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Abstract

We consider a best-of-three Tullock contest between two ex-ante identical players. An 
e¤ort-maximizing designer commits to a vector of player-speci�c biases (advantages or disad- 
vantages). In our benchmark model the designer chooses victory-dependent biases (i.e., the biases 
depend on the record of matches won by players); the e¤ort-maximizing biases eliminate the 
discouragement e¤ect, leaving players equally likely to win each match and the overall contest. 
This is in contrast with the common �favor-the-leader� result in the literature. We compare our 
benchmark model with one where the designer chooses victory-independent biases; the 
e¤ort-maximizing biases leave players unequally likely to win each match and the overall contest. 
This result holds in Tullock contests and all-pay auctions, as well as under maximiza- tion of total 
e¤ort and winner�s e¤ort. The appeal of this result comes from the players being ex-ante identical; 
thus, it challenges the conventional wisdom of the optimality of unbiased contests. This result also 
has an applied interest, as it shows that alternating biases, as when teams alternate home and away 
games, may increase total e¤ort as opposed to an unbiased contest.

1 Introduction

A contest is a situation where players exert costly e¤orts to win a prize. We call a contest between
players X and Y �unbiased�if swapping the e¤orts of X and Y implies swapping of the probabilities
of winning.1 Unbiased contests are prevalent in the literature, in part because of the �conventional
wisdom�that unbiased contests are e¤ort-maximizing when players X and Y are symmetric.2 In
particular, an unbiased contest between symmetric players leaves players equally likely to win in
equilibrium, hence maximizing competition and thus e¤orts. Our contribution is to analyse whether
and how the conventional wisdom of unbiased contest optimality carries over to a dynamic contest

�A previous version of this paper circulated under the name �On the Suboptimality of Perfectly Leveling the
Playing Field in Dynamic Contests.�We are pleased to acknowledge useful comments by Mikhail Drugov, Christian
Ewerhart, Jörg Franke, Qiang Fu, Kai Konrad, Dan Kovenock, Jingfeng Lu, Tore Nilssen and Anil Yildizparlak. We
would like to thank participants at the 2018 CBESS Conference on Contests (University of East Anglia) and at the
30th Tax Day (Max Planck Institute for Tax Law and Public Finance). All errors are our own.

yTulane University. Email : sbarbier@tulane.edu
zMax Planck Institute for Tax Law and Public Finance. Email : marco.serena85@gmail.com
1This property is alternatively called �anonimity� in the seminal axiomatization of Skaperdas (1996).
2This conventional wisdom has been extended to asymmetric players; if X is stronger than Y , e¤ort maximization

is achieved by giving a disadvantage to X so as to restore a level playing-�eld. It is in fact very intuitive that a level
playing-�eld maximizes competition, and therefore e¤orts, in a one-shot symmetric environment. This conventional
wisdom has a few exceptions that we discuss in the literature review.
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between symmetric players. The workhorse of our analysis is a best-of-three unbiased contest
between two ex-ante symmetric players; we ask if an e¤ort-maximizing designer wants to introduce
biases in an ex-ante unbiased contest, and how.
One of the most important aspects of dynamic contests is the discouragement e¤ect ; for instance,

a player�s loss in the �rst match of the game gives her a one-match disadvantage in the second
match, and when a contestant is su¢ ciently disadvantaged, competition � and thus e¤ort �
su¤ers.3 It is the asymmetry of the second-match continuation payo¤s due to the �rst-match loss
that generates the discouragement e¤ect, which is thus highly intertwined with the conventional
wisdom of unbiased contest optimality. Thus, as we investigate the conventional wisdom in a
dynamic setting, we ask whether it is possible to mitigate the discouragement e¤ect by means of
biased matches, and if so, how.
Our theoretical analysis has relevant applied implications, as there are many real-life contests

with the two features we analyse, namely; (i) dynamics, so that the victory of the contest occurs only
if a player wins a su¢ cient number of matches, and (ii) varying biases, so that in each match a player
may have or may be given a competitive advantage, or a pre-existing competitive advantage may be
endogenously mitigated. Applications range from sports to business, from politics to procurements
to R&D races.

Applications. In most of these applications the location of each match provides an advantage,
and it is to some extent endogenous. Sports: home-�eld advantage is the bene�t that the home
team has over the visiting team because of psychological e¤ects (supporting fans, referees, ...),
physiological e¤ects (the advantage home teams have playing near home in familiar situations, or
the disadvantages away teams su¤er from travelling), or strategic e¤ects (such as the home team
batting second in baseball).4 Business: Brown and Baer (2011) �nd that business professionals
enjoy a similar home-�eld advantage in negotiations that take place in the comfort of their own
o¢ ces. Local knowledge of market, social, economic and legal conditions is among the reasons that
local e-retailers such as Lazada in Indonesia are able to hold o¤ competition from the international
giants Amazon and Alibaba, as reported by The Economist (�Home-�eld advantage,�2015). Dahl
and Sorenson (2012) �nd that entrepreneurs that locate in regions in which they have deep roots
(�home�regions) perform better. Politics: an accepted fact of US vice presidential elections is that
candidates win extra votes in their home states (e.g., Heersink and Peterson, 2016). One initial
evidence of home-state advantage is provided by Lewis-Beck and Rice (1983). Heersink and Peterson
(2016) �nd that the vice-presidential home-state advantage �could have swung four presidential
elections since 1960, if presidential candidates had chosen running mates from strategically optimal
states.�Moreover, a presidential candidate born and raised in one state is likely to have a home
advantage in that state, as shown by the fact that four candidates (James K. Polk, Woodrow
Wilson, Richard Nixon, and Donald Trump) have won the presidency despite losing their state
of residence.5 Procurement : a source of home-�eld advantage is the governments�preference for
domestic over foreign suppliers, ceteris paribus; e.g., Brulhart and Trionfetti (2004) and references
therein. This is considered to be a serious and pervasive issue; as reported by La¤ont and Tirole

3For empirical evidence of discouragement e¤ect see, e.g., Malueg and Yates (2010).
4Empirical evidence abounds for instance in soccer (Nevill and Holder, 1999) and for the NFL (Vergin and Sosik,

1999). Jamieson (2010) provides a general meta-study of home-�eld advantages.
5Besides presidential elections in the United States, evidence of home-state advantage has also been provided in

�gubernatorial, senatorial, and statewide judicial elections in the United States, parliamentary elections in Ireland,
Brazil, and the United Kingdom and local elections in New Zealand and the United States� (see p. 1, Meredith,
2013, original references omitted).
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(1991): �[...]the European Economic Commission, alarmed by the abnormally large percentage
(above 95% in most countries) of government contracts awarded to domestic �rms is trying to
design rules that would foster fairer competition between domestic and foreign suppliers.�R&D
races: a source of advantage arises from players�special expertise. The Joint Strike Fighter contest
is a famous instance; Boeing and Lockheed Martin, the two main contenders, competed on the
development of the components needed to submit a winning prototype of a Joint Strike Fighter.
Lockheed had a substantial advantage in warplane expertise, while Boeing had an advantage in
developing wings (see, NOVA, 2003). Lockheed eventually won, and its warplane expertise played
a key role; �Lockheed may have clinched the deal because of its experience with the development
and production of the F-22.�(Frost & Sullivan Market Insight, 2001).

In the above applications, competition often unfolds over time, through a series of interim
matches where players�advantages vary. At each match, the extent to which the contest designer
has control over the biases varies. For example, in sports, a home-�eld advantage can be mitigated
by introducing instant replays to weaken the referees�discretion or by reserving a certain proportion
of tickets for the visiting team. In procurement, the advantage to home suppliers might be quite
explicitly mandated and carefully targeted, as for �[...]the United States�s �Buy American Act�,
which in di¤erent cases requires U.S. suppliers to be chosen despite cost disadvantages of up to 6
(normal), 12 (small businesses and �rms in regions of high unemployment) or 50 percent (military
equipment). Explicit national preferences are also applied in Canada, Australia and New Zealand
[...].�(Vagstad, 1995).
In order to account for such varying control over biases across applications, we consider two

alternative settings. First, in our benchmark model the designer has full control over the biases
(Section 4), in the sense that biases are contingent on the outcome of previous matches; for instance,
if X wins (or loses) today, she will be given a disadvantage (or advantage) tomorrow. We �nd that
the e¤ort-maximizing designer leaves the �rst and (if necessary) third matches unbiased, and biases
the second match in favor of the loser of the �rst match, so as to compensate for her disadvantage
of lagging one match behind. Such a structure of biases leaves players equally likely to win each
match and the entire contest. In this sense, we conclude that the conventional wisdom of equalizing
players�equilibrium winning probabilities carries over to a dynamic setting when the designer can
tailor the biases to the outcome of previous matches. This result contributes to our understanding
of whether, in subsequent matches, one should favor the winner or the loser of early matches. In
particular, this result contrasts with the common �favor-the-leader�result in the literature that we
discuss below.
Second, in the more realistic case of limited control (Section 5), the designer cannot tailor the

biases to the outcome of previous matches; for instance, whoever plays at home today plays away
tomorrow, regardless of who wins today. We �nd that the e¤ort-maximizing designer alternates
the player receiving the advantage, rather than leaving the contest unbiased. To understand the
intuition behind our result, recall that in dynamic contests early victories distort future matches
so that the laggard gives up and the front-runner eases up.6 This well-known result is mitigated
in our context by alternating biases, which gives one player the advantage in the �rst match and
the other player the advantage in the second. Such an alternation of biases, despite creating a bias
in the �rst match � thus reducing �rst-match e¤orts � balances the second match since the most
likely second-match laggard is given an advantage � thus increasing second-match expected e¤orts.

6See the �momentum e¤ect� (Klumpp and Polborn, 2006), the �discouragement e¤ect� (Konrad, 2009), or
�avalanche e¤ect� (Beviá and Corchón, 2013).
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Most importantly, it increases the probability of the game reaching the tie-breaker � thus increasing
third-match e¤orts.7 We show that the second and third positive e¤ects overcome the �rst negative
e¤ect. The optimality of introducing (alternating) biases into a symmetric contest between ex-ante
identical players is a key �nding of the present paper, hence we challenge its robustness and show
that it holds when matches are modeled both as Tullock contests and all-pay auctions, and both
under maximization of total e¤ort and winner�s e¤ort.8 We conclude that the conventional wisdom
of unbiased contest optimality does not carry over to a dynamic setting when the designer cannot
tailor biases to the outcome of previous matches.

Literature. There are two strands of the literature that are usually � but not exclusively
� kept apart; dynamic contests and biased contests. On dynamic contests, one of the ground-
breaking theoretical contribution is Klumpp and Polborn (2006); they model the US primaries as
a best-of-n contest between two candidates, where the battle�eld in each state takes the form of
a Tullock contest. As it is typical in tournaments, they �nd that the outcome of the very �rst
match creates an asymmetry between ex-ante symmetric players that is endogenously carried over
to later periods. This momentum boosts e¤orts in the �rst matches and make the latest matches
less relevant. This �nding resemble the so-called �New Hampshire e¤ect�; candidates who win
early primaries are more likely to win later primaries, too.9 Similar �ndings are those of Konrad
and Kovenock (2009), who model stage-battle�elds as all-pay auctions, and of Ferrall and Smith
(1999) who adopt rank-order tournaments of Lazear and Rosen (1981). Malueg and Yates (2006)
generalize Klumpp and Polborn�s (2006) results to a general symmetric contest success function and
derive results for a three-battle contest assuming the existence of a pure strategy equilibrium.10 All
the above models, as the vast majority of the literature, restrict attention to either an ex-ante
level playing-�eld or exogenous advantages. Our main point of departure from this strand of the
literature is the introduction of endogenous biases.
The literature on biases in static contest is extensive. The conventional wisdom typically drawn

from this strand of the literature is the optimality of an unbiased contest if the two players are
symmetric.11 A prominent recent exception to this wisdom of static contests arises in Drugov and
Ryvkin (2017);12 they characterize properties of the contest success function and of the cost of e¤ort
that determine whether a biased or unbiased contest is optimal. In the standard Tullock contest
with linear costs of e¤ort, multiplicative bias and static competition, Drugov and Ryvkin (2017)

7Note that the third match is virtually certain to occur if an arbitrarily high advantage is given in the �rst period
to a player and in the second period to her rival.

8For the all-pay auction we need to add the technical assumption of private information because otherwise rents
would be fully dissipated, thus making our exercise uninteresting.

9A victory in the New Hampshire primary increases a candidate�s expected share of total primary votes by 26.6%
(Mayer, 2004).
10Empirical tests of theoretical predictions with sports data is provided for best-of-three contests by Malueg and

Yates (2010) and for best-of-n by Ferrall and Smith (1999). In the experimental literature, a test of best-of-three
Tullock contests is provided by Mago et al. (2013).
11A non-exhaustive list of papers is: Dukerich et al., 1990; Schotter and Weigelt, 1992; Nti, 2004; Fu, 2006; Fain,

2009; Epstein et al., 2011; Franke, 2012; Franke et al., 2013; Lee, 2013, and in general references in Drugov and
Ryvkin (2017). Serena (2017) shows that the conventional wisdom holds not only for maximization of total e¤ort,
but also winner�s e¤ort.
12Other exceptions to the conventional wisdom can be derived from an extension of the model to an ex-ante

heterogenous n-player setting (e.g., Franke et al., 2013), to a private information setting (e.g., Pérez-Castrillo and
Wettstein, 2016), and to maximization of the probability of a high-ability winner (e.g., Kawamura and Moreno de
Barreda, 2014). In the present paper, we keep the standard two-player complete information setting under e¤ort-
maximization.
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show that the conventional wisdom of unbiased contest optimality is not robust to dropping the
assumption of multiplicative bias. In contrast, we maintain the multiplicative biases, but challenge
the conventional wisdom in a dynamic, rather than static, setting. We �nd that when the designer
can (cannot) tailor the biases to the outcome of previous matches, players are optimally left equally
(unequally) likely to win each match and the overall contest.
We are not the �rst to consider biases in dynamic contests. A �rst strand of the literature focuses

on dynamic e¤ort elicitation and on a dynamic inference problem due to the extra information that
may or may not be disclosed as the dynamic contest unravels (see Meyer, 1991, 1992; Lizzeri et
al., 1999, 2002; Hö­ er and Sliwka, 2003; Aoyagi, 2010; Ederer, 2010). A common �nding is the
�favor-the-leader�result; for example, Meyer (1991, 1992) shows that biasing the second match in
favor of whoever performed better in the �rst match tends to be bene�cial for the principal in terms
of better information and of larger e¤orts, as one obtains only a second-order negative e¤ect of bias
in the second period, but a �rst-order positive e¤ect of bias in the �rst period. The di¤erent result
we obtain is driven by our best-of-three setting, rather than the typical two sequential contests in
this strand of the literature. Another issue that this set of papers analyses is whether disclosure
of interim performance is bene�cial or detrimental to the expected aggregate e¤ort; the trade-o¤
here is that if the �rst-period outcome leaves the players su¢ ciently symmetric (asymmetric), then
disclosure levels (unlevels) the playing �eld. More recently, Beviá and Corchón (2013) consider a
two-period Tullock contest where the �rst-period e¤ort yields a player�s second-period advantage;
in particular, they propose an exogenous mapping between �rst-period e¤orts and second-period
advantage so as to capture situations such as wars in which the strength of a country depends on
the fraction of the territory owned by this country. Similarly to Beviá and Corchón (2013), Clark et
al. (2012), Möller (2012), and Esteve-Gonzáles (2016) analyse a dynamic setting where the outcome
of the �rst period generates an asymmetry between players in a second Tullock contest. In contrast
to this strand of the literature, in our model the victory of any match only gives the winner a one
match advantage, and does not give her more advantageous future battle�elds (modeled by the
above literature as a greater probability of victory or as a lower marginal cost for given e¤orts). In
our model, more advantageous future battle�elds are determined ex-ante by the contest designer.

2 Model

Two risk-neutral and ex-ante identical players, X and Y , play in a best-of-three contest. That is,
they play at most three matches, and the �rst player who wins two matches is the contest winner
and obtains a prize equal to V > 0. The game begins at node (0; 0) ; where no player has won a
match; here e¤orts are denoted as x(0;0) and y(0;0). The game then moves to node (1; 0) or (0; 1)
according to whether X or Y , respectively, wins the �rst match in (0; 0); here e¤orts are denoted
as x(1;0) and y(1;0), or x(0;1) and y(0;1). If the �rst two matches are won by the same player the
game ends, otherwise the game reaches node (1; 1) and the third match is played; here e¤orts are
denoted as x(1;1) and y(1;1). In each node (i; j), if reached, players simultaneously choose e¤orts
(x(i;j); y(i;j)), and the probability of victory of player X in that match depends on the contest
technology as follows:

p
(i;j)
X (x(i;j); y(i;j)) =

�(i;j)x
(i;j)

�(i;j)x(i;j) + y(i;j)
; (1)
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Figure 1: Nodes and matches in a best-of-three contest between players X and Y .

and p(i;j)Y (x(i;j); y(i;j)) = 1� p(i;j)X (x(i;j); y(i;j)).13 In Figure 1 we draw the structure of the best-of-
three contest we analyse. We refer to �(i;j) > 1 (�(i;j) < 1) as an advantage (disadvantage) given to
X in node (i; j). It is without loss of generality to multiply only x, and not y, with a bias. A vector
of biases f�(0;0); �(1;0); �(0;1); �(1;1)g 2 [0;1)4 becomes commonly known at the beginning of the
game. There is complete information and the marginal cost of e¤ort equals 1 for both players. We
analyse how the expected total e¤ort (henceforth, TE) varies with the ��s. We de�ne TE as follows

TE �
h
x(0;0) + y(0;0)

i
(2)

+ p
(0;0)
X

h
x(1;0) + y(1;0)

i
+ p

(0;0)
Y

h
x(0;1) + y(0;1)

i
+
�
p
(0;0)
X p

(1;0)
Y + p

(0;0)
Y p

(0;1)
X

� h
x(1;1) + y(1;1)

i
:

For simplicity, in (2) we omitted the arguments of probabilities and e¤orts, as we will do through-
out the paper whenever this does not yield confusion.

Structure of the paper. In Section 3 we provide some general preliminary results that apply
to each node and that we specialize node-by-node in Appendix A. In our benchmark model of

13Any p(i;j)X (0; 0) 2 (0; 1) speci�ed using one of the �usual� tie-breaking rules for no e¤orts will leave our results
unchanged.

6



Section 4 ��s are victory-dependent ; that is, a possibly di¤erent � is chosen for each node, so
that four biases f�(0;0); �(1;0); �(0;1); �(1;1)g are chosen in order to maximize TE. We �nd that the
optimal ��s leave the two players equally likely to win in every node and in the entire best-of-three
contest.14 In Section 5, instead, ��s are victory-independent ; that is, ��s cannot be conditioned
on the outcome of the previous matches, so that three biases f�1; �2; �3g are chosen in order to
maximize TE; in the �rst match (i.e., node (0; 0)) player X is given bias �1, in the second match
(i.e., node (1; 0) or (0; 1)) she is given bias �2, and in the third match (i.e., node (1; 1)), if played,
she is given bias �3. The extra constraint of victory-independent ��s is inspired by the applications,
as discussed in the Introduction. We �nd that the optimal ��s leave players unequally likely to win
in every node and in the entire best-of-three contest; in particular, it is optimal to give a large
advantage to a player, say X, in the �rst match, and balance it out with a medium advantage to
player Y in the second match and a small advantage to player Y in the third match, if necessary.15

Since we deem this result the most interesting of the paper, we show that it is robust to:

1. Replacing the objective function (2) with the expected winner�s e¤ort (Appendix D);

2. Replacing the Tullock model (1) with an all-pay auction model with multiplicative bias (Ap-
pendix E); and

3. Combining the above two replacements (Appendix F).

The interest in total e¤ort or the expected winner�s e¤ort crucially depends on the speci�c
application one has in mind. In sport contests the audience might �nd a lackluster of performance
of the teams disappointing, thus total e¤ort maximization is a suitable objective. In contrast, in
a research contest only the winner�s project is typically implemented and hence only the winner�s
e¤ort is bene�cial for the contest designer (see also Serena, 2017).

3 Preliminaries

Denoting with uWX and uWY the expected (continuation) payo¤ of player X and Y in case of winning,
and denoting with uLX and u

L
Y the expected (continuation) payo¤of playerX and Y in case of losing,

the individual payo¤ uX of player X in a general node with bias � reads

uX =
�x

�x+ y
uWX +

�
1� �x

�x+ �y

�
uLX � x =

�x

�x+ y

�
uWX � uLX

�
+ uLX � x:

De�ning the �e¤ective prize spread�as

�uX � uWX � uLX ;

we obtain
uX =

�x

�x+ y
�uX + u

L
X � x:

Similarly, for player Y , de�ning the e¤ective prize spread as �uY � uWY � uLY , we obtain

uY =
y

�x+ y
�uY + u

L
Y � y:

14The complete analytical derivation is provided in Appendix B.
15The complete analytical derivation is provided in Appendix C.
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The equilibrium is uniquely identi�ed by the FOCs, which give the typical property

y =
�uY
�uX

x;

the equilibrium e¤orts

x =
��u2X�uY

(��uX +�uY )
2 ; (3)

y =
��uX�u

2
Y

(��uX +�uY )
2 ; (4)

the equilibrium probabilities of victory

pX =
��uX

��uX +�uY
; (5)

pY =
�uY

��uX +�uY
; (6)

and the equilibrium payo¤s

uX = �uXp
2
X + u

L
X ; (7)

uY = �uY p
2
Y + u

L
Y : (8)

Summing (3) and (4), and using (5) and (6), we obtain the following property, which we use
repeatedly in our proofs,

x+ y = (�uX +�uY ) � pXpY : (9)

In Appendix A, we specialize the above analysis for each node; (0; 0), (1; 0), (0; 1), and (1; 1),
substituting the appropriate continuation value in each node.

4 Benchmark: Victory-dependent biases

The problem of maximizing TE when a possibly di¤erent � is chosen at each node has four choice
variables, f�(0;0); �(1;0); �(0;1); �(1;1)g. We obtain the following result.

Proposition 1 Consider a best-of-three Tullock contest between two ex-ante identical players. With
victory-dependent biases, the point f�(0;0); �(1;0); �(0;1); �(1;1)g = f1; 1=3; 3; 1g is the unique global
maximum for TE in R4>0.

Proof. See Appendix B.

The �asymmetric�nodes (1; 0) and (0; 1), where one player is leading by one match, are a¤ected
by the discouragement e¤ect typically present in dynamic contests without endogenous biases (e.g.,
Konrad, 2009). With endogenous biases, Proposition 1 shows that it is optimal in these asymmetric
nodes to give the laggard an advantage; namely, if X loses the �rst match, the game reaches node
(0; 1) and X is given an advantage of �(0;1) = 3, while if X wins the �rst match, the game reaches

8



node (1; 0) and X is given a disadvantage of �(1;0) = 1=3. These ��s eliminate the competitive
unbalancedness due to the discouragement e¤ect and leave players equally likely to win the second-
match, as Corollary 2 shows. The �symmetric�nodes (0; 0) and (1; 1), where players have identical
continuation values and have won an identical number of matches, are optimally left unbiased by
setting �(0;0) = �(1;1) = 1. Therefore, the unique global maximum of Proposition 1 leaves players
equally likely to win each match and the entire contest;

Corollary 2 The optimal vector of biases of Proposition 1 yields p(i;j)X = 1=2 with (i; j) 2 f0; 1g2.

Proof. See Appendix B.

The result in Proposition 1 and Corollary 2 may at �rst appear intuitive. However, further
re�ection reveals it to be surprising. Intuitively, if today�s victory grants an advantage tomorrow,
a player �ghts �ercely today so as to require less e¤ort to win tomorrow. This simple intuition
has been extensively analysed by the literature. The general �nding, stemming from Meyer (1992),
is that the second match should be biased in favor of the winner of the �rst match in order to
increase total e¤orts because, �starting with no bias, the introduction of a small amount in favor of
the �rst-period winner generates a �rst-order increase in �rst-period incentives, but only a second-
order reduction in second-period incentives.�16 This strand of the literature would suggest leaving
some small advantage in the second match to the winner of the �rst match by setting �(0;1) = 3� "
and symmetrically �(1;0) = 1=(3� "), which would result in p(0;1)X < 1

2 and p
(1;0)
X > 1

2 . Indeed, one
can verify that in our setup this would result in an increase in �rst-period e¤orts and a negligible
decrease in second-period e¤orts, in line with the literature. However, in our best-of-three setup, a
new force arises: one needs to account for the probability of reaching node (1; 1), which decreases
with ". Proposition 1 shows that this e¤ect overwhelms the well-known increase in �rst-period
e¤orts that setting " > 0 generates.
Thus, the conventional wisdom of static contests, namely to leave players equally likely to win

in equilibrium, carries over to each node and to the entire contest in our dynamic model. However,
this is clearly possible since the designer can tailor the biases to the outcome of previous matches,
so as to keep competition �erce at all nodes and to eliminate the discouragement e¤ect. In the
remainder of the paper we characterize and discuss the optimal vector of biases when the designer
cannot tailor the biases to the outcome of previous matches.

5 Victory-independent biases

Under victory-independent ��s the model has the constraint �(i;j) = �i+j+1 with i; j 2 f0; 1g;
that is, �i+j+1 is given to player X in the (i+ j)th-match regardless of the outcome of previous
matches. Thus, the vector of biases used to maximize TE boils down to f�1; �2; �3g; one bias per
match. Under such a constraint, it is clearly impossible to induce an equal equilibrium probability
of winning across players at each node of the contest. An easy way to see this is that since �2 cannot
depend on the outcome of the �rst match, one can set �2 so as to achieve at most one between
p
(1;0)
X = 1=2 and p(0;1)X = 1=2. In this sense, the discouragement e¤ect cannot be eliminated as in
Section 4, but can be at most mitigated.
16The idea that biasing tomorrow�s playing �eld in favor of today�s winner enhances e¤orts has been explored by

many scholars after Meyer, including some recent contributions; e.g., Clark et al. (2012), Möller (2012), Beviá and
Corchón (2013), Ridlon and Shin (2013), Esteve-Gonzáles (2016) and Klein and Schmutzler (2017).
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An equal equilibrium probability of winning across players at each node implies an equal equi-
librium probability of winning the entire contest. Since the former can no longer be achieved, it
is natural to ask whether the latter is optimal; that is, whether e¤ort-maximization is achieved at
�1 = �2 = �3 = 1. For this purpose, we de�ne,

De�nition 3 A contest is fully unbiased if f�1; �2; �3g = f1; 1; 1g.

The main result of this section, formally proven in Proposition 5, is that a fully unbiased contest
is not optimal. In order to pinpoint the economic forces behind the result, we focus on a particular
contest structure that improves upon a fully unbiased contest, namely,

De�nition 4 A contest is alternating if f�1; �2; �3g = f�; 1=�; 1g with � 6= 1.

This structure resembles a typical practice observed, for instance, in sports; namely, the al-
ternation of home matches between X and Y , followed by an unbiased tie-breaker (i.e., the �nal
match).

Intuition. Before the formal statement of the result, we provide the intuition behind the
suboptimality of a fully unbiased contest by showing that TE increases as we move from a fully
unbiased contest to an alternating contest (i.e., setting � > 1 wlog). When we do so, three e¤ects
arise,

1. The �rst e¤ect concerns the �rst match: node (0,0). In a fully unbiased contest the �rst-
match continuation value is identical across players. Thus, since players are ex-ante identical,
an alternating contest creates an asymmetry in the continuation value that unbalances the
�rst match, hence reducing e¤orts. Thus, the �rst e¤ect on e¤orts is negative.

2. The second e¤ect concerns the second match: node (1,0) or (0,1). In an alternating contest
player X is given an advantage in the �rst match, and thus she is the most likely winner
of the �rst match, but she is also disadvantaged in the second match. Hence, the e¤ect of
her second-match disadvantage is more likely to attenuate than exacerbate her lead; in other
words, the second-match bias is more likely to help the second-match laggard rather than the
second-match leader. Thus, the second e¤ect on e¤orts is positive.

3. The third e¤ect concerns the third match: node (1,1). This node is not necessarily reached,
and its probability of being reached is what drives its e¤ect on TE; a greater bias given �rst
to X and then to Y increases the probability of reaching (1,1). This is easy to see for extreme
biases (� ! 1), where node (1,1) is reached with certainty. Total e¤ort increases with the
existence of (1,1). Thus, the third e¤ect on e¤orts is positive.

All in all, the second and third e¤ects are positive and the �rst is negative. In our intuition
we neglect the second e¤ect since the third e¤ect by itself su¢ ces to overcome the �rst. In words,
we show that, when moving from a fully unbiased contest to an alternating contest, the bene�cial
e¤ect on e¤orts of increasing the probability of existence of node (1,1) overcomes the decrease in
e¤orts at node (0,0).
Unfortunately, a local, �rst-order intuition around � = 1 in an alternating contest is not helpful

to draw conclusions. The reason is that both the �rst and the third e¤ects have zero derivative
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at � = 1.17 In fact, the probability of existence of node (1,1) and the total e¤orts in (0,0) have
zero derivative at � = 1. While the latter fact is well known, the former can be intuitively seen,
disregarding e¤ort changes, in the probability of existence of node (1; 1),

8 (i; j) 2 f0; 1g2, Pr
n
9(1; 1)

���x(i;j) = y(i;j)o = �

�+ 1| {z }
p
(0;0)
X

�

�+ 1| {z }
p
(1;0)
Y

+
1

�+ 1| {z }
p
(0;0)
Y

1

�+ 1| {z }
p
(0;1)
X

=
�2 + 1

(�+ 1)
2 ;

which has zero �rst derivative at � = 1.
Since neither a �rst-order derivation nor intuition su¢ ces to show that the third e¤ect dominates

the �rst, in the analytical proofs we derive and compare second-order e¤ects (Appendix C-D-E-
F-G), and in the intuition we compare a fully unbiased contest to an alternating contest that is
signi�cantly away from a fully unbiased contest, but for which calculations remain simple; that is,
an alternating contest with � = 2. We visualize the di¤erence between � = 1 and � = 2 in Figure
2 and Figure 3. The formulae of Section 3 help the reader follow the mathematics behind the
reasoning. Consider, for example, node (1,0) in both �gures. The values of �u(1;0)X and �u(1;0)Y are

simply the di¤erences in utilities at nodes (2,0) and (1,1), while the values of p(1;0)X , u(1;0)X and u(1;0)Y

are computed using (5), (7) and (8). The values at all the other nodes are similarly computed.18

At the bottom of each �gure, the total e¤orts at node (0,0) are calculated using (9) and are labeled
as ��rst e¤ect.�The label �third e¤ect�describes the total e¤orts at node (1,1) weighted by the
probability of existence of node (1,1). Comparing �gures 2 and 3, it is now easy to verify that,
when moving from a fully unbiased to an alternating contest with � = 2, the bene�cial e¤ect on
e¤orts of increasing the probability of existence of node (1,1) is 17 �

1
8 ' 0:018, and the decrease in

e¤orts at node (0,0) is 21
64 �

26
81 ' 0:007. Thus, the former is greater than the latter.

Optimal Alternating Contest. While an alternating contest with � = 2 su¢ ced to show
that a fully unbiased contest can be improved upon by an alternating contest, deriving the optimal
alternating contest is of independent interest. The TE-maximizing alternating contest has � ' 4:21.
To stress once again that this result relies on the probability of existence of (1,1), consider the e¤ort
di¤erence between the optimal alternating contest and the fully unbiased contest, conditional on
reaching each node. This e¤ort di¤erence is �0:063V in node (0,0), +0:055V in node (1,0), �0:119V
in node (0,1), and clearly 0 in node (1,1). Hence, if we consider e¤orts regardless of probabilities,
the e¤ect of biasing a fully unbiased contest would always be negative since node (0,0) happens
with probability 1. This fact highlights once again the key role played by the probabilities of
reaching node (1,1) in driving our result. In particular, to get an intuitive feeling of the magnitude
of probability changes, note that moving from a fully unbiased to the optimal alternating contest,
the probability of existence of node (1,1) increases from 0:25 to 0:41.

The qualitative conclusions drawn from the numerical examples of Figure 2 and Figure 3 are
proven generally true in Proposition 5, which shows that f�1; �2; �3g = f1; 1; 1g is a saddle rather
than a maximum for TE. In the proof we directly make use of the alternating contests to show

17Also, the second e¤ect has zero derivative at � = 1, but neglecting the second e¤ect su¢ ces for our purposes, as
we have mentioned.
18 In Figure 3, we approximated the values in �rst and second matches, without losing the qualitative features of

any comparisons.
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Figure 2: Fully unbiased contest under V = 1.

that a fully unbiased contest can be improved upon.19

Proposition 5 Consider a best-of-three Tullock contest between two ex-ante identical players. With
victory-independent biases, the point f�1; �2; �3g = f1; 1; 1g is a saddle for TE in R3>0.

In Appendix C we provide an extensive analytical derivation of the result. Here, we provide
a short proof that calculates an analytical expression for TE that is best checked by a computer
software, such as Mathematica.20

Proof. We consider moving away from f�1; �2; �3g = f1; 1; 1g in two directions. The �rst direction
is f�1; �2; �3g = f1+ b; 1; 1g; since the continuation values of the �rst match are identical between
players, the players� incentives in the �rst match are the same as in a one-shot contest, where it
is well known that b = 0 gives a local maximum for total e¤ort (e.g., Franke, 2012). The second
direction is f�1; �2; �3g = f1 + b; 1 � b; 1g;21 we show below that along this direction b = 0 is a
local minimum. This establishes that in the f�1; �2; �3g-space, f1; 1; 1g is a saddle.
19Consider how TE changes with � in an alternating contest. The �rst derivative of each of the three e¤ects is

0, thus the second derivative is needed to shed light on the ranking of the three e¤ects, as we do in the proof of
Proposition 5. We can quantify the three e¤ects by plugging � = 1 in the second derivative with respect to � of
the �rst e¤ect, obtaining �0:071V , of the second e¤ect, obtaining 0:017V , and of the third e¤ect, obtaining 0:087V .
Therefore, we obtain that; i) the overall second derivative is positive, proving our claim, and ii) the third e¤ect
su¢ ces to overcome the �rst e¤ect, which is the only negative one.
20The code is available from the authors upon request. Note for the referees: the code is attached to our submission.
21This is an algebraically convenient linearization of the alternating contest structure.
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Figure 3: Alternating contest under V = 1 and � = 2.

Plugging f�1; �2; �3g = f1+ b; 1� b; 1g into the formulae in Section 3, the expected total e¤ort
is:

TE(b) =
4592� 22960b+ 45873b2 + o(b2)
256(28� 140b+ 279b2 + o(b2)) :

Now de�ne the numerator n(b) � 4592� 22960b+ 45873b2 + o(b2) and the denominator d(b) �
256(28� 140b+ 279b2 + o(b2)), then

TE0(b) =
n0(b)d(b)� n(b)d0(b)

[d(b)]
2 :

Thus,

TE0(0) =
n0(0)d(0)� n(0)d0(0)

[d(0)]
2

=
22960 � 256 � 28� 4592 � 256 � 140

[d(0)]
2

= 0;
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so b = 0 is a critical point in this direction. We then consider the second derivative and obtain

TE00(0) =
[n00(0)d(0)� n(0)d00(0)] [d(0)]2 � 2d(0) [n0(0)d(0)� n(0)d0(0)]

[d(0)]
4

=
[n00(0)d(0)� n(0)d00(0)]

[d(0)]
2

= 2
45873 � 256 � 28� 4592 � 256 � 279

[d(0)]
2

= 2
256 � 3276
[d(0)]

2 > 0:

Thus, b = 0 is a local minimum.

Robustness of Proposition 5. The optimality of biasing a contest between symmetric players
(Proposition 5) is the result of the present paper that mostly diverges from the existing literature.
This is a call for robustness tests. First, while we followed the vast majority of the literature
on contests and maximize TE, in Appendix D we show that Proposition 5 carries over to the
maximization of the expected winner�s e¤ort. Second, while the Tullock contest is broadly used,
another well-studied model of contest is that of all-pay auctions; in Appendix E we show the
robustness of Proposition 5 to an all-pay-auction model. Third, in Appendix F we merge the two
previous robustness tests and show that Proposition 5 carries over to the maximization of the
expected winner�s e¤ort in an all-pay-auction model.

Globally Optimal Contest. De�ne the globally optimal contest as the best-of-three contest
with TE-maximizing biases f�1; �2; �3g. In the remainder of this section, we provide numerical
features of the globally optimal contest, which is of independent interest.
Numerical simulations show that the globally optimal contest has

f�1; �2; �3g ' f5:22; 0:33; 0:75g:

Thus, it is optimal to give a large (approx. 5) advantage to player X in the �rst match, and
balance it out with a medium (approx. 3) advantage to player Y in the second match and a small
(approx. 4=3) advantage to player Y in the third match, if necessary. This structure resembles
an alternating contest. Moreover, the optimal alternating contests already attains 81% of the
improvement achieved by the globally optimal contest over the fully unbiased contest.22 Reasonably,
in the optimal alternating contest � ' 4:21, which is in-between the �rst-match advantage (approx.
5) and the second-match advantage (approx. 3) of the globally optimal contest.
Next, we analyze the globally optimal contest through the light of the equilibrium winning

probabilities. In particular, evaluating pX at each node, we obtain

p
(0;0)
X ' 0:696, p(0;1)X ' 0:082, p(1;0)X ' 0:450, p(1;1)X ' 0:429:

In (0; 0), on the one hand, the optimal bias yields a substantial departure from pX = 0:5. On the
other hand, it is less than what would happen without dynamics; in fact, if we apply the globally
optimal �1 to a one-shot contest, we obtain pX ' 5:22=6:22 ' 0:839. Instead, with dynamics, one
22 In Appendix E we show that the analogous �gure for an all-pay auction is 94%.
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needs to account for the future advantages of Y . In (0; 1), it is not at all surprising to obtain a small
pX . In fact, two e¤ects point in the same direction: Y is both one-match ahead and advantaged
by the bias. Instead, in (1; 0), while Y is still advantaged, she is lagging one match behind. The
bias favoring Y more than compensates for her disadvantage of lagging one match behind � i.e.,
p
(1;0)
X < 1=2. In the last node (1; 1) the stakes are the same for X and Y . Thus, what accounts

for p(1;1)X being di¤erent than 1=2 is solely the mechanical e¤ect of �3 6= 1. Combining the above
�ndings, we calculate that the ex-ante probability of victory in the best-of-three contest for player
X is 0:488.

To summarize, an interesting contrast arises comparing sections 4 and 5. In Section 4 we found
that when the designer can tailor the biases to the outcome of previous matches, an optimal best-of-
three contest between two ex-ante identical players equalizes probabilities of winning across players,
both at each match and in the overall contest. In Section 5 we found that when the designer can
not tailor the biases to the outcome of previous matches, an optimal best-of-three contest between
ex-ante identical players leaves players unequally likely to win, both at each match and in the
overall contest. In this sense, we conclude that the static-contest conventional wisdom of equalizing
equilibrium winning probabilities across players does (not) carry over to a setting where the designer
can (cannot) tailor the biases to the outcome of previous matches.

6 Conclusions

We analyze the e¤ort-maximizing biases in a best-of-three contest. The �rst contribution is to
show that the conventional wisdom of optimality of unbiased contest carries over to a setting where
an e¤ort-maximizing designer can tailor the biases to the outcome of previous matches; that is,
by giving a player a di¤erent advantage or disadvantage tomorrow whether she won or lost today.
Speci�cally, we characterize the optimal vector of biases, and show that it eliminates the well-known
�discouragement e¤ect�, and leaves the two ex-ante identical players equally likely to win at each
match, regardless of who is leading in terms of past matches won, and therefore in the entire contest;
the conventional wisdom of the optimality of unbiased contest still holds.
The second contribution of the paper is to show that such optimality of unbiased contest does

not carry over when the e¤ort-maximizing designer cannot tailor the biases to the outcome of the
previous matches. We characterize the optimal vector of biases and show that it resembles an
observed pattern in real life; namely, the alternation of advantages between players, followed by an
unbiased tie-breaker. At the optimum, the two ex-ante identical players are not equally likely to
win in equilibrium, neither at a node nor for the entire contest; a biased contest stimulates more
e¤orts than an unbiased contest. We show that this result holds when matches are modeled both
as Tullock contests and all-pay auctions, and both under maximization of total e¤ort and winner�s
e¤ort; the conventional wisdom of optimality of unbiased contest fails.
This study is, to the best of our knowledge, the �rst cut into challenging the conventional

wisdom of the optimality of unbiased contest in a best-of-three contest. Being the �rst cut, the
present paper leaves sizeable room for future extensions. First, we analyzed the optimal vectors of
victory-dependent and victory-independent biases, assuming that the designer has full control over
the size of such biases; an interesting extension is that of exogenous-value biases to be allocated
by the designer either to player X or to Y . Second, while our analysis focused on best-of-three
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contests, we conjecture that the suboptimality of an unbiased contest between ex-ante identical
players carries over to best-of-n contests, since the same logic we explored appears to hold when
comparing the vector of victory-independent biases f�; 1=�; 1; :::; 1g and f1; :::; 1g because of two
e¤ects; the symmetry of the continuation values from the third match onwards, and the higher
probability of reaching node where players have the same number of victories. Nevertheless, the
structure of the globally optimal biases in a best-of-n contest is not a priori clear, and despite the
present analysis tempting us to make conjectures, we �ag it as an open research question.
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APPENDIX

A Preliminary node-by-node results

We specialize the general analysis of Section 3, i.e. equations (3)�(8), to each node.
Node (1,1). Since (1,1) is the last match, �u(1;1)X = �u

(1;1)
Y = V and uLX = u

L
Y = 0. Thus,

x(1;1) = y(1;1) =
�3V

(�3 + 1)
2 ; (10)

p
(1;1)
X =

�3
�3 + 1

, p(1;1)Y =
1

�3 + 1
;

u
(1;1)
X =

�23V

(�3 + 1)
2 , u

(1;1)
Y =

V

(�3 + 1)
2 :

Node (1,0). Recall that at (1,0), if player X wins the game ends, otherwise the game moves
to node (1,1). Thus,

�u
(1;0)
X = V�u(1;1)X =

(2�3 + 1)V

(�3 + 1)
2 , �u(1;0)Y = u

(1;1)
Y =

V

(�3 + 1)
2 , u

L
X = u

(1;1)
X =

�23V

(�3 + 1)
2 , u

L
Y = 0.

(11)
Therefore, plugging the above into (3)�(8), we obtain

x(1;0) =
�2 (2�3 + 1)

2

(�3 + 1)
2
(�2 + 2�2�3 + 1)

2V , y
(1;0) =

�2 (2�3 + 1)

(�3 + 1)
2
(�2 + 2�2�3 + 1)

2V;

p
(1;0)
X =

2�2�3 + �2
�2 + 2�2�3 + 1

, p(1;0)Y =
1

�2 + 2�2�3 + 1
;

u
(1;0)
X =

�22 (2�3 + 1)
3
+ �23 (�2 + 2�2�3 + 1)

2

(�3 + 1)
2
(�2 + 2�2�3 + 1)

2 V , u(1;0)Y =
1

(�3 + 1)
2
(�2 + 2�2�3 + 1)

2V:

Node (0,1). Symmetrically to the above analysis for node (1,0),

�u
(0;1)
X = u

(1;1)
X =

�23V

(�3 + 1)
2 , �u

(0;1)
Y = V�u(1;1)Y =

�23 + 2�3

(�3 + 1)
2V , u

L
X = 0, u

L
Y = u

(1;1)
Y =

V

(�3 + 1)
2 .

(12)
Thus,

x(0;1) =
(�3 + 2)�2�

3
3

(�3 + 1)
2
(�3 + �2�3 + 2)

2V , y
(0;1) =

(�3 + 2)
2
�2�

2
3

(�3 + 1)
2
(�3 + �2�3 + 2)

2V;

p
(0;1)
X =

�2�3
�3 + �2�3 + 2

, p(0;1)Y =
�3 + 2

�3 + �2�3 + 2
;

u
(0;1)
X =

�22�
4
3

(�3 + 1)
2
(�3 + �2�3 + 2)

2V , u
(0;1)
Y =

�3 (�3 + 2)
3
+ (�3 + �2�3 + 2)

2

(�3 + 1)
2
(�3 + �2�3 + 2)

2 V:
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Node (0,0). All equilibrium e¤orts, probabilities and payo¤s can be obtained as above, plug-
ging into (3), (4), (5), (6), (7) and (8), the following

�u
(0;0)
X = u

(1;0)
X � u(0;1)X , �u(0;0)Y = u

(0;1)
Y � u(1;0)Y , uLX = u

(0;1)
X , uLY = u

(1;0)
Y .

For the sake of space, we do not report here the explicit formulae.

B Benchmark; victory-dependent biases

Proof of Proposition 1. We iteratively use the formulae (7) and (8) into (9) to characterize the
total e¤ort node-by-node, to then plug them into TE. We express TE, rather than as a function of
��s, as a function of p(0;0)X ; p

(1;0)
X ; p

(0;1)
X and p(1;1)X . Denoting A = p(0;0)X , B = p

(1;0)
X , C = p(0;1)X and

D = p
(1;1)
X , we obtain

TE (A;B;C;D) = 2A(1�B)(1�D)(B +D) + 2(1�A)CD(2� C �D) +
+2(1�A)A

�
B(1�D)2 + (1� C)(1 + C(�1 +D))D +B2(1�D)D

�
:

Consider an optimal solution fA�; B�; C�; D�g to the problem

max
A;B;C;D

TE (A;B;C;D) :

Note �rst that TE is a polynomial, so on fA;B;C;Dg 2 [0; 1]4, TE admits a global maximum
by Weierstrass� theorem. Fix now A and D at arbitrary levels and consider now TE only as a
function of B and C, a function we denote with TEAD(B;C). This function is strictly concave for
fA;Dg 2 (0; 1)2. To see this, note that

@2TEAD(B;C)

@B@C
= 0

@2TEAD(B;C)

@B2
= 4A(1�D) [D(1�A)� 1] < 0;

@2TEAD(B;C)

@C2
= 4D(1�A) [A(1�D)� 1] < 0:

Therefore, the Hessian matrix of TEAD(B;C) is a diagonal, negative de�nite matrix for fA;Dg 2
(0; 1)

2. In this case, we can solve for B and C with the FOCs, which give

B = � (A;D) � 1

2

(2�A)(1�D)
1�D (1�A) 2 (0; 1) and C = 
 (A;D) �

1

2

(1�A)(2�D)
1�A (1�D) 2 (0; 1) : (13)

Thus, (13) has to hold in the maximum fA�; B�; C�; D�g if fA�; D�g 2 (0; 1)2, i.e., we must
have B� = � (A�; D�) and C� = 
 (A�; D�) : Note that we can use one of the formulations in (13)
as soon as 1 � A (1�D) 6= 0 or 1 � D (1�A) 6= 0, and this is useful to rule out the possibility
of a corner global maximum for TE (A;B;C;D). Consider for instance A = 1 and D < 1. Then
TE does not depend on C as node (0,1) is never reached, and thus it only depends on B and D.
We can repeat the reasoning leading to (13) to show that the optimal B in this case must solve

22



B� = � (1; D) = 1�D
2 by concavity and (13). Thus, evaluating TE at A = 1 and B = 1�D

2 , we

obtain TE = (1�D)(1+D)2
2 , which is maximized at D = 1=3. These values yield TE(1; 1=3; c; 1=3) =

16
27 <

11
16 = TE(1=2; 1=2; 1=2; 1=2), thus this corner cannot be optimal. Similar reasoning rules out

the other corners for which we can use one of the two formulae in (13), which also give TE = 16
27 . To

�nish the proof that the maximum must be interior, notice that TE (0; B;C; 0) = TE (1; B;C; 1) =
0, so that fA;Dg = f0; 0g and fA;Dg = f1; 1g cannot be optimal. The above establishes that
in any global maximum for TE, we must have fA�; B�; C�; D�g 2 (0; 1)4 ; B� = � (A�; D�) ; and
C� = 
 (A�; D�).
To show that the only possibility is fA�; B�; C�; D�g = f1=2; 1=2; 1=2; 1=2g, we proceed in

several steps. We begin by establishing that in our search for a global maximum we must satisfy
the constraint A+D = 1: To see this, we show that, for any fA;Dg 2 (0; 1)2, we have

TE (A; � (A;D) ; 
 (A;D) ; D) � TE
�
1 +A�D

2
;
1

2
;
1

2
;
1�A+D

2

�
;

with equality only if A+D = 1. Indeed, after a few algebraic steps,23 we have

TE (A; � (A;D) ; 
 (A;D) ; D)� TE
�
1 +A�D

2
;
1

2
;
1

2
;
1�A+D

2

�
=

(1�A�D)2

16 (1�A (1�D)) (1�D (1�A))r (A;D) ; (14)

where

r (A;D) � �A4 (1�D)D +A3
�
�1 +D + 7D2 � 6D3

�
+A2

�
�9 + 38D � 49D2 + 7D3 +D4

�
+A (1�D)

�
21� 38D +D3

�
� (1�D)2 (11 +D) :

We now show that r (A;D) < 0 by showing that

r (A;D) � r
�
1 +A�D

2
;
1�A+D

2

�
< 0:

Proceeding as above, we obtain

r (A;D)� r
�
1 +A�D

2
;
1�A+D

2

�
= �1

8
(1�A�D)2 q (A;D) ; (15)

where

q (A;D) � A4 +A3 (2� 8D) + 2A2
�
�10� 5D + 11D2

�
� 2A

�
17� 58D + 5D2 + 4D3

�
+67� 34D � 20D2 + 2D3 +D4:

Note that s (A;D) � q (A;D)�
�
A4 +A3 (2� 8D)

�
is a strictly concave function of A alone, as

�10� 5D + 11D2 < 0, so s (A;D) admits a minimum at either A = 0 or A = 1. We have

s (0; D) = D4 + 2D3 � 20D2 � 34D + 67;
23For the referee: we provide a check for (14), (15) and (16) with Mathematica.
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with a minimum at D = 1 and s (0; 1) = 16. Similarly,

s (1; D) = 13 + 72D � 8D2 � 6D3 +D4;

with a minimum at D = 0 and s (1; 0) = 72. Therefore,

q (A;D) = A4 +A3 (2� 8D) + s (A;D) � 0� 6 + 16 > 0;

Thus, q (A;D) > 0 and (15) yield

r (A;D) < r

�
1 +A�D

2
;
1�A+D

2

�
:

Since

r

�
1 +A�D

2
;
1�A+D

2

�
=
1

8

�
1� (A�D)2

�2 �
�21 + (A�D)2

�
< 0; (16)

we have veri�ed that r (A;D) < 0; and hence, using (14), that

TE (A; � (A;D) ; 
 (A;D) ; D) � TE
�
1 +A�D

2
;
1

2
;
1

2
;
1�A+D

2

�
;

with equality only if A+D = 1.
We now proceed to look for the global maximum of TE (A; � (A;D) ; 
 (A;D) ; D) by maximizing

TE
�
1+A�D

2 ; 12 ;
1
2 ;

1�A+D
2

�
for A and D: We obtain

TE

�
1 +A�D

2
;
1

2
;
1

2
;
1�A+D

2

�
=
11� (A�D)2

�
2 + (A�D)2

�
16

� 11

16
= TE

�
1

2
;
1

2
;
1

2
;
1

2

�
:

with equality only if A = D.
Concatenating our previous inequalities, we have that for any fA;B;C;Dg 2 (0; 1)4 ;

TE (A;B;C;D) � TE (A; � (A;D) ; 
 (A;D) ; D)

� TE

�
1 +A�D

2
;
1

2
;
1

2
;
1�A+D

2

�
� 11

16

= TE

�
1

2
;
1

2
;
1

2
;
1

2

�
;

with equality only if A + D = 1 and A = D, or equivalently A = D = 1=2. Since � (1=2; 1=2) =

 (1=2; 1=2) = 1=2, there is a unique global maximum at fA�; B�; C�; D�g = f1=2; 1=2; 1=2; 1=2g.

Proof of Corollary 2. Clearly, D = 1=2 implies �(1;1) = 1. Then, at node (1,0), �u
(1;0)
X = 3

4V

and �u(1;0)Y = 1
4V . From (5) and C = 1=2 we obtain,

1

2
= p

(1;0)
X =

�(1;0)
3
4

�(1;0)
3
4 +

1
4

) �(1;0) =
1

3
:

Similarly, we obtain �(0;1) = 3. Thus, at node (0,0), �u
(0;0)
X = �u

(0;0)
Y , so �(0;0) = 1 follows.
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C Victory-independent biases

Proof of Proposition 5. Since we know that along f�1; �2; �3g = f1 + b; 1; 1g b = 0 gives a
local maximum for TE, we focus here only on showing that along f�1; �2; �3g = f1 + b; 1 � b; 1g
b = 0 gives a local minimum for TE, so that f�1; �2; �3g = f1; 1; 1g is a saddle.
We divide the proof into the three e¤ects spelled out in the main text, the �rst (second, third)

e¤ect referring to the TE in the �rst (second, third) match. We analyse from the third to the �rst
e¤ect.
Third e¤ect. We quantify the e¤ect on TE of node (1,1) only, thus weighted by the probability

of getting to node (1,1). Using (10) with �3 = 1, we obtain that such e¤ect on TE equals�
p
(0;0)
X p

(1;0)
Y + p

(0;0)
Y p

(0;1)
X

��
x(1;1) + y(1;1)

�
=
h
p
(0;0)
X

�
1� p(1;0)X � p(0;1)X

�
+ p

(0;1)
X

i V
2
: (17)

Setting �1 = 1 + b and �2 = 1� b, we compute

dp
(0;1)
X

db
=

@p
(0;1)
X

@�u
(0;1)
X

@�u
(0;1)
X

@b
+

@p
(0;1)
X

@�u
(0;1)
Y

@�u
(0;1)
Y

@b
+
@p

(0;1)
X

@�2

@�2
@b
:

Notice that @�u
(0;1)
X

@b =
@�u

(0;1)
Y

@b = 0 since they only depend on �3 which we keep �xed at 1.
Thus, the above displayed equation reads

dp
(0;1)
X

db
= �@p

(0;1)
X

@�2

= � �u
(0;1)
X �u

(0;1)
Y�

�2�u
(0;1)
X +�u

(0;1)
Y

�2
= �p

(0;1)
X p

(0;1)
Y

�2
;

where in the last step we used (5) and (6). Similarly,

dp
(1;0)
X

db
= �p

(1;0)
X p

(1;0)
Y

�2
:

Finally,

dp
(0;0)
X

db
=

@p
(0;0)
X

@�u
(0;0)
X

@�u
(0;0)
X

@b
+

@p
(0;0)
X

@�u
(0;0)
Y

@�u
(0;0)
Y

@b
+
@p

(0;0)
X

@�1

@�1
@b

=
�1�u

(0;0)
Y�

�1�u
(0;0)
X +�u

(0;0)
Y

�2 @�u(0;0)X

@b
� �1�u

(0;0)
X�

�1�u
(0;0)
X +�u

(0;0)
Y

�2 @�u(0;0)Y

@b
+

�u
(0;0)
X �u

(0;0)
Y�

�1�u
(0;0)
X +�u

(0;0)
Y

�2
= p

(0;0)
X p

(0;0)
Y

"
@ ln�u

(0;0)
X

@b
� @ ln�u

(0;0)
Y

@b
+
@ ln�1
@b

#

= p
(0;0)
X p

(0;0)
Y

 
@

@b
ln
�1�u

(0;0)
X

�u
(0;0)
Y

!
: (18)
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Thus, the derivative of (17) equals

d
h
p
(0;0)
X

�
1� p(1;0)X � p(0;1)X

�
+ p

(0;1)
X

i
db

V

2
=

"
dp
(0;0)
X

db

�
1� p(1;0)X � p(0;1)X

�
+ p

(0;0)
X

 
�dp

(1;0)
X

db
� dp

(0;1)
X

db

!
+
dp
(0;1)
X

db

#
V

2

=

"
p
(0;0)
X p

(0;0)
Y

 
@

@b
ln
�1�u

(0;0)
X

�u
(0;0)
Y

!�
1� p(1;0)X � p(0;1)X

�
+p

(0;0)
X

 
p
(1;0)
X p

(1;0)
Y

�2
+
p
(0;1)
X p

(0;1)
Y

�2

!
� p

(0;1)
X p

(0;1)
Y

�2

#
V

2
:

We evaluate the above at b = 0 using formulae of Appendix A and obtain24�
1

4

3

7

�
1� 3

4
� 1
4

�
+
1

2

�
3

16
+
3

16

�
� 3

16

�
V

2
:

Since the above equals 0, the �rst derivative of the third e¤ect evaluates to 0. Thus, we have to
consider the second derivative of (17). Using p(0;0)Y = 1� p(0;0)X ,

d2
h
p
(0;0)
X

�
1� p(1;0)X � p(0;1)X

�
+ p

(0;1)
X

i
db2

V

2

equals �
1� 2

�
p
(0;0)
X

�� dp(0;0)X

db

! 
@

@b
ln
�1�u

(0;0)
X

�u
(0;0)
Y

!�
1� p(1;0)X � p(0;1)X

� V
2

+

�
p
(0;0)
X �

�
p
(0;0)
X

�2� @2
@b2

ln
�1�u

(0;0)
X

�u
(0;0)
Y

!�
1� p(1;0)X � p(0;1)X

� V
2

+

�
p
(0;0)
X �

�
p
(0;0)
X

�2� @
@b
ln
�1�u

(0;0)
X

�u
(0;0)
Y

! 
�dp

(1;0)
X

db
� dp

(0;1)
X

db

!
V

2

+
dp
(0;0)
X

db

 
p
(1;0)
X p

(1;0)
Y

�2
+
p
(0;1)
X p

(0;1)
Y

�2

!
V

2

+p
(0;0)
X

0BB@
�
p
(1;0)
X �

�
p
(1;0)
X

�2�
�22

+

�
1� 2p(1;0)X

�
�2

dp
(1;0)
X

db
+

�
p
(0;1)
X �

�
p
(0;1)
X

�2�
�22

+

�
1� 2p(0;1)X

�
�2

dp
(0;1)
X

db

1CCA V

2

�

�
p
(0;1)
X �

�
p
(0;1)
X

�2�
�22

V

2
�

�
1� 2p(0;1)X

�
�2

dp
(0;1)
X

db

V

2
:

24For example, in order to obtain p(0;0)X , one can plug the expression for �u(0;0)X and �u(0;0)Y provided in Appendix

A (Node (0,0)) into (5). Indeed, with b = 0, �u(0;0)X = �u
(0;0)
Y and thus p(0;0)X = 1

2
.
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Evaluating the above at b = 0 we obtain25�
1

4

3

7

6

16
+
1

4

3

7

�
3

16
+
3

16

�
+
1

2

�
3

16
+
1

2

3

16
+
3

16
� 1
2

3

16

�
� 3

16
+
1

2

3

16

�
V

2
=
39

224

V

2
(19)

Therefore we obtain that the overall third e¤ect is positive and quanti�ed by (19).
Second e¤ect. We quantify the e¤ect on TE of nodes (1,0) and (0,1), thus weighted by the

probability of getting to those two nodes.

p
(0;0)
X

�
x(1;0) + y(1;0)

�
+ p

(0;0)
Y

�
x(0;1) + y(0;1)

�
(20)

At node (1,0), by �3 = 1 and (11), we have �u
(1;0)
X = 3

4V , �u
(1;0)
Y = 1

4V , and p
(1;0)
X = 3�2

3�2+1
.

At node (0,1), by �3 = 1 and (12), we have �u
(0;1)
X = 1

4V , �u
(0;1)
Y = 3

4V , and p
(0;1)
X = �2

�2+3
.

We di¤erentiate (20) and obtain

dp
(0;0)
X

db

�
x(1;0) + y(1;0)

�
+ p

(0;0)
X

d
�
x(1;0) + y(1;0)

�
db

+
dp
(0;0)
Y

db

�
x(0;1) + y(0;1)

�
+ p

(0;0)
Y

d
�
x(0;1) + y(0;1)

�
db

(21)

Since dp
(0;0)
Y

db = �dp
(0;0)
X

db and since from (3) and (4) we obtain that, when b ! 0,
�
x(1;0) + y(1;0)

�
=�

x(0;1) + y(0;1)
�
, then, at b = 0, the above �rst derivative evaluates to

1

2
�
 
d
�
x(1;0) + y(1;0)

�
db

+
d
�
x(0;1) + y(0;1)

�
db

!
: (22)

Now rewrite (9) as x(1;0) + y(1;0) =
�
�u

(1;0)
X +�u

(1;0)
Y

�
�
�
p
(1;0)
X �

�
p
(1;0)
X

�2�
, and use this to

obtain
d
�
x(1;0) + y(1;0)

�
db

=
�
�u

(1;0)
X +�u

(1;0)
Y

�
� dp

(1;0)
X

d�2

d�2
db

�
1� 2p(1;0)X

�
: (23)

Since d�2(b)
db = �1, evaluating the above at b = 0 we have

�V � 3
16

�
1� 2 � 3

4

�
=
3

32
V:

Similarly,
d
�
x(0;1) + y(0;1)

�
db

= �V � 3
16

�
1� 2 � 1

4

�
= � 3

32
V:

Therefore, as for the third e¤ect, the �rst derivative evaluates to 0 and we thus move to the
analysis of the second derivative. We di¤erentiate (21) and obtain

d2p
(0;0)
X

db2

�
x(1;0) + y(1;0)

�
+ 2

dp
(0;0)
X

db

d
�
x(1;0) + y(1;0)

�
db

+ p
(0;0)
X

d2
�
x(1;0) + y(1;0)

�
db2

+
d2p

(0;0)
Y

db2

�
x(0;1) + y(0;1)

�
+ 2

dp
(0;0)
Y

db

d
�
x(0;1) + y(0;1)

�
db

+ p
(0;0)
Y

d2
�
x(0;1) + y(0;1)

�
db2

:

25The procedure is similar to the one outlined in footnote 24.
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When we evaluate this expression at b = 0, the �rst and fourth summands cancel out, as e¤orts are

x(1;0) + y(1;0) = x(0;1) + y(0;1) and d2p
(0;0)
X

db2 = �d2p
(0;0)
Y

db2 . Thus, we are left with

2
dp
(0;0)
X

db

�
3

32
V

�
+
1

2

d2
�
x(1;0) + y(1;0)

�
db2

+ 2
dp
(0;0)
Y

db

�
� 3

32
V

�
+
1

2

d2
�
x(0;1) + y(0;1)

�
db2

= 4
dp
(0;0)
X

db

�
3

32
V

�
+
1

2

 
d2
�
x(1;0) + y(1;0)

�
db2

+
d2
�
x(0;1) + y(0;1)

�
db2

!
: (24)

Using (18) evaluated at b = 0 we obtain

dp
(0;0)
X

db
=
1

4

3

7
.

Now in (24) we focus on the term
d2(x(1;0)+y(1;0))

db2 . Di¤erentiating (23), we obtain

d2
�
x(1;0) + y(1;0)

�
db2

=
�
�u

(1;0)
X +�u

(1;0)
Y

�
� d

2p
(1;0)
X

d�22

d�2
db

�
2p
(1;0)
X � 1

�
+ 2

�
�u

(1;0)
X +�u

(1;0)
Y

�
�
 
dp
(1;0)
X

d�2

!2
d�2
db

=
�
�u

(1;0)
X +�u

(1;0)
Y

�
�

0@d2p(1;0)X

d�22

�
1� 2p(1;0)X

�
� 2

 
dp
(1;0)
X

d�2

!21A ;
which at b = 0 evaluates to

V �
 
� 9

32

�
1� 2 � 3

4

�
� 2

�
3

16

�2!
=

9

128
V:

Similarly,

d2
�
x(0;1) + y(0;1)

�
db2

=
�
�u

(0;1)
X +�u

(0;1)
Y

�
�

0@d2p(0;1)X

d�22

�
1� 2p(0;1)X

�
� 2

 
dp
(0;1)
X

d�2

!21A ;
which at b = 0 evaluates to

V �
 
� 6

64

�
1� 2 � 1

4

�
� 2

�
3

16

�2!
= � 15

128
V:

So the whole second derivative (24) evaluates to

4 � 1
4
� 3
7
�
�
3

32
V

�
+
1

2

�
9

128
� 15

128

�
V =

15

896
V: (25)

Therefore we obtain that the overall second e¤ect is positive and quanti�ed by (25).
First e¤ect. We quantify the e¤ect on TE of node (0,0). We rewrite the sum of e¤orts using

(9) as
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x(0;0) + y(0;0) =
�
�u

(0;0)
X +�u

(0;0)
Y

�
�
�
p
(0;0)
X �

�
p
(0;0)
X

�2�
: (26)

So,

d
�
x(0;0) + y(0;0)

�
db

=

 
d�u

(0;0)
X

db
+
d�u

(0;0)
Y

db

!
�
�
p
(0;0)
X �

�
p
(0;0)
X

�2�
+
�
�u

(0;0)
X +�u

(0;0)
Y

�
�dp

(0;0)
X

db

�
1� 2p(0;0)X

�
:

Note that
�
2p
(0;0)
X � 1

�
evaluates to 0 at b = 0. Consider now d�u

(0;0)
X

db and d�u
(0;0)
Y

db . De�ning

h(x) = 27x2

(3x+1)2
+1� x2

(x+3)2
, and using the formulae of Appendix A, we can write26 �u(0;0)X = h(a2)

V
4

and �u(0;0)Y = h(1=�2)
V
4 so that

d�u
(0;0)
X

d�2

d�2
db

+
d�u

(0;0)
Y

d�2

d�2
db

= �
�
h0(�2)� h0(1=�2)

1

�22

�
V

4
;

which evaluates to 0. Therefore,

d
�
x(0;0) + y(0;0)

�
db

�����
b=0

= 0:

Thus, we move to evaluate the second derivative of (26);

d2
�
x(0;0) + y(0;0)

�
db2

=

 
d2�u

(0;0)
X

d (�2 (b))
2 +

d2�u
(0;0)
Y

d (�2 (b))
2

!
�
�
p
(0;0)
X �

�
p
(0;0)
X

�2�

+2

 
d�u

(0;0)
X

d�2 (b)
+
d�u

(0;0)
Y

d�2 (b)

!
� dp

(0;0)
X

db

�
1� 2p(0;0)X

�

�
�
�u

(0;0)
X +�u

(0;0)
Y

�
�

0@�d2p(0;0)X

db2

�
1� 2p(0;0)X

�
+ 2

 
dp
(0;0)
X

db

!21A :
Using the de�nition of h(�) above, we write

d2�u
(0;0)
X

db2
+
d2�u

(0;0)
Y

db2
=

�
h00(�2) + h

00(1=�2)
1

�42
+ 2h0(1=�2)

1

�32

�
V

4
;

which evaluated at �2 = 1, gives 2h00(1) + 2h0(1) = 2 �
�
� 69
64

�
V + 2 � 34V = �

21
32V .

Using (18), dp
(1;1)
X

db

����
�2=1

= 1
4
3
7 , then,

d2
�
x(0;0) + y(0;0)

�
db2

�����
b=0

= �21
32
� V
4
� 1
4
�0�

�
54

16
+ 2� 1

8

�
V

4
�
 
0 + 2

�
1

4
� 3
7

�2!
= � 255

3584
V: (27)

26For the referee: we provide a check for this expression with Mathematica.
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Therefore we obtain that the overall �rst e¤ect is negative and quanti�ed by (27).
Overall second derivative. We can �nally put together the three e¤ects, and conclude that

along the direction f�1; �2; �3g = f1+b; 1�b; 1g, b = 0 is a local minimum since the �rst derivative
of the total e¤ort with respect to b is 0, and the second derivative equals 39

224
V
2 +

15
896V �

255
3584V =

117
3584V > 0. This establishes that in the f�1; �2; �3g-space, f1; 1; 1g is a saddle.

D Robustness to maximization of winner�s e¤ort

The expected winner�s e¤ort (WE) is de�ned as follows

WE � (28)

p
(0;0)
X

n
p
(1;0)
X �

h
x(0;0) + x(1;0)

i
+ p

(1;0)
Y p

(1;1)
X �

h
x(0;0) + x(1;0) + x(1;1)

io
+ p

(0;0)
Y p

(0;1)
X p

(1;1)
X �

h
x(0;0) + x(0;1) + x(1;1)

i
+p

(0;0)
Y

n
p
(0;1)
Y �

h
y(0;0) + y(0;1)

i
+ p

(0;1)
X p

(1;1)
Y �

h
y(0;0) + y(0;1) + y(1;1)

io
+ p

(0;0)
X p

(1;0)
Y p

(1;1)
Y �

h
y(0;0) + y(1;0) + y(1;1)

i
:

The top line of WE is player X�s overall e¤ort considering all instances when she wins, and the
bottom line does the same for player Y .

Proposition 6 Consider a best-of-three Tullock contest between two ex-ante identical players. With
victory-dependent biases, the point f�1; �2; �3g = f1; 1; 1g is a saddle for WE in R3>0.

Proof. We follow the structure of Proof of Proposition 5 provided in the main text.27

WE(b) = p
(0;0)
X p

(1;0)
X

h
x(0;0) + x(1;0)

i
+ p

(0;0)
Y p

(0;1)
Y

h
y0;0) + y(1;0)

i
+p

(0;0)
X p

(1;0)
Y

n
p
(1;1)
X

h
x(0;0) + x(1;0) + x(1;1)

i
+ p

(1;1)
Y

h
y(0;0) + y(1;0) + y(1;1)

io
+p

(0;0)
Y p

(1;0)
X

n
p
(1;1)
X

h
x(0;0) + x(1;0) + x(1;1)

i
+ p

(1;1)
Y

h
y(0;0) + y(1;0) + y(1;1)

io
=

2548� 19110b+ 61989b2 + o(b2)
256(28� 210b+ 681b2) + o(b2) :

As we did for TE(b), we separate numerator and denominator and one could verify that

n0(0)d(0)� n(0)d0(0) = 0

n00(0)d(0)� n(0)d00(0) = 256 � (61989 � 28� 2548 � 681)
= 256 � 504 > 0

Again, b = 0 is a local minimum under the constraint f�1; �2; �3g = f1 + b; 1 � b; 1g. This
establishes the result.

27The code is available from the authors upon request. Note for the referees: the code is attached to our submission.
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E Robustness to the all-pay auction

In this last Section of the Appendix we provide robustness tests of the Tullock contest analysed in
the main text to the all-pay auction. That is, we replace (1) with the following;

p
(i;j)
X (x; y) =

8<: 1
1=2
0

if �(i;j)x > y
if �(i;j)x = y
if �(i;j)x < y

In an all-pay auction (APA), we assume private information with marginal costs distributed on
[1;+1) with density f(c) = 1=c2 and cumulative F (c) = 1� 1=c.28 In every match, a new pair of
realizations of marginal costs are independently drawn. Our choice of adding private information
to the APA is driven by the fact that with full information rents would be fully dissipated, thus
making our exercise non-interesting.

In this Section we keep the same notation for uWX ; u
L
X ; u

W
Y ; u

L
Y ;�uX ;�uY as for the Tullock

contest. In an APA, a strategy is a function x(c) for player X and y(c) for player Y . We look
for a strictly increasing equilibrium so ties do not happen with positive probability in equilibrium.
Following Amann and Leininger (1996) we de�ne a function k(c) that matches cost-type c of player
X with cost-type k(c) of player Y that bids the same e¤ective amount taking into account the bias
�. Thus,

k(c) = y�1(�x(c)):

Expected individual payo¤ of cost-type c of player X who behaves as c0

uX(c; c
0) = (1� F (k(c0)))uWX + F (k(c0))uLX � cx(c0)

= (1� F (k(c0)))�uX + uLX � cx(c0):

Its �rst derivative reads

@uX(c; c
0)

@c0
= �f(k(c0))k0(c0)�uX � cx0(c0):

Since the FOC must hold at c0 = c, we obtain the di¤erential equation

cx0(c) = �f(k(c))k0(c)�uX : (29)

Similarly,

cy0(c) = � f(k
�1(c))

k0(k�1(c))
�uY ;

which evaluated at k(c) gives

k(c)y0(k(c)) = � f(c)
k0(c)

�uY :

Since k0(c) = �x0(c)
y0(k(c)) , the above displayed equation reads

k(c)�x0(c) = �f(c)�uY : (30)

28The choice of distribution of marginal costs is equivalent to a uniform distribution over valuations.
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Putting together (29) and (30) we obtain

�
cf(c)

�
uWY � uLY

�
k(c)�

= �f(k(c))k0(c)�uX

cf(c) = f(k(c))k0(c)k(c)�
�uX
�uY

:

For our chosen PDF, we obtain
1

c
=
k0(c)

k(c)
�
�uX
�uY

:

Integrating with the boundary condition k(1) = 1 we have

k(c) = c
�uY
��uX : (31)

Therefore the ex-ante winning probability of X is

pX =

+1Z
1

1

c2
(1� F (k(c))) dc

=

+1Z
1

1

c2

�
1

k(c)

�
dc

=

+1Z
1

c
� �uY
��uX

�2
dc

=
��uX

��uX +�uY
: (32)

Naturally, pY = 1� pX .
Substituting (31) into (29), we obtain

x0(c) = ��uY
�
c
� �uY
��uX

�2
;

and integrating, we obtain

x(c) =
�uX�uY

��uX +�uY
c
��uY +��uX

��uX :

Similar steps yield the following

y(c) =
��uX�uY
��uX +�uY

c
��uY +��uX

�uY :
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Thus, the expected e¤orts read

x =

+1Z
1

�uX�uY
��uX +�uY

c
��uY +��uX

��uX
�2
dc

= � ��u2X�uY
(��uX +�uY ) (�uY + 2��uX)

c
��uY +2��uX

��uX

����+1
1

=
��u2X�uY

(��uX +�uY ) (�uY + 2��uX)
: (33)

Similarly,

y =
��uX�u

2
Y

(��uX +�uY ) (2�uY + ��uX)
: (34)

Finally, payo¤s are

uX =
��u2X

��uX +�uY
+ uLX �

+1Z
1

c
�uX�uY

��uX +�uY
c
��uY +��uX

��uX
�2
dc

=
��u2X

��uX +�uY
+ uLX �

��u2X�uY

(��uX +�uY )
2

=
�2�u3X

(��uX +�uY )
2 + u

L
X : (35)

And similarly,

uY =
�u3Y

(��uX +�uY )
2 + u

L
Y :

The APA equivalent of the Tullock property (9) is

x+ y = �uY � pX
�

pX
� (1 + pX)

+
pY

1 + pY

�
: (36)

We now specialize the above general analysis to each node, as we did in Appendix A for the
Tullock contest. While at each node the equilibrium expected payo¤s and probabilities of victory
have the same functional forms as in the Tullock contest (e.g., compare (32) and (35) with (5) and
(7)), the equilibrium expected e¤orts are not (compare (33) and (3)). Therefore, in what follows,
we spell out only e¤orts.
Node (1,1). Since (1,1) is the last match, �uX = �uY = V and uLX = u

L
Y = 0. Thus,

x(1;1) =
�3V

(�3 + 1) (2�3 + 1)

y(1;1) =
�3V

(�3 + 1) (�3 + 2)

33



Node (1,0). Plugging �uX and �uY into (33) and (34), we obtain

x(1;0) =
�2 (2�3 + 1)

2

(�3 + 1)
2
(�2 + 2�2�3 + 1) (2�2 + 4�2�3 + 1)

V

y(1;0) =
�2 (2�3 + 1)

(�3 + 1)
2
(�2 + 2�2�3 + 2) (�2 + 2�2�3 + 1)

V

Node (0,1). Symmetrically to the above analysis for node (1,0),

�uX = u
(1;1)
X =

�23V

(�3 + 1)
2 , �uY = V � u

(1;1)
Y =

�23 + 2�3

(�3 + 1)
2V , u

L
X = 0, u

L
Y = u

(1;1)
Y =

V

(�3 + 1)
2 .

Thus,

x(0;1) =
�2�

3
3 (�3 + 2)

(�3 + 1)
2
(�3 + �2�3 + 2) (�3 + 2�2�3 + 2)

y(0;1) =
�2�

2
3 (�3 + 2)

2

(�3 + 1)
2
(�3 + �2�3 + 2) (2�3 + �2�3 + 4)

Node (0,0). Equilibrium e¤orts can be obtained as above.

From the above, we retrieve the main result for APA, which mirrors Proposition 5 for Tullock
contests; namely, a fully unbiased contest is not optimal. In fact, the following proposition shows
that f�1; �2; �3g = f1; 1; 1g is a saddle rather than a maximum for TE. In Appendix F we show
that the result carries over to the maximization of expected winner�s e¤ort WE.

Proposition 7 Consider a best-of-three APA between two ex-ante identical players. With victory-
independent biases, the point f�1; �2; �3g = f1; 1; 1g is a saddle for TE in R3>0.

In Appendix G we provide an extensive analytical derivation of the result. Here, we provide a
short proof that calculates an analytical expression for TE which is best checked by a computer
software, such as Mathematica.29

Proof. We consider moving away from f�1; �2; �3g = f1; 1; 1g in two directions. The �rst direction
is f�1; �2; �3g = f1+ b; 1; 1g; since the continuation values of the �rst match are identical between
players, the players�incentives in the �rst match are the same as in a one-shot contest, where it is
well known that b = 0 gives a local maximum for total e¤ort (Clark and Riis, 2000). The second
direction draws an intuition from a typical practice in sports; namely, the alternation of home
matches between X and Y , followed by an unbiased tie-breaker (i.e., the �nal match). In fact, after
setting f�1; �2; �3g = f1 + b; 1 � b; 1g, we show below that along this direction b = 0 is a local
minimum. This establishes that in the f�1; �2; �3g-space, f1; 1; 1g is a saddle.
Plugging f�1; �2; �3g = f1 + b; 1� b; 1g into the formulae in the beginning of Appendix E, the

expected total e¤ort is:

TE(b) =
5(39508� 335818b+ 1265867b2 + o(b2))
24(19600� 166600b+ 627029b2 + o(b2))

29The code is available from the authors upon request. Note for the referees: the code is attached to our submission.
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Now de�ne the numerator n(b) � 5(39508� 335818b+ 1265867b2 + o(b2)) and the denominator
d(b) � 24(19600� 166600b+ 627029b2 + o(b2)), then

TE0(b) =
n0(b)d(b)� n(b)d0(b)

[d(b)]
2

Thus,

TE0(0) =
n0(0)d(0)� n(0)d0(0)

[d(0)]
2

=
5

24

�335818 � 19600 + 166600 � 39508
[d(0)]

2

= 0

so b = 0 is a critical point in this direction. We then consider the second derivative and obtain

TE00(0) =
[n00(0)d(0)� n(0)d00(0)] [d(0)]2 � 2d(0) [n0(0)d(0)� n(0)d0(0)]

[d(0)]
4

=
[n00(0)d(0)� n(0)d00(0)]

[d(0)]
2

=
5

12

1265867 � 19600� 39508 � 627029
[d(0)]

2

= 5
33 � 7 � 16901

[d(0)]
2 > 0

Thus, b = 0 is a local minimum.

Optimal Contest. Numerical simulations show that the globally optimal contest requires
f�1; �2; �3g ' f9:21; 0:21; 0:76g. Thus, it is optimal to give a large (approx. 9) advantage to player
X in the �rst match, and balance it out with a medium (approx. 5) advantage to player Y in the
second match and a small (approx. 4=3) advantage to player Y in the third match, if necessary.
This structure suggests an alternating contest, as it was the case for the globally optimal Tullock
contest. Moreover, the optimal alternating contest already attains 94% of the improvement achieved
by the unconstrained maximum over the fully unbiased contest.30

The intuition why the alternating contest improves upon the fully unbiased contest and the
qualitative features of the equilibrium winning probabilities are identical to the ones already given
for Tullock contests.31

30The globally optimal contest improves TE vs. the fully unbiased contest by 8:80%. The optimal alternating
contest (achieved at � ' 7:13) improves TE vs. the fully unbiased contest by 8:29%.
31All qualitative comparisons we discussed for Tullock contests go through despite a few numerical di¤erences.

First, the e¤ort di¤erence between the optimal alternating contest vs. the fully unbiased contest, conditional on
reaching each node, is �0:059V in node (0,0), +0:033V in node (1,0), �0:074V in node (0,1), and clearly 0 in
node (1,1). Second, the second derivative of TE with respect to � evaluated at � = 1 for an alternating contest is
�0:034V for the �rst e¤ect, 0:020V for the second e¤ect, and 0:058V for the third. More precisely, these number are�
� 65
1792

V; 54 363
2744 000

V; 13
224

V
	
. Third, the probability of existence of node (1,1) increases from 0:25 to 0:52. Fourth,

the ex-ante probability of victory of the best-of-three contest by player X is 0:487, and the probabilities of victory
node-by-node are, p(0;0)X = 0:767, p(0;1)X = 0:054, p(1;0)X = 0:343, andp(1;1)X = 0:433.
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F Robustness to maximization of winner�s e¤ort in all-pay
auction

The de�nition of WE is (28). We obtain,

Proposition 8 Consider a best-of-three APA between two ex-ante identical players. With victory-
independent biases, the point f�1; �2; �3g = f1; 1; 1g is a saddle for WE in R3>0.

Proof. We follow the structure of Proof of Proposition 7 provided in Appendix E.32

WE(b) =
7(243040� 2430400b+ 10943997b2 + o(b2))
384(19600� 196000b+ 881529b2 + o(b2)) :

As we did for TE(b), we separate numerator and denominator and one could verify that

n0(0)d(0)� n(0)d0(0) = 0

n00(0)d(0)� n(0)d00(0) = 35280 � 7243 > 0:

Again, b = 0 is a local minimum under the constraint f�1; �2; �3g = f1 + b; 1 � b; 1g. This
establishes the result.

G Extensive analytical proof of Proposition 7

Proof of Proposition 7. Since we know that along f�1; �2; �3g = f1 + b; 1; 1g b = 0 gives a
local maximum for TE, we focus here only on showing that along f�1; �2; �3g = f1 + b; 1 � b; 1g
b = 0 gives a local minimum for TE, so that f�1; �2; �3g = f1; 1; 1g is a saddle. We divide the
proof into the three e¤ects spelled out in the main text. Notice that we only point out here the
di¤erence with respect to the Tullock model analyzed in the proof of Proposition 5.
Third e¤ect. The only di¤erence with respect to Tullock for the third e¤ect is that x(1;1) +

y(1;1) = V=3 rather than V=2. Thus, the equivalent of (17) is�
p
(0;0)
X p

(1;0)
Y + p

(0;0)
Y p

(0;1)
X

��
x(1;1) + y(1;1)

�
=
h
p
(0;0)
X

�
1� p(1;0)X � p(0;1)X

�
+ p

(0;1)
X

i V
3
: (37)

This di¤erence carries over throughout the entire proof. Thus, while the �rst derivative of (37)
evaluates to 0 at b = 0, its second derivative is 2=3 of (19), which is the corresponding Tullock
expression. Thus, the second derivative of (37) evaluates to 39

224
V
3 = 0:058V > 0.

Second e¤ect. Nothing changes with respect to the proof of Proposition 5 until expression
(22), including for e¤orts the fact that b ! 0

�
x(1;0) + y(1;0)

�
=
�
x(0;1) + y(0;1)

�
. From there, we

obtain the same equivalence as in Tullock, namely,

d
h
p
(0;0)
X

�
x(1;0) + y(1;0)

�
+ p

(0;0)
Y

�
x(0;1) + y(0;1)

�i
db

������
b=0

=
1

2
�
 
d
�
x(1;0) + y(1;0)

�
db

+
d
�
x(0;1) + y(0;1)

�
db

!
:

32The code is available from the authors upon request. Note for the referees: the code is attached to our submission.
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But now instead of using (9) we use its APA homologous (36), and obtain

d
�
x(1;0) + y(1;0)

�
db

= �u
(1;0)
Y �

 
dp
(1;0)
X

d�2

d�2
db

!0@ p
(1;0)
X

�2

�
1 + p

(1;0)
X

� + p
(1;0)
Y

1 + p
(1;0)
Y

1A
+�u

(1;0)
Y � p(1;0)X

0B@ 1

�2

1�
1 + p

(1;0)
X

�2
 
dp
(1;0)
X

d�2

d�2
db

!

� 1

�22

p
(1;0)
X

1 + p
(1;0)
X

d�2(b)

db
� 1�

1 + p
(1;0)
Y

�2
 
dp
(1;0)
X

d�2

d�2
db

!1CA :
Since d�2(b)

db = �1, recall from (36) that

x(1;0) + y(1;0) = �u
(1;0)
Y � p(1;0)X

0@ p
(1;0)
X

�2

�
1 + p

(1;0)
X

� + p
(1;0)
Y

1 + p
(1;0)
Y

1A :
Thus, we obtain

d
�
x(1;0) + y(1;0)

�
db

=

 
� dp

(1;0)
X

d�2(b)

!
x(1;0) + y(1;0)

p
(1;0)
X

+

�u
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Y � p(1;0)X
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�2

1�
1 + p
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X

�2
 
� dp
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X

d�2(b)

!
+
1

�22

p
(1;0)
X

1 + p
(1;0)
X

+
1�

1 + p
(1;0)
Y

�2
 
dp
(1;0)
X

d�2(b)

!1CA
=

�
x(1;0) + y(1;0)

�
�
 
�d ln p

(1;0)
X

d�2(b)

!
(38)

+�u
(1;0)
Y �

�
p
(1;0)
X

�20B@
0B@ 1�

1 + p
(1;0)
Y

�2 � 1

�2

1�
1 + p

(1;0)
X

�2
1CA d ln p

(1;0)
X

d�2(b)
+
1

�22

1

1 + p
(1;0)
X

1CA :
Evaluating the above at b = 0 it becomes

�
33

280

�
�
�
�1
4

�
+ V

�
1

4

�
�
�
3

4

�2  
1�

1 + 1
4

�2 � 1�
1 + 3

4

�2
!
1

4
+

1

1 + 3
4

!
V =

2427

39 200
V:

Similarly,

d
�
x(0;1) + y(0;1)

�
db

=
�
x(0;1) + y(0;1)

�
�
 
�d ln p

(0;1)
X

d�2(b)

!
+ (39)

�uY �
�
p
(0;1)
X

�20B@
0B@ 1�

1 + p
(0;1)
Y

�2 � 1

�2

1�
1 + p

(0;1)
X

�2
1CA d ln p

(0;1)
X

d�2(b)
+
1

�22

1

1 + p
(0;1)
X

1CA ;
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which evaluates at b = 0 to�
33

280

�
�
�
�3
4

�
+ V � 3

4
�
�
1

4

�2  
1�

1 + 3
4

�2 � 1�
1 + 1

4

�2
!
3

4
+

1

1 + 1
4

!
V = � 2427

39 200
V:

thus, the �rst derivative of the second e¤ect equals zero. Therefore, we move to the analysis of
the second derivative.
Similarly to how we reached (24), the second derivative of the second e¤ect equals

4
dp
(0;0)
X

db

�
2427

39 200
V

�
+
1

2

 
d2
�
x(1;0) + y(1;0)

�
db2

+
d2
�
x(0;1) + y(0;1)

�
db2

!
: (40)

Notice that (18) applies equally well to Tullock and APA because probabilities and ��s are identical.
Therefore,

dp
(0;0)
X

db

�����
b=0

=
1

4

3

7
. (41)

Now we evaluate in what follows the two remaining terms of (40) separately namely
d2(x(1;0)+y(1;0))

db2

and
d2(x(0;1)+y(0;1))

db2 , which we respectively compute by di¤erentiating again (38) and (39). Thus,
we obtain

d2
�
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�
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=
d
�
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�
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�d ln p
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Isolating the last terms, we obtain
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(1;0)
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� 1

�22

1�
1 + p

(1;0)
X

�2 dp(1;0)X
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:

and if we evaluate at b = 0 (43), we obtain,

�2 1�
1 + 1

4

�3 316 14� 1�
1 + 3

4

�2 14�2 1�
1 + 3

4

�3 316 14+
 

1�
1 + 1

4

�2 � 1�
1 + 3

4

�2
!
7

16
+2

1

1 + 3
4

+
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1 + 3
4

�2 316 = 51 197

42 875
:

We can �nally go back to expression (42) evaluated at b = 0 to obtain

d2
�
x(1;0) + y(1;0)

�
db2

=
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V �
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: (44)
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Similarly,

d2
�
x(0;1) + y(0;1)

�
db2

=
d
�
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�
db
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Isolating the last terms, we obtain
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:

and if we evaluate at b = 0 (46), we obtain,

�2 1�
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:

We can �nally go back to expression (45) evaluated at b = 0 to obtain
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d2
�
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�
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V: (47)

We �nally plug (41), (44) and (47) into (40), and obtain that the second derivative of the second
e¤ect equals

4
1

4

3

7

�
2427

39 200
V

�
+
1

2

�
151 443

2744 000
� 188 337

2744 000

�
V =

54 363

2744 000
V > 0:

First e¤ect. We quantify the e¤ect on TE of node (0,0). We rewrite (36) as

x(0;0) + y(0;0) = �u
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1A : (48)

Thus,
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Since, d�1(b)db = 1, d�2(b)db = �1, and using (48), we obtain
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Evaluating the above at b = 0 we obtain
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Thus, we move to analyze the second derivative,
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Thus,
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Overall second derivative. We can �nally put together the three e¤ects, and conclude that
along the direction f�1; �2; �3g = f1+b; 1�b; 1g, b = 0 is a local minimum since the �rst derivative
of the total e¤ort with respect to b is 0, and the second derivative equals 39

224
V
3 +

54 363
2744 000V �

65
1792V =

456 327
10 976 000V > 0. This establishes that in the f�1; �2; �3g-space, f1; 1; 1g is a saddle.
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