascades covering a positive
fraction of players are possible. The distinction has implications for players’ beliefs. In the
former case, an exposed player knows exactly one neighbor has adopted, and the remaining
neighbors have types and degrees drawn independently from the forward distributions. In the
latter case, exposure conveys more information. If adoption fails to “go viral,” the asymptotic
probability that any given player learns about the product is zero. When adoption does go
viral, this probability is strictly positive. Consequently, conditional on exposure, a player
knows there is a large cascade, and she is connected to the giant component—I call this
adjustment viral belief distortion.
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Viral belief distortion skews beliefs about neighobrs towards higher degrees and higher
adoption propensities—we essentially condition the characteristic branching process on sur-
vival. Recall the forward extinction probabilities {ξ(σ)

θ } and the adoption-weighted neighbor

type probabilities {q(θ)
σ,θ′}. A type θ player with degree d is connected to the giant component

with probability ζ
(σ)
θ,d = 1 − (q

(θ)
σ · ξ(σ))d, and hence a type θ player is connected to this

component with probability ζ
(σ)
θ = 1− gθ(q(θ)

σ · ξ(σ)). To obtain players’ beliefs, we reweight
Zθ and Dθ to account for the selection effect.

Proposition 5 (Viral Belief Distortion). If νσ ≤ 1, a type θ player who gets exposed believes
that each of her neighbors has type drawn independently according to Zθ and, conditional on
realizing type θ′, degree drawn according to D′θ′ + 1.

If νσ > 1, a type θ player who gets exposed believes that each of her neighbors has type
drawn independently according to Ẑθ and, conditional on realizing type θ′, degree drawn
according to D̂′θ′ + 1, where

P(Ẑθ = θ′) =
q

(θ)
θ′ ζ

(σ)
θ′∑

θ̃∈Θ q
(θ)

θ̃
ζ

(σ)

θ̃

, and P(D̂′θ = d) =
P(D′θ = d)ζ

(σ)
θ,d+1∑

k∈N P(D′θ = k)ζ
(σ)
θ,k+1

.

Proof. The first part is clear as Zθ and D′θ correspond to the offspring distribution of the
characteristic branching process—we add one to D′θ because here we count the link back
to the parent node. The distributions Ẑθ and D̂θ reweight the distributions Zθ and D′θ
according to the probability that a particular type and degree of player is connected to the
giant component in the network of potential adopters.

Some implications of Proposition 5 may appear counterintuitive. Adoption fails to go
viral with positive probability, yet in this event, every exposed player has systematically
incorrect beliefs about her neighbors. This happens because the number of exposed players
in a non-viral realization is tiny compared with that in a viral realization. This suggests a
reason why users of a niche product might be unrealistically optimistic about the product
becoming popular—players reason “if I found out about it, it must be catching on.”

The size of this effect on beliefs is largest when diffusivity is small—if few people are in
the giant component, then being in this component conveys more information. The ratio

1− (q
(θ)
σ · ξ(σ))d

1− (q
(θ)
σ · ξ(σ))d′

captures the relative likelihood that two players of the same type with degrees d and d′ are
connected to the giant component. When diffusivitiy is small, the value q

(θ)
σ · ξ(σ) is close to

one. If d > d′, the ratio grows with q
(θ)
σ · ξ(σ). As the giant component gets smaller, beliefs

become more skewed towards neighbors with high degrees. This creates a discontinuity in
players’ beliefs as we move from non-viral strategy profiles to viral strategy profiles.
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6 Random Graphs that Resemble Reality

This section presents the technical contribution: a characterization of component sizes
and typical distances in a multi-type configuration model. Real networks, from friendships
and coauthorships to webpage links, share several structural regularities. Among these are
power-law degree distributions, the “small-worlds” property, clustering, and homophily.12

The configuration model and its variants can generate all of these features.
While these random graphs are complicated objects—with overlapping neighborhoods,

cycles, and multiple disjoint components—a limit theorem ties the network structure to a
characteristic branching process. This is a far simpler object, amenable to standard tools for
studying sums of independent random variables. I present a slightly more general version of
the model than what I used earlier—here I do not assume independence of neighbor types.
The Law of Large Networks tells us that the local structure of the network converges to
the distribution of the characteristic branching process. Moreover, all “large” components
are connected in one “giant” component. The Typical Distances theorem tells us that path
lengths between random nodes in the giant component concentrate around log n, where the
base of the logarithm corresponds to the growth rate of the characteristic branching process.
Proofs, along with useful corollaries and extensions, are given in an appendix.

6.1 The Multi-type Configuration Model

To define the model, we need a finite set of types Θ = {1, 2, ..., |Θ|}, a type distribution
T ∈ ∆(Θ), and degree distributions D = {D(θ)}θ∈Θ for each type. Here, a degree is not
simply a number but a |Θ|-tuple d = (d1, d2, ..., d|Θ|) giving the number of links to each type
of node. The only assumption we impose on D is that each component has finite expectation
and finite variance.13 For each of n nodes, we independently draw a type from T . Each type
θ node draws a degree tuple independently from D(θ)—imagine assigning link stubs to each
vertex, and each stub has a type. We then pair compatible stubs together uniformly at
random to form links: for each type θ stub connected to a type θ′ node, we draw, from those
not yet paired, a type θ′ stub connected to a type θ node.

Given n-vectors of types θ = (θ(1), θ(2), ..., θ(n)) and degree tuples d = (d(1), d(2), ..., d(n)),
we say the pair (θ,d) is consistent if

(a) For each pair of types θ 6= θ′, the total number of type θ stubs attached to type θ′

nodes equals the number of type θ′ stubs attached to type θ nodes, and

(b) For each type θ, the number of type θ stubs attached to type θ nodes is even.

When we draw (θ,d) according to (T,D), we condition on realizing a consistent pair. Limit

results require a consistency condition on (T,D). Write µ
(θ)
θ′ for the expected number of

12Barabási and Albert (2002) document the ubiquity of power-law degree distributions, small worlds, and
clustering across a variety of networks, including links between webpages, actor collaborations, academic
citations, and human sexual contacts. McPherson et al. (2001) review literature on homophily in social
networks, and Ugander et al. (2011) find all four features in the Facebook graph.

13Finite variance is only necessary for Theorem 2.
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type θ′ stubs that D(θ) realizes, and define pθ = P(T = θ). The pair (T,D) is consistent

in expectation if for each pair of types θ and θ′, we have pθµ
(θ)
θ′ = pθ′µ

(θ′)
θ . This ensures

that the distributions generate the same expected number of stubs on each side of a link.
We condition the matching of link stubs on realizing a simple graph—one with at most one
link between any pair of nodes and no self links. The following definition summarizes the
multi-type configuration model.

Definition 3 (Multi-type Configuration Model). Given n nodes and a consistent pair (θ,d)
of types and degree tuples, we realize the multi-type configuration model with type
sequence θ and degree sequence d, written CMn,θ,d, as follows. Assign node i type θ(i)

and degree tuple d(i). Successively pick pairs of compatible link stubs uniformly at random,
join the two stubs to form a link, and repeat this until all stubs are matched. Condition this
process on realizing a simple graph.

Given n nodes and distributions (T,D) that are consistent in expectation, we realize
the multi-type configuration model with distribution (T,D), written CMn,T,D, as
follows. Generate a pair (θ,d) according to (T,D). Conditional on realizing a consistent
pair, generate a graph according to CMn,θ,d.

Example: The One-Type Configuration Model

Suppose Θ is a singleton. The collection {D(θ)}θ∈Θ reduces to a single distribution D ∈
∆(N) assigning the total number of links to each node. Even in this simple model, different
distributions D capture a wide range of network structures. This model is widely applied,
and earlier results characterize its structure. Two key questions are:

(a) For large n, is there a giant component?

(b) What is the typical path length between two connected nodes?

If L1(G) is the largest connected component in G, we could rephrase (a) to ask: is the limit

of |L1(G)|
n

positive? The results of Molloy and Reed (1995) tell us that it is if and only if

ν =
E[D(D − 1)]

E[D]
> 1.

Moreover, we can compute the limit using the probability generating function g of D. Writing
ζ for the limiting value of |L1(G)|

n
, we have ζ = 1− g(ξ), where ξ is the minimal solution to

g′(1)ξ = g′(ξ).

When a giant component exists, van der Hofstad et al. (2005) show that the distance between
two random nodes in this component concentrates around logν n as n approaches infinity. The
theorems in the next subsection generalize both findings to the multi-type model, allowing
us to analyze networks of heterogeneous agents with correlated linking propensities.
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Example: Two types with Homophily

Suppose Θ contains two types a and b, and T assigns equal probability to each. Fix
h ∈ [0, 1]. To define D(a), draw a degree from D and label each link type a with independent
probability 1+h

2
—label a link type b otherwise. Define D(b) similarly, drawing a degree from

D and labeling each link type b with probability 1+h
2

. The parameter h captures homophily.
When h = 0, the network is structurally equivalent to a one-type configuration model with
degree distribution D. When h > 0, nodes form more links with others of the same type.
When h = 1, the two types are completely separated into two disjoint networks.

6.2 Branching Process Approximation

Given (T,D), we define the characteristic branching process TT,D in two stages. The
root node draws a type θ ∈ Θ from T and offspring from D(θ). Each subsequent node draws
offspring independently from a forward distribution D′(θ,θ

′) that depends on both the node’s
type and its parent’s type. A type θ node with a type θ′ parent realizes the tuple of offspring
d = (d1, d2, ..., dΘ) with probability

P(D′(θθ
′) = d) =

(dθ′ + 1)P(D(θ) = d+ eθ′)

µ
(θ)
θ′

, (16)

where eθ is a vector containing a one in entry θ and zeros elsewhere. As before, we correct
for the friendship paradox and subtract the link back to the parent.

Definition 4 (Characteristic Branching Process). Given the distributions (T,D), we realize
the characteristic branching process TT,D as follows. A single root node realizes a type
θ according to T and offspring according to D(θ). Every subsequent type θ node with a type
θ′ parent realizes offspring independently according to the forward distribution D′(θθ

′).

To illustrate, I construct the branching processes for the one-type model and the two-type
model with homophily. For the one-type model, the forward distribution D′ is

P(D′ = d) =
(d+ 1)P(D = d+ 1)

E[D]
. (17)

The root of the characteristic branching process realizes offspring via D, and all subsequent
nodes realize offspring independently via D′.

In the example with two types, independent labeling of link stubs impliesD′(aa) = D′(ab) ≡
D′(a) and D′(ba) = D′(bb) ≡ D′(b). The forward distributions realize total degree according to
D′ as in (17), and each link is an own-type link with independent probability 1+h

2
. The root

of the characteristic branching process realizes type a or b with equal probability, realizes
offspring according to D, and each offspring has the same type with independent proba-
bility 1+h

2
. Each subsequent node realizes offspring independently according to the forward

distribution, either D′(a) or D′(b), corresponding to its type.

25



The characteristic branching process approximates a breadth first search of the network
starting from a random node. In a finite network, the offspring distributions in this search
process are not independent, and they change as we get further from the root. At some point
offspring link to one another. The essence of the first theorem is that these complications
are asymptotically insignificant: as n grows, the local structure of the configuration model
converges to the that of the characteristic branching process.

Given a graph G, let Nk(G) denote the number of nodes in components of size k, and let
Li(G) denote the ith largest component. Write PCMn,T,D

for the probability measure over
graphs defined by the configuration model CMn,T,D. Define ρk = P (|TT,D| = k), and note
that ρ∞ is the survival probability of TT,D.

Theorem 1 (Law of Large Networks). Suppose TT,D is irreducible and non-singular.14 For
any ε > 0, we have

lim
n→∞

PCMn,T,D

(∣∣∣Nk(G)

n
− ρk

∣∣∣ ≥ ε

)
= 0,

lim
n→∞

PCMn,T,D

(∣∣∣ |L1(G)|
n

− ρ∞
∣∣∣ ≥ ε

)
= 0, and

lim
n→∞

PCMn,T,D

(
|L2(G)|

n
≥ ε

)
= 0.

Proof. See Appendix.

Theorem 1 is a central contribution of this paper. The first claim states that the num-
ber of nodes in components of size k converges in probability to ρk: the distribution of
component sizes converges to the law of total progeny for TT,D. The last two claims state
that there is at most one giant component, and it covers a fraction of the network equal to
the survival probability of the characteristic branching process. Theorem 1 extends existing
results for the one-type configuration model, allowing us to study random graphs with het-
erogeneous nodes and linking propensities. The proof in fact implies a much stronger result
than what is stated. The characteristic branching process captures any “local” property of
the configuration model, not just the distribution of component sizes.

If there is a giant component, we can also use the characteristic branching process to assess
distances between nodes within it. Recall that D′(θθ

′) denotes the offspring distribution for
a type θ node with a type θ′ parent. Write

ν
(θθ′)

θ̃
= E

[
D

(θθ′)

θ̃

]
for the expected number of type θ̃ offspring of a type θ node with a type θ′ parent. Define

the mean offspring matrix MT,D of TT,D as the |Θ|2 by |Θ2| matrix with entries ν
(θθ′)

θ̃
—

each row and column corresponds to a particular pair of types (θ, θ′). The entry for row

14Irreducible means that any type of node has all types of offspring at some distance with positive probabil-
ity. Equivalently, in the configuration model, a path exists between any two types with positive probability.
Non-singular means that it is not the case that all types have a single offspring with probability one.
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(θr, θ
′
r) and column (θc, θ

′
c) is equal to ν

(θrθ′r)
θc

if θ′c = θr and 0 otherwise.15 The entries of the
mean offspring matrix record the average number of offspring for each type of node in the
characteristic branching process TT,D.

The spectral radius νT,D of MT,D characterizes typical distances. Given a graph G,
let H(G) denote the length of the shortest path between two vertices chosen uniformly at
random from L1(G). Recall that ρ∞ is the survival probability of TT,D.

Theorem 2 (Typical Distances). Suppose TT,D is irreducible and non-singular. We have
ρ∞ > 0 if and only if νT,D > 1. Moreover, for any ε > 0, we have

lim
n→∞

PCMn,T,D

(∣∣∣ H(G)

logνT,D n
− 1
∣∣∣ ≥ ε

)
= 0.

Proof. See Appendix.

Theorem 2 gives a simple condition to check if a giant component exists, and when one
does, the distance between two random nodes in this component concentrates near logνT,D n.16

This illustrates the small-world property: typical distances grow slowly in network size. The
result intuitively relates to how a branching process grows over time. Standard results imply
that the the number of offspring in successive generations grows exponentially with base νT,D.
This means the number of generations it takes to get n total progeny is roughly logνT,D n.

Since the forward distributions typically depend on both a node’s type and its parent’s
type, a configuration model with |Θ| types has a characteristic branching process with |Θ|2
types. As a practical matter, this presents a problem for computational tractability. This
is why in the main body of the paper, I assume the distribution D(θ) is generated by first
realizing a degree according to Dθ and then realizing types independently according to Zθ.
With independent stub types, the parents’ type does not influence the forward distribution,
and we can reduce the characteristic branching process to one with only |Θ| types.

7 Final Remarks

Diffusion phenomena are pervasive, and they are relevant in a range of economic applica-
tions. Because social ties play an important role in spreading information, the structure of
a social network can influence diffusion patterns. Research is making strides in understand-
ing the role of network structure, but existing theory faces several challenges. The tools in
this paper allow us to study diffusion with a more faithful representation of the underlying
network. We can capture viral phenomena, short-run dynamics, the importance of central
individuals, and the strategic effects that emerge when individuals are not myopic.

15The zeros enter because a type θr can only have offspring with type θr parents.
16van der Hofstad et al. (2005) prove an analogous result for typical distances in the one-type configuration

model. The proof in the appendix is substantially different from theirs, taking advantage of the newer
techniques used to prove Theorem 1. van der Hofstad et al. (2007) give a similar result for the infinite
variance case in the one-type configuration model, showing that typical distances are on the order of log log n.
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Diffusion games give a new account of the relationship between network structure, incen-
tives, and strategic effects. When large cascades are possible, exposure conveys information.
This information affects strategies and outcomes, facilitating coordination among players.
In addressing key shortcomings of mean-field models, we discover more nuanced adoption
patterns. The extent and speed of diffusion can move in different diretcions, and standard
comparative statics can reverse. Importantly, the model primitives have a clear link to
the kinds of data empirical researchers gather. Our framework offers a direct way to use
demographic and network information in tandem to inform seeding strategies or other inter-
ventions. Beyond these contributions, the law of large networks and its extensions may prove
useful in other contexts. By giving us a meaningful way to characterize “generic” graphs,
these tools enable a new conceptual approach for doing network based theory.

The present paper’s limitations suggest many avenues for future work. While partly
addressed in appendices, we should desire a more complete treatment of networks with
clustering, players who can wait to adopt, and the choice to share information separate from
the choice to adopt. The same essential techniques can also facilitate systematic studies of
optimal seeding and referral program design. We should view the present paper as the first
step in a larger research agenda to explore these problems in discrete network models.
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I divide the appendix into three sections. The first appendix presents background mate-
rial, including standard material on branching processes and the basic configuration model,
as well as a few not-so-standard results on the configuration model. The second appendix
proves results in the paper, beginning with Theorems 1 and 2 before giving useful corollaries
and proofs for the remaining results. The last appendix considers extensions to include local
information, choosing to share information, global network externalities, and clustering.

A Background Material

A.1 Branching Processes

A Galton-Watson process is a sequence of random variables {Zn}∞n=0, with Z0 = 1 by
convention, and

Zn =

Zn−1∑
i=1

Xn,i,

where {Xn,i}n,i∈N is a collection of i.i.d. random variables taking non-negative integer values.
Write X for the common distribution. We can interpret the sequence {Zn} as a population
growing and shrinking over time, with Zn the number of individuals in the nth generation.
To obtain the next generation, each member of the nth generation has a random number of
offspring, generated according to the distribution X.

Standard questions about the Galton-Watson process include: What is the probability of
extinction η = P(∃n : Zn = 0)? What is the distribution of the total population size? How
fast does Zn grow over time? A fundamental tool in the analysis of branching processes is
the generating function of X. Write pi = P(X = i) for the probability that an individual
has exactly i offspring. The generating function is

GX(s) = E[sX ] =
∞∑
i=0

pis
i.

We can use the generating function to characterize the extinction probability.

Proposition 6. The extinction probability η is the smallest solution in [0, 1] of

η = GX(η).

In particular, if E[X] < 1, then η = 1; if E[X] > 1, then η < 1. If E[X] = 1, then η = 1 if
p1 < 1 and η = 0 if p1 = 1.

Proof. See the first chapter in Athreya and Ney (1972).

Let µ = E[X]. One can easily verify that E[Zn] = µn, and the sequence Zn
µn

forms a
martingale. This gives us additional information about the size of the branching process,
the rate of growth, and implicitly the distribution of the extinction time.
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Proposition 7. Let T =
∑∞

n=0 Zn denote the total progeny of the branching process. If
µ < 1, then E[T ] = 1

1−µ .

The sequence Zn
µn

converges almost surely to a non-negative random variable W .

Proof. The first claim follows by summing the geometric sequence of expected values; the
second is immediate from the martingale convergence theorem.

We require generalizations of these results for multi-type branching processes. Suppose
there are r types of individuals in the population. Let Zn denote an r-tuple (Zn,1, Zn,2, ..., Zn,r),
giving the number of individuals of each type in the nth generation. Given an initial popu-
lation Z0, recursively define the sequence Zn as

Zn =
r∑
i=1

Zn−1,i∑
j=1

X
(i)
j ,

where the X
(i)
j are mutually independent, and for each i the X

(i)
j have the same distribution

X(i). Put differently, each type is characterized by its own offspring distribution, where the
distribution X(i) is a distribution over r-tuples of non-negative integers.

We can define an analogous generating function for the multi-type branching process.
Let p(i)(j1, j2, ..., jr) denote the probability that X(i) = (j1, j2, ..., jr), and define

G
(i)
X (s) =

∑
(j1,j2,...,jr)∈Nr

p(i)(j1, j2, ..., jr)s
j1
1 s

j2
2 ...s

jr
r .

The multi-type generating function is the vector GX(s) =
(
G

(1)
X (s), G

(2)
X (s), ..., G

(r)
X (s)

)
. Let

η(i) denote the probability of extinction if Z0 consists of a single individual of type i, and let
η = (η(1), η(2), ..., η(r)) denote the vector of extinction probabilities.

With a single type, we used µ = E[X] to characterize whether the branching process is
sure to go extinct. With multiple types, we can write an analogous result using the mean
offspring matrix. Define mi,j = E[X

(i)
j ] as the expected number of type j children from a

type i parent. The mean offspring matrix M has entries mi,j; let ρ denote its spectral radius.
A multi-type branching process is irreducible if every type of individual has descendants of
all other types with positive probability. Equivalently, the matrix M is irreducible. A multi-
type branching process is non-singular is there exists a type that does not have a single
offspring with probability one.

Proposition 8. The vector η is the only solution in the unit cube of GX(η) = η.

Suppose the branching process is irreducible and non-singular. If ρ ≤ 1, then η = 1. If
ρ > 1, then η(i) < 1 for all i.

Proof. See chapter 5 in Athreya and Ney (1972).
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The spectral radius ρ of M characterizes the growth rate of the process.

Proposition 9. There exists a non-negative random vector W such that Zn
ρn

converges to
W almost surely.

Proof. Again, see chapter 5 in Athreya and Ney (1972).

More detailed results on the distribution of T , the distribution of extinction times, and
other features are available in the literature, but are beyond what is needed in the present
paper. I would direct an interested reader to Athreya and Ney (1972) and Jagers (1975).

A.2 The Configuration Model

This section focuses mainly on the basic configuration model, meaning the model with a
single type. Nodes realize link stubs according to the distribution D, and these are paired
uniformly at random. Unlike in the main paper, here do not condition on realizing a simple
graph—we allow self links and multiple links between the same pair of nodes. This is because
proofs of the main theorems start from this version of the configuration model, and we later
translate the results to the model conditioned on realizing a simple graph. Write CMn,d for
the basic configuration model with degree sequence d, and write CMn,D for the model where
d is realized via n independent draws from D.

Many results concern limits as n approaches infinity. To make sense of a limit for a
sequence CMn,d(n) , the degree vectors d(n) must converge in an appropriate sense. For

an n-vector d(n) of degrees, let nd(d
(n)) denote the number of entries equal to d, and let

m(d(n)) =
∑n

i=1 d
(n)
i denote the total number of stubs, or twice the number of edges. There

are two standard conditions:

(a) There exists {pd}d∈N such that for each d we have

lim
n→∞

nd(d
(n))

n
= pd.

(b) We have

lim
n→∞

m(d(n))

n
=
∞∑
d=0

dpd <∞.

The sequence {pd}d∈N describes a limiting degree distribution that takes the value d with
probability pd. These two conditions ensure that d(n) converges to {pd} in distribution and
in expectation.17 For a sequence {d(n)}n∈N, we always assume that (a) and (b) hold, and we

17At first glance, the second condition might appear redundant, but it is necessary to rule out pathological
cases. For instance, suppose d(n) contains n − 1 entries equal to 1 and a single entry equal to n − 1. The
sequence converges in distribution to a random variable taking the value 1 with probability 1, which would
suggest n

2 edges in expectation, but the actual number of edges is always n− 1.
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write D for the limiting distribution. When degrees are realized independently according to
D, the strong law of large numbers implies that (a) and (b) hold almost surely in the limit.

Conditional on realizing a simple graph, the model CMn,d is equivalent to taking a
uniform draw among all simple graphs with the given degree sequence.

Proposition 10. Conditional on realizing a simple graph, the model CMn,d selects a graph
uniformly at random from those with n verticies and degree sequence d.

Proof. This is immediate from the definition as each possible pairing of link stubs that results
in a simple graph is equally likely.

The next result helps translate findings when we condition on a simple graph. In essence,
we wish to show that some function of graphs f(G) concentrates around its mean µ as n
grows. Independent link formation makes it relatively easy to show for any ε > 0 that

lim
n→∞

PCMn,d
(|f(G)− µ| ≥ ε) = 0, (18)

but we need to show that

lim
n→∞

PCMn,d

(
|f(G)− µ| ≥ ε

∣∣G is simple
)

= 0. (19)

Since the probability of realizing a simple graph declines subexponentially in n, if we can
establish exponential concentration bounds on (18), the bounds translate directly to (19).

Proposition 11. Fix any γ > 0. For all sufficiently large n we have

PCM
n,d(n)

(G is simple) > e−γn.

Proof. This is equivalent to Lemma 21 of Bollobás and Riordan (2015).

Corollary 1. Suppose that for any ε > 0, there exists δ such that for all sufficiently large n
we have

PCMn,d
(|f(G)− µ| ≥ ε) < e−δn.

Then, for any ε > 0, there exists δ′ such that for all sufficiently large n we have

PCM
n,d(n)

(
|f(G)− µ| ≥ ε

∣∣G is simple
)
< e−δ

′n.

Proof. Choose γ = δ
2

in Proposition 11. We have for large n

PCM
n,d(n)

(
|f(G)− µ| ≥ ε

∣∣G is simple
)
≤

PCM
n,d(n)

(|f(G)− µ| ≥ ε)

PCM
n,d(n)

(G is simple)

<
e−δn

e−
δ
2
n

= e−
δ
2
n.
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Conditioning on simple graphs does not distort the limiting degree distribution.

Proposition 12. Let nd(G) denote the number of degree d vertices in the graph G and let
pd = P(D = d). For any ε > 0, there exists δ > 0 such that

PCMn,D

(
sup
d

∣∣∣nd(G)

n
− pd

∣∣∣ ≥ ε
∣∣G is simple

)
< e−δn.

Proof. The corresponding inequality without conditioning on simple G is immediate from
the Dvoretzky-Kiefer-Wolfowitz inequality. The result then follows from Corollary 1.

A complication is that diffusion patterns depend on both the network structure and
on individual decisions to adopt. Equilibrium decisions induce a subnetwork of potential
adopters who adopt if they get exposed. The structure of this subnetwork, rather than
that of the broader network, determines diffusion patterns. Consequently, we require the
following non-standard result.

Suppose we select a subgraph of CMn,D by including each degree d node with independent
probability qd. Write CMn,q,D for the model in which we realize a graph according to
CMn,D, select nodes according to the probabilities qd, and retain the subgraph of links
between the selected nodes. Let S denote the collection of nodes in a realization of CMn,q,D.
The subgraph has a realized degree sequence d(|S|). Conditional on selecting |S| nodes and
realizing the sequence d(|S|), the distribution of CMn,q,D is exactly that of CM|S|,d(|S|) : the
subgraph is itself a configuration model.

As n grows, the degree distribution of the subgraph approaches a natural limit. Define
the distribution Dq in two stages. First, draw k ∈ N according to a distribution taking the
value i with probability qipi∑∞

j=0 qjpj
. This is the degree distribution for a random node that

gets selected according to q. After drawing k, draw the degree d according to a binomial

distribution with k trials and success probability
∑∞
i=0 ipiqi∑∞
i=0 ipi

, the probability that a random

link stub is attached to a node selected according to q. In essence, we draw the degree of
a selected node, and we retain each link stub according to the probability that it links to
another selected node. Let pq,d denote P(Dq = d).

Proposition 13. For any ε > 0, there exists δ > 0 such that

PCMn,q,D

(
sup
d

∣∣∣nd(G)

|S|
− pq,d

∣∣∣ ≥ ε

)
< e−δn.

Proof. From the construction of Dq, we can compute the probabilities pq,d as

pq,d =
∑
k≥d

qkpk∑∞
i=0 qipi

(
k

d

)(∑∞
i=0 iqipi∑∞
i=0 ipi

)d(∑∞
i=0 i(1− qi)pi∑∞

i=0 ipi

)k−d
.

I first show that ECMn,q,D

[
nd(G)
|S|

]
converges to pq,d. Let nd,q(G) denote the number of degree

d nodes in CMn,D that get selected according to q, let mq(G) denote the number of link
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stubs attached to nodes selected according to q, and let m(G) denote the total number of
link stubs. The Dvoretzky-Kiefer-Wolfowitz inequality implies that for any ε > 0 there exists
δ > 0 such that

PCMn,D

(
sup
d

∣∣∣nd,q(G)

|S|
− qdpd∑∞

i=0 qipi

∣∣∣ ≥ ε

)
<

1

3
e−δn.

An application of Hoeffding’s inequality ensures we can choose this δ so that also

PCMn,D

(∣∣∣mq(G)

n
−
∞∑
i=0

iqipi

∣∣∣ ≥ ε

2

)
<

1

3
e−δn, and PCMn,D

(∣∣∣m(G)

n
−
∞∑
i=0

ipi

∣∣∣ ≥ ε

2

)
<

1

3
e−δn.

Write A for the event that none of the three inequalities hold, which happens with probability
at least 1− e−δn.

The expected fraction of nodes in CMn,q,D with degree d is the probability that a random
vertex in S has degree d. Write Dv for the degree of a vertex in CMn,q,D chosen uniformly
at random, and D+

v for the degree of this vertex in the graph CMn,D before removing the
vertices that were not selected. Also, write πd,k for the set of vectors in {0, 1}k with exactly
d entries equal to 1. We have

P(Dv = d) =
∑
k≥d

P(D+
v = k)E

 ∑
π∈πd,k

∏k−1
i=0 (mq(G)− i)πi(m(G)−mq(G)− i)1−πi∏k−1

i=0 (m(G)− i)

 .
In event A, with n sufficiently large, we have∣∣∣P(D+

v = k)− qkpk∑∞
i=0 qipi

∣∣∣ < ε,

∣∣∣∏k−1
i=0 (mq(G)− i)πi(m(G)−mq(G)− i)1−πi

nk
−

(
∞∑
i=0

iqipi

)d( ∞∑
i=0

i(1− qi)pi

)k−d ∣∣∣
< (1 + ε)k − 1, and

∣∣∣∏k−1
i=0 (m(G)− i)

nk
−

(
∞∑
i=0

ipi

)k ∣∣∣ < (1 + ε)k − 1.

Choosing ε sufficiently small, and letting n tend to infinity, we see that P(Dv = d) must
converge to pq,d.

To complete the argument, we need to show that nd(G)
|S| concentrates around its mean.

To see this, we define a sequence of random variables that slowly reveal the realized value
of nd(G)

|S| . Given a realization of CMn,D, let X0 denote the expected value of nd(G)
|S| . Label

the vertices 1 through n, and one vertex at a time, reveal whether that vertex is selected
according to q; let Xi for i = 1, 2, ..., n denote the conditional expectation of nd(G)

|S| after the

ith revelation. By definition, Xn = nd(G)
|S| , and the sequence Xi is a martingale with bounded

increments. The Azuma-Hoeffding inequality finishes the proof.
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Proposition 13 tells us that selecting a subgraph of CMn,D according to q is asymptoti-
cally equivalent to the model CMn,Dq , so any structural results for the configuration model
apply to these subgraphs—we simply replace the degree distribution D with Dq.18

For the multi-type configuration model, direct analogs to Propositions 10, 11, 12, and
13, and Corollary 1 hold via essentially identical arguments once we impose appropriate
conditions on the sequence (θ,d)(n). Define pθ = P(T = θ) and p

(θ)
d = P(D(θ) = d). Let

µθ,θ′ denote the expected number of type θ′ neighbors of a type θ vertex. Given a sequence
(θ,d)(n), let nθ,d

(
(θ,d)(n)

)
denote the number of type θ entries with corresponding degree

tuple d, and let mθ,θ′
(
(θ,d)(n)

)
denote the number of edges between type θ and θ′ nodes.

The conditions analogous to (a) and (b) above are

(a)

lim
n→∞

nθ,d
(
(θ,d)(n)

)
n

= pθp
(θ)
d .

(b)

lim
n→∞

mθ,θ′
(
(θ,d)(n)

)
n

= pθµθ,θ′ <∞.

For any pair θ and θ′, we must have pθµθ,θ′ = pθ′µθ′,θ. We also impose an irreducibility
condition: for any pair θ and θ′, there exists a sequence of types θ0, θ1, ..., θl such that

• θ0 = θ and θl = θ′

•
∏l

i=1 µθi−1,θi > 0.

This ensures that a path can exist between any two types with positive probability.

B Proofs of Results

B.1 Proofs of Theorems 1 and 2

For Theorem 1, I prove a stronger result which immediately implies it. I use d =
{(d1, d2, ..., dΘ)i,θi}ni=1 to denote the sequence of types and degree tuples. Fixing d, write
mθ,θ′(d) for the number of edges connecting type θ and type θ′ nodes, and write nθ,d(d) for
the number of type θ nodes with degree tuple d. Finally, define the configuration distance as

l(d, D) = max

{
1

n
,

Θ∑
θ=1

∑
d

∣∣∣dnθ,d(d)

n
− dpθP(Dθ = d)

∣∣∣} ,
where d =

∑Θ
θ=1 dθ is the total degree associated with d. This measures how much the real-

ized degree sequence deviates from D. It is straightforward to check that l(d, D) converges

18Combining this Proposition with the main theorem effectively generalizes percolation results to cases
with arbitrary heterogeneity in how permeable different links are.
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to zero as n grows if and only if the realized degree sequence converges to D both in distri-
bution and in expectation. Hence, the law of large numbers implies that the configuration
distance converges to zero almost surely as n goes to infinity.

Theorem 3. For any ε > 0 and any k ≥ 1, there exists δ > 0 such that if l(d, D) < δ we
have

P
(∣∣Nk(G)− nP(|T | = k)

∣∣ ≥ εn
)
≤ e−δn. (20)

If additionally the degree distribution D assigns positive probability to some type having 3 or
more neighbors, then there exists δ > 0 such that if l(d, D) < δ we have

P
(∣∣L1(G)− nP(|T | =∞)

∣∣ ≥ εn
)
≤ e−δn, and P (L2(G) ≥ εn) < e−δn. (21)

I prove Theorem 3 allowing multigraphs—I do not condition on simple graphs. It is
easier to work with this version of the configuration model due to full independence in the
link stub pairing process. The multi-type analog of Corollary 1 implies the result also holds
conditional on realizing a simple graph.

Let G∗ to denote a graph realized according to the multigraph configuration model, and
let G to denote a generic graph. Let v to denote a generic node in G, and Gv to denote the
graph G rooted on v. I use T to refer both to the branching process defined in section 6 and
the corresponding tree, viewed as a rooted graph. For a positive integer r, write Gv,r for the
subgraph of radius r rooted on v (i.e. the subgraph of nodes at distance r or less from v),
and similarly write Tr for the tree T truncated after the rth generation. I abuse notation,
writing Gv,r = Tr to indicate that Tr, viewed as a rooted graph, is isomorphic to Gv,r.

There are two major steps in the proof. The first shows that the distribution of component
sizes converges to the distribution of tree sizes in the branching process T . We can prove this
for the multigraph case using a straightforward coupling argument, matching the branching
process with a breadth first search process starting at a random node. Passing to simple
graphs requires a more powerful concentration result, giving exponential bounds on the rate
of convergence. We obtain these bounds by applying the Azuma-Hoeffding inequality to a
martingale that arises through a process that explores possible link stub pairings.

Once we establish the correspondence between component sizes and tree sizes, we show
that essentially all “large” components are connected in one “giant” component. This relies
on a coloring and sprinkling argument in which we first retain links independently with some
probability p ∈ (0, 1), and then sprinkle the remaining links back in, taking advantage of
conditional independence between the retained links and the sprinkled links. Large compo-
nents that exist in the thinned graph are likely to be connected by the additional links. The
assumption that at least one type has three or more neighbors with positive probability is
necessary for this step. It ensures that the survival probability of the thinned tree converges
to that of T as p approaches 1. An argument showing that the results carry over if we
condition on realizing a simple graph completes the proof.

The Branching Process Approximation
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The first part of the proof establishes a coupling between rooted graphs of finite size
G∗v,r and truncated trees Tr. This in turn implies that any property of the rooted graph G∗v,
which depends only on those vertices within distance r of v, is asymptotically characterized
by the branching process T . This is the sense in which T captures the “local” properties of
G∗. The bulk of this section is devoted to proving bounds on the probability of deviations.

Lemma 1. Let v be a vertex of G∗ chosen uniformly at random, and suppose {dn}n∈N is a
sequence for which l(dn, D) converges to zero. For any finite r, we can couple the random
graphs G∗v,r and Tr so that they are isomorphic with probability approaching 1 as n approaches
infinity.

Proof. Begin with a realized sequence d, and suppose that l(d, D) < ε for some ε > 0.
We will reveal the rooted graph G∗v,r one node at a time, following a breadth first search
procedure, coupling it with Tr at each step and bounding the probability that the coupling
fails. Given our assumption on the configuration distance, we can couple the degree d of the
root v with the offspring distribution of the root of Tr with probability at least 1− ε.

At each subsequent step, we start with a node of some type θ and reveal a partner for a
link of another type θ′. At the jth step, the probability that this is an unvisited node with
degree tuple d is precisely

dθ (nθ′,d(d)− uθ′,d,j)
mθ,θ′(d)− uθ,θ′,j

,

where uθ′,d,j is the number of type θ′ nodes with degree vector d that have been visited
before the jth step, and uθ,θ′,j is the number of completed edges between type θ and type
θ′ nodes before the jth step. Note that uθ′,d,j ≤ j and uθ,θ′,j ≤ j. This implies that for any
fixed j, the difference between this quantity and P(D′θ,θ′ = d) is no more than ε + o(1), so
the coupling succeeds with probability 1− ε− o(1).

To complete the proof, note that for any ε > 0, there is a constant M such that |Tr| ≤M
with probability at least 1−ε, and for sufficiently large n, we have l(d, D) < ε with probability
at least 1− ε. For N larger than this, the probability that the coupling fails is no more than
2ε+M(ε+ o(1)), and the conclusion follows.

One immediate consequence of this lemma is that the rooted graphs G∗v,r are trees with
probability approaching 1. More generally, the branching process T characterizes any “local”
property of the graph G∗. Let P be a property of rooted graphs, meaning a set of rooted
graphs that is closed under isomorphisms. We can also think of P as a property of vertices,
taking the root of the graph as the relevant vertex. We write Gv ∈ P to say that the graph G
rooted on v has the property P and we write NP(G) for the number of vertices with property
P . For any positive integer r, we say that P is r-local if whether Gv ∈ P depends only on
Gv,r. The following corollary is immediate from Lemma 1

Corollary 2. Let P be a r-local property of rooted graphs, let v be a vertex of G∗ chosen
uniformly at random, and suppose {dn}n∈N is a sequence for which l(dn, D) converges to
zero. Then,

lim
n→∞

P (G∗v ∈ P) = P (T ∈ P) .
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Equivalently, for any ε > 0, there exists Nε such that if n ≥ Nε we have∣∣E[NP(G∗)]− nP(T ∈ P)
∣∣ ≤ εn.

We require a slightly modified version of this result, which follows from the previous
corollary.

Corollary 3. Let P be a r-local property of rooted graphs, and let v be a vertex of G∗ chosen
uniformly at random. For any ε > 0, there exists δ > 0 such that if l(d, D) < δ, then
conditional on the degree sequence d we have∣∣E[NP(G∗)]− nP(T ∈ P)

∣∣ ≤ εn.

We focus on the k-local property Pk that a vertex is in a graph component with exactly
k nodes, meaning

NPk(G) = Nk(G), and P(T ∈ Pk) = P(|T | = k).

Corollary 2 of course implies convergence of Nk(G∗)
n

to P(|T | = k), but we require a stronger
bound on the rate of convergence. We make repeated use of the following concentration
result.

Proposition 14. Let P be a r-local property of rooted graphs. For any ε > 0, there exists
δ > 0 such that if l(d, D) < δ then

P
(∣∣NP(G∗)− nP(T ∈ P)

∣∣ ≥ εn
)
≤ e−δn.

The first step to obtain this bound is a lemma using the Azuma-Hoeffding inequality.
Fixing a degree sequence d, we can consider different pairings of stubs. We say that two
pairings π1 and π2 are related by a switching if we can obtain π2 from π1 by deleting two
pairs of the same type {a, b} and {c, d} and replacing them with the pairs {a, d} and {c, b}.
Let f be a real-valued function defined on pairings of d. We say that f is C-Lipschitz if for
any π1 and π2 related by a switching, we have |f(π1)− f(π2)| ≤ C.

Lemma 2. Let f be a C-Lipschitz function of pairings of some degree sequence d, let M
denote the total number of pairs. If π is chosen uniformly at random from all pairings of d,
then for any r ≥ 0 we have

P
(∣∣f(π)− E[f(π)]

∣∣ ≥ r
)
≤ 2e−

r2

2C2M .

Proof. Let Sθ
′

θ = {s1, s2, ..., sm} denote the set of stubs leading from type θ nodes to type
θ′ nodes, with Sθθ′ = {s′1, s′2, ..., s′m} the set of potential partners. We consider a random
process in which we sequentially reveal the pairing. Conditional on the partners of s1, ..., si,
let Ω denote the set of pairings between Sθ

′

θ and Sθθ′ that are consistent with the information
revealed so far. For any possible partner b of si+1, let Ωb denote the subset of Ω containing
all possible pairings in which si+1 is matched to b. For any two potential partners b and c,
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there is a bijection between Ωb and Ωc in which each π1 ∈ Ωb is related by a switching to its
image π2 ∈ Ωc: just switch the pairs {si+1, b} and {sj, c} to {si+1, c} and {sj, b}.

Iterate the revelation process over each type of link, and let Fi be the sigma-field gener-
ated by the sequential revelation process up to si. The process Xi = E [f(π) | Fi] is clearly
a martingale. The bijection together with the Lipschitz property implies that∣∣E [f(π) | Fi]− E [f(π) | Fi+1]

∣∣ ≤ C.

The sequence {Xi}Mi=0, with X0 = E[f(π)] and XM = f(π), is a martingale with differences
bounded by C, and the result follows from the Azuma-Hoeffding inequality.

This lemma is sufficient to prove our concentration result for a local property P if NP(G)
is C-Lipschitz for some C, but this is not universally true for all local properties. However, if
we modify the property to avoid high-degree vertices, we can obtain a C-Lipschitz function
of the graph and use it to prove the concentration bounds. For ∆ ≥ 2 and r ≥ 0, let M∆,r

be the property of rooted graphs that every node within distance r of the root has degree at
most ∆. This is a r + 1-local property.

Lemma 3. Let P be a r-local property, and let Q = P ∩M∆,r. The number of vertices
NQ(G) with property Q is 16∆r-Lipschitz.

Proof. Suppose v is a vertex of G such that exactly one of Gv and (G+ e)v has property Q,
for some edge e. This implies that Gv has property M∆,r since removing an edge can only
reduce the degree of a vertex. Suppose x and y are the endpoints of e. Since only one of
Gv and (G + e)v has property Q, one of x and y is connected through a path of length at
most r to v in G, and each vertex along this path has degree at most ∆. For each endpoint
of e, there can be at most (1 + ∆ + ... + ∆r) ≤ 2∆r such paths, so adding or removing an
edge can change the number of vertices with property Q by at most 4∆r. Since a switching
corresponds to removing two edges and adding two edges, the result follows.

The next lemma formalizes the idea that we can safely ignore high-degree vertices.

Lemma 4. For any r ≥ 0 and ε > 0, there exist δ > 0 and an integer ∆ such that whenever
l(d, D) < δ we have

P(T ∈ M∆,r) ≥ 1− ε

4
, and

P
(
NM∆,r

(G∗) ≤ n (1− ε)
)
≤ e−δn.

Proof. The first part is immediate since the total number of offspring in T within distance
r of the root is finite with probability one. For δ sufficiently small, Corollary 3 then implies
that E

[
NM∆,r

(G∗)
]
≥ n

(
1− ε

2

)
. Apply Lemma 3 to the trivial r-local property (i.e. the

property that always holds), which shows that NM∆,r
(G∗) is a C-Lipschitz function for some

C. The second part now follows from Lemma 2.
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We can now complete the proof of Proposition 14. Choose ∆ sufficiently large so that∣∣P(T ∈ P)− P(T ∈ P ∩M∆,r)
∣∣ ≤ P(T /∈M∆,r) ≤

ε

4
. (22)

Let B = n − NM∆,r
(G∗) denote the number of high-degree vertices in the graph G∗. Since∣∣NP(G∗)−NP∩M∆,r
(G∗)

∣∣ ≤ B, Lemma 4 implies that for some δ1 > 0, whenever l(d, D) < δ1

we have
P
(∣∣NP(G∗)−NP∩M∆,r

(G∗)
∣∣ ≥ εn

2

)
≤ e−δ1n. (23)

Lemma 3 implies that NP∩M∆,r
(G∗) is C-Lipschitz for some C, so Corollary 3 and Lemma

2 together imply that for another δ2 > 0, whenever l(d, D) < δ2 we have

P
(∣∣NP∩M∆,r

(G∗)− nP(T ∈ P ∩M∆,r)
∣∣ ≥ εn

4

)
≤ e−δ2n (24)

The inequalities (22), (23), and (24), with an application of the triangle inequality, now
imply that for some δ < min(δ1, δ2), whenever l(d, D) < δ we have

P
(∣∣NP(G∗)− nP(T ∈ P)

∣∣ ≤ εn
)
≥ 1− e−δn,

proving the result.
Proposition 14 immediately proves (20) for the multigraph configuration model. Sum-

ming over component sizes above some lower bound, we also find that the number of vertices
in “large” components concentrates around nP(|T | =∞).

Corollary 4. Fix ε > 0. For all sufficiently large K, there exists δ > 0 such that if
l(d, D) < δ we have

P

(∣∣∣∑
k≥K

Nk(G
∗)− nP(|T | =∞)

∣∣∣ ≥ εn

)
≤ e−δn. (25)

Proof. For sufficiently large K, we have
∑K

k=1 P(|T | = k) ≥ 1− ε
2
−P(|T | =∞). The result

follows from (20), replacing ε with ε
2K

.

Corollary 4 implies (21) if P(|T | = ∞) = 0, and it will also play a key role in the next
section as we address the case in which P(|T | =∞) > 0.

Coloring and Sprinkling

Having established branching process approximation results for component sizes, we now
show that essentially all “large” components are connected. I assume throughout this section
that P(|T | = ∞) > 0. The basic idea of the argument is to thin the graph G∗ by retaining
edges with some probability p. For p close to 1, the component structure of the thinned
graph is similar to that of G∗. When we “sprinkle” back in the remaining edges, any large
components are very likely joined together.
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I choose only one type of edge to thin. By assumption there exists a type θ1 which
has three or more neighbors with positive probability. Since the graph is irreducible and T
survives with positive probability, there exists a type θ2 that connects to type θ1 nodes with
positive probability and has 2 or more neighbors with positive probability. These conditions
ensure that in the branching process T , with positive probability we will encounter both type
θ1 parents with type θ2 offspring and type θ2 parents with type θ1 offspring. Let G′ denote
the subgraph of G∗ that we obtain by deleting edges between type θ1 and type θ2 nodes
independently with some probability p ∈ (0, 1), and let G′′ denote the subgraph formed by
the deleted edges. We can also view G∗ as a colored graph, in which the edges of G′ are
red and those of G′′ are blue. I will sometimes write G∗(p) to emphasize that I am talking
about the colored version of G∗. Let d′ denote the degree sequence of G′, and let d′′ denote
the degree sequence of G′′. The sprinkling argument relies on the following lemma.

Lemma 5. For any d and any 0 < p < 1, the random graphs G′ and G′′ are conditionally
independent given d′.

Proof. This follows from the definition of the configuration model. The graph G∗ is a uniform
random pairing of the stubs determined by d. Color each pair red, except color edges between
type θ1 and type θ2 nodes blue with independent probability 1− p. Given the set of stubs in
red pairs, which determines d′ and d′′, the pairing of these stubs is uniformly random, and
similarly the blue stubs are paired uniformly at random.

The method used to prove Proposition 14 allows us to state similar concentration results
for the colored subgraphs. Let T (p) denote the branching process T in which we color edges
between type θ1 and type θ2 nodes blue with independent probability 1−p. Let T ′(p) denote
the red subtree containing the root, and let Dp denote the thinned degree distribution. Note
that Dp is the asymptotic degree distribution of G′, and T ′(p) is the corresponding branching
process that approximates rooted graphs in G′. I omit the proof of the following result as it
is essentially identical to that of Proposition 14.

Proposition 15. Let P be a r-local property of colored rooted graphs, and fix ε > 0 and
p ∈ (0, 1). There exists δ > 0 such that if l(d, D) < δ then

P
(∣∣NP (G∗(p))− nP(T (p) ∈ P)

∣∣ ≥ εn
)
≤ e−δn.

We also require a simple lemma bounding the probability that no links are formed between
sets of stubs. Recall that mθ1,θ2(d) is the number of edges connecting type θ1 and type θ2

nodes, given the degree sequence d.

Lemma 6. Let {Ai}2
i=1 and {Bi}2

i=1 be disjoint sets of stubs, with A1 and B1 containing
stubs attached to type θ1 nodes leading to type θ2 nodes, and vice verse for A2 and B2. The
probability that no stubs in A1 ∪ A2 are paired to stubs in B1 ∪B2 is no more then

e
− |A1||B1|+|A2||B2|

2mθ1,θ2
(d) .
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Proof. Without loss of generality, assume |A1| ≤ |B1|, and conduct the following exercise.
One at a time, select a random unpaired stub in A1 and reveal its partner. Conditional on
having no matches in B1 yet, the probability of finding a partner in B1 is at least |B1|

mθ1,θ2 (d)
.

Hence, the probability that we have no matches in B1 is at most(
1− |B1|

mθ1,θ2(d)

)|A1|

≤ e
− |A1||B1|

2mθ1,θ2
(d) .

Repeat the argument for A2 and B2, and the result follows.

We are now ready to prove (21) for the multigraph configuration model. Let Li = Li(G
∗)

denote the number of vertices in the ith largest component of G∗, and fix ε > 0. By Corollary
4, there are constants K and δ > 0 such that if l(d, D) < δ, then

P

(∑
k≥K

Nk(G
∗) ≥ n

(
P(|T | =∞) +

ε

4

))
≤ e−δn.

Trivially, we know L1 +L2 ≤ 2K +
∑

k≥K Nk(G
∗). For sufficiently large n, we have K ≤ εn

8
,

implying

P
(
L1 + L2 ≥ n

(
P(|T | =∞) +

ε

2

))
≤ P

(∑
k≥K

Nk(G
∗) ≥ n

(
P(|T | =∞) +

ε

4

))
≤ e−δn. (26)

To complete the proof for the multigraph G∗, it suffices to show for some δ′, with 0 < δ′ ≤ δ,
that if l(d, D) < δ′ we have

P
(
L1 ≥ n

(
P(|T | =∞)− ε

2

))
≥ 1− e−δ′n. (27)

As p approaches 1, the distribution Dp converges to the distribution D. Here we make
use of the assumption that at least one type has three or more neighbors with positive
probability. This means that in the forward distribution D′′ for the branching process T ,
there is a positive probability of having two or more offspring. This rules out the case in
which a node in T always has one child, and one can check that under this assumption, the
survival probability P(|T ′(p)| =∞) converges to P(|T | =∞). For the rest of the proof, fix
a p such that P(|T ′(p)| =∞) ≥ P(|T | =∞)− ε

8
.

We need a lower bound on the number of stubs in G′′ that are attached to large compo-
nents of G′. Given ∆ ≥ 2 and r ≥ 0, for a vertex v, we define the r-local property H∆,r,
which is satisfied if two conditions hold. First, no vertex within distance r of v has more
than ∆ neighbors in G′. Second, at least one of the following statements is true:

(a) In the component of G′ containing v, no vertex lies at distance r or greater from v
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(b) Within distance r of v in G′, there exists both a type θ1 node with a stub in G′′ and a
type θ2 node with a stub in G′′.

Lemma 7. Fix ε > 0. We can choose ∆ and r for which there exists δ1 > 0 such that if
l(d, D) < δ1 we have

P
(
NH∆,r

(G∗(p)) ≤ n
(

1− ε

8

))
≤ e−δ1n.

Proof. Choosing r sufficiently large ensures that, conditional on surviving until the rth
generation, the red subtree T ′r (p) has blue stubs of both types with probability at least
1 − ε

24
. By Lemma 4 we can find ∆ so that P (T ′(p) ∈M∆,r) ≥ 1 − ε

24
. Consequently, we

have
P (T (p) ∈ H∆,r) ≥ 1− ε

12
.

The result follows from Proposition 15.

Fix the ∆ and r obtained in Lemma 7, let Sk denote the set of vertices in components of G′

with at least k vertices, and let M = npθ1E[Dθ1 ·eθ2 ] be the expected number of links between
type θ1 and type θ2 nodes. By Corollary 4 (or rather, the analog based on Proposition 15),

there exists k ≥ max
(
K, M

n
16∆2r

ε2

)
and δ2 > 0 such that whenever l(d, D) < δ2 we have

P
(
|Sk| ≤ n

(
P(|T | =∞)− ε

4

))
≤ P

(
|Sk| ≤ n

(
P(|T ′(p)| =∞)− ε

8

))
≤ e−δ2n. (28)

Call a partition (X, Y ) of Sk a potentially bad cut if both |X| ≥ εn
4

and |Y | ≥ εn
4

, and there
are no edges of G′ connecting X and Y . The partition is a bad cut if additionally no edge
in G′′ connects X and Y . Each component of G′ in Sk must lie entirely in X or in Y , so in
any realization there are at most

2
|Sk|
k ≤ 2

n
k ≤ e

n
k

potentially bad cuts.
Fix a realization of d′ and G′ such that

NH∆,r
(G∗(p)) ≥ n

(
1− ε

8

)
.

Suppose that (X, Y ) is a potentially bad cut. Both X and Y contain at least εn
8

vertices
with property H∆,r. Since k ≥ ∆r, and no vertex in H∆,r can reach more than ∆r other
vertices within r links in G′, we know that each of these vertices satisfies condition (b). For
any particular stub in G′′, there are no more than 2∆r paths of length r connecting it to a
vertex in H∆,r. Therefore, both X and Y contain at least αn = εn

16∆r stubs of each type in
G′′.

For small enough δ, the graph G′′ contains no more than M edges. By Lemma 6, the
probability that no edges in G′′ connect X and Y is no more than

e−
α2n
M ≤ e−

2n
k .
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This implies that the exepected number of bad cuts, given d′ and G′, is at most e−
n
k , and

the probability of having any bad cuts is at most e−
n
k . If there are no bad cuts, then

L1 ≥ |Sk| −
εn

4
≥ n

(
P(|T | =∞)− ε

2

)
.

Taking δ′ < min
(
δ, δ1, δ2,

1
k

)
completes the proof for the multigraph configuration model.

Typical Distances

The results above allow a simple proof of the typical distance claim. We do not require
the path counting arguments of van der Hofstad et al. (2005). I drop the subscript from
ν(T,D) in what follows for notational convenience. In essence, we show that the neighborhood
Gv,r is well approximated by Tr for r of order 1

2
logν n, implying that for a random vertex

in the giant component, we have |Gv,r| of order
√
n. Lemma 6 then implies that two such

neighborhoods are connected with high probability, giving typical distances of order logν n.
First, we establish the lower bound:

lim
n→∞

P (H(G) ≤ (1− ε) logν n) = 0.

Let v denote a randomly chosen vertex. From the branching process approximation we have

E[|Gv,r| ≤ E[|Tr|] = 1 +
r∑
i=1

E[|D|]νi−1 = 1 + E[|D|]ν
r − 1

ν − 1
.

We can bound our probability as

P (H(G) ≤ (1− ε) logν n) ≤
E
[
|Gv,(1−ε) logν n|

]
n

≤ 1

n
+

E[|D|]
n(ν − 1)

(n1−ε − 1),

which converges to zero as n→∞.
For the upper bound, we need a more precise estimate of |Gv,r|. Write Zr for the rth

generation of T , and write Nv,r for the set of vertices at distance exactly r from v. An
implication of Proposition 9 is that, given any ε > 0 and conditional on survival, there
exists 0 < cε < Cε < ∞ such that P(cεν

k < |Zk| < Cεν
k, ∀ k) > 1 − ε. Consequently for

r̃ = 1+ε
2

logν n we have with probability at least 1− ε that

cε
ν r̃ − 1

ν − 1
≤ |Tr̃−1| ≤ Cε

ν r̃ − 1

ν − 1

or
cε

ν − 1

(
n

1+ε
2 − 1

)
≤ |Tr̃−1| ≤

Cε
ν − 1

(
n

1+ε
2 − 1

)
.

The upper bound applies to |Gv,r̃| as well since vertices in Nv,r might link to each other,
or link to the same new vertex in the next extended neighborhood. However, as long as |Gv,r|
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is small relative to n, the distribution of neighborhoods Nv,r will closely track that of Zr. In

particular, as long as |Gv,r| < cn
1+ε

2 , the probability that a link stub from a vertex in Nv,r

connects to a redundant vertex is at most c′n−
1−ε

2 for some constant c′. Hence, conditional
on Nv,r̃ 6= ∅, with probability at least 1− ε, we have

|Nv,r| ≥ cεν
r
(

1− c′n−
1−ε

2

)r
≥ cεν

r
(

1− c′n−
1−ε

2

)n 1−ε
2

≥ cε
ec′
νr,

for r ≤ r̃ and n sufficiently large.
Take two random vertices v and w, and consider Gv,r̃ and Gw,r̃. Conditional on Nv,r̃ 6= ∅

and Nw,r̃ 6= ∅, with probability at least 1 − ε we have |Nv,r̃| ≥ Cn
1+ε

2 and Nw,r̃ ≥ Cn
1+ε

2 .
Moreover, the law of large numbers implies that we can choose two types θ and θ′ and a
constant C ′ such that |Nv,r̃| has at least C ′n

1+ε
2 type θθ′ link stubs leading away, and |Nw,r̃|

has at least C ′n
1+ε

2 type θ′θ link stubs leading away, with probability at least 1− ε. Lemma
6 implies that the probability that there is no link between Nv,r̃ and Nw,r̃ is at most e−cn

ε

for another constant c. Taking n large, we see that with arbitrarily high probability, the
distance between v and w is at most 2r̃ = (1 + ε) logν n.

B.2 Practical Implications

In this section I return to the simpler configuration model used throughout most of the
paper. We realize the distribution D(θ) in two steps from a distribution Dθ on N and a
distribution Zθ on Θ. First, realize the total number of link stubs according to Dθ. For each
stub, independently realize a type according to Zθ. Recall

pθ = P(T = θ), µθ = E[Dθ], q
(θ)
θ′ = P(Zθ = θ′),

and write q(θ) for the vector of probabilities {q(θ)
θ′ }θ′∈Θ. To ensure (T,D) is consistent in

expectation, we need for each pair θ, θ′ ∈ Θ that

pθµθq
(θ)
θ′ = pθ′µθ′q

(θ′)
θ .

Write G for a random graph realized according to this multi-type configuration model, and
write L1(G) for the largest connected component in G.

With this structure, we can rewrite the results in the last subsection using the generating
functions of {Dθ}θ∈Θ. Recall the probability generating function of Dθ is

gθ(s) = E
[
sDθ
]

=
∞∑
k=0

P(Dθ = k)sk.

An application of Theorem 1 and standard branching process results gives the following.

Proposition 16. There exists a unique minimal solution ξ ∈ [0, 1]|Θ| to the system

g′θ(1)sθ = g′θ(q
(θ) · s), θ = 1, 2, ..., |Θ|. (29)
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If vθ is a type θ node chosen uniformly at random, we have

lim
n→∞

PCMn,T,D
(vθ ∈ L1(G)) = 1− gθ

(
q(θ) · ξ

)
≡ ζθ.

If vd is a node with degree tuple d chosen uniformly at random, we have

lim
n→∞

PCMn,T,D
(vd ∈ L1(G)) = 1−

|Θ|∏
θ=1

ξdθθ ≡ ζd.

Proof. We apply Proposition 8 to compute the survival probability of the characteristic
branching process. From the definition of the generating function gθ for the degree distribu-
tion Dθ, the forward distribution D′θ has the generating function

g′θ(s)

g′θ(1)
.

A standard property of generating functions is the following. If X is a random variable on
N, Z is a random variable on Nk for some k, and W is the sum of X independent copies
of Z, then the generating function gW of W is gX (gZ(s)). The generating function of Zθ is
gZθ(s) = q(θ) · s. By Proposition 8, the solution ξ to

g′θ(1)sθ = g′θ(q
(θ) · s), θ = 1, 2, ..., |Θ|

gives the vector of extinction probabilities for a multi-type branching process with the off-
spring distributions D′(θ). That is, the element ξθ is the probability that a subtree of TT,D
beginning with a type θ node goes extinct. The claim about nodes with a given degree tuple
d is immediate from this and Theorem 1. The asymptotic probability that a random type θ
node is connected to the giant component is then

1−
∑
d

P(D(θ) = d)

dθ∏
θ=1

ξdθθ = 1− gD(θ)(ξ) = 1− gθ(q(θ) · ξ).

Proposition 16 restates a key part of Theorem 1 to facilitate computation. While we
typically cannot obtain analytic solutions to (29), the system is straightforward to solve using
numerical methods. The vector ξ gives the extinction probabilities for a branching process
based on the forward distributions: when the characteristic branching process realizes a type
θ offspring, that branch of the process dies with probability ξθ. We can use this solution
to determine how large the giant component is and what nodes are contained in it. An
immediate implication is that |L1(G)|

n
converges in probability to a point mass on

ζ =

|Θ|∑
θ=1

pθζθ. (30)
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We can use the last part of the statement to assess the degree distribution within the giant
component, which is distinct from the degree distribution of the network as a whole.

We require a few additional definitions to state the result on distances in L1(G). Define

νθ =
E [Dθ(Dθ − 1)]

µθ
=

VarDθ

µθ
+ µθ − 1. (31)

Moreover, define mij = νiq
(i)
j , let M be the |Θ| by |Θ| matrix with mij the entry in row

i and column j, and let ν denote the spectral radius of M . Finally, recall that H(G) is a
random variable denoting the length of the shortest path between two nodes in L1(G) chosen
uniformly at random.

Corollary 5. We have ζ > 0 if and only if ν > 1. In this case, we have

lim
n→∞

PCMn,T,D

(∣∣∣H(G)

logν n
− 1
∣∣∣ ≥ ε

)
= 0.

Proof. This is immediate from Theorem 2 and our assumptions on the degree distributions.

Corollary 5 is a specialization of Theorem 2 for the multi-type configuration model with
the particular structure of this section. The difference is a reduction in the dimension of M ,
which makes computing the spectral radius more computationally tractable.

B.3 Other Proofs and Calculations

Proof of Proposition 3

Part (a) is trivial. For part (b), the assumption that adoption propensities are non-
decreasing in d means that a FOSD shift in the degree distribution results in more potential
adopters. Together with the increase in connectivity, this implies that D

(θ)
σ dominates D̂

(θ)
σ .

For part (c), note that conditional on realizing degree m, a type θ agent has type θ′

neighbors (who are potential adopters) distributed according to a binomial distribution with

m trials and success probability q
(θ)
θ′ σ

(θ)
θ′ . Write B(n, p) for a binomial distribution with n

trials and success probability p. Results on the stochastic ordering of binomial distributions
(Klenke and Mattner, 2010) imply that B(n1, p1) FOSD B(n2, p2) if

(1− p2)n2 ≥ (1− p1)n1 .

We can couple realizations of Dθ to realizations of D̂θ such that D̂θ realizes a value no higher
than dD̂−1

θ (Dθ)e, and if the above inequality holds for each pair of binomial distributions

that arise in this coupling, then D
(θ)
σ dominates D̂

(θ)
σ .

Calculation for Section 2
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Fixing σ, the forward extinction probability for a high-degree player is the minimal
solution to

ξ
1
d−1
σ =

d(1− p)
d(1− p) + dp

+
dp

d(1− p) + dp
(1− σ) +

dp

d(1− p) + dp
σξσ

= 1− dp

d(1− p) + dp
σ(1− ξσ).

The virality νσ is

νσ = (d− 1)σ
dp

d(1− p) + dp
.

If σ ≤ d(1−p)+dp
dp(d−1)

≡ σ, then νσ ≤ 1, and there is no belief distortion. A high-degree player’s

expected payoff from adoption is

v

(
1 + (d− 1)σ

dp

d(1− p) + dp

)
− c.

If σ > σ, a player believes each neighbor has degree d with probability

dp(1− ξdσ)

d(1− p)(1− ξdσ) + dp(1− ξdσ)
.

The expected payoff from adoption is then

v

(
1 + (d− 1)σ

dp(1− ξdσ)

d(1− p)(1− ξdσ) + dp(1− ξdσ)

)
− c.

Hence, the best reply map for the diffusion game is

BRd(σ) =

1− c
(

1 + (d− 1)σ dp

d(1−p)+dp

)−1

if σ ≤ σ

1− c
(

1 + (d− 1)σ dp(1−ξdσ)

d(1−p)(1−ξdσ)+dp(1−ξdσ)

)−1

if σ > σ.

C Extensions

C.1 Local Information

In realistic settings, individuals have some information about their close neighbors. We
can capture this in our framework if we suppose that players observe the types of their
neighbors in addition to how many neighbors they have—we can choose the types in our
model to reflect the information that people have about each other. Define the adoption
propensities σ(θ,d) analogously to those in section 4, where d ∈ N|Θ| is a degree tuple—the
entry dθ corresponds to the number of type θ neighbors. To map strategies to diffusion
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outcomes, we follow the exact same analysis as in section 4, replacing the diffusivities ζ
(σ)
θ,d

with diffusivities ζ
(σ)
θ,d that depend on the entire degree tuple. This entails more notation and

book keeping, but solving the problem is conceptually the same as before.
In the equilibrium analysis, two complications arise. First, since neighbors are partly

distinguishable, it matters whether a player observes who informed her or not. I think
the most natural assumption is that a player observes who informs her, but then we need
to specify what happens if multiple neighbors do so simultaneously. One possibility is to
have the player attribute becoming informed to a single such neighbor, chosen uniformly
at random. A second complication is that we must assess players’ beliefs about neighbors
of neighbors. If I adopt and my neighbors become aware, what is the distribution of their
neighbors’ types? In a non-viral equilibrium, such beliefs come directly from the distributions
that underlie the multi-type configuration model, but in a viral equilibrium, we need to
correct for the selection effect. Viral belief distortion no longer affects my beliefs about my
neighbors’ types—because I observe them—but it does affect my beliefs about the types of
my neighbors’ neighbors.

C.2 Choosing to Share Information

If a person adopts a behavior, her neighbors may not automatically become aware of
it. For instance, one can choose to read a news story and subsequently choose whether to
share that story on social media. In the model, we can augment a player’s decision problem
by adding a choice whether to broadcast information to neighbors. When a player becomes
aware, she chooses whether to adopt. Conditional on adopting, she chooses whether to inform
her neighbors, and her neighbors only become aware if she informs them. The decision to
inform neighbors may affect the player’s payoff (e.g. a communication cost, or a referral
benefit).

Consider a simple example. There is one type, all players have degree 3, and values are
uniform on [0, 1]. The payoff from adoption is

u(v, a) = va− c

for some positive cost c. Moreover, there is a cost δ > 0 to inform neighbors. Given a
strategy profile, write σa for the probability that a player is willing to adopt, and write σi
for the probability that a player informs her neighbors. Note that the extent and rate of
diffusion depends only on σi, while equilibrium decisions will also depend on σa.

The forward extinction probability is the minimal solution to

ξ = (1− σi + σiξ)
2 ,

giving ξ = 1 if σi ≤ 1
2
, and ξ =

(
1−σi
σi

)2

otherwise. For a player with value v, the payoff

from adopting, but not informing neighbors, is

v (1 + 2(1− ξ)σa)− c,
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where the term 2(1 − ξ)σa appears because a neighbor may get informed by someone else.
The payoff from adopting and informing neighbors is

v (1 + 2σa)− c− δ.

As long as costs are not too high, in equilibrium we have

1− σa = min

(
c

1 + 2(1− ξ)σa
,
c+ δ

1 + 2σa

)
, 1− σi =

δ

2ξσa
.

Notice that for low values of c, there is necessarily a gap between the probability a player
adopts σa, and the probability she informs her neighbors σi. In the extreme case of c = 0,
we have σa = 1 but σi = 1− δ

2ξσa
. When informing neighbors is costly, widespread diffusion

(i.e. low ξ) undermines incentives to share information.

C.3 Diffusion Games with Global Externalities

In some instances, adoption externalities are less direct. When more people use iPhones,
there is a larger market for applications, and users benefit from more varied and higher
quality apps. When more people hear about a new hit musical, tickets are harder to obtain.
These externalities often depend on the total population of adopters, rather than a person’s
local neighborhood. Building from the last extension, we can fruitfully apply the diffusion
model to these settings as well.

As before, there are n players connected in a random network, which we generate ac-
cording to a multi-type configuration model. At time zero, we choose κ players uniformly
at random to adopt a behavior and inform all of their neighbors. In each subsequent period
t, players who are aware make an irreversible decision whether to adopt, and conditional on
adoption, they choose whether to inform their neighbors.

A player’s payoff is a function of whether she adopts, her private value, the total number
of players who end up adopting, and whether she informs her neighbors. Each player of type
θ has a value v ∈ [0, 1] drawn independently according to the distribution Vθ. Write X(t)
for the number of players who have adopted at time t, and X = limt→∞X(t) for the number
who eventually adopt. A player earns the payoff u(v,X) from adoption, and we normalize
the payoff from non-adoption to zero. I assume u(v,X) is differentiable in v with ∂u

∂v
> 0 for

each X. I also assume that the limit

lim
X→∞

u(v,X)

exists and is finite for each v. Additionally, if a player informs her neighbors, she earns
the payoff c, which may be positive or negative. The action (a, i) ∈ {0, 1}2, where a = 1
indicates adoption and i = 1 indicates informing neighbors, yields the total payoff

U(v,X, a, i) = a (u(v,X) + ic) .

Each player observes her type θ, her value v, and how many neighbors d she has in
the network. Players do not observe the period t. We can express a symmetric strategy
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profile as a function σ : Θ × [0, 1] × N → {0, 1}2, giving an adoption and sharing decision
for each possible type, value, and degree. I use σa(θ, v, d) to denote the adoption decision
associated with σ and σi(θ, v, d) to denote the sharing decision—to economize on notation,
going forward I omit the dependence on θ, v, and d when there is little risk of confusion.
The payoff from following the strategy σ is

U (v,X, σa, σi) .

The value κ, the configuration model, the value distributions {Vθ}θ∈Θ, and the payoffs are
common knowledge.

We can define limit equilibria of the diffusion game with global externalities in a way
analogous to the earlier model. Viral belief distortion manifests in a particularly simple way
for this model: under a viral strategy profile, limit beliefs assign probability one to the event
X = ∞, regardless of a player’s action. This leads to an extreme version of the free-rider
effect when externalities are positive and an extreme version of the tragedy of the commons
when externalities are negative.

C.3.1 Positive Externalities

Platform services, like social networking sites or online marketplaces, exhibit positive
network externalities, as do many software applications and entertainment products. In this
section, I assume u is strictly increasing in X, and I focus on the case where c < 0. The
latter assumption means it is costly to inform neighbors about the product. We can interpret
c as an attention cost or possibly a social cost (e.g. being ostracized for sending friends too
much spam). When informing neighbors is costly, players can only justify choosing i = 1 if
the corresponding increase in X justifies the cost; otherwise, each adopter trivially informs
her neighbors in equilibrium.

Viral belief distortion creates a discontinuity in the set of limit equilibria at c = 0. Con-
ditional on a viral equilibrium, a player believes infinitely many others will adopt regardless
of what she does, so her choice has no effect on the value of externalities. If c < 0, this
means she never informs her neighbors, and therefore a viral equilibrium cannot exist.

Proposition 17. Suppose u(v,X) is increasing in X for each v. If c < 0, there is no viral
limit equilibrium. If c ≥ 0, every adopting player informs her neighbors in any equilibrium
of the n player game.

Proof. This is immediate from the argument in the previous paragraph.

The impossibility of viral equilibria with positive costs represents an extreme version
of the free-rider effect. Widespread adoption depends on players sharing information with
their neighbors. When doing so is costly, players only wish to share if they expect to
have a meaningful impact on the extent of diffusion, but in a large cascade this is never
true. Even when externalities are substantial, a small cost of informing neighbors results in
extreme inefficiency. This highlights the important role of viral product features—features
that automate sharing, or greatly reduce its cost—and referral payments in spreading new
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products with positive externalities. The severity of the free-rider problem means that
modest interventions can have an enormous impact on aggregate adoption.

C.3.2 Negative Externalities

In some instances, the spread of information creates negative externalities. If information
is rival—like valuable knowledge about a company’s stock, which becomes less valuable if
more people trade on it—or if a service is subject to congestion problems, then diffusion
reduces the value. Suppose u(v,X) is strictly decreasing in X. Mirroring the section the
analysis of positive externalities, I assume c > 0—without some benefit to sharing, players
never inform neighbors in equilibrium. Such a benefit may arise if players have altruistic
preferences towards their neighbors, if they expect reciprocal favors, or if there is some
explicit incentive to share information.

Unlike games with positive externalities, where viral belief distortion eliminated incen-
tives to share information, here viral belief distortion eliminates the cost of sharing. With
c > 0, viral equilibria are self-reinforcing because players perceive no meaningful effect of
sharing information.

Proposition 18. Suppose u(v,X) is decreasing in X for each v, and c > 0. In any viral
equilibrium, all adopting players inform their neighbors. If the network is sufficiently dense
and u(v,∞) is positive for some v, then a viral equilibrium exists.

Proof. If the network is dense enough, viral spread is possible when all players who can earn
a positive payoff adopt and share information. If this is the case, we can sustain a viral
equilibrium because players perceive no cost of sharing.

In network games with negative externalities, viral belief distortion creates an extreme
version of the tragedy of the commons. Players fail to internalize any cost of sharing in-
formation, and as a result, we can sustain viral equilibria in any sufficiently dense network.
With local incentives to share, it is hard to keep a secret.

C.4 Clustering

Real networks exhibit far more clustering than the model CMn,T,D—two individuals with
friends in common are more likely to be friends themselves. This last subsection discusses
how to introduce clustering in the configuration model while retaining the ability to analyze
structure through a branching process approximation. We do this by adding k-cliques to the
network, groups of k nodes that are all linked to one another, for arbitrary k. For ease of
exposition, we assume a single type of node throughout this subsection.

We characterize a configuration model with k-cliques via a degree distribution D on
tuples (d2, d3, ..., dk), where k ≥ 2 is an arbitrary positive integer. Starting with n nodes, we
take independent random draws from D to generate degree tuples for each. The associated
link stubs are labeled with the types 2,3,...,k. We successively select link stubs of type j
uniformly at random in groups of size j, and we establish links between all associated nodes.
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For instance, if j is three, then we select 3 type 3 link stubs, and we create a 3-clique with
the nodes attached to those stubs. We repeat this for each j = 2, 3, ..., k until all link stubs
are used. In the basic model, we only have type 2 stubs. Adding type k > 2 creates k-cliques

in the graph. Node i has total degree di =
∑k

j=2(k − 1)d
(i)
j .

As before, we require a consistency condition. If d = {d(i)}ni=1 is the n vector of degree
tuples, then it is consistent if for all j = 2, 3, ..., k we have that

1

j

n∑
i=1

d
(i)
j

is an integer. Given n nodes and the distribution D, we condition the network formation
procedure on realizing a consistent d and on realizing a simple graph.

As we did in section 6.2, we can define a characteristic branching process for this version
of the configuration model. We begin with a root node that draws offspring according to
D. A single type j link stub corresponds to j − 1 offspring, which we label as type j. For
each subsequent node of type j, we realize offspring independently according to the forward
distribution D′j, defined by

P
(
D′j = d

)
=

(dj + 1)P(D = d+ ej)

E[Dj]
,

where ej is a tuple of zeros with a 1 in the entry corresponding to type j. Again, a type j
link stub in the forward distribution corresponds to j− 1 offspring. The proofs of Theorems
1 and 2 apply for configuration model with k-cliques with only minor modifications.
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