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Abstract. This paper is concerned with estimation of parameters defined by moment equalities. In
this context, Kitamura, Otsu and Evdokimov (2013a) have introduced the minimum Hellinger distance
(HD) estimator which is asymptotically semiparametrically efficient when the model is correctly spec-
ified and achieves optimal minimax robust properties under small deviations from the model (local
misspecification). This paper evaluates the performance of inference procedures under two comple-
mentary types of misspecification, local and global. After showing that HD is not robust to global
misspecification, we introduce, in the spirit of Schennach (2007), the exponentially tilted Hellinger
distance (ETHD) estimator by combining the Hellinger distance and the Kullback-Leibler information
criterion. Our estimator shares the same desirable asymptotic properties as HD under correct spec-
ification and local misspecification, and remains well-behaved under global misspecification. ETHD
therefore appears to be the first estimator that is efficient under correct specification, and robust to
both global and local misspecification.

Keywords: moment condition models; global misspecification; local misspecification; Hellinger dis-
tance; minimax robust estimation; semiparametric efficiency.

1. Introduction

It is well-recognized that economic models are simplification of reality and, as such, are intrinsically

bound to be misspecified (see e.g. Maasoumi (1990), Hall and Inoue (2003), and Schennach (2007)).

As a result, the choice of an inference procedure should not solely be based on its performance under

correct specification, but also on its robustness to misspecification.

Two types of misspecification are outlined in the literature, so-called local and global misspecifica-

tion. If the model of interest is one that describes the parameter of interest through moment restric-

tions, this model is globally misspecified if, under the true distribution of the data, no parameter value

is compatible with the moment restrictions (see e.g. Kitamura (2000), Hall and Inoue (2003), and

Schennach (2007)). This type of misspecification has been acknowledged for instance in modern asset

pricing theory which advocates the use of moment condition models that depend on a pricing kernel to

price financial assets. Unlike what the economic theory suggests, it is long recognized that no pricing
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kernel can correctly price all financial securities. As a consequence, the pricing kernel used in applica-

tions is the one that is the least misspecified; see e.g. Hansen and Jagannathan (1997), Almeida and

Garcia (2012), Kan, Robotti and Shanken (2013), Gospodinov, Kan and Robotti (2014), Gospodinov

and Maasoumi (2017), and Antoine, Proulx and Renault (2018). Recently, misspecification has also

been considered in moment based models by Ashley (2009), Nevo and Rosen (2012), Conley, Hansen,

and Rossi (2012), Guggenberger (2012), and Kolesar, Chetty, Friedman, Glaeser, and Imbens (2015)

who have studied inference in instrumental variable models including non-exogenous instruments; by

Bravo (2014) who has studied inference in globally misspecified moment condition models including

a semiparametric component; and by Cheng, Liao and Shi (2016) who have introduced an averaging

GMM estimator from possibly misspecified models.

A moment condition is locally misspecified if, under the true distribution of the data, the moment

condition is invalid for any finite sample size but the magnitude of violation is so small that it disappears

asymptotically. Examples of local misspecification include the case where an asymptotically vanishing

proportion of data sample is contaminated or exposed to measurement errors.

In this paper, we consider economic models defined by moment restrictions, and evaluate the per-

formance of inference procedures of interest under these two complementary types of misspecification.

Since the extent and nature of the misspecification are unknown in practice, it appears ideal to rely

on inference procedures that are asymptotically efficient in correctly specified models, and asymptot-

ically robust to both types of misspecification. To our knowledge, such an inference procedure is not

currently available, and the main contribution of this paper is to fill this gap. An estimator robust to

global misspecification remains asymptotically normal with the same rate of convergence as when the

model is correctly specified. The appeal of such an estimator comes from the fact that its asymptotic

distribution that is valid under both global misspecification and correct specification can be derived

making inference immune to global misspecification routinely possible. Such an estimator is asymp-

totically centered around a pseudo-true value that matches the true parameter value if the model is

correct.

By contrast, local misspecification is only noticeable in small samples (and not at the limit). Since

the true distribution of the data is expected to match the one postulated by the researcher as the

sample size gets large, one can define the true parameter value as the value that solves the assumed

model. An efficient estimator is robust to local misspecification when its worse mean square error

(computed over all possible small deviations of data distribution) remains the smallest in a certain

class of estimators. Estimators that are robust to local misspecification remain consistent (for the true

parameter value) so long as the true data-distribution is sufficiently close to the postulated distribution.

The study of large sample behaviour of estimators under model misspecification has registered a close

attention in the econometric literature for more than three decades. Earlier work include White (1982)

and Gouriéroux, Monfort and Trognon (1984) who study the maximum likelihood estimator. Hall and

Inoue (2003) study the generalized method of moments (GMM) estimator under global misspecification
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in a general setting extending the work of Maasoumi and Phillips (1982) and Gallant and White (1988)

who focused on some GMM-type of estimators with special choice of weighting matrices. They show

that, in the context of independent and identically distributed data, the two-step GMM estimator is

asymptotically normal and its asymptotic distribution robust to global misspecification is provided.

More recently developed estimators for moment condition models have also been analyzed under

global misspecification. We can cite the Euclidean Empirical Likelihood (EEL), also known as the

continuously updated GMM, the exponential tilting (ET) and the maximum empirical likelihood (EL)

estimators; all belonging to the Cressie-Read (CR) minimum power divergence class of estimators.

These estimators rely on implied probabilities to re-weight the sample observations in order to guar-

antee that the moment condition is exactly satisfied (in sample). These estimators are defined as

minimizers of some measure of discrepancy between the implied probabilities and the uniform weights

(1/n). Kitamura (2000) studies ET and establishes its robustness. The main advantage of EL is that,

under correct specification, it has fewer sources of higher-order bias (see Newey and Smith, 2004).

Schennach (2007) studies EL under global misspecification and shows that it is not robust. She identi-

fies some singularity issues in the implied probability function of EL that are responsible for its lack of

robustness; see also Smith (2007) and Broniatowski and Keziou (2012) for related conjectures. Then,

observing that ET’s implied probabilities do not display any such singularity, Schennach (2007) ex-

tends an approach previously considered in Corcoran (1998) and Jing and Wood (1996) to propose the

exponentially tilted empirical likelihood (ETEL) estimator that combines EL’s discrepancy function

with ET’s implied probabilities ETEL is quite appealing: it is efficient and shares the higher-order

bias properties of EL in correct models, and remains as stable as ET in globally misspecified models;

see also related results by Smith (2007) who combines GEL implied probabilities with EL criterion

function. In addition to these estimators, a computationally friendly alternative to EL and ETEL, the

so-called three-step EEL estimator, has been introduced by Antoine, Bonnal and Renault (2007) and

proven to be robust by Dovonon (2016).

The concept of robust estimation to local misspecification has been formalized by Kitamura, Otsu

and Evdokimov (KOE hereafter, 2013a) for parameters defined by general estimating equations in the

form of a moment condition model. Building on the work of Beran (1977a,b) for fully parametric

models, they equip the family of possible data distributions with the Hellinger topology and derive the

asymptotic minimax bound for the mean square error of regular and Fisher consistent estimators. They

also introduce the minimum Hellinger distance (HD) estimator which is shown to be asymptotically

minimax robust; in addition, HD is much easier to compute than its fully parametric analogue due to

Beran (1977a,b) which requires data density estimation. The behaviour of HD in globally misspecified

models is unknown.

In this paper, we first explore the properties of HD in globally misspecified models and show

that, similarly to EL, it does not behave well in general. HD turns out to be a member of the

family of minimum power divergence estimators and the intuition for its lackluster performance follows
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from the conjecture of Schennach (2007, p.641) that connects the poor performance of estimators

from this family to the negative value of their indexing parameter (such as HD and EL). Actually,

the only candidate from this family that retains good properties under global misspecification is

ET. We then introduce the exponentially tilted Hellinger distance (ETHD) estimator that, in the

spirit of Schennach’s ETEL, combines ET and HD to deliver an estimator that retains the desirable

properties of ET under global misspecification and those of HD under correct specification and local

misspecification. Specifically, ETHD is efficient in correctly specified models and robust to both local

and global misspecification. It is important to emphasize that ETHD, unlike HD, is not a saddle-point

estimator and as a result its theoretical treatment calls for new proof techniques.

This paper is organized as follows. In Section 2, we briefly review the properties of HD under

correct specification and local mispecification, and present a simple result that highlights its lackluster

behavior under (global) misspecification. In Section 3, we introduce ETHD and derive its asymptotic

properties under correct specification. Section 4 establishes that this estimator is asymptotically

minimax robust to local misspecification while in Section 5, we show that ETHD is well-behaved

and robust to global misspecification. The finite sample performance of this estimator is investigated

in Section 6 through Monte Carlo simulations with a comparison to existing alternative estimators.

Appendix A collects the graphs and tables of results of the Monte-Carlo study, while the proofs of our

theoretical results are gathered in Appendices B, C and D.

2. HD under global misspecification

In this section, we introduce the minimum Hellinger distance estimator (HD) of Kitamura, Otsu

and Evdokimov (2013) along with some of its properties and study its asymptotic behaviour under

global misspecification. Let {Xi : i = 1, . . . , n} be a random sample of independent and identically

distributed random vectors distributed as X, with value in X ⊂ R
d; throughout, E(.) denotes the

expectation taken with respect to the true distribution of X. We assume that this sample is described

by the moment restriction:

E (g(X, θ∗)) = 0, (1)

where θ∗, the parameter of interest, belongs to Θ, a compact subset of Rp, g(·, ·) is an R
m-valued

function defined on X ×Θ, and m ≥ p. Consider the Borel σ-field (X ,B(X )) and let M be the set of

all probability measures on this σ-field. Let π and ν be two elements of M. The Hellinger distance

between π and ν is given by

H(π, ν) =

[

1

2

∫

(√
dπ −

√
dν
)2
]1/2

. (2)

If X is a finite or countable set, this distance takes the form

H(π, ν) =

[

1

2

∑

i∈X
(
√
πi −

√
νi)

2

]1/2

, (3)
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where πi and νi are the measures of the outcome {i} by π and ν, respectively. Throughout the paper,

we let Pn denote the uniform discrete probability on Xd ≡ {xi : i = 1, . . . , n} where Xd is a realization

of {Xi : i = 1, . . . , n}.

2.1. Definition and properties of HD. The minimum Hellinger distance estimator θ̂ of θ∗ is defined

as

θ̂HD ≡ arg inf
θ∈Θ

inf
π∈Md

H2(π, Pn), s.t.

n
∑

i=1

πig(xi, θ) = 0, (4)

where Md is the set of all probability measures on (Xd,B(Xd)).

By some simple algebra, one can see that HD belongs to the empirical Cressie-Read class of esti-

mators and is associated to the power divergence function h−1/2, where

ha(πi) =
(nπi)

a+1 − 1

a(a+ 1)
. (5)

Recall that the empirical likelihood (EL) and the exponential tilting (ET) estimators are obtained

for limit functions h−1(π) = − ln(nπ) and h0(π) = (nπ) ln(nπ), respectively whereas the continuously

updated estimator (CUE) is obtained for the quadratic divergence function h1(π).

Also, under some mild conditions and using some convex duality arguments, HD is alternatively

defined as solution to the saddle-point problem (see KOE (2013a)):

θ̂HD = argmin
θ∈Θ

max
γ∈Rm

− 1

n

n
∑

i=1

1

1 + γ′g(xi, θ)
, s.t. 1 + γ̂′g(xi, θ̂HD) > 0. (6)

Under this definition, HD fits into the generalized empirical likelihood (GEL) class of estimators

introduced by Newey and Smith (2004) and is characterized by the saddle-point estimating function

ρ(v) = −1/(1 + v) defined on the domain V = (−1,+∞).

Remark 1. The definition (6) explicitly1 requires that,

1 + γ̂′g(xi, θ̂HD) > 0 for (θ̂HD, γ̂) solving (6) and for all i = 1, . . . , n,

since this condition is essential for the two definitions of the HD estimator in (4) and (6) to be

equivalent. This is due to the fact that the first order condition associated with the Lagrangian of the

inner optimization program in (4) is

1 + γ′g(xi, θ) =
1√
nπi

,

for all i = 1, . . . , n in the direction of π. Hence, solutions for π exist only if

1 + γ̂′g(xi, θ̂HD) > 0 , for all i = 1, . . . , n.

See also the formal result and related discussions in Almeida and Garcia (2017) for all GEL estimators.

1KOE (2013a) do not explicitly maintain such positivity constraint.
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In correctly specified models, this condition can be overlooked since the Lagrange multiplier γ̂ associ-

ated to θ̂ obtained from (6) converges sufficiently fast to 0 (under regularity conditions) to guarantee

that γ̂′g(xi, θ̂) is uniformly negligible for n large enough. However, in possibly misspecified models,

this condition may matter. This has non trivial advantage in case of model misspecification since the

probability limit of (6) can then be interpreted as the parameter value with induced set of probabil-

ity distributions2 closest to the true distribution of the data under the Hellinger distance. Such an

interpretation is built in the definition in (4).

If the moment restriction in (1) is correctly specified and point identified, meaning that (1) holds

at only one point θ∗ in the parameter space Θ, then θ̂HD is consistent for θ∗. In fact, as a member of

the GEL class of estimators, under Assumptions 1 and 2 of Newey and Smith (2004), their Theorem

3.2 applies to HD. Letting

G = E

(

∂g(X, θ∗)
∂θ′

)

, Ω = E
(

g(X, θ∗)g(X, θ∗)′
)

and Σ =
(

G′Ω−1G
)−1

,

it is established that
√
n(θ̂HD − θ∗)

d→ N(0,Σ). (7)

This shows that in correctly specified models, HD is
√
n-consistent and asymptotically normal and

efficient as it reaches the semiparametric efficiency bound. As we shall see in Section 4, KOE (2013a)

show that this estimator is also minimax robust to local misspecification of the data generating process.

Specifically, under some small perturbations of the data generating process, the maximum asymptotic

mean square error of this estimator is smallest in the family of regular and Fisher consistent estimators

(see Definition 1).

2.2. Behavior of HD under global misspecification. Statistical models being simplifications of

reality, the data generating process may be such that the moment condition model in (1) does not

actually have a solution in the parameter set Θ. This can actually be expected in settings where

the model is overidentifying in the sense that more moment restrictions than unknown parameters

are available i.e. (m > p). This type of misspecification is referred to as global misspecification (see

Hall and Inoue (2003) and Schennach (2007)). Formally, the moment condition model (1) is globally

misspecified if

E (g(X, θ)) 6= 0, ∀θ ∈ Θ.

Under global misspecification, the notion of consistent estimator no longer makes much sense even

though a particular estimator is expected to converge to a specific value in the parameter set which

is referred to as its pseudo-true value. Of course, in correctly specified models and under mild identi-

fication conditions, pseudo-true values are the same for all consistent estimators with common limit

being the solution of the model.

2For a given value θ ∈ Θ, an induced distribution is any distribution P satisfying EP (g(X,θ)) = 0, where EP (·) stands
for expectation under probability P .
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In fact, asymptotic theory for estimators can be derived either assuming that the model is correctly

specified or allowing for global misspecification. If the asymptotic distribution of an estimator derived

allowing for global misspecification is equivalent, under correct specification, to the asymptotic distri-

bution of that estimator derived assuming correct specification, this estimator is said to be robust to

global misspecification. Such robustness is desirable because it allows for the possibility to carry out

valid and reliable inference whether the model is correctly specified or not by using the misspecification-

robust asymptotic distribution of the concerned estimator. Hall and Inoue (2003) show that GMM

is robust to global misspecification. One can also refer to White (1982) who derives the asymptotic

distribution of the maximum likelihood estimator under possible model misspecification.

The next result explores the asymptotic behaviour of HD under global mispecification. We derive

for HD a result similar to that of Schennach (2007, Theorem 1) for empirical likelihood (EL), and

according to which, EL is not robust to global misspecification since it is not
√
n-convergent in globally

misspecified models.

Theorem 2.1. (Lack of robustness of HD under global misspecification)

Let {Xi : i = 1, . . . , n} be an i.i.d. sequence of random vectors distributed as X. Assume g(x, θ) to be

twice continuously differentiable at all θ ∈ Θ and for all x and is such that

sup
θ∈Θ

E
[

‖g(X, θ)‖2
]

< ∞ .

If

inf
θ∈Θ

‖E[g(X, θ)]‖ 6= 0 and sup
x∈X

u′g(x, θ) = ∞

for any θ ∈ Θ and any unit vector u, then there does not exist any θ∗ ∈ Θ such that

‖θ̂HD − θ∗‖ = OP

(

1√
n

)

.

This result shows that HD does not converge to its potential pseudo-true value at the standard rate

of
√
n in general in case of global misspecification. Existence of second moments of the estimating

function g(X, θ) and its unboundedness are sufficient conditions for HD not to be
√
n-consistent. Such

conditions are fulfilled for instance if g(X, θ) is normally distributed with non degenerate variance. In

the light of the standard behaviour of HD under correct specification, as shown in (7),
√
n-convergence

under global misspecification is a necessary condition for HD to be robust to global misspecification

which clearly is not always the case as shown by this result.

It is worth mentioning that the lack of robustness of HD to global misspecification is not surprising.

The intuition for such a lackluster performance follows from Schennach’s (2007, p.641) conjecture that

connects the poor performance of estimators from the Cressie-Read family to the negative value of their

indexing parameter; see also related conjectures in Smith (2007, p.250) and Broniatowski and Keziou

(2012, p.2566). As recalled in (5), HD is associated with index a = −1/2. Actually, it is expected that

power divergence estimators associated with negative Cressie-Read index have nonnegative implied
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probabilities, πi’s, but are not robust to global misspecification whereas those with positive index are

robust to global misspecification but have implied probabilities that can be negative. It turns out that

the only Cressie-Read estimator that is well-behaved under global misspecification with nonnegative

implied probabilities is the exponentially tilted (ET) estimator with index a = 0.

This desirable property of ET has motivated its use in two-step estimation procedures that yield

estimators robust to global misspecification with interesting bias properties such as the exponen-

tially tilted empirical likelihood estimator (ETEL) of Schennach (2007). We follow this approach and

introduce in the next section the exponentially tilted Hellinger distance estimator (ETHD). We sub-

sequently show that this new estimator has the same first-order asymptotic properties as HD under

correct specification, the same minimax robustness properties as HD under local misspecification and

the additional advantage of being robust to global misspecification.

3. The Exponentially Tilted Hellinger Distance estimator

The exponentially tilted Hellinger distance estimator (ETHD) that we introduce in this section

borrows an idea similar to Schennach (2007) who introduces ETEL. ETHD exploits the robustness

of ET’s implied probabilities and is equal to the value in the parameter space that sets the Hellinger

distance between these implied probabilities and the empirical distribution to the minimum. This

estimator is formally introduced next. We also discuss its first-order asymptotic properties in correctly

specified models.

3.1. Definition and characterization of ETHD. The exponentially tilted Hellinger distance esti-

mator (ETHD), θ̂, is defined as:

θ̂ = argmin
θ∈Θ

H(π̂(θ), Pn), (8)

where H is given by (3) and π̂(θ) = {π̂i(θ)}ni=1 is the solution of

min
{πi}ni=1

n
∑

i=1

πi ln(nπi) (9)

subject to
n
∑

i=1

πig(xi, θ) = 0 and

n
∑

i=1

πi = 1. (10)

It follows from (9)-(10) that for any θ ∈ Θ, the implied probabilities are functions of θ and given

by:

π̂i(θ) =
exp

(

λ̂(θ)′g(xi, θ)
)

n
∑

j=1
exp

(

λ̂(θ)′g(xj , θ)
)

, i = 1, . . . , n (11)

with λ̂(θ) implicitly determined by the equation (see Kitamura (2007)):

1

n

n
∑

i=1

g(xi, θ) exp(λ̂(θ)
′g(xi, θ)) = 0.
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As a result,

H2(π̂(θ), Pn) = 1−∆Pn(λ̂(θ), θ),

with

∆Pn(λ, θ) =

1
n

n
∑

i=1
exp (λ′g(xi, θ)/2)

(

1
n

n
∑

i=1
exp (λ′g(xi, θ))

) 1

2

=
EPn [exp (λ

′g(X, θ)/2)]
√

EPn [exp (λ
′g(X, θ))]

,

with EPn(f(X)) =
∑n

i=1 f(xi)/n. The next theorem gives an alternative definition of ETHD along

with the first-order optimality condition that it solves.

Theorem 3.1. Assume g(x, θ) to be continuously differentiable at all θ ∈ Θ and for all x. The

ETHD estimator θ̂ maximizes ∆Pn

(

λ̂(θ), θ
)

and if it is an interior optimum, it solves the first-order

condition:
(

1

n

n
∑

i=1

√

π̂i(θ̂)

)





n
∑

j=1

π̂j(θ̂)
d(λ̂(θ̂)′g(xj , θ̂))

dθ



− 1

n

n
∑

i=1

√

π̂i(θ̂)
d(λ̂(θ̂)′g(xi, θ̂))

dθ
= 0.

Remark 2. (i) The square root function being strictly concave, the Jensen’s inequality ensures that

0 ≤ ∆Pn(λ, θ) ≤ 1 for all (λ, θ) ∈ R
m × Θ and, under very mild conditions, ∆Pn(λ, θ) = 1 only for

λ = 0.

(ii) It is worth mentioning that it appears sometimes more convenient to define λ̂(θ) as:

λ̂(θ) = arg max
λ∈Rm

− 1

n

n
∑

i=1

exp
(

λ′g(xi, θ)
)

. (12)

This definition is particularly useful for computing ETHD as it involves an inner and an outer loop op-

timization; a computation procedure similar to the nested optimization routine described by Kitamura

(2007) for EL. We refer to Kitamura (2007, Section 8.1) for practical details on the implementation

of such programs. We shall also rely on this definition in Section 4 as we establish the robustness of

ETHD to local misspecification.

(iii) By definition, the implied probabilities π̂(θ̂) yielded by ETHD are positive. This estimator also

enjoys some invariance properties both to one-to-one (model) parameter transformations and to non-

singular model transformations. By the latter, we mean that if A(θ) is a nonsingular matrix, ETHD

of E(A(θ)g(X, θ)) = 0 and that of E(g(X, θ)) = 0 are numerically equal.

3.2. First-order asymptotic properties of ETHD. This section establishes consistency and as-

ymptotic normality of ETHD. We also show that the maximum of ∆Pn(λ̂(θ), θ) reached at ETHD can

be used for model specification testing. We maintain the following regularity assumptions.

Assumption 1. (i) {Xi : i = 1, . . . , n} is a sequence of i.i.d. random vectors distributed as X.

(ii) g(X, θ) is continuous at each θ ∈ Θ with probability one and Θ is compact.
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(iii) E(g(X, θ)) = 0 ⇔ θ = θ∗.

(iv) E(supθ∈Θ ‖g(X, θ)‖α) < ∞ for some α > 2.

(v) V ar(g(X, θ)) is nonsingular for all θ ∈ Θ with smallest eigenvalues ℓ bounded away from 0.

(vi) E
(

sup(θ∈Θ,λ∈Λ) exp(λ
′g(X, θ))

)

< ∞, where Λ is a compact subset of R
m containing an open

neighborhood of 0.

Assumptions 1(i)-(iv) are standard in the literature on inference based on moment condition models.

Newey and Smith (2004) have established the consistency of the generalized empirical likelihood class

of estimators under this set of assumptions. Assumption 1(iii) imposes strong identification of the

true parameter value and thereby rules out weak identification settings studied by Stock and Wright

(2000), Kleibergen (2005) and Andrews and Cheng (2012) among others. Because of the two-step

nature of our estimation procedure, it is useful to maintain a dominance condition over Λ×Θ and this

explains our additional Assumption 1(vi). Schennach (2007) has also made use of a similar assumption

to establish the consistency of ETEL. Assumption 1(v) is stronger than the standard assumption (see

Assumption 1(e) of Newey and Smith, 2004) which imposes nonsingularity of variance only at θ0. We

require this stronger version again because of the two-step nature of our problem. This assumption

rules out points θ ∈ Θ such that λ(θ) ≡ argminθ∈Λ E[exp(λ′g(X, θ))] 6= 0 and λ(θ)′g(X, θ) = cst,

P -almost surely. At such points, ∆(λ(θ), θ) would be maximum without them necessarily being the

true value; with ∆ the population version of ∆Pn . Actually, our main results below hold if we replace

(v) by: (v’): V ar(g(X, θ0)) is nonsingular and,

∀θ ∈ Θ,
(

λ(θ)′g(X, θ) is constant P-a.s. if and only if λ(θ) = 0
)

.

However, we prefer (v) over (v’) since the former is potentially easier to investigate.

It is worth mentioning that all the results in this section continue to hold if Λ is set to be a

neighborhood of 0 that shrinks with increasing n, but at a rate slightly slower than O(1/
√
n). In this

case, both (v) and (vi) can be removed and replaced by V ar(g(X, θ0)) nonsingular.

Under Assumption 1, instead of (12), we shall consider the following alternative definition of λ̂(θ):

λ̂(θ) = argmax
λ∈Λ

− 1

n

n
∑

i=1

exp
(

λ′g(xi, θ)
)

. (13)

This definition is theoretically more tractable in the proof of consistency, thanks to the compactness

of Λ. For practical purposes, Λ can be taken arbitrarily large. Importantly, this definition of λ̂(θ) does

not alter the asymptotic properties of θ̂ so long as the interior of Λ contains 0 which is the population

value of λ in correctly specified models.

Theorem 3.2. (Consistency of the ETHD estimator)

If Assumption 1 holds, then

(i) θ̂
P→ θ∗; (ii) λ̂(θ̂) = OP (n

−1/2); and (iii) 1
n

n
∑

i=1
g(xi, θ̂) = OP (n

−1/2).
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To establish asymptotic normality of ETHD, we further assume the following.

Assumption 2. (i) θ∗ ∈ int(Θ); there exists a neighborhood N of θ∗ such that g(X, θ) is twice

continuously differentiable almost surely on N and E
(

supθ∈N
∥

∥

∥

∂g(X,θ)
∂θ′

∥

∥

∥

)

< ∞.

(ii) Rank(G) = p, with G = E(∂g(X, θ∗)/∂θ′).

Similarly to the two-step GMM procedure, the maximum of ∆Pn(λ̂(θ), θ), reached at θ̂ can be used

to test for the validity of the moment condition model. We consider the specification test statistics:

S1,n = 8nH2(π̂(θ̂), Pn) = 8n(1−∆Pn(λ̂(θ̂), θ̂)), and S2,n = nλ̂(θ̂)′Ω̂λ̂(θ̂), (14)

with Ω̂ any consistent estimator of Ω. The asymptotic distributions of S1,n and S2,n, along with that

of ETHD are given by the following result.

Theorem 3.3. (Asymptotic distribution of the ETHD estimator)

Let λ̂ = λ̂(θ̂). If Assumptions 1 and 2 hold, then:

(i)

√
n

(

θ̂ − θ∗

λ̂

)

d→ N

(

0,

(

Σ 0

0 Ω−1/2MΩ−1/2

))

,

with Ω = E(g(X, θ∗)g(X, θ∗)′), Σ =
[

G′Ω−1G
]−1

and M = Im − Ω−1/2GΣG′Ω−1/2.

(ii) S1,n = S2,n + oP (1) and both S1,n, S2,n
d→ χ2

m−p.

This result shows that, under correct specification, ETHD has the same limiting distribution as the

efficient two-step GMM, which also corresponds to the limiting distribution of the HD estimator as

recalled in (7). Convergence and asymptotic normality properties of ETHD result from the strong

identification framework imposed by Assumptions 1 and 2. These properties show that this estimator

does not suffer from the so-called no moment problem of GEL estimators that occurs under weak

identification as pointed out by Guggenberger (2008). The specification test statistics Sj,n (j = 1, 2)

have the same asymptotic distribution as the Hansen’s (1982) J-test statistic. The proof actually

reveals that these test statistics are asymptotically equivalent under the conditions of the theorem.

4. ETHD under local misspecification

KOE has provided a framework to study robustness of estimators of finite dimension parameter of

models defined with moment equality. Following the work of Beran (1977a,b) for parametric models,

they express robustness properties in terms of local minimax loss properties. Assuming that X has the

probability distribution P , an estimator of θ∗ is minimax robust if, under small perturbations of data

distributions around P , that estimator has the smallest worst loss as measured for instance by the

estimator’s mean square error. Because of the local nature of this robustness property, we shall refer

to it as robustness to local misspecification to emphasize the difference with global misspecification as
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introduced in section 2. It is important here to stress that robustness to global misspecification does

not imply robustness to local misspecification and vice-versa. The GMM estimator is an example of

estimator that is robust to global misspecification without being minimax robust to local misspecifica-

tion. Also, as shown in the previous section, HD is not robust to global misspecification but is locally

minimax robust.

In this section, we establish that ETHD is minimax robust to local misspecification. To this end,

letting again M be the set of all probability measures on the Borel σ-field (X ,B(X )), X ⊂ R
d, and

g : X ×Θ → R
m, we introduce the functionals T1 : M×Θ → Λ and T : M → Θ as follows (we

shall subsequently discuss their well-definedness)

T (P ) = argmax
θ∈Θ

∫

exp
(

T1(θ, P )′g(X, θ)/2
)

dP

(∫

exp
(

T1(θ, P )′g(X, θ)
)

dP

)
1

2

, (15)

and

T1(θ, P ) = argmax
λ∈Λ

(

−
∫

exp(λ′g(X, θ))dP

)

. (16)

ETHD is then given by θ̂ = T (Pn). The common approach to study minimax robustness to local

misspecification consists in evaluating the magnitude of the mean square error of the estimator of

interest,

EQ

(√
n(T (Pn)− θ∗)2

)

,

where θ∗ is the true parameter value associated with the genuine probability distribution of the data

that we denote P∗, and Q is a probability measure lying in a shrinking Hellinger-neighborhood of P∗.

Specifically, Q is assumed to lie in a Hellinger ball, BH(P∗, r/
√
n), centered at P∗ and with radius

r/
√
n for some r > 0:

BH(P∗, r/
√
n) =

{

Q ∈ M : H(Q,P∗) ≤ r/
√
n
}

.

Note that T (P∗) = θ∗. Since Q stands as the hypothetical distribution of the data for a given n, T (Q)

would stand for the true parameter value under Q and the decomposition

T (Pn)− θ∗ = (T (Pn)− T (Q)) + (T (Q)− θ∗)

appears convenient for the analysis of the mean square error, with T (Q) − θ∗ representing the bias

resulting from estimating θ∗ by T (Pn). However, because Q is an arbitrary element of BH(P∗, r/
√
n),

the functional T may not be well-defined at all Q and this is in particular due to the unboundedness

of g(x, θ) for some θ ∈ Θ. To overcome this technical limitation, we follow KOE and resort to trimming.

Let

Xn =

{

x ∈ X : sup
θ∈Θ

‖g(x, θ)‖ ≤ mn

}

, gn(x, θ) = g(x, θ)I(x ∈ Xn),
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∆n,Q(λ, θ) =

∫

exp{λ′gn(X, θ)/2}dQ
(∫

exp{λ′gn(X, θ)}dQ
)1/2

and define:

T̄ (Q) = argmax
θ∈Θ

∆n,Q(T1(θ,Q), θ) with T1(θ,Q) = argmax
λ∈Λ

−
∫

exp{λ′gn(X, θ)}dQ. (17)

If well-defined, T̄ (·) is the value of θ ∈ Θ that minimizes the Hellinger distance between P (θ) and

Q, where P (θ) is the distribution that minimizes the Kullback-Leibler information criterion between

Q and the set of distributions P that satisfy EP (gn(X, θ)) = 0; see Lemma C.1 for a proof.

By continuity (in λ) of its objective function and compactness of Λ, the argmax set T1(θ,Q)

is nonempty for any θ ∈ Θ and Q ∈ M. But this set may not be a singleton in general and

∆n,Q(T1(θ,Q), θ) is not guaranteed to be a proper function. Because of this, one may rather con-

sider the following alternative definition for T̄ (Q):

T̄ (Q) = argmax
θ∈Θ

max
λ∈T̄1(θ,Q)

∆n,Q(λ, θ) with T̄1(θ,Q) = argmax
λ∈Λ

−
∫

exp{λ′gn(X, θ)}dQ, (18)

where we keep the same notation as in (17) for the estimator. The maximization over T̄ (θ,Q) makes

it easier to prove that T̄ is well-defined over M (see Lemma C.2(i)). However, as shown by the second

section of the same lemma, if we further impose that Λ is convex with interior containing the origin 0,

for n large enough, there exists a neighborhood of θ∗ over which T̄1(θ,Q) is a singleton for any Q lying

in the Hellinger ball BH(P∗, r/
√
n). In fact, Lemma C.3(iv) shows that T̄ (Qn) converges to θ∗ for any

sequence Qn in that ball. Also, for n large enough, under some mild conditions, −EPn [exp(λ
′gn(X, θ))]

is strictly concave in λ and therefore its maximum over the convex and compact set Λ is reached at a

unique point. Hence, both T̄1(T̄ (Qn), Qn) and T̄1(T̄ (Pn), Pn) are sets containing a single element for n

large enough. As a result, for the sequences of measures of interest for local misspecification studies,

the inner maximization can be dropped out and the same is also true regarding estimation.

The asymptotic minimax robustness of HD has been established by KOE by comparing its asymp-

totic worst loss to the smallest worst loss achievable by any estimator that is asymptotically Fisher

consistent and regular. We refer to their Definition 3.1 for these properties that we recall below to be

self-contained.

Definition 1. (Fisher consistent and regular estimator) Let Ta(Pn) be an estimator of θ∗

based on a mapping Ta : M → Θ. Let P be the set of all probability measures P for which there

exists θ ∈ Θ satisfying EP (g(X, θ)) = 0 and let Pθ,ζ be a regular parametric submodel (see Bickel,
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Klassen, Ritov, and Wellner (1993, p. 12) or Newey (1990)) of P such that Pθ∗,0 = P∗ and such that

Pθ∗+t/
√
n,ζn ∈ BH(P∗, r/

√
n) holds for ζn = O(n−1/2) eventually.

(i) Ta is asymptotically Fisher consistent if for every (Pθ∗+t/
√
n,ζn)n∈N and t ∈ R

p,

√
n
(

Ta(Pθ∗+t/
√
n,ζn)− θ∗

)

→ t.

(ii) Ta is regular for θ∗ if, for every (Pθn,ζn)n∈N with θn = θ +O(n−1/2) and ζn = O(n−1/2), there

exists a probability measure M such that:

√
n(Ta(Pn)− Ta(Pθn,ζn))

d→ M, under Pθn,ζn ,

where the measure M does not depend on the sequence (θn, ζn).

Following KOE, we consider the estimation problem of the transformed scalar parameter τ(θ∗),

where τ is an arbitrary smooth function defined on Θ with value in R. We shall focus on the one-

dimensional problem and derive the bias associated to τ ◦ T̄ (Q) and the mean square error of τ ◦T (Pn).

Theorem 3.1(i) of KOE derives the asymptotic minimax lower bound of any estimator τ ◦ Ta of τ(θ∗)

where Ta is a Fisher consistent and regular estimator of θ∗. They establish under some regularity

conditions that for each r > 0,

lim inf
n→∞

sup
Q∈BH (P∗,r/

√
n)

n(τ ◦ Ta(Q)− τ(θ∗))2 ≥ 4r2B∗,

with

B∗ =
(

∂τ(θ∗)
∂θ

)′
Σ

(

∂τ(θ∗)
∂θ

)

. (19)

The asymptotic minimax lower bound for the square bias is then 4r2B∗ which is reached by the

functional determining the minimum Hellinger distance (HD) estimator. Our next result establishes

that the square bias of T̄ (Q), the functional associated with ETHD, also reaches this bound. This is an

essential step towards the derivation of the limit mean square error of the ETHD estimator τ ◦T (Pn).

We make the following assumptions:

Assumption 3. (i) {Xi : i = 1, . . . , n} is a sequence of i.i.d. random vectors distributed as X.

(ii) Θ is compact and θ∗ ∈ int(Θ) is a unique solution to EP∗(g(X, θ)) = 0.

(iii) g(x, θ) is continuous over Θ at each x ∈ X .

(iv) EP∗ (supθ∈Θ ‖g(X, θ)‖α) < ∞ for some α > 2, and there exists a neighborhood N of θ∗ such

that g(x, θ) is twice continuously differentiable over N at each x ∈ X , such that: sup
x∈Xn,θ∈N

∥

∥

∥

∂g(x,θ)
∂θ′

∥

∥

∥ =

o(n1/2), and there exists a measurable function d(X) such that EP∗(d(X)) < ∞ and

max

(

sup
θ∈N

‖g(X, θ)‖4, sup
θ∈N

∥

∥

∥

∥

∂g(X, θ)

∂θ′

∥

∥

∥

∥

2
)

≤ d(X).

(v) G = EP∗ (∂g(X, θ∗)/∂θ′) has full column rank and V arP∗(g(X, θ)) is nonsingular for all θ ∈ Θ

with smallest eigenvalue ℓ bounded away from 0.
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(vi) {mn}n≥0 satisfies mn ∝ na with 1/α < a < 1/2.

(vii) Let an(λ, θ) = exp(λ′gn(X, θ)), a(λ, θ) = exp(λ′g(X, θ)). EP∗ (a(λ, θ)) is continuous in

(λ, θ) over Λ×Θ and, for any r > 0 and any sequence Qn ∈ BH(P∗, r/
√
n),

EQn (an(λ, θ)) converges to EP∗ (a(λ, θ)), uniformly over Λ×Θ, with Λ a convex and compact subset

of Rm with interior containing 0.

In addition, there exists a neighborhood V of 0 such that EP∗

(

sup(λ,θ)∈V×N a(λ, θ)
)

< ∞ and

EQn [gn(X, θ)an(λ, θ)], EQn [gn(X, θ)gn(X, θ)′an(λ, θ)], EQn

[

gn(X, θ)
(

∂gn,k(X,θ)
∂θl

)

an(λ, θ)
]

converge uniformly over V ×N to EP∗ [g(X, θ)a(λ, θ)], EP∗ [g(X, θ)g(X, θ)′a(λ, θ)],

EP∗

[

g(X, θ)
(

∂gk(X,θ)
∂θl

)

a(λ, θ)
]

, respectively, for k = 1, . . . ,m, l = 1, . . . , p.

(viii) τ is continuously differentiable at θ∗.

Assumptions 3(i)-(vi) and (viii) are the assumptions of KOE under which the local robustness

property of HD is established. Similar to Assumption 1(vi), Assumption 3(vii) is useful here because

ETHD is determined by two separate optimization procedures as opposed to HD which is a saddle

point estimator. It is not hard to establish that this assumption holds if g(·, ·) is bounded. It is also

worthwhile to mention that one can do away with it if the optimization set for λ is set to Λn, a convex

and compact neighborhood of 0 that shrinks at a rate slightly slower than O(1/
√
n), as discussed in

Section 3.

The next result shows that τ ◦ T̄ is Fisher consistent and that its worst square bias - when the data

is distributed as Q in a suitable Hellinger-neighborhood of P∗ - is equal (in the limit) to the lower

bound derived by KOE.

Theorem 4.1. Under Assumption 3, the mapping T̄ is Fisher consistent and satisfies:

lim
n→∞

sup
Q∈BH (P∗,r/

√
n)

n(τ ◦ T̄ (Q)− τ(θ∗))2 = 4r2B∗, (20)

for each r > 0, with B∗ given by (19).

The limit provided for the bias in Theorem 4.1 is useful to study the mean square error of ETHD

θ̂. Recall that, by definition, θ̂ = T (Pn) as given by (15). The following result derives the asymptotic

worst mean square error of τ ◦T (Pn) for the estimation of τ(θ∗). The supremum of mean square error

is taken over possible distributions Q of the data lying in the Hellinger ball centered at P∗ with radius

r/
√
n and with respect to which the estimation function g(X, θ) has moments up to α. Let

B̄δ
H(P∗, r/

√
n) = BH(P∗, r/

√
n) ∩

{

Q ∈ M : EQ

(

sup
θ∈Θ

‖g(X, θ)‖α ≤ δ < ∞
)}

,

with r > 0 and δ > 0 and let Q⊗n denote the joint distribution of n independent copies of X, with X

distributed as Q. We have the following result.



16 BERTILLE ANTOINE AND PROSPER DOVONON

Theorem 4.2. If Assumption 3 holds, the mapping T is Fisher consistent and regular, and the ETHD

estimator, θ̂ = T (Pn), satisfies:

lim
b→∞

lim
δ→∞

lim
n→∞

sup
Q∈B̄δ

H
(P∗,r/

√
n)

∫

b ∧ n(τ ◦ T (Pn)− τ(θ∗))2dQ⊗n = (1 + 4r2)B∗

for each r > 0, with B∗ given by (19).

Fisher consistency and regularity of the functional T ensure, from Theorem 3.2(i) of KOE, that

(1+4r2)B∗ is the minimum of the limit expressed in the theorem. The fact that equality holds estab-

lishes that ETHD is asymptotically minimax robust with respect to the mean square error of τ ◦T (Pn)

estimating τ(θ∗).

Following KOE, we can also consider a more general class of loss functions and explore the as-

ymptotic risk associated to the estimation of T̄ (Q). Let ℓ be a loss function satisfying the following

assumption.

Assumption 4. The loss function ℓ : R̄p → [0,∞] is (i) symmetric subconvex (i.e., for all z ∈ R
p

and c ∈ R, ℓ(z) = ℓ(−z) and {z ∈ R
p : ℓ(z) ≤ c} is convex); (ii) upper semicontinuous at infinity; and

(iii) continuous on R̄
p.

We can state the following result.

Theorem 4.3. If Assumptions 3 and 4 hold, then the mapping T is Fisher consistent and the ETHD

estimator, θ̂ = T (Pn), satisfies:

lim
b→∞

lim
δ→∞

lim
r→∞

lim
n→∞

sup
Q∈B̄δ

H
(P∗,r/

√
n)

∫

b ∧ ℓ
(√

n(τ ◦ T (Pn)− τ ◦ T̄ (Q)
)

dQ⊗n =

∫

ℓdN(0, B∗),

with B∗ given by (19).

This theorem shows that, similarly to HD, ETHD is asymptotically minimax risk optimal for a

general class of risk functions. Theorem 4.3 specifically shows that the supremum of expected loss

under Q associated to the estimation of T̄ (Q) by T (Pn) is equal in the limit to the minimum bound

established by KOE (2013a, Th. 3.3(i)) for Fisher consistent estimators.

Theorems 4.2 and 4.3 establish ETHD as an alternative to HD when it comes to minimax robust-

ness to local misspecification. The full picture of the properties of ETHD in misspecified models is

obtained in the next section where we study the large sample behaviour of this estimator under global

misspecification.

5. ETHD under global misspecification

Our main motivation in proposing ETHD is to introduce an estimator that preserves most of

the qualities of HD in addition to being robust to global misspecification. The simulation study in
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Section 6.1 below reveals that HD is much more affected by global misspecification than ETHD and

other standard estimators such as GMM, ET and ETEL. We derive in this section the asymptotic

distribution of ETHD under global misspecification. Let

Rn(λ, θ) =

(

Rθ,θ(λ, θ) Rθ,λ(λ, θ)
Rλ,θ(λ, θ) Rλ,λ(λ, θ)

)

be the (m + p,m + p)-matrix with components Rab(λ, θ) (a, b = θ, λ) defined by Equation (D.9) in

Appendix D and let

∆P (λ(θ), θ) =
EP [exp(λ(θ)′g(X, θ)/2)]
√

EP [exp(λ(θ)′g(X, θ))]
, λ(θ) = argmin

λ∈Λ
EP

[

exp(λ(θ)′g(X, θ))
]

,

where P is the true probability distribution of the data X. We maintain the following set of regularity

assumptions.

Assumption 5. (Regularity conditions under global misspecification)

(i) {Xi : i = 1, . . . , n} is a sequence of i.i.d. random vectors distributed as X.

(ii) The objective function ∆P (θ, λ(θ)) is maximized at a unique “pseudo-true” value θ∗ with θ∗ ∈
int(Θ) and Θ compact.

(iii) g(x, θ) is continuous on Θ and twice continuously differentiable in a neighborhood N of θ∗ for

almost all x.

(iv) E
(

supθ∈Θ,λ∈Λ exp(λ′g(X, θ))
)

< ∞ where Λ is a compact and convex subset of R
m such that

λ∗ ≡ argmaxΛ−E[exp(λ′g(X, θ∗))] is interior to Λ. Furthermore, E
(

‖g(X, θ∗)‖4
)

, E
∥

∥

∥

∂g(X,θ∗)
∂θ′

∥

∥

∥

2
and

E[exp(4λ∗′g(X, θ∗))] are all finite.

(v) Rn(λ, θ) converges in probability uniformly in a neighborhood of (λ∗, θ∗) with limit R(λ, θ) such

that R ≡ R(λ∗, θ∗) is nonsingular.

These assumptions are quite standard in the literature on global misspecification. Assumption 5(ii)

imposes that the population version ∆P of the ETHD objective function ∆Pn is maximized at a

unique point θ∗ in the parameter space. From Lemma C.1 in Appendix C, the pseudo-true value θ∗

is the parameter value that minimizes the Hellinger distance between the true distribution P of the

data and the family of distributions consistent with the moment restrictions and closest to P in terms

of Kullback-Leibler divergence. It is essential to maintain the uniqueness of the pseudo-true value

to ensure the convergence of ETHD. In this paper, we do not address the case where the uniqueness

condition fails, and save it for future extensions. Rn(λ, θ) is the first-order term appearing in the

mean-value expansion of the first-order condition in θ and λ of the two optimization programs leading

to ETHD, namely: maxθ ∆Pn

(

λ̂(θ), θ
)

and (13). The non-singularity condition in Assumption 5(v)

amounts to the first-order local identification condition in correctly specified moment condition models.

We have the following result.
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Theorem 5.1. (Asymptotics under global misspecification)

Under regularity assumption 5, we have

√
n

(

θ̂ − θ∗

λ̂− λ∗

)

d→ N
(

0, R−1Ω∗R−1
)

.

with λ̂ ≡ λ̂(θ̂) (see Equation (13)), and R and Ω∗ explicitly defined in the proof in Appendix D.

This result shows that ETHD is asymptotically centered around its pseudo-true value θ∗ (as defined

in Assumption 5(ii)) and that it is
√
n-convergent and asymptotically normal under global misspeci-

fication. Of course, the pseudo-true value, as the probability limit of ETHD, corresponds to the true

parameter value when the model is actually correctly specified and in this case, the tilting parameter

value λ∗ is 0; see Theorem 3.3. The above result is similar to Theorem 10 in Schennach (2007) for

ETEL and to Theorem 6.1 in Smith (2007) for GEL-EL.

As discussed in Section 2.2, an estimator is said to be robust to global misspecification when its

asymptotic distribution derived under global misspecification coincides with its asymptotic distribu-

tion under correct specification. In Appendix D, we also show that the above asymptotic variance

corresponds to the one of Theorem 3.3 under correct specification. This means that ETHD is ro-

bust to global misspecification. ETHD is therefore the first estimator that is efficient under correct

specification, and robust to both global and local misspecification.

6. Monte Carlo simulations

In this section, we report some simulation results that illustrate the finite sample properties of the

estimators considered in this paper. First, we consider simulation designs that display settings of

correct specification and global misspecification. These experiments confirm the lack of robustness of

HD under global misspecification and also confirm that, like ETEL, ETHD is robust to global misspec-

ification. The second set of simulations focus mainly on designs that display local misspecification,

or slight perturbations - contamination - in the observed data. The results show that ETHD and

HD display about the same root mean square error and underscore the local robustness properties of

ETHD established in the previous section.

6.1. Experiment 1: estimation of a population mean. We use the experimental design suggested

in Schennach (2007), where we wish to estimate the mean while imposing a known variance. The

moment condition model consists of two restrictions:

E (g(Xi, θ)) ≡ E
[

Xi − θ (Xi − θ)2 − 1
]′
= 0 ,

where Xi is drawn from either a correctly specified model C, or a misspecified model M, with

Xi ∼ N(0, 1) (for Model C)
Xi ∼ N(0, s2) (with 0.72 ≤ s < 1 for Model M).
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The estimators that we consider for θ are: the 2-step GMM (we use the identity weighting matrix for

the first step GMM estimation), HD, EL, ET, EEL (the Euclidean Empirical Likelihood, also known

as the continuous updated GMM), ETEL and ETHD. Under Model C, the true parameter value is

θ∗ = 0. Under Model M, the pseudo-true value for each estimator listed above is θ∗ = 0 as well. As

explained by Schennach (2007), the equality of true value and pseudo-true values is useful to have a

meaningful comparison of simulated variances.

Table 2 displays the simulated standard deviations of the considered estimators for sample sizes of

1,000, 5,000 and 10,000 over 10,000 replications. Under correct specification, all the estimators perform

equally well, as expected since all the estimators share the same asymptotic distribution. Indeed, the

sample sizes considered here are large enough for the asymptotic approximation to be quite accurate.

The
√
n-convergence rate under correct specification of all estimators is noticeable by the fact that,

as the sample size increases from 1,000 to 5,000, their respective simulated standard deviations shrink

by the ratio of
√
5, and by the ratio of

√
2 when the sample size doubles from 5,000 to 10,000.

Under global misspecification, these estimators show different patterns. For s = 0.75, we can see

that ETHD, ETEL, ET and GMM all have their standard deviations shrinking with increasing sample

size whereas those of HD and EL do not shrink although HD is better among the two with smaller

standard deviations.

Figure 1 shows the ratio of standard deviations for sample sizes 1,000, 5,000 and 10,000 over a grid

of misspecification parameters s. As s moves farther away from 1, the ratios of standard deviations

seems to depart from their reference levels -
√
5,

√
10, and

√
2, respectively for the three graphs in

display - first for EL followed by HD. All the other estimators have their ratios significantly closer to

reference with EEL looking the most stable followed by ET, GMM, ETHD and ETEL. ETHD and

ETEL have similar range with the ratio of ETHD slightly closer to the reference than that of ETEL.

Figure 2 displays the cumulative distribution of ETHD, ETEL and HD for the three sample sizes

and s = 1 and 0.75. The distributions of these estimators, as expected, are undistinguishable under

correct specification while, under misspecification, the range of HD does not seem to narrow around

0 in contrast to ETHD and ETEL. The difference between the latter two seems to merely reflect the

difference in their respective standard deviations. Overall, our proposed estimator ETHD performs

very well both under correct specification and global misspecification.

6.2. Experiment 2: estimation of a production function. We now turn our attention to the

estimation of a production function, a primitive component of many economic models. For example,

the estimation of production functions plays a key role in the empirical analysis of issues such as the

contribution of different factors to economic growth, the degree of complementarity and substitutability

between inputs, estimation of economies of scale and economies of scope, evaluation of the effects of new

technologies, among many others; see e.g. Aguirregabiria, 2018. There are at least three well-known

issues that arise when estimating productions functions: (a) data problems, such as measurement
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error in output and/or inputs; (b) specification problems, such as functional form assumptions; (c)

simultaneity/endogeneity. All these issues can yield misspecification.

We consider the Cobb-Douglas production function (Cobb and Douglas, 1928) with constant returns

to scale and estimate the productivity of labour function. This amounts to the following non-linear

regression model of production per capita y on capital per capita k: y = kθ0 + error, where θ0 is

the technological parameter or the output elasticity of capital. More specifically, our data generating

process is:

yi = kθ0i + ui with ui = ρ · (ki − µk)/σk + εi , (21)

with ki ∼ IID|t4| (folded-t distribution with 4 degrees-of-freedom), εi ∼ NID(0, 1), and

µk = E(ki) =
2aν
ν − 1

√

ν

π
and σ2

k = V ar(ki) =
(2νaν)

2

π(ν − 2)(ν − 1)2

where aν =
Γ(ν + 1)/2

Γ(ν/2)
.

Throughout, our parameter of interest is θ0 = 0.3. To estimate θ0, we rely on the following moment

restrictions:

E
[

Z(ki)(yi − kθi )
]

= 0. (22)

where Z(ki) ∈ R
m is the vector of m instruments. We consider m = 2, 3, 5, 8, and 10 with the

associated vector of instruments,

m = 2, Z(ki) = (1, k0.5i )′;

m = 3, Z(ki) = (1, k0.5i , k0.75i )′;

m = 5, Z(ki) = (1, k0.2i , k0.5i , k0.6i , k0.75i )′;

m = 8, Z(ki) = (1, k0.2i , k0.3i , k0.4i , k0.5i , k0.6i , k0.75i k0.8i )′

m = 10, Z(ki) = (1, k0.1i , k0.2i , k0.3i , k0.4i , k0.5i , k0.6i , k0.75i k0.8i , k0.9i )′.
Finally, the parameter ρ controls the degree of endogeneity of ki: the moment restrictions in (22) are

correctly specified when ρ = 0, and incorrect otherwise. The instruments are chosen above as powers

of ki to guarantee that the estimating function has at least a second moment under misspecification

(ρ 6= 0).

• Study under global misspecification: We set ρ = 0.2. We consider a sample size equal to

n = 50, and a growing number of moment restrictions with m = 2, 3, 5, 8, and 10.

The pseudo-true values for each estimator have been obtained by solving the population version of their

respective optimization functionals and are displayed in Table 1; in the sequel, we rely on numerical

integration3.

3The probability density function of the folded t-distribution with ν degree-of-freedom (|tν |) is

f|tν |(x) =
aν√
πν

(

1 +
x2

ν

)− ν+1

2

1(x ≥ 0).
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m GMM MHDE EL ET EEL ETEL ETHD
2 0.4572 0.45773 0.45175 0.45775 0.45775 0.45725 0.45725
3 0.4584 0.454 0.451625 0.4598125 0.4598125 0.459875 0.459875
5 0.4579 0.4615 0.46 0.458 0.4585 0.4585 0.4585
8 0.4859 0.457625 0.4575 0.45925 0.45775 0.45925 0.45925
10 0.4858 0.4585 0.4538 0.4578 0.4581 0.4578 0.4578

Table 1. Pseudo-true values of different estimators under global misspecification

Overall, the pseudo-true values (PTV hereafter) of all the estimators remain close to each other, and

do not vary too much with the number of moment restrictions used for the estimation: in particular,

the PTV of ET, ETEL and ETHD are identical in almost all cases and display little variation when

m changes.

In Figure 3, we display the RMSE and Bias per PTV4 for different values of m. First and foremost,

many estimators have their RMSE and Bias that are very close to one another: notable exceptions

include, EEL with RMSE significantly larger than the others throughout; GMM with Bias slightly

smaller than the others. In addition, the RMSE remain fairly stable as the number of moment increases,

while the Bias decreases slightly5. Finally, it is worth pointing out that our estimator ETHD’s RMSE

is smaller then HD’s for all cases with m > 2, and smaller than ET’s for all cases except m = 8.

• Study under local misspecification with local-to-zero endogeneity: We consider (slight)

perturbations in the probability measure that generates the observations by using values of ρ that are

local to 0: specifically, ρn,j = aj/
√
n with aj ∈ {−1.0,−0.9, . . . , 0, 0.1, 0.2, . . . , 1.0}. Our sample size

is set to n = 50 and we rely on m = 5 moment restrictions for the estimation of θ0.

In Figure 4, we display the standard deviations, RMSE, Bias, as well as the probabilities6 Pr(|θ̂−θ0| >
0.1) as a function of ρn,j. Our estimator ETHD is the second best according to each criterion (behind

GMM): in particular, it is worth pointing out that it clearly outperforms ET in terms of standard

deviation and RMSE, while it also (though modestly) outperforms HD in terms of standard deviation

and RMSE and ETEL in terms of Probas. Overall, our estimator ETHD is relatively well-behaved.

• Study under local misspecification from partial contamination: In this experiment, we

assess how deviations from the data generating process (21) by part of the observed sample (rather

than the whole sample) affect the properties of the estimators. We set ρ = 0 and induce deviations

4Since the PTV of the different estimators are in general different, we report RMSE/PTV and Bias/PTV to allow
meaningful comparisons between estimators.

5When m = 10, the Bias of all estimators tend to increase slightly, but with a small sample size of n = 50, we are not
too concerned about it.

6These probabilities can be interpreted as a measure of stability of each estimator around the true value, as they
account for large deviations away from it.
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by replacing εi in (21) by

ε̃i =

{

εi with probability 1− π
εi + cwi with probability π,

where wi = r · εi +
√
1− r2 · ξi, with ξi independent of εi, and iid with distribution either χ2

1, or t1.5.

When ξi ∼ χ2
1, the moment condition (22) is violated by the related part of the sample. In the case

where ξi ∼ t1.5, the moment restrictions are still satisfied across the whole sample, but the estimating

function does not have second moments for the related part of the sample.

We consider c = 0 (no contamination) and c = 0.5, 1.0, 2.0; r = 0.0 and 0.5; and π = 0.05 (small

contamination) and π = 0.5 (large contamination). Once again our sample size is set to n = 50 and

we rely on m = 5 moment restrictions for the estimation.

In Table 3, we display the RMSE, Probas, Bias and Standard deviation for all the estimators and all

the above-mentioned cases. Our estimator is overall very well-behaved. In particular, ETHD display

standard deviations, RMSE and Probas that are smaller than ET and HD throughout: the largest

differences are observed when contaminated data are generated with c = 2. For example, with r = 0.5,

π = 0.5 and contaminated data generated with χ2
1, the standard deviation of ETHD is 0.575 while ET

and HD’s standard deviations are respectively 1.535 and 0.730. In addition, ETHD also dominates

ETEL when focusing on small contaminations with π = 0.05, though the differences remain modest

throughout.

To conclude this section, our simulation results on local misspecification have some connection with

the work of Lindsay (1994) that is worth highlighting. In a fully parametric framework, Lindsay

(1994) has shown that minimum power divergence estimators with positive index a (see Equation

(5)) entail large second-order bias in their so-called residual adjustment function that prevent them

to show some robustness property while efficient, whereas those estimators with negative index have

some robustness feature in addition to being efficient. Even though our framework in this paper is

semiparametric (based on moment condition models), Lindsay’s results seem to be confirmed for EEL

which, with index a = 1, appears to be the less robust among the simulated estimators. The closeness

of the RMSE performance of the other estimators is also in line with Lindsay (1994) since they all

have non-positive index. Of course, our results in Section 4 and those of KOE (2013a) predict a better

performance from ETHD and HD as we observed in these experiments.

7. Conclusion

In this paper, we consider moment condition models that may be suffering from two complementary

types of misspecification often present in economic models, global and local misspecification.

Our first contribution is to show that the recent minimum Hellinger distance estimator (HD) pro-

posed by KOE is not well-behaved under global misspecification. More specifically, despite desirable

properties under correct specification and local misspecification, HD does not remain root-n consistent
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when the model is misspecified when the functions defining the moment conditions are unbounded

(even when their expectations are bounded).

Our second contribution is to propose a new estimator that is not only semiparametrically efficient

under correct specification, but also robust to both types of misspecification - a desirable property

since the extent and nature of the misspecification is always unknown in practice. Our estimator

is obtained by combining exponential tilting (ET) and HD - so-called ETHD - and we show that

it retains the advantages of both. ETHD is semiparametrically efficient under correct specification,

and it remains asymptotically normal with the same rate of convergence when the model is globally

misspecified. In addition, we show that it is asymptotically minimax robust to local misspecification.

Our third contribution is to document the finite sample properties of a variety of inference procedures

under correct specification, as well as under local and global misspecification through a series of Monte-

Carlo simulations. Overall, ETHD consistently performs very well and is competitive under most - if

not all - simulation designs.
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Appendix A. Results of the Monte Carlo study

A.1. Experiment 1: estimation of a population mean.

Model C with s = 1.0

GMM HD EL ET EEL ETEL ETHD
Sample size T = 1000 0.0316 0.0316 0.0316 0.0316 0.0316 0.0316 0.0316
Sample size T = 5000 0.0138 0.0138 0.0138 0.0138 0.0138 0.0138 0.0138
Sample size T = 10000 0.0097 0.0097 0.0097 0.0097 0.0097 0.0097 0.0097
Model M with s = 0.75

GMM HD EL ET EEL ETEL ETHD
Sample size T = 1000 0.0488 0.0481 0.0742 0.0331 0.0270 0.0464 0.0407
Sample size T = 5000 0.0215 0.0375 0.0731 0.0152 0.0176 0.0257 0.0217
Sample size T = 10000 0.0151 0.0374 0.0743 0.0109 0.0082 0.0200 0.0166

Table 2. Experiment 1: Standard deviations of the GMM, HD, EL, ET, EEL, ETEL,
ETHD estimators for models C and M (with s = 0.75) with 10,000 replica-
tions
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Figure 1. Experiment 1: Ratio of standard deviations for sample sizes (i) 1,000 and
5,000; (ii) 1,000 and 10,000; (iii) 5,000 and 10,000 over a grid of misspeci-
fication parameters s
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Figure 2. Experiment 1: Simulated cumulative distribution of HD, ETEL and ETHD
under correct specification (model C with s = 1.0) and global misspecifi-
cation (model M with s = 0.75)



30 BERTILLE ANTOINE AND PROSPER DOVONON

A.2. Experiment 2: estimation of a production function.
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Figure 3. Experiment 2 under global misspecification: RMSE and Bias per pseudo-
true value for n = 50 and different number of moments m.
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Figure 4. Experiment 2 under local misspecification with local-to-zero endogeneity:
Standard deviations, RMSE, Bias, and Probas computed as Pr(|θ̂ − θ0| >
0.1) for n = 50 and m = 5 as a function of ρ.
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RMSE Pr(|θ̂ − θ0| > 0.1)
c d r π GMM HD EL ET EEL ETEL ETHD GMM HD EL ET EEL ETEL ETHD
0 0 0 0 0.186 0.205 0.206 0.299 0.574 0.205 0.198 0.597 0.630 0.627 0.628 0.650 0.635 0.622
0.5 1 0 0.05 0.191 0.233 0.209 0.304 0.340 0.209 0.204 0.610 0.634 0.635 0.633 0.649 0.637 0.628
1.0 1 0 0.05 0.197 0.239 0.224 0.215 0.409 0.216 0.208 0.624 0.643 0.644 0.643 0.659 0.647 0.637
2.0 1 0 0.05 0.207 0.262 0.239 0.312 0.463 0.221 0.216 0.643 0.655 0.655 0.654 0.672 0.657 0.649
0.5 1 0 0.05 0.190 0.238 0.219 0.212 0.700 0.210 0.203 0.606 0.626 0.628 0.628 0.646 0.638 0.623
1.0 2 0 0.05 0.194 0.234 0.229 0.217 0.727 0.214 0.208 0.613 0.633 0.637 0.635 0.656 0.645 0.632
2.0 2 0 0.05 0.201 0.256 0.244 0.432 0.802 0.222 0.216 0.619 0.644 0.646 0.644 0.666 0.653 0.638
0.5 1 0.5 0.05 0.192 0.221 0.212 0.298 0.339 0.210 0.203 0.609 0.636 0.634 0.636 0.652 0.635 0.629
1.0 1 0.5 0.05 0.197 0.241 0.227 0.372 0.465 0.215 0.209 0.622 0.645 0.642 0.643 0.659 0.647 0.640
2.0 1 0.5 0.05 0.208 0.268 0.243 0.321 0.448 0.224 0.219 0.643 0.655 0.654 0.656 0.674 0.658 0.651
0.5 2 0.5 0.05 0.191 0.226 0.227 0.213 0.689 0.211 0.204 0.605 0.627 0.629 0.629 0.647 0.641 0.622
1.0 2 0.5 0.05 0.195 0.246 0.236 0.309 0.675 0.216 0.209 0.616 0.633 0.636 0.635 0.653 0.648 0.633
2.0 2 0.5 0.05 0.203 0.260 0.243 0.383 0.630 0.223 0.217 0.625 0.645 0.648 0.644 0.665 0.655 0.638
0.5 1 0 0.50 0.263 0.354 0.327 0.664 0.750 0.254 0.253 0.759 0.739 0.731 0.747 0.771 0.730 0.737
1.0 1 0 0.50 0.359 0.483 0.427 0.905 1.171 0.327 0.451 0.850 0.811 0.804 0.828 0.855 0.796 0.810
2.0 1 0 0.50 0.541 0.764 0.777 1.615 1.986 0.451 0.521 0.926 0.879 0.871 0.895 0.922 0.866 0.879
0.5 2 0 0.50 0.230 0.295 0.284 0.577 0.746 0.253 0.247 0.661 0.690 0.686 0.692 0.708 0.694 0.686
1.0 2 0 0.50 0.288 0.401 0.383 0.546 1.019 0.316 0.312 0.729 0.752 0.750 0.751 0.765 0.753 0.746
2.0 2 0 0.50 0.403 0.604 0.574 1.003 1.338 0.428 0.430 0.797 0.810 0.808 0.816 0.823 0.806 0.801
0.5 1 0.5 0.50 0.267 0.340 0.328 0.624 0.775 0.264 0.343 0.756 0.743 0.739 0.746 0.772 0.734 0.741
1.0 1 0.5 0.50 0.358 0.501 0.466 0.976 1.240 0.343 0.346 0.840 0.815 0.809 0.825 0.846 0.802 0.813
2.0 1 0.5 0.50 0.530 0.743 0.744 1.549 1.805 0.469 0.584 0.926 0.883 0.875 0.889 0.912 0.871 0.887
0.5 2 0.5 0.50 0.238 0.326 0.314 0.536 0.725 0.264 0.256 0.675 0.709 0.701 0.707 0.726 0.702 0.702
1.0 2 0.5 0.50 0.297 0.424 0.396 0.766 1.015 0.323 0.327 0.733 0.763 0.755 0.763 0.775 0.753 0.753
2.0 2 0.5 0.50 0.406 0.619 0.594 1.082 1.413 0.434 0.486 0.807 0.820 0.819 0.826 0.839 0.817 0.816

Bias Standard Deviation
c d r π GMM HD EL ET EEL ETEL ETHD GMM HD EL ET EEL ETEL ETHD
0 0 0 0 -0.003 0.008 0.006 0.007 0.015 0.007 0.008 0.186 0.205 0.206 0.299 0.574 0.205 0.198
0.5 1 0 0.05 -0.006 0.004 0.004 0.004 0.005 0.004 0.004 0.191 0.233 0.209 0.304 0.340 0.209 0.204
1.0 1 0 0.05 -0.009 0.002 0.001 0.004 0.005 0.002 0.003 0.196 0.239 0.224 0.215 0.409 0.216 0.208
2.0 1 0 0.05 -0.012 -0.004 -0.004 -0.003 -0.007 -0.001 -0.002 0.207 0.262 0.239 0.312 0.463 0.221 0.216
0.5 1 0 0.05 -0.004 0.005 0.004 0.008 0.020 0.007 0.006 0.190 0.238 0.219 0.212 0.700 0.210 0.203
1.0 2 0 0.05 -0.006 0.007 0.005 0.008 0.022 0.007 0.007 0.194 0.233 0.229 0.216 0.726 0.213 0.208
2.0 2 0 0.05 -0.009 0.005 0.005 0.002 0.018 0.006 0.006 0.201 0.256 0.244 0.432 0.802 0.222 0.216
0.5 1 0.5 0.05 -0.006 0.006 0.003 0.004 0.006 0.004 0.005 0.192 0.221 0.212 0.298 0.339 0.210 0.203
1.0 1 0.5 0.05 -0.008 0.002 0.001 0.000 0.003 0.004 0.003 0.197 0.241 0.227 0.372 0.465 0.215 0.209
2.0 1 0.5 0.05 -0.012 -0.002 -0.002 -0.001 0.001 0.000 0.000 0.208 0.268 0.243 0.321 0.448 0.224 0.219
0.5 2 0.5 0.05 -0.005 0.007 0.004 0.008 0.016 0.007 0.006 0.191 0.225 0.227 0.213 0.689 0.211 0.204
1.0 2 0.5 0.05 -0.006 0.006 0.005 0.006 0.020 0.007 0.006 0.195 0.246 0.236 0.309 0.675 0.216 0.209
2.0 2 0.5 0.05 -0.009 0.006 0.005 0.004 0.015 0.007 0.007 0.202 0.260 0.243 0.383 0.630 0.223 0.216
0.5 1 0 0.50 -0.063 -0.050 -0.042 -0.063 -0.079 -0.031 -0.039 0.255 0.351 0.324 0.661 0.746 0.252 0.250
1.0 1 0 0.50 -0.134 -0.102 -0.084 -0.129 -0.127 -0.063 -0.084 0.334 0.473 0.419 0.896 1.164 0.321 0.443
2.0 1 0 0.50 -0.239 -0.192 -0.148 -0.272 -0.262 -0.118 -0.145 0.486 0.739 0.763 1.592 1.969 0.435 0.501
0.5 2 0 0.50 -0.008 0.005 0.003 -0.001 0.022 0.008 0.009 0.230 0.295 0.284 0.577 0.746 0.252 0.247
1.0 2 0 0.50 -0.010 0.008 0.007 0.010 0.026 0.016 0.014 0.288 0.401 0.383 0.546 1.018 0.316 0.312
2.0 2 0 0.50 -0.002 0.015 0.006 0.005 0.016 0.030 0.030 0.403 0.604 0.574 1.003 1.338 0.427 0.429
0.5 1 0.5 0.50 -0.051 -0.037 -0.032 -0.043 -0.051 -0.022 -0.030 0.262 0.338 0.327 0.623 0.773 0.263 0.342
1.0 1 0.5 0.50 -0.105 -0.077 -0.069 -0.106 -0.137 -0.047 -0.057 0.343 0.495 0.461 0.971 1.232 0.340 0.341
2.0 1 0.5 0.50 -0.188 -0.137 -0.107 -0.212 -0.196 -0.075 -0.101 0.496 0.730 0.736 1.535 1.794 0.463 0.575
0.5 2 0.5 0.50 -0.009 0.005 0.002 0.002 0.018 0.010 0.010 0.238 0.326 0.314 0.536 0.725 0.264 0.256
1.0 2 0.5 0.50 -0.009 0.005 0.006 0.005 0.030 0.017 0.015 0.296 0.424 0.396 0.766 1.015 0.323 0.327
2.0 2 0.5 0.50 -0.001 0.009 0.013 0.001 0.015 0.034 0.028 0.406 0.619 0.594 1.082 1.413 0.433 0.485

Table 3. Experiment 2 under local misspecification from partial contamination:
RMSE, Probas, Bias and standard deviation with T = 50 and 10,000 repli-
cations. The distribution of the contamination is χ2

1 with d = 1, and t1.5
with d = 2; the proportion π of contaminated sample is either 5%, or 50%
contamination.
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Appendix B. Proofs of the theoretical results in Sections 2 and 3

Proof of Theorem 2.1: Our proof closely follows the steps of the proof of Theorem 1 in Schennach (2007)
written for EL. To deduce that HD is not root n consistent, we proceed as follows. We show that for any HD
estimator based on random sample X with distribution F∞(x) and unbounded support, there exists a family of

other estimators θ̂k,n based on compactly supported Fk(x) (to be precisely defined below), all having a narrower
distribution than HD for each n and asymptotic variance that diverges as k → ∞. Then, the same argument
as the one used in Schennach (2007) allows us to conclude that HD is not root n consistent.
Let Fk(x) be a sequence of distributions indexed by k ∈ N, each having support Ck with Ck ≡ {x ∈
X s.t. g(x, θ) ∈ Gk ∀θ ∈ Θ} and Gk an increasing sequence of nested compact subsets of R

d such that
⋃∞

k=1 Gk = R
d. In addition, Fk(x) is chosen so that the moment conditions are uniformly misspecified in

the sense that,

∃k ∈ N s.t. inf
k≥k

inf
θ∈Θ

‖E[g(x, θ)]‖ > 0

Let θ̂k,n denote the HD estimator computed with a sample of size n generated with true DGP Kk(x) and let
θ∗k ∈ Θ denote its corresponding pseudo-true value. From the interpretation of the HD estimator as a GEL
estimator (see Newey and Smith (2004)) and KOE (2013a, p.1191), we have

θ̂k,n = argmin
θ

max
γ

− 1

n

n
∑

i=1

2

(1− γ′g(Xi, θ)/2)
.

The first-order condition with respect to θ and γ write, respectively:

− 1

n

n
∑

i=1

n
∑

i=1

Ĝ′
iγ̂k,n

[1− γ̂′
k,ng(Xi, θ̂k,n)/2]2

= 0 where Ĝi =
∂g(Xi, θ̂k,n)

∂θ′

− 1

n

n
∑

i=1

n
∑

i=1

g(Xi, θ̂k,n)

[1− γ̂′
k,ng(Xi, θ̂k,n)/2]2

= 0 .

The asymptotic properties of GEL-type estimators are well known:

√
n

[(

θ̂k,n
γ̂k,n

)

−
(

θ∗k
γ∗
k

)]

d→ N(0, H−1
k SkH

−1
k ) as n → ∞ for k fixed

with

Sk = E[φ(θ∗k, γ
∗
k)φ(θ

∗
k, γ

∗
k)

′] =

(

E[τ4i G
′
iγ

∗
kγ

∗′

k Gi] E[τ4i G
′
iγ

∗
kg

′
i]

E[τ4i giγ
∗′

k Gi] E[τ4i gig
′
i]

)

Hk = E

(

∂φ′(θ∗k, γ
∗
k)

∂[θ′ γ′]′

)

= E

(

τ3i Giγ
∗
kγ

∗′

k Gi + τ2i
∂(G′

iγ
∗
k)

∂θ′ τ3i G
′
iγ

∗
kg

′
i + τ2i G

′
i

τ3i giγ
∗′

k Gi + τ2i Gi τ3i gig
′
i

)

where

gi = g(Xi, θ
∗
k) , Gi =

∂g(Xi, θ
∗
k)

∂θ′
, τi =

1

1− γ∗′

k gi/2
, φ(θ, γ) =

(

G′
iγ

(1−γ′gi/2)2
gi

(1−γ′gi/2)2

)

.

From the calculations in the dual problem, we have:

√
πi =

1√
n(1− γ∗′

k gi/2)
> 0 ⇒ 1

(1− γ∗′

k gi/2)
> 0 (B.1)

Since {g(x, θ∗k), x ∈ X} is unbounded in every direction, the set {g(x, θ∗k) ∈ Ck} becomes unbounded in every
direction as k → ∞, Hence, the only way to have (B.1) is to have γ∗

k → 0 as k → ∞. Since γ∗
k → 0 as k → ∞,

Sk and Hk can be simplified by noting that when (H−1
k SkH

−1
k ) is calculated, any term containing γ∗

k will be
dominated by terms not containing it. We get:

Sk →
(

0 0
0 E(τ4i gig

′
i)

)

and H−1
k →

(

0 E(τ2i G
′
i)

E(τ2i Gi) E(τ3i gig
′
i)

)−1

≡
(

B11 B12

B21 B22

)
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Define Σk as the (p, p) top-left submatrix of (H−1
k SkH

−1
k ), that is Σk = B12E(τ4i gig

′
i)B21. Recall

(

A B
C D

)−1

top-right corner term is −F−1BD−1 with F = A−BD−1C. Thus:

B12 =
[

E(τ2i G
′
i)
(

E(τ3i gig
′
i)
)−1

E(τ2i Gi)
]−1

E(τ2i G
′
i)
(

E(τ3i gig
′
i)
)−1

= B′
21

To show that Σk diverges, we show the following three properties:

(i) E(τ4i gig
′
i) has a divergent eigenvalue;

(ii) ‖E(τ2i Gi)‖ = o
(

[

E(τ4i ‖gig′i‖)
]1/2

)

;

(iii) ‖B12‖
[

E(τ4i ‖gig′i‖)
]1/2

diverges.

(i) First, we show that E(τ4i gig
′
i) has a divergent eigenvalue:

gi(1− γ∗′

k gi/2)
2 = gi(1− γ∗′

k gi + (γ′gi)
2/4)
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∗
k + gig

′
iγg

′
iγ

∗
k/4
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2

⇒ E(gi) ≡ −(Ω1 +Ω2)
γ∗
k

2

Since infk≥k̄ E(g(Xi, θ
∗
k)) > 0 some k̄ ∈ N, the only way to have γ∗

k → 0 is if (Ω1+Ω2) has a divergent eigenvalue.
Let v be a unit eigenvector associated with such eigenvalue:

v′Ω1v = E
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Since

a) E(v′gi)
2 ≤ sup

θ∈Θ
E‖g(Xi, θ)‖2 < ∞ by assumption,

b) v′Ω1v ≤
[

E
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v′gi
(1− γ∗′

k gi/2)2
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E(v′gi)
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diverges as shown above,
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)2

= E[τ4i (v
′gi)

2] ,

we conclude that E(τ4i gig
′
i) has a divergent eigenvalue.



34 BERTILLE ANTOINE AND PROSPER DOVONON

(ii) We now show that ‖E(τ2i Gi)‖ = o
(

[

E(τ4i ‖gig′i‖)
]1/2

)

.
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where the last inequality follows from the Cauchy-Schwarz inequality. Then,
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k giGi‖)
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(iii) Finally, we show that ‖B12‖
[

E(τ4i ‖gig′i‖)
]1/2 → ∞.

First, it follows from the Cauchy-Schwarz inequality that:
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Then, from the definition of B12, we have:
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Finally, we showed in (ii) above that
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→ ∞ �

Proof of Theorem 3.1: To simplify the notation, we make the dependence of all quantities on θ̂ implicit and

introduce the following notations: π̂i = π̂i(θ̂), λ̂ = λ̂(θ̂), gi = gi(x, θ̂). In addition,
∑

i =
∑n

i=1.
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The first part follows readily from the discussion leading to the statement of the theorem. Regarding the
second part, let us start with the following preliminary computation:

dπ̂i

dθ
=

d
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We can now proceed from

H2(π̂, Pn) = 1− 1√
n

∑

i

√
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The differentiation with respect to θ gives:
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From (12), the first-order condition for λ̂ is:
∑

i

gi exp(λ̂
′gi) = 0 .

�

Lemma B.1. Let

∆Pn
(λ, θ) =

EPn
[exp(λ′g(X, θ)/2)]

√

EPn
[exp(λ′g(X, θ))]

, ∆P∗
(λ, θ) =

EP∗
[exp(λ′g(X, θ)/2)]

√

EP∗
[exp(λ′g(X, θ))]

and (λ̂, θ̂) an arbitrary sequence of Λ×Θ, a compact set. If (i) ∆Pn
(λ, θ) converges uniformly in probability P∗

and over Λ × Θ to ∆P∗
(λ, θ), with ∆P∗

continuous in both its arguments, (ii) V arP∗
(g(X, θ)) is non singular

for all θ ∈ Θ with smallest eigenvalue bounded away from 0, and (iii) ∆Pn
(λ̂, θ̂)

P∗→ 1, then

λ̂
P∗→ 0.

Proof of Lemma B.1: By the triangle inequality, (i) and (iii) imply that ∆P∗
(λ̂, θ̂)

P∗→ 1. Let ǫ > 0 and
Nǫ = {λ ∈ R

m : ‖λ‖ < ǫ} and N̄ǫ its complement. By the Jensen’s inequality, since x 7→ √
x is strictly concave,

∆P∗
(λ, θ) ≤ 1 with equality occurring only for λ′g(X, θ) constant P∗-almost surely. By condition (ii), λ′g(X, θ)
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is constant P∗-almost surely if and only if λ = 0. By continuity of objective function and compactness of
optimization set, there exists (λ̄, θ̄) ∈ (N̄ǫ ∩ Λ)×Θ such that

max
(λ,θ)∈(N̄ǫ∩Λ)×Θ

∆P∗
(λ, θ) = ∆P∗

(λ̄, θ̄) ≡ Aǫ.

Since λ̄ 6= 0, Aǫ < 1. Hence, ∆P∗
(λ̂, θ̂) > Aǫ with probability approaching 1 as n → ∞. Therefore, λ̂ /∈ N̄ǫ with

probability approaching 1, that is P∗(‖λ̂‖ < ǫ) → 1 as n → ∞. �

Lemma B.2. If Assumption 1 holds and θ̂ is the ETHD estimator, then

(a) ∆Pn
(λ̂(θ̂), θ̂) = 1 +OP (n

−1), (b) λ̂(θ̂) = OP (n
−1/2), (c) EPn

(g(X, θ̂)) = OP (n
−1/2).

Proof of Lemma B.2: We proceed in three steps. Step 1 shows that ∆Pn
(λ̂(θ̂), θ̂) = 1 + OP (n

−1). This

allows, thanks to Lemma B.1 to deduce that λ̂(θ̂) = oP (1). Step 2 derives the order of magnitude of λ̂(θ̂) and

Step 3 derives that of EPn
(g(X, θ̂)).

Step 1: We first show that ∆Pn
(λ̂(θ̂), θ̂) = 1 +OP (n

−1). By definition of θ̂, we have:

∆Pn

(

λ̂(θ∗), θ∗
)

≤ ∆Pn

(

λ̂(θ̂), θ̂
)

≤ 1. (B.2)

To concludes (a), it suffices to show that ∆Pn

(

λ̂(θ∗), θ∗
)

= 1+OP (n
−1). For this, observe that by the central

limit theorem,
√
nEPn

(g(X, θ∗)) = OP (1). We can therefore apply Lemma A2 of Newey and Smith (2004) to the

constant sequence θ̄ = θ∗ and claim that λ̂(θ∗) = OP (n
−1/2) and EPn

[

exp
(

λ̂(θ∗)′g(X, θ∗)
)]

≥ 1 + OP (n
−1).

Since EPn
[exp (λ′g(X, θ∗))] is minimized at λ̂(θ∗) over Λ which contains 0, we actually have

1 +OP (n
−1) ≤ EPn

[

exp
(

λ̂(θ∗)′g(X, θ∗)
)]

≤ 1.

Thus εn ≡ EPn

[

exp
(

λ̂(θ∗)′g(X, θ∗)
)]

− 1 = OP (n
−1).

Also, by definition of λ̂(θ∗), EPn

[

exp
(

λ̂(θ∗)′g(X, θ∗)
)]

≤ EPn

[

exp
(

λ̂(θ∗)′g(X, θ∗)/2
)]

. Hence,

(

EPn

[

exp
(

λ̂(θ∗)′g(X, θ∗)
)])1/2

≤ ∆Pn

(

λ̂(θ∗), θ∗
)

≤ 1.

But,
(

EPn

[

exp
(

λ̂(θ∗)′g(X, θ∗)
)])1/2

= 1+ 1
2εn+O(ε2n) = 1+OP (n

−1). Thus ∆Pn

(

λ̂(θ∗), θ∗
)

= 1+OP (n
−1)

and we obtain (a) using (B.2).

Step 2: Before deriving the order of magnitude in (b), we first show that λ̂(θ̂)
P→ 0. For this, we verify the

conditions of Lemma B.1. Conditions (ii) is satisfied thanks to Assumption 1(v), Condition (iii) follows from
Step 1. It remains to show (i). Thanks to the dominance condition in Assumption 1(vi), Lemma 2.4 of Newey
and McFadden (1994) ensures that EPn

[exp (λ′g(X, θ))] and EPn
[exp (λ′g(X, θ)/2)] converge in probability

uniformly over Λ×Θ to E [exp (λ′g(X, θ))] and E [exp (λ′g(X, θ)/2)], respectively and both limits functions are
continuous in (λ, θ). To conclude (i), we show that E [exp (λ′g(X, θ))] is bounded away from 0–which is enough
to deduce that the ratio ∆Pn

(λ, θ) converges uniformly in probability to ∆(λ, θ). By convexity of x 7→ ex,

E [exp (λ′g(X, θ))] ≥ exp [λ′EP (g(X, θ))] ≥ exp

[

−‖λ‖EP

(

sup
θ∈Θ

‖g(X, θ)‖
)]

≥ δ > 0,

the third and last inequalities are due to compactness of Λ and Assumption 1(iv).

Let us now establish (b). By a second order Taylor expansion of ∆Pn
(λ̂(θ̂), θ̂) around λ = 0 with a Lagrange

remainder, we have:

∆Pn
(λ̂(θ̂), θ̂) = ∆Pn

(0, θ̂) +
∂∆Pn

(0, θ̂)

∂λ′ λ̂(θ̂) +
1

2
λ̂(θ̂)′

∂2∆Pn
(λ̇, θ̂)

∂λ∂λ′ λ̂(θ̂), (B.3)

with λ̇ ∈ (0, λ̂(θ̂)). We have:

∂∆Pn
(λ, θ)

∂λ
=

1

2

{

EPn
[g(X, θ) exp(λ′g(X, θ)/2)]

(EPn
[exp(λ′g(X, θ))])

1/2
− EPn

[g(X, θ) exp(λ′g(X, θ))]EPn
[exp(λ′g(X, θ)/2)]

(EPn
[exp(λ′g(X, θ))])

3/2

}
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and
∂2

∆Pn (λ,θ)
∂λ∂λ′ = 1

2

(

∆
(1)
Pn

(λ, θ) +∆
(2)
Pn

(λ, θ)
)

, with (letting g ≡ g(X, θ)),

∆
(1)
Pn

(λ, θ) =
1

2

EPn
[gg′ exp(λ′g/2)]

[EPn
(λ′g)]1/2

− EPn
[gg′ exp(λ′g)]EPn

[exp(λ′g/2)]

[EPn
(λ′g)]3/2

∆
(2)
Pn

(λ, θ) =
3

2

EPn
[g exp(λ′g)]EPn

[g′ exp(λ′g)]EPn
[exp(λ′g/2)]

(EPn
[exp(λ′g)])5/2

− 1

2

EPn
[g exp(λ′g)]EPn

[g′ exp(λ′g/2)]

(EPn
[exp(λ′g)])3/2

− 1

2

EPn
[g exp(λ′g/2)]EPn

[g′ exp(λ′g)]

(EPn
[exp(λ′g)])3/2

.

Hence,
∂∆Pn (0,θ̂)

∂λ = 0. We also have that:

∂2∆Pn
(λ̇, θ̂)

∂λ∂λ′ = −1

4
V ar(g(X, θ̂)) + oP (1). (B.4)

To see this, we observe that, by uniform convergence,

EPn

[

exp
(

λ̇′g(X, θ̂)
)]

= E
(

exp
(

λ̇′g(X, θ̂)
))

+ oP (1).

By continuity of (λ, θ) 7→ E (exp (λ′g(X, θ))), the fact that g(X, θ̂) = OP (1) and λ̇
P→ 0 implies that

E
(

exp
(

λ̇′g(X, θ̂)
))

→ 1 in probability as n → ∞ and we have

EPn

[

exp
(

λ̇′g(X, θ̂)
)]

P→ 1

as well.
We can also claim that

EPn

[

g(X, θ̂) exp
(

λ̇′g(X, θ̂)
)]

= E
(

g(X, θ̂) exp
(

λ̇′g(X, θ̂)
))

+ oP (1) = E
(

g(X, θ̂)
)

+ oP (1).

To see this, let N ⊂ R
m be a small neighborhood of 0. For λ near 0, we have

‖g(x, θ) exp (λ′g(x, θ)) ‖ ≤ sup
θ∈Θ

‖g(x, θ)‖ sup
θ∈Θ,λ∈N

exp (λ′g(x, θ)) .

Applying the Hölder inequality with β: 1/α+ 1/β = 1, have:

E
(

supθ∈Θ ‖g(X, θ)‖ supθ∈Θ,λ∈N exp (λ′g(X, θ))
)

≤ (E supθ∈Θ ‖g(X, θ)‖α) 1
α
(

E supθ∈Θ,λ∈N exp (βλ′g(X, θ))
)

1
β

≤ (E supθ∈Θ ‖g(X, θ)‖α) 1
α
(

E supθ∈Θ,λ∈Λ exp (λ′g(X, θ))
)

1
β < ∞

This establishes the dominance condition needed for the claim to hold. We can proceed the same way to show
that:

EPn

[

g(X, θ̂)g(X, θ̂)′ exp
(

λ̇′g(X, θ)
)]

= E
(

g(X, θ̂)g(X, θ̂)′
)

+ oP (1);

EPn

[

g(X, θ̂)g(X, θ̂)′ exp
(

λ̇′g(X, θ)/2
)]

= E
(

g(X, θ̂)g(X, θ̂)
)

+ oP (1);

EPn

[

g(X, θ̂) exp
(

λ̇′g(X, θ)/2
)]

= E
(

g(X, θ̂)
)

+ oP (1); and EPn

[

exp
(

λ̇′g(X, θ)/2
)]

= 1 + oP (1)

and (B.4) follows. Therefore, (B.3) can be written:

∆Pn
(λ̂(θ̂), θ̂) = 1− 1

8
λ̂(θ̂)′V ar(g(X, θ̂))λ̂(θ̂) + oP (1)‖λ̂(θ̂)‖2. (B.5)

Thus
1

8
λ̂(θ̂)′V ar(g(X, θ̂))λ̂(θ̂) + oP (1)‖λ̂(θ̂)‖2 = OP (n

−1).

From Assumption 1(v), this implies that:

ℓ‖λ̂(θ̂)‖2/8 + oP (1)‖λ̂(θ̂)‖2 ≤ 1

8
λ̂(θ̂)′V ar(g(X, θ̂))λ̂(θ̂) + oP (1)‖λ̂(θ̂)‖2 = OP (n

−1)

with ℓ > 0 and we can conclude that

‖λ̂(θ̂)‖2(1 + oP (1)) = OP (n
−1)
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implying that

‖λ̂(θ̂)‖2 = OP (n
−1)

or, equivalently, λ̂(θ̂) = OP (n
−1/2), concluding Step 2.

Step 3: Now, we show that EPn
(g(X, θ̂)) = OP (n

−1/2). Let λ̃ = − EPn (g(X,θ̂))√
n‖EPn (g(X,θ̂))‖ + λ̂(θ̂). By definition,

EPn

[

exp
(

λ̂(θ̂)′g(X, θ̂)
)]

≤ EPn

[

exp
(

λ̃′g(X, θ̂)
)]

.

Second order Taylor expansions of each side around 0 with a Lagrange remainder gives:

EPn

[

exp
(

λ̂(θ̂)′g(X, θ̂)
)]

= 1 + λ̂(θ̂)′EPn

(

g(X, θ̂)
)

+
1

2
λ̂(θ̂)′EPn

[

g(X, θ̂)g(X, θ̂)′ exp
(

λ̇′g(X, θ̂)
)]

λ̂(θ̂)

and

EPn

[

exp
(

λ̃′g(X, θ̂)
)]

= 1 + λ̂(θ̂)′EPn

(

g(X, θ̂)
)

− n−1/2
∥

∥

∥
EPn

(

g(X, θ̂)
)∥

∥

∥

+ 1
2 λ̃

′EPn

[

g(X, θ̂)g(X, θ̂)′ exp
(

λ̈′g(X, θ̂)
)]

λ̃,

with λ̇ ∈ (0, λ̂(θ̂)) and λ̈ ∈ (0, λ̃). Since λ̂(θ̂) and λ̃ are both OP (n
−1/2), so are λ̇ and λ̈ and, as a result, the

quadratic terms in both expansions are of order OP (n
−1). Thus:

1 + λ̂(θ̂)′EPn

(

g(X, θ̂)
)

+OP (n
−1) ≤ 1 + λ̂(θ̂)′EPn

(

g(X, θ̂)
)

− n−1/2
∥

∥

∥EPn

(

g(X, θ̂)
)∥

∥

∥+OP (n
−1)

and we can conclude that: EPn

(

g(X, θ̂)
)

= OP (n
−1/2). �

Proof of Theorem 3.2: Proofs of (ii) and (iii) follow from Lemma B.2. We show (i). We have

EPn

(

g(X, θ̂)
)

= E(g(X, θ̂)) +
(

EPn

(

g(X, θ̂)
)

− E(g(X, θ̂))
)

.

By uniform convergence in probability of EPn
(g(X, θ)) towards E(g(X, θ)) over Θ, we have:

EPn

(

g(X, θ̂)
)

= E(g(X, θ̂)) + oP (1).

From (iii), we can deduce that E(g(X, θ̂))
P→ 0 as n → ∞. Since E(g(X, θ)) = 0 is solved only at θ∗, the fact

that θ → E(g(X, θ)) is continuous and Θ compact, a similar argument that in Newey and McFadden (1994)

allows us to conclude that θ̂
P→ θ∗. �

Proof of Theorem 3.3: (i) We essentially rely on mean-value expansions of the first order optimality conditions

for θ̂ and λ̂. Since θ̂ converges in probability to θ∗ which is an interior point, with probability approaching 1, θ̂
is an interior solution and solves the first order condition:

d∆Pn
(λ̂(θ), θ)

dθ

∣

∣

∣

∣

∣

θ=θ̂

=
N1(λ̂(θ̂), θ̂)

D1(λ̂(θ̂), θ̂)
− N2(λ̂(θ̂), θ̂)

D2(λ̂(θ̂), θ̂)
= 0, (B.6)

with

N1(λ, θ) =
1

2
EPn

[(

dλ̂′

dθ
(θ̂)g(X, θ) +

∂g(X, θ̂)′

∂θ
λ

)

exp
(

λ′g(X, θ̂)/2
)

]

,

N2(λ, θ) =
1

2
EPn

[(

dλ̂′

dθ
(θ̂)g(X, θ) +

∂g(X, θ̂)′

∂θ
λ

)

exp
(

λ′g(X, θ̂)
)

]

×D0

(

λ̂

2
, θ̂

)

,

D1(λ, θ) =D0(λ, θ)
1/2, D2(λ, θ) = D0(λ, θ)

3/2, D0(λ, θ) = EPn
[exp(λ′g(X, θ))] .

Also, the fact that λ̂(θ̂) converges in probability to 0 makes it an interior solution so that it solves in λ the
first-order condition:

EPn

[

g(X, θ̂) exp
(

λ′g(X, θ̂)
)]

= 0. (B.7)
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Note that, by a similar arguments to those in the proof of Lemma A1 of Newey and Smith (2004),
max1≤i≤n supθ∈Θ ‖g(Xi, θ)‖ = OP (n

1/α) and for any sequence λ̄ such that λ̄ = OP (n
−1/2), we have:

‖λ̄‖‖g(Xi, θ)‖ = oP (1) and |λ̄′g(Xi, θ)| = oP (1),

uniformly over θ ∈ Θ and i = 1, . . . , n. We will use these orders of magnitude routinely in the following lines.
They allow us to claim that

D0(λ̂(θ̂)/2, θ̂) = 1 + oP (1), D1(λ̂(θ̂), θ̂) = 1 + oP (1), and D2(λ̂(θ̂), θ̂) = 1 + oP (1).

We will consider the left hand sides of (B.6) and (B.7) and carry out their mean-value expansions around (0, θ∗).
Regarding (B.6), we have:

N2(0, θ
∗) = N1(0, θ

∗) + oP (n
−1/2), with N1(0, θ

∗) =
1

2

dλ̂(θ̂)′

dθ
EPn

(g(X, θ∗))

so that the mean-value expansion of (B.6) is:

oP (n
−1/2) =

∂

∂θ′

(

N1(λ, θ)

D1(λ̂, θ̂)
− N2(λ, θ)

D2(λ̂, θ̂)

)∣

∣

∣

∣

∣

(λ̇,θ̇)

(θ̂ − θ∗) +
∂

∂λ′

(

N1(λ, θ)

D1(λ̂, θ̂)
− N2(λ, θ)

D2(λ̂, θ̂)

)∣

∣

∣

∣

∣

(λ̇,θ̇)

λ̂, (B.8)

where λ̂ ≡ λ̂(θ̂), λ̇ ∈ (0, λ̂) and θ̇ ∈ (θ∗, θ̂) and both may vary from row to row. We have:

∂N1(λ̇,θ̇)
∂θ′ = 1

2
dλ̂′

dθ (θ̂)EPn

(

∂g(X,θ̇)
∂θ′ exp(λ̇′g(X, θ̂)/2)

)

= 1
2
dλ̂′

dθ (θ̂)EPn

(

∂g(X,θ̇)
∂θ′

)

+ oP (1).

∂N2(λ̇,θ̇)
∂θ′ = 1

2D0(λ̂/2, θ̂)
dλ̂′

dθ (θ̂)EPn

(

∂g(X,θ̇)
∂θ′ exp(λ̇′g(X, θ̂))

)

= 1
2
dλ̂′

dθ (θ̂)EPn

(

∂g(X,θ̇)
∂θ′

)

+ oP (1).

∂N1(λ̇,θ̇)
∂λ′ = 1

2EPn

{[

∂g(X,θ̂)′

∂θ + 1
2

[

dλ̂′

dθ (θ̂)g(X, θ̇)g(X, θ̂)′ + ∂g(X,θ̂)′

∂θ λ̇g(X, θ̂)′
]]

exp(λ̇′g(X, θ̂)/2)
}

= 1
2EPn

(

∂g(X,θ̂)′

∂θ

)

+ 1
4
dλ̂′

dθ (θ̂)EPn

(

g(X, θ̇)g(X, θ̂)′
)

+ oP (1)

∂N2(λ̇,θ̇)
∂λ′ = 1

2D0(λ̂/2, θ̂)EPn

{(

∂g(X,θ̂)′

∂θ +
[

dλ̂′

dθ (θ̂)g(X, θ̇)g(X, θ̂)′ + ∂g(X,θ̂)′

∂θ λ̇g(X, θ̂)′
])

exp(λ̇′g(X, θ̂))
}

= 1
2EPn

(

∂g(X,θ̂)′

∂θ

)

+ 1
2
dλ̂′

dθ (θ̂)EPn

(

g(X, θ̇)g(X, θ̂)′
)

+ oP (1)

As a result,
∂
∂θ′

(

N1(λ,θ)

D1(λ̂,θ̂)
− N2(λ,θ)

D2(λ̂,θ̂)

)∣

∣

∣

(λ̇,θ̇)
= oP (1)

∂
∂λ′

(

N1(λ,θ)

D1(λ̂,θ̂)
− N2(λ,θ)

D2(λ̂,θ̂)

)∣

∣

∣

(λ̇,θ̇)
= − 1

4
dλ̂(θ̂)′

dθ EPn

(

g(X, θ̇)g(X, θ̂)′
)

+ oP (1).

Note that, the first order condition determining λ̂, that is (B.7) with θ replacing θ̂, defines the implicit function

λ̂(θ) with derivative given by

dλ̂(θ)
dθ′ = −

(

EPn

[

g(X, θ)g(X, θ)′ exp
(

λ̂(θ)′g(X, θ)
)])−1

×EPn

[(

∂g(X,θ)
∂θ′ + g(X, θ)λ̂(θ)′ ∂g(X,θ)

∂θ′

)

exp
(

λ̂(θ)′g(X, θ)
)]

.

By similar arguments as above, we have:

dλ̂(θ̂)

dθ′
= −

(

EPn

[

g(X, θ̂)g(X, θ̂)′
])−1

EPn

(

∂g(X, θ̂)

∂θ′

)

+ oP (1) = −Ω−1G+ oP (1).

Thus,
∂

∂λ′

(

N1(λ, θ)

D1(λ, θ)
− N2(λ, θ)

D2(λ, θ)

)∣

∣

∣

∣

(λ̇,θ̇)

=
1

4
G′ + oP (1).

Also, since EPn
(g(X, θ̂) = OP (n

−1/2), a standard mean-value expansion ensures that θ̂ − θ∗ = OP (n
−1/2) and

(B.8) amounts to: √
nG′λ̂ = oP (1). (B.9)
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The expansion of (B.7) around (0, θ∗) yields:

0 = EPn
(g(X, θ∗)) + EPn

[(

∂g(X,θ̇)
∂θ′ + g(X, θ̇)λ̇′ ∂g(X,θ̇)

∂θ′

)

exp
(

λ̇′g(X, θ̇)
)]

(θ̂ − θ∗)

+EPn

[

g(X, θ̇)g(X, θ̇)′ exp
(

λ̇′g(X, θ̇)
)]

λ̂,

with (λ̇, θ̇) ∈ (0, λ̂(θ̂))× (θ∗, θ̂) and may differ from row to row. By similar arguments to those previously made,
this expression reduces to:

G
√
n(θ̂ − θ∗) + Ω

√
nλ̂ = −√

nEPn
(g(X, θ∗)) + oP (1). (B.10)

Together, (B.9) and (B.10) yield:

(

Ω G
G′ 0

)√
n

(

λ̂

θ̂ − θ∗

)

=

(

−√
nEPn

(g(X, θ∗))
0

)

+ oP (1) (B.11)

By the standard partitioned inverse matrix formula (see Magnus and Neudecker (1999, p.11)), we have
(

Ω G
G′ 0

)−1

=

(

Ω−1/2MΩ−1/2 Ω−1GΣ
ΣG′Ω−1 −Σ

)

. (B.12)

Hence,
√
n

(

λ̂

θ̂ − θ∗

)

= −
(

Ω−1/2MΩ−1/2

ΣG′Ω−1

)

1√
n

n
∑

i=1

g(Xi, θ
∗) + oP (1)

and the statement (i) of the theorem follows easily.

To establish (ii), we use the fact that

√
nλ̂ = −Ω−1/2MΩ−1/2 1√

n

n
∑

i=1

g(Xi, θ
∗) + oP (1)

and Equation (B.5). This equation implies that

8n
(

1−∆Pn
(λ̂, θ̂)

)

= nλ̂′Ωλ̂+ oP (1) =
1√
n

n
∑

i=1

g(Xi, θ
∗)′Ω−1/2MΩ−1/2 1√

n

n
∑

i=1

g(Xi, θ
∗) + oP (1)

and the result follows since
(

1√
n

∑n
i=1 Ω

−1/2g(Xi, θ
∗)
)′

M
(

1√
n

∑n
i=1 Ω

−1/2g(Xi, θ
∗)
)

is asymptotically dis-

tributed as a χ2
m−p. �

Appendix C. Local misspecification

This section contains the proofs of the main results that appear in Section 4 as well as some useful auxiliary
lemmas.

C.1. Proofs of the main theorems. This section provides proofs to the main results in Section 4 of the main
text.
Proof of Theorem 4.1: The proof follows similar lines as those of Theorem 3.1(ii) in KOE (2013a). To
establish Fisher consistency, let Pθ,ζ be a regular sub-model such that for t ∈ R

p, Pθn,ζn ∈ BH(P∗, r/
√
n) for n

large enough, with θn = θ∗ + t/
√
n and ζn = O(n−1/2). We further assume that EPθn,ζn

[supθ∈Θ ‖g(X, θ)‖α] ≤
δ < ∞ for some δ > 0. (Note that the particular sub-model used by KOE to derive the lower bound in their
Theorem 3.1(i) satisfies this condition.) We have to show that

√
n(T̄ (Pθn,ζn)− θ∗) → t,

as n → ∞. From Lemma C.5,
√
n(T̄ (Pθn,ζn)− θ∗) = −ΣG′Ω−1

√
nEPθn,ζn

[gn(X, θ∗)] + o(1).

By a mean-value expansion, we have:

√
nEPθn,ζn

[gn(X, θ∗)] =
√
nEPθn,ζn

[gn(X, θn)]− EPθn,ζn

[

∂gn(X, θ̇)

∂θ′

]

t,
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with θ̇ ∈ (θ∗, θn) and may vary from row to row. Noting that EPθn,ζn
[g(X, θn)] = 0, EPθn,ζn

[gn(X, θn)] =

EPθn,ζn
[g(X, θn)I{X /∈ Xn}] = o(n−1/2) (we refer to Equation A.16 of KOE (2013b) for the proof). Also,

thanks to Assumption 3(iv), and by the continuity of the map θ 7→ EP∗

[

∂g(X,θ)
∂θ′

]

in a neighborhood of θ∗, we

can claim that EPθn,ζn

[

∂gn(X,θ̇)
∂θ′

]

converges to G as n → ∞. This establishes that T̄ is asymptotically Fisher

consistent in the claimed family of sub-models and this is enough to apply Theorem 3.1(i) of KOE (2013a), and
deduce that

lim inf
n→∞

Ln ≥ 4r2B∗, (C.1)

where Ln = supQ∈BH (P∗,r/
√
n) n

(

τ ◦ T̄ (Qn)− τ(θ∗)
)2
.

Now, let F = ∂τ(θ0)
∂θ′ ΣG′Ω−1 and Qn ∈ BH(P∗, r/

√
n). By Lemma C.3(iv), T̄ (Qn) → θ∗ as n → ∞ and using

Lemma C.5, a Taylor expansion of τ(T̄ (Qn)) around θ∗ ensures that:

√
n
(

τ ◦ T̄Qn
− τ(θ∗)

)

= −√
nF

∫

gn(X, θ∗)dQn + o(1).

From Lemma A.4 of KOE (2013b), we have EP∗
(gn(X, θ∗)) = o(n−1/2). Thus,

−√
nF

∫

gn(X, θ∗)dQn + o(1) = −√
nF

∫

gn(X, θ∗)(dQn − dP∗) + o(1)

= −√
nF

∫

gn(X, θ∗)
(

dQ1/2
n − dP

1/2
∗
)

dQ1/2
n −√

nF

∫

gn(X, θ∗)
(

dQ1/2
n − dP

1/2
∗
)

dP
1/2
∗ + o(1).

By the triangle inequality, we have

n(
(

τ ◦ T̄ (Qn)− τ(θ∗)
)2 ≤ n(A1 +A2 + 2A3) + o(1),

with

A1 =

∣

∣

∣

∣

F

∫

gn(x, θ
∗)
(

dQ1/2
n − dP

1/2
∗
)

dQ1/2
n

∣

∣

∣

∣

2

, A1 =

∣

∣

∣

∣

F

∫

gn(x, θ
∗)
(

dQ1/2
n − dP

1/2
∗
)

dP
1/2
∗

∣

∣

∣

∣

2

and A3 =
√
A1 ·A2. By the Cauchy-Schwarz inequality and then by Lemma A.5(i) of KOE (2013b), we have:

A1 ≤
∣

∣

∣

∣

F

(∫

gn(X, θ∗)gn(X, θ∗)′dQn

)

F ′
∣

∣

∣

∣

·
∫

(

dQ1/2
n − dP

1/2
∗
)2

≤ B∗ r
2

n
+ o(n−1).

By the same way, we have A2 ≤ B∗ r2

n + o(n−1) and we can deduce that A3 ≤ B∗ r2

n + o(n−1). Therefore,

n
(

τ ◦ T̄ (Qn)− τ(θ∗)
)2 ≤ 4r2B∗ + o(1), (C.2)

Besides, from Lemma C.2, T̄ is well-defined on BH(P∗, r/
√
n) and takes value in the compact set Θ. By

continuity of τ , there exists C > 0 such that

Ln = sup
Q∈BH (P∗,r/

√
n)

n
(

τ ◦ T̄ (Q)− τ(θ∗)
)2 ≤ C · n < ∞.

Then, by definition of sup, there exists a sequence Q̄n in BH(P∗, r/
√
n) such that

Ln ≤ n
(

τ ◦ T̄ (Q̄n)− τ(θ∗)
)2

+
1

2n
.

Thus

lim sup
n→∞

Ln ≤ lim sup
n→∞

n
(

τ ◦ T̄ (Q̄n)− τ(θ∗)
)2

and using (C.2), we deduce that lim supn→∞ Ln ≤ 4r2B∗. This establishes (20) recalling (C.1). �

Proof of Theorem 4.2: We proceed in two steps. First, we show that T̄ is regular. Then, applying Theorem
3.2(i) of KOE (2013a), we can claim that, for each r > 0,

lim
b→∞

lim
δ→∞

lim inf
n→∞

sup
Q∈B̄δ

H (P∗,r/
√
n)

∫

b ∧ n(τ ◦ T (Pn)− τ(θ∗))2dQ⊗n ≥ (1 + 4r2)B∗. (C.3)

In a second step, we establish that limit superior is less or equal to (1 + 4r2)B∗.
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Consider again the sub-model Pθn,ζn as introduced in the proof of Theorem 4.1. We show that:

√
n (T (Pn)− T (Pθn,ζn))

d→ N(0,Σ),

under Pθn,ζn . We have
√
n (T (Pn)− T (Pθn,ζn)) =

√
n
[(

T (Pn)− T̄ (Pn)
)

+
(

T̄ (Pn)− T̄ (Pθn,ζn)
)

+
(

T̄ (Pθn,ζn)− T (Pθn,ζn)
)]

.

Note that from Lemma C.7,
√
n
(

T̄ (Pn)− T̄ (Pθn,ζn)
)

converges in distribution to N(0,Σ) under Pθn,ζn . Hence,
only need to show that

(a)
√
n(T̄ (Pθn,ζn)− T (Pθn,ζn) = o(1) and (b)

√
n(T (Pn)− T̄ (Pn)) = oP (1) under Pθn,ζn .

To show (a), it is not hard to see, for n large enough, that T (Pθn,ζn) = θn. Hence,
√
n(T̄ (Pθn,ζn)− T (Pθn,ζn)) =

√
n(T̄ (Pθn,ζn)− θ∗)−√

n(θn − θ∗) =
√
n(T̄ (Pθn,ζn)− θ∗)− t = o(1)

by Fisher consistency of T̄ . To show (b), by similar reasoning as in the proof of Lemma C.7(i), it suffices to
show that

√
n(T (Pn)− T̄ (Pn)) = oP∗

(1). We first observe that
√
n(T (Pn)− T̄ (Pn)) =

√
n(T (Pn)− θ∗)−√

n(T̄ (Pn)− θ∗) = OP∗
(1) +OP∗

(1) = OP∗
(1),

where the orders of magnitude follow from Theorem 3.3 and Lemma C.7(i).
Let ǫ > 0 and consider P∗

(

‖√n(T (Pn)− T̄ (Pn))‖ > ǫ
)

that we show converges to 0 as n → ∞. For this, let

ν > 0. By uniform tightness of
√
n(T (Pn)− T̄ (Pn)), there exists η > ǫ such that

sup
n

P∗
(

‖√n(T (Pn)− T̄ (Pn))‖ > η
)

< ν/2

and we have:

P∗
(

‖√n(T (Pn)− T̄ (Pn))‖ ≥ ǫ
)

= P∗
(

ǫ ≤ ‖√n(T (Pn)− T̄ (Pn))‖ ≤ η
)

+ P∗
(

‖√n(T (Pn)− T̄ (Pn))‖ > η
)

≤ P∗
(

ǫ ≤ ‖√n(T (Pn)− T̄ (Pn))‖ ≤ η
)

+ ν
2 .

Note that, for all X , ǫI{ǫ ≤ ‖X‖ ≤ η} ≤ ‖X‖ ∧ η. Thus,

P∗
(

ǫ ≤ ‖√n(T (Pn)− T̄ (Pn))‖ ≤ η
)

≤ 1

ǫ2
EP∗

(

‖√n(T (Pn)− T̄ (Pn))‖2 ∧ η2
)

.

But we know that if (X1, . . . , Xn) ∈ X⊗n
n , (with the notation (A⊗n = A× · · · ×A, n-fold), T̄ (Pn) = T (Pn). So,

EP∗

(

‖√n(T (Pn)− T̄ (Pn))‖2 ∧ η2
)

=

∫

(X1,...,Xn)/∈X⊗n
n

‖√n(T (Pn)− T̄ (Pn))‖2 ∧ η2dP⊗n
∗ ≤ η2EP∗

(I{(X1, . . . , Xn) /∈ X⊗n
n })

≤ η2
n
∑

i=1

EP∗
(I{Xi /∈ Xn}) = η2nP∗ (supθ∈Θ ‖g(X, θ)‖ > mn)

≤ η2nm−α
n EP∗

(supθ∈Θ ‖g(X, θ)‖α) .
Since nm−α

n = n1−aα → 0 as n → ∞, we claim that for n large enough,

P∗
(

ǫ ≤ ‖√n(T (Pn)− T̄ (Pn))‖ ≤ η
)

≤ ν

2

and we conclude that
√
n(T (Pn)− T̄ (Pn)) = oP∗

(1) and (C.3) holds.

We now show that

lim
b→∞

lim
δ→∞

lim sup
n→∞

sup
Q∈B̄δ

H (P∗,r/
√
n)

∫

b ∧ n(τ ◦ T (Pn)− τ(θ∗))2dQ⊗n ≤ (1 + 4r2)B∗. (C.4)

We follow similar lines as in the proof of Theorem 3.2(ii) of KOE (2013a). Using the fact that, for all b, c, d ≥ 0,
b ∧ (c+ d) ≤ b ∧ c+ b ∧ d, we have:

lim sup
n→∞

sup
Q∈B̄δ

H
(P∗,r/

√
n)

∫

b ∧ n (τ ◦ T (Pn)− τ(θ∗))2 dQ⊗n

= lim sup
n→∞

sup
Q∈B̄δ

H (P∗,r/
√
n)

∫

b ∧ n
(

(τ ◦ T (Pn)− τ ◦ T̄ (Pn)) + (T̄ (Pn)− τ(θ∗))
)2

dQ⊗n

≤ A1 + 2A2 +A3,
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with

A1 = lim sup
n→∞

sup
Q∈B̄δ

H
(P∗,r/

√
n)

∫

b ∧ n
(

τ ◦ T (Pn)− τ ◦ T̄ (Pn)
)2

dQ⊗n,

A2 = lim sup
n→∞

sup
Q∈B̄δ

H
(P∗,r/

√
n)

∫

b ∧ n
∣

∣τ ◦ T (Pn)− τ ◦ T̄ (Pn)
∣

∣

∣

∣τ ◦ T̄ (Pn)− τ(θ∗)
∣

∣ dQ⊗n,

A3 = lim sup
n→∞

sup
Q∈B̄δ

H
(P∗,r/

√
n)

∫

b ∧ n
(

τ ◦ T̄ (Pn)− τ(θ∗)
)2

dQ⊗n.

We show that A1 = A2 = 0. As previously mentioned, T (Pn) = T̄ (Pn) if (X1, . . . , Xn) ∈ X⊗n
n . Thus,

A1 ≤ b× lim sup
n→∞

sup
Q∈B̄δ

H
(P∗,r/

√
n)

∫

(x1,...,xn)/∈X⊗n
n

dQ⊗n ≤ b × lim sup
n→∞

sup
Q∈B̄δ

H
(P∗,r/

√
n)

n
∑

i=1

Q(Xi /∈ Xn)

= b× lim sup
n→∞

sup
Q∈B̄δ

H
(P∗,r/

√
n)

nQ

(

sup
θ∈Θ

‖g(X, θ)‖ ≥ mn

)

≤ b× lim sup
n→∞

sup
Q∈B̄δ

H
(P∗,r/

√
n)

nm−α
n EQ

(

sup
θ∈Θ

‖g(X, θ)‖α
)

≤ b× δ × lim sup
n→∞

nm−α
n = 0.

(C.5)

A2 = 0 is shown similarly. Consider A3. Note that sup
Q∈B̄δ

H(P∗,r/
√
n)

∫

b ∧ n
(

τ ◦ T̄ (Pn)− τ(θ∗)
)2

dQ⊗n ≤ b < ∞.

Therefore, there exists Q̄n ∈ B̄δ
H(P∗, r/

√
n) such that

sup
Q∈B̄δ

H
(P∗,r/

√
n)

∫

b ∧ n
(

τ ◦ T̄ (Pn)− τ(θ∗)
)2

dQ⊗n ≤
∫

b ∧ n
(

τ ◦ T̄ (Pn)− τ(θ∗)
)2

dQ̄⊗n +
1

2n
.

Therefore,

A3 ≤ lim sup
n→∞

∫

b ∧ n
(

τ ◦ T̄ (Pn)− τ(θ∗)
)2

dQ̄⊗n
n .

Note that, thanks to Lemma C.7,
√
n(τ◦T̄ (Pn)−τ◦T̄ (Q̄n)) converges in distribution towardsN(0, B∗) under Q̄n.

Let
∫

b ∧ n
(

τ ◦ T̄ (Pn)− τ(θ∗)
)2

dQ̄⊗n
n be a subsequence of this sequence that converge to the lim sup (we keep

n to denote the subsequence for simplicity). This has a further subsequence along which
√
n(τ ◦ T̄ (Q̄n)− τ(θ∗))

converges towards its lim sup, say t̃. Thanks to Theorem 4.1, t̃ is finite. Hence, along this final subsequence,
√
n(τ ◦ T̄ (Pn)− τ(θ∗)) =

√
n(τ ◦ T̄ (Pn)− τ ◦ T̄ (Q̄n)) +

√
n(τ ◦ T̄ (Q̄n)− τ(θ∗))

converges in distribution towards N(t̃, B∗) under Q̄n. Let Z ∼ N(0, B∗). We can claim that:

A3 ≤
∫

b ∧ (Z + t̃)2dN(0, B∗) ≤ B∗ + t̃2 ≤ B∗ + lim sup
n→∞

n(τ ◦ T̄ (Q̄n)− τ(θ∗))2 ≤ B∗ + 4r2B∗,

where the lim sup is taking over the initial sequence and the last inequality follows from Theorem 4.1. This
establishes (C.4) which, along with (C.3) concludes the proof. �

Proof of Theorem 4.3: The Fisher consistency of T̄ in the family of sub-models Pθn,ζn satisfying
EPθn,ζn

[supθ∈Θ ‖g(X, θ)‖α] ≤ δ < ∞ for some δ > 0 is established by Theorem 4.1and is sufficient to apply
Theorem 3.3(i) of KOE (2013a) with Sn = T (Pn). Thus, we have:

lim
b→∞

lim
δ→∞

lim
r→∞

lim inf
n→∞

sup
Q∈B̄δ

H
(P∗,r/

√
n)

∫

b ∧ ℓ(
√
n(τ ◦ T (Pn)− τ ◦ T̄ (Q)))dQ⊗n ≥

∫

ℓdN(0, B∗). (C.6)

To claim the expected result, it suffices to show that for all b, r, δ > 0,

lim sup
n→∞

sup
Q∈B̄δ

H
(P∗,r/

√
n)

∫

b ∧ ℓ(
√
n(τ ◦ T (Pn)− τ ◦ T̄ (Q)))dQ⊗n ≤

∫

ℓdN(0, B∗). (C.7)

We have:

lim sup
n→∞

sup
Q∈B̄δ

H(P∗,r/
√
n)

∫

b ∧ ℓ(
√
n(τ ◦ T (Pn)− τ ◦ T̄ (Q)))dQ⊗n

≤ lim sup
n→∞

sup
Q∈B̄δ

H(P∗,r/
√
n)

∫

(X1,...,Xn)/∈X⊗n
n

b ∧ ℓ(
√
n(τ ◦ T (Pn)− τ ◦ T̄ (Q)))dQ⊗n

+ lim sup
n→∞

sup
Q∈B̄δ

H
(P∗,r/

√
n)

∫

(X1,...,Xn)∈X⊗n
n

b ∧ ℓ(
√
n(τ ◦ T (Pn)− τ ◦ T̄ (Q)))dQ⊗n
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Using similar argument to that in (C.5), the first term is zero. Regarding the second term, we have:

sup
Q∈B̄δ

H(P∗,r/
√
n)

∫

(X1,...,Xn)∈X⊗n
n

b ∧ ℓ(
√
n(τ ◦ T (Pn)− τ ◦ T̄ (Q)))dQ⊗n

≤ sup
Q∈B̄δ

H(P∗,r/
√
n)

∫

b ∧ ℓ(
√
n(τ ◦ T̄ (Pn)− τ ◦ T̄ (Q)))dQ⊗n.

Since 0 ≤ b∧ℓ(
√
n(τ ◦ T̄ (Pn)−τ ◦ T̄ (Q))) ≤ b < ∞, so is the supremum over Q ∈ B̄δ

H(P∗, r/
√
n). Thus, similarly

to the proof of Theorem 4.2, there exists Q̄n ∈ B̄δ
H(P∗, r/

√
n) such that

sup
Q∈B̄δ

H (P∗,r/
√
n)

∫

b ∧ ℓ(
√
n(τ ◦ T̄ (Pn)− τ ◦ T̄ (Q)))dQ⊗n ≤

∫

b ∧ ℓ(
√
n(τ ◦ T̄ (Pn)− τ ◦ T̄ (Q̄n)))dQ̄

⊗n
n +

1

2n
.

As a result,

lim sup
n→∞

sup
Q∈B̄δ

H (P∗,r/
√
n)

∫

b ∧ ℓ(
√
n(τ ◦ T̄ (Pn)− τ ◦ T̄ (Q)))dQ⊗n

≤ lim sup
n→∞

∫

b ∧ ℓ(
√
n(τ ◦ T̄ (Pn)− τ ◦ T̄ (Q̄n)))dQ̄

⊗n
n .

By Lemma C.4(ii),
√
n(τ ◦ T̄ (Pn)− τ ◦ T̄ (Q̄n)) converges in distribution under Q̄n to N(0, B∗). Thus,

lim sup
n→∞

∫

b ∧ ℓ(
√
n(τ ◦ T̄ (Pn)− τ ◦ T̄ (Q̄n)))dQ̄

⊗n
n =

∫

b ∧ ℓdN(0, B∗).

This establishes (C.7) which, along with (C.6) concludes the proof. �

C.2. Auxiliary lemmas and proofs.

Lemma C.1. Let Q ∈ M, Pθ = {P ∈ M : EP (g(X, θ)) = 0} with θ ∈ Θ and P (θ) solution tominP∈Pθ
EP

[

log
(

dP
dQ

)]

.

We have

argmin
θ∈Θ

H(P (θ), Q) = argmax
θ∈Θ

EQ[exp(λ(θ)
′g(X, θ)/2)]

(EQ[exp(λ(θ)′g(X, θ))])1/2
,

with λ(θ) = argmin
λ∈Λ

EQ[exp (λ(θ)
′g(X, θ))].

Proof of Lemma C.1: From Kitamura and Stutzer (1997), the solution P (θ) to minP∈Pθ
EP

[

log
(

dP
dQ

)]

has

the Gibbs canonical density with respect to Q given by:

dP (θ)

dQ
=

exp (λ(θ)′g(X, θ))

EQ[exp (λ(θ)′g(X, θ))]
.

We can conclude using the fact that:

H(P (θ), Q)2 = 1−
∫

dP (θ)1/2dQ1/2 = 1− EQ

[

(

dP (θ)

dQ

)1/2
]

.

�

Lemma C.2. If Assumption 3 holds, then:

(i) For all Q ∈ M and n ∈ N, T̄ (Q) as given by (18) is well-defined.
(ii) There exists a neighborhood Vθ∗ of θ∗ such that for any r > 0, n large enough and any sequence

Qn ∈ BH(P∗, r/
√
n), λn : θ 7→ T̄1(θ,Qn) is a well-defined and continuous function on Vθ∗ . Furthermore,

λn is continuously differentiable on int(Vθ∗) and, for any θ ∈ int(Vθ∗),

∂λn(θ)

∂θ′
= −An(θ)

−1Bn(θ),

where, letting an(θ) = exp(λn(θ)
′gn(X, θ)),

An(θ) = EQn
[gn(X, θ)gn(X, θ)′an(θ)] , Bn(θ) = EQn

[

(Im + gn(X, θ)λn(θ)
′)
∂gn(X, θ)

∂θ′
an(θ)

]

.



THE EXPONENTIALLY TILTED HELLINGER DISTANCE ESTIMATOR 45

In addition, for any sequence (θn)n converging to θ∗ as n → ∞, we have

∂λn(θn)

∂θ′
= − (EQn

[gn(X, θ∗)gn(X, θ∗)′])
−1

EQn

[

∂gn(X, θ∗)
∂θ′

]

+ o(1)

= − (EP∗
[g(X, θ∗)g(X, θ∗)′])

−1
EP∗

[

∂g(X, θ∗)
∂θ′

]

+ o(1).

(C.8)

Proof of Lemma C.2: (i) Let Q ∈ M. The map fn : (λ, θ) 7→ EQ[exp(λ
′gn(X, θ))] is continuous in both

its arguments. Since Λ is compact, the Berge’s maximum theorem (see Feinberg, Kasyanov and Zadoianchuk,
2013 and Feinberg, Kasyanov and Voorneveld, 2014) guarantees that θ 7→ T̄1(θ,Q) = argminλ∈Λ fn(λ, θ) is
upper semi-continuous and compact-valued. Also, since (λ, θ) 7→ ∆n,Q(λ, θ) is continuous in both arguments,
v(θ) = maxλ∈T̄1(θ,Q)∆n,Q(λ, θ) is upper semi-continuous on Θ. By the Weierstrass theorem, v(θ) takes a max-

imum value on Θ and T̄ (Q) is therefore well-defined.

(ii) Let
Vθ∗ = {θ ∈ Θ : ‖θ − θ∗‖ ≤ ǫδ/(2K + 1)}, and Λǫ = {λ ∈ R

m : ‖λ‖ ≤ 2ǫ},
with K = EP∗

(supθ∈N ‖∂g(X, θ)/∂θ′‖), ǫ > 0 sufficiently small so that Vθ∗ ⊂ N̄ ⊂ N and Λǫ ⊂ V̄ ⊂ V , δ > 0
to be defined later and N̄ and V̄ compact neighborhoods of θ∗ and 0, respectively.

Let θ ∈ Vθ∗ . We first show that fn : λ 7→ EQn
[exp(λ′gn(X, θ))] is strictly convex on the convex set Λǫ

for each θ ∈ Vθ∗ . Therefore, argminλ∈Λǫ
fn(λ) is unique, λn,ǫ(θ). For this, we observe that the conditions in

Assumption 3 ensure that fn is twice differentiable with

∂2fn(λ)

∂λ∂λ′ = EQn
[gn(X, θ)gn(X, θ)′ exp(λ′gn(X, θ))] .

Under Assumption 3(vii),

∂2fn(λ)

∂λ∂λ′ = EP∗
[g(X, θ)g(X, θ)′ exp(λ′g(X, θ))] + o(1)

where the neglected term is uniform over Vθ∗ × Λǫ. Note that EP∗
[g(X, θ)g(X, θ)′ exp(λ′g(X, θ))] is singular

if and only if EP∗
[g(X, θ)g(X, θ)′] is so. By Assumption 3(v), this latter is nonsingular over Θ. Thus, for all

(λ, θ) ∈ N̄ × V̄ , the determinant of EP∗
[g(X, θ)g(X, θ)′ exp(λ′g(X, θ))] is strictly positive. By continuity of

eigenvalues function and compactness of N̄ × V̄ , the smallest eigenvalue of this matrix is bounded from below

by 2δ for some δ > 0. Therefore, for n large enough, the smallest eigenvalue of ∂2fn(λ)
∂λ∂λ′ is bounded from below

by δ.

Next, we show that λn,ǫ(θ) is interior to Λǫ. In this case, since fn is convex on Λ, λn,ǫ(θ) is also unique global
minimum, hence equal to λn(θ) which is therefore well-defined on Vθ∗ and Berge’s maximum theorem ensures
that this function is continuous.

By the definition of minimum and a second order mean value expansion of fn at λn,ǫ(θ) around 0, we obtain

1

2
λn,ǫ(θ)

′EQn

[

gn(X, θ)gn(X, θ)′ exp(λ̇′gn(X, θ))
]

λn,ǫ(θ) ≤ −EQn
[gn(X, θ)′]λn,ǫ(θ),

with λ̇ ∈ (0, λn,ǫ(θ)). From the previous lines, EQn

[

gn(X, θ)gn(X, θ)′ exp(λ̇′gn(X, θ))
]

has its smallest eigen-

value bounded away from 0 by δ for n large enough. So, this inequality implies that,

δ‖λn,ǫ(θ)‖2 ≤ ‖EQn
(gn(X, θ))‖‖λn,ǫ(θ)‖.

Hence,
δ‖λn,ǫ(θ)‖ ≤ sup

θ∈Θ
‖EQn

(gn(X, θ))− EP∗
(g(X, θ))‖+ ‖EP∗

(g(X, θ))‖ ≡ (1) + (2).

From the proof of Lemma A.1(ii) of KOE (2013b), (1) converges to 0 as n grows and hence, is less than ǫ/2 for

n large enough. By a mean value expansion and with θ̇ ∈ (θ∗, θ) that may vary with rows, we have

‖EP∗
(g(X, θ))‖ =

∥

∥

∥

∥

∥

EP∗
(g(X, θ∗)) + EP∗

(

∂g(X, θ̇)

∂θ′

)

(θ − θ∗)

∥

∥

∥

∥

∥

≤ EP∗

(

sup
θ∈N

∥

∥

∥

∥

∥

∂g(X, θ̇)

∂θ′

∥

∥

∥

∥

∥

)

‖θ − θ∗‖

and (2) ≤ Kδǫ/(2K + 1). Also, for n large enough, (1) ≤ δǫ/2. Thus, ‖λn,ǫ(θ)‖ ≤ ǫ < 2ǫ, showing that λn,ǫ(θ)
is interior to Λǫ.
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We now establish the differentiability of θ 7→ λn(θ) by relying on a global implicit function theorem. Since
λn(θ) is interior minimum, it solves the first order condition

Fn(λ, θ) ≡ EQn
[gn(X, θ) exp(λ′gn(X, θ))] = 0. (C.9)

Note that (λ, θ) 7→ Fn(λ, θ) is continuously differentiable in both its arguments on Λǫ × Vθ∗ and all the other
conditions of the global implicit function theorem of Sandberg (1981, Corollary 1) are fulfilled (in particular, for
every θ ∈ Vθ∗ , (C.9) has a unique solution in Λǫ and second derivatives in the direction of λ are nonsingular) and
we can conclude that the implicit function λn(θ) determined by (C.9) is continuously differentiable on int(Vθ∗)
with derivative’s expression given by the lemma.

Let us now consider (θn)n, a sequence of elements of Θ converging to θ∗ as n → ∞. For n large enough, θ
belongs to int(Vθ∗) and by a mean value expansion,

λn(θn)− λn(θ
∗) =

∂λn(θ̇)

∂θ′
(θn − θ∗),

with θ̇ ∈ (θn, θ
∗) and may differ by row. It is not hard to see that

∥

∥

∥

∂λn(θ̇)
∂θ′

∥

∥

∥ is bounded. From Lemma C.4, for

n large enough, λn(θ
∗) = T̄1(θ

∗, Qn) → 0 as n → ∞. Thus, λn(θn) → 0, as n → ∞. Also

An(θn) = EP∗
[g(X, θn)g(X, θn)

′ exp(λn(θn)
′g(X, θn))] + o(1)

and by the Lebesgue dominated convergence theorem, An(θn) = EP∗
[g(X, θ∗)g(X, θ∗)′] + o(1). Although a bit

more tedious, one obtains along similar lines that Bn(θn) = EP∗

(

∂g(X,θ∗)
∂θ′

)

+ o(1). �

Lemma C.3. If Assumption 3 holds, then, for each r > 0 and any sequence Qn ∈ BH(P∗, r/
√
n),

(i) ∆n,Qn
(T̄1(T̄Qn

, Qn), T̄Qn
) = 1 +O(n−1),

(ii) T̄1(T̄Qn
, Qn) = O(n−1/2),

(iii) EQn
(gn(X, T̄Qn

)) = O(n−1/2),
(iv) T̄Qn

→ θ∗ as n → ∞.

Proof of Lemma C.3: (i) By the definition of T̄Qn
, and concavity of x 7→ √

x, we have

∆n,Qn
(T̄1(θ

∗, Qn), θ
∗) ≤ ∆n,Qn

(T̄1(T̄Qn
, Qn), T̄Qn

) ≤ 1

and by Lemma C.4, we deduce that ∆n,Qn
(T̄1(T̄Qn

, Qn), T̄Qn
) = 1 +O(n−1).

(ii) Since EP∗
[exp(λ′g(X, θ))] is continuous on Λ×Θ, it has a minimum, hence EP∗

[exp(λ′g(X, θ))] is bounded
away from 0 on Λ×Θ. This is enough, using Assumption 3(vii), to claim that the ratio ∆n,Qn

(λ, θ) converges
to ∆P∗

(λ, θ) uniformly over Λ × Θ. Also, thanks to (i), the conditions of Lemma B.1 are satisfied and we can

claim that λ̂n ≡ T̄1(T̄Qn
, Qn) → 0 as n → ∞.

By a second-order Taylor expansion of λ 7→ ∆n,Qn
(λ, T̄Qn

) at λ̂n around 0, we have:

∆n,Qn
(λ̂n, θ̂) = ∆n,Qn

(0, θ̂) +
∂∆n,Qn

(0, θ̂)

∂λ′ λ̂n +
1

2
λ̂′
n

∂2∆n,Qn
(λ̇, θ̂)

∂λ∂λ′ λ̂n, (C.10)

with θ̂ ≡ T̄Qn
and λ̇ ∈ (0, λ̂n). The first and second partial derivatives of ∆n,Qn

(λ, θ) are given in the proof of
Lemma C.4. Let us admit for now that:

N1,n(λ̇, θ̂) = EP∗
(g(X, θ̂)) + o(1), N2,n(λ̇, θ̂) = EP∗

(g(X, θ̂)g(X, θ̂)′) + o(1), Dn(λ̇, θ̂) = 1 + o(1), (C.11)

for all sequence λ̇ → 0. Then,

∂2∆n,Qn
(λ̇, θ̂)

∂λ∂λ′ = −1

4
V arP∗

(g(X, θ̂)) + o(1).

Hence, (C.10) becomes

−1

8
λ̂′
nV arP∗

(g(X, θ̂))λ̂n + o(‖λ̂n‖2) + 1 = 1 +O(n−1).

Or, equivalently,

λ̂′
nV arP∗

(g(X, θ̂))λ̂n + o(‖λ̂n‖2) = O(n−1).

Thanks to Assumption 3(v), this implies that ℓ‖λ̂n‖2+o(|λ̂n‖2) = O(n−1), and in particular that λ̂n = O(n−1/2).
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To complete the proof, we establish (C.11). Note that

Dn(λ̇, θ̂) =
(

EQn
[exp(λ̇′g(X, θ̂))] − EP∗

[exp(λ̇′g(X, θ̂))]
)

+ EP∗
[exp(λ̇′g(X, θ̂))].

The term in the brackets converges to 0 and, by the dominance condition in Assumption 3(vii), lim and EP∗

can interchange and the fact that g(X, θ̂) = OP∗
(1) implies that limn EP∗

[exp(λ̇′g(X, θ̂))] = 1.
Similarly,

N2,n(λ̇, θ̂) = EP∗
[g(X, θ̂)g(X, θ̂)′] + EP∗

[

g(X, θ̂)g(X, θ̂)′
(

exp(λ̇′g(X, θ̂))− 1
)]

+ o(1).

We have
∥

∥

∥g(X, θ̂)g(X, θ̂)′
(

exp(λ̇′g(X, θ̂))− 1
)∥

∥

∥ ≤ Z, with

Z = supθ∈N ‖g(X, θ)‖2
(

sup
(λ,θ)∈v×N

exp(λ′g(X, θ)) + 1

)

, where v is a small neighborhood of 0 contained in V .

By the Hölder inequality,

EP∗
(Z) ≤

(

EP∗
sup
θ∈N

‖g(X, θ)‖α
)2/α



EP∗

[

sup
(λ,θ)∈v×N

exp(λ′g(X, θ)) + 1

]α/(α−2)




1−2/α

.

By the cr-inequality,

EP∗

(

sup
(λ,θ)∈v×N

exp(λ′g(X, θ)) + 1

)α/(α−2)

≤ 22/(α−2)EP∗

(

sup
(λ,θ)∈v×N

exp

(

α

α− 2
λ′g(X, θ)

)

+ 1

)

≤ 22/(α−2)EP∗

(

sup
(λ,θ)∈V×N

exp(λ′g(X, θ)) + 1

)

,

showing that EP∗
(Z) < ∞. Therefore, we pass lim through EP∗

and claim the result. Conclusion for N1,n(λ̇, θ̂)
is reached similarly. This completes (ii).

(iii) This is obtained along the same lines as Step 3 in the proof of Lemma B.2 with gn, Qn, λ̂n and T̄Qn

replacing g, Pn, λ̂(θ̂) and θ̂, respectively.
(iv) Along the same lines as KOE’s (2013b) proof of their Lemma A.1(ii), we can show that:

sup
θ∈Θ

|EQn
(gn(X, θ))− EP∗

(g(X, θ))| → 0,

as n → ∞. Also, from (iii) of the lemma, we have EQn
(gn(X, T̄Qn

)) = O(n−1/2). Thus
∣

∣EP∗
(g(X, T̄Qn

))
∣

∣ ≤
∣

∣EP∗
(g(X, T̄Qn

))− EQn
(gn(X, T̄Qn

))
∣

∣+
∣

∣EQn
(gn(X, T̄Qn

))
∣

∣ ,

implies that EP∗
(g(X, T̄Qn

)) → 0 as n → ∞. Since θ 7→ EP∗
(g(X, θ)) is continuous and Θ is compact, the

identification condition in Assumption 3(ii) allows us to conclude that T̄Qn
→ θ∗ as n → ∞. �

Lemma C.4. If Assumption 3 holds, then, for each r > 0 and any sequence Qn ∈ BH(P∗, r/
√
n),

(i) T̄1(θ
∗, Qn) = O(n−1/2),

(ii) ∆n,Qn
(T̄1(θ

∗, Qn), θ
∗) = 1 +O(n−1).

Proof of Lemma C.4: (i) The map fn : λ 7→ −EQn
[exp(λ′gn(X, θ∗)] is continuous on Λ, so it has at least

one maximum T̄1(θ
∗, Qn). Let Λn = {λ ∈ R

m : ‖λ‖ ≤ c/m1+ζ
n } with c > 0 and 0 < ζ < −1 + 1/2a so that√

n/m1+ζ
n → ∞ as n → ∞. Let T̃1(θ

∗, Qn) = argmaxλ∈Λn
fn(λ). Under Assumption 3, fn is twice differentiable

and
∂2fn
∂λ∂λ′ (λ) = −EQn

(gn(X, θ∗)gn(X, θ∗)′ exp(λ′gn(X, θ∗))) .

From Lemma C.6, ∂2fn
∂λ∂λ′ (λ) = −EP∗

(g(X, θ∗)g(X, θ∗)′) + o(1) as n → ∞. Therefore, fn is strictly concave on

Λn and thus has a unique maximum for n large enough. Let λ̃n = T̃1(θ
∗, Qn). By a second-order mean-value

expansion of fn(λ̃n) around 0, we have:

fn(λ̃n) = −1− EQn
[gn(X, θ∗)′]λ̃n − 1

2
λ̃′
nEQn

(

gn(X, θ∗)gn(X, θ∗)′ exp(λ̇′gn(X, θ∗))
)

λ̃n,
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with λ̇ ∈ (0, λ̃n). By definition, fn(λ̃n) ≥ −1, hence:

1

2
λ̃′
nEQn

(

gn(X, θ∗)gn(X, θ∗)′ exp(λ̇′gn(X, θ∗))
)

λ̃n ≤ EQn
[gn(X, θ∗)′]λ̃n.

Using once again Lemma C.6 and the fact that V arP∗
(g(X, θ∗)) is nonsingular, we can write

C‖λ̃n‖2 + o(‖λ̃n‖2) ≤ ‖λ̃n‖‖EQn
[gn(X, θ∗)]‖,

for some C > 0. Along similar lines as in the proof of Lemma A.4(i) of KOE (2013b), we can readily show that

EQn
[gn(X, θ∗)] = O(n−1/2). Thus, λ̃n = O(n−1/2). As a result, we can claim that λ̃n is an interior maximum

of fn(λ) over Λn and so, is the global maximum over Λ. Thus T̄1(θ
∗, Qn) = λ̃n = O(n−1/2). This establishes

(i).
(ii) λ 7→ ∆n,Qn

(λ, θ∗) is also differentiable up to order 2 with second-order mean-value expansion at

T̄1(θ
∗, Qn) = λ̃n around 0 given by

∆n,Qn
(λ̃n, θ

∗) = 1 +
∂∆n,Qn

∂λ′ (0, θ∗)λ̃n +
1

2
λ̃′
n

∂2∆n,Qn

∂λ∂λ′ (λ̇, θ∗)λ̃n,

with λ̇ ∈ (0, λ̃n). Note that

∂∆n,Qn

∂λ
(λ, θ) =

1

2

(

N1,n(λ/2, θ)

Dn(λ, θ)1/2
− N1,n(λ, θ)Dn(λ/2, θ)

Dn(λ, θ)3/2

)

and

∂2∆n,Qn

∂λ∂λ′ (λ, θ) =
1

4

N2,n(λ/2, θ)

Dn(λ, θ)1/2
− 1

2

N2,n(λ, θ)Dn(λ/2, θ)

Dn(λ, θ)3/2
− 1

4

N1,n(λ/2, θ)N1,n(λ, θ)
′

Dn(λ, θ)3/2

− 1

4

N1,n(λ, θ)N1,n(λ/2, θ)
′

Dn(λ, θ)3/2
+

3

4

N1,n(λ, θ)N1,n(λ, θ)
′Dn(λ/2, θ)

Dn(λ, θ)5/2
,

with N1,n(λ, θ) = EQn
[gn(X, θ) exp(λ′gn(X, θ))], N2,n(λ, θ) = EQn

[gn(X, θ)gn(X, θ)′ exp(λ′gn(X, θ))], and
Dn(λ, θ) = EQn

[exp(λ′gn(X, θ))].

Clearly,
∂∆n,Qn

∂λ (0, θ) = 0 and, from Lemma C.6,

N1,n(λ̇, θ
∗) = EP∗

(g(X, θ∗)) + o(1), N2,n(λ̇, θ
∗) = EP∗

(g(X, θ∗)g(X, θ∗)′) + o(1) and Dn(λ̇, θ
∗) = 1+ o(1), same

as N1,n(λ̇/2, θ
∗), N2,n(λ̇/2, θ

∗) and D1,n(λ̇/2, θ
∗), respectively. Hence,

∂2∆n,Qn

∂λ∂λ′ (λ̇, θ∗) = −1

4
V arP∗

(g(X, θ∗)) + o(1).

as a result, using (i), we can claim that (ii) holds. �

Lemma C.5. If Assumption 3 holds, then: for each r > 0 and any sequence Qn ∈ BH(P∗, r/
√
n),

√
n(T̄Qn

− θ∗) = −ΣG′Ω−1
√
nEQn

(gn(X, θ∗)) + o(1). (C.12)

Proof of Lemma C.5: Let θ̂n ≡ T̄Qn
, λn(θ) ≡ T̄1(θ,Qn) and λ̂n = λn(θ̂n). Since Since θ̂n → θ∗, Lemma

C.2(ii) ensures that θ 7→ λn(θ) is differentiable at θ̂n for n large enough. Also, θ 7→ EQn
[exp(λn(θ)

′gn(X, θ))]

and θ 7→ EQn
[exp(λn(θ)

′gn(X, θ)/2)] are both differentiable at θ̂n. As an interior optimum, θ̂n satisfies the first
order optimality condition

d

dθ
∆n,Qn

(λn(θ), θ)

∣

∣

∣

∣

θ=θ̂n

= 0,

that is
N1n(λ̂n, θ̂n)

D1n(λ̂n, θ̂n)
− N2n(λ̂n, θ̂n)

D2n(λ̂n, θ̂n)
= 0, (C.13)

with Njn(λ, θ), Djn(λ, θ) (j = 1, 2) defined similarly to Nj(λ, θ), Dj(λ, θ) in (B.6) with λ̂(θ), Pn and g replaced
by λn(θ), Qn and gn, respectively.

Also, since λ̂n converges to 0, it is also an interior solution for n large enough and therefore solves the first
order optimality condition

EQn

[

gn(X, θ̂n) exp
(

λ̂′
ngn(X, θ̂n)

)]

= 0. (C.14)

We proceed to a mean value expansion of (C.13) and (C.14) around (0, θ∗).
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Note thatN2n(0, θ
∗) = N1n(0, θ

∗)+o(1/
√
n) = 1

2
dλ′

n(θ̂n)
dθ EQn

(gn(X, θ∗))+o(1/
√
n) andD1n(λ̂n, θ̂n) = 1+o(1)

and D2n(λ̂n, θ̂n) = 1 + o(1). Hence, a mean value expansion of (C.13) around (0, θ∗) yields

o(n−1/2) =
∂

∂θ′

(

N1n(λ, θ)

D1n(λ̂n, θ̂n)
− N2n(λ, θ)

D2n(λ̂n, θ̂n)

)∣

∣

∣

∣

∣

(λ̇,θ̇)

(θ̂n − θ∗) +
∂

∂λ′

(

N1n(λ, θ)

D1n(λ̂n, θ̂n)
− N2n(λ, θ)

D2n(λ̂n, θ̂n)

)∣

∣

∣

∣

∣

(λ̇,θ̇)

λ̂n,

(C.15)

with (λ̇, θ̇) ∈ (0, λ̂n)× (θ∗, θ̂n) and may differ from row to row. The expressions of

∂Njn

∂θ′
,

∂Njn

∂λ′ ,

j = 1, 2 are analogue to the expressions of the partial derivatives of Nj as given following (B.8) with, again, λ̂(θ),

g and Pn replaced by λn(θ), gn and Qn, respectively. Also, for n large enough, since λ̂n = O(n−1/2), it belongs
to Λn as defined in Lemma C.6 for some 0 < ζ < −1 + 1/2a and thanks to the same lemma, by using the fact
that EQn

(∂gn(X, θ)/∂θ′) = EP∗
(∂g(X, θ)/∂θ′)+o(1) and EQn

(gn(X, θ)gn(X, θ)′) = EP∗
(g(X, θ)g(X, θ)′)+o(1)

for all θ in some neighborhood of θ∗, we have, for j = 1, 2:

∂Njn

∂θ′
(λ̇, θ̇) =

1

2

dλn(θ̂n)
′

dθ
EQn

(

∂gn
∂θ′

(X, θ̇)

)

+ o(1),

∂N1n

∂λ′ (λ̇, θ̇) =
1

2
EQn

(

∂g′n
∂θ

(X, θ̂n)

)

+
1

4

dλn(θ̂n)
′

dθ
EQn

(

gn(X, θ̇)gn(X, θ̂)′
)

+ o(1),

and

∂N2n

∂λ′ (λ̇, θ̇) =
1

2
EQn

(

∂g′n
∂θ

(X, θ̂n)

)

+
1

2

dλn(θ̂n)
′

dθ
EQn

(

gn(X, θ̇)gn(X, θ̂n)
′
)

+ o(1).

As a result,

∂

∂θ′

(

N1n(λ, θ)

D1n(λ̂n, θ̂n)
− N2n(λ, θ)

D2n(λ̂n, θ̂n)

)∣

∣

∣

∣

∣

(λ̇,θ̇)

= o(1)

and

∂

∂λ′

(

N1n(λ, θ)

D1n(λ̂n, θ̂n)
− N2n(λ, θ)

D2n(λ̂n, θ̂n)

)∣

∣

∣

∣

∣

(λ̇,θ̇)

= −1

4

dλn(θ̂n)
′

dθ
EQn

(

gn(X, θ̇)gn(X, θ̂n)
′
)

+ o(1).

Also, from Lemma C.2(ii),

dλn(θ̂n)

dθ′
= −

(

EQn

(

gn(X, θ̂n)gn(X, θ̂n)
′
))−1

EQn

(

∂gn(X, θ̂n)

∂θ′

)

+ o(1).

The expansion in (C.15) becomes:

G′√nλ̂n = o(‖√nλ̂n‖) + o(
√
n‖θ̂n − θ∗‖). (C.16)

A mean value expansion of (C.14) around (0, θ∗) yields:

0 = EQn
(gn(X, θ∗)) + EQn

[(

Im + gn(X, θ̇)λ̇′
)

∂gn
∂θ′ (X, θ̇) exp

(

λ̇′gn(X, θ̇)
)]

(θ̂n − θ∗)

+EQn

[

gn(X, θ̇)gn(X, θ̇)′ exp
(

λ̇′gn(X, θ̇)
)]

λ̂n,

with (λ̇, θ̇) ∈ (0, λ̂n)× (θ∗, θ̂n) and may differ from row to row. By similar arguments as above, we get:

G
√
n(θ̂n − θ∗) + Ω

√
nλ̂n = −√

nEQn
(gn(X, θ∗)) + o(‖√nλ̂n‖) + o(‖√n(θ̂n − θ∗)‖). (C.17)

Using (C.16) and (C.17) and solving for (θ̂n − θ∗, λ̂n), we get
√
n(θ̂n − θ∗) + o(‖√n(θ̂n − θ∗)‖) = −√

nΣG′Ω−1EQn
(gn(X, θ∗)) + o(‖√nλ̂n‖)

which is sufficient to deduce the result. �
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Lemma C.6. Let h(x, θ) be a function measurable on X for each θ ∈ Θ and taking value in R
ℓ. Let Xn =

{x ∈ X : supθ∈Θ ‖g(x, θ)‖ ≤ mn} with (mn) a sequence of scalars satisfying mn → 0 as n → ∞ and define
hn(x, θ) = h(x, θ)I(x ∈ Xn). For some c, ζ > 0, let Λn =

{

λ ∈ R
m : ‖λ‖ ≤ c/m1+ζ

n

}

and let N be a subset of
Θ. Let r > 0. If,

sup
θ∈N ,x∈Xn

‖h(x, θ)‖ = o(n), EP∗

(

sup
θ∈N

‖h(X, θ)‖2
)

< ∞, and EP∗

(

sup
θ∈N

‖g(X, θ)‖
)

< ∞, then, uniformly

over Qn ∈ BH(P∗, r/
√
n),

sup
λ∈Λn,θ∈N

‖EQn
[hn(X, θ) exp(λ′gn(X, θ))] − EP∗

(h(X, θ))‖ = o(1)

and

sup
λ∈Λn,θ∈N

‖EQn
[exp(λ′gn(X, θ))]− 1‖ = o(1).

Proof of Lemma C.6: We have:

‖EQn
[hn(X, θ) exp(λ′gn(X, θ))]− EP∗

(h(X, θ))‖
≤ ‖EQn

[hn(X, θ) exp(λ′gn(X, θ))]− EP∗
(hn(X, θ))‖ + ‖EP∗

(hn(X, θ))− EP∗
(h(X, θ))‖ ≡ (1) + (2).

Also, (1) ≤ (1.1) + (1.2) with

(1.1) = ‖EQn
[hn(X, θ) exp(λ′gn(X, θ))]− EP∗

[hn(X, θ) exp(λ′gn(X, θ))]‖,
(1.2) = ‖EP∗

[hn(X, θ)(exp(λ′gn(X, θ))− 1)]‖.
We next show that (1.1), (1.2) and (2) are all o(1) uniformly on λ and θ.

(1.1) =

∥

∥

∥

∥

∫

hn(x, θ) exp(λ
′gn(x, θ))(dQn − dP∗)

∥

∥

∥

∥

=

∥

∥

∥

∥

∫

hn(x, θ) exp(λ
′gn(x, θ))

{

(

dQ1/2
n − dP

1/2
∗
)2

+ 2dP
1/2
∗
(

dQ1/2
n − dP

1/2
∗
)

}∥

∥

∥

∥

≤
∫

‖hn(x, θ)‖ exp(λ′gn(x, θ))
(

dQ1/2
n − dP

1/2
∗
)2

+2

(∫

‖hn(x, θ)‖2 exp(2λ′gn(x, θ))dP∗

)1/2 (∫
(

dQ1/2
n − dP

1/2
∗
)2
)1/2

(the inequality is obtained using the triangle and the Cauchy-Schwarz inequalities.) By definition, for any
λ ∈ Λn, x ∈ X and θ ∈ Θ,

|λ′gn(x, θ)| ≤ ‖λ‖‖gn(x, θ)‖ ≤ c

mζ
n

→ 0, as n → ∞.

Thus, supx∈X ,λ∈Λn,θ∈Θ exp(λ′gn(x, θ)) ≤ C, a positive constant independent of n. As a result,

(1.1) ≤ C sup
x∈Xn,θ∈N

‖h(x, θ)‖
∫

(

dQ1/2
n − dP

1/2
∗
)2

+2C

(

EP∗

(

sup
θ∈N

‖h(x, θ)‖2
))1/2(∫

(

dQ1/2
n − dP

1/2
∗
)2
)1/2

≤ o(n) r
2

n +O(1) r√
n
→ 0, as n → ∞.

By the Cauchy-Schwarz inequality,

(1.2) ≤
(

EP∗
‖h(X, θ)‖2

)1/2 (
EP∗

(exp(λ′g(X, θ)− 1)2
)1/2

≤
(

EP∗
supθ∈N ‖h(X, θ)‖2

)1/2 (
EP∗

supθ∈N ,λ∈Λn
(exp(λ′g(X, θ)− 1)2

)1/2
.

From the previous lines, the second term in the right hand side goes to 0 as n → ∞ and we deduce that
(1.2) = o(1). Finally,

(2) =

∥

∥

∥

∥

∫

x/∈Xn

h(X, θ)dP∗

∥

∥

∥

∥

≤ EP∗

(

‖h(X, θ)‖I‖g(X,θ)‖≥mn

)

≤
(

EP∗

(

‖h(X, θ)‖2
))1/2

(P∗ (‖g(X, θ)‖ ≥ mn))
1/2

≤
(

EP∗

(

supθ∈N ‖h(X, θ)‖2
))1/2

(

1
mn

EP∗
(supθ∈N ‖g(X, θ)‖)

)1/2

= O(m
−1/2
n ) = o(1).

This completes the first conclusion.
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|EQn
[exp(λ′gn(X, θ))]− 1| ≤

∣

∣

∣

∣

∫

exp(λ′gn(X, θ))(dQn − dP∗)

∣

∣

∣

∣

+ EP∗
[| exp(λ′gn(X, θ)− 1|].

From the preceding lines, it is not hard to see that sup(λ,θ)∈Λn×Θ EP∗
[| exp(λ′gn(X, θ)− 1|] → 0. Also,

∣

∣

∣

∣

∫

exp(λ′gn(x, θ)(dQn − dP∗)

∣

∣

∣

∣

≤ C

∫

(

dQ1/2
n − dP

1/2
∗
)2

+ 2C

(∫

(

dQ1/2
n − dP

1/2
∗
)2
)1/2

≤ C · r
2

n
+ 2C · r√

n
→ 0, as n → ∞. �

Lemma C.7. Let r > 0 and Qn be a sequence contained in BH(P∗, r/
√
n). If Assumption 3 holds, then we

have:
(i)

√
n(T̄ (Pn)− θ∗) = −ΣG′Ω−1

√
nEPn

[gn(X, θ∗)] + oP (1) under Qn

(ii)
√
n(T̄ (Pn)− T̄ (Qn))

d→ N(0,Σ), under Qn

Proof of Lemma C.7: (i) The proof of Theorem 3.3 leading to (B.12) is also valid with θ̂ replaced by T̄ (Pn)
and g replaced by gn and we have:

√
n(T̄ (Pn)− θ∗) = −ΣG′Ω−1√nEPn

[gn(X, θ∗)] + oP (1),

where the oP (1) term is so with respect to P∗. Using the fact that Qn ∈ BH(P∗, r/
√
n), it is not hard to see

that Qn and P∗ are contiguous probability measures in the sense that for any measurable sequence of events An,
(P∗(An) → 0) ⇔ (Qn(An) → 0). Thus the oP (1) term has the same magnitude under Qn and this establishes
(i).

(ii) Using Lemma C.5 and (i), we can write:
√
n(T̄ (Pn)− T̄ (Qn)) =

√
n(T̄ (Pn)− θ∗)−√

n(T̄ (Qn)− θ∗)

= −√
nΣG′Ω−1

√
n (EPn

[gn(X, θ∗)]− (EQn
[gn(X, θ∗)]) + oP (1).

Relying on the central limit theorem for triangular arrays as in the proof of KOE’s Lemma A.8, we can claim
that √

n (EPn
[gn(X, θ∗)]− (EQn

[gn(X, θ∗)])
d→ N(0,Ω),

under Qn and (ii) follows as a result. �

Lemma C.8. Let r > 0 and Qn be a sequence contained in BH(P∗, r/
√
n). If Assumption 3 holds, then the

following statements hold under Qn:

(i) T̄1(θ
∗, Pn) = OP (n

−1/2),
(ii) EPn

(

gn(X, T̄Pn
)
)

= OP (n
−1/2), EPn

(

gn(X, T̄Pn
)gn(X, T̄Pn

)′
)

= Ω +OP (n
−1/2), and

EPn

(

∂gn
∂θ′ (X, T̄Pn

)
)

= G+ oP (1),

(iii) T̄1(T̄Pn
, Pn) = OP (n

−1/2).

Proof of Lemma C.8: (i) Do as in the proof of Lemma C.4(i) with Qn replaced by Pn. Then, obtain that
T̄1(θ

∗, Pn) = OP (n
−1/2) under P∗. Thanks to the mutual contiguity property of Qn and P∗ exposed in the proof

of Lemma C.7, we can claim (i).
(ii) and (iii) The first equation in (ii) and (iii) are obtained along the same lines as the proof of Lemma

C.4(iii) and C.4(ii), respectively whereas the other two equations in (ii) are obtained by a first order mean value
expansion around θ∗ and using Lemma C.7(i). �

Appendix D. Global misspecification

Proof of Theorem 5.1: The proof is split into three parts: in (i), we show the convergence of θ̂ and λ̂(θ̂); in
(ii), we derive the asymptotic distribution of the estimators and discuss the estimation of the (robust) variance-
covariance matrix; in (iii), we show that the asymptotic variance in Theorem 5.1 corresponds to the one in
Theorem 3.3 under correct specification.
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(i) First, we show the consistency of λ̂ and θ̂. We follow the proof in three steps of Theorem 10 in Schennach

(2007): (a) we show that λ̂(θ)
P→ λ∗(θ) uniformly for θ ∈ Θ and that λ∗(·) is continuous at θ∗; (b) we show that

θ̂
P→ θ∗; (c) It follows that λ̂(θ̂)

P→ λ∗(θ∗).
(a) Let λ∗(θ) denote the argument of the minimum over Λ of λ 7→ E[exp(λ′g(X, θ))] which is unique by strict
convexity of E[exp(λ′g(X, θ))] over the convex set Λ. The Berge’s maximum theorem guarantees that λ∗(·) is
continuous. Since exp(λ′g(x, θ)) is continuous in λ and θ, thanks to Assumption 5(v), we have:

M̂θ(λ) ≡
1

n

n
∑

i=1

exp(λ′g(xi, θ)
P→ Mθ(λ) ≡ E(exp(λ′g(X, θ))),

uniformly over the compact set Λ×Θ.

Recall λ̂(θ) ≡ argminλ∈Λ M̂θ(λ). We now show that for any η > 0,

P

(

sup
θ∈Θ

‖λ̂(θ)− λ∗(θ)‖ ≤ η

)

→ 1, as n → ∞.

For a given η > 0, define ǫ as follows:

ǫ = inf
θ∈Θ

inf
λ∈Λ:‖λ−λ∗(θ)‖≥η

(Mθ(λ)−Mθ(λ
∗(θ)))

By strict convexity of Mθ(λ) in λ and compactness of Θ, we have ǫ > 0. In addition, by definition of ǫ,

if sup
θ∈Θ

(Mθ(λ̂(θ)) −Mθ(λ
∗(θ))) ≤ ǫ then sup

θ∈Θ
‖λ̂(θ)− λ∗(θ)‖ ≤ η.

Since M̂θ(λ̂(θ))− M̂θ(λ
∗(θ)) < 0, we have:

sup
θ∈Θ

(Mθ(λ̂(θ)) −Mθ(λ
∗(θ))) ≤ sup

θ∈Θ
(Mθ(λ̂(θ))− M̂θ(λ̂(θ))) + sup

θ∈Θ
(M̂θ(λ̂(θ)) − M̂θ(λ

∗(θ)))

+ sup
θ∈Θ

(M̂θ(λ
∗(θ)) −Mθ(λ

∗(θ)))

≤ sup
θ∈Θ

|Mθ(λ̂(θ)) − M̂θ(λ̂(θ))|+ sup
θ∈Θ

|M̂θ(λ
∗(θ))−Mθ(λ

∗(θ))|

≤ ǫ/2 + ǫ/2

Hence, we conclude that

sup
θ∈Θ

‖λ̂(θ)− λ∗(θ)‖ ≤ η,

with probability approaching one.

(b) To prove the consistency of θ̂, we will make use of the consistency of λ̂. We have a uniform convergence
of the objective function ∆Pn

(λ(θ), θ) over (Λ,Θ) which implies that:

∀ǫ > 0 lim
n

P
(

|∆Pn
(λ(θ̂), θ̂)−∆(λ(θ̂), θ̂)| < ǫ/3

)

= 1

⇒ ∀ǫ > 0 lim
n

P
(

∆Pn
(λ(θ̂), θ̂) < ∆(λ(θ̂), θ̂) + ǫ/3

)

= 1 (D.1)

Similarly, we can show that

∀ǫ > 0 lim
n

P (∆(λ(θ∗), θ∗) < ∆Pn
(λ(θ∗), θ∗) + ǫ/3) = 1 (D.2)

By definition of θ̂, we have:

∀ǫ > 0 lim
n

P
(

∆Pn
(λ(θ∗), θ∗) < ∆Pn

(λ(θ̂), θ̂) + ǫ/3
)

= 1 (D.3)

From equations (D.1) and (D.3), we get:

∀ǫ > 0 lim
n

P
(

∆Pn
(λ(θ∗), θ∗) < ∆(λ(θ̂), θ̂) + 2ǫ/3

)

= 1 (D.4)

We can now use equation (D.2) to deduce:

∀ǫ > 0 lim
n

P
(

∆(λ(θ∗), θ∗) < ∆(λ(θ̂), θ̂) + ǫ
)

= 1 (D.5)
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We now use the identification assumption and the definition of θ̂ to deduce that, for every neighborhood N ∗ of
θ∗, there exists a constant η > 0 such that

sup
θ∈Θ\N∗

∆(λ(θ), θ) + η < ∆(λ(θ∗), θ∗) .

Then, we have

θ̂ ∈ Θ \ N ∗ ⇒ ∆(λ(θ̂), θ̂) + η ≤ sup
θ∈Θ\N∗

∆(λ(θ), θ) + η < ∆(λ(θ∗), θ∗).

Thus,

P
(

θ̂ ∈ Θ \ N ∗
)

≤ P
(

∆(λ(θ̂), θ̂) + η ≤ ∆(λ(θ∗), θ∗)
)

→ 0 as n → ∞,

where the convergence to 0 follows directly from equation (D.5) above.

(ii) To derive the asymptotic distribution of ETHD estimator under global misspecification, we write a mean-
value expansion of the first-order condition around (θ∗, λ∗). Recall that (θ∗, λ∗) is assumed to be in the interior

of the parameter space (see Assumption 5). Hence, θ̂ solves the first order condition:

d∆Pn
(λ̂(θ), θ)

dθ
=

N1(λ̂(θ), θ)

D1(λ̂(θ), θ)
− N2(λ̂(θ), θ)

D2(λ̂(θ), θ)
= 0, (D.6)

with N1(λ, θ) =
1

2
EPn

[(

dλ̂′

dθ
(θ)g(X, θ) +

∂g(X, θ)′

∂θ
λ

)

exp (λ′g(X, θ)/2)

]

,

N2(λ, θ) =
1

2
EPn

[(

dλ̂′

dθ
(θ)g(X, θ) +

∂g(X, θ)′

∂θ
λ

)

exp (λ′g(X, θ))

]

×D0

(

λ

2
, θ

)

,

D1(λ, θ) =D0(λ, θ)
1/2, D2(λ, θ) = D0(λ, θ)

3/2, D0(λ, θ) = EPn
[exp(λ′g(X, θ))] .

Similarly, λ̂(θ̂) solves the first-order condition:

EPn

[

g(X, θ̂) exp
(

λ′g(X, θ̂)
)]

= 0. (D.7)

We consider the left hand sides of (D.6) and (D.7) and carry out their mean-value expansions around (λ∗, θ∗).

(

0
0

)

=

(

N1(λ
∗, θ∗)/D1(λ

∗, θ∗)−N2(λ
∗, θ∗)/D2(λ

∗, θ∗)
EPn

[g(X, θ∗) exp(λ∗′g(X, θ∗))]

)

+Rn

(

θ̂ − θ∗

λ̂− λ∗

)

(D.8)

where, with θ ∈ (θ∗, θ̂) and λ ∈ (λ∗, λ̂) and both may vary from row to row,

Rn =

(

Rθ,θ(λ, θ) Rθ,λ(λ, θ)

Rλ,θ(λ, θ) Rλ,λ(λ, θ)

)

,

with Rθ,θ(λ, θ) =
∂

∂θ′

(

N1(λ, θ)

D1(λ, θ)
− N2(λ, θ)

D2(λ, θ)

)

(D.9)

Rθ,λ(λ, θ) =
∂

∂λ′

(

N1(λ, θ)

D1(λ, θ)
− N2(λ, θ)

D2(λ, θ)

)

(D.10)

Rλ,θ(λ, θ) = EPn

[

(

∂g′(X, θ)

∂θ
+

∂g(X, θ)′

∂θ
λg(X, θ)′

)′
exp(λ′g(X, θ))

]

(D.11)

Rλ,λ(λ, θ) = EPn
[g(X, θ)g(X, θ)′ exp(λ′g(X, θ))] (D.12)
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where Di, Ni were defined above, and their derivatives are computed as follows:

∂N1(λ,θ)
∂θ′ = 1

2EPn

[(

∑m
k=1

d2λ̂k(θ)
dθdθ′ gk(X, θ) +

∑m
k=1

∂2gk(X,θ)
∂θ∂θ′ λk +

dλ̂(θ)′

dθ
∂g(X,θ)

∂θ′

+1
2

(

dλ̂(θ)′

dθ g(X, θ) + ∂g(X,θ)′

∂θ λ
)

λ′ ∂g(X,θ)
∂θ′

)

exp (λ′g(X, θ)/2)
]

∂N2(λ,θ)
∂θ′ = 1

2EPn

[(

∑m
k=1

d2λ̂k(θ)
dθdθ′ gk(X, θ) +

∑m
k=1

∂2gk(X,θ)
∂θ∂θ′ λk +

dλ̂(θ)′

dθ
∂g(X,θ)

∂θ′

+
(

dλ̂(θ)′

dθ g(X, θ) + ∂g(X,θ)′

∂θ λ
)

λ′ ∂g(X,θ)
∂θ′

)

exp (λ′g(X, θ))
]

×D0

(

λ
2 , θ
)

+1
4EPn

[(

dλ̂(θ)′

dθ g(X, θ) + ∂g(X,θ)′

∂θ λ
)

exp (λg(X, θ))
]

× EPn

[

λ′ ∂g(X,θ)
∂θ′ exp (λ′g(X, θ)/2)

]

∂D1(λ,θ)
∂θ′ = 1

2EPn

[

λ′ ∂g(X,θ)
∂θ′ exp (λ′g(X, θ))

]

×D0(λ, θ)
−1/2

∂D2(λ,θ)
∂θ′ = 3

2EPn

[

λ′ ∂g(X,θ)
∂θ′ exp (λ′g(X, θ))

]

×D0(λ, θ)
1/2.

Also,

∂N1(λ,θ)
∂λ′ = 1

2EPn

[(

∂g(X,θ)′

∂θ + 1
2

(

dλ̂(θ)′

dθ g(X, θ) + ∂g(X,θ)′

∂θ λ
)

g(X, θ)′
)

exp (λ′g(X, θ)/2)
]

∂N2(λ,θ)
∂λ′ = 1

2EPn

[(

∂g(X,θ)′

∂θ +
(

dλ̂(θ)′

dθ g(X, θ) + ∂g(X,θ)′

∂θ λ
)

g(X, θ)′
)

exp (λ′g(X, θ))
]

×D0

(

λ
2 , θ
)

+1
4EPn

[(

dλ̂(θ)′

dθ g(X, θ) + ∂g(X,θ)′

∂θ λ
)

exp (λ′g(X, θ))
]

× EPn [g(X, θ)′ exp (λ′g(X, θ)/2)]

∂D1(λ,θ)
∂λ′ = 1

2EPn [g(X, θ)′ exp (λ′g(X, θ))]×D0(λ, θ)
−1/2,

∂D2(λ,θ)
∂λ′ = 3

2EPn [g(X, θ)′ exp (λ′g(X, θ))]×D0(λ, θ)
1/2.

Let plimRn = R assumed to be nonsingular; we then get:

R
√
n

(

θ̂ − θ∗

λ̂− λ∗

)

= −√
n

(

N1(λ
∗, θ∗)/D1(λ

∗, θ∗)−N2(λ
∗, θ∗)/D2(λ

∗, θ∗)
EPn

[g(X, θ∗) exp(λ∗′g(X, θ∗))]

)

+ op(1) (D.13)

≡ √
nA∗

n + op(1)

with

A∗
n = −

(

A∗
n,1

A∗
n,2

)

=

(

N1(λ
∗, θ∗)/D1(λ

∗, θ∗)−N2(λ
∗, θ∗)/D2(λ

∗, θ∗)
∑n

i=1[g(Xi, θ
∗) exp(λ∗′

g(Xi, θ
∗))]/n

)

that is,

A∗
n,1 = E−1/2

n

[

1

2n

n
∑

i=1

(

dλ̂(θ∗)′

dθ
g(Xi, θ

∗) +
∂g(Xi, θ

∗)′

∂θ
λ∗
)

(

exp(λ∗′

g(Xi, θ
∗)/2)− exp(λ∗′

g(Xi, θ
∗))× Fn

En

)

]

where

En =
1

n

n
∑

i=1

exp(λ∗′

g(Xi, θ
∗)) , Fn =

1

n

n
∑

i=1

exp(λ∗′

g(Xi, θ
∗)/2)

dλ̂(θ∗)
dθ′

= −
[

1

n

n
∑

i=1

g(Xi, θ
∗)g(Xi, θ

∗)′
]−1

1

n

n
∑

i=1

(

∂g(Xi, θ
∗)

∂θ′
+ g(Xi, θ

∗)λ∗′ ∂g(Xi, θ
∗)

∂θ′

)

exp(λ∗′

g(Xi, θ
∗)) .
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Let us define Ki as follows,

Ki =



















g(Xi, θ
∗) exp(λ∗′

g(Xi, θ
∗)/2)

g(Xi, θ
∗) exp(λ∗′

g(Xi, θ
∗))

exp(λ∗′

g(Xi, θ
∗)/2)

exp(λ∗′

g(Xi, θ
∗))

g(Xi, θ
∗)g(Xi, θ

∗)′
(

∂g(Xi,θ
∗)

∂θ′ + g(Xi, θ
∗)λ∗′ ∂g(Xi,θ

∗)
∂θ′

)

exp(λ∗′

g(Xi, θ
∗))



















From Assumption 5, a joint CLT holds for Ki such that,

√
n

(

1

n

n
∑

i=1

Ki − E(Ki)

)

n→ N (0,W )

We now define Ω∗ = AVar (A∗
n) and its explicit expression can be obtained from the previous CLT combined

with the Delta-method. Finally, we have:

√
n

(

θ̂ − θ∗

λ̂− λ∗

)

d→ N(0, R−1Ω∗R−1) with R = plimRn .

The expected result directly follows.

Under our maintained i.i.d. assumption, the estimation of the above asymptotic variance-covariance matrix
is straightforward: all quantities are replaced by their sample counterparts, and the pseudo-true values (λ∗, θ∗)
by their estimators.

(iii) Finally, we show that under correct specification, the expansion (D.13) coincides with (B.11)), that is:
(

G′ 0
Ω G

)√
n

(

θ̂ − θ∗

λ̂

)

=

(

0
−√

nEPn
(g(X, θ∗))

)

+ op(1).

After replacing λ∗ by 0, we easily get that

N1(λ
∗, θ∗)

D1(λ∗, θ∗)
− N2(λ

∗, θ∗)
D2(λ∗, θ∗)

= 0

It remains to show that

plimRn =

(

0 G
G′ Ω

)

After replacing λ∗ by 0, we easily get that

Rθ,θ(λ
∗, θ∗) =

∂N1(λ
∗, θ∗)

∂θ
− ∂N2(λ

∗, θ∗)
∂θ

since D1(λ
∗, θ∗) = D2(λ

∗, θ∗) = 1 and ∂D1(λ
∗, θ∗)/∂θ = ∂D2(λ

∗, θ∗)/∂θ = 0

= 0

Rθ,λ(λ
∗, θ∗) =

∂N1(λ
∗, θ∗)

∂λ
− ∂N2(λ

∗, θ∗)
∂λ

since D1(λ
∗, θ∗) = D2(λ

∗, θ∗) = 1 and ∂D1(λ
∗, θ∗)/∂λ = ∂D2(λ

∗, θ∗)/∂λ = 0

= EPn

[

∂g(X, θ∗)
∂θ′

]

P→ E

(

∂g(X, θ∗)
∂θ′

)

= G

after using expressions derived in the proof of Theorem 3.3

Rλ,θ(λ
∗, θ∗) = EPn

[

∂g′(X, θ∗)
∂θ

]

P→ E

(

∂g(X, θ∗)′

∂θ

)

= G′

Rλ,λ(λ
∗, θ∗) = EPn

[g(X, θ∗)g′(X, θ∗)]
P→ E (g(X, θ∗)g(X, θ∗)′) = Ω

and the expected result follows readily �
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