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Abstract

Markov regime switching models have been used in numerous empirical studies in economics
and finance. However, the asymptotic distribution of the likelihood ratio test statistic for testing
the number of regimes in Markov regime switching models has been an unresolved problem. This
paper derives the asymptotic distribution of the likelihood ratio test statistic for testing the null
hypothesis of M, regimes against the alternative hypothesis of My + 1 regimes for any My > 1
both under the null hypothesis and under local alternatives. We show that the contiguous

8

alternatives converge to the null hypothesis at a rate of n='/® in regime switching models with

normal density. The asymptotic validity of the parametric bootstrap is also established.

Key words: Differentiable in quadratic mean expansion; likelihood ratio test; Markov regime

switching model; parametric bootstrap.

1 Introduction

The Markov regime switching model has been a popular framework for empirical work in economics

and finance. Following the seminal contribution by Hamilton| (1989)), it has been used in numerous

empirical studies to model, for example, the business cycle (Hamilton, 2005; Morley and Piger}
2012)), stock market volatility (Hamilton and Susmel, [1994)), international equity markets
Bekaert, [2002; |Okimoto, [2008), monetary policy (Schorfheide, [2005; [Sims and Zha), 2006} Bianchil,
2013), and economic growth (Kahn and Rich| [2007). Comprehensive theoretical accounts and
surveys of applications are provided by [Hamilton (2008, 2016) and Ang and Timmermann| (2012).

The number of regimes is an important parameter in applications of Markov regime switching

models. Despite its importance, however, testing for the number of regimes in Markov regime
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switching models has been an unsolved problem because the standard asymptotic analysis of the
likelihood ratio test statistic (LRTS) breaks down because of problems such as unidentifiable pa-
rameters, the true parameter being on the boundary of the parameter space, and the degeneracy of
the Fisher information matrix. Testing the number of regimes for Markov regime switching models
with normal density, which are popular in empirical applications, poses a further difficulty because
normal density has the undesirable mathematical property that the second-order derivative with
respect to the mean parameter is linearly dependent on the first derivative with respect to the
variance parameter, leading to further singularity.

This paper proposes the likelihood ratio test of the null hypothesis of My regimes against the
alternative hypothesis of My + 1 regimes for any My > 1 and derives its asymptotic distribution.
To the best of our knowledge, the asymptotic distribution of the LRTS has not been derived for
testing the null hypothesis of My regimes with My > 2. To test the null hypothesis of no regime
switching, namely My = 1, Hansen| (1992) derives an upper bound of the asymptotic distribution
of the LRTS, and |Garcia (1998) also studies this problem. |Carrasco et al| (2014) propose an
information matrix-type test for parameter constancy in general dynamic models including regime
switching models. |Cho and White| (2007) derive the asymptotic distribution of the quasi-LRTS for
testing the single regime against two regimes by rewriting the model as a two-component mixture
model, thereby ignoring the temporal dependence of the regimesE] Qu and Zhuo| (2017) extend
the analysis of (Cho and White (2007) and derive the asymptotic distribution of the LRTS that
properly takes into account the temporal dependence of the regimes under some restrictions on the
transition probabilities of latent regimes. Marmer| (2008) and Dufour and Luger| (2017) develop
tests for the null hypothesis of no regime switching by using different approaches from the LRTS.
The studies discussed above focus on testing the single regime against two regimes. To the best of
our knowledge, however, the asymptotic distribution of the LRTS for testing the null hypothesis of
My regimes with My > 2 remains unknown.

Several papers in the literature consider tests when some parameters are not identified under the
null hypothesis. These include Davies| (1977, [1987), |Andrews and Ploberger| (1994, 1995), [Hansen
(19964), |Andrews (2001), and |Liu and Shao, (2003), among others. Estimation and testing with a
degenerate Fisher information matrix are investigated in an iid setting by |Chesher| (1984), Lee and
Chesher| (1986)), [Rotnitzky et al.| (2000), and |Gu et al.| (2017), among others. |Chen et al| (2014)
examine uniform inference on the mixing probability in mixture models.

To facilitate the analysis herein, we develop a version of Le Cam’s differentiable in quadratic
mean (DQM) expansion that expands the likelihood ratio under the loss of identifiability, while
adopting the reparameterization and higher-order expansion of Kasahara and Shimotsu (2015). In
an iid setting, |Liu and Shao| (2003) develop a DQM expansion under the loss of identifiability in
terms of the generalized score function. We extend |Liu and Shao| (2003)) to accommodate dependent

and heterogeneous data as well as modify them to fit our context of parametric regime switching

ICarter and Steigerwald| (2012) show that ignoring temporal dependence may render the quasi-maximum likelihood
estimator inconsistent.



models. Using a DQM-type expansion has an advantage over the “classical” approach based on the
Taylor expansion up to the Hessian term because deriving a higher-order expansion becomes tedious
as the order of expansion increases in a Markov regime switching model. Furthermore, regime
switching models with normal components are not covered by Liu and Shao| (2003) because their
Theorem 4.1 assumes that the generalized score function is obtained by expanding the likelihood
ratio twice, whereas our Section [6.2] shows that the score function is a function of the fourth
derivative of the likelihood ratio in the normal case.

Our approach follows Douc et al.| (2004) [DMR hereafter], who derive the asymptotic distri-
bution of the maximum likelihood estimator (MLE) of regime switching models. We express the
higher-order derivatives of the period density ratios in terms of the conditional expectation of the
derivatives of the period complete-data log-density, i.e., the log-density when the state variable
is observable, by applying the missing information principle (Woodbury, [1971; |Louis, 1982)) and
extending the analysis of DMR. We then show that these derivatives of the period density ratios
can be approximated by a stationary, ergodic, and square integrable martingale difference sequence
by conditioning on the infinite past, and this approximation is shown to satisfy the regularity
conditions for our DQM expansion.

We first derive the asymptotic null distribution of the LRTS for testing Hy : M = 1 against
H, : M = 2. When the regime-specific density is not normal, the log-likelihood function is locally
approximated by a quadratic function of the second-order polynomials of the reparameterized pa-
rameters. When the density is normal, the degree of deficiency of the Fisher information matrix and
required order of expansion depend on the value of the unidentified parameter; in particular, when
the latent regime variables are serially uncorrelated, the model reduces to a finite mixture normal
model in which the fourth-order DQM expansion is necessary to derive a quadratic approximation
of the log-likelihood function. We expand the log-likelihood with respect to the judiciously chosen
polynomials of the reparameterized parameters—which involves the fourth-order polynomials—to
obtain a uniform approximation of the log-likelihood function in quadratic form and derive the
asymptotic null distribution of the LRTS by maximizing the quadratic form under a set of cone
constraints building on the results of |/Andrews| (1999, 2001)).

To derive the asymptotic null distribution of the LRTS for testing Hy : M = My against
Hy: M = My+ 1 for My > 2, we partition a set of parameters that describes the true null model
in the alternative model into My subsets, each of which corresponds to a specific way of generating
the null model. We show that the asymptotic distribution of the LRTS is characterized by the
maximum of the My random variables, each of which represents the LRTS for testing each of the
My subsets.

We also derive the asymptotic distribution of the LRTS under local alternatives. |Carrasco et al.
(2014)) show that the contiguous local alternatives of their tests are of order n =1/, where n is the
sample size. In a related problem of testing the number of components in finite mixture normal
regression models, Kasahara and Shimotsu| (2015) show that the contiguous local alternatives are
of order n~1/8 (see also |Chen and Li, [2009; (Chen et al., 2012; Ho and Nguyen, 2016). We show



that the value of the unidentified parameter affects the convergence rate of the contiguous local
alternatives. When the regime-specific density is normal, some contiguous local alternatives are

of the order n—1/8

, and the LRT is shown to have non-trivial power against them. The tests of
Carrasco et al.| (2014) do not have power against such alternatives, whereas the test of |Qu and
Zhuo (2017)) rules out such alternatives because of their restriction on the parameter space.

The asymptotic validity of the parametric bootstrap is also established both under the null
hypothesis and under local alternatives. The simulations show that our bootstrap LRT has good
finite sample properties. Our results also imply that the bootstrap LRT is valid for testing the
number of hidden states in hidden Markov models because this paper’s model includes the hidden
Markov model as a special case. Although several papers have analyzed the asymptotic property
of the MLE of the hidden Markov modelE] the asymptotic distribution of the LRTS for testing the
number of hidden states has been an open questionE]

The remainder of this paper is organized as follows. After introducing the notation and as-
sumptions in Section 2, we discuss the degeneracy of the Fisher information matrix and loss of
identifiability in regime switching models in Section 3. Section 4 establishes the DQM-type expan-
sion. Section 5 presents the uniform convergence of the derivatives of the density ratios. Sections 6
and 7 derive the asymptotic null distribution of the LRTS. Section 8 derives the asymptotic distri-
bution under local alternatives. Section 9 establishes the consistency of the parametric bootstrap.
Section 10 reports the results from the simulations and an empirical application, using U.S. GDP

per capita quarterly growth rate data. Section 11 collects the proofs and auxiliary results.

2 Notation and assumptions

Let := denote “equals by definition.” Let = denote the weak convergence of a sequence of stochastic
processes indexed by 7 for some space II. For a matrix B, let Apin(B) and Apax(B) be the smallest
and largest eigenvalues of B, respectively. For a k-dimensional vector x = (x1, ..., zx)" and a matrix
B, define |z| := v2'z and |B| := \/Amax(B'B). For a k x 1 vector a = (a1, ...,a;)" and a function
fla), let Vof(a) := (8f(a)/day,...,0f (a)/dar), and let V7 f(a) denote a collection of derivatives
of the form (87 /8a;, 0ay, . .. dai;) f(a). Let I{A} denote an indicator function that takes the value
1 when A is true and 0 otherwise. C denotes a generic non-negative finite constant whose value
may change from one expression to another. Let a Vb := max{a,b} and a Ab := min{a,b}. Let |z
denote the largest integer less than or equal to z, and define (x)1 := max{z,0}. Given a sequence
{fe¥i_y, let vu(fr) == n= Y230 [fe — Eg«(fx)]. For a sequence X, indexed by n = 1,2,...
and ¢, we write X, = Op(ay) if, for any § > 0, there exist ¢ > 0 and M,ny < oo such that
P(| Xne/an| < M) > 1 —6 for all n > ng, and we write X,,c = op(ay) if, for any d;,d2 > 0,

2See, for example, [Leroux| (1992), [Francq and Roussignol| (1998)), Krishnamurthy and Rydén| (1998), Bickel et al.
(1998)), |Jensen and Petersen| (1999), |[Le Gland and Mevel (2000)), and [Douc and Matias| (2001]).

JGassiat and Keribin| (2000) show that the LRIS for testing Ho : M = 1 against Ha : M = 2 diverges when
state-specific densities have known and distinct parameter values. |Dannemann and Holtzmann (2008) analyze the
modified quasi-LRTS for testing the null of two states against three.



there exist ¢ > 0 and ng such that P(|X,c/a,| < §1) > 1 — 99 for all n > ng. Loosely speaking,
Xne = Ope(ay) and X,- = ope(ay,) mean that X, = O,(ay) and X, = op(a,) when ¢ is sufficiently
small, respectively. All limits are taken as n — oo unless stated otherwise. The proofs of all the
propositions and lemmas are presented in the appendix.

Consider the Markov regime switching process defined by a discrete-time stochastic process
{(Xg, Yi, Wi)}, where (X, Yy, W) takes values in a set Xpy x Y x W with Y C R% and W C R%,
and let B(Xyr x YV x W) denote the associated Borel o-field. For a stochastic process {Z;} and
a < b, define ZZ = (Zay Zas1,---,Zp). Denote Yp_1 := (Yi_1,...,Ys_s) for a fixed integer s and
?Z = (Y4, Yas1,...,Yy). Here, Y} is an observable variable, X}, is an unobservable state variable,
Y ._; is the lagged Y}.’s used as a covariate, and W}, is a weakly exogenous covariate. DMR’s model

does not include Wi.

Assumption 1. (a) {Xip}}2, is a first-order Markov chain with the state space Xy :=
{1,2,...,M}. (b) For each k > 1, X}, is independent of (X§_2,?§_1,W8") given Xi_1. (c) For
each k > 1,Y}, is conditionally independent of (Y]f;j:l, X]g_l, W]g_l, 1) given (Y 1, Xp, Wp).
(d) W< is conditionally independent of (Yo, Xo) given WO (e) {(Xk, Y, Wi) 132, is a strictly

stationary ergodic process.

When Wy, is absent, DMR provide a sufficient condition for the ergodicity of (X, Yx) in their
Assumption (A2). We assume the ergodicity of (X, Y, W) for brevity.

The unobservable Markov chain { X} } is called the regime. The integer M represents the number
of regimes specified in the model. The parameter ¥,; = (19’M7y, 19’M,$)’ belongs to O = Onr,y X Opr a,
a compact subset of R . ;. contains the parameter of the transition probability of X}, which
we denote by gy, (Tk—1,7k) = P(Xy = 2| Xp—1 = 2-1). Let pij == qu,,,(4,j) fori=1,.... M
and j = 1,...,M — 1, and gy, (i, M) is determined by gy,, (i, M) = 1 — ij\izlpij. Uy =
( /1""’%\4”7,),
which is given by g, , (Uk[¥r—1, Tk, wi) = > jex, Haw = JH (Yrl¥i—1, wi; 7, 0;). Here, v is the
structural parameter that does not vary across regimes, 6; is the regime-specific parameter that

contains the parameter of the conditional density of Y} given (Yjp_1, Xi, W),

varies across regimes, and f(y|¥r_1, wk;7,0;) is the conditional density of yy given (¥,_i,ws)

when zp = j. Let

Po (Yk> Tkl Vi1, Th—1, Wk) = Qo (Tr—1, Tk) 90, (Yk|Yr—_1, Tk, Wk)
= qo, (@e—1,2%) > Haw =5} f WrlFi_1, w57, 0;)-

JEXM

We assume Oy, = Og X --- X Oy x O, and the true parameter value is denoted by 973,.
We make the following assumptions that correspond to (A1)-(A3) in DMR.

Assumption 2. (a) 0 <o_ :=infy,, co,, , Mingrexy, Gy, (x,2') and

Oy = SUDy,, Oy, Mg a/eXy, Wy, (T,2) < 1 for each M. (b) For ally € Y,y € V°, and

* Assumptions a)—(d) imply that Wj, is conditionally independent of (X’gil,?gfl) given WL,



weW, 0 <infycoy, docr, 99,r.,Y'[U, z,w) and SUPy,, O, Y ey gqiM’y(y’@,az,w) < 00.
(¢) by = supy,, ce, SUPy, v, w.a I, (Y1|¥0, T, w) < 00 and Eg-(|logb_ (Yo, W1)|) < oo, where

b— (y(l)’ wl) = infﬁM,yGGM,y Z-’EEX]\/[ g'ﬁ]\/[,y (yl |y07 Z, wl)'

As discussed on p. 2260 of DMR, Assumption [2[(a) implies that the Markov chain {X}} has a
unique invariant distribution and is uniformly ergodic for all 8y, € © M,xﬂ For notational brevity,
we drop the subscript M from Xy, ¥, Opr, etc., unless it is important to clarify the specific
value of M. Assumptions (b) and (c) imply that {Z;}32, := {(Xk, Yi)}32, is a Markov chain on
Z = X x Y* given {W;}22,, and Zj, is conditionally independent of (Zg 2, W§H™1, wi1) given
(Zk—1, Wy). Consequently, Lemma 1, Corollary 1, and Lemma 9 of DMR go through even in the
presence of {W},}22 . Because {(Zj, W) }32,, is stationary, we can and will extend {(Zy, Wy)}72, to
a stationary process {(Zy, Wj)}32 _ ., with doubly infinite time. We denote the probability measure
and associated expectation of {(Zy, W})}32 . under stationarity by Py and Ey, respectivelyﬁ

Under Assumptions (a)f(d), the density of Y7 given Xo =z, Yo and W is given by

n
pﬂ]u(Y?|?07W6L7x0) = Z HpﬂM(Ykaxk|?k’—laxk—laWk‘)' (1)
xXPEXY, k=1
Define the conditional log-likelihood function and stationary log-likelihood function as
- k—1
0n (0, 20) :=log pg (YT [Yo, W5, 0) = > logps(Yi[Yy W, z0),
k=1

n|\N n - N1
én(ﬂ) = Ingﬁ(Yl |Y07WO) = Zlogpﬁ(yk’YO ang)a
k=1

where we use the fact that pg(Yk|?§71, 0, x0) = pqg(Yk|?§71,W§,x0) and pqg(Yk|?§71,Wg) =
Dy (Yk\?lg_l, WE), which follows from Assumption [1} Note that
k-1 k-1
po(YelYo W, m0) —po(Yel Yo, W()
< <k—1 _ k-1 _
= Z P9 (Y, 0| Y k—1, T—1, Wi) X (Pﬁ(xk—ﬂYo SWE 20) — Py(a1| Yo, W 1)),

(Th—1,2,)EX?

k-1 _ k-1 _ k-1 _
and Py(z—1[Yy W) = 3, cxPol@e1[Yy W zo)Py(ao[Yy ,WE). Let p:=1-—
o_/o4 €[0,1). Lemma [11[(a) in the appendix shows that, for all probability measures 1 and po

® Assumptions c) and a) are also employed in DMR. As discussed in [Kasahara and Shimotsu| (2017)), these
assumptions together rule out models in which the conditional density Y depends on both current and lagged regimes.
Kasahara and Shimotsu| (2017) show the asymptotic normality of the MLE while relaxing Assumption [2a) to allow
for infy,, .coy, ., MiNg arex,, 4o, , (€,2") = 0. It is possible to derive the asymptotic distribution of the LRT under
similar assumptions to [Kasahara and Shimotsu (2017), albeit with a tedious derivation.

SDMR use Py and Ey to denote probability and expectation under stationarity on {Zr} 72 oo, because their Section 7
deals with the case when Zy is drawn from an arbitrary distribution. Because we assume {(Z, Wi)}72 o is stationary,
we use notations such as Py and Ey without an overline for simplicity.



on B(X) and all (yi~! wh™),

sup | > Py(Xp1 € Alyg " wizo)pa(zo) — Y Po(Xpo1 € Alyg ™ wiwo)pa(wo) | < p*
ToEX roEX
(2)

Consequently, pg(Yk\?gil, W'gil, xg) — pﬂ(Yk|?§71, ngl) goes to zero at an exponential rate as
k — oo. Therefore, as shown in the following proposition, the difference between ¢, (6, xy) and
£,(0) is bounded by a deterministic constant, and the maximum of 4,,(9, z¢) and the maximum of

£, (1) are asymptotically equivalent.

Proposition 1. Under Assumptions[]] and[d, for all o € X,

sup [6n (9, 20) — £o(9)| < 1/(1 — p)? Pge-a.s.
YeO

As discussed on p. 2263 of DMR, the stationary density pﬁ(Yk\?]g_l,WS) is not available in
closed form for some models with autoregression. For this reason, we consider the log-likelihood
function when the initial distribution of X follows some distribution
Ev € By = {é(xO)xo§XM 1€(wo) > 0and }°, v, §(wo) =1}

Define the MLE, 95/¢,,, by the maximizer of the log-likelihood:

M
En(ﬁM7€M) := log (Z P (Ym?O? ng 1"0)£M(x0)> ) (3)

xo=1

where py,, (Y7 Y0, Wi, z0) is given in . We define the number of regimes by the smallest number
M such that the data density admits the representation . Our objective is to test Hy : M = My
against Ha : M = My + 1.

3 Degeneracy of the Fisher information matrix and non-

identifiability under the null hypothesis

Consider testing Hy : M = 1 against Hy : M = 2 in a two-regime model. The null hypothesis can
be written as Hy : 07 = 05[] When 6; = 05, the parameter 2 ; is not identified because Y}, has the
same distribution across regimes. Furthermore, Section [6] shows that when 6; = 6o, the scores with
respect to 01 and 65 are linearly dependent, so that the Fisher information matrix is degenerate.
The log-likelihood function of Markov regime switching models with normal density has further
degeneracy. In a two-regime model where Y; in the j-th regime follows N (uj,ajz), the model

reduces to a heteroscedastic normal mixture model when the X}’s are serially uncorrelated, i.e.,

"The null hypothesis of Ho : M = 1 also holds when (p11,p22) = (1,0). We impose Assumption a) to bound pj;;
away from 0 and 1 because the log-likelihood function may become unbounded as pi1 or pa2 tends to 1 in view of
Gassiat and Keribin| (2000).



p11 = 1 — poo. |Kasahara and Shimotsu (2015) show that in a heteroscedastic normal mixture
model, the first and second derivatives of the log-likelihood function are linearly dependent and the
score function is a function of the fourth-order derivative. Consequently, one needs to expand the

log-likelihood function four times to derive the score function.

4 Quadratic expansion under the loss of identifiability

When testing the number of regimes by the LRT, a part of ¥ is not identified under the null
hypothesis. Let m denote the part of ¢ that is not identified under the null, and split ¢ as ¥ =
(¢',7"). For example, in testing Hy : M = 1 against Hq : M = 2, we have ¢ = 09, and m = Vg ,.
We denote the conditional log-likelihood function as £, (v, 7, zg) := £, (¥, 29) and use py and Py
interchangeably.

Denote the true parameter value of ¥ by ¢*, and denote the set of (¢, 7) corresponding to the
null hypothesis by I'* = {(¢,7) € © : ¢ = ¢*}. Let ty be a continuous function of ¥ such that
ty = 0 if and only if ¢ = ¢*. For € > 0, define the neighborhood of I'* by

Ne:={0€0O:|ty| <e}.

When the MLE is consistent, the asymptotic distribution of the LRTS is determined by the local
properties of the likelihood functions in N;.

We establish a general quadratic expansion of the log-likelihood function £, (1, 7, &) := £, (¥, §)
defined in around £, (¢*, m, &) that expresses £, (¢, 7, &) — (¥, 7, &) as a quadratic function
of ty. Once we derive a quadratic expansion, the asymptotic distribution of the LRTS can be
characterized by taking its supremum with respect to ty under an appropriate constraint and using
the results of |Andrews| (1999, 2001)).

Denote the conditional density ratio by

~~k—1
I L wa(Yk\Yo 7W(1§7$0)
Ykxo = — k-1 A ’
p’lZJ*TI'(Yk‘YO 7WO’ xo)

(4)

so that €, (¢, 7, 20) — ln (Y*, 7, 20) = > 108 lyka,- We assume that Ly, can be expanded around
ly«kz, = 1 as follows. With a slight abuse of the notation, let P,(f;) := n-t > p—1 fr and recall

va(fi) =02 300 i — Boe ()],
Assumption 3. For allk=1,...,n, lyry, — 1 admits an expansion
lokao — 1 = tySek + Tok + Udkay, (5)

where ty satisfies v — * if ty — 0 and (Sgk, "9k, Uoks,) Satisfy, for some C € (0,00), 6 > 0,
e >0, and p € (0,1), (a) Eg-sup,co._ lsme2T0 < C, (b) suprco,. | Pn(Sxkshy) — In| = 0p(1) with
0 < infreo, Amin(Zr) < SUPrco, Amax(Zr) < 00, (¢) Eg-[supgen, [ror/([tol[v — )] < oo, (d)

8



supgenr [vn(ror) / ([toll¥ — 9*])] = Op(1), (€) supyocx supyens. Prlluwskaol /|9 — ¥*[)7 = Op(n™?) for
J=1,2,3, (f) supyyex supyen. Pnllsarlluoka,|/[—1"[) = Op(n™1), (g) supgens. [vn(szr)l = Op(1).

We first establish an expansion of 4,,(1, 7, zo) in the neighborhood of N, //m for any ¢ > 0.

Proposition 2. Suppose that Assumptions @ (a)-(f) hold. Then, for any c > 0,

sup  sup |€n(¢,ﬂ',xo) — o (V*, T, 20) — Vtlyvn (Sak) + ntgglﬂtqg/ﬂ = o0p(1).
ToEX ﬂENc/\/ﬁ
The following proposition expands £, (¢, m, xg) in Ap-(xo,n) = {9 € No @ £y(¢,m,20) —
Cn(Y*, myxg) > —n} for some n € [0,00). This proposition is useful for deriving the asymp-
totic distribution of the LRTS because a consistent MLE is in A,-(zo,n) by definition. Let
Anec(an 77) = Ane(ﬂfom) UNC/\/E'

Proposition 3. Suppose that Assumption @ holds. Then, for any n > 0, (a)
SUDgocx SUDYE A, (z0.n) [ty = Opg(nfl/Q), and (b) for any ¢ > 0,

sup  sup |6 (v, m,w0) — bn($F, m, 0) — Vv (sek) + ntyIete /2| = 0pe(1).
xOEX ﬁeAnsc(xOvn)

The following corollary of Propositions 2| and [3| shows that £, (1,£) defined in admits a
similar expansion to ¢, (¢, zg) for all £&. Consequently, the asymptotic distribution of the LRTS
does not depend on &, and ¢, (¢, ) may be maximized in ¢ while fixing £ or jointly in ¥ and &. Let

Ane(§,m) = {0 € Ne 2 bn (Y, m, &) — b (¥, m,8) > —n} and Apee(§,n) = Ape(§,m) UN,,/m, which
includes a consistent MLE with any &.

Corollary 1. (a) Under the assumptions of Pmposition@ we have

SUPgez SUPgen o 1n (. 7,€) — (6", 7, ) — V/ithn(sus) + it Tats /2] = 0p(1) for any ¢ > 0.
(b) Under the assumptions of Proposition @ for any n >0 and ¢ > 0, supgcz SUPyea,,. (e lto] =
Opg(n_l/Q) and SUPgez SUPyea,.. (e |n (¥, T, §) =L (™, 7, 6) — Vit (sgi) +ntlh ety /2] = ope(1).

5 Uniform convergence of the derivatives of the log-density and

density ratios

In this section, we establish approximations that enable us to apply the results in Section 4] to
the log-likelihood function of regime switching models. Because of the presence of singularity,
the expansion of the density ratio lyx,, involves the higher-order derivatives of the density
ratios sz}lﬁkm with 7 > 2. Note that Vfblqglmo can be expressed in terms of the derivatives of log-
densities, Vfb log pwﬂ(Ykl?g_l, WE 20). We show that these derivatives are approximated by their
stationary counterpart that condition on the infinite past (?ﬁ;, W _) in place of (?1571, WE).
Consequently, the sequence {Vf)}l%xo}z":o is approximated by a stationary martingale difference

sequence.



For 1<k <nand m >0, let

k
Po(Yr [V WE )= > I po(¥e2lYer, We, 21 Poe (2 [¥ -, W),
xlimexk+m+1 t=—m-+1
(6)

denote the stationary density of Y* _, associated with ¥ conditional on {Y_W,W m}s Where
X_y, is drawn from its true conditional stationary distribution Py« (z_ m|Y_m ,WPE_ ). Let
Dy Yk\Yfm,Wk ) = DY 1Y o, WFE ) /By (YE 7nl+1\Y_m,Wliml) denote the associated
conditional density of Y} given (?Iifl Wk )

Define the density ratio as lj, , o (¥) = pﬁ(Yk‘Y W’jm, X_m = x)/py~ (Yk]Y Wk s X—m =
x). Forj=1,2,...,6,1 <k <n,m>0,and z € X, define the derivatives of the log-densities and
density ratios by, with suppressing the subscript ¢ from Vf; for brevity,

A . Vipg (Y Y ' wk on X =
Ve (9) 1= Vi log po (Y T W X = 2, Vlgoma(d) 1= L20ED uil
V]pﬂ(Yk!Y_mW’“ )

Dy (Ve [Y L WE Y

Vil (9) = Vi logp(Yil Y ol WE ), and Vil (9) ==

—m

The following assumption corresponds to (A6)—(A8) in DMR and is tailored to our setting where
some elements of ¥} are not identified and X is finite. Note that Assumptions (A6) and (A7) in
DMR pertaining to gy, (x,2") hold in our case because the p;;’s are bounded away from 0 and 1.
Let Gy := Zxke){ 99, (Y| Yi_1, 28, Wi). Gy satisfies Assumption (b) in general when N* is

sufficiently small.

Assumption 4. There exists a positive real § such that on N* := {9 € © : |9, — ;| < d} the
following conditions hold: (a) For all (¥,y',x,w) € Y* x Y x X xW, gy, (V'|¥, z,w) is siz times
continuously differentiable on N*. (b) Eg[supgepr sup,ex [V71og g, (Y1[Yo, 2z, W)|?%] < oo for
Jj=1,2,...,6 and Ey supycp+ |Gor/Go=k|? < oo with ¢1 = 6qo,q2 = 5qo,...,96 = qo, where
g = (1+¢)gy and g3 = (1 +€)qy/e for some ¢ > 0 and gy > max{3, dim(J)}. (c) For almost all
¥y, w) € YV xYXW, supgen~ 99, (Y'Y, ,w) < 0o and, for almost all (¥, z,w) € Y* <X xW, for
Y — Rt in L such that |V7gy, (y' |y, z,w)| < I (W)

y7m?w

j=1,2,...,6, there exist functions f;wm
for all ¥ € N*.

The following proposition shows that {VIly m .(9)}m>0 and {VIlg . (9) }m>o are L7 (Pys)-
Cauchy sequences that converge to V70 o (9) Py«-a.s. and in L (Py) uniformly in ¢ € N* and
rekX.

Proposition 4. Under Assumptions[1, [3, and[{, for j = 1,...,6, there exist random variables

8Note that DMR use the same notation 7919(~|?I:n1) for a different purpose. On p. 2263 and in some other (but
not all) places, DMR use P, (YH?S 71) to denote an (ordinary) stationary conditional distribution of Yj.
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(K, {M;i}y_y) € L™ (Py~) and ps € (0,1) such that, for all1 <k <n and m' >m >0,

(@) sup sup [Vl pna(9) = V(9] < Kk +m) o™ Byeoas,

TEX JEN*

() sup sup |V ma(9) = VIl ()| < Kj(k+m) pkt™=1 Py-a.s.,
TzEX YEN™*

(¢) supsup sup |Vl . (9)] + sup sup [Vl (9)] < Mjp  Pye-a.s.,
m>0xeX YEN* m>09eEN*

where r1 = 6qo, T2 = 3qo, 3 = 2qo, T4 = 3q0/2, 75 = 6q0/5, and r¢ = qo. (d) Uniformly in 9 € N'*
and x € X, VIl m (9) and VIl 1, (9) converge Py=-a.s. and in L™ (Pys) to VIl oo(9) € L7 (Py+)

as m — 00.

As shown by the following proposition, we may prove the uniform convergence of the derivatives
of the density ratios by expressing them as polynomials of the derivatives of the log-density and

applying Proposition [4| and Hélder’s inequality.

Proposition 5. Under Assumptions[1, [3, and[{, for j = 1,...,6, there exist random variables
{K;r}i_, € LY (Py~) and p, € (0,1) such that, for all1 <k <n and m' >m >0,

(a) sup sup |lek,m,x(19) — Vﬁkﬁm(ﬂ)\ < Kjr(k+ m)7plj+m71 Py« -a.s.,
zEX 9EN*

(b)  sup sup [Vl o(9) = Vi 2(9)] < Kjp(k+m) i Pye-as.,
TEX YEN*

(¢) supsup sup |Vig (V)| + sup sup |Vinm(9)] < Kjj Pye-a.s.
m>0xeX YeEN* m>09eN*
(d) Uniformly in 9 € N* and x € X, VI m .(9) and Vg (9) converge Py«-a.s. and in L% (Py+)
to Vil oo () € LP (Py+) as m — 00. (€) supgepnr |V o(9) — Vi oo(9)| < K xh"ph ™1 Pys-a.s.

When we apply the results in Sectionto regime switching models, Iy, o 5 () corresponds to Lykg,
on the left-hand side of , and s In is a function of the Vﬁk’g (9)’s. Proposition [5{ and the
dominated convergence theorem for conditional expectations (Durrett, 2010, Theorem 5.5.9) imply
that Eg« [Vl 00 (0) ]?’:Ol} = 0 for all ¥ € N*. Therefore, {VIlj, oo (9)}3°___ is a stationary, ergodic,
and square integrable martingale difference sequence, and {V7i - (9)}2

Jj=
Bla)(b)(g)-

, satisfies Assumption

6 Testing homogeneity

Before developing the LRT of My components, we analyze a simpler case of testing the null hy-
pothesis Hy : M = 1 against H4 : M = 2 when the data are from Hy. We assume that the
parameter space for ¥, = (p11,p22)’ takes the form [e, 1 — €]? for a small € € (0,1/2). Denote the
true parameter in the one-regime model by 97 := ((6*)’, (v*)")’. The two-regime model gives rise

to the true density py: (Y?|Yo,z0) if the parameter 9o = (61, 02,7, p11, p22)’ lies in a subset of the

11



parameter space
= {(91,92,’}/,])11,]922) S @2 : 91 = 02 = #* and v = ’y*} .

Note that (p11,pe2) is not identified under Hy.

Let £,,(¥2,&2) = log <Z§0:1p§2 (Y’f\?o,wg,mo)gg(xo» denote the two-regime log-likelihood
for a given initial distribution & (xg) € Zg, and let ¥y = arg maxyg,eco, In(V2,£2) denote the MLE
of ¥y given &, where & is suppressed from Uy because &> does not matter asymptotically. Let
U1 denote the one-regime MLE that maximizes the one-regime log-likelihood function ¢y ,,(¥1) :=
Sorqlog f(Yi|Yk—1, Wk;~,6) under the constraint 9, = (¢',7)" € ©y.

We introduce the following assumption for the consistency of J; and . Assumption (b)
corresponds to Assumption (A4) of DMR. Assumption [f|c) is a standard identification condition
for the one-regime model. Assumption d) implies that the Kullback—Leibler divergence between
por(V1 |?0 WY ) and py, (Yﬂ?O WY ) is 0 if and only if ¥ € T'*.

—m> —m?

Assumption 5. (a) ©1 and O are compact, and U is in the interior of ©1. (b) For all
(x,2') € X and all (¥,y,w) € Y* XY X W, f(¥ ¥, w;7,0) is continuous in (v,0). (c) If 91 #
0%, then Py (f(Y1Yo, Wi57,0) # f(Y1| Yo, Wi57%,6%)) > 0. (d) Eﬁf[logpﬁg(yﬂ?gmawl—m)] =
Ey: [log py; (Y1|?0 WL )] for all m > 0 if and only if 93 € T*.

—m>

The following proposition shows the consistency of the MLEs of J7 and o3 .

Proposition 6. Suppose that Assumptions[1], [3, and [J hold. Then, under the null hypothesis of
M = 1, 1§1 £> 79’{ and inngGF* ’192 — 192‘ £> 0.

Let LR,, := 2[€n(1§2, &9) —Eoyn(ﬁl)] denote the LRTS for testing Hy : My = 1 against Ha : My =
2. Following the notation of Section {4, we split ¥2 into Jo = (¢, 7), where 7 is the part of ¢ not
identified under the null hypothesis; the elements of 1 are delineated later. In the current setting,
corresponds to ¥, = (p11,p22)’. Define o := corry, , (Xi, Xp11) = pri+pe—1land a := Py, (X} =
1) = (1 —p22)/(2—p11 —p22). The parameter spaces for g and o under restriction p11,pa2 € [€,1—¢]

are given by ©, := [—1 + 2¢,1 — 2¢] and ©, := [¢,1 — €], respectively. Because the mapping from
(p11,p22) to (o, ) is one-to-one, we reparameterize 7 as m 1= (g, ) € O = O, X O, and let
Pyr () = po,(-|-). Henceforth, we suppress W¢ for notational brevity and write, for example,

Py (Y7 Y0, Wi, 20) as pyr (YT Yo, 20) and pyr (e, 21¥r_1, k-1, W) 88 Pyr (Uks Tk|Tp—1, Th—1)
when doing so does not cause confusion.

We derive the asymptotic distribution of the LRTS by applying Corollary (1| to £, (¢, 7, &) and
representing s;r and ty in in terms of ¥, f(Yx|Yr_1;7,0), and its derivatives; s, involves
higher-order derivatives, and ty consists of the functions of the polynomials of (reparameterized)
9. Section [6.1] analyzes the case when the regime-specific distribution of y; is not normal with
unknown variance. Section analyzes the case when the regime-specific distribution g is normal

with regime-specific and unknown variance. Section handles the normal distribution where

12



. . . -0
the variance is unknown and common across regimes. Note that because Y

oo
o and X are

independent when i = ¥*, we have
Py (X200 | Y Zo) = Py (X2, (7)
Define g, := I{ X}, = 1}, so that a = Ey-~[qs].

6.1 Non-normal distribution

When we apply Corollary [I] to regime switching models, s, is a function of
Vj@p*ﬂ(Yk|?§71)/ﬁw*ﬂ(Yk\?’571)’8 with Py, (Y{"[¥o) defined in (EI) In order to express
i <hk—1
ple (Lemma [I| in the appendix), we first derive the derivatives of the complete data con-
.. . _ _ 2
ditional density po, (Yk, Tk|Vi—1,Tk-1) = 905, (Uk[Ye-1,Tk)@0,, (Tk-1,2) = D5 Hap =
I Wl Te—17505) 095 (Th—1, Tk)-
Consider the following reparameterization. Let

A = O = 6> so that 1 (v (=) (8)
v ) b+ (1 —a)fy )’ 62 v —a\ .

Let n := (7/,7') and ¢ := (7, X') € ©,, x ©). Under the null hypothesis of one regime, the true

)/Toww(Yk\?g_l) in terms of V/f(y|z;~,0) via the Louis information princi-

value of 1, is given by ¥} := (7*,0*,0)". Henceforth, we suppress the subscript « from 1),. Using
this definition of 1, let ¥ := (¢, ')’ € O, x O. By using reparameterization (8) and noting that
qr = Hax, = 1}, we have pyr(Yk, Tk[Yi—1, Th-1) = 9y (Yk V-1, k) ¢r (Th—1, T%) and

9o (UK k-1, 7) = FUklYe—1:7 v + (@ — @) ). 9)

Henceforth, let f;, Vfi, g;, and Vgi denote f(Yi|Yr—1;7",6%), Vf(YilYr_1;7",6%),
G (Y| Yi—1, Xg), and Vgye (Yi|Yi—1, Xi), respectively, and similarly for log f; ,Vlog f}, log g;.
and Vlog g;. Expanding g, (Y| Yk—1, Xx) twice with respect to ¢ = (7/,2/,X')" and evaluating at
P* gives

Vg =V oy fes Vg = (@ — a)Vefy,

(10)
Ve = (@ — ) Voo i, Voanvgr = (@ — @) Voo fi.
Recall g := corrys (qk, gr+1). Observe that g, satisfies
Eo;(qr — )’ = a(l1—a), Egylgr — )’ = a(l —a)(l - 2a), (11)
|¢]

Egs (qr — )t =a(l —a)(3a® — 3a+ 1), corrys (qk, Qrte) = ol

where the first three results follow from the property of a Bernoulli random variable, and the last
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result follows from Hamilton| (1994, p. 684). Then, it follows from and that
Egelar — oY o ] =0, Eo[(gn — a)(a, = a)[Y o] = a(l =)™, >t (12)

From Lemma |1} 1og pyr (Yk, Tk [Tr_1, Th—1) = 108 gy (k[T k1, k) + 108 ¢r(2k—1, 1), and the defini-
tion of By, (Y[Yo) in @), we obtain

_ k-1
VyPyr(Ye[ Yo )

_ <k—1
Pw*ﬂ(Yks’Yo )

k k—1
= Vylog By (Vil¥0 ) = D Er [V loggi Y5 = Y Eo [Vyloggi
t=1 t=1

?’5‘1} .

Applying , , and g; = f; to the right-hand side gives

k-1 k-1
ViDyrr (Yie|Y VaDyrr(Ye|Y
ij/J ﬂ—( ]iki)l ) = V(y',e/)/ log fl;:ka jpd) 7T( ’ik_ol ) =0. (13)
Pw*w(Yk’Yo ) pw*w(YHYo )
Similarly, it follows from Lemma , , , and g; = f; that
_ k=1 _ <k—1
Vo Pyer(Yel Yo ) /Pyer(Yel Yo ) =0, (14)

_ k-1, ,_ k-1
VarxDyer(YelYo ) /Pyer (Yl Yo )

_ k-1
= Vo log Py (Y| Yo )

k k—1
- k-1
-3 Ey [VM, log g ‘YO] -3 Ey [V,\X loggt‘YO }
t=1 t=1

N zk: zk: ). [ngiﬁ Vgr,

* *
t1=1ta=1 Gt Ity

Vg, Vg,

k—1 k—1
* *
|: gtl th

Y’g] Y YR

t1=1t2=1

Y’g—l]
* k— * * * *
Voo I n Zlgkt (Veft Vo fr N Vofi Vo fi )] _

sellma) e A A

(15)

Because the first-order derivative with respect to A is identically equal to zero in , the unique

_ k-1, _ k-1 _ <k—1, ,_ k-1 .
elements of VP (Ye|Yo *)/Pyer(YelYo ) and VonDyer(Ye|Yo )/Pysr(YlYo ) constitute
the generalized score s, in Corollary This score is approximated by a stationary martingale
difference sequence, where the approximation error satisfies Assumption

/

We collect some notations. Recall ¢p = (n/, ') and n = (v/,/)". For a ¢ x 1 vector A and a

q X q matrix s, define the ¢y x 1 vectors v(\) and V(s) as
o(A) = (A2 A2 A A, A A Aads e A g A1)

s (16)

V(8) := (811/2, -+, Sqq/2: 812, - -+ s S1q> 523« + 1 52y - - - » Sqig—1) -
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Noting that (1 — «) > 0 for a € O, define, with tx\(\, 7) := (1 — a)v(N),

= e _ Vabe (GG D) (Vs
Hy,m) = (m(x,w))’%’“ - (sAgk>’Where8"k B Ye T \Vefi/fi) "

and Shok ‘= V(S)\)\gk) with

1

o —k— * k—1 * * * *
VA)\’pw*w(Yk‘YO ) - v@@’f}g n ng—t <v9ft VG/fk + VG'fk- velft ) . (18)

SA\ok = P —
TR ) Te rAn G B S roI ek

Here, s, in depends on o but not on « and corresponds to s, in Corollary (1 The follow-
ing proposition shows that the log-likelihood function is approximated by a quadratic function of
Vnt(,m). Let No := {2 € Og : [t(¢, )| < e}. Let Ape(§) :=4{0 € N : b (b, m, &) — £p(*, 7, &) >
0} and Apec(§) = Ane(§)UN,, /m, where we suppress the subscript 2 from €. We use this definition
of Apec(§) through Sections As shown in Sections and Assumption |§| does not hold

for regime switching models with a normal distribution.
Assumption 6. 0 < infyeo, Amin(Zo) < SUPyco, Amax(Zy) < 00 for Ty = limg oo By (sor8iy),
where s, is given in .
Proposition 7. Suppose Assumptions[1} [3, [{} [3 and[f hold. Then, under the null hypothesis of
M =1, (a) supg supyea,(¢) [t(¥, T)| = Ope(n™Y2); and (b) for any ¢ > 0,

Sup  sup ‘gn(wv T, E) - En(w*a T, f) - \/ﬁt(wv 7T)/I/TL(S.Qk) + nt(wa W),I.Qt(w7 ﬂ-)/2‘ = OPE(l)‘ (19)

£EE V€ Anec(§)
We proceed to derive the asymptotic distribution of the LRTS. With s, defined in (17)), define

T, := Eg« (5,15 A = lim Eyg«(s s Do := lim Eg« ()15
yl 9 ( nk nk)7 A0102 Pl s ( Ao1k )\,QQk‘)? Ano o 9 ( Aok nk)a

Ipro = Ig\nga Trnores = Lroros — I>\7791In_1177/\@2a Drno = Ianoos  Zro = (I/\-ng)_lG/\-nQa
(20)
where G, is a gx-vector mean zero Gaussian process indexed by o with cov(G.0,, Gang,) =
T nor0s- Define the set of admissible values of /na(l — a)v(A) when n — oo by v(R?) := {z €
R9 : 2 = v()\) for some A € R?}. Define #,, by

aotrg) = tkeig&q)mg(tx), Tao(tr) = (tx = Zxg) Iano(ta — Zxo)- (21)

The following proposition establishes the asymptotic null distribution of the LRTS.

Proposition 8. Suppose Assumptions (1} [3, [/} [3, and[f hold. Then, under the null hypothesis of
d ~, ~
M =1, LRy % sup e, (B, Trnobre )

In Proposition [8] the LRTS and its asymptotic distribution depend on the choice of € because
©, = [-1+4 2¢,1 — 2¢]. It is possible to develop a version of the EM test (Chen and Li, [2009;
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Chen et al., 2012; [Kasahara and Shimotsu, |2015) in this context that does not impose an explicit
restriction on the parameter space for p;1 and pos; however, we leave such an extension to future

research.

Remark 1. When applied to the Markov regime switching model, the tests of Carrasco et al.| (2014)
use the residuals from projecting Vg fi./ fi + 2 Zf:_ll U Vot ) (Vo fr] frx) on Vofi/fr, where
both are evaluated at the one-regime MLE. Therefore, in the non-normal case, the LRT and tests

of |Carrasco et al| (2014)) are based on the same score function.

6.2 Heteroscedastic normal distribution

Suppose that Y; € R in the j-th regime follows a normal distribution with regime-specific intercept
pj and variance UJQ.. We split 0; into 6; = ((j, O'JZ)/ = (uj, },032)’, and write the density of the j-th
regime as
_ _ L (ye — 1y —@(Fr-137,55)
FRlYE-137,05) = FWlYk-137, G 0f) = —¢ ( ’ = (22)
J

g O‘j

for some function w. In many applications, @ is a linear function of v and f;, e.g.,
(Y1, Wk; 7, Bj) = (F¥r_1)'Bj + wyy. Consider the following reparameterization introduced in
Kasahara and Shimotsu| (2015) (# in Kasahara and Shimotsu corresponds to ¢ here):

—a
= DIV , (23)
o1 ve + (1 —a)(2X, + Cl)\i)
o3 Vo — a(2X5 + CQ)‘Z)
where v = (v, v5)'s Ac = (A, A), C1i= —(1/3)(1 + ), and Cy = (1/3)(2 — a), so that

C1 = Cy — 1. Collect the reparameterized parameters, except for «, into one vector v,. As in

Section [6.1], we suppress the subscript « from 1,. Let the reparameterized density be

9o WklYe—1,2k) = F (Yel¥e—137, ve + (@ — @) Ae, vo + (g — @) (2X + (C2 — Qk)/\i)) . (24)

Let ¢ := (n/, X)) € ©y = 0, x 0O, where n := (v, 1/2, vy) and \ := ()‘/C’ o). Because the likelihood
function of a normal mixture model is unbounded when o; — 0 (Hartigan, 1985), we impose 0; > €,
for a small €, > 0 in ©,. We proceed to derive the derivatives of g, (Yx|Yx—1, Xx) evaluated at *.
Vogrs Vg g,;f,, and Vg7 are the same as those given in except for V A2 g, and that those with
respect to A are multiplied by 27. The higher-order derivatives of g, (Yx|Yx—1, Xx) with respect
to A, are derived by following Kasahara and Shimotsu| (2015). From Lemma |§| and the fact that
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normal density f(u,o?) satisfies

V/LQf(M? 02) = QVUQf(:u7 0-2)7 v,u?’f(:ua 02) = QV,uJQf(:u’ 02)7 and

2 2 2 (25)
v,u“f(:u’v g ) = 2v,u20'2f(:ua o ) = 4v020'2f(:ua o )a

we have
vAth:dikvuif]:, 1=1,...,4, (26)

where

dog =1, dipy=qp—a, dog:=(qx—)(Co—a), dzk:=2(qx —a)*(1l—a—q),
dag = —=2(qx — @)* + 3(qx — a)*(a — Ca).

It follows from E g« [qk\?ioo] = q, , and elementary calculation that

N w1~k .
Eys [dlk‘Y—oo] =0, Ey- [v)\ﬁgk‘Y—oo] =0, i=1,23,
Eg* [d4k‘?7100] = a(l — a)b(a), (27)
* 5k * * * 5k
Eo«[VaagilY _ ool = a1 = a)b(a)V a f. = a(1 — a)b(@)4V 252 fr = b(@)Eo+ [V a2 gp | Y~ o],

with b(a) := —(2/3)(a? — a4+ 1) < 0. Hence, Ey- [V/\gg,’g]?lioo] and Ey- [V,\ﬁgl’;\?ﬁw] are linearly
dependent.

We proceed to derive a representation of ijow*ﬂ(Yk\?g_l)/ﬁww(}/k]?g_l) in terms of V7 f}.
Repeating the calculation leading to f and using gives the following. First, and
still hold; second, the elements of V,\Xﬁd,*ﬂ(Yk]?g_l)/ﬁw*ﬁ(Yk\?g_l) except for the (1,1)-th
element are given by after adjusting that the derivative with respect to A\, must be multiplied
by 2 (e.g., By« [V, 05| Y " o] = 2V fi and Eg- [V)\U,\ug};]?zoo] = 2V,2,, fr); third,

fk—1> -

_ k-1 k—1 * *
v)\apw*w(Yk‘Yo ) a(l B a) Z Qk_t <2 Vuft vufk; ) )
ﬁqﬁ*w(Yk’YO

= T (28)

t=1

When o # 0, V)\ﬁﬁww(Yk\?g_l)/ﬁwﬂ(Ykl?g_l) is a non-degenerate random variable as in the
non-normal case. When p = 0, however, V A}z‘ﬁw*ﬂ(Yk\?g*l) /ﬁ¢*ﬂ(Yk|?§71) becomes identically
equal to 0, and indeed the first non-zero derivative with respect to A\, is the fourth derivative.
Because of this degeneracy, we derive the asymptotic distribution of the LRTS by expanding
(7, &) — £n,(Y*, m, &) four times. It is not correct, however, to simply approximate ¢, (¢, 7, &) —
Ly (Y*, 7€) by a quadratic function of /\i (and other terms) when p # 0 and a quadratic function
of )\;‘; when ¢ = 0. This results in discontinuity at ¢ = 0 and fails to provide a valid uniform
approximation. We establish a uniform approximation by expanding ¢, (¢, 7, &) four times but

expressing £, (1, 7, ) in terms of Q)\i, )\ﬁ, and other terms.
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For m > 0, define (i (0) := f:_imﬂ Qk*t*12vuffvuf,;"/ft*f,;". Then, we can write as

_ k-1 1 i .
vAﬁpw*ﬂ(Yk|YO ) . k—t V,uft V;U«fk o

— — T = Z 2 o )T oCk,0(0)- (29)
a(l - Q)Pw*w(Yk\Yo ) R—— t k

Note that (i m(0) satisfies Ey- [Ckm(g)|?]i;nl] = 0 and is non-degenerate even when p = 0. Define
v(Ag) as v(A) in but replacing A with Ag. Collect the relevant parameters as

(=
t(y,m) = <tA(A7W)> : (30)

where
0N
Mo

A2 4 b(a) Al /12
A,
AsAo
v(Ag)

with b(a) = —(2/3)(@® — a+ 1) < 0. Recall §; = (¢}, 03)" = (u;, Bj,03)'. Similarly to , define
the elements of the generalized score by

tA(A, ) = a(l —a)

* Sx,g0k  Shuook . k-1 . N N «
S I 7/ vt (Vo7 Vo ft  Voft Vo lf;
+)° + (32)
Shpuok  Shggok  Shgook | T f* e f* f* f* f* :
k t=1 t k k t
Sxopok  SAgook  SAso0k
Define the generalized score as
Cko(0)/2
25,\ng
s Vol 2s
Sk 1= w ,  where s = A/flfk/f'i and syo = Aoooh | (33)
Sxok Voaofilfi g0k
QSAﬂan
V(‘S)\ﬁﬁ@k)

The following proposition establishes a uniform approximation of the log-likelihood ratio.

Assumption 7. (a) 0 < inf,co, Amin(Z,) < SUPyeo, Amax(Zp) < 00 for T, = limy_so0 Eg- (sgks’gk),
where s, is given in (33). (b) of,05 > €5

Proposition 9. Suppose Assumptions (1], [3, [{}, [, and[7 hold and the density of the j-th regime is
given by . Then, under the null hypothesis of M =1, (a) supgea,_(¢) [t(¥, )| = Ops(n_l/Q);
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and (b) for any ¢ > 0,

sup  sup 0o (4, 7,6) — La(9F, 7, 6) — Vb (P, ) vn(50k) + 0t (10, 1) Tot (¢, ) 2] = 0pe(1). (34)
EEEVEAnc(8)

The asymptotic null distribution of the LRTS is characterized by the supremum of 2t\ G, —
thIxnotr, Where G p, and Iy ,, are defined analogously to those in but with s, defined in
, and the supremum is taken with respect to ¢y and ¢ € ©, under the constraint implied by the
limit of the set of possible values of y/nt\(\, 7) as n — oo. This constraint is given by the union of
Ai and A%\g, where gg := dim(f), ¢) := 3+ 2¢3 + qp(gs + 1)/2, and

Ay = {th = (¢
(t,(_);,l,27t[l/0'7t0'27t2-}#)l 6 R X R X R_ X Rq67tﬁg == 07 tv(ﬁ) = 0},

Wz,tw,tﬂ,tgu,tgmt;(ﬁ))/ € R9 -

2 2
A, ={tr= (twg,tug,taz,tg#,tgmt;(ﬁ))/ RNty = 0N tue = Nuhor,

to2 = )\g,tﬂu = AgAu tge = AgAa, ty(g) = vg(Ag) for some A € R“qﬁ}.

Note that Ai o depends on g, whereas A}\ does not depend on . Heuristically, A}\ and Ag\ , correspond
to the limits of the set of possible values of v/nty(\,7) when liminf, oo n'/8|\,| > 0 and \, =
o(n~1/8), respectively. When liminf, . n'/%|\,| > 0, we have (5\0,5\5) = 0,(n=%/%) because
A, ) = O,(n~'/2). Further, the set of possible values of \/ﬁg)\i converges to R because ¢ can
be arbitrarily small. Consequently, the limit of v/nt\(A, 7) is characterized by A}.

Define Z), and I ,, as in but with s, defined in . Let Zyo and Z) ;0 denote Z), and
T\ .0 evaluated at o = 0. Define t} and fg\g by

m() = . igj{l rA(A)s - TA(tr) = (= Zx0) Tano(tr — Zxo)
ASAN

ao(t3,) = . inAf2 ao(tr)s  Tao(tr) == (Ex — Zxo) Drno(ta — Zno).

A€ Ao

(36)

The following proposition establishes the asymptotic null distribution of the LRTS.

Proposition 10. Suppose that the assumptions in Proposition [ hold. Then, under the null hy-
. d - - - -
pothesis of M =1, LR,, = max{I{o = 0}(£})'Zx ,ot1, supQE@g(t?\g)’I,\_ngtig}.

Remark 2. |Qu and Zhuo| (2017) derive the asymptotic distribution of the LRTS under the restric-
tion that ¢ > € > 0.

Remark 3. [t is possible to extend our analysis to the exponential-LR type tests studied by|Andrews
and Ploberger| (1994) and|Carrasco et al.| (2014).

6.3 Homoscedastic normal distribution

Suppose that Y; € R in the j-th regime follows a normal distribution with the regime-specific
intercept y; but with common variance 2. We split v and ; into v = (7, 02)" and 6; = (u;, Bi),
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and write the density of the j-th regime as

_ - - 1 (ye — 1y — (Y137, 55
R O R et
for some function w. Consider the following reparameterization:
91 vy + (1 - CK)A
Oy | = Vg — a\ , (38)
o? Vo —a(l—a)\?

where vy = (v, 1/23)’ and A = (A, /\IB)I . Collect the reparameterized parameters, except for o, into

one vector ¢,. Suppressing « from 1, let the reparameterized density be

9o Wkl r—1 k) = f (UelFr_1:7.v0 + (@ — @)\ vo — a(l — ) A7) . (39)

Let n = (3, v, vs)'; then, the first and second derivatives of gy (yx|¥j_1,2r) with respect to n and
A are the same as those given in except for V z2 9y (Yk|Fr—1, k). We derive the higher-order
derivatives of gy (yx|¥x_1, Zk) with respect to A,. From Lemmas |§| and , we obtain

V/\nig?; = dlkvenif]j; for i = 0, 1, cee

(40)
VALg;: = dikvmf,;" fori=0,1,...,4,

where doj, := 1, dig == g — @, dog := (g — @)® — (1 — @), dai, == (g — @)® = 3(qx — @)a(1 — @),
and dyy = (qp — @)* — 6(qr — @)%a(1 — @) + 3a%(1 — a)?. Tt follows from Eg-[qx|Y " ] = o, ,

and elementary calculation that

* I~k <k .
Eg- [V, 911Y o] =0, Eg[die|Yo] =0, i=1,2, )
~~k k
Eg-[d3r|Yo] = a(l — a)(1 = 2a), Eg[ds|Yy] = a(l — a)(1 — 6a + 6a2).

Repeating the calculation leading to — and using gives the following. First, (13|
and still hold; second, the elements of V,\,\/ﬁw*w(Yk\?]g_l)/ﬁwﬂ(Ykl?g_l) are given by
except for the (1, 1)-th element; third, VA,zLﬁWW(Yk|?§71)/T)WW(Y;€|?§71) is given by . Further,
Lemma |8 in the appendix shows that when o = 0, V,\ﬁﬁw*W(Yk|?§_1)/]6¢*W(Yk\?§_l) = al —
@) (1= 20)V 0 fi /£ and VyaByer (il Yo ) /Byern (VYo ) = a1 — @)(1 — 6 + 60%)V a f/ £
Because VAﬁﬁw*,r(Yk|?§71)/79WW(Y;€|?§71) = 0 when o = 1/2 and ¢ = 0, we expand £, (¢, 7, &)
four times and express it in terms of Q/\i, (1— 2a))\i, )\ﬁ, and other terms to establish a uniform
approximation.
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Collect the relevant parameters as

2y
§ (1—2a)A}
t(y,m) = T and (A, 7m)=a(l—a) | (1-6a+ 6a2))\i . (42)
t)\()‘v 7T) )\6)\
m
v(Ag)
Define the generalized score as
Cko(0)/2
S)\3 k/3'
AV SN n
Sok 1= Sk ,  where s, = A/fli/fli and sypr = | sya/4! |, (43)
Sxok Vofilfr "
Shpp ok
V(8xs50k)

where (. (0) is defined as in , Sxik = Vi fi/fi for i = 3,4, and sy, or and s,k are
defined as in but using the density in place of . Define, with ¢z := dim(f5) and
ax =3 +4qs +qp(gs +1)/2,
A} = {ty = (th,tug,tw,t'ﬁu,t;(m)’ € RM : (tou2, tys, s, t,) € R X R X R x R 5 = 0},
2 _ . _ 2 _ _ _
A)\g T {t>\ - (tg;ﬂ,tp,?’atp,‘lat,ﬁuytrlu(ﬂ))/ S RQ)\ . tgu2 = Q)\#, tMB = t//'4 = O7tﬂﬂ = )\B)\l“
ty(8) = vp(Ag) for some A € RIt9sY,
(44)

The following two propositions correspond to Propositions [0] and establishing a uniform

approximation of the log-likelihood ratio and asymptotic distribution of the LRTS.

Assumption 8. 0 < infyco, Amin(Zp) < SUPyeo, Amax(Z,) < 00 for I, = limg_,o0 Eﬁ*(sgks’gk),

where s,y is given in .

Proposition 11. Suppose Assumptions[1],[3, [4, [3, and[§ hold and the density of the j-th regime is

given by (37). Then, statements (a) and (b) of Proposition[d hold.

Proposition 12. Suppose that the assumptions in Proposition hold. Then, under the null
. d - - . - .

hypothesis of M =1, LR,, — max{I{p = 0}(t}\)’I>\,not}\,supge@Q(fig)’IA.wtig}, where t} and t?\g

are defined as in @) but in terms of (Zxg, Inno> Zx0s Iano) constructed with s, defined in

and A%\ and Aig defined in .

7 Testing Hy: M = M, against Hy : M = My + 1 for My > 2

In this section, we derive the asymptotic distribution of the LRTS for testing the null hypothesis
of My regimes against the alternative of My + 1 regimes for general My > 2. We suppress the
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covariate W2 unless confusion might arise.

Let 0%, = ((Vy,.)" (Vig,,)") denote the parameter of the Mo-regime model, where 93,
contains pj; = qg%yz(i,j) > 0 for i = 1,...,Mp and j = 1,...,Mp — 1, and ¥} ,
((07), .5 (0hg,)s (7)) We assume max; Z;-V[:Ol_l pi; < land 07 < ... < 0y, for identification.
The true My-regime conditional density of Y7 given Y and zg is

n
poy,, (Y11Y0,20) = > HPﬁ’MO(kaH?k—l,wk—l), (45)

xpeXyy k=1

where pos, (Yr, Tk|Yi-1:Tk-1) = 9oy, (Uk|Tb-1, k)03, (Tr-1,2k) with gor  (yk|Vie_1,2%) =
>t ovto Hoe = 71 (WelYr-157,65)-
Let the conditional density of Y} of an (Mj + 1)-regime model be

n
Pory s (YUY 0,m0) 1= D> [ Posger Yoo 2k Vo1, 201), (46)
X EX L) k=1

where pﬁM0+1(yk,wk]?k_1,mk,1) is defined similarly to P, (Ys T| Y1, Tho—1) With Vo412 =
{pijti=1,..Mo+15=1,.M0 and Dngopry = (01,00 41,7")"
some € € (0,1/2).

Write the null hypothesis as Hy = Un]\f(’:lHOm with

We assume that min; ; p;; > € for

H0m191<"'<0m:‘9m+1<"'<‘9M0+1-

Define the set of values of ¥y, +1 that yields the true density under ]P’197\40 as Y = {Ipp41 €
OMy+1,e : p§M0+1(Y711|Y07'T0) = Doy, (YTYo,zo0) szlo—a.s.}. Under Hyy,, the (My + 1)-regime
model generates the true My-regime density if 0, = 041 = 0, and the transition matrix
of X} reduces to that of the true My-regime model.

We reparameterize the transition probability of X} by writing Uaz+1. as Uarg+1,0 = (9 s o)
where ¥, is point identified under Hy,,, while 7., is not point identified under Hy,,. The
transition probability of X} under ¥z4+1,, equals the transition probability of X under 79}“\40@ if
and only if ¥4, = U%,,. The detailed derivation including the definition of ¥}, is provided in

Section [11.2.5]in the appendix. Define the subset of T* that corresponds to Hy,, as

T:;z = {79M0+1 S @Mo-‘rl : 9j 29; for 1 <gj<mg 9m=9m+1 29;‘;1;
;=07 for h+1<j<Mo+1; v=2" om =0} };

then, T* =7T7U---UT}, holds.
For M = Mo, Mo + 1, let £,(9ar,€0r) = log (Z%:wm (Y?Wo,xo)gM(xo)) denote the M-
regime log-likelihood for a given initial distribution {yr(xg) € Zpr. We treat pr(xo) as fixed. Let

I = arg maxy,,; e, Cn(Uny, Enry) and Upgo41 = arg maxy,, ., €Oy, 11 Cn(Unig+1,Emy+1)- The
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following proposition shows that the MLE is consistent in the sense that the distance between
) Mo+1 and T* tends to 0 in probability. The proof of Proposition [13|is essentially the same as the

proof of Proposition [ and hence is omitted.

Assumption 9. (a) Oy, and Opg 41 are compact, and Uy is in the interior of ©pg. (b) For
all (z,2') € X and all (y,y,w) € Y* x Y xW, f({|yo,w;7,0) is continuous in (v,0). (c)

—0 -0 . .
Eos, [og(poy, V1Y, WL, = Egy, [logpg;, (V1[Y_,,, WL,)] for all m > 0 if and only if

* 9 A
19M0 = 19M0' (d) Eg}«wo [log(plgMOH (Y1|Y_m, ng)} = Eﬁ?\/fo [logpﬁ% (Yi|Y_m, Wl_m)] fO’/“ all m >0

if and only if Vpr41 € T,

Proposition 13. Suppose Assumptions [1, [3, and [ hold. Then, under the null hypothesis of
M = My, Orsy B 9}y, and infg,, . ex= [Ono41 — Oapr1| 2 0.

Let LRasy.n = 2[ln(Onto+1,Ertgr1) — ln(Dnsy, 0, )] denote the LRTS for testing Ho : M = My
against Hy : M = My+1. We proceed to derive the asymptotic distribution of the LRTS by analyz-
ing the behavior of the LRTS when 9,41 € Y, for each m. Define J,,, := {m, m+1}. Observe that
if X¥ € J¥ then X¥ follows a two-state Markov chain on .J,,, whose transition probability is char-
acterized by ., = IP’ngO“(Xk =m|Xy € Jp) and gy, := corrgMoﬂ(Xk_l,Xk\(Xk_l,Xk) € J2).
Collect reparameterized Ty, into Tem := (0m, Qm, @), where ¢,,, does not affect the transition
probability of X’f when X’f € Jk . See Section in the appendix for the detailed derivation.

Define q; := I{X} = j}; then, we can write o, and 0, as o, = EﬂMOH(ka|Xk € Jm)
and o, = corry,, 1 (@e—1,m Qe (Xp—1, X)) € J2). Because ?iooo provides no information for
distinguishing between X = m and X = m + 1 if 0,, = 0,,,41, we can write a,, and g, as

am = Eoy o (@em| X € Jm, Yoo ) and g = corrgy o (@h—1.m, @hm| (Xi—1, X&) € J7, Yoo ).
(47)

7.1 Non-normal distribution

For non-normal component distributions, consider the following reparameterization similar to :

Om \ [V + (1 —am)An
Om+1 - Vm = QmAm ‘

Collect the reparameterized identified parameters into one vector ¢, = (n),, A,,)’, where 7, =
(', {5 ;”:EI, Vs {0 }é\iontb, ¥..), so that the reparameterized (Mg+1)-regime log-likelihood func-

tion is o (Vin, Tam, Entg+1)- Let ¥, = (07, Ar,) = ((934,)',0")" denote the value of 1, under Hopy,.

Define the reparameterized conditional density of yj as

G WIT k1> %) = Tk € T} f Wkl Fm13 7 Vi + (@om — 0m)Am) + Y i f WrlFe—157,05),
J€Im
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where Jp, := {1,..., Mo+ 1} \ Jp. Let f*, denote f(Yi|Yk—1;7%,6;,). It follows from and

the law of iterated expectations that

H{Xk € Jm}(ka - am)
Gy, Vel Yi—1, Xi)

=Eo;,. [Eﬂ*MO [q’“m:am‘){k € Jm,?ﬁm] {X; € Jm}‘yﬁm} — 0,
mk

—00

E,&?\/fo

i

X4, € Jn}{ Xty € T} (@ryh — @) (@rsh — Q) | 18

Eﬁ?\/l v N Y—oo ( )

0 g'l/);@(}/tl|Yt1—17th)gw;"n(yvtletQ—lath)

t1h — Om )\ Gtoh —
~ By, [Eay, | M =) gt € gt 7| (X X) € 2T
mty1J mito

A (1 — ) pf271 —

= m( * TZ)Qm PﬁRIO(<Xt17Xt2) € ‘]rzn,’YTioo)7 ty > 1,
mtyJ mio

where the second equality holds because gwn(Yk|?k_1, Xi) = [ if Xi € Jp,, and the last equality
holds because, conditional on {XE € J-thtl Y"1 Xif is a two-state stationary Markov process

with parameter (a,, 0m)-
_ ~ _ ~~k—1
Let gg.» 455> and pp;, denote gﬁifo’ll(ykan‘kalvkal)a @03y (Xk—1,Xk), and Py;,. (Yi|Yy ).

Let Vg, denote the derivative of 9o, y(Yk,Xk.]?k 1,X/r€ 1) evaluated at 19}‘\4 o and define Vgg,

and Vpg, similarly. Repeating a derivation similar to . ) but using in place of (| ., we

obtain
—k—1

_ <k—1, _
Vnmpqp:nw(yk\Yo )/pwn (YelYq )

k k—1
N % %\ |~ok—1
= ZEW |:v191\40 10%(90t(10t)‘Y0] - ZEW |:v"9M0 log(90:90¢) } (49)
=1
_ —k-1, ,_ k 1
= Vo, Py, YelYo )/Poy, (YalYo ),
_ k-1, ,_ —k—1 _ k-1, ,_ k-1
Vo Pyza Vel Yo ) /Pyr=(YelYo ) =0, YV Pys = (Yel Yo 7 )/Pys (Ve[ Yo ) =0, (50)
—k—1
\V4 ' Y. .lY \v4 _
A/ Pz 7 ( :| 1o ):am(l—am) 00’ fm Ep,, (XkGJm|Y§)
Dys = (Ye|Yy ) mk
k 1
Ve \V4 / _
+ o (1 ok t<v9fmt 0 Funt | VoJm Vo fmt)]?* (Xy, Xi) € JA[YD).  (51)
t:l mt mk mk mt

Define ¢ := (01, ..., 0n,), define tx (A, T as tx (A, 7) in by replacing (A, ) with (A, 7)),
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and let

1
_ k-1 SXotk
T ="\ . Sk Vi P (Ve[ Yo ) 2
t(m, Tm) = y ek = | , where 5, := T Sagk =
tA(Am, Tm) Sxgk Pys = (Ye|Yo ) Mo
Sxoary k
(52)
and s, . 1= V(s}y,, x), Where s¥}, ; is defined similarly to as
Voo [, —
SXhgmk = f* mkP (Xk € Jm|Yy)
(53)

Vv Ve Vofr. Vo fr Y,
+Z k— t< Gfmt efmk+ Gfmk 9fmt>P19}fVIO((Xt,Xk)eJrgn’Ylg)'

* * *
mk fmk mt

Similarly to , define

R s o T ~/ e T ~ ~
Iﬂ = Eﬂ}*uo (sﬁksnk)’ I/\,_5192 hm Et?* (Sz\élks)\@k)? I/\ﬁé T khargo EﬁTMO (Skéksnk)’
T T T T B Tm ,_ m m I
Iy = I)ny@’ Dingizs = Iroros — INHAI In>\.92’ I)\.ngm = Eﬁ}‘% [Gk.ngm( )\.ngm) I, (54)
m ._ (Tm —1,m
ZXom = ( >\~77L7m) Gk-n@m’

where G5 = (G} 7791)/ . (G%’m )')" is an Mygy-vector mean zero Gaussian process with
cov(Grnsy> Gangs) = IA.n91§2~ Note that G corresponds to the residuals from projecting 5y

on 5p. Define f’/’\”gm by

Bom Bo) =, IE 98, (1), 9o, (02) 2= (0 = Z55,) Tl (13 = 285,,)-
The following proposition gives the asymptotic null distribution of the LRTS. Under the stated
assumptions, the log-likelihood function permits a quadratic approximation in the neighborhood
of Y7, similar to the one in Proposition [7] Define A (£) := {Ury11 € Onpt1 : {ln(Vm, Tm, &) —
(d}m,wm,f) > 0} A [t(Ym, Tm)| < €} UN,/ m. Under Ho : M = My, for any ¢ > 0, for m =
., Mo, and uniformly in £ € = and Jpg,41 € Apee(€),

gn(wmﬂrmag) - en(w;kmﬂ'maf) - \/ﬁt(lbmaﬂm)lyn(sgmk) + nt(wm77rm),zgmt(wm77rm)/2 = 0p€(1)>

where s,k = (8. (sX,, 1)) and Z,,, = limy_oo By, (SomkS}, 1) Consequently, the LRTS is
asymptotically distributed as the maximum of the My random variables, each of which represents
the asymptotic distribution of the LRTS that tests Hy,,. Denote the parameter space for g,, by
Q,,, and let ©,:=0,, x ... x O

oMg

Assumption 10. 0 < inféeég /\min(ié) < Supsep, Amax(Z5) < oo for fé = limyg_y00 Eﬁ}k\lo (§§k§’§k),

where Sgk 18 guven in
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Proposition 14. Suppose Assumptions [1, [3, [} [9 and [IQ hold. Then, under Hy : M = My,

d m \Tm m
LRy — MaXyn—1.... M, SUD,,, com (t/\gm)I)\_Wmt)\Qm .

7.2 Heteroscedastic normal distribution

As in Section [6.2], we assume that Y; € R in the j-th regime follows a normal distribution with
the regime-specific intercept and variance of which density is given by . Consider the following
reparameterization similar to :

Cm Vem + (1 — am) Aem
Cmt1 | Vem — OmAem

o2, || Yemt (1= am)@om +C1A2,) |
0-1%7,+1 Vom — Ozm(2)\gm + CQ)\Zm)

where vem = (U, v5)'s Aem = (A, Ay)’s C1i= —(1/3)(1 + am), and O := (1/3)(2 — ). As
in Section we collect the reparameterized identified parameters into ¥y, := (n,,, \,,)’, where

m—1

M = (F AOYTSY Vs Voms 4053220005, 00,) and Ay o= (e Agm)'- Similar to (24), define the
reparameterized conditional density of y; as

G WRlT k15 78) = Y Qi F(UklT-1:7,6;)
Jj€Im
+ H{xk € Jm}f (yk|yk71; Y Vem + (ka - am))\Cm, Vom + (ka - am)(Q)\am + (CQ - ka))‘im)) .
Let g% 1, fis Vi, and V£ denote gy (Y| Yi-1, Xi), F(Ye|Yi-137",05), Vagr (YY1, Xi),

and Vf(Ye|Yr_1;7*, 0%,). From and a derivation similar to , we obtain the following result
that corresponds to in testing homogeneity:

* * 7k .
Es;,. [V)\ﬁmgmk/gmk‘Y_oo} —0, i=1,2,3
* x  |xFF * * 5k
Eos,, [v)\ﬁmgmk/gmk‘Y—oo} = am(1 = am)b(am) (Vs frk/ Fe) Py, (Xk € Jm|Y o) (55)

* * 5k
= b(am)Eg% [VAgmgmk/gmk‘Y—oo} :

Repeating the calculation leading to f and using (55)) gives the following. First, and
still hold; second, the elements of VAm,\gnﬁw*,r(Yk]?gfl)/ﬁwﬂ(Yﬂ?gfl) except for the (1, 1)-th
element are given by while adjusting the derivative with respect to A\, by multiplying by 2;
third,

k-1
Viz, Pys (Ve[ Yo ) - Vitme Vuly Y
nm m T — — Oém(l _ am) an_t <2}l;fmfl:f’mk> Pﬁ}‘\/j ((Xt;Xk‘) € J’r2n|Y0)
— 0
Py« (Yk ’YO ) —1 mt mk

For m > 0, define C}??m(Qm) = Z?:_im+1 an_t_12(vuf:ntvuf;k/f:ntf:nk)]?ﬁ&o((Xtan) €
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an\?g) Similarly to , define the elements of the generalized score as

* s sV
Ausomk Apoomk V@@ f —k
SN pomk  SNsgomk  SAseomk | km Pyx (Xk; € Jm|Yy)
m
S’Kfruka S’S‘nﬁogmk Sg\nc;agmk (56)
Volmi Vo fre Nofr. Vo fr <k
k—t 0Jmt Vo 0Jmk VO t 2
+ Z < itk ek =t Pye (X, X) € | Y)-
mt mk mk mit

Similarly to , define 55 as in by redefining SNk 111 as

/
S)\ka - (Ck’ﬂ(gm)/2 28)\ scomk 28)\aggmk,‘ (S’K;H‘kaj)/ 2(87)\”;309”1]{;), V(Sg\nﬁﬂghk),> . (57)

Define Ig?n om and Z)’\’Em as in with s’ffgmk defined in . Let Z} and I}fno denote Z)’\’Em

and evaluated at g, = 0. Define Ai as in , and define A?\gm as in by re-

Ao
placmNg o with g,,. Similar to , define 7" and tf\”fm by ra(fl) = inf;, a1 ¥ (tx) and
P (B2) = infy ey 13 (t2), where 1(t) 1= (tx — Z5)T(tn — Z53) and 1§ () i=
(t/\ - Z)7\r2) )/I;\nngm( AT Z)?Z;m)

The following proposition establishes the asymptotic null distribution of the LRTS. As in the
non-normal case, the LRTS is asymptotically distributed as the maximum of the M, random

variables.
Assumption 11. Assumptz’on holds when 55, 1 is given in .

Proposition 15. Suppose Assumptions (1}, (3, [{} [, and[I1] hold and the component density of the
j-th regime is given by Then, under Hy : m = My, LRy, n S maxm=1,... M, {max{I{o, =
N T 500y, g (32, T B2

7.3 Homoscedastic normal distribution

As in Section we assume that Y3, € R in the j-th regime follows a normal distribution with the
regime-specific intercept and common variance whose density is given by .

The asymptotic distribution of the LRTS is derived by using a reparameterization

Om, Vom + (1 — am)Am
0m+1 = Vom — am)‘m )
o? Vom — (1 — am) A2,

similar to and following the derivation in Sections and For brevity, we omit the details
of the derivation. Define s%} omk 85 1D , and denote each element of s} omk 85

m
gm B * SAMBka
Aomk — s s™m :
Agpomk  “Aggomk
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Similarly to , define 55 as in by redefining SNk 111 as

/
S = (ggo(gm)/z ST /3l S/l (ST ) v(sg;ﬁgk)/) 7 (58)
where 57 = P%O(XkeJm|7§)Vuif(Yk|?k—1;7*»9%)/f(yk|?k—1;7*,9;%) for i = 3,4.

The following proposition establishes the asymptotic null distribution of the LRTS.
Assumption 12. Assumption holds when sz 1 s given in @

Proposition 16. Suppose Assumptions (1], [3, [{} [, and[I3 hold and the component density of the
J-th regime is given by (37). Then, under Hy : m = My, LRy, n 4 maxy=1,... M, {max{I{o, =
O}(le)’I;’?nole, Supgme@gme(f%%n)’I;’?ngmeg%n}}, where 71 and f’/{ﬁn are defined as in Proposition
but in terms of (Z/(’;m,Iffwm, Z%,I’A’fno) constructed with sy, . given in @) and A}\ and Aigm

defined as in but replacing o with om,.

8 Asymptotic distribution under local alternatives

In this section, we derive the asymptotic distribution of our LRTS under local alternatives. While
we focus on the case of testing Hy : M = 1 against Hy : M = 2, it is straightforward to extend the
analysis to the case of testing Hy : M = My against H4 : M = My + 1 for My > 2.

Given m € O, we define a local parameter h := /nt(, ), so that

b () (V=)
h NNV A
where t)(A,7) differs across the different models and is given by , , and . Given

h = (hy,h}) and 7 € O, we consider the sequence of contiguous local alternatives 9, = (¢}, ;)" =
(s A, m,) € ©p X Oy X O such that

hy = vVn(mn —n%),  hy = vVnta(An, m) +0o(1), and m, — 7 = o(1). (59)

Let Pg’xo be the probability measure on {Y};}}_, under ¢ conditional on the value of Yy, Xo,
and W7{. Then, the log-likelihood ratio is given by

n

d
log — Um0 = Kn(wmﬂ'na -TO) - Zn(i/)*,ﬂ', 1:0) = log <

Zx’f HZ:l fk’(nna )\n)qﬂ'n (xk—la .',Uk;)
[Tr= f(n*,0) ’

where fi(n,\) is defined by the right-hand side of @D, , and for the models of the non-
normal distribution, heteroscedastic normal distribution, and homoscedastic normal distribution,
respectively. The following result follows from Le Cam’s first and third lemmas and facilitates the
derivation of the asymptotic distribution of the LRTS under P’

Yn,@0°
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Proposition 17. Suppose that the assumptions of Propositions [, [9, and[11] hold for the models
of the non-normal, heteroscedastic normal, and homoscedastic normal distributions, respectively.
zo» and (b) under
Py, 4,0 we have log(dIP’:,?n xo/dIPm* xo) = hvp(sgk) — %h’IQh + 0p(1) with vy (Se,k) S N(Z,h,Z,).

Then, uniformly in o € X, (a) Pgnm 1s mutually contiguous with respect to P4,

8.1 Non-normal distribution

For the non-normal distribution, the sequence of contiguous local alternatives is given by A, =
A/n'/* because then hy = v/na(l—a)v(A,) = a(1—a)v(X) holds. The following proposition derives
the asymptotic distribution of the LRTS for the non-normal distribution under Hyy, : (75, 7n, An) =
(7,7, A/n/%).

Proposition 18. Suppose that the assumptions of Proposition [§ hold. For @ € O, and

X # 0, define hy = a(l — a)v(\). Then, under Hi, : (Tn, s An) = (7,75, \/n'/*%), we have
LR, 4 supgeeg(ngh)’IA.nnggh, where tN)\Qh s defined as in but replacing Zy, in with
(I)\.ng)_lG)\.ng + h)\-

8.2 Heteroscedastic normal distribution

For the model with the heteroscedastic normal distribution, the sequences of contiguous local
alternatives characterized by include the local alternatives of order n=1/5.

Proposition 19. Suppose that the assumptions of Proposition hold for model (@ For g €
(=1,1), @€ (0,1), and X := (Au, Ay, Ap) # (0,0,0)', let

Hiln : (an Qn, Tin, )\um Aons )\ﬁn) = (@/n1/4a Q, 77*7 S‘u/nl/sa j\o/nB/S’ ;\B/nS/S)v
L, A/t N /nt Mg ),

sl

H{)n : (Qnaana"?m )\um)\cma )\,Bn) = (

and define

hS s =a(l — @) x (8X5, Auda, b(@)N,/12, X5, 0,0),
WY o= a(l — @) x (8M%, Audos A2, XA, MgAo, v(Ag)').

Then, forj € {a,b}, under an, we have LRy, % max{I{p = 0}(6\]}‘1)7/\470%\%’ supgegg(iii,h)’l',\,wfiih},
where fijh and tg\éh are defined as in but replacing Zy, with (IA.WQ)_IGA.W + hi.

In the local alternative HY,, o, converges to 0, and \,, converges to 0 at a slower rate than
n~1/4. Our test has non-trivial power against these local alternatives in the neighborhood of ¢ = 0.
By contrast, the test of Carrasco et al. (2014) does not have power against the local alternatives in
the neighborhood of ¢ = 0, as discussed in Section 5 of |Carrasco et al.| (2014]). The test proposed
by |Qu and Zhuo, (2017) assumes that g is bounded away from zero and hence their test rules out
HY.
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8.3 Homoscedastic normal distribution

The local alternatives for the model with the homoscedastic distribution also include those of order
n~1/8 in the neighborhood of ¢ = 0.

Proposition 20. Suppose that the assumptions of Proposition hold for model . For p €
(=1,1), @ € (0,1), Aq #0, and X := (A, 5\/’3)’ # (0,0)', let

an : (Qny Qn,y Tin, )\;mv )\Bn) = (@/n1/47 1/2 + A(34/711/87 77*7 S\,u/nl/8a 5\,8/77/3/8)7
H{)n : (anananm}‘um}\ﬁn) = (@@,77*75\u/n1/475\5/n1/4)7

and define h§ := (1/4) ><~(@5\i, Aa;\i, — X4 /2, N5A0,0) and bY := a(1—a) x (812, 0,0, ;\%5\,“ Q(Xg)/)’.
For j = {a,b}, define ti]h and f?\Jgh as in but replacing Zx, with (Tx.ne)  Ganp + ), where
Tx.no and G, are constructed with s,y defined in , and Ai and Aig are defined in @) Then,
under HY_ , we have LR, max{I{p = 0}(5}\%)’1}\,”0%\]}” supge@g(ﬁéh)’l)\.wfiﬁ)h}.

1n>

9 Parametric bootstrap

We consider the following parametric bootstrap to obtain the bootstrap critical value ¢, p and
bootstrap p-value of our LRTS for testing Hy : M = My against Hq : M = My + 1.

1. Using the observed data, compute '@MO, 7§M0+1, and LRy, p-

2. Given 9 M, and &y, generate B independent samples {Y?, ... Y;? }{)3:1 under Hy with ¥y, =

0] M, conditional on the observed value of Y, and Wi.

3. For each simulated sam;zle {ka}zzl with <?AO’W111)’ estimate 195’\40 and 1%’\40 41 as in Step 1,
and let LRy, = 2[00 (0% 115 Enor1) = La(Phy, . Ensp)] for b=1,..., B.

4. Let cop be the (1 — a) quantile of {LRS’\/[Om}f:l, and define the bootstrap p-value as
B2 {LRY, > LRy}

The following proposition shows the consistency of the bootstrap critical values ¢, p for testing
Hy : My = 1. We omit the result for testing Hy : My > 2; it is straightforward to extend the

analysis to the case for My > 2 with more tedious notations.

Proposition 21. Suppose that the assumptions of Propositions [, [9, and [I1] hold for the models
of the non-normal, heteroscedastic normal, and homoscedastic normal distributions, respectively.
Then, the bootstrap critical values co, g converge to the asymptotic critical values in probability as
n and B go to infinity under Hy and under the local alternatives described in Propositions
and [20.
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10 Simulations and empirical application

10.1 Simulations

We consider the following two models:

Model 1: Yy = px, +BYs—1 +¢€x, €~ N(0,07), (60)
Model 2: Yy = pix, + BYi1 +e, e ~ N(0,0%,), (61)

where X, € {1,..., M} with p;; = p(Xy = i|Xk—1 = j). Model 1 in is similar to the model
used in|Cho and White| (2007)). This model has a switching intercept but the variance parameter o
does not switch across regimes. In Model 2 in , both the intercept and the variance parameters
switch across regimes.

We compare the size and power property of our bootstrap LRT and that of the QLR test
of |(Cho and White| (2007) with ©, = [-2,2] and the supTS test of Carrasco et al. (2014) with
p € [—0.9.0.9]. The critical values are computed by bootstrap with B = 199 bootstrap samples.
Note that this comparison favors the LRT over the supTS test because the supTS test is designed
to detect general parameter variation including Markov chain.

In Model 2, we set the lower bound of o as ¢, = 0.016, where & is the estimate of o from
one-regime model. We also find that adding a penalty term to the log-likelihood function improves
the finite sample property of the LRT. The penalty term prevents o; from taking an extremely
small value and takes the form —a, Zj]\il{ﬁz/a]? + log(a]?/(}Q) —1}. We set a, = 20n""2 and
compute the test statistic using the log-likelihood function without the penalty term. Because the
penalty term and its derivatives are o,(1) from the compactness of ©,, adding this penalty term
does not affect the consistency of the MLE or the asymptotic distribution of the LRTS.

We first examine the rejection frequency of Hy : M = 1 against H4 : M = 2 when the data are
generated by Ho : M = 1 with (8, 1, 0) = (0.5,0,1). The first panel in Table[I|reports the rejection
frequency of the bootstrap tests at the nominal 10%, 5%, and 1% levels over 3000 replications with
n = 200 and 500. Overall, all the tests have good sizes.

Table [2] reports the power of the three tests for testing the null hypothesis of M = 1 at the
nominal level of 5%. We generate 3000 data sets for n = 500 under the alternative hypothesis of
M = 2 by setting p; = 0.2,0.6, and 1.0 and g = —pq, while (p11,p22) = (0.25,0.25), (0.50,0.50),
(0.70,0.70), and (0.90,0.90). We set o = 1 for Model 1 and (01,02) = (1.1,0.9) for Model 2.
For Model 1, the power of all the tests increases as p; increases except for the supTS test with
(p11,p22) = (0.9,0.9). As (p11,p22) moves away from (0.5,0.5), the power of the LRT increases,
whereas the QLRT has decreasing power. The LRT performs better than the supTS and QLR tests
except for the case with (p11, p2e) = (0.25,0.25), where the supTS test performs very well, and the
case with (p11,p22) = (0.5,0.5), where the QLRT outperforms the LRT, because the true model is
a finite mixture in this case. The last three columns of Table [2| report the power of the LRT and
supTS test to detect alternative models with switching variances (i.e., Model 2 with M = 2). We
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did not examine the power of the QLRT because this test assumes non-switching variance. The
LRT has stronger power than the supTS test in most cases.

The second panel in Table [l reports the rejection frequency of the LRT for testing Hy : M = 2
against Hy : M = 3 when the data are generated under the null hypothesis, showing its good size
property, while neither the QLRT nor the supTS test is applicable for testing Hy : M = 2 against
Hy: M =3.

Table [3| reports the power of our LRT for testing the null hypothesis of M = 2 at the nominal
level of 5%. We generate 3000 data sets for n = 500 under the alternative hypothesis of M = 3
across different values of (p1, p2, 13) and (pi1, p22, p33) with p;; = (1 — py)/2 for j # i, where we
set (8,0) = (0.5,1.0) for Model 1 and (53, 01,02) = (0.5,0.9,1.2) for Model 2. Similar to the case
of Hy : M = 1, the power of the LRT for testing Hy : M = 2 against H4 : M = 3 increases when

the alternative is further away from Hy or when latent regimes become more persistent.

10.2 Empirical example

Using U.S. GDP per capita quarterly growth rate data from 1960Q1 to 2014Q4, we estimate the
regime switching models with common variance (i.e., Model 1 in (60))) and with switching variances
(i.e., Model 2 in ) for M =1, 2, 3, and 4 and sequentially test the null hypothesis of M = M
against the alternative hypothesis M = My+1 for My =1, 2, 3, and 4E| We also report the Akaike
information criteria (AIC) and Bayesian information criteria (BIC) for reference, although, to our
best knowledge, the consistency of the AIC and BIC for selecting the number of regimes has not
been established in the literature.

Table [5| reports the selected number of regimes by the AIC, BIC, and LRT. For Model
with common variance, our LRT selects M = 4, while the AIC and BIC select M = 3 and M =1,
respectively. For Model with switching variance, both the LRT and the AIC select M = 3,
while the BIC selects M = 2.

Panel A of Table [4] and Figure [I] report the parameter estimates and posterior probabilities of
being in each regime for the model with common variance for M = 2, 3, and 4. Across the different
specifications in M, the estimated values of w1, us,...,un are well separated in the common
variance model, indicating that each regime represents a booming or recession period with different
degrees. In Figure[l] when the number of regimes is specified as M = 2, the posterior probability of
the “recession” regime (Regime 1) against that of the “booming” regime (Regime 2) sharply rises
during the collapse of Lehman Brothers in 2008 and then declines after 2009. When the number of
regimes is specified as M = 3, in addition to the “recession” and “booming” regimes corresponding
to Regimes 1 and 2, respectively, the regime with a rapid change in the growth rates from low to
high is captured by Regime 3; for the model with M = 3 in Figure [1} the posterior probability of

Regime 3 rises in late 2009 when the U.S. economy started to recover from the Lehman collapse.

9For both models, we restrict the parameter values for the transition probabilities by setting e = 0.05 to prevent
the issue of unbounded likelihood.
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When the number of regimes is specified as M = 4, Regime 1 now captures a rapid change in the
growth rates from high to low, where the posterior probability of Regime 1 becomes high when the
growth rate of the U.S. economy rapidly declined in the middle of the Lehman collapse. The LRT
selects the model with four regimes, which capture the rapid changes in the growth rates of U.S.
GDP per capita during the Lehman collapse period.

Panel B of Table [4] and Figure [2| report the parameter estimates and posterior probabilities of
being in each regime for the model with switching variance, respectively. When the number of
regimes is specified as M = 2, the variance parameter estimates are very different between the two
regimes, while the intercept estimates are similar, indicating that Regime 1 is the “low volatility”
regime, while Regime 2 is the “high volatility” regime. When the number of regimes is specified
as M = 3, different regimes capture different states of the U.S. economy in terms of both growth
rates and Volatilitiesm Regime 1 is characterized by the negative value of the intercept with high
volatility, capturing a recession period. Regime 2 is characterized by the positive value of the
intercept with low volatility, capturing a booming/stable economy. Regime 3 is characterized by a
high value of the intercept and high variance, capturing both a rapid recovery in the growth rates
and high volatility in the aftermath of the Lehman collapse in 2009. The LRT selects the model

with three regimes when the model is specified with switching variance.

11 Appendix

Henceforth, for notational brevity, we suppress W from the conditioning variables and conditional

densities when doing so does not cause confusion.

11.1 Proof of propositions and corollaries

Proof of Proposition[I The proof is essentially identical to the proof of Lemma 2 in DMR. There-
fore, the details are omitted. The only difference from DMR is (i) we do not impose Assumption
(A2) of DMR, but this does not affect the proof because Assumption (A2) is not used in the proof
of Lemma 2 in DMR, and (ii) we have W, but our Lemma [1](a) extends Corollary 1 of DMR to
accommodate the Wj’s. Consequently, the argument of the proof of DMR goes through. 0

Proof of Proposition[3 Define hykz, := \/lykz, — 1. By using the Taylor expansion of 2log(1+z) =
22 — x2(1 + o(1)) for small x, we have, uniformly in 2o € X and ¥ € Ny

(Y, m,x0) — L (V™ m0) = 2 Z log(1 + hoka,) = nPn(2hgks, — [1 + Op(l)]hl%kxo)' (62)
k=1

10We may test the null hypothesis of o1 = g2 = o3 in the model with switching variance given M = 3 by the
standard LRT with the critical value obtained from the chi-square distribution with two degrees of freedom. With
LRTS =2 x (—297.01 + 307.39) = 20.76, the null hypothesis of 01 = o2 = o3 is rejected at the 1% significance level,
suggesting that the model with switching variance is more appropriate than the model with common variance.
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The stated result holds if we show that

sup  sup ‘nP hﬁkxo) ntigI,Ttg/4| =o0,(1) and (63)
zo€X VEN, ) /m

sup  sup  [nPy(hokze) — Vntigvn(Spk)/2 + ntyLitly /8| = op(1), (64)
rgEX ﬂENC/f

because then the right-hand side of is equal to /ntlyv,(srk) — teZatl/2 + 0p(1) uniformly in
X0 EX&HdﬁENC/\/E.
We first show . Let myy 1= tlysxi + ryk, so that lygg, — 1 = Mgk + Ugks,. Observe that

= S t = 1 65
1g§g%ﬁei??J7hnwkl 12%2206A?€¢5|05wk‘FTﬁk| op(1), (65)

from Assumptions (a) and (c) and Lemma Write 4Pn(h129kz0) as
A(lokay — 1) 5 5 (Vlokao +3)
4P, (h310) = Pp | — 20 2 | = Pu(lykey — 1)* = Pu | (Lokzg — 1) 66
(ﬁko) <(\/119Txo+1)2 (ﬂko ) (19760 M—i—l ( )
It follows from Assumptions (a)(b)(c)(e)(f) and (E|XY|)? < E|X|?E|Y|? that, uniformly in ¥ €
Ne,

Pr(lokay—1)? = ty Po(sxkshp ) to+2t Polsrk (ror+tokag )|+ Pr(rok+wokze)® = tyPo(Sxkshy)to+Conao,

(67)
where (g, satisfies sup,ex [Conao| = Op(|to[*|¥ — ¥*[) + Op(n ™ [tal|t) — 9*|) + Op(n =3 — * ).
Then, holds because sup,cg_ \P (8rkShr) —Zx| = 0p(1) and the second term on the right-hand
side of is bounded by, from , P,(m?2,) = tyZty + op(|ty|*), and Assumption (e)

Csup sup P, Umqgk\ +3m19k\u19k$0\+3\m§k|uﬂkx0} +Csup  sup  Pp(|ugrz,|®)
ro€X VEN, ) /m ro€X VEN,, /m

<op(1) sup sup P [miy + ufpy,| +C sup  sup  Pp(|ugra,|’) = op(n7h).
ToEX 196./\/6/\/* ToEX ﬁENC/f

We proceed to show . Consider the following expansion of hygz,:

hokzy = (Lokzo — 1)/2 = Piay /2 = (EySrk + Tok + Uokao) /2 — Rpay /2- (68)

Then, follows from ([63)), (68)), and Assumptions[3|(d) and (e), and the stated result follows. [J

Proof of Proposition[3. For part (a), it follows from log(1 + z) < z and hgge, = (lokz, — 1)/2 —
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h%kmO/Q (see ) that

(0,7, 20) — Lo (%, m,20) =2 10g(1 + hgay) < 20Pn(hokay) = Viwn (lokay — 1) = nPn(Bipa,)-
k=1
(69)

Observe that h%k:co = (Iokzy — 1)/ (\/Tokwe + 1) > Wlorze < K} (Lokao —1)%/(v/E+1)? for any k > 0.
Therefore,

Pu(hay) > (VE +1)72 Py ({lokay < K} lokeo —1)°) - (70)

Substituting into the right-hand side of gives

Pr(higey) = (VE+ 1)ty [Pa(sreser) — Po({lokae > K}saisir)] to + Cono- (71)

From Holder’s inequality, we have P, (I{lgrzy > #}$mkl?) < [Po(M{lorze > £ 1) CTD [Py (|spp]2H0)]2/ 2 F9),
The right-hand side is no larger than x=%/ (2+5)Op(1) uniformly in zp € X and ¥ € N be-
cause (i) it follows from kKI{lygz, > K} < lgkz, that Po(I{lyrz, > K}) < /i_an(lqngO) and
SUP,o e x SUPyens. | Pn(lokay) —1| = 0p(1) from Assumptions (d)—(g), and (ii) P,(sup,co, |sﬂk\2+5)
Op(1) from Assumption (a). Consequently, P(sup, ey suPgen. Pn({lokzy > K} sniel?) >
Amin/4) — 0 as kK — o0, and hence we can write as Pn(h%kzo) > 7(1 + 0p(1))thZsty +

Op([ts?| — ¥*|) + Op(n™1) for 7 := (y/k + 1)72/2 > 0 by taking r sufficiently large. Because
Vwn(Lokzy — 1) = V/nthyvn(sqi) + Op(1) from Assumptions (d) and (e), it follows from (69)) that,
uniformly in zg € X and 9 € N,

=1 < ln (9, m,20) = n (¥, 7, 20) < Vv (smk) =7 (1+0p(1))nty ety + Op(nlts|* [ —9*[) +Op(1).

(72)
Let T, := I71r/2\/ﬁt19. From 1} Assumptions (b) and (g), and the fact ©» — ¢* — 0 if ty — 0, we
obtain the following result: for any § > 0, there exist € > 0 and M, ny < oo such that

P < inf inf (|T,|M — (7/2)|Ta|* + M) > 0) >1—6, forall n > ny. (73)
ToEX ﬂeNs

Rearranging the terms inside P(-) gives sup,, cy supgens (|Tn| — (M/7))? < 2M/7+ (M /7)?. Taking

its square root gives P(sup, ey supyenr. [Tn| < M1) > 1—6 for a constant My, and part (a) follows.

Part (b) follows from part (a) and Proposition O

Proof of Corollary[]} Because the logarithm is monotone, we have inf, ecx €n(¢,m, 20) <
Co(Y,m,&) < sup, ex ln(¥, T, 20). Part (a) then follows from Proposition [2, For part (b), note
that we have ¥ € A,-(§,n) only if ¥ € A,-(z0,n) for some zy. Consequently, part (b) follows from
Proposition O

Proof of Proposition[]] First, observe that parts (a) and (b) hold when the right-hand side is
replaced with K;(k + m)7plk+m=1/24] and K;(k + m)7plk+m=1/1340] by using Lemmas [2 and
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[4 and noting that ¢1 = 640,92 = 5q0,¢3 = 4qo,-..,96 = qo. For example, when j = 2, we can
V2 (0) — VI20 1, (9)| from V2 . (9) = A2 (9) + A km(ﬁ)

1,k,m,x

1 ——I
SUp ey supgen- [ATY)(0) AP (9)] < Koy (k +m)Tpltm=D/24 K€ I70) (By.), 7(p) =

,k,mM,x

bound sup,cy supye

q2 = 5qo, and (1 1) = q1/2 = 3qgo. Second, letting p. = p /1B p > 0} and redefining K; gives
parts (a) and (b). Parts (c¢) and (d) follow from Lemmas [2] and O

Proof of Proposition[5 First, we prove part (a). The proof of part (b) is essentially the same as
that of part (a) and hence omitted. Observe that

k1
i Y, Y X_m = Do Y |Y_
VI () — V() = UL, (0) (pﬁ( Y Xom =) o0 o) )
pﬂ*(Yk|Y—vafm =z) py-(YilY_,,)
P (Yk‘Y—m) j =7
,19 —k—1 (\Ij?c,m,x(ﬁ) - \Ij;ﬂ,m(ﬁ)) )
DPy= (Yk‘Y—m)
where -
j Vjpv(YHY—m,Xf l‘) = Vipe(YelY_,0)
\I}i:,m,z(ﬁ) = \Il?v,m(ﬁ) = 2 .

_ k-1

) Py(YelY_,n)

In view of Lemma [5| and Holder’s inequality, part (a) holds if, for j = 1,...,6, there exist random
variables ({4 r}}_,, Bj) € LY (Py+) and p, € (0,1) such that, for all 1 <k < n and m >0,

pﬂ(Yk|Y—m ) =T

(A) supsup sup [ (9)] < Ajp, (B) sup sup [W] . (9)=T ,,(9)] < Bj(k+m) pftmL,
m>0zeX YeEN* zEX YEN*
(74)

We show (A) and (B). From (91)) we have, suppressing (9) and superscript 1 from V14 ., .,

Vime = Vemes Yo = Vime + (Vima),
U e = Volma + 3V o Vima + (Vlma)®,
Uhome = Vima + AV 0 o Vime + 3(Vma)® + 6V e (Vlma)® + (Vi)'
U3 e = Volema + 5V Y %maVima + 10V o Ve + 10V o (Vo )
+15(V hme) > Vime + 10V im0 (V) + (Vi)
) e = Volima + 6V lmaVima + 15V o Vo + 15V o (Vo )
+10(V U e)® + 60V ki e V2l 2V e + 20Vt (Ve )?
+ 15(V2 ) + 45(Vlkm2)* (Vlkma)® + 15Vl o (Vlme)* + (Vima)®,

and @Z;m is written analogously with ijkm replacing AV U m - Therefore, (A) of 1.) follows
from Proposition (c) and Holder’s inequality. ) of ( . ) follows from Proposition I , the
relation ab — cd = a(b —¢) — c(a — d), a™ — b" = (a —b) Zz:o (@™~ 177p%), and Holder’s 1nequahty
For part (c), the bound of Vlim’x(ﬁ) follows from writing Vlkmgc(q?) [pﬁ(Yk]Y X_m =
x) /D= (YH?’:;,X,m )% (9) and using and Lemma lekm(ﬁ) is bounded by

k,m,x
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a similar argument. Part (d) follows from parts (a)—(c), the completeness of L(Py«), Markov’s
inequality, and the Borel-Cantelli Lemma. Part (e) follows from combining parts (a) and (b) and

letting m’ — oo in part (b). O

Proof of Proposition[6 The consistency of ¥y follows from Theorem 2.1 of Newey and McFad-
den (1994) because (i) 95 uniquely maximizes Eyg: log f(Y1|Yo, Wi;7,6) from Assumption (c)
and (i) supy,co, In"Hon(91) — Eg: log f(Y1| Yo, Wi;7,0)] & 0 and Eg: log f(Y1[Yo, Wi;7,0)
is continuous because (Yj, Wj) is strictly stationary and ergodic from Assumption [I(e) and
Eyg: supy, co, |log f(Y1[Yo, Wi;7,6)| < co from Assumption (c)

We proceed to prove the consistency of 9. Define, similarly to pp. 22656 in DMR,
Apma(P2) = logpa, (VY5 WE, X o = 2), Apm(02) = logpg,(Yi[¥,, W),
Ak oo(V2) 1= limp 0 Mg (P2), and £(V2) 1= Eyr[Ago(F)]. Observe that Lemmas 3 and 4 as
well as Proposition 2 of DMR hold for our {Ag , 2(Y2), Akm (V2), Ak oo (V2), €n (P2, x0), £(¥2)} un-
der our assumptions because (i) our Assumption [Ife) can replace their Assumption (A2) in the
proof of their Lemmas 3 and 4 and Proposition 2, and (ii) our Lemma [I1fa) extends Corollary 1
of DMR to accommodate the Wy’s. It follows that (i) ¢(J2) is maximized if and only if ¥y € T
from Assumption I(d because Ey:[log py, (Y1|Y,m, W1 )] converges to £(d2) uniformly in 95 as
m — oo from Lemma 3 of DMR and the dominated convergence theorem, (ii) ¢(1J2) is continuous
from Lemma 4 of DMR, and (iii) supg, supy,ce, |1~ 0n (02, £2) — £(02)] 2 0 holds from Proposition
2 of DMR and ¢,,(02,&2) € [ming, ¢, (Y2, zo), maxy, €y (Y2, zo)]. Consequently, infy, - Uy —J9| 20
follows from Theorem 2.1 of Newey and McFadden (1994) with an adjustment for the fact that the

maximizer of £(1)3) is a set, not a singleton. O

Proof of Proposition[7. We prove the stated result by applying Corollary [1] to lyky, — 1 with lyka,
defined in . Because the first and second derivatives of lyr,, — 1 play the role of the score, we
expand lygz, — 1 with respect to ¢ up to the third order. Let ¢ = dim(¢)). For a k x 1 vector a,
define a®P :=a®a®---®a (p times) and V,ep := V, @V, ®---®@ V, (p times). Recall that the
(p + 1)-th order Taylor expansion of f(z) with z € R? around x = z* is given by

* 2 1 * * j 1
fl@)=f@)+> PACIZICRICEE )& 4 CEm]

=1

Vgowy f(T)(z - )PP,

where 7 lies between x and z*, and 7 may differ from element to element of V g1 f(T).
Choose € > 0 sufficiently small so that N is a subset of A* in Assumption [, For m > 0 and
j=1,2,... let

k-1 ey
| Vieibpr VY s 2om) g Voorpyr (4/¥ )
A‘Ii’m,iﬂ—m(qb’ 7T) = w d w ) A‘;{,m(d& ﬂ-) = w / T’Z)

3Py (Ve[ Y 7 m) Jpyen (Y 2)

and At := 1 —¢*. With this notation, expanding ly,, — 1 three times around ¢* while fixing 7
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gives, with ¢ € [1, %],

lokzy —1 = Allc,O,oco (o W),A¢ + Ai,o,xo (¥, W)/(A¢)®2 + A%,O,xo (aa W),(Aw)@)g
= Mo (0%, ™) A + AZ o (0", 1) (A)®2 + Ao (4, 1) (A1) P2 + gy (4, ), (75)

Where 1 may differ from element to elementgf A%,O,xo (¥, ), and Uz, (¥, 7) = 25:1 [Ai,o,xo (P*,m)—
10 (05 T (AY)ST + (AL g 4 (8, 7) = A (8, ™)) (A)™.
Noting that VP, (Yk\Yg l) =0 and VyPyr (Yk|Y§ 1) = 0 from , we may rewrite 1)

as
lkﬂmo —1= t(¢7 W)/Sgk + rk,O(d}a 7T) + Uk (w7 ﬂ-)u (76)
where s, is defined in , rho(1, ) = Ago (W)’(An)®2+Ai’o($, ) (Ay)®3, where Ay, o(7) denotes
the part of Ai,ow*? ) corresponding to (An)®?
For m > 0, define vy, (¥) := (A}Qm(ﬂ), ), Aiym(d), ), Ai,m(d}’ 7)), and define vy oo (V) =
limyy, 00 Vg, m (). In order to apply Corollary (1| to lygy, — 1, we first show

sup | Pa[vk,0(9) 0,0 ()] = B+ [V 00 (0) 01,00 (9)']] = 0p(1), (77)
Vn(vr0(0)) = W(9), (78)

where W (¥) is a mean-zero continuous Gaussian process with Ey«[W(41)W (d2)] =
Eg+ [Uk,00 (V1) Vk, 00 (U2)'] . ) holds because supyen. Pnl[vi,0(0)vk,0(0) — V00 (9) k00 (F)] = 0p(1)
from Proposition I, 5, and v o0 (V) Ug 00 (V) satisfies a uniform law of large numbers (Lemma 2.4 and
footnote 18 of [Newey and McFadden| (1994)) because vy o(¢) is continuous in ¥ from the conti-
nuity of V71, »(9) and Proposition |5, and Eg« supge . [Uk,00(9)]? < 0o from Proposition
holds because supyepr. Vn(Vr,0(9) — Vk,00(¥)) = 0p(1) from Proposition |5 and vy, (v,0 (V) = W (V)
from Theorem 10.2 of Pollard (1990) because (i) the space of ¥ is totally bounded, (ii) the finite
dimensional distributions of v, (vy o (+)) converge to those of W (-) from a martingale CLT because
Uk 0o(?) is a stationary L?(Py«) martingale difference sequence for all ¥ € A; from Proposition
and (iii) {¥n(vk,0o(-)) : m > 1} is stochastically equicontinuous from Theorem 2 of Hansen| (1996b))
because vy, o (¢) is Lipschitz continuous in ¥ and both vy o (¢) and the Lipschitz coefficient are in
Li(Py~) with ¢ > dim(¥) from Proposition

We proceed to show that the terms on the right-hand side of satisfy Assumptions [3{(a)—(g).
Observe that t(1),m) = 0 if and only if ¢ = ¢*. First, s, satisfies Assumptions (a), (b), and
(g) by Proposition , , and Assumption @ Second, 7y (1), 7) satisfies Assumptions (c)
and (d) from Proposition [f| and (78)). Third, ujg, (1, 7) satisfies Assumptions [3(e) and (f) from
Proposition [5(c). Therefore, the stated result follows from Corollary [I|b). O]

Proof of Proposition[8 The proof is similar to that of Proposition 3 of [Kasahara and Shimotsu
(2015). Tet t; := n—n* and ty = a(l — a)v(A), so that t(y,7) = (,t})". Let Yp =
arg maxyee,, In(¢,m, ) denote the MLE of %, and split t(hr, ) as t(y,m) = (t%,f’)\)’, where
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we suppress the dependence of fn and £, on 7. Define Gon = Un(Sek). Let

— —1 .
G)\.ngn = G/\gn - IAngIn Gnnv Z/\.ngn . >\ UQG’\ non»

N —1
tyae =1ty +I77 Lyrota-

Gon

Gon =
¢ G)\gn

Then, we can write as

sup  sup 2 [ln(4h, 7, 8) — La(¥", 7, €)] — An(Vity.ng) — Ben(Vnta)| = 0p(1), (79)

EEEVEAnec(E)

where

An(tn.)\g) 2t,,7 )\QG - ,,7 )\QI t
BQn(t/\) = Qt/\GMzgn - t/\IMi@t/\ = Z&in}\-’ﬂ@z)\&m —(ta— Z/\gn),IA-ng(tA - Z/\gn)~

n.A0» (80)

Observe that 2[6()”(1%) — Lon(¥5)] = maxy, [2\/ﬁt;7G,m - nt%L}tn] +0p(1) = maxy, ,, An(v/ntyae) +
0p(1) from applying Corollary (1] to £y, (J9) and noting that the set of possible values of both \/nt,
and /nty », approaches REM() | Tp conjunction with , we obtain, uniformly in 7 € O,

20 (1, 7, €) = bon(D0)] = Bon (Vi) + 0p(1). (81)
Define £\ by By, (v/nty) = MaXy, e (1-a)v(©y) Ben(v/Ntr). Then, we have
20 (W, 7, €) = Lon(D0)] = Bon (V1) + 0p(1),

uniformly in 7 € O, because (i) gn(\fb\) 2ln (Y, 7, €) — Lon(D0)] + 0p(1) from the definition
of t) and , and (i) 2[ln (Y, 7, €) — Lon(D0)] > Bon(v/nty) + 0,(1) from the definition of 0, ,
and £y = Op(n~1/?).

Finally, the asymptotic distribution of sup, Bon(y/nty) follows from applying Theorem 1(c)
of |Andrews| (2001) to B,(v/nty). First, Assumption 2 of |Andrews (2001) holds trivially for
Bon(y/nty). Second, Assumption 3 of |Andrews| (2001) is satisfied by and Assumption @ As-
sumption 4 of Andrews| (2001)) is satisfied by Proposition Assumption 5* of|[Andrews| (2001) holds
with By = n'/2 because a(1 — a)v(0,) is locally equal to the cone v(R?) given that (1 — ) > 0
for all @ € ©4. Therefore, sup,ce, Bon(v/nty) LN Sup,ce, (f’)\gI,\.ngf,\g) follows from Theorem 1(c)
of Andrews (2001)). O

Proof of Proposition[d The proof is similar to that of Proposition Define Afg . (i, m) and
A (¥, 7) as in the proof of Proposition Expanding 95, — 1 five times around ¢* similarly to
(75) while fixing 7 gives, with ¢ € [, %],

lkn?xo - Z A *7 Alﬂ)@] + A5 (@7 W)/(A¢>®5 + Uk ("‘% 77)7 (82)
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where upg, (1, ) 1= 20 [A] o (W, 1) — A o (0, ) (AY) ST+ [A] o (3, ) — A o (1, )] (Aw) 5.
Define Dyqp 0 = @M(Yﬂ?g_l). Observe that s, defined in satisfies

VP nke,0/ Pk 0
Ck0(0)/2
Vauro Py rke,0/ (1 — @) Py rieo
Sok 1= Va2 Py rke,0/20(1 — @)Dy ni 0
Vasau Py 0/ (1 — @) Py o
VrsAe Py rk,0/ (1 — )Py rico
V(VasrsPyrnk0)/ (L — @)Dy ri0

Noting that V)j)w*ﬂ(Yk]?g_l) =0 and V,\n/ﬁw*W(YM?{;_l) =0 from 1} and , we may rewrite
as, with t(¢, m) and s, defined in and ,

lokay — 1 = t(0h, ) s ok + Th,0(7) + Uk (10, ), (83)

where r4,0(7) = Apo(m)'T(¢) + AL o, ) (AY)E + XL [VaaBynro — b(a)vxg@p*wk,o]/4!f7~¢*nk,07
7(1)) is the vector that collects the elements of {(A@b)@j}?:Q that are not in ¢(¢, ), and Ay ()
denotes the vector of the corresponding elements of {A?ﬁ0 (*,m) ?:2.

The stated result follows from Corollary if the terms on the right-hand side of
satisfy Assumption Similarly to the proof of Proposition define wvg ,(0) :=
(Ckym(g),A}g’m(w,ﬂ')/,...,Az’m('(ﬂ,ﬂ)/)/. Note that (i (o) satisfies Proposition [5 because the

mean value theorem and VAZﬁw*Oa(Yk\?ljnl) = 0 gives (pm(0) = [V,\iﬁw*ga(Yﬂ?g*l) -

_ <k-1 _ k-1 _ <k—1 _ <k—1
VazPy-0a(Yil Yo )]/l0a(1=)Pyeoa (Yi[Yo )] = VoVazPyeag(YilY — )/ [(1=)Pye ga (Yl Y =1 )]

for o € [0, o]. Therefore, vy oo (V) := limy, 00 Vg m () is well-defined, and vy o () and vy o0 () satisty
f from repeating the argument in the proof of Proposition

We proceed to show that the terms on the right-hand side of satisfy Assumption 3| Ob-
serve that t(¢,7) = 0 if and only if ¢ = ¢*. s, and upg, (¥, 7) satisfy Assumption [3| by noting
that s, is a linear function of v o(¢) and using the argument in the proof of Proposition
by replacing Assumption |§| with Assumption m We show that each component of 7 o(7) satis-
fies Assumptions (c) and (d). First, A%O(@, )/ (AY)®? satisfies Assumptions (C) and (d) from
Proposition and X\, = (122,/b(a))[N2 + b(a))\;‘;/m] — 12(Xs/b(@)) A\u A = O([Y]|t(w0, )]).
Second, Aﬁ[v&@wmo — () V 2Dy 0] /Py i 0 Satisfies Assumptions (c) and (d) from Lemma
(b). Third, for &k,o(w)%(;z;), observe that Vy,Dy+rro = 0 for any j > 1 in view of f.
Therefore, Ay o(7)'7(¢) is written as, with An :=n —n*,

Ao () T(1) = V o2y By i 0 (AN) 2/ 2By i 0 + Rk + Rako, (84)
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where Rspy = V(93) Dy rp,0 (DY) /3Py, o and
Ry = [V (goiyDyepp o (D) ** — ngm*nk,ooﬁ]/‘l!m*wk,o- (85)

The first term in clearly satisfies Assumptions [3|c) and (d). The terms in Rsyy belong to
one of the following three groups: (i) the term associated with A3, (ii) the term associated with
)\z, or (iii) the other terms. These terms satisfy Assumptions (c) and (d) because the term (i)
is bounded by [¢|[t(y, 7)| because X3 = A, [AZ + b(a)X,/12] — (A3b(a))A\uAs /12, the term (ii) is
bounded by Q)\i from Lemma (a), and the terms in (iii) are bounded by |v||t(, 7)| because they
either contain An or a term of the form )\L/\Z,/\g with ¢ + 7+ k = 3 and 4,5 # 3. Similarly, the
terms in Ry satisfy Assumptions [3(c) and (d) because they either contain An or a term of the
form )\L/\Z;/\g with i 4+ j 4+ k =4 and i # 4. This proves that rj o(7) satisfies Assumptions (c) and
(d), and the stated result is proven. O

Proof of Proposition[1(, The proof is similar to the proof of Proposition 3(c) of Kasahara and
Shimotsu| (2015). Let (¢a, da) := argmax(w’g)egwxegfn(@b,Q,a,g) denote the MLE of (v, 0) for
a given a. Consider the sets O} = {\ € O, : |[\,] > n /S(logn)~'} and 63 = {\ €
Oy ¢ [\ < nY8logn)!}, so that ©y = O} UO3. For j = 1,2, define (Dh, 6%) =

arg max(zp,g)e@wx@g,Aeeig”(w’ 0,a,§). Then, uniformly in «,

bol(as By 0,€) = max { € (D4, 04, . ), Lal02, 32, 0,€) }

Henceforth, we suppress the dependence of &a, Oa, €tc. on a.

Define By, (ta(), 0, @) asin in the proof of Propositionbut using (¢, 7) and s, defined in
and and replacing ty in with ¢y (A, 0, ). Observe that the proof of Proposition goes
through up to with the current notation and that G, and Z, are continuous in g. Further, ot =
O, (n~'/*(logn)?) because @1(5\L)Q = O,(n~'/?) from Proposition |§|(a) and |5\}L\ > n~/8(logn)"L.
Consequently, Bé1n(\/ﬁt,\(;\1, o', ) = Bon(V/ntx(\L, 94, @) + op(1), and, uniformly in «,

200n (¥, 6,0, &) — Lon(90)] = max{Bon (vrta(A', 6%, @), Baen (Vuta (A%, 6%, )} + 0p(1).  (86)

We proceed to construct parameter spaces Aia and /NX?\O[ 0 that are locally equal to the cones
A} and Aig defined in . Define ¢(a) := a1 — ), and denote the elements of t\(M, 9/, a)
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corresponding to by

Fop &M
R
o # X)2 4 bla) (M) /12
taA(N, 07, 0) = 5372 = c(a) 0) 5\(%]' o
Bu BH
EJ J\J
Bo B
77 J
Fos) v(X)

Note that AL = O,(n~3/®logn) and 5\% = 0,(n"3/%logn) because (f}uﬂ%u) = Op(n~1/?) from
Proposition @(a) and |5\}L| > n~1/3(logn)~!. Furthermore, 2, = (a)(A2)2 + 0,(n~1/?) because
|;\i\ < n~'/%(ogn)~'. Consequently,

the = 0p(n™1%), Ehgy = 0p(n7V?), ihe = c(@)b(@) (W) /12 4 0p(n1?),

) (87)
£22 = c(@)(A3)? + 0p(n /%)

In view of this, let tx(A, 0, @) := (tpu2; tuo to2, t’ﬁ#, s t;(ﬁ))’ € R and consider the following sets:
AL, = {ta(\, 0,0) : tou2 = c(a)g)\i,t,w = c(a)\Ag, ty2 = c(a)b(a))é/l?,
tau = c(a)\gAu, tge = 0,13 = 0 for some (A, 0) € O x O},
[Xiag ={ta(N 0,a) 1ty = c(a)g)\i,tw = ()Mo, ty2 = c(a)\2,

tau = c(@)Ag Ay, tge = c(@) Ao, ty(g) = c(a)v(Ag) for some A € O, }.

[\ia is indexed by « but does not depend on ¢ because By,(:) in does not depend on p,
whereas A2, , is indexed by both a and ¢ because By, (-) in depends on 2. Define (A, gl)
and A2, by Bon(v/ntA(AL, O, @) = maXtA(A,g,a)GfxiaBO”(\/ﬁt/\()\’ 0,a)) and By, (vntr(A2,, 0,a)) =
ma‘xt,\(/\,g,a)ef\?\agBQ”(\/ﬁt)‘()\’ 0,)).

Define W, (c) := max{ B, (v/ntr(AL, 3L, ), SUpP,eo, BQn(\/ﬁtk(S\ig, 0,))}, then we have

2[%(1@7@7%5) _EOn(l%)] = Wn(a) +Op(1)7 (88)

uniformly in @ € O, because (i) Wi, () > 2[0, (1), §, v, &) — Lon (V)] + 0,(1) in view of the definition
of (S‘én @317 5‘?}(@)7 > and 7 and (ii) 2[671(7&’ 0, O‘»&) - EOn(Q%)] >

max{2[max, £n (1, A B4 @, €), SUpyeq, Maxy I (1), 5\(2;497 0,,€)} — 2o (Do) + op(1) = Wa(a) + op(1)
from the definition of (¢, 9).

The asymptotic distribution of the LRTS follows from applying Theorem 1(c) of Andrews
(2001)) to (BOn(\/ﬁt,\(S\i,@}X,a)),BQn(\/ﬁt,\(S\ig,Q, «))). First, Assumption 2 of Andrews| (2001)
holds trivially for By, (v/nt(A, 0,a)). Second, Assumption 3 of |Andrews| (2001) is satisfied by
and Assumption m Assumption 4 of |Andrews| (2001) is satisfied by Proposition @ Assumption 5*
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of Andrews| (2001) holds with By = n'/? because ]\ia is locally (in a neighborhood of o = 0, A = 0)

equal to the cone Ai and A2

g 18 locally equal to the cone A?\ 0 uniformly in ¢ € ©,.. Consequently,

Wy () LN max{I{o = 0}(Z})'Zrnot},5uPyeo, (i?\g)/zkngf?\g} uniformly in « from Theorem 1(c) of
Andrews| (2001), and the stated result follows from (88). O

Proof of Proposition[11. The proof is similar to that of Proposition [9} Expanding l9., — 1 five

times around ¢* and proceeding as in the proof of Proposition [9] gives

lokay — 1 = t(0h, ) s gk + Th,0(7) + Uk (10, ), (89)

where t(1), ) is defined in , Sk is defined in and satisfies

ViPy nk,0/ Py k0
Ck0(0)/2
V#?’fl:/?’!fl:
Vu4f,§/4!f,3‘
Y)\g)\uﬁqj;*ﬂk,O/a(l — Q)P0
Vo) Pyrrk,0/ (1 — @)Dy ri 0

Sok =

and

rio(m) = A o(m) () + Ao (¥, )/ (A¢p) P
+ )\i[v,\gm*wk,o/?;b*wk,o —a(l —a)(l - 2a)V 3/ fr]/3!
+ )\ﬁ[v,\ﬁ?w*wk,o/ﬁw*wk,o —a(l—a)(1 = 6a+60°)V . fi/fil/4,

where Uz, (¥, T), Dyrk,m, and the terms in the definition of r4 () are defined similarly to those
in the proof of Proposition [9}

The stated result is proven if the terms on the right-hand side of satisfy Assumption
t(y,m) = 0 if and only if ¥ = ¥*. s, and upg, (1, m) satisfy Assumption [3| by the same
argument as the proof of Proposition @ For ry o(m), first, Az,o(% 7)'(A)®? satisfies Assumptions
(c) and (d) from a similar argument to the proof of Proposition |§|; )\i is dominated by )\z or
Ay, because infocq<i max{|1 — 20/, |1 — 6a + 602} > 0. Second, similar to (84) in the proof of
Proposition |§|, write Kkvo(ﬂ')/’r(ly[}) = V(TI@Q)@WM,O(An)®2/2!ﬁw*ﬂk,o + Ry + Rapy, where Rspy =
[V @3y Pyt (A1) ®3 — vAzﬁw*wk,o)‘i]/?’!ﬁw*wk,m and Rypy is defined as Ryxy in . The term
V g2y Py k0 (A0) ©2 /21Dy o clearly satisfies Assumptions (c) and (d). The terms in Rgpyg satisfy
Assumptions (c) and (d) because they contain either An or )‘;21)‘5 or )\“)\% or /\%. The terms in
Ry satisfy Assumptions (c) and (d) because they either contain An or a term of the form )\L)\éﬂ'
with 1 < i < 3. The last two terms in 7y o(7) satisfy Assumptions [3(c) and (d) from Lemma
Therefore, 7 o(7) satisfies Assumptions (c) and (d), and the stated result is proven. O
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Proof of Proposition[13 The proof is similar to the proof of Proposition Let (@,@, Q) =
arg MaX(y 5.0)€0,, xO,x0a tn (¥, 0, @, §) denote the MLE of (4, 0,a). Consider the sets el =
{A € Oy [\ > nY6(logn)~!} ancAl 02 = {\ € Oy : [\ < nY(logn)!}, so that
0, = @}\ U @?\. For j = 1,2, define (¢7,4’,47) := argmax
s0 that £(), 8, &) = maxjeq 0 n (7, &, 67, €).

Define By, (ta(), 0,a)) asin in the proof of Propositionbut using ¢(1), 7) and s, defined in
and and replacing ¢y in with ) (), 0, a). Observe that g = Op(n*1/6(log n)?) because
@1(5\21)2 = Op(n_l/Q) from Proposition (a) and |5\}L\ > n_l/ﬁ(log n)~!. Using the argument of the
proof of Proposition leading to , we obtain

(1,0,0)€Oy, X@Qx@Q,Ae®§€n(¢v 0,0, &),

2[00 (¥, 6,6, &) — Lon(90)] = max{Bon (vnta(A!, 6%, &1)), Baz,, (vVta(X%, 6%,6%))} + 0,(1).

We proceed to construct parameter spaces that are locally equal to the cones A%\ and A%\ 0 defined
in . Define ¢(«) := a(1 — «), and denote the elements of t)\(j\j, ¢’, &%) corresponding to by

oy &N )A.
N L N
tA(M, ¢ 67) = | &, | :=c(d) (1— 647 +6(a7)%)(M)*
] JNJ
t%w Aﬁf;“
v}
tois) v(Ag)

Note that 5\}5 = Op(n~Y/3 logzl) because t%’u = 0,(n~Y2) from Proposition a) and \5\/11| >
n~1/%(logn)~'. Furthermore, AzZ] < n~1/%(logn)~'. Therefore,

ﬁl}(ﬂ) = Op(n_l/Q)’ 1?33 = 0p(n_1/2)7 7?34 = Op(n_l/Q).

In view of this, let t\(A, 0, ) := (t,,2,t,3,t,4

ou2s Lz by ,tﬁu,t;(ﬁ))’ € R?, and consider the following sets:

={tx(\ 0,a) 1 ty2 = c(a)g)\i,tus =c(a)(1 - 204))\z,tu4 = c(a)(1 — 6 + 6042))\;1”
tau = c(@) Ay, ty(g) = 0 for some (A, 0, ) € Oy x O, X B4},
AMQ ={tx(\ 0,@) 1 tp2 = c(oz)g/\i,tﬂs =t =0,
tau = (@) Ay, ty(g) = c(@)v(Ag) for some A € O, }.

Define (X!, 5!, a') and :\39 by Bon(v/ntx(AL, 64, al)) = max, ga)e/N\iBOn(\/ﬁt/\()‘v 0,a)) and
BQn(\/ﬁt,\(:\ig, 0,q)) = maxtx(&@va)ef\iagBﬂm(\/ﬁt/\(/\’ 0,a)). A} is locally (in the neighborhood of
0 =0, A =0) equal to the cone Ai because, when |1 — 2a| > € > 0 for some positive constant €, we
have t,4/t,s — 0 as A, — 0, and when « is in the neighborhood of 1/2, we have 1 — 6a + 602 < 0.
Ag\ag N ~
Define W,, := max{By,(v/ntr(A!,a',al)), SUDP(a,0)€0, xO, Bon(vntx(X2,, 0,a))}.  Proceed-

is locally equal to the cone A3 p uniformly in ¢ € ©,.
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ing as in the proof of Proposition gives 2[€n(1ﬂ, 0,a, &) — EOn(ﬁo)] = W, + op(1), and the
asymptotic distribution of the LRTS follows from applying Theorem 1(c) of Andrews (2001)) to
(Bon(viita(A', 8", 6")), Bon (Vi (A, 0, @)). O

Proof of Propositions and[16. Let N}, denote an arbitrarily small neighborhood of Y, and
let 1, denote a local MLE that maximizes Lo (Y T €ty +1) subject to 1, € N. Proposition
and T* = UM Y* imply that £,(0nr 11, Engr1) = MaXn=1... Mo fn(Ym, T, Etg 1) With prob-
ability approaching one. Because ¢; ¢ N} for any ¢ # m, it follows from Proposition that
TZJm - ¢;1 = Op(l)'

Next, £n(Vm, TmsEntg+1) — (), Tm, Enp+1) admits the same expansion as £, (¢, 7, &) —
Ly (¥, 7, &) in or . Therefore, the stated result follows from applying the proof of Propo-
sitions and |12 to Kn(qﬁm, T EMo+1) — Kn(ﬁMo,fMo) for each m and combining the results to
derive the joint asymptotic distribution of {En(@@m, Ty EMo+1) — Kn(éMO, Ey) Mo O

m=1"

Proof of Proposition[17 Observe that Proposition [2| holds under P, 20 under the assumptions of
Propositions |§|7 and Because J;, = (1, Ay, 7,)" € N/ /m by choosing ¢ > |h], it follows from
Proposition [2] that

d 1
sup |log % — Wvn(sg.) + 5 To, b = opy. (1), (90)

where s, is given by , , and for the models of the non-normal distribution, het-
eroscedastic normal distribution, and homoscedastic normal distribution, respectively. Further-
more, vy (Sp,k) = Go under Pj. . where G, is a mean zero Gaussian process with cov(G,, Go,) =
Tor0o := limp_so0 Eg=(sp, ks’@ i) Therefore, dPy .o / dPyj. ., converges in distribution under Pj.
to exp (N(u,0?)) with g = —(1/2)WZ,h and 02 = h'Z,h, so that E(exp (N(u,0?))) = 1. Con-
sequently, part (a) follows from Le Cam’s first lemma (see, e.g., Corollary 12.3.1 of Lehmann
and Romano| (2005))). Part (b) follows from Le Cam’s third lemma (see, e.g., Corollary 12.3.2 of
Lehmann and Romano| (2005)) because part (a) and imply that

Vn(s nk) Z Z,h
dIP%n v 4N L 0/ , /g ,Q under Py, .
log Syl “wzn ) \WI, WI,h ’

9*,xq

O]

Proof of Proposition[I8 The proof follows the argument in the proof of Proposition Observe
that h, = 0 and hy = /ntx(An, ™) hold under Hi,. Therefore, Proposition (17| holds under P3,
implied by Hi,, and, in conjunction with Theorem 12.3.2(a) of Lehmann and Romano| (2005)),
Propositions |5 and [7| hold under Py, . Consequently, the proof of Proposition |8 goes through if
we replace G\ yon = Ginp With Gxpon = Grne + (Tago — Z,\,,@In_lIn,\g)hA = G + Lryohr, and

the stated result follows. O
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Proof of Propositions and[20. The proof is similar to the proof of Proposition Observe that,
for j € {a,b}, h% = 0 and hi = /ntx(An, ™) + o(1) hold under H{n Therefore, Proposition
holds under P}  ~implied by H I and the stated result follows from repeating the argument of

in>

proof of Proposition ]

Proof of Proposition [21. We only provide the proof for the models of the non-normal distribution
with My = 1 because the proof for the other models is similar. The proof follows the argument in
the proof of Theorem 15.4.2 in Lehmann and Romano| (2005). Define C,, as the set of sequences
{nn} satisfying \/n(n, —n*) — h, for some finite h,. Denote the MLE of the one-regime model
parameter by 7j,. For the MLE under Hy, v/n (7, —n*) converges in distribution to a Py«-a.s. finite
random variable by the standard argument. Then, by the Almost Sure Representation Theorem
(e.g., Theorem 11.2.19 of Lehmann and Romano| (2005)), there exist random variables 7, and
Bn defined on a common probability space such that 7, and 7, have the same distribution and
(i, —n*) — ;Ln almost surely. Therefore, {7, } € C,, with probability one, and the stated result
under Hj follows from Lemma [9] because ), and 7},, have the same distribution.

For the MLE under Hj,,, note that the proof of Proposition (18| goes through when h,, is finite
even if h, # 0. Therefore, /n (7, —n*) converges in distribution to a Py, -a.s. finite random variable
under Hy,. Hence, the stated result follows from Lemma [J] and repeating the argument in the case
of Hy. ]

11.2 Auxiliary results
11.2.1 Missing information principle

The following lemma extends equations (3.1) and (3.2) in Louis (1982), expressing the higher-order
derivatives of the log-likelihood function in terms of the conditional expectation of the derivatives of
the complete data log-likelihood function. For notational brevity, assume 4 is scalar. Adaptations to
vector-valued ¥ are straightforward but need more tedious notation. Let V(Y := Vf; log P(Y;9)
and VI{(Y, X) := Vé log P(Y, X;9). For random variables Vi, ..., V, and Y, define the central con-
ditional moment of (V" ---V;) as B[V -+ -V, |Y] := E[(Vy — E[V4|Y])"t -+ - (V, — E[V,|Y])"a|Y].
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Lemma 1. For any random variables X and Y with density P(Y,X;6) and P(Y;0),

VUY) =E[VUY,X)[Y], V2(Y)=E[VY,X)|Y]+E[(VLY, X))?|Y],
V(YY) =E [V(Y, X)|Y] + 3E° [V2(Y, X)V(Y, X)|Y] + E° [(Ve(Y, X))?|Y],
V(YY) =E [VH(Y, X)|Y] +4E° [V3(Y, X)VE(Y, X)|Y] + 3E° [(V2U(Y, X))?|Y]
+ 6ES [V20(Y, X)(VA(Y, X))2|Y] +E° [(Ve(Y, X)) Y] = 3{E°[(VL(Y, X))?|Y]}",
VoY) =E [V2UY, X)|Y] 4 5E° [VH(Y, X)VL(Y, X)|[Y] + 10E° [V2((Y, X)V2U(Y, X)|Y]
+ 10E° [V30(Y, X)(VE(Y, X))?|Y] + 15E° [(V2(Y, X))2VL(Y, X)|Y]
+ 10E° [V2€(Y, X)(¢(Y, X))*|Y] — 30E° [V24(Y, X)VE(Y, X) \Y] E° [(VU(Y, X))?|Y]
+E° [(VU(Y, X))?|Y] — 10E° [(VL(Y, X))*|Y] E° [(Ve(Y, X))*|Y],
VoY) =E VoY, X)|Y]
+6E° [V2U(Y, X)VU(Y, X)|Y] + 15E° [V*(Y, X)V2(Y, X)|Y]
+ 15E° [VA(Y, X)(VL(Y, X))?|Y] + 60E° [V3e(Y, X)V2U(Y, X)VL(Y, X)|Y]
+ 10E° [(V2£(Y, X)) yY] + 15E° [(V2£(Y, X))?|Y]
+ 20E° [V2L(Y, X)(VU(Y, X))?|Y] — 60E° [V3e(Y, X)VE(Y, X)|Y ]| E [(VE(Y, X))?|Y]
+ 45E° | v% Y, X))2(VA(Y, X))2|Y] =90 {E [V24(Y, X)Ve(Y, X)|v] )
[ X))
v

o~~~

— 45E° [(V2(Y, X)) |Y] EC [(Ve(Y, X))?|Y]
+ 15E° [V2U(Y, X)(VL(Y, X))*Y] — 90E® [V2e(Y, X)(VE(Y, X))?|Y] EC [(Ve(Y, X))?|Y]
— 60E° [V2(Y, X)VE(Y, X)|[Y] E° [(VE(Y, X))*|Y]

+E° [(VUY, X))®|Y] — 15E° [(VL(Y, X)) Y] E° [(VL(Y, X))*|Y]
— 10 {E° [(VA(Y, X))?|Y]}* + 30 {E° [(Ve(Y, X))?|Y ]},

A/_\

provided that the conditional expectation on the right-hand side exists.

When P(Y;0) on the left-

hand side is replaced with P(Y|Z;0), the stated result holds with P(Y,X;0) and E[-|Y] on the

right-hand side replaced with P(Y,X|Z;0) and E[-|Y, Z].

Proof of Lemma[1l The stated result follows from a direct calculation and relations such as
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VL P(Y;9)/P(Y;9) = E[V),P(Y, X;9)/P(Y, X;9)|Y] and

Vieg f=Vf/f, Vlogf=V*f/f—(Vlogf)?
Vilog f=V2f/f =3V2fVI/f2+2(Vf/ ),
Viog f =V f/f =4V V)2 =3(V [/ )2+ 12V f(Vf)*/ > = 6(V [/ ),
Volog f =V f/f =5V V[ 2 =10V fV2F/ 2+ 20V° F(V )/ £
+30(V2F)PVF 2= 60V2F(V )P/ £+ 24(V £/ 1),
Volog f =VOf/f —6V° [V [/ f* =15V V2 f/ 2+ 30V F(Vf)?/ 2 = 10(V° f)?/ £
+ 120V3 fV2FV /2 — 120V F(V )2/ f4 + 30(V2f)3 ) 3
—270(V2f)*(V )/ f* +360V° F(V £)*/ f° = 120(V £)°/ £, (91)
V3f/f =V3log f +3V2log fVlog f + (Vieg f)?,
VAif/f = Vilog f +4V3log fV1og f + 3(VZ1og f)?2 4+ 6V21og f(Viog f)? + (Viog f)3,
Vof/f=V’log f+5Vtlog fVlog f + 10V log fV?log f + 10V3 log f(V log f)?
4+ 15(V2log f)*Vlog f + 10V21log f(Vlog £)3 + (Vlog f)°,
VOf/f=VClog f+6V°log fVlog f + 15V*1log fV?log f + 15V log f(V log f)?
+10(V31log f)* 4+ 60V3log fV2log fV log f + 20V3 log f(V log f)?
+15(V21og f)® 4 45(V?log f)*(Vlog )% + 15V2log f(V log f)* + (Vlog f)S.

For example, V3/(Y) is derived by writing V3¢(Y") as, with suppressing 4,

V3(Y)

_VPP(Y) VPP(Y)VP(Y) P(Y)

T PY)  TPY) POY) 2( P<Y>>

-2 M -0 [T P [T M e e )

=E [V3(Y, X) + 3V2U(Y, X)VU(Y, X) + (V{(Y, X))?|Y]
—3E [V2(Y, X) + (VU(Y, X))2|Y] E[VEY, X) Y] + 2 {E[VL(Y, X)[Y]}°,

and collecting terms. V*4(Y), V?¢(Y), and V®/(Y) are derived similarly. O

11.2.2 Auxiliary lemmas

We first collect the notations. Define 22_1 = (Xp_1, Yi_1, Wi, Xp, Yz) and denote the derivative
of the complete data log-density by

&' (0, Zy_1) == V' log py(Ve, XYV 1, X1, W), i > 1. (92)
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We use short-handed notation ¢, := ¢>i(q9,2’,§,1). We also suppress the superscript 1 from ¢}, ,
so that ¢y = gb}%. For random variables Vi,...,V; and a conditioning set F, define the central
conditional moment of (V1,...,V;) as

B V1, Vol Fl o= Eo (Vi = Eg[VAIF]) - - (Vg — Eo[Vo | F]IF] .

For example, B [pok, por, | F] := Eo [(dor, — Eolpor, [F]) (Por, — Evldor, | FI)|F]-

Let Z(j) = (i1,...,i;) denote a sequence of positive integers with j elements, let o(Z(j))
denote the set of all the unique permutations of (i1, ...,%;), and let |0(Z(j))| denote its cardinality.
For example, if Z(3) = (2,1,1), then o(Z(3)) = {(2,1,1),(1,2,1),(1,1,2)} and |0(Z(3))| = 3; if
Z(3) = (1,1,1), then 0(Z(3)) = (1,1,1) and |Z(3)| = 1. Let 7(j) = (t1,...,t;) for j =1,...,6. For

a conditioning set F, define the symmetrized central conditional moments as

(1) _ 72 1. 1 ¢
(13197_(1)[]:] Eﬂ |:¢19t1 :| ) (1)197’(2) [f] T ’0(1(2) Z E |:¢19t1¢19t2 i| )
(€1,€2)€0(Z(2))
I03) . 1
(fl,fg,fg)ea(l-( ))
Z(4) o 1 = 0102030
Tl Gy, 2 B

(£1,...,04)E(T(4))

1462037 c Z c c
where ‘1’19172(43 1=E [¢19t1¢19t2 193t3 1%4‘]: ] E [%tl 19152‘]: ]E [¢0t3 v9t4‘]: ]
_Eﬁ[¢0t1 19t3|]: ]Eﬁ[¢0t2 1%4’]: ] —Ej [¢19t1 1%4|‘7: ]Eﬁ[¢q9t2 19t3|]: ], and

7

B 2. [¢9ta¢9tb¢9tc } E5 [%tdﬁb ot f}) ,
({a,b,c}{d,e})€0s

1
‘ng?()g,) [‘F] = m Z ( |:¢9t1 ¢6t2 ¢9t3 ¢0t4¢ E1;5

(£1,...,5)€0(Z(5))

(ng(;i()ﬁ)[ ] [¢6’t1 ¢0t2 ¢9t3 ¢9t4 ¢9t5 ¢9t6 ’f] Z E% [qbgta ¢9tb ¢0tc ¢9td |f] }E% [qb@te ¢9tf ’f]
({a7b7cvd}v{evf})eo'61

- > E5 (ot bou, Por. | F1 E [Por,Por. Por | F]
({a,b,c},{d,e,f})ETe2

+2 Z E§ (o1, Dot, | F1EG [bor. Pora| FIEG [dor. dor ;| F|
({a7b}7{cvd}’{e’f})6063
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where

o5 := the set of (3) = 10 partitions of {1,2,3,4,5} of the form {a,b, c}, {d, e},
= 15 partitions of {1,2,3,4,5,6} of the form {a,b,c,d}, {e, f},
/2 = 10 partitions of {1,2,3,4,5,6} of the form {a,b,c},{d,e, f},

3) /6 = 15 partitions of {1,2,3,4,5,6} of the form {a,b},{c,d}, {e, f}.

061 := the set of
062 := the set of

063 := the set of

Note that these moments are symmetric with respect to (¢1,...,t;). For j =1,2,...,6, k > 1,
m >0, and x € X, define the difference between the sums of the @ggzzj) ’s over different time indices

and conditioning sets as

Z(j) o I(5) [~k k _
A2 (0) = ) Sy {Y_m,w_m,)(_m - x]
T()e{-m+1,...k}
| (96)
() [F! ywk-t .
o Z (I>797z(j) [Y*W”H —m?X—m - .’L‘] 5

TG)e{—m+1,...k—1}

where ZT(j)e{ferl,...,k}j denotes Zflzfm+1 Z?ngm+1 : "ijzme’ and ZT(j)e{ferl,...,k—l}J’
is defined similarly. Define ngjin(e) analogously to A]I%)mx(ﬁ) by dropping X_,, = z from the
conditioning variable.

Henceforth, we suppress the conditioning variable W’ from the conditioning sets and condi-
tional densities unless confusion might arise. The following lemma expresses the derivatives of the
log-densities, V74, »(9)’s, in terms of the ATD (9)’s. The first two equations are also given in

Jj,km,x
DMR (p. 2272 and pp. 2276-7).

Lemma 2. Forall1<k<n,m>0, and x € X,

Ve () = Al o), Vma(0) = A2 1 (0) + Ay (9),

Ve (9) = AF o (9) + 3050 o (0) + Ay, (9),

V0,0 (9) = A o (9) + 4455 L (9) + 355, L (9) + 6450, (0) + Ay, (9),

Vol (0) = AL o (0) + 5AYL - (0) +10A32 - (9) + 10451 (9) + 154221 (1)
+10ATLEL () + ALPELL(9),

Volhma(0) = AS 4 (9) + 640 (9) + 15457 | (0) + 10437 | (9) + 15A30 0 (V)
600G 7, o (0) + 1BATET L (9) + 2005500 (9) + 45ATELL (9) + 15AZL(9) + Agyt! (9).

Further, the above holds when N7l ., .(¥) and A]Zgznz(ﬁ) are replaced with VIly ,(9) and

j7k7m

Proof of Lemma[g The stated result follows from writing V7 ¢y, »(9) =
AV logpg(Y’jm+1|?,m, X m=x)—W logpqg(Yﬁ;}Jrﬂ?,m, X_,, = z), applying Lemma (1| to the
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right-hand side, and noting that V7 logplg(Y_mH, ’im+1|?,m,X,m) = Zf:_mﬂ qﬁj(ﬁ,z:_l)
(see @ and . . The result for V74 ,,.(9) with j = 1,2 is also given in DMR
(p. 2272 and pp. 2276-7). For 7 = 3, the term Agimx(ﬂ) follows from
k k <k -
Ztlzf’mﬁ»l thzferl E§[¢?9t1¢119t2|Y*m7X_m = .T] = Zt1=*m+1 Zti:fm+1 'L9t1t2[ *m’X_
x]. For j = 4, note that when we apply Lemmato V4 log pg (Y]im+1|Y my X—m = ), the last two
(51,1,171 v* X
7m+17 B }4 ( )[ -
x]. The result for j = 5 follows from a similar argument. For j = 6, note that When we apply

terms on the right-hand side of Lemmal|l|can be written as ZT( Def

Lemmato V6logpy(Y*, 11 'Y _n, X_,n = x), the last four terms on the right-hand side of Lemma
can be written as > 76 cq—m1,. k)6 <I>19(T() )[Y_m, X = xl. O

The following lemma provides bounds on @ i 2 )[.7-"] defined in and and is used in the
proof of Lemma For j = 2,...,6, define ||<Z>tHc,o i= SUPgenrs SUP, o |0 (9, Yy, 2, Y1, 27)| and
7 0 £
ler ) lloo == Cter,..tpyeozin 165 loo -+ 1647 loo-

Lemma 3. Under Assumptions[1], [3, and[{ there exists a finite non-stochastic constant C that
does not depend on p such that, for allm’ >m >0, all —=m <t; <ty <--- <t; <n, all) € N*
and allz € X, and j =2,...,6,

(@) |25, V2l < Cpltzmtim D liatam Ve VG i e g7 o,

(b) |(I)I(Jgj [?T_Lm,X = 1] <Cp(t2 t1—1) 4 V(ta—ta—1) L VoV (tj—tj—1— 1+H¢T])Hom
() |<1>I“2J Y X = 2] = O30 Y ]| < Cplmti=De o))

(d) (O3 Y X = ] = @GP Y X = ]| < Cptm =D 670
(&) |05 (Y™, — @59 (Y01 < Cplr =+ 6T,

(F) @5 Y s X = 2] = O YT X = ]| < Cpln i) ) |

Proof of Lemmal[3 Recall supgeps- sup, .+ [¢'(9, Yy, 2, Y, 1,2') — Ey[¢" (0, Vs, 2, Y1, 2)| F]|
< 2supgeprs SUp, o |¢°(9, Yy, 2, Y1,27)| for the conditioning sets F that appear in the
lemma. Define ¢}, := &9, Z 1) — Eg[¢'(9,Z;_)|Y",,], so that ES [qﬁf;ltl ~-d>f;§j|?7_bm] =
Ey [‘%tl -<;~5f9jtj [Y",.]. Henceforth, we suppress the subscript 9 from ¢l and q@%t.

Recall that qbi(z?,Zi_l) depends on X; and X;_;. Parts (c¢) and (d) follow from Lemma (a)
and the fact that, for any two probability measures p1 and p2, SUD ¢(2):max, |f(z)|<1 | | f(@)dp1(x) —

[ f(@)dpe(z)| = 2[|u1 — pellrv (see, e.g., Levin et al| (2009, Proposition 4.5)). Similarly, parts
(e ) and (f) for t; < n — 1 follow from Lemma [11|(b), and parts (e) and (f) for ¢; = n follow from
@520 11 < 27670 oo

We proceed to Show parts (a) and (b). The results for j = 2 and j = 3 follow from Lemma
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11{(c) and

E(Xt1 - Eth) e (th - Eth) = COV[Xt17 (Xt2 - EXtQ) T (th - EXt])]

(97)
= COV[(th — Eth) e (th71 — Ethil), th].

Before proving the results for j > 4, we collect some results. For a conditioning set F = ?ﬁm or
{Y", , X, =z}, Lemmas (c) and imply that

. 0 e i i (G
|E19[¢fll¢tj|f” < Cp(tz t1—1) 4 V(tj—tj_1 1)+||¢7’((Jj))”00’ (98)

c £ c cr .l 0
E§[671 - ¢ | F] — EG[071 - - b1 [FIBG [ ¢ t) - 67| F]

- 2 = b : ,
= |COV§[¢fi ...¢f:,¢€k+1 . ¢tj|]-“” < Cp(tk-H th 1)+H¢§_((Jj))Hoo forany 2<k<j—2. (99)

tr4+1

Parts (a) and (b) hold for j = 4 because q)g’(;}()@ [F] < Cpltamti=DVvitazts—1)y Hﬂ‘%l!o@ from

and we have @ggil() plFl < Cplts—tz=D+ Hgbi((i)) |00 from writing @?7{2(%&1 defined in as @f;lﬁ(%&‘ =
covg 1} B2 613 Gt F) — Bl of | FIEG (63 6111 F) — E5lof; 641 FIEG[6,2 13| F] and applying (99).
Parts (a)—(b) for j = 5 follow from a similar argument.

For j = 6, first, @gg?g(),)[]:] is bounded by Cp<t2_t1_1)+v(t6_t5_l)+||¢g—((66))||oo from
(98).  Second, write ®IT)[F] = Ay + A, where Ai = (@1, 6010001l F] —
ES [ht, bty bty | F| EG (1, 01501 | F) and Ay denotes all the terms on the right-hand side of @ggj()b,) [F]

in except for A;. A is bounded by Cp(t47t3*1)+H¢fIr((%))Hoo from , and Ay is bounded

by Cp(t4_t3_1)+|\¢§-((?)|]oo from . Therefore, (I)ggij()fi) [F] is bounded by Cp(t4_t3_1)+’|¢§-((%))|\oo.

Third, write ¢§§§Zﬁ)[f] = Bi + By + Bz, where By = E§[¢y, b1, b15b1, 015 16| F] —
B5 [0t 0ts 015 06| FIEG (01, 01| FI, Ba = = 21 2,00y {er s} e Xo1 Bo[P1020t Oty | FIEG (D1, de, | F] +

23 (ab} o) fef e Xos B9 Pta Ory | FIEG (D1, b1y | FIEG (1, b1, | F), where X is the set of () = 6 par-
titions of {1,2,3,4,5,6} of the form of {1,2,¢,d},{e, f} and
Xe3 = {({1,2},{3,4},{5,6}), ({1,2},{3,5},{4,6}),({1,2},{3,6},{4,5})}, and Bz denotes all

the terms on the right-hand side of @5%?()6)[}“] except for By + B;. Bp is bounded by

Cp(t37t271)+||¢§_((%))||oo from . We can write By as
2 ({1 2c.dp e, eXon U Ep [Pt Ot Pt ra | FIEG (9t 01, | F] + B[, fra | FIEG (e Pt | FIEG [de b1, | ]} =
— Z({l,2,c,d},{e,f})€X61 Efg [¢te¢tf |~7:]COV19 [¢9t1 ¢9t27 ¢9tc¢9td|]:]7 then this is bounded by

Cplts—ta=l+ ||¢:§’-((66))||oo from |@D Finally, Bs is bounded by Cp(ts—t2=1)+ H¢§-((66))Hoo from . There-

fore, @gg(f()@ [F] is bounded by Cp(t3_t2_1)+Héf)i((%))ﬂoo. From a similar argument, @gg?()@ [F] is also
bounded by Cp(t5_t4_1)+|]¢§,((%))|]oo, and parts (a) and (b) follow. O

We next present the result that bound the difference between A]Ig)mx(ﬁ) and ZJIgzn(G) that
appear on the right-hand side in Lemma This lemma extends Lemmas 13 and 17 of DMR.
Let TI(1) = Qi TT(2) = qiy /2 if i1 = i9 and (gi; A qiy)/2 if i1 # ido9; TI(3) = qi, /3 if i1 = i9 = i3,

(qi1/2/\qi2/4) if i1 # iy = i3, (qil NGy /\qi3)/3 if 41, 9, i3 are distinct; TI(4) = q,;l/4 if i1 = 9 = i3 = 14,
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(Gix N Gis)/4 i i1 # dp = i3 = ig or i = dy £ i3 = a5 Tr(5) = iy /D i i1 = dp = i3 = i4 = is5;
(gi, /3N giy/6) if iy ;é ip = i3 = i4 = i5; T7(6) = q1/6. Part (d) of this lemma establishes the uniform

convergence of {A Iy zn »(¥)}m>0 to a random variable that does not depend on z.

Lemma 4. Under Assumptions [1, [3, and [f], for j = 1,...,6, there exist random wvariables
K10y, AMz(j) 1} i—y € L0 (Py«) such that, for all 1 <k <n and m’ >m >0,

(a)  sup sup \A]mw — Ay 0)] < Kk + m)Tpl®+m=D/24 g s

TEX YEN*
() sup sup AT @) = AT, (9)] < Ky (k4 m) T pllEm=/18900 g5
x eN*

(¢) SUP 0 SUPye 1 SuPgen |ATT) ()] + 5P,z supgen- (B pm(0)] < My Poe-a.s., (d) Uni-

formly in 0 € N* and v € X, A @ (¥) and A]Igan(ﬁ) converge Py«-a.s. and in L") (Py«) to

7,k,m,x

A]Iglo(ﬂ) L"2G) (Py«) as m — oo.

Proof of Lemmal{ First, we prove parts (a) and (b). Recall 7(j) = (t1,...,t;). For part (a),
define, suppressing the dependence of A7 ;) on ¥ and Z(j),

Fa0) [Y,m,X_ } ) {Y,m, x} |
A7) = ﬂi(;)ﬂ]g ) {? ] + @I(]g ) {Y ml] , if max{ts,...,t;} <k,
(I)I( 2 ) [Y_m’ Xom } 197’(3 [Y } otherwise,

A’T(j,f,k) = At1t2---tj,g k-k where T(.%e? k) = (T(J - 6)7 ku te 7k)

£ times £ times

Then, we can write A} gjznx('l?) — ngin(ﬁ) = 2 7()efomt1,..k0 AT(G) = Ba + Ay + Ac, where

i1 .
J
Ay = > A7y, Ay ::Z<€> 2 ATGaky  Aei= Ak, k)
TG e{-m+1,... . k—1} (=1 T(j—0)e{—m+1,...k—1}i—*

and A, := 0 when j = 1. From Lemma [3| and the symmetry of Az, A, is bounded by
Cijk,mMI() where

7. kmo
Bjgm i= Z p(m+t1—1)+ A p(t2—t1—1)+ A A p(tj—tj—1—1)+ A p(k—l—tj—1)+>
—m~+1<t1 <ta < <t;<k—1
— Z <p(t1—1)+ A p(tz—t1—1)+ A A p(tj—tj—1—1)+ A p(k+m—1—tj—1)+) ,
1<t1 <to<---<tj<k+m-—1
() ._
My = max 6 9o 197 oo

—m+1<ty,...,t

From (t — 1)} > |¢/2] and Lemma |13} Bj 4, is bounded by Cja(p)pl-+m—1/4],
We proceed to derive a bound of M]I,(fzn Define ||¢![% = Y02 ([t] V 1)72||¢i[|%. When
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i1 = ig = --- = ij, it follows from Lemma [14] that MJI,(CJT)n < (k4 m)it¢1 |2, and [¢" | €
L"2G) (Py+) from Assumption In the other cases, observe that if z,y, z > 0, we have zy < 22 +12,
zyz < 23 + % + 23, xy < 2t 4+ y¥/3, and zy < 23 + y?/2 from Young’s inequality. By using this
result and LemmaE we can bound MZY) by

7.k,m
j=2and iy #iy: (k+m)*(llo™ 1% + l¢=11%),
j=3and iy # iy =i3: (k+m)* (o™ 1% + 92115,

j =3 and iy, i, i3 are distinct = (k +m)*([|o" |3, + 1™ (1%, + 9712,
j=4and iy #iy=i3=1iy: (k+m)* (o™ 15 + 62115,
j=4and iy =iy # i3 =iy : (k+m)3([lo" 1% + 6" 115),

j="5and iy # iy =ig =iy =is5: (k+m)* (o™ 12, + 9115

Therefore, from Assumption A, is bounded by the right-hand side of part (a). From
Lemmas (3| and Ay is bounded by sz;i meJrlStlg---gtj,ggkﬂ(P(mﬂlfln A plta=ti=D+ A

A p(k_tj*f_l)Jr)szJng < CpL<k+m_1)/4(j—1)JMf,ngm. Similarly, A, is bounded by

)

Cpt(k+m_1)/4(j_1)JMf,g{zl s and part (a) of the lemma follows.

For part (b), define, for —m/ +1 <ty,...,t; <k,

By [ X = ] — @0 (VL X =), i max{ty,. 1) <k,
k

() ~ .
@efrj()j)[Y_m,, X _ g =z, otherwise,

DT(j),m’,r =

and define D7 ;) , similarly. Then, we can write Aﬁ%xw) = ZT(j)e{_m_Hw,k}j D7(j)m, and

7
Ajyg}n,@(e) = ZT(j)E{—m’-i—l,...,k}j DT(j),m’,:c = Ad+ Ae, Where Ad = ZT(j)E{—m—f—l,...,k}j DT(j),m’,a:

and

i . m -m k k
A, ZZ (2) Y oYY Y Dy
=1

t1=—m/+1 tp=—m/+1tpy1=—m+1 tj=—m+1

From the same argument as part (a), ATY) (0) — Ay is bounded by the right-hand side of part

j)k)m)m

(a). For A, observe that, with M; := maxi</<; (}),

k

J —-m -m -m k
IAe|§MjZ Z Z Z Z Z ‘DT(j),m’,:c

(=1 t1=—m/+1ta=—m/+1 tg=—m/+1tp1=—m+1 tj=—m+1
k

—m k
<JiM; ) Yoo Y Drgme

ti=—m/+1to=—m/+1 tj:—m’+1

—-m
<jMt > Yo PGl

t1=—m/+1t1<ta<--<t;<k

From Lemma if t < -+ < ty, we have [Dyj) ol < ClI{t; < E}(pltz—ti=D+ A plti=ti-i=D+ A
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S A pE Iy L Tt = kY (plrmhi D AL A pltitioi ) )]Hqﬁz(] |loo- Hence, part (b) follows
from Lemma [T5

For part (c), observe that sup,,-qSupcy Supyep~ A @) (¥)] < A+ B, where A =

7,k,m,x

I I( .
SUP, ;>0 SUP e v SUPge A \A]k,)mm(ﬁ) - Aj,g})@( )| and B := sup,cy SUPyen~ ]Ajgjz]m(ﬁﬂ A is
bounded by Kz(; )k7 L(k=1)/1340] from part (b). B does not depend on m and is distributionally
equivalent to sup,cy Supgep |4; 132 12(9)]. This is bounded by sup,e x Supye - |A]Z(1]3€_1 L) —
Ajz(ljz)x( )| + sup,ex Supyep- |Aj’(1]2)x(19)|. The first term is in L7 (Py«) from part (b), and
the second term is in L™20)(Py-) from the definition of A’ ggznx(ﬁ) Therefore, there exists
Mz i € L' (Py«) such that A+ B < Mz, and part (c) holds in view of part ( ) Part (d)
follows from parts (a)—(c) because parts (a)—(c) imply that {A] v mm( ) }m>0 and {A] . m( ) Im>0
are uniform L7 (Py«)-Cauchy sequences with respect to ¢ € N* that converge to the same limit

and L(Py«) is complete. O

Lemma 5. Under Assumptz'ons @ and there exist random variables { Ky}, € LO+e)as/e(Py..)
and p € (0,1) such that, for all1 <k <n andm’ >m >0,

Po (Y |Y_m ,
pﬁ* (Yk |Y

_ ~k—1
Xom=2)  PVil¥ )
~~k—1
L Xow=1) B (WY

_ ~k—1
Py (Vi Y )
Py (ViY0)

< Ki, sup sup < Kpphtm=1,

rEX YEN*

sup
JeEN*

—m

Furthermore, these bounds hold uniformly in z € X when pﬁ(Yk|?]:nl) and Dy« (Yk\?l:nl) are
replaced with pﬁ(Yk‘Y X_m/ =) and py~ (Yk]Y X_m/ =x).

Proof of Lemma[5 The first result follows from noting that ﬁﬁ(Yk\?]:nl)

. k-1 .
= D rap)exz 99 (YY1, 21)qo, (@k—1, 2)Py(zk-1|Y ) € [0-Gur,04Gyx] and USIDg As-
sumption (b) For the second result, observe that |p19(Y;€|Y_m,X,m =1z — pﬁ(Yk|Y )] <

Z(mk,l,mk)exzgﬂ(Yk!qu,xk)%z(ﬂckﬂ,xk)!%(l‘kfl\Y_m,X—m = 2) - Pyl Y0 <
pk+m—1

then follows from writing the left-hand side as

04+Gyr/o—, where the second inequality follows from Lemma (a). The second result

(Yk|Y—m7
Do (Yk|Y

L X = x)

i

—m

X_m =uz)

_ —k—1 _ —k—1. _ —k—1
Xfm_'r) Po(YelYZ,,) N Po(Yi|YZ_,,) Do (Yi|Y_,,) — Pﬁ*(YMY
- p——)

L X = ) Po-(YalYZ,,) Py (Yk’Y

—m > —m>

noting that p,g(Yk|Y X,m = z) > 0_Gyg, and using the derived bounds. The results with
j2) Yk\Y,m/, X_ v = ) and py- (Yk]Y]i:nll,X_m/ = x) are proven similarly. O

The following result originally appeared in equations (59)—(60) of Kasahara and Shimotsu

(2015). We state this as a lemma for ease of reference.
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Lemma 6. Let f(u,02) denote the density of N(u,o0?). Then

a1V f(0,0) if k=1,
2V ,2£(0,0) + 2¢2V,2 £(0,0) if k=2,
Vapfledmep)| =4 " |
H Clvusf(o,()) —|—66162Vu02f(0,0) if k=3,
AtV f(0,0) + 1232V 2 £(0,0)V,2 £(0,0) + 1263V ,4 f(0,0)  if k = 4.

Proof of Lemma[6l Observe that a composite function f(X,,h(\,)) satisfies V)\ﬁf()\#,h()\“)) =
(Y, + Va)F f (A () lu=n, = Zf:o (k)VAﬁfjuj S (s h(w))|u=x,- Further, because V1| —o = 0

J

except for j = 2, it follows from Fad di Bruno’s formula that V,;f(c1Au, c2u®)|y,—u—o is 0 if
§=1,3,1is 22V, £(0,h(0)) if j = 2, and is 12¢3V,2 £ (0, h(0)) if j = 4. Therefore, the stated result
follows. -

Lemma 7. Suppose the assumptions of Proposition @ hold. Then, there exist 01, 02,03 € (0, 0)
such that, for all k > 1,

k-1 k—1

@ VsDyr(YelYo ) VoVasDyega(YelYo )
oY) B Y
(b) Vkﬁpw*“(mﬁ_l) oy TPl Y )
Py (YelYo ) Pyrr(YelYo )
 VoVaPrpaY ) Va0V )
P goa (Y Yo ) PreaaYil Yo )
Proof of Lemma[7. Part (a) holds if
VaiBur0a(Ye Yo )/Pyr0a(Yal Yo 1) =0, (100)

. _ ~k—1 _ ~~k—1 _ ~k—1 _
because (i) Vs Dy pa(Yel Yo )= VaaDyroa(Yel Yo ) = VoViaDyrga(Yil Yo e for ¢ € (0, ) from

the mean value theorem and (ii) Py« Qa(Yk\?g_l) does not depend on the value of p.

We proceed to show (100)). Note thatV,\Zﬁw*ﬂ(Yk|?g_1)/ﬁw*ﬂ(Yk|?§_l) =V logﬁw*ﬂ(Y’ﬂ?O)_

Vs logﬁw*W(Y’f*H?o) from and VATQWW(YH?’SA) = 0. Let V¥ := Vi, logg; with
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Vi = V5. Observe that

V,\?’ 10g Py+0a Y1 Yo) = ZEw*Oa [V?’f*

Yo +3 Z Z Eyeon V26, V1,

t1=1t2=1

?’g]
+ Z Z Z Eyr0a [

t1=1ty=11t3=1

) (101)
=3 Eyeta [v?’e: 3V + VEVEVEYL
=1

%

where the first equality follows from Lemma [l the second equality holds because (i) X is serially
independent when ¢ = 0 and (ii) V¢ = dy V. f;/f; and V2; = thVth*/ft* — (dNV uff/f7)?, and
(iii) Ep+oa [dlt\?g] = Ey+0a [d%y?lg] = 0 from , and the third equality follows from The
right-hand side is 0 from , and hence part (a) is proven.

For part (b), from a similar argument to part (a), the stated result holds if

k
= Epoa [nggi /9t

k-1

_ < k-1
V,\gpw*OQ(YMYo )/p'l,ZJ*OCM(Yk‘YO

)—b(a)V,\gﬁw*OQ(YH?o )/pw*Oa(Yk|YO )- (102)

k-1

Observe that V)\ﬁpw*oa(yllg|?0 )/pw*oa(Yk|Y0

from , VaDyr( Yk|Y§ !

gives

) = V1 108 Byeoa(Y8¥0)~ Vs log Byeoa (YA [¥0)
k-1
) =0, and V)z 10g Dya(Yi| Y

) = 0. A similar derivation to (101

k
_ - Y
V31 108 5000 (YE[Y0) = D Bueon | Vst /97 Yo |- (103)
t=1

102|) follows from (|103)) because (i) VA2pw*0a(Yk|Yo )/pw*[)a(YHYIS !

) = Ey« [V 207 Y,] from a
similar argument to q@ and (ii) Ey-0a[V 197 /9 \YO] = b(a)Ey« [VAggk|?§] from . Therefore,
part (b) is proven. O

Lemma 8. Suppose the assumptions of Proposz'tz'on hold. Then, there ezist p1, 02 € (0,0) such
that, for all k > 1,

_ ~~k—1 ~~k—1
VA3pw*7r(Yk|Y0 ) 3fk \4 VA3pw*g1a(Yk‘Y0 )
— = o(l-a)(1-2a) % +0 —
pw* (Yk‘YO ) k plp*ma(Yk’YO )
k—1 ~~k—1
v 4? *r Yk Y v v 4p * a Yk Y
(b) Aul ( |k01 ):a(l—a)(1—6a+6a) 4fk +o APy (VYo )
Pyer (Ve[ Yo ) T BVl Yo )

Proof of Lemma[8. The proof is similar to the proof of Lemma (a). From an argument similar to
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the proof of Lemma [7], the stated results hold if

_ k-1, ,_ k-1
(A) VasDyroa(YelYo )/Pyr0a(Yal Yo

_ <h—1\ ——
(B)  VasDyeoa(YalYo )/Py-0a(YelYo

) = a(l —a)(1 = 2a)V,s fi/ fi,

Y = a(l — @)(1 - 6a+6a)V 4 fi/ fi.

Observe that equalities (101)) and (103) in the proof of Lemma [7]still hold under the assumptions

of Proposition |11|if we use in place of (27). Consequently, (A) and (B) follow from (40)), (41),
and the argument of the proof of Lemma |7, and the stated result follows. O

Lemma 9. Suppose that the assumptions of Pmpositz’ons@ hold. Let C,; be a set of sequences {n,}
satisfying \/n(n, — n*) — hy for some finite hy. Let P = [Ti—1 fx(n,0) denote the probability
measure under n, with A, = 0. Then, for every sequence {n,} € C,, the LRTS under {P} }

converges in distribution Supyeo, (tN’/\QIA.ngf)\J given in Propositions |8

Proof of Lemma[9 Observe that 9, := (7, 1, An) = (7, 0% + hyy/+/n, 0) satisfies the assumptions
of Proposition Therefore, Proposition (17| holds under ¥, with v,(spnx) —a N(Zoh,Z,) with
h = (h%, 0)" under Py . Furthermore, the log-likelihood function of the one-regime model admits
a similar expansion, and log(dP} /dP).) = hyvn(syk) — (1/2)h;Zyhy + op(1) holds under P .

Gh
Therefore, the proof of Proposition E goes through by replacing G, with ng = [ G;” ] =
on

Gon + Zoh. In view of G,’;n = Gyn + I,h, and Gggn = Gxon + Lryohy, we have G})fmm = G’;fgn —
Drnoly, 1ng = Ghon — Trnely, lGnn = G)on- Therefore, the asymptotic distribution of the LRTS

under P is the same as that under Pj., and the stated result follows. O

11.2.3 Bounds on difference in state probabilities and conditional moments

Lemma 10. Suppose X1, ..., X, are random variables with maxi<;<n E|X;|? < C for some ¢ > 0

and C € (0,00). Then, maxi<i<y | Xi| = op(n'/9).

Proof of Lemma[10. For any € > 0, we have P(max;<;<p | X;| > 5n1/‘1) < Zlgz’gn P(|X;| > 6n1/‘1)
< g7ipt > i<icn E(XGI{ X;| > enl/9}) by a version of Markov inequality. As n — oo, the
right-hand side tends to 0 by the dominated convergence theorem. O

The following lemma extends Corollary 1 and (39) of DMR and an equation on p. 2298 of DMR;
DMR derive these results when ¢; = 3 and {3 = {4 and W?”_ is absent. For the two probability
measures p; and peo, the total variation distance between p; and pg is defined as ||u1 — po||rv =
sup g [11(A) — pa(A)]. |- lrv satisfies supsoy0e sy | | F(@)dpnn (@) — [ F@)dpa(@)] = i — pallry-
In the following, we define V", := (Y, W",,), and we let ¥*,, and x_,, denote “V ", =v", 7

and “X_,, = x_,."
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Lemma 11. Suppose Assumptions|] I@ hold and ¥, € ©,. Then, we have, for all V",
(a) For all —m < t; < tg with —m < n and all probability measures 1 and po on B(X),

S P (X2 € o V1 (o) = 3 Pon (X2 € o P iaam)| < A
T_mEX T_m€EX ™V
(b) For all —=m <t; <ty <n-—1,

H]P)’ﬁx (Xii S |V2m)x_m) - Pﬂw(xif - ’v’r_L:nl’x_m)HTV < pnflftg'

The same bound holds when x_,, is dropped from the conditioning variables.
(c) For all —m < t; <ty <tz <tg with —m < n,

Py, (X}2 € X € 77, 2om) — Py, (X2 € 7", 2Py, (X5 € 97 2em) ||y < 07720

The same bound holds when x_,, is dropped from the conditioning variables.

Proof of Lemma[11. We prove part (a) first. We assume ¢; > —m because the stated result holds

trivially when ¢; = —m. Observe that Lemma 1 of DMR still holds when W?”  is added to
the conditioning variable because Assumption [ I implies that {(Xy, Yj)}22, is a Markov chain
given {Wy}22 . Therefore, {X;}s>_p, is a Markov chain when conditioned on {Y", ,W" 1 and

hence Py, (X2 € AV, z ) = thle/\’ Py, (X[? € AlXy, = x4, V", )po, (24, [V, T—y) holds.
From applying this result and the property of the total variation dlstance, we can bound the
left-hand side of the lemma by [[> . 3 po, (Xy, € V2, 2 )1 (@—m) — D, cxpo. (Xt €
AV s T—m ) p2(T—m)|l7v. This is bounded by p!™™ from Corollary 1 of DMR, which holds when
W . is added to the conditioning variable. Therefore, part (a) is proven.
We proceed to prove part (b). Observe that the time-reversed process {Z,_}o<k<ntm IS
. and that Wy is independent of (X’g—l,?ﬁ‘l) given ng_l.
Consequently, for k = n,n — 1, we have Py, (Xﬁ € AVFE, L xy) = th2eX ng(XE € AlXy, =
T4y, V2 T P9, (T,|F & _ ). Therefore, from the property of the total variation distance, the
left-hand side of the lemma is bounded by [Py, (X, € -[¥7,,, —m) — Py, (Xt, € "5 )7V
This is bounded by p"~17!2 because equation (39) of DMR p. 2294 holds when W” is added to the

conditioning variables, and the stated result follows. When z_,, is dropped from the conditioning

Markov when conditioned on W™

variables, part (b) follows from a similar argument with using Lemma 9 and an analogue of Corollary
1 of DMR in place of equation (39) of DMR.

Part (c) follows immediately from writing the left-hand side of lemma as supy g [Py, (th €
A" ) [Py, (X2 € BIV™,, X!2 € A) = Py, (XUt € BI¥",,,2_,)]| and applying part (a). O

_m’
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11.2.4 The sums of powers of p

Lemma 12. For allp € (0,1),c¢>1,¢>1, and b > a,

S (Lo - ¢+ 1)plO-a)/(eHnal
S (plt=mreal p plo=0/a)) < ( )/i —

t=—00

S . e g(c + 1)pl=a)/(c+1)a)
S (ol p plem0senl) < ( )fi_p '

t=—00

)

Proof of Lemma[I2. The first result holds because the left-hand side is bounded by

a+bc)/(c+1 — o8 —a)/c —|(a+bc)/(c
yolatba/etD] jle-t/a) 4 th[(aerc)/(chl)JJrlpL(t Veal < gplib=llatbo)/(e+DIYal (1 — p) +
cqpHLlatte)/(et]ti=a}/ea] /(1 — p) < (1 4 ¢)plb=®)/(e+1)al /(1 — p). The second result is proven by
bounding the left-hand side by Z,Q(:“fjf)/ e+l plb=t/eal D= (ac+b)/(c4+1) 41 P [(t=a)/a] and pro-

ceeding similarly. O
The following lemma generalizes the result in the last inequality on p. 2299 of DMR.

Lemma 13. Forallpe (0,1),k>1,g>1, andn >0,

3y <pu1/qJ A pllta=t/al p oo plt=te-1)/al A pun—tk-)/qJ) < Cry(p)p\"/2k4),

where Ciq(p) == ¢"k(k + 1)I(1 — p)~*.

Proof of Lemma[15 When k = 1, the stated result follows from Lemma [I2) with ¢ = 1. We first
show that the following holds for k > 2:

k-1 1 pL(n—t1)/kq
3 (putrm/qj Ao A plle=te)/al 5 pun—tk)/qJ) <1 (k + 1>'Pk_1 . (104)
<t <ty<n (1=»)

We prove ({104) by induction. When k = 2, it follows from Lemma (12| with ¢ = 1 that

Yoty (Pl AL A pln=t)/aly < 9qpln=t)/24l /(1 — p), giving (104). Suppose (104) holds when
k = £. Then (104) holds when k = ¢ + 1 because, from Lemma

3 (putz—tl)/qj A plts=t2)/al o p pllteri—to/al o pL(n—te+1)/qJ)

11 <to<-<ty<tpy1<n
<Y (plemra g S <put342>/qJ Ao A plteri—te)/a) o pun—mn/qJ)
to=t1 to<-<tpy1<n

/—1 n
< G 3 (et ot

l
< CEF D ) /(e 1)g)
- (1-p)f ’

to=t1
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and hence (104]) holds for all &k > 2. We proceed to show the stated result. Observe that

3 ( t1/a) A pllta=ti)/al A A plls—te-1)/a) A pun—m/qJ)
0<t; <ta<-<tp<n
n/2 n—ty
<2y 3 S < t/al g plta=t)/a) o o p pllts—ti-1)/d] /\pL(n—tk)/qJ>

tl Ot1<t2< <tk 1<tk tk tl

n/2 n—t1

—2%" 3 3 ( (ta=t1)/al p ... p plta—te-1)/d] Apun—tk)/fu)

t1= 0t1<t2< <tk 1<tk tr=t1
n/2
<2)° 3 <put2_t1>/qj Ao A plls=tion/al o pun_tk)m> 7

11=011 <ta <<t 1<t <n

where the first inequality holds by symmetry, and the subsequent equality follows from n —t; > t;.
From (104)), the right-hand side is no larger than ¢*~(k + 1)!(1 — p)(=%) Z?ﬁo pln—t)/ka] <

¢"k(k 4+ 1)1(1 — p)~Fpln/2kal | giving the stated result. O

The next lemma generalizes equation (46) and p. 2294 of DMR, who derive a similar bound
when £ =1, 2.

Lemma 14. Let a; > 0 for all j. For all positive integer £ > 1 and all k > 1 and m > 0, we have
MAX 1<ty .oty <k Bty " Ay < (k + m)£+1AK7 where Ay := Efi,oo(’ﬂ v 1)72 f

Proof of Lemma [} When ¢ = 1, the stated result follows from max_,,+1<t<k a; < Zf:_m_H ay =

Zf:_mﬂ(]t]\/1)2(]t]\/1)_2at < (k+m)2 322 (Jt|v1)~2as. When ¢ > 2, from Hélder’s inequality,

we have max o, 1<p, <. <tk Gty ey -+, < (0= iy @)’ = [ (VD) V1) 72/ ey <

[Sob e ([ v )P EDNED ST (V1) 2af < [(k+m) 2 ED A, = (k+m) 14, O
The following lemma generalizes the bound derived on p. 2301 of DMR.

Lemma 15. For o >0, ¢ >0, and ¢t > 0, define ¢35 (p®) :== > ;2 pleltl/aes,. Forall p € (0,1),
k>1,and 0 <m </,

—m

S S (pt(kflfte)/qJ A pllts=ts)/al p pllts=ta)/al 5 plits=ts)/al o
t1=—m/+1t1<ta<t3<t4<t5<ts<k
; ; (105)
pllts=t2)/a] \ putrtl)/qJ) [ cie, < pltEttm/2ae) g0 ( 1/2a7) H (p1/4aj>7
j=1 j=2

where (aj,bj) are defined recursively with (ag,b2) = (1,1) and, for j > 3, aj+1 = 4a;(a;j+b;)/(2a; —
1) and bj11 = a;(4b; — 1)/(2a; — 1). a; and b; satisfy aj,b; > 3/2 for all j. Direct calculations
using Matlab produce a7 = 334.5406.
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Proof of Lemma[15 First, observe that the following result holds for a,b > 1/4, t; < 0, and
titj1 >t

ti+1t1 tj da + 1)t; 2a — 1)t
(a)lftjgw? then ’ |<CL(CL—|— )g+1+(a )1—tj,
a+b 4a 4a(a + b) (106
(b) if t; > atjrith then ﬂ 7t Ca(db =Dt + (2a+4b+ 1)ty
= a+b da ~ a 4a(a + b)

(a) holds because (i) when ¢; < 0, we have t; < (atjy1 + t1)/(a +b) = (4a — 1)t;/4a < [a(4a —
Dtjr1 + (da — 1)tq]/4a(a + b) = —t;/4a < [a(4a — 1)tj41 + (4a — 1)t1]/4a(a + b) — t; and a(4a —
Dtjr1+(“da—1)t <a(da—1)tj+ (da— 1)t +2a(tjp1 —t1) = a(da+1)tj11 4+ (2a—1)ty; (ii) when
tj >0, we have t; < (atj;1+1t1)/(a+b) = (da+1)t;/4a < [a(da+1)tj11+ (da+1)t1]/4a(a+b) =
tj/4a <la(4a+ 1)tj11 + (4a + 1)t1]/4a(a +b) — t; and (4da + 1)t; < (2a — 1)t;.

(b) holds because (i) when ¢; < 0, we have t; > (atjq1 + t1)/(a +b) = (4b+ 1)t;/4a >
[a(4b+ 1)tj41 + (4b+ 1)t1]/4a(a+b) = —t;/4a < btj/a — [a(4b+ 1)tj41 + (4b+ 1)t1]/4a(a + b) and
a(4b+1)tj41+(4b+1)t1 > a(4b+1)tj 41+ (4b+1)t1 —2a(tjr1—1t1) = a(4b—1)t; 11+ (2a+4b+1)ty; (ii)
when t; > 0, we have t; > (atjy1+t1)/(a+b) = (4b—1)t;/4a > [a(4b—1)tj 11+ (40— 1)t1]/4a(a+
b) = tj/4a < btj/a — [a(4b — 1)tj41 + (4b — 1)t1]/4a(a + b) and a(4b — 1)tj41 + (40 — 1)t; >
a(4b — 1)tj1 + (20 + 4b + 1)ty.

We proceed to derive the stated bound. It follows from (a) and (b) and |z +y| > |z] + |y]
that, with ¢; = (a;tj41 + t1)/(a; + b;),

k
3 <pL(tj+1—tj)/qJ A pubjtj—tl)/am) o,

tj:,m/+1

Laj(4bj_l)tj+1_(2aj_l)t1J Laj(4aj+1)tj+1+(2aj—1)t1 ti ) aj(4bj—l)tj+1+(2aj+4bj+l)t1J
< p 4aj(a;+bj)q Z p 4aj(a;+bj)q _|_ Z p Jq Zaj(a;+b;)q Cjt'
- J

tjgfj tjztg
\_aj(4bj_l)tj+1_(2aj_l)tlJ /4
da;(a;+b; o0 a;

<p e (pt )

biy1tii1—t

| ]+a? J 00 1/4a;
=p it el (p / J) . (107)

Observe that aj;1 > 2a; > 2 and bj1 > 2b; — (1/2) > 3/2 for all j > 2. Therefore, we can apply

(106) and (107) to the left-hand side of (105 sequentially for j = 2,3,...,6. Consequently, the
left-hand side of ([105)) is no larger than

m | brlk=D=t;
Z P o JCltll_[ (Pl/4aj)-

t1=—m/+1

Observe that [t;| < k—1—2t; —m because t; < —m = —t; < —=2t; —m < k—1—2t; —m. From
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b7(k—1) >k —1and |[t;] <k —1— 2t; —m, the sum is bounded by

—_m k—1—t k—14+m —m k—1-2t1—m k—14+m
Z ,0L ard JCltl :PL era | Z PL 2a7q Jcm SPL 2a7q ch‘; (Pl/Qm)a

t1=—m/+1 t1=—m/+1

and the stated result follows. O

11.2.5 Derivation of 9,11, = (9, 70,,) and Tpm = (0m, m, 9),)

Define Jy := {1,..., Mo} \ Ji, and let p; and p; denote PﬂMOH(Xk = j) and ]P)ﬁ}k\lo (Xk = 7),
respectively.

We parameterize the transition probability of X} in terms of its stationary distribution and the
first to the (m — 1)-th rows and the (m + 1)-th to the (Mp + 1)-th rows of its transition matrixm
For i € J,, we reparameterize (Dim,Pim+1) t0 DiJ = Dim + Pim+1 = IPgM0+1(Xk € Jn|Xp—1 = 1)
and Pimji; = Pim/(Pim + Piim+1). Furthermore, we reparameterize (pm,pm+1) in the stationary
distribution to p; = pm + Pm+1 = PﬁMO+1(Xk € Jim) and pry; = P/ (Pm + Pmt1) = PﬁMO+1(Xk =
m|Xy € Jp). Therefore, with A and V denoting “and” and “or,” the transition probability of X}
is summarized by Vo112 := ({Diss Pimlis YieT,,» APis VieT, njeT g 1Pmt1 1 AP} ieT,00 PI> Pl

Split Inrg+1,2 @8 Into+1,0 = (Vom, Tam)'s Where Yam = ({Pij}icT, njeT, 00 Pidtic,,» 1PiticT, g PT)
and Ty 2= ({Pim|is }icT,, {pm+17j}§\4:()1,pm|J). When the m-th and (m+1)-th regimes are combined
into one regime, the transition probability of X} equals the transition probability of X under 197\/10@
if and only if Uy, = 03, = {pij = P;} fori e J,AN(1<j<m—1);p;; = pz"j_l fori € J,AN(m+2 <
J < Mo); pig = Py, for i € Jmip; = pj for 1 < j <m—1;p; =pj_; for m+2<j< Mo;ps=p;,}
Tzm 18 the part of ¥y 41, that is not identified under Hy,,.

We proceed to derive the reparameterization of some elements of 7, in terms of (v, o). First,
map Prmt1,m ad Prt1m+1 0 Pmt1,J = Pmt1,m + Pmtlmtl = P0M0+1(Xk € J|Xp—1 =m+1) and
Pt im|] = Pmtlm/Pmi1,) = ]P’gM0+l(Xk =m|Xy € J,Xp—1 = m+1). Let P; and 7y denote
the transition matrix and stationary distribution of Xj restricted to lie in J,. The second row
of Py is given by (pm11,m[ss 1 — Pm+1,m|s), and 7w is given by (pps, 1 — pp|s). From the relation
my = my Py, we can obtain the first row of P; as a function of py, 11 ;s and py, ;. Finally, the

elements of Py are mapped to (0, am,) as in Section @

HQuppose a Markov process has a transition probability P and stationary distribution 7 whose elements are strictly
positive. If m and all the rows of P except for one are identified, then the remaining row of P is identified from the
relation 7P = m.
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Table 1: Rejection frequencies (%) under the null hypothesis at the nominal 10%, 5%, and 1%

levels

Notes: We use 199 bootstrap samples and 3000 replications. For testing Hy :
1 and 2, we generate the data under (S, p1, po,0) =

(B, 1, pho,01,02) = —1,1,0.9,1.2), respectively.

Hyo:M=1
Model 1 Model 2
Test 10% 5% 1% | 10% 5% 1%
n =200 LRT 1043 4.63 1.13 | 10.17 5.27 1.00
supTS 9.87 5.10 093 | 9.63 4.67 0.90
QLRT 10.03 4.97 1.03 — — —
n=>500 LRT 8.80 4.03 0.67 | 9.13 4.30 1.23
supTS 9.50 4.57 0.60 | 9.23 5.07 0.90
QLRT 9.07 4.43 0.80 — — —
HO M =2
LRT Model 1 Model 2
(pll pgg) 10% 5% 1% 10% 5% 1%
n =200 (0.5,0.5) | 12.06 7.16 1.70 | 10.57 4.87 0.80
(0.7,0.7) | 11.97 6.07 1.70 | 9.63 4.53 1.07
n=>500 (0.5,0.5) | 9.77 4.43 0.70 | 837 3.90 0.73
(0.7,0.7) | 840 4.20 0.70 | 9.63 4.80 0.63

(0.5,

(0.5,

M = 2 using Models

—1,1,1) and

Table 2: Rejection frequencies (%) for testing Hy : M = 1 under the alternative hypothesis

Model 1 Model 2
(pn,pgg) Test p1 =020 p; =06 =10 pu; =020 pw =06 pu =1.0
(0.25,0.25) | LRT 4.87 46.90 99.63 16.40 78.00 99.97
supTS 6.23 56.43 95.90 16.37 70.97 95.37
QLRT 5.10 8.00 55.27 — — —
(0.50,0.50) | LRT 3.80 7.03 67.87 13.70 43.77 92.77
supTS 4.07 4.40 4.60 14.70 35.77 35.30
QLRT 4.90 9.40 82.50 — — —
(0.70,0.70) | LRT 4.10 10.23 91.07 14.63 51.37 98.17
supTS 4.57 7.40 26.37 14.90 36.20 43.43
QLRT 5.13 8.53 58.73 — — —
(0.90,0.90) | LRT 5.33 46.87 99.97 23.27 79.87 100.00
supTS 6.77 13.90 4.40 19.10 41.17 35.30
QLRT 4.83 5.63 5.97 — — —

Notes: Nominal level of 5% and n = 500. We use 199 bootstrap samples and 3000 replications.

We set pg =
for Model 2.

—p1 for both models, (8,0) =
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(0.5,1.0) for Model 1, and (3, 01,02) =

(0.5,1.1,0.9)



Table 3: Rejection frequencies (%) for testing Hp : M = 2 under the alternative hypothesis

Model 1 Model 2
(1, p2s ps) | (s pos ps) | (s p2, p3) | (pa, p2, 1)
(p117P227p33) - (1707_1) = (2707_2) = (1707_1) = (2707 _2)
(0.5,0.5,0.5) 5.23 30.80 10.33 60.03
(0.7,0.7,0.7) 8.47 94.03 23.10 99.33

Notes: Nominal level of 5% and n = 500. We use 199 bootstrap samples and 3000 replications.
We set (8,0) = (0.5,1.0) for Model 1 and (8,01, 02,03) = (0.5,0.6,0.9,1.2) for Model 2. For both
Models 1 and 2, we set p;; = (1 — p;;)/2 for j # i, so that, for example, (pi2, p13) = (0.15,0.15)

when p; = 0.7.
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Table 5: Selection of the number of regimes: U.S.

Table 4: Parameter estimates: U.S. GDP per capita growth, 1960Q1-2014Q4

Panel A: Model 1 with common variance

M =2 M=3 M =4

coeff. s.e. coeff. s.e. coefl. s.e.
w1 | -0.634 0.200 | -0.823 0.151 | -2.348 0.649
wo | 0.951 0.176 | 0.692 0.172 | -0.330 0.179
143 - - 2.023 0.236 | 0.532 0.161
I - - - 2.025 0.184
o | 0913 0.0563 | 0.752 0.052 | 0.832 0.040
G | 0787 0.041 | 0.773 0.046 | 0.639 0.053

Panel B: Model 2 with switching variance

M =2 M=3 M =4

coeff. s.e. coeff. s.e. coeff. s.e.
p1 | 0.370  0.123 | -0.643 0.308 | -0.698 0.359
uo | 0.426  0.178 | 0.618 0.179 | 0.580 0.192
143 - — 1.826 0.325 | 1.569 0.523
I - - - 2.218 0.830
o1 | 0.655 0.063 | 1.091 0.167 | 1.041 0.197
o9 | 1.495 0.138 | 0.605 0.058 | 0.578 0.073
o3 — — 0.892 0.154 | 0.670 0.282
04 - - - - 0.879 0.336
G | 0.867 0.036 | 0.784 0.050 | 0.783 0.050

GDP per capita growth, 1960Q1-2014Q4

Model 1 with common variance Model 2 with switching variance
LRT LRT
My | log-like. AIC BIC LR, p-val. | log-like. AIC BIC LR, p-val.
1 ] -331.70 669.39 679.58 | 20.86 0.000 | -331.70 669.39  679.58 | 47.25 0.000
2 | -321.27 656.54 680.29 | 27.77 0.000 | -308.07 632.15 659.29 | 22.14 0.000
3 | -307.39 640.77 684.89 | 15.23 0.020 | -297.01 624.01 67491 | 4.87 0.392
4 | -299.77 641.54 712.81 | 6.57 0.523 | -294.57 637.14 71859 | 3.01  0.397
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Figure 1: The posterior probabilities of each regime (Model 1 with common variance): U.S. GDP

per capita growth, 1960Q1-2014Q4
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