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1 Introduction

Forward-looking agents making dynamic decisions based on unobserved state variables are of

interest in economic researches. While econometricians may not observe the true state variables,

they often have access to or can construct proxy variables. To estimate the dynamic discrete

choice models, would it make sense to substitute a proxy variable for the true state variable?

Because of the nonlinearity of the forward-looking discrete choice structure, a naive substitution

of the proxy generally biases the estimates of structural parameters, even if the proxy has only

an independent error. In this paper, we develop closed-form identification of dynamic discrete

choice models when a proxy for an unobserved continuous state variable is available.

Suppose that agent j at time t makes exit decisions dj,t based on its technology x∗
j,t. Suppose

also that we obtain a proxy xj,t = x∗
j,t + εj,t for the unobserved technology x∗

j,t with a classical

error εj,t. If x∗
j,t were observable, then identification of the structural parameters of forward-

looking agents follows from identification of two auxiliary objects: (1) the conditional choice

probability (CCP) denoted by Pr(dt | x∗
t ); and (2) the law of state transition denoted by

f(x∗
t | dt−1, x

∗
t−1) (Hotz and Miller, 1993). We show that these two auxiliary objects, Pr(dt | x∗

t )

and f(x∗
t | dt−1, x

∗
t−1), are identified using the proxies xj,t without observing the true states x∗

j,t.

Indeed, dynamic discrete choice models with unobservables are extensively studied in the

literature (e.g., Aguirregabiria and Mira, 2007; Kasahara and Shimotsu, 2009; Arcidiacono and

Miller, 2011; Hu and Shum, 2012 – see also the survey by Aguirregabiria and Mira, 2013), but

no preceding work handles continuous unobservables like technologies. Our methods allow for

continuously distributed unobservables at the expense of the requirement of proxy variables

for the unobservables. The use of proxy variables in dynamic structural models is related to

Cunha, Heckman, and Schennach (2010) and Todd and Wolpin (2012). Since we estimate
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the parameters of forward-looking structural models, however, we follow a distinct approach

outlined as follows.

In the first step, we identify the CCP and the law of state transition using a proxy variable.

For this step, we use an approach related to the closed-estimator of Schennach (2004) and

Hu and Sasaki (2015) for nonparametric regression models with measurement errors (cf. Li,

2002), as well as the deconvolution methods (Li and Vuong, 1998; Bonhomme and Robin,

2010). In the second step, the CCP-based method (Hotz, Miller, Sanders and Smith, 1994) is

applied to the preliminary non-/semi-parametric estimates of the Markov components to obtain

structural parameters of a current-time payoff in a simple closed-form expression. Because of

its closed form, our estimator is practical and is free from common implementation problems

of convergence and numerical global optimization.

First, an informal overview and a practical guideline of our methodology are presented in

Section 2. Sections 3 and 4 present formal identification and estimation results. In Section

5, we present an empirical illustration. Section 6 summarizes the paper. A mathematical

proof is included in the appendix. Large sample theories, Monte Carlo simulations, extended

identification results, and other auxiliary materials are included in the supplementary note that

is attached to this paper.

2 An Overview of the Methodology

In this section, we present a practical guideline of our methodology in the context of the problem

of firms’ exit decisions based on unobserved technologies. Formal identification and estimation

results follow in Sections 3 and 4.

Let dj,t = 1 indicate the decision of a firm to stay in the market, and let dj,t = 0 indicate
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the decision to exit. The firm chooses dj,t given its technological level x∗
j,t, and based on its

knowledge of the law of stochastic motion of x∗
j,t. Suppose that the technological state x

∗
j,t of a

firm evolves according to the first-order process

x∗
j,t = αt + γtx

∗
j,t−1 + ηj,t. (2.1)

A firm with its technological level x∗
j,t is assumed to receive the current payoff of the affine

form θ0 + θ1x
∗
j,t + ωd

j,t if it is in the market, where ωd
j,t is the choice-specific private shock.1 On

the other hand, the firm receives zero payoff if it is not in the market. Upon exit from the

market, the firm may receive a one-time exit value θ2, but they will not come back once exited.

With this setting, the choice-specific value of the technological state x∗
j,t can be written as

With stay (dj,t = 1) : v1(x
∗
j,t) = θ0 + θ1x

∗
j,t + ω1

j,t + E
[
ρV (x∗

j,t+1; θ) | x∗
j,t

]
With exit (dj,t = 0) : v0(x

∗
j,t) = θ0 + θ1x

∗
j,t + θ2 + ω0

j,t

where ρ ∈ (0, 1) is the rate of time preference, V ( · ; θ) is the value function, and the conditional

expectation E[ · | x∗
j,t] is computed based on the the knowledge of the law (2.1) including the

distribution of ηj,t.

The fist step toward estimation of the structural parameters is to find a proxy variable xj,t

for the unobserved technology x∗
j,t with a classical error εj,t, i.e., xj,t = x∗

j,t + εj,t.

The second step is to estimate the parameters (αt, γt) of the dynamic process (2.1) by the

1For continuous state variables, a more generic structure would be non-parametric, but we consider this

parametric form in order to focus on the difficulty related to the unobservability of the state variable. Extending

the model to a non-parametric one would entail the integral equation of second kind, the identification of which

is developed by Srisuma and Linton (2012).
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method-of-moment approach, e.g., α̂t

γ̂t

 =

 1
∑N

j=1 xj,t−11{dj,t−1=1}∑N
j=1 1{dj,t−1=1}∑N

j=1 wj,t−11{dj,t−1=1}∑N
j=1 1{dj,t−1=1}

∑N
j=1 xj,t−1wj,t−11{dj,t−1=1}∑N

j=1 1{dj,t−1=1}


−1 

∑N
j=1 xj,t1{dj,t−1=1}∑N

j=1 1{dj,t−1=1}∑N
j=1 xj,twj,t−11{dj,t−1=1}∑N

j=1 1{dj,t−1=1}


where wj,t−1 is some observed variable that is correlated with x∗

j,t−1, but uncorrelated with the

current technological shock ηj,t and the idiosyncratic shocks (εj,t, εj,t−1). Examples include lags

of the proxy, xj,t−2. Note that the proxy xj,t as well as wj,t and the choice dj,t are observed,

provided that the firm stays in the market. Because of the interaction with the indicator

1{dj,t−1 = 1}, all the sample moments in the above display are computable from observed

data.

Having obtained (α̂t, γ̂t), the third step is to identify the distribution of the idiosyncratic

shocks εj,t. Applying the deconvolution method presented by the references listed in the intro-

duction, we can estimate its characteristic function by the formula

ϕ̂εt(s) =

∑N
j=1 e

isxj,t ·1{dj,t=1}∑N
j=1 1{dj,t=1}

exp

[∫ s

0

i·
∑N

j=1(xj,t+1−α̂t)·eis
′xj,t ·1{dj,t=1}

γ̂t·
∑N

j=1 e
is′xj,t ·1{dj,t=1}

ds′
] .

All the moments in this formula involve only the observed variables xj,t, xj,t+1 and dj,t, as

opposed to the unobserved true state x∗
j,t. Thus, they are computable from observed data.

Note also that α̂t and γ̂t are already obtained in the previous step. Hence the right-hand side

of this formula is directly computable.

The fourth step is to estimate the CCP, Pr(dt | x∗
t ), of stay given the current technological

state x∗
t . Using the estimated characteristic function ϕ̂εt produced in the previous step and

then applying Schennach (2004) or Hu and Sasaki (2015), we can estimate the CCP by the

formula

pt(ξ) := P̂r(dj,t = 1 | x∗
j,t = ξ) =

∫ (∑N
j=1 1{dj,t = 1} · eis(xj,t−ξ)

)
· ϕ̂εj,t(s)

−1 · ϕK(sh)ds∫ (∑N
j=1 e

is(xj,t−ξ)
)
· ϕ̂εj,t(s)

−1 · ϕK(sh)ds

(2.2)
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where ϕK is the Fourier transform of a kernel function K and h is a bandwidth parameter. A

similar remark to the previous ones applies here: since dj,t and xj,t are observed, this CCP esti-

mate is directly computable using observed data, even though the true state x∗
j,t is unobserved.

The fifth step is to estimate the state transition law, f(x∗
j,t | x∗

j,t−1). Using the previously

estimated characteristic function ϕ̂εt , we can estimate the state transition law by the formula

f̂(x∗
j,t = ξt | x∗

j,t−1 = ξt−1) =
1

2π

∫
ϕ̂εj,t−1

(sγt)
∑N

j=1 e
is(xj,t−ξt) · eis(αt+γtξt−1)

ϕ̂εj,t(s)
∑N

j=1 e
is(αt+γtx∗

j,t−1)
· ϕK(sh)ds. (2.3)

Finally, by applying our estimated CCP (2.2) and our estimated state transition law (2.3)

to the CCP-based method of Hotz and Miller (1993), we can now estimate the structural

parameters θ = (θ0, θ1, θ2). Specifically, if we follow the standard assumption that the choice-

specific private shocks independently follow the standard Gumbel (Type I Extreme Value)

distribution, then we obtain the restriction

ln pt(x
∗
t )− ln (1− pt(x

∗
t )) = E[ρV (x∗

t+1; θ) | x∗
t ]− θ2,

where the discounted future value can be written in terms of the parameters θ as

E[ρV (x∗
t+1; θ) | x∗

t ] = E

[
∞∑

s=t+1

ρs−t (θ0 + θ1x
∗
s + θ2(1− ps(x

∗
s)) + ω̄

−(1− ps(x
∗
s)) log(1− ps(x

∗
s))− ps(x

∗
s) log ps(x

∗
s))

(
s−1∏

s′=t+1

ps′(x
∗
s′)

)∣∣∣∣∣x∗
t

]
,

where ω̄ denotes the Euler constant ≈ 0.5772. This conditional expectation can be computed

by the state transition law estimated with (2.3), and the CCP pt(x
∗
t ) is estimated with (2.2).

Hence, with our auxiliary estimates, (2.2) and (2.3), the estimator θ̂ solves the equation

ln p̂t(x
∗
t )− ln (1− p̂t(x

∗
t )) = Ê

[
∞∑

s=t+1

ρs−t
(
θ̂0 + θ̂1x

∗
s + θ̂2(1− p̂s(x

∗
s)) + ω̄ (2.4)

−(1− p̂s(x
∗
s)) log(1− p̂s(x

∗
s))− p̂s(x

∗
s) log p̂s(x

∗
s))

(
s−1∏

s′=t+1

p̂s′(x
∗
s′)

)∣∣∣∣∣x∗
t

]
− θ̂2 for all x∗

t ,
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which can be solved for θ̂ in an OLS-like closed form (cf. Motz, Miller, Sanders and Smith,

1994). The practical advantage of the above estimation procedure is that every single formula

is provided with an explicit closed-form expression, and hence does not suffer from the common

implementation problems of convergence and global optimization.

Given the structural parameters θ = (θ0, θ1, θ2) estimated through the above procedure, one

can conduct counter-factual policy predictions in the usual manner. For example, consider the

policy scenario where the exit value of the current period is reduced by rate r at time t, i.e., the

exit value becomes (1 − r)θ2. To predict the number of exits under this experimental setting,

we can estimate the counter-factual CCP of stay by the formula

p̂ct(x
∗
t ; r) =

exp
(
ln p̂t(x

∗
t )− ln(1− p̂t(x

∗
t )) + rθ̂2

)
1 + exp

(
ln p̂t(x∗

t )− ln(1− p̂t(x∗
t )) + rθ̂2

) .
Integrating p̂ct( · ; r) over the the unobserved distribution of x∗

j,t yields the overall fraction of

staying firms, where this unobserved distribution can be in turn estimated by the formula

f̂(x∗
j,t = ξt) =

1

2π

∫ ∑N
j=1 e

is(xj,t−xit)

N · ϕ̂εj,t(s)

· ϕK(sh)ds.

In this section, we proposed a practical step-by-step guideline of our proposed method. For

ease of exposition, this informal overview of our methodology in the current section focused on

a specific economic problem and skipped formal assumptions and formal justifications. Readers

who are interested in more details of how we derive this methodology may want to go through

Sections 3 and 4, where we provide formal identification and estimation results in a more general

class of forward-looking structural models.

3 Markov Components: Identification and Estimation

Our basic notations are fixed as follows. A discrete control variable, taking values in
{
0, 1, · · · , d̄

}
,
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is denoted by dt. For example, it indicates the discrete amounts of lumpy R&D investment,

and can take the value of zero which is often observed in empirical panel data for firms. An-

other example is the binary choice of exit by firms that take into account the future fate of

technological progress. An observed state variable is denoted by wt. It is for example the stock

of capital. An unobserved state variable is denoted by x∗
t . It is for example the stock of skills

or technologies. Finally, a proxy for x∗
t is denoted by xt. Throughout this paper, we consider

the dynamics of this list of random variables.

3.1 Closed-Form Identification of the Markov Components

Our identification strategy is based on the assumptions listed below.

Assumption 1 (First-Order Markov Process). The quadruple {dt, wt, x
∗
t , xt} jointly follows a

first-order Markov process.

This Markovian structure is decomposed into four independent modules as follows.

Assumption 2 (Independence). The Markov kernel can be decomposed as follows.

f
(
dt, wt, x

∗
t , xt|dt−1, wt−1, x

∗
t−1, xt−1

)
= f (dt|wt, x

∗
t ) f

(
wt|dt−1, wt−1, x

∗
t−1

)
f
(
x∗
t |dt−1, wt−1, x

∗
t−1

)
f (xt|x∗

t )

where the four components represent

f (dt|wt, x
∗
t ) conditional choice probability (CCP);

f
(
wt|dt−1, wt−1, x

∗
t−1

)
transition rule for the observed state variable;

f
(
x∗
t |dt−1, wt−1, x

∗
t−1

)
transition rule for the unobserved state variable; and

f (xt|x∗
t ) proxy model.
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The CCP is the firm’s investment or exit decision rule based on the observed capital stocks

wt and the unobserved productivity x∗
t for example. The two transition rules specify how

the capital stock wt and the technology x∗
t co-evolve endogenously with firm’s forward-looking

decision dt. The proxy model is a stochastic relation between the true productivity x∗
t and

a proxy xt. Because the state variable x∗
t of interest is unit-less and unobserved, we require

a restriction of location- and scale-scale normalization. To this goal, the transition rule for

the unobserved state variable and the state-proxy relation are semi-parametrically specified as

follows.

Assumption 3 (Semi-Parametric Restrictions on the Unobservables). The transition rule for

the unobserved state variable and the state-proxy relation are semi-parametrically specified by

f
(
x∗
t |dt−1, wt−1, x

∗
t−1

)
: x∗

t = αd + βdwt−1 + γdx∗
t−1 + ηdt if dt−1 = d (3.1)

f (xt|x∗
t ) : xt = x∗

t + εt (3.2)

where εt and ηdt have mean zero for each d, and satisfy

εt ⊥⊥ ({dτ}τ , {x∗
τ}τ , {wτ}τ , {ετ}τ ̸=t) for all t

ηdt ⊥⊥ (dτ , x
∗
τ , wτ ) for all τ < t for all t.

Remark 1. The decomposition in Assumption 2 and the functional form for the evolution of

x∗
t in addition imply that ηdt ⊥⊥ wt for all d and t, which is also used to derive our result.

In case where we consider the discrete choice dt of investment decisions for example, it is

important that the coefficients, (αd, βd, γd), are allowed to depend on the amount d of invest-

ments since how much a firm invests will likely affect the dynamics of technological evolution.

As such, we allow these parameters to have the d superscripts in (3.1). The semi-parametric

model (3.2) of the state-proxy relation specifies the proxy xt as a measurement of the latent
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technology x∗
t with a classical error. Since it is often restrictive in applications, we also discuss

how to relax this classical-error assumption in Section B.9 in the supplementary note.

By Assumption 3, closed-form identification of the transition rule for x∗
t and the proxy model

for x∗
t follows from identification of the parameters (αd, βd, γd) for each d and from identification

of the nonparametric distributions of the unobservables, εt, x
∗
t , and ηdt for each d. We show that

identification of the parameters (αd, βd, γd) follows from the empirically testable rank condition

stated as Assumption 4 below.2 We also obtain identification of the nonparametric distributions

of the unobservables, εt, x
∗
t , and ηdt , by deconvolution methods under the regularity condition

stated as Assumption 5 below.

Assumption 4 (Testable Rank Condition). Pr(dt−1 = d) > 0 and the following matrix is

nonsingular for each d.
1 E[wt−1 | dt−1 = d] E[xt−1 | dt−1 = d]

E[wt−1 | dt−1 = d] E[w2
t−1 | dt−1 = d] E[xt−1wt−1 | dt−1 = d]

E[wt | dt−1 = d] E[wt−1wt | dt−1 = d] E[xt−1wt | dt−1 = d]


Assumption 5 (Regularity). The random variables wt and x∗

t have bounded conditional first

moments given dt. The conditional characteristic functions of wt and x∗
t given dt = d do not

vanish on the real line, and is absolutely integrable. The conditional characteristic function

of (x∗
t−1, wt) given (dt−1, wt−1) and the conditional characteristic function of x∗

t given wt are

absolutely integrable. Random variables εt and ηdt have bounded first moments and absolutely

integrable characteristic functions that do not vanish on the real line.

The validity of Assumptions 1, 2, and 3 can be discussed with specific economic structures.

Assumption 4 is empirically testable as is the common rank condition in generic econometric

2This matrix consists of moments estimable at the parametric rate of convergence, and hence the standard

rank tests (e.g., Cragg and Donald, 1997; Robin and Smith, 2000; Kleibergen and Paap, 2006) can be used.
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contexts. Assumption 5 consists of technical regularity conditions, but are automatically sat-

isfied by common distribution families, such as the normal distributions among others. Under

this list of five assumptions, we obtain the following closed-form identification result for the

four components of the Markov kernel.

Theorem 1 (Closed-Form Identification). If Assumptions 1, 2, 3, 4, and 5 are satisfied, then

the four components f (dt|wt, x
∗
t ), f

(
wt|dt−1, wt−1, x

∗
t−1

)
, f
(
x∗
t |dt−1, wt−1, x

∗
t−1

)
, f (xt|x∗

t ) of the

Markov kernel f
(
dt, wt, x

∗
t , xt|dt−1, wt−1, x

∗
t−1, xt−1

)
are identified with closed-form formulas.

A proof is given in Section A.1 in the appendix. While the full closed-form identifying

formulas for practitioners’ reference are provided in Section B.1 in the supplementary note, we

also show them with short-hand notations below for convenience of readers. Let i :=
√
−1

denote the unit imaginary number. We introduce the Fourier transform operators F and F2

defined by

Fϕ(ξ) =
1

2π

∫
e−isξϕ(s)ds for all ϕ ∈ L1(R) and ξ ∈ R

F2ϕ(ξ1, ξ2) =
1

4π2

∫
e−is1ξ1−is2ξ2ϕ(s1, s2)ds1ds2 for all ϕ ∈ L1(R2) and (ξ1, ξ2) ∈ R2.

First, with these notations, the CCP (e.g., the conditional probability of choosing the

amount d of investment given the capital stock wt and the technological state x∗
t ) is identi-

fied in closed form by

Pr (dt = d|wt, x
∗
t ) =

Fϕ(d)x∗
t |wt(x

∗
t )

Fϕx∗
t |wt(x

∗
t )

for each choice d ∈ {0, 1, · · · , d̄}, where ϕ(d)x∗
t |wt(s) and ϕx∗

t |wt(s) are identified in closed form

by

ϕ(d)x∗
t |wt(s) =

E[1{dt = d} · eisxt | wt]

ϕεt(s)
and ϕx∗

t |wt(s) =
E[eisxt | wt]

ϕεt(s)
,
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respectively, where ϕεt(s) is identified in closed form by

ϕεt(s) =
E[eisxt | dt = d′]

exp
[∫ s

0
E[i(xt+1−αd′−βd′wt)·eis′xt |dt=d′]

γd′ E[eis
′xt |dt=d′]

ds′
] (3.3)

with any choice d′. For this closed form identifying formula, the parameter vector (αd, βd, γd)T

is in turn explicitly identified for each d by the matrix composition
1 E[wt−1 | dt−1 = d] E[xt−1 | dt−1 = d]

E[wt−1 | dt−1 = d] E[w2
t−1 | dt−1 = d] E[xt−1wt−1 | dt−1 = d]

E[wt | dt−1 = d] E[wt−1wt | dt−1 = d] E[xt−1wt | dt−1 = d]



−1 
E[xt | dt−1 = d]

E[xtwt−1 | dt−1 = d]

E[xtwt | dt−1 = d]

 .

Second, the transition rule for the observed state variable wt (e.g., the law of motion of

capital) is identified in closed form by

f
(
wt|dt−1, wt−1, x

∗
t−1

)
=

F2ϕx∗
t−1,wt|dt−1,wt−1(x

∗
t−1, wt)∫

F2ϕx∗
t−1,wt|dt−1,wt−1(x

∗
t−1, wt)dwt

,

where ϕx∗
t−1,wt|dt−1,wt−1 is identified in closed form by

ϕx∗
t−1,wt|dt−1,wt−1(s1, s2) =

E[eis1xt−1+is2wt | dt−1, wt−1]

ϕεt−1(s1)
.

Third, the transition rule for the unobserved state variable x∗
t (e.g., the evolution of tech-

nology) is identified in closed form by

f(x∗
t | dt−1, wt−1, x

∗
t−1) = Fϕηdt

(x∗
t − αd − βdwt−1 − γdx∗

t−1),

where d := dt−1 for short-hand notation, and ϕηdt
is identified in closed form by

ϕηdt
(s) =

E[eisxt | dt−1 = d] · ϕεt−1(sγ
d)

E[eis(αd+βdwt−1+γdxt−1) | dt−1 = d] · ϕεt(s)
.
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Lastly, the proxy model for x∗
t (e.g., the distribution of the idiosyncratic shock as the proxy

error) is identified in closed form by

f(xt | x∗
t ) = Fϕεt(xt − x∗

t ),

where ϕεt(s) is identified in closed form by (3.3).

In summary, we obtained the four components of the Markov kernel identified with closed-

form expressions written in terms of observed data even though we do not observe the true state

variable x∗
t . These identified components can be in turn plugged in to the structural restrictions

to estimate relevant parameters for the model of forward-looking agents. We present how this

step works in Section 4 – also see Section B.4 in the supplementary note for concrete expressions.

Before proceeding with structural estimation, we first show that these identified components of

the Markov kernel can be easily estimated by their sample counterparts.

3.2 Closed-Form Estimation of the Markov Components

Using the sample counterparts of the closed-form identifying formulas presented in Section

3.1, we develop straightforward closed-form estimators of the four components of the Markov

kernel. Throughout this section, we assume homogeneous dynamics, i.e., time-invariant Markov

kernel, for simplicity. This assumption is not crucial, and can be easily removed with minor

modifications. Let hw and hx denote bandwidth parameters and let ϕK denote the Fourier

transform of a kernel function K used for the purpose of regularization.

First, the sample-counterpart closed-form estimator of the CCP f(dt | wt, x
∗
t ) is given by

P̂r (dt = d|wt, x
∗
t ) =

∫
e−isx∗

t · ϕ̂(d)x∗
t |wt(s) · ϕK(shx)ds∫

e−isx∗
t · ϕ̂x∗

t |wt(s) · ϕK(shx)ds

13



for each choice d ∈ {0, 1, · · · , d̄}, where ϕ̂(d)x∗
t |wt(s) and ϕ̂x∗

t |wt(s) are given by

ϕ̂(d)x∗
t |wt(s) =

∑N
j=1

∑T
t=1 1{Dj,t = d} · eisXj,t ·K

(
Wj,t−wt

hw

)
ϕ̂εt(s) ·

∑N
j=1

∑T
t=1K

(
Wj,t−wt

hw

) and

ϕ̂x∗
t |wt(s) =

∑N
j=1

∑T
t=1 e

isXj,t ·K
(

Wj,t−wt

hw

)
ϕ̂εt(s) ·

∑N
j=1

∑T
t=1K

(
Wj,t−wt

hw

)
,

respectively, where ϕ̂εt(s) is given with any d′ by

ϕ̂εt(s) =

∑N
j=1

∑T
t=1 e

isXj,t · 1{Dj,t = d′}
/∑N

j=1

∑T
t=1 1{Dj,t = d′}

exp

[∫ s

0

i·
∑N

j=1

∑T−1
t=1 (Xj,t+1−αd′−βd′Wj,t)·eis

′Xj,t ·1{Dj,t=d′}

γd′ ·
∑N

j=1

∑T−1
t=1 eis

′Xj,t ·1{Dj,t=d′}
ds′
] . (3.4)

While the notations may make things appear sophisticated, all these expressions are straight-

forward sample-counterparts of the corresponding closed-form identifying formulas provided in

the previous section. This CCP estimator is derived in a similar manner to Schennach (2004)

and Hu and Sasaki (2015). Large sample properties of this CCP estimator can be found in

Section B.6 in the supplementary note.

Second, the sample-counterpart closed-form estimator of f(wt | dt−1, wt−1, x
∗
t−1) is given by

f̂
(
wt|dt−1, wt−1, x

∗
t−1

)
=∫ ∫

e−s1x∗
t−1−s2wt · ϕ̂x∗

t−1,wt|dt−1,wt−1(s1, s2) · ϕK(s1hx) · ϕK(s2hw)ds1ds2∫ ∫ ∫
e−s1x∗

t−1−s2wt · ϕ̂x∗
t−1,wt|dt−1,wt−1(s1, s2) · ϕK(s1hx) · ϕK(s2hw)ds1ds2dwt

,

where ϕ̂x∗
t−1,wt|dt−1,wt−1 is given by

ϕ̂x∗
t−1,wt|dt−1,wt−1(s1, s2) =

∑N
j=1

∑T
t=2 e

is1Xj,t−1+is2Wj,t · 1{Dj,t−1 = dt−1} ·K
(

Wj,t−1−wt−1

hw

)
ϕ̂εt−1(s1) ·

∑N
j=1

∑T
t=2 1{Dj,t−1 = dt−1} ·K

(
Wj,t−1−wt−1

hw

) .

Third, the sample-counterpart closed-form estimator of f(x∗
t | dt−1, wt−1, x

∗
t−1) is given by

f(x∗
t | dt−1, wt−1, x

∗
t−1) =

1

2π

∫
e−is(x∗

t−αd−βdwt−1−γdx∗
t−1) · ϕ̂ηdt

(s) · ϕK(shx)ds,

14



where d := dt−1 for short-hand notation, and ϕ̂ηdt
is given by

ϕ̂ηdt
(s) =

ϕ̂εt−1(sγ
d) ·
∑N

j=1

∑T
t=2 e

isXj,t · 1{Dj,t−1 = d}
ϕ̂εt(s) ·

∑N
j=1

∑T
t=2 e

is(αd+βdWj,t−1+γdXj,t−1) · 1{Dj,t−1 = d}
.

Lastly, the sample-counterpart closed-form estimator of f(xt | x∗
t ) is given by

f̂(xt | x∗
t ) =

1

2π

∫
e−is(xt−x∗

t ) · ϕ̂εt(s) · ϕK(shx)ds,

where ϕ̂εt(s) is given by (3.4).

In each of the above four closed-form estimators, the choice-dependent parameters (αd, βd, γd)

are also explicitly estimated by the matrix composition:
1

∑N
j=1

∑T−1
t=1 Wjt1{Djt=d}∑N

j=1

∑T−1
t=1 1{Djt=d}

∑N
j=1

∑T−1
t=1 Xjt1{Djt=d}∑N

j=1

∑T−1
t=1 1{Djt=d}∑N

j=1

∑T−1
t=1 Wjt1{Djt=d}∑N

j=1

∑T−1
t=1 1{Djt=d}

∑N
j=1

∑T−1
t=1 W 2

jt1{Djt=d}∑N
j=1

∑T−1
t=1 1{Djt=d}

∑N
j=1

∑T−1
t=1 XjtWjt1{Djt=d}∑N

j=1

∑T−1
t=1 1{Djt=d}∑N

j=1

∑T−1
t=1 Wj,t+11{Djt=d}∑N

j=1

∑T−1
t=1 1{Djt=d}

∑N
j=1

∑T−1
t=1 WjtWj,t+11{Djt=d}∑N

j=1

∑T−1
t=1 1{Djt=d}

∑N
j=1

∑T−1
t=1 XjtWj,t+11{Djt=d}∑N

j=1

∑T−1
t=1 1{Djt=d}



−1

×



∑N
j=1

∑T−1
t=1 Xj,t+11{Djt=d}∑N

j=1

∑T−1
t=1 1{Djt=d}∑N

j=1

∑T−1
t=1 Xj,t+1Wjt1{Djt=d}∑N

j=1

∑T−1
t=1 1{Djt=d}∑N

j=1

∑T−1
t=1 Xj,t+1Wj,t+11{Djt=d}∑N
j=1

∑T−1
t=1 1{Djt=d}

 .

Each element of the above matrix and vector consists of sample moments of observed data. In

fact, not only these matrix elements, but also all the expressions in the estimation formulas

provided in this section consist of sample moments of observed data. Thus, despite their

apparently sophisticated expressions, computation of these estimators is not that difficult.

4 Structural Dynamic Discrete Choice Models

In this section, we focus on a class of concrete structural models of forward-looking economic

agents. We apply our earlier auxiliary identification results to obtain closed-form estimation of
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the structural parameters. Agents observe the current state (wt, x
∗
t ), where x∗

t is not observed

by econometricians. Recall that we deal with a continuous observed state variable wt and

a continuous unobserved state variable x∗
t , and it is not practically attractive to work with

nonparametric current-time payoff functions with respect to these continuous state variables.

As such, suppose that agents receive the the current payoff of the affine form

θ0d + θwd wt + θxdx
∗
t + ωdt

at time t if they make the choice dt = d under the state (wt, x
∗
t ), where ωdt is a private payoff

shock at time t that is associated with the choice of dt = d. We may of course extend this affine

payoff function to higher-order polynomials at the cost of increased number of parameters.

The closed-form identifiability continues to hold as far as the payoff linear with respect to the

parameters. Forward-looking agents sequentially make decisions {dt} so as to maximize the

expected discounted sum of payoffs

Et

[
∞∑
s=t

ρs−t
(
θ0ds + θwdsws + θxdsx

∗
s + ωdss

)]
,

where ρ is the rate of time preference. To conduct counterfactual policy predictions, economists

estimate these structural parameters, θ0d, θ
w
d , and θxd .

For ease of exposition under many notations, let us focus on the case of binary decision,

where dt takes values in {0, 1}. Since the payoff structure is generally identifiable only up to

differences, we normalize one of the intercept parameters to zero, say θ01 = 0. 3 Furthermore, we

assume that ωdt is independently distributed according to the Type I Extreme Value Distribu-

tion in order to obtain simple closed-form expressions, although this distributional assumption

is not essential. Under this setting, an application of Hotz and Miller’s (1993) inversion theorem

3We may alternatively impose a system of restrictions and augment the least-square estimator following

Pesendorfer and Schmidt-Dengler (2007) – see also Sanches, Silva, and Srisuma (2013).
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and some calculations yield the restriction

ξ(ρ;wt, x
∗
t ) = θ00 · ξ00(ρ;wt, x

∗
t ) + θw0 · ξw0 (ρ;wt, x

∗
t ) + θw1 · ξw1 (ρ;wt, x

∗
t )

+θx0 · ξx0 (ρ;wt, x
∗
t ) + θx1 · ξx1 (ρ;wt, x

∗
t ) (4.1)

for all (wt, x
∗
t ) for all t, where

ξ(ρ;wt, x
∗
t ) = ln f(1 | wt, x

∗
t )− ln f(0 | wt, x

∗
t ) + (4.2)

∞∑
s=t+1

ρs−t · E [f(0 | ws, x
∗
s) · ln f(0 | ws, x

∗
s) | dt = 1, wt, x

∗
t ] +

∞∑
s=t+1

ρs−t · E [f(1 | ws, x
∗
s) · ln f(1 | ws, x

∗
s) | dt = 1, wt, x

∗
t ]−

∞∑
s=t+1

ρs−t · E [f(0 | ws, x
∗
s) · ln f(0 | ws, x

∗
s) | dt = 0, wt, x

∗
t ]−

∞∑
s=t+1

ρs−t · E [f(1 | ws, x
∗
s) · ln f(1 | ws, x

∗
s) | dt = 0, wt, x

∗
t ]

ξ00(ρ;wt, x
∗
t ) =

∞∑
s=t+1

ρs−t · E [f(0 | ws, x
∗
s) | dt = 1, wt, x

∗
t ]− (4.3)

∞∑
s=t+1

ρs−t · E [f(0 | ws, x
∗
s) | dt = 0, wt, x

∗
t ]− 1

ξwd (ρ;wt, x
∗
t ) =

∞∑
s=t+1

ρs−t · E [f(d | ws, x
∗
s) · ws | dt = 1, wt, x

∗
t ]− (4.4)

∞∑
s=t+1

ρs−t · E [f(d | ws, x
∗
s) · ws | dt = 0, wt, x

∗
t ]− (−1)d · wt

ξxd (ρ;wt, x
∗
t ) =

∞∑
s=t+1

ρs−t · E [f(d | ws, x
∗
s) · x∗

s | dt = 1, wt, x
∗
t ]− (4.5)

∞∑
s=t+1

ρs−t · E [f(d | ws, x
∗
s) · x∗

s | dt = 0, wt, x
∗
t ]− (−1)d · x∗

t

for each d ∈ {0, 1}. See Section B.2 in the supplementary note for derivation of (4.1)–(4.5).
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In the context of their model, Hotz, Miller, Sanders, and Smith (1994) propose to use (4.1)

to construct moment restrictions. We adapt this approach to our model with unobserved state

variables. To this end, define the function Q by

Q(ρ, θ;wt, x
∗
t ) = ξ(ρ;wt, x

∗
t )− θ00 · ξ00(ρ;wt, x

∗
t ) + θw0 · ξw0 (ρ;wt, x

∗
t )

−θw1 · ξw1 (ρ;wt, x
∗
t )− θx0 · ξx0 (ρ;wt, x

∗
t )− θx1 · ξx1 (ρ;wt, x

∗
t )

where θ = (θ00, θ
w
0 , θ

w
1 , θ

x
0 , θ

x
1)

′. From (4.1), we obtain the moment restriction

E[R(ρ, θ;wt, x
∗
t )

′ Q(ρ, θ;wt, x
∗
t )] = 0 (4.6)

for any list (row vector) of bounded functions R(ρ, θ; ·, ·). This paves the way for GMM

estimation of the structural parameters (ρ, θ). Furthermore, if the rate ρ of time preference is

not to be estimated (which is indeed the case in many applications in the literature),4 then the

moment restriction (4.6) can even be written linearly with respect to the structural parameters

θ by defining the function R by

R(ρ;wt, x
∗
t ) = [ξ00(ρ;wt, x

∗
t ), ξw0 (ρ;wt, x

∗
t ), ξw1 (ρ;wt, x

∗
t ), ξx0 (ρ;wt, x

∗
t ), ξx1 (ρ;wt, x

∗
t )].

(Note that we can drop the argument θ from this function since none of the right-hand-side

components depends on θ.) In this case, the moment restriction (4.6) yields the structural

parameters θ by the OLS-like closed-form expression

θ = E [R(ρ;wt, x
∗
t )

′ R(ρ;wt, x
∗
t )]

−1
E [R(ρ;wt, x

∗
t )

′ ξ(ρ;wt, x
∗
t )] , (4.7)

provided that the following condition is satisfied.

Assumption 6 (Rank Condition). E [R(ρ;wt, x
∗
t )

′ R(ρ;wt, x
∗
t )] is nonsingular.

4This rate is generally non-identifiable together with the payoffs (Rust, 1994; Magnac and Thesmar, 2002).
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While this result is indeed encouraging, an important remark is in order. Since the gen-

erated random variables R(ρ;wt, x
∗
t ) and ξ(ρ;wt, x

∗
t ) depend on the unobserved state variables

x∗
t and their unobserved dynamics by their definitional equations (4.2)–(4.5), they need to be

constructed properly based on observed variables. This issue can be solved by using the com-

ponents of the Markov kernel identified with closed-form formulas in Section 3.1. Note that

the elements of all these generated random variables R(ρ;wt, x
∗
t ) and ξ(ρ;wt, x

∗
t ) take the form

E[ζ(ws, x
∗
s) | dt, wt, x

∗
t ] of the unobserved conditional expectations for various s > t, where

ζ(ws, x
∗
s) consists of the explicitly identified CCP f(ds | ws, x

∗
s) and its interactions with ws, x

∗
s,

and the log of itself in the formulas (4.2)–(4.5). We can recover these unobserved components

in the following manner. If s = t+ 1, then

E[ζ(ws, x
∗
s) | dt, wt, x

∗
t ] =

∫ ∫
ζ(wt+1, x

∗
t+1) · f(wt+1 | dt, wt, x

∗
t )×

f(x∗
t+1 | dt, wt, x

∗
t ) dwt+1dx

∗
t+1 (4.8)

where f(wt+1 | dt, wt, x
∗
t ) and f(x∗

t+1 | dt, wt, x
∗
t ) are identified with closed-forms formulas in

Theorem 1. On the other hand, if s > t+ 1, then

E[ζ(ws, x
∗
s) | dt, wt, x

∗
t ] =

1∑
dt+1=0

· · ·
1∑

ds−1=0

∫
· · ·
∫

ζ(ws, x
∗
s) · f(ws | ds−1, ws−1, x

∗
s−1)×

f(x∗
s | ds−1, ws−1, x

∗
s−1) ·

s−2∏
τ=t

f(dτ+1 | wτ , x
∗
τ ) · f(wτ+1 | dτ , wτ , x

∗
τ )×

·f(x∗
τ+1 | dτ , wτ , x

∗
τ ) dwt+1 · · · dws dx

∗
t+1 · · · dx∗

s, (4.9)

where f(dt | wt, x
∗
t ), f(wt+1 | dt, wt, x

∗
t ), and f(x∗

t+1 | dt, wt, x
∗
t ) are identified with closed-form

formulas in Theorem 1.

In light of the explicit decompositions (4.8) and (4.9), the generated random variables

ξ(ρ;wt, x
∗
t ) andR(ρ;wt, x

∗
t ) = [ξ00(ρ;wt, x

∗
t ), ξ

w
0 (ρ;wt, x

∗
t ), ξ

w
1 (ρ;wt, x

∗
t ), ξ

x
0 (ρ;wt, x

∗
t ), ξ

x
1 (ρ;wt, x

∗
t )]

defined in (4.2)–(4.5) are identified with closed-form formulas. Therefore, the structural pa-
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rameters θ are in turn identified in the closed form (4.7). We summarize this result as the

following corollary.

Corollary 1 (Closed-Form Identification of Structural Parameters). Suppose that Assump-

tions 1, 2, 3, 4, 5, and 6 are satisfied. Given ρ, the structural parameters θ are identified

in the closed form (4.7), where the generated random variables ξ(ρ;wt, x
∗
t ) and R(ρ;wt, x

∗
t ) =

[ξ00(ρ;wt, x
∗
t ), ξw0 (ρ;wt, x

∗
t ), ξw1 (ρ;wt, x

∗
t ), ξx0 (ρ;wt, x

∗
t ), ξx1 (ρ;wt, x

∗
t )] which appear in (4.7) are

in turn identified with closed-form formulas through Theorem 1, (4.2)–(4.5), (4.8), and (4.9).

Remark 2. We have left unspecified the measure with respect to which the expectations in

(4.6) and thus in (4.7) are taken. The choice is in fact flexible because the original restriction

(4.1) holds point-wise for all (wt, x
∗
t ). A natural choice is the distribution of (wt, x

∗
t ), but it

is unobserved. In Section B.3 in the supplementary note, we propose how to evaluate those

expectations with respect to this unobserved distribution of (wt, x
∗
t ) using observed distribution

of (wt, xt) while, of course, keeping the closed form formulas. We emphasize that one can pick

any distribution with which the testable rank condition of Assumption 6 is satisfied.

The closed-form identifying formula for the structural parameters directly translates into a

closed-form estimator by substituting the closed-form estimators of the Markov kernel developed

in Section 3.2. In Section B.4 in the supplementary note, we provide a concrete expression

for the closed-form estimator of the structural parameters. Due to the consistency of the

Markov component estimators (see Section B.6 in the supplementary note), the consistency of

the sample-counterpart estimator of the structural parameters also follows by the continuous

mapping theorem. However, asymptotic normality does not hold under mild conditions, as it

requires among others sufficiently fast convergence rates of the preliminary Markov component

estimators, which do not hold in general.5

5Specifically, super-smooth distributions cause logarithmic rates of convergence – see Fan (1991), Fan and
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5 Empirical Illustration

Survival selection of firms based on their unobserved dynamic attributes is a long-lasting in-

terest in the economics literature. Theoretical and empirical studies include Jovanovic (1982),

Hopenhayn (1992), Ericson and Pakes (1995), Abbring and Campbell (2004), Asplund and

Nocke (2006), and Foster, Haltiwanger and Syverson (2008).

Our proposed method extends the approach of Hotz and Miller by allowing for the model

to involve persistent unobserved state variables that are observed by the firms but are not

observed by econometricians. In this section, we apply our closed-form identification methods

to study the forward-looking structure of firm’s decision of exit on unobserved technologies.

We follow the model and the methodology presented in Section 2, except that we allow for

time-varying levels θ0 (i.e., time fixed effects) of the current-time payoff in order to reflect

idiosyncratic macroeconomic shocks. Closely related to what we do is Foster, Haltiwanger and

Syverson (2008), who use the total factor productivity of a production function as the measure

of productivity. Our approach differs in that we explicitly distinguish between the persistent

productivity component and the idiosyncratic component of the total factor productivity.

Levinsohn and Petrin (2003) estimate the production functions for Chilean firms using plant-

level panel data.6 We use the same data set of an 18-year panel from 1979 to 1996 recording real

values in 1980 Pesos. Following Levinsohn and Petrin, we focus on the four largest industries,

food products (311), textiles (321), wood products (331) and metals (381). We implement

Truong (1993). Also see Section B.6 in the supplementary note for some details. In previous versions of this

draft, we used to propose the asymptotic normality under many strong restrictions. In the current draft, we

now desist from doing that due to the potential conflicts among the restrictive assumptions that were hard to

check.
6See also Olley and Pakes (1996), Ackerberg, Caves and Frazer (2006) and Wooldridge (2009) on related

methods and discussions of them.
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their method using energy and material as two proxies to estimate the production function.

The residual xj,t := yj,t− bllj,t− bkkj,t of the estimated production function based on Levinsohn

and Petrin is used as a proxy for the true technology x∗
j,t in the sense that xj,t = x∗

j,t+ εj,t holds

by construction, where εj,t denotes idiosyncratic component of Hicks-neutral shocks.7

Table 1 shows a summary of the data and construct proxy values for industry 311 (food

products), the largest industry in the data. It shows the tendency that the number of firms

decreases over time. The number of exiting firms is displayed for each year. Note that, since

there are some entering firms, the difference in the number of firms across adjacent years does

not necessarily correspond to the number of exits. However, since entry is much less frequent

than exits, we exclusively focus on exit decisions in our study. The last three columns of the

table list the mean values of the constructed proxy xj,t. The third-to-last column displays

mean levels for all the firms in this industry. We can see that the productivities steadily

advanced since the late 1980s, a little while after the Chilean recession during the 1982-1983.

The second-to-last column displays mean levels among the subsample of firms exiting at the

end of the current year. The last column displays mean levels among the subsample of firms

surviving into the next year. Comparing these two columns, it is clear that exiting firms overall

have lower proxy levels for the production technology. Similar patterns result for the other

three industries.

We follow the second and third steps in the practical guideline presented in Section 2 to

estimated the parameters in the law of technological growth (2.1) as well as the distribution fεj,t

of the idiosyncratic shocks. These two auxiliary steps are followed by the fifth step in which the

7Along the optimal path of investment, the input (lj,t, kj,t) is determined by the technological level x∗
j,t, and

hence our assumption that the current-type payoff of firms are given by a function of x∗
j,t is not unnatural,

possibly except for the functional form assumption.
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Mean of the Proxy xj,t

Year # Firms # Exits % Exits All Firms Exiting Firms Staying Firms

1980 1322 74 0.056 2.90 2.85 2.90

1981 1253 57 0.046 2.93 2.80 2.93

1982 1191 56 0.047 2.85 2.74 2.85

1983 1157 60 0.052 2.84 2.61 2.85

1984 1152 51 0.044 2.86 2.77 2.86

1985 1157 56 0.048 2.86 2.71 2.87

1986 1105 69 0.062 2.87 2.69 2.89

1987 1110 36 0.032 2.83 2.69 2.83

1988 1120 54 0.048 2.84 2.67 2.85

1989 1086 38 0.035 2.87 2.78 2.87

1990 1082 30 0.028 2.90 2.66 2.91

1991 1097 45 0.041 2.93 2.87 2.93

1992 1122 36 0.032 2.98 2.85 2.99

1993 1118 50 0.045 3.02 3.04 3.02

1994 1106 65 0.059 3.06 3.02 3.06

1995 1098 80 0.073 3.05 2.93 3.06

Table 1: Summary statistics for industry 311 (food products). Since there are entries too, the

difference in the number of firms across adjacent years does not correspond to the displayed

number of exits. The proxy xj,t for the unobserved technologies is constructed as the residual

of the estimated production function. Since the mean of the idiosyncratic shocks εj,t is zero,

the mean of the proxy xj,t equals the mean of the truth x∗
j,t, but their distributions differ.
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Figure 1: The estimated conditional choice probabilities of stay given the latent levels of pro-

duction technology, x∗
j,t, for industry 311 in years 1980, 1985, 1990 and 1995. The vertical lines

indicate the mean levels of the unobserved production technology, x∗
j,t.
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conditional choice probability (CCP) of stay, Pr(Dj,t = 1 | x∗
j,t) is estimated by (2.2). Figure

1 illustrates the estimated CCPs for years 1980, 1985, 1990 and 1995. The curves indicate our

estimates of the CCPs on the unobserved technological state x∗
j,t. The probability of stay tends

to be higher as the level of production technologies becomes higher. This is consistent with

the presumption that firms with lower levels of technologies are more likely to exit. Note also

that the levels of the estimated CCPs change across time. This evidence implies that there are

some idiosyncratic macroeconomics shocks to the current-time payoffs. As such, it it natural

to introduce time-varying intercepts θ0 (i.e., time-fixed effects) for the payoff parameters when

we take these preliminary CCPs estimates to structural estimation. Although the figure shows

CCP estimates only for industry 311 (food products), similar remarks apply to the other three

industries.

Along with the CCPs, we also estimate the transition kernel for the unobserved technology

by (2.3). These two preliminary estimates are taken together to compute the elements in the

restriction (2.4), and we estimate the structural parameters with this constructed restriction –

see Section 4 for more details about this estimation procedure. The rate ρ of time preference is

not to be estimated together with the payoffs given the general non-identification results (Rust,

1994; Magnac and Thesmar, 2002). We thus present estimates of the structural parameters

that result under alternative values of ρ ∈ {0.80, 0.90}. Table 2 shows our estimates for each

of the four industries. The marginal payoff of unit production technology is measured by θ1.

The one-time exit value is measured by θ2. The magnitudes of these parameter estimates are

only relative to the fixed scale of the logistic distribution followed by the difference in private

shocks. For scale-normalized views of the structural estimates, we also show the ratio θ2/θ1,

which measures the value of exit relative to the payoffs produced by each unit of technology.

Not surprisingly, these relative exit values vary across alternative rates ρ of time preference.
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Industry Size ρ θ1 θ2 θ2/θ1

311 Food Products 18,276 0.80 1.047 16.491 15.749

321 Textiles 5,039 0.80 1.357 24.772 18.261

331 Wood Products 4,650 0.80 0.596 8.288 13.899

381 Metals 5,286 0.80 1.673 34.273 20.482

311 Food Products 18,276 0.90 0.998 34.553 34.633

321 Textiles 5,039 0.90 0.850 31.637 37.198

331 Wood Products 4,650 0.90 0.550 16.505 29.934

381 Metals 5,286 0.90 1.275 51.636 40.493

Table 2: Estimated structural parameters. The sample size is the number of non-missing entries

in the unbalanced panel data used for estimation. The ratio θ2/θ1 measures how many units

of production technologies are worth the exit value in terms of the current value, and thus

indicates the value of exit relative to the payoffs produced by each unit of technology.
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Subsample Size ρ θ1 θ2 θ2/θ1

All firms 18,276 0.90 0.998 34.553 34.633

Real Estate below Average 15,652 0.90 0.905 29.897 33.027

Real Estate above Average 2,604 0.90 0.879 30.815 35.073

Machine & Furniture below Average 15,960 0.90 0.949 29.222 30.778

Machine & Furniture above Average 2,295 0.90 0.572 33.303 58.247

Table 3: Estimated structural parameters by sizes of capital stocks for food product industry

(311). The sample size is the number of non-missing entries in the unbalanced panel data used

for estimation. The ratio θ2/θ1 measures how many units of production technologies are worth

the exit value in terms of the current value, and thus indicates the value of exit relative to the

payoffs produced by each unit of technology.

However, the rankings of these relative exit values across the industries remain robust across

the choice of ρ. Namely, industry 381 (metals) is associated with the largest relative value

of exit, followed by industry 321 (textiles) and industry 311 (food products). Industry 331

(wood products) is associated with the smallest relative value of exit. Given that the relative

exit value is determined partly by the value of sales and scarp of hard properties relative to

the current-time contributory value of technologies, this ranking makes sense. For instance, it

is reasonable to find that metals industry running intensively on physical capital exhibit the

largest relative value of exit.

The values of exit are supposed to reflect one-time payoffs that firms receive by selling and

scrapping capital stocks. In order to understand this feature of relative exit values in more

details, we run our structural estimation for various subsets of firms grouped by the sizes of

physical capital stocks, focusing on the largest industry (food products, 311). First, we consider
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the subsamples of firms below and above the average in terms of the amounts of real estate

capital stocks. The middle rows of table 3 show structural estimates. Firms with larger stocks

of real estate properties exhibit a slightly higher relative value of exit than those with smaller

stocks. Second, we consider the subsamples of firms below and above the average in terms of the

amounts of stocks of machine, furniture and tools. The bottom rows of table 3 show structural

estimates. Firms with larger stocks of machine, furniture and tools exhibit a significantly higher

relative value of exit than those with smaller stocks. These observations are consistent with the

presumption that forward-looking firms make exit decisions by comparing between the future

stream of payoffs attributed to its dynamic production technology and the one-time payoff that

results from selling and scrapping physical capital stocks.

6 Summary

In this paper, we show that the structure of forward-looking firms can be identified provided

that a proxy for the unobserved state variable is available in data. Our approach works in the

following manner.

First, we identify the CCP and the law of state transition using a proxy variable. For

this step, we use an approach related to the closed-estimator of Schennach (2004) and Hu and

Sasaki (2015) for nonparametric regression models with measurement errors (cf. Li, 2002), as

well as the deconvolution methods (Li and Vuong, 1998; Bonhomme and Robin, 2010). Second,

the CCP-based method (Hotz, Miller, Sanders and Smith, 1994) is applied to the preliminary

non-/semi-parametric estimates of the Markov components to obtain structural parameters of

a current-time payoff in a simple closed-form expression.

Applying our methods to firm-level panel data, we analyze the structure of firms making
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exit decisions by comparing the expected future stream of payoffs attributed to the latent

technologies and the exit value that they receive by selling or scrapping physical properties.

We find that industries and firms that run intensively on physical capital exhibit greater relative

values of exit. In addition, our CCP estimates show that the natural presumption that firms

with lower levels of production technologies exit with higher probabilities is true.
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A Appendix

A.1 Proof of Theorem 1

Proof. Our closed-form identification includes four steps.

Step 1: Closed-form identification of the transition rule f
(
x∗
t |dt−1, wt−1, x

∗
t−1

)
: First,

we show the identification of the parameters and the distributions in transition of x∗
t . Since

xt = x∗
t + εt =

∑
d

1{dt−1 = d}[αd + βdwt−1 + γdx∗
t−1 + ηdt ] + εt

=
∑
d

1{dt−1 = d}[αd + βdwt−1 + γdxt−1 + ηdt − γdεt−1] + εt

we obtain the following equalities for each d:

E[xt | dt−1 = d] = αd + βd E[wt−1 | dt−1 = d] + γd E[xt−1 | dt−1 = d]

−E[γdεt−1 | dt−1 = d] + E[ηdt | dt−1 = d] + E[εt | dt−1 = d]

= αd + βd E[wt−1 | dt−1 = d] + γd E[xt−1 | dt−1 = d]

E[xtwt−1 | dt−1 = d] = αd E[wt−1 | dt−1 = d] + βd E[w2
t−1 | dt−1 = d] + γd E[xt−1wt−1 | dt−1 = d]

−E[γdεt−1wt−1 | dt−1 = d] + E[ηdtwt−1 | dt−1 = d] + E[εtwt−1 | dt−1 = d]

= αd E[wt−1 | dt−1 = d] + βd E[w2
t−1 | dt−1 = d] + γd E[xt−1wt−1 | dt−1 = d]

E[xtwt | dt−1 = d] = αd E[wt | dt−1 = d] + βd E[wt−1wt | dt−1 = d] + γd E[xt−1wt | dt−1 = d]

−E[γdεt−1wt | dt−1 = d] + E[ηdtwt | dt−1 = d] + E[εtwt | dt−1 = d]

= αd E[wt | dt−1 = d] + βd E[wt−1wt | dt−1 = d] + γd E[xt−1wt | dt−1 = d]
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by the independence and zero mean assumptions for ηdt and εt. From these, we have the linear

equation
E[xt | dt−1 = d]

E[xtwt−1 | dt−1 = d]

E[xtwt | dt−1 = d]

 =


1 E[wt−1 | dt−1 = d] E[xt−1 | dt−1 = d]

E[wt−1 | dt−1 = d] E[w2
t−1 | dt−1 = d] E[xt−1wt−1 | dt−1 = d]

E[wt | dt−1 = d] E[wt−1wt | dt−1 = d] E[xt−1wt | dt−1 = d]




αd

βd

γd


Provided that the matrix on the right-hand side is non-singular, we can identify the parameters

(αd, βd, γd) by
αd

βd

γd

 =


1 E[wt−1 | dt−1 = d] E[xt−1 | dt−1 = d]

E[wt−1 | dt−1 = d] E[w2
t−1 | dt−1 = d] E[xt−1wt−1 | dt−1 = d]

E[wt | dt−1 = d] E[wt−1wt | dt−1 = d] E[xt−1wt | dt−1 = d]



−1 
E[xt | dt−1 = d]

E[xtwt−1 | dt−1 = d]

E[xtwt | dt−1 = d]


Next, we show identification of f (εt) and f

(
ηdt
)
for each d. Observe that

E [exp (is1xt−1 + is2xt) |dt−1 = d]

= E
[
exp

(
is1
(
x∗
t−1 + εt−1

)
+ is2

(
αd + βdwt−1 + γdx∗

t−1 + ηdt + εt
))

|dt−1 = d
]

= E
[
exp

(
i
(
s1x

∗
t−1 + s2α

d + s2β
dwt−1 + s2γ

dx∗
t−1

))
|dt−1 = d

]
×E [exp (is1εt−1)] E

[
exp

(
is2
(
ηdt + εt

))]
follows from the independence assumptions for ηdt and εt. Taking the derivative with respect

to s2 yields[
∂

∂s2
ln E [exp (is1xt−1 + is2xt) |dt−1 = d]

]
s2=0

=
E
[
i(αd + βdwt−1 + γdx∗

t−1) exp
(
is1x

∗
t−1

)
|dt−1 = d

]
E
[
exp

(
is1x∗

t−1

)
|dt−1 = d

]
= iαd + βdE[iwt−1 exp(is1x

∗
t−1) | dt−1 = d]

E[exp(is1x∗
t−1) | dt−1 = d]

+ γd ∂

∂s1
ln E

[
exp

(
is1x

∗
t−1

)
|dt−1 = d

]
= iαd + βdE[iwt−1 exp(is1xt−1) | dt−1 = d]

E[exp(is1xt−1) | dt−1 = d]
+ γd ∂

∂s1
ln E

[
exp

(
is1x

∗
t−1

)
|dt−1 = d

]
where the switch of the differential and integral operators is permissible provided that there

exists h ∈ L1(Fwt−1x∗
t−1|dt−1=d) such that

∣∣i(αd + βdwt−1 + γdx∗
t−1) exp

(
is1x

∗
t−1

)∣∣ < h(wt−1, x
∗
t−1)
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holds for all (wt−1, x
∗
t−1), which follows from the bounded conditional moment given in Assump-

tion 5, and the denominators are nonzero as the conditional characteristic function of x∗
t given

dt does not vanish on the real line under Assumption 5. Therefore,

E
[
exp

(
isx∗

t−1

)
|dt−1 = d

]
= exp

[∫ s

0

[
1

γd

∂

∂s2
ln E [exp (is1xt−1 + is2xt) |dt−1 = d]

]
s2=0

ds1

−
∫ s

0

iαd

γd
ds1 −

∫ s

0

βd

γd

E[iwt−1 exp(is1xt−1) | dt−1 = d]

E[exp(is1xt−1) | dt−1 = d]
ds1

]
= exp

[∫ s

0

E
[
i(xt − αd − βdwt−1) exp (is1xt−1) |dt−1 = d

]
γd E [exp (is1xt−1) |dt−1 = d]

ds1

]
.

From the proxy model and the independence assumption for εt,

E [exp (isxt−1) |dt−1 = d] = E
[
exp

(
isx∗

t−1

)
|dt−1 = d

]
E [exp (isεt−1)] .

We then obtain the following result using any d.

E [exp (isεt−1)] =
E [exp (isxt−1) |dt−1 = d]

E
[
exp

(
isx∗

t−1

)
|dt−1 = d

]
=

E [exp (isxt−1) |dt−1 = d]

exp

[∫ s

0

E[i(xt−αd−βdwt−1) exp(is1xt−1)|dt−1=d]
γd E[exp(is1xt−1)|dt−1=d]

ds1

] .
This argument holds for all t so that we can identify f (εt) with

E [exp (isεt)] =
E [exp (isxt) |dt = d]

exp

[∫ s

0

E[i(xt+1−αd−βdwt) exp(is1xt)|dt=d]
γd E[exp(is1xt)|dt=d]

ds1

] (A.1)

using any d.

In order to identify f
(
ηdt
)
for each d, consider

xt + γdεt−1 = αd + βdwt−1 + γdxt−1 + εt + ηd,

and thus

E [exp (isxt) |dt−1 = d] E
[
exp

(
isγdεt−1

)]
= E

[
exp

(
is(αd + βdwt−1 + γdxt−1)

)
|dt−1 = d

]
×E

[
exp

(
isηdt

)]
E [exp (isεt)]
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follows by the independence assumptions for ηdt and εt. Therefore, by the formula (A.1), the

characteristic function of ηdt can be expressed by

E
[
exp

(
isηdt

)]
=

E [exp (isxt) |dt−1 = d] · E
[
exp

(
isγdεt−1

)]
E [exp (is(αd + βdwt−1 + γdxt−1)) |dt−1 = d] E [exp (isεt)]

=

E [exp (isxt) |dt−1 = d] · exp
[∫ s

0

E[i(xt+1−αd−βdwt) exp(is1xt)|dt=d]
γd E[exp(is1xt)|dt=d]

ds1

]
E [exp (is(αd + βdwt−1 + γdxt−1)) |dt−1 = d] · E [exp (isxt) |dt = d]

×

E
[
exp

(
isγdxt−1

)
|dt−1 = d

]
exp

[∫ sγd

0

E[i(xt−αd−βdwt−1) exp(is1xt−1)|dt−1=d]
γd E[exp(is1xt−1)|dt−1=d]

ds1

] .
The denominator on the right-hand side is non-zero, as the conditional and unconditional

characteristic functions do not vanish on the real line under Assumption 5. Letting F denote

the operator defined by

(Fϕ) (ξ) =
1

2π

∫
e−isξϕ(s)ds for all ϕ ∈ L1(R) and ξ ∈ R,

we identify fηdt by

fηdt (η) =
(
Fϕηdt

)
(η) for all η,

where the characteristic function ϕηdt
is given by

ϕηdt
(s) =

E [exp (isxt) |dt−1 = d] · exp
[∫ s

0

E[i(xt+1−αd−βdwt) exp(is1xt)|dt=d]
γd E[exp(is1xt)|dt=d]

ds1

]
E [exp (is(αd + βdwt−1 + γdxt−1)) |dt−1 = d] · E [exp (isxt) |dt = d]

×

E
[
exp

(
isγdxt−1

)
|dt−1 = d

]
exp

[∫ sγd

0

E[i(xt−αd−βdwt−1) exp(is1xt−1)|dt−1=d]
γd E[exp(is1xt−1)|dt−1=d]

ds1

] .
We can use this identified density in turn to identify the transition rule f

(
x∗
t |dt−1, wt−1, x

∗
t−1

)
with

f
(
x∗
t |dt−1, xt−1, x

∗
t−1

)
=
∑
d

1{dt−1 = d}fηdt
(
x∗
t − αd − βdwt−1 − γdx∗

t−1

)
.
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In summary, we obtain the closed-form expression

f(x∗
t | dt−1, wt−1, x

∗
t−1) =

∑
d

1{dt−1 = d}
(
Fϕηdt

)
(x∗

t − αd − βdwt−1 − γdx∗
t−1)

=
∑
d

1{dt−1 = d}
2π

∫
exp

(
−is(x∗

t − αd − βdwt−1 − γdx∗
t−1)

)
×

E [exp (isxt) |dt−1 = d] · exp
[∫ s

0

E
[
i(xt+1−αd′−βd′wt) exp(is1xt)|dt=d′

]
γd′ E[exp(is1xt)|dt=d′]

ds1

]
E [exp (is(αd + βdwt−1 + γdxt−1)) |dt−1 = d] · E [exp (isxt) |dt = d]

×

E
[
exp

(
isγdxt−1

)
|dt−1 = d′

]
exp

[∫ sγd

0

E[i(xt−αd′−βd′wt−1) exp(is1xt−1)|dt−1=d′]
γd′ E[exp(is1xt−1)|dt−1=d′]

ds1

] ds.

using any d′. This completes Step 1.

Step 2: Closed-form identification of the proxy model f (xt | x∗
t ): Given (A.1), we can

write the density of εt by

fεt(ε) = (Fϕεt) (ε) for all ε,

where the characteristic function ϕεt is defined by (A.1) as

ϕεt(s) =
E [exp (isxt) |dt = d]

exp

[∫ s

0

E[i(xt+1−αd−βdwt) exp(is′xt)|dt=d]
γd E[exp(is′xt)|dt=d]

ds′
] .

Provided this identified density of εt, we nonparametrically identify the proxy model

f(xt | x∗
t ) = fεt(xt − x∗

t )

In summary, we obtain the closed-form expression

f(xt | x∗
t ) = (Fϕεt) (xt − x∗

t )

=
1

2π

∫
exp (−is(xt − x∗

t )) · E [exp (isxt) |dt = d]

exp

[∫ s

0

E[i(xt+1−αd−βdwt) exp(is1xt)|dt=d]
γd E[exp(is1xt)|dt=d]

ds1

]ds
using any d. This completes Step 2.
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Step 3: Closed-form identification of the transition rule f
(
wt|dt−1, wt−1, x

∗
t−1

)
: Con-

sider the joint density expressed by the convolution integral

f (xt−1, wt | dt−1, wt−1) =

∫
fεt−1

(
xt−1 − x∗

t−1

)
f
(
x∗
t−1, wt | dt−1, wt−1

)
dx∗

t−1

We can thus obtain a closed-form expression of f
(
x∗
t−1, wt | dt−1, wt−1

)
by the deconvolution.

To see this, observe

E [exp (is1xt−1 + is2wt) |dt−1, wt−1] = E
[
exp

(
is1x

∗
t−1 + is1εt−1 + is2wt

)
|dt−1, wt−1

]
= E

[
exp

(
is1x

∗
t−1 + is2wt

)
|dt−1, wt−1

]
E [exp (is1εt−1)]

by the independence assumption for εt, and so

E
[
exp

(
is1x

∗
t−1 + is2wt

)
|dt−1, wt−1

]
=

E [exp (is1xt−1 + is2wt) |dt−1, wt−1]

E [exp (is1εt−1)]

=

E [exp (is1xt−1 + is2wt) |dt−1, wt−1] · exp
[∫ s1

0

E[i(xt−αd−βdwt−1) exp(is′1xt−1)|dt−1=d]
γd E[exp(is′1xt−1)|dt−1=d]

ds′1

]
E [exp (is1xt−1) |dt−1 = d]

follows. Letting F2 denote the operator defined by

(F2ϕ) (ξ1, ξ2) =
1

4π2

∫ ∫
e−is1ξ1−is2ξ2ϕ(s1, s2)ds1ds2 for all ϕ ∈ L1(R2) and (ξ1, ξ2) ∈ R2,

we can express the conditional density as

f
(
x∗
t−1, wt|dt−1, wt−1

)
=
(
F2ϕx∗

t−1,wt|dt−1,wt−1

)
(wt, x

∗
t−1)

where the characteristic function is defined by

ϕx∗
t−1,wt|dt−1,wt−1(s1, s2)

=

E [exp (is1xt−1 + is2wt) |dt−1, wt−1] · exp
[∫ s1

0

E[i(xt−αd−βdwt−1) exp(is′1xt−1)|dt−1=d]
γd E[exp(is′1xt−1)|dt−1=d]

ds′1

]
E [exp (is1xt−1) |dt−1 = d]

with any d. Using this conditional density, we can nonparametrically identify the transition

rule f(wt | dt−1, wt−1, x
∗
t−1) with

f
(
wt|dt−1, wt−1, x

∗
t−1

)
=

f
(
x∗
t−1, wt|dt−1, wt−1

)∫
f
(
x∗
t−1, wt|dt−1, wt−1

)
dwt

.
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In summary, we obtain the closed-form expression

f
(
wt|dt−1, wt−1, x

∗
t−1

)
=

(
F2ϕx∗

t−1,wt|dt−1,wt−1

)
(x∗

t−1, wt)∫ (
F2ϕx∗

t−1,wt|dt−1,wt−1

)
(x∗

t−1, wt)dwt

=
∑
d

1{dt−1 = d}
∫ ∫

exp
(
−is1wt − is2x

∗
t−1

)
· E [exp (is1xt−1 + is2wt) |dt−1 = d, wt−1]×

exp

[∫ s1
0

E
[
i(xt−αd′−βd′wt−1) exp(is′1xt−1)|dt−1=d′

]
γd′ E[exp(is′1xt−1)|dt−1=d′]

ds′1

]
E [exp (is1xt−1) |dt−1 = d′]

ds1ds2

/
∫ ∫ ∫

exp
(
−is1wt − is2x

∗
t−1

)
· E [exp (is1xt−1 + is2wt) |dt−1 = d, wt−1]×

exp

[∫ s1
0

E
[
i(xt−αd′−βd′wt−1) exp(is′1xt−1)|dt−1=d′

]
γd′ E[exp(is′1xt−1)|dt−1=d′]

ds′1

]
E [exp (is1xt−1) |dt−1 = d′]

ds1ds2dwt

using any d′. This completes Step 3.

Step 4: Closed-form identification of the CCP f (dt|wt, x
∗
t ): Note that we have

E [1{dt = d} exp (isxt) |wt] = E [1{dt = d} exp (isx∗
t + isεt) |wt]

= E [1{dt = d} exp (isx∗
t ) |wt] E [exp (isεt)]

= E [E [1{dt = d}|wt, x
∗
t ] exp (isx

∗
t ) |wt] E [exp (isεt)]

by the independence assumption for εt and the law of iterated expectations. Therefore

E [1{dt = d} exp (isxt) |wt]

E [exp (isεt)]
= E [E [1{dt = d}|wt, x

∗
t ] exp (isx

∗
t ) |wt]

=

∫
exp (isx∗

t ) E [1{dt = d}|wt, x
∗
t ] f (x∗

t |wt) dx
∗
t

This is the Fourier inversion of E [1{dt = d}|wt, x
∗
t ] f (x∗

t |wt). On the other hand, the Fourier

inversion of f (x∗
t |wt) can be found as

E [exp (isx∗
t ) |wt] =

E [exp (isxt) |wt]

E [exp (isεt)]
.

Therefore, we find the closed-form expression for CCP f (dt|wt, x
∗
t ) as follows.

Pr (dt = d|wt, x
∗
t ) = E [1{dt = d}|wt, x

∗
t ] =

E [1{dt = d}|wt, x
∗
t ] f (x∗

t |wt)

f (x∗
t |wt)

=

(
Fϕ(d)x∗

t |wt

)
(x∗

t )(
Fϕx∗

t |wt

)
(x∗

t )
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where the characteristic functions are defined by

ϕ(d)x∗
t |wt(s) =

E [1{dt = d} exp (isxt) |wt]

E [exp (isεt)]

=

E [1{dt = d} exp (isxt) |wt] · exp
[∫ s

0

E
[
i(xt+1−αd′−βd′wt) exp(is1xt)|dt=d′

]
γd′ E[exp(is1xt)|dt=d′]

ds1

]
E [exp (isxt) |dt = d′]

and

ϕx∗
t |wt(s) =

E [exp (isxt) |wt]

E [exp (isεt)]

=

E [exp (isxt) |wt] · exp
[∫ s

0

E
[
i(xt+1−αd′−βd′wt) exp(is1xt)|dt=d′

]
γd′ E[exp(is1xt)|dt=d′]

ds1

]
E [exp (isxt) |dt = d′]

by (A.1) using any d′. In summary, we obtain the closed-form expression

Pr (dt = d|wt, x
∗
t ) =

(
Fϕ(d)x∗

t |wt

)
(x∗

t )(
Fϕx∗

t |wt

)
(x∗

t )

=

∫
exp (−isx∗

t ) · E [1{dt = d} exp (isxt) |wt]×

exp

[∫ s

0

E
[
i(xt+1−αd′−βd′wt) exp(is1xt)|dt=d′

]
γd′ E[exp(is1xt)|dt=d′]

ds1

]
E [exp (isxt) |dt = d′]

ds

/
∫

exp (−isx∗
t ) · E [exp (isxt) |wt]×

exp

[∫ s

0

E
[
i(xt+1−αd′−βd′wt) exp(is1xt)|dt=d′

]
γd′ E[exp(is1xt)|dt=d′]

ds1

]
E [exp (isxt) |dt = d′]

ds

using any d′. This completes Step 4.
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Supplementary Note for “Closed-Form Identification of

Dynamic Discrete Choice Models with Proxies for

Unobserved State Variables”

Yingyao Hu and Yuya Sasaki

B Supplementary Appendix

B.1 The Full Closed-Form Estimator

Let ϕ̂x∗
t |dt=d denote the sample-counterpart estimator of the conditional characteristic function

ϕx∗
t |dt=d, defined by

ϕ̂x∗
t |dt=d(s) = exp

[∫ s

0

∑N
j=1

∑T−1
t=1 i(Xj,t+1 − αd − βdWjt) · exp (is1Xjt) · 1{Djt = d}
γd ·

∑N
j=1

∑T−1
t=1 exp (is1Xjt) · 1{Djt = d}

ds1

]
.

The closed-form estimator of the CCP, f(dt | wt, x
∗
t ), is given by

f̂ (d|w, x∗) =

∫
exp (−isx∗) ·

∑N
j=1

∑T−1
t=1 exp (isXjt) · 1{Djt = d} ·K

(
Wjt−w

hw

)
∑N

j=1

∑T−1
t=1 K

(
Wjt−w

hw

) ×

ϕ̂x∗
t |dt=d′(s) ·

∑N
j=1

∑T−1
t=1 1{Djt = d′}∑N

j=1

∑T−1
t=1 exp (isXjt) · 1{Djt = d′}

· ϕK(shx) ds

/
∫

exp (−isx∗) ·

∑N
j=1

∑T−1
t=1 exp (isXjt) ·K

(
Wjt−w

hw

)
∑N

j=1

∑T−1
t=1 K

(
Wjt−w

hw

) ×

ϕ̂x∗
t |dt=d′(s) ·

∑N
j=1

∑T−1
t=1 1{Djt = d′}∑N

j=1

∑T−1
t=1 exp (isXjt) · 1{Djt = d′}

· ϕK(shx) ds (B.1)

with any d′, where hw denotes a bandwidth parameter and ϕK denotes the Fourier transform

of a kernel function K used for the purpose of regularization. The closed-form estimator of the
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transition rule, f(wt | dt−1, wt−1, x
∗
t−1), for the observed state variable wt is given by

f̂ (w′∗) =

∫ ∫
exp (−is1w

′ − is2x
∗)×∑N

j=1

∑T−1
t=1 exp (is1Xjt + is2Wj,t+1) · 1{Djt = d} ·K

(
Wjt−w

hw

)
∑N

j=1

∑T−1
t=1 1{Djt = d} ·K

(
Wjt−w

hw

) · ϕ̂x∗
t |dt=d′(s1)×

∑N
j=1

∑T−1
t=1 1{Djt = d′}∑N

j=1

∑T−1
t=1 exp (is1Xjt) · 1{Djt = d′}

· ϕK(s1hw) · ϕK(s2hx) ds1ds2

/
∫ ∫ ∫

exp (−is1w
′′ − is2x

∗)×∑N
j=1

∑T−1
t=1 exp (is1Xjt + is2Wj,t+1) · 1{Djt = d} ·K

(
Wjt−w

hw

)
∑N

j=1

∑T−1
t=1 1{Djt = d} ·K

(
Wjt−w

hw

) · ϕ̂x∗
t |dt=d′(s1)×

∑N
j=1

∑T−1
t=1 1{Djt = d′}∑N

j=1

∑T−1
t=1 exp (is1Xjt) · 1{Djt = d′}

· ϕK(s1hw) · ϕK(s2hx) ds1ds2dw
′′ (B.2)

with any d′. The closed-form estimator of the transition rule, f(x∗
t | dt−1, wt−1, x

∗
t−1), for the

unobserved state variable x∗
t is given by

f̂(x∗′∗) =
1

2π

∫
exp

(
−is(x∗′d − βdw − γdx∗)

)
×∑N

j=1

∑T−1
t=1 exp (isXj,t+1) · 1{Djt = d}∑N

j=1

∑T−1
t=1 exp (is(αd + βdWjt + γdXjt)) · 1{Djt = d}

×∑N
j=1

∑T−1
t=1 exp

(
isγdXjt

)
· 1{Djt = d′}∑N

j=1

∑T−1
t=1 exp (isXjt) · 1{Djt = d′}

·
ϕ̂x∗

t |dt=d′(s)

ϕ̂x∗
t |dt=d′(sγd)

ϕK(shx) ds(B.3)

with any d′. Finally, the the closed-form estimator of the proxy model, f(xt | x∗
t ), is given by

f̂(x | x∗) =
1

2π

∫
exp (−is(x− x∗)) ·

∑N
j=1

∑T−1
t=1 exp (isXjt) · 1{Djt = d′}

ϕ̂x∗
t |dt=d′(s) ·

∑N
j=1

∑T−1
t=1 1{Djt = d′}

·ϕK(shx) ds (B.4)

using any d′.

In each of the above four closed-form estimators, the parameters (αd, βd, γd) for each d are

2



also explicitly estimated by the matrix composition:
1

∑N
j=1

∑T−1
t=1 Wjt1{Djt=d}∑N

j=1

∑T−1
t=1 1{Djt=d}

∑N
j=1

∑T−1
t=1 Xjt1{Djt=d}∑N

j=1

∑T−1
t=1 1{Djt=d}∑N

j=1

∑T−1
t=1 Wjt1{Djt=d}∑N

j=1

∑T−1
t=1 1{Djt=d}

∑N
j=1

∑T−1
t=1 W 2

jt1{Djt=d}∑N
j=1

∑T−1
t=1 1{Djt=d}

∑N
j=1

∑T−1
t=1 XjtWjt1{Djt=d}∑N

j=1

∑T−1
t=1 1{Djt=d}∑N

j=1

∑T−1
t=1 Wj,t+11{Djt=d}∑N

j=1

∑T−1
t=1 1{Djt=d}

∑N
j=1

∑T−1
t=1 WjtWj,t+11{Djt=d}∑N

j=1

∑T−1
t=1 1{Djt=d}

∑N
j=1

∑T−1
t=1 XjtWj,t+11{Djt=d}∑N

j=1

∑T−1
t=1 1{Djt=d}



−1

×



∑N
j=1

∑T−1
t=1 Xj,t+11{Djt=d}∑N

j=1

∑T−1
t=1 1{Djt=d}∑N

j=1

∑T−1
t=1 Xj,t+1Wjt1{Djt=d}∑N

j=1

∑T−1
t=1 1{Djt=d}∑N

j=1

∑T−1
t=1 Xj,t+1Wj,t+11{Djt=d}∑N
j=1

∑T−1
t=1 1{Djt=d}

 .

B.2 Derivation of Restriction (4.1)

Let v(d, w, x∗) denote the policy value function defined by

v(d, wt, x
∗
t ) = θ0d + θwd wt + θxdx

∗
t + ρE

[
V (wt+1, x

∗
t+1) | dt = d, wt, x

∗
t

]
where V (wt, x

∗
t ) denotes the value of state (wt, x

∗
t ). With this notation, we can write the

difference in the expected value functions as

ρE
[
V (wt+1, x

∗
t+1) | dt = 1, wt, x

∗
t

]
− ρE

[
V (wt+1, x

∗
t+1) | dt = 0, wt, x

∗
t

]
= v(1, wt, x

∗
t )− v(0, wt, x

∗
t )− θw1 wt − θx1x

∗
t + θ00 + θw0 wt + θx0x

∗
t

= ln fDt|WtX∗
t
(1 | wt, x

∗
t )− ln fDt|WtX∗

t
(0 | wt, x

∗
t )− θw1 wt − θx1x

∗
t + θ00 + θw0 wt + θx0x

∗
t

where fDt|WtX∗
t
(dt | wt, x

∗
t ) is the conditional choice probability CCP, which we show is identified

in Section 3.1. On the other hand, this difference in the expected value functions can also be

3



explicitly written as

ρE
[
V (wt+1, x

∗
t+1) | dt = 1, wt, x

∗
t

]
− ρE

[
V (wt+1, x

∗
t+1) | dt = 0, wt, x

∗
t

]
=

∞∑
s=t+1

ρs−t · E
[
fDs|Ws,X∗

s
(0 | ws, x

∗
s) · (θ00 + θw0 ws + θx0x

∗
s +ϖ − ln fDs|Ws,X∗

s
(0 | ws, x

∗
s)) +

fDs|Ws,X∗
s
(1 | ws, x

∗
s) · (θw1 ws + θx1x

∗
s +ϖ − ln fDs|Ws,X∗

s
(1 | ws, x

∗
s)) | dt = 1, wt, x

∗
t

]
−

∞∑
s=t+1

ρs−t · E
[
fDs|Ws,X∗

s
(0 | ws, x

∗
s) · (θ00 + θw0 ws + θx0x

∗
s +ϖ − ln fDs|Ws,X∗

s
(0 | ws, x

∗
s)) +

fDs|Ws,X∗
s
(1 | ws, x

∗
s) · (θw1 ws + θx1x

∗
s +ϖ − ln fDs|Ws,X∗

s
(1 | ws, x

∗
s)) | dt = 0, wt, x

∗
t

]
by the law of iterated expectations, where ϖ ≈ 0.577 is the Euler constant. Equating the above

two equalities yields (4.1).

B.3 Feasible Computation of Moments – Remark 2

This section is referred to by Remark 2, where otherwise-infeasible computation of the expec-

tation with respect to the unobserved distribution of (wt, x
∗
t ) is warranted to be feasible. We

show how to obtain a feasible computation of such moments. Suppose that we have a moment

restriction

0 =

∫ ∫
ζ(wt, x

∗
t ) dF (wt, x

∗)

which is infeasible to evaluate because of the unobservability of x∗
t . By applying the Bayes’ rule

and our identifying assumptions, we can rewrite this moment equality as

0 =

∫ ∫
ζ(wt, x

∗
t ) dF (wt, x

∗)

=

∫ ∫ ∫
ζ(wt, x

∗
t ) · f(xt | x∗

t ) · f(x∗
t | wt) dx

∗
t∫

f(xt | x∗
t ) · f(x∗

t | wt) dx∗
t

dF (wt, xt) (B.5)

Now that the integrator dF (wt, x) is the observed distribution of (wt, xt), we can evaluate the

last line provided that we know f(xt | x∗
t ) and f(x∗

t | wt). By Theorem 1, we identify (wt, xt) in

a closed form as the proxy model. Hence, in order to evaluate the last line of the transformed

4



moment equality, it remains to identify f(x∗
t | wt). The next paragraph therefore is devoted to

this identification problem.

By the same arguments as in Step 1 of the proof of Theorem 1 in Section A.1 in the appendix,

we can deduce

E [exp (isx∗
t ) |dt = d, wt] = exp

[∫ s

0

E
[
i(xt+1 − αd − βdwt) exp (is1xt) |dt = d, wt

]
γd E [exp (is1xt) |dt = d, wt]

ds1

]
.

Therefore, we can recover the density f(x∗
t | dt = d, wt) by applying the the operator F to the

right-hand side of the above equality as

f(x∗
t | dt = d, wt) =

1

2π

∫
e−isx∗

t ·exp

[∫ s

0

E
[
i(xt+1 − αd − βdwt) exp (is1xt) |dt = d, wt

]
γd E [exp (is1xt) |dt = d, wt]

ds1

]
ds.

Since the conditional distribution of dt | wt is observed in data, dt can be integrated out from

the above equality as

f(x∗
t | wt) =

1

2π

∑
d

∫
e−isx∗

t · f(dt = d | wt)×

exp

[∫ s

0

E
[
i(xt+1 − αd − βdwt) · exp (is1xt) |dt = d, wt

]
γd · E [exp (is1xt) |dt = d, wt]

ds1

]
ds. (B.6)

Therefore, f(x∗
t | wt) is identified in a closed form. This shows that the expression in the last

line of (B.5) can be evaluated in a closed-form.

Lastly, we propose a sample-counterpart estimation of (B.6). The conditional density f(x∗
t |

wt) is estimated in a closed form by

f̂(x∗ | w) =
1

2π

∑
d

∫
e−isx∗ ·

∑N
j=1

∑T−1
t=1 1{Dj,t = d} ·K

(
Wj,t−w

hw

)
∑N

j=1

∑T−1
t=1 K

(
Wj,t−w

hw

) ×

exp

∫ s

0

∑N
j=1

∑T−1
t=1 i(Xj,t+1 − αd − βdWj,t) · exp (is1Xj,t) · 1{Dj,t = d} ·K

(
Wj,t−w

hw

)
γd ·

∑N
j=1

∑T−1
t=1 exp (is1Xj,t) · 1{Dj,t = d} ·K

(
Wj,t−w

hw

) ds1

 ds.

(B.7)
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B.4 Closed-Form Estimation of Structural Parameters

The closed-form identifying formulas obtained at the population level in Section 4 can be

directly translated into sample counterparts to develop a closed-form estimator of structural

parameters. Given Corollary 1 and Remark 2, we propose the following estimator.

θ̂ =

[
N∑
j=1

T−1∑
t=1

∫
R̂(ρ;Wj,t, x

∗
t )

′R̂(ρ;Wj,t, x
∗
t ) · f̂(Xj,t | x∗

t ) · f̂(x∗
t | Wj,t) dx

∗
t∫

f̂(Xj,t | x∗
t ) · f̂(x∗

t | Wj,t) dx∗
t

]−1

[
N∑
j=1

T−1∑
t=1

∫
R̂(ρ;Wj,t, x

∗
t )

′ξ̂(ρ;Wj,t, x
∗
t ) · f̂(Xj,t | x∗

t ) · f̂(x∗
t | Wj,t) dx

∗
t∫

f̂(Xj,t | x∗
t ) · f̂(x∗

t | Wj,t) dx∗
t

]
(B.8)

where closed-form formulas for f̂(Xj,t | x∗
t ), f̂(x

∗
t | Wj,t), ξ̂(ρ;Wj,t, x

∗
t ), and R̂(ρ;Wj,t, x

∗
t ) =[

ξ̂00(ρ;wt, x
∗
t ), ξ̂w0 (ρ;wt, x

∗
t ), ξ̂w1 (ρ;wt, x

∗
t ), ξ̂x0 (ρ;wt, x

∗
t ), ξ̂x1 (ρ;wt, x

∗
t )
]
are listed below.

First, f̂(xt | x∗
t ) is given by (B.4) in Section B.1. For convenience of readers, we repeat it

here:

f̂(x | x∗) =
1

2π

∫
exp (−is(x− x∗)) ·

∑N
j=1

∑T−1
t=1 exp (isXjt) · 1{Djt = d′}

ϕ̂x∗
t |dt=d′(s) ·

∑N
j=1

∑T−1
t=1 1{Djt = d′}

· ϕK(shx) ds.

Second, f̂(x∗
t | wt) is given by (B.7) in Section B.3 in the supplementary note. We write it here

too:

f̂(x∗ | w) =
1

2π

∑
d

∫
e−isx∗ ·

∑N
j=1

∑T−1
t=1 1{Dj,t = d} ·K

(
Wj,t−w

hw

)
∑N

j=1

∑T−1
t=1 K

(
Wj,t−w

hw

) ×

exp

∫ s

0

∑N
j=1

∑T−1
t=1 i(Xj,t+1 − αd − βdWj,t) · exp (is1Xj,t) · 1{Dj,t = d} ·K

(
Wj,t−w

hw

)
γd ·

∑N
j=1

∑T−1
t=1 exp (is1Xj,t) · 1{Dj,t = d} ·K

(
Wj,t−w

hw

) ds1

 ds.
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Third, ξ̂(ρ;wt, x
∗
t ) and the elements of R̂(ρ;wt, x

∗
t ) are given by

ξ̂(ρ;wt, x
∗
t ) = ln f̂(1 | wt, x

∗
t )− ln f̂(0 | wt, x

∗
t ) +

∞∑
s=t+1

ρs−t · Ê
[
f̂(0 | ws, x

∗
s) · ln f̂(0 | ws, x

∗
s) | dt = 1, wt, x

∗
t

]
+

∞∑
s=t+1

ρs−t · Ê
[
f̂(1 | ws, x

∗
s) · ln f̂(1 | ws, x

∗
s) | dt = 1, wt, x

∗
t

]
−

∞∑
s=t+1

ρs−t · Ê
[
f̂(0 | ws, x

∗
s) · ln f̂(0 | ws, x

∗
s) | dt = 0, wt, x

∗
t

]
−

∞∑
s=t+1

ρs−t · Ê
[
f̂(1 | ws, x

∗
s) · ln f̂(1 | ws, x

∗
s) | dt = 0, wt, x

∗
t

]

ξ̂00(ρ;wt, x
∗
t ) =

∞∑
s=t+1

ρs−t · Ê
[
f̂(0 | ws, x

∗
s) | dt = 1, wt, x

∗
t

]
−

∞∑
s=t+1

ρs−t · Ê
[
f̂(0 | ws, x

∗
s) | dt = 0, wt, x

∗
t

]
− 1

ξ̂wd (ρ;wt, x
∗
t ) =

∞∑
s=t+1

ρs−t · Ê
[
f̂(d | ws, x

∗
s) · ws | dt = 1, wt, x

∗
t

]
−

∞∑
s=t+1

ρs−t · Ê
[
f̂(d | ws, x

∗
s) · ws | dt = 0, wt, x

∗
t

]
− (−1)d · wt

ξ̂xd (ρ;wt, x
∗
t ) =

∞∑
s=t+1

ρs−t · Ê
[
f̂(d | ws, x

∗
s) · x∗

s | dt = 1, wt, x
∗
t

]
−

∞∑
s=t+1

ρs−t · Ê
[
f̂(d | ws, x

∗
s) · x∗

s | dt = 0, wt, x
∗
t

]
− (−1)d · x∗

t

for each d ∈ {0, 1}, following the sample counterparts of (4.2)–(4.5). Of these four sets of

expressions, the components of the form f̂(dt | wt, x
∗
t ) are given by (B.1) in Section B.1.

Following the sample counterparts of (4.8) and (4.9), the estimated conditional expectations

of the form Ê[ζ̂(ws, x
∗
s) | dt, wt, x

∗
t ] in the above expressions are in turn given in the following

manner. If s = t+ 1, then

Ê[ζ̂(ws, x
∗
s) | dt, wt, x

∗
t ] =

∫ ∫
ζ̂(wt+1, x

∗
t+1) · f̂(wt+1 | dt, wt, x

∗
t )×

f̂(x∗
t+1 | dt, wt, x

∗
t ) dwt+1dx

∗
t+1

7



where the closed-form estimator f̂(wt+1 | dt, wt, x
∗
t ) is given by (B.2), and the closed-form

estimator f̂(x∗
t+1 | dt, wt, x

∗
t ) is given by (B.3). On the other hand, if s > t+ 1, then

Ê[ζ(ws, x
∗
s) | dt, wt, x

∗
t ] =

1∑
dt+1=0

· · ·
1∑

ds−1=0

∫
· · ·
∫

ζ̂(ws, x
∗
s) · f̂(ws | ds−1, ws−1, x

∗
s−1)×

f̂(x∗
s | ds−1, ws−1, x

∗
s−1) ·

s−2∏
τ=t

f̂(dτ+1 | wτ , x
∗
τ ) · f̂(wτ+1 | dτ , wτ , x

∗
τ )×

·f̂(x∗
τ+1 | dτ , wτ , x

∗
τ ) dwt+1 · · · dws dx

∗
t+1 · · · dx∗

s.

where the closed-form estimator f̂(dt | wt, x
∗
t ) is given by (B.1), the closed-form estimator

f̂(wt+1 | dt, wt, x
∗
t ) is given by (B.2), and the closed-form estimator f̂(x∗

t+1 | dt, wt, x
∗
t ) is given

by (B.3). In summary, every component in (B.8) can be expressed explicitly by the previously

obtained closed-form estimators, and hence the estimator θ̂ of the structural parameters is given

in a closed form as well. Monte Carlo simulations of the estimator are presented in Section B.8

in the supplementary note.

B.5 The Estimator without the Observed State Variable

With the observed state variable wt dropped, the moment restriction with the additional no-

tations we use for our analysis of large sample properties becomes

E [R(ρ, f ;x∗
t )

′∗
t )θ −R(ρ, f ; x∗

t )
′∗
t )] = 0

where

R(ρ, f ;x∗
t ) = [ξ00(ρ, f ;x

∗
t ), ξx0 (ρ, f ; x

∗
t ), ξx1 (ρ, f ; x

∗
t )]

8



and

ξ(ρ, f ; x∗
t ) = ln f(1 | x∗

t )− ln f(0 | x∗
t )

+
∞∑

s=t+1

ρs−t · (Ef [f(0 | x∗
s) · ln f(0 | x∗

s) | dt = 1, x∗
t ] + Ef [f(1 | x∗

s) · ln f(1 | x∗
s) | dt = 1, x∗

t ])

−
∞∑

s=t+1

ρs−t · (Ef [f(0 | x∗
s) · ln f(0 | x∗

s) | dt = 0, x∗
t ] + Ef [f(1 | x∗

s) · ln f(1 | x∗
s) | dt = 0, x∗

t ])

ξ00(ρ, f ;x
∗
t ) =

∞∑
s=t+1

ρs−t · (Ef [f(0 | x∗
s) | dt = 1, x∗

t ]− Ef [f(0 | x∗
s) | dt = 0, x∗

t ])− 1

ξxd (ρ, f ; x
∗
t ) =

∞∑
s=t+1

ρs−t · Ef [f(d | x∗
s) · x∗

s | dt = 1, x∗
t ]−

∞∑
s=t+1

ρs−t · Ef [f(d | x∗
s) · x∗

s | dt = 0, x∗
t ]− (−1)d · x∗

t

for each d ∈ {0, 1}. The subscript f under the E symbol indicates that the conditional expec-

tation is computed based on the components f of the Markov kernel.

The components of the Markov kernel are estimated as follows. Let ϕ̂x∗
t |dt=d denote the

sample-counterpart estimator of the conditional characteristic function ϕx∗
t |dt=d, defined by

ϕ̂x∗
t |dt=d(s) = exp

[∫ s

0

∑N
j=1

∑T−1
t=1 i(Xj,t+1 − αd) · exp (is1Xjt) · 1{Djt = d}

γd ·
∑N

j=1

∑T−1
t=1 exp (is1Xjt) · 1{Djt = d}

ds1

]

The CCP, f(dt | x∗
t ), is estimated in a closed form by

f̂ (d|x∗) =

∫
exp (−isx∗) ·

∑N
j=1

∑T−1
t=1 exp (isXjt) · 1{Djt = d}

N(T − 1)
×

ϕ̂x∗
t |dt=d′(s) ·

∑N
j=1

∑T−1
t=1 1{Djt = d′}∑N

j=1

∑T−1
t=1 exp (isXjt) · 1{Djt = d′}

· ϕK(shx) ds

/
∫

exp (−isx∗) ·
∑N

j=1

∑T−1
t=1 exp (isXjt)

N(T − 1)
×

ϕ̂x∗
t |dt=d′(s) ·

∑N
j=1

∑T−1
t=1 1{Djt = d′}∑N

j=1

∑T−1
t=1 exp (isXjt) · 1{Djt = d′}

· ϕK(shx) ds

with any d′, where ϕK denotes the Fourier transform of a kernel functionK used for the purpose

of regularization. The transition rule, f(wt | dt−1, wt−1, x
∗
t−1), for the observed state variable wt

9



is no longer estimated given the absence of wt. The transition rule, f(x∗
t | dt−1, x

∗
t−1), for the

unobserved state variable x∗
t is estimated in a closed form by

f̂(x∗′∗) =
1

2π

∫
exp

(
−is(x∗′d − γdx∗)

)
×∑N

j=1

∑T−1
t=1 exp (isXj,t+1) · 1{Djt = d}∑N

j=1

∑T−1
t=1 exp (is(αd + γdXjt)) · 1{Djt = d}

×∑N
j=1

∑T−1
t=1 exp

(
isγdXjt

)
· 1{Djt = d′}∑N

j=1

∑T−1
t=1 exp (isXjt) · 1{Djt = d′}

·
ϕ̂x∗

t |dt=d′(s)

ϕ̂x∗
t |dt=d′(sγd)

· ϕK(shx) ds

with any d′. Finally, the proxy model, f(xt | x∗
t ), is estimated in a closed form by

f̂(x | x∗) =
1

2π

∫
exp (−is(x− x∗)) ·

∑N
j=1

∑T−1
t=1 exp (isXjt) · 1{Djt = d′}

ϕ̂x∗
t |dt=d′(s) ·

∑N
j=1

∑T−1
t=1 1{Djt = d′}

· ϕK(shx) ds

using any d′. When each of the above estimators is evaluated at the j-th data point, the j-th

data point is removed from the sum for the leave-one-out estimation.

B.6 Large Sample Properties

In this section, we present theoretical large sample properties of our closed-form CCP estimator.

To economize our writings, we focus on a simplified version of the baseline model and the

estimator, where we omit the observed state variable wt, because the unobserved state variable

x∗
t is of the first-order importance in this paper. Accordingly, we modify the estimator by simply

removing the wt-relevant part. See B.5 in the supplementary note for the exact expressions of

the estimator that we obtain under this setting.

Assumption 7 (Large Sample). (a) The data {Dj,t, X
∗
j,t}Tt=1 is i.i.d. across j. respect to some

metric. (b) X ∗ = supp(X∗
j,t) is compact and convex. (c) f(x∗) > 0. (d) The density function

of x∗
t is k1-time continuously differentiable and the k1-th derivative is Hölder continuous with

exponent k2, i.e., there exists k0 such that
∣∣f(k1)(x∗)− f (k1)(x∗ + δ)

∣∣ 6 k0 |δ|k2 for all x∗ ∈ X ∗

and δ ∈ R. Let k = k1+k2 be the largest number satisfying this property. (e) f(d | x∗) is l1-time
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continuously differentiable with respect to x∗ and the l1-th derivative is Hölder continuous with

exponent l2. Let l = l1 + l2 be the largest number satisfying this property. (f) ϕK is symmetric,

satisfies ϕK(0) = 1, and has integrable second derivatives.

Assumption 8 (Smoothness). (i) The conditional distribution of Xt given Dt = d is ordinary-

smooth of order q > 0 for some choice d, i.e.,
∣∣ϕxt|dt=d(s)

∣∣ = O
(
|s|−q) as s → ±∞. (ii) The

conditional distribution of Xt given Dt = d is super-smooth of order q > 0 for some choice d,

i.e., there exists r > 0 such that
∣∣ϕxt|dt=d(s)

∣∣ = O
(
e−|s|q/r) as s → ±∞.

The convergence rate depends on these two categories of the smoothness, the concept de-

veloped by Fan (1991).

Proposition 1 (Convergence Rate). Suppose that Assumptions 1, 2, 3, 4, 5, and 7 are satisfied.

If Assumption 8 (i) holds, then we have the asymptotic convergence rate

(
E
[
f̂(d | x∗)− f(d | x∗)

]2)1/2

= O
(
N

−min{k,l}
2(2+2q+min{k,l})

)
by the choice of the bandwidth parameter so that hx = O

(
n−1/(4+4q+2min{k,l})) as N → ∞. If

Assumption 8 (ii) holds, then we have the asymptotic convergence rate

(
E
[
f̂(d | x∗)− f(d | x∗)

]2)1/2

= O
(
(logN)−min{k,l}/q)

by the choice of the bandwidth parameter so that hx = O
(
(log n)−min{k,l}/q) as N → ∞

A proof is given in Section B.7.

B.7 Proof of Proposition 1

Proof. First, note that Theorem 1 guarantees the identification under Assumptions 1, 2, 3, 4,

and 5. Since estimation of αd and γd does not affect the nonparametric convergence rates of
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the component estimators, we take these parameters as given henceforth. For a short-hand

notation we denote the CCP by gd(x
∗
t ) := E[1{dt = d} | x∗

t ]. Our CCP estimator is written as

̂gd(x∗)f(x∗)/f̂(x∗) where

̂gd(x∗)f(x∗) =
1

2π

∫
exp (−isx∗) ·

∑N
j=1

∑T−1
t=1 exp (isXjt) · 1{Djt = d}

N(T − 1)
×

ϕ̂x∗
t |dt=d′(s) ·

∑N
j=1

∑T−1
t=1 1{Djt = d′}∑N

j=1

∑T−1
t=1 exp (isXjt) · 1{Djt = d′}

· ϕK(sh) ds

and

f̂(x∗) =
1

2π

∫
exp (−isx∗) ·

∑N
j=1

∑T−1
t=1 exp (isXjt)

N(T − 1)
×

ϕ̂x∗
t |dt=d′(s) ·

∑N
j=1

∑T−1
t=1 1{Djt = d′}∑N

j=1

∑T−1
t=1 exp (isXjt) · 1{Djt = d′}

· ϕK(sh) ds

where ϕ̂x∗
t |dt=d is given by

ϕ̂x∗
t |dt=d(s) = exp

[∫ s

0

∑N
j=1

∑T−1
t=1 i(Xj,t+1 − αd) · exp (is1Xjt) · 1{Djt = d}

γd ·
∑N

j=1

∑T−1
t=1 exp (is1Xjt) · 1{Djt = d}

ds1

]
.

The absolute bias of f̂(x∗) is bounded by the following terms.

∣∣∣E f̂(x∗)− f(x∗)
∣∣∣ 6

∣∣∣∣E f̂(x∗)− 1

2π

∫
e−isx∗

ϕx∗
t |dt=d′(s)

ϕxt(s)

ϕxt|dt=d′(s)
ϕK(sh)ds

∣∣∣∣+∣∣∣∣ 12π
∫

e−isx∗
ϕx∗

t |dt=d′(s)
ϕxt(s)

ϕxt|dt=d′(s)
ϕK(sh)ds− f(x∗)

∣∣∣∣
The first term on the right-hand side has the following asymptotic order.

∣∣∣∣E f̂(x∗)− 1

2π

∫
e−isx∗

ϕx∗
t |dt=d′(s)

ϕxt(s)

ϕxt|dt=d′(s)
ϕK(sh)ds

∣∣∣∣
=

∣∣∣∣∣ 12π
∫

e−isx∗
ϕK(sh)

{
E

[
exp

(
i

∫ s

0

∑N
j=1

∑T−1
t=1 (Xj,t+1 − αd′)eis1Xjt1{Djt = d′}

γd′
∑N

j=1

∑T−1
t=1 eis1Xjt1{Djt = d′}

ds1

)
×∑N

j=1

∑T−1
t=1 eisXjt

∑N
j=1

∑T−1
t=1 1{Djt = d′}

N(T − 1)
∑N

j=1

∑T−1
t=1 eisXjt1{Djt = d′}

]
− ϕx∗

t |dt=d′(s)
ϕxt(s)

ϕxt|dt=d′(s)

}
ds
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6
∥ϕK∥∞

∥∥ϕx∗
t |dt=d′

∥∥
∞

2πh

∫ 1

−1

∫ s/h

0∥ϕxt∥∞ E
∣∣∣ 1
N(T−1)

∑N
j=1

∑T−1
t=1 (Xj,t+1 − αd′

)eis1Xjt1{Djt = d′} − E(Xj,t+1 − αd′
)eis1Xjt1{Djt = d′}

∣∣∣∣∣ϕxt|dt=d′(s/h)
∣∣ ∣∣ϕxt|dt=d′(s1)

∣∣ |γd′ | f(d′)

+
∥ϕxt∥∞

∥∥∥ϕ′
x∗
t |dt=d′

∥∥∥
∞

E
∣∣∣ 1
N(T−1)

∑N
j=1

∑T−1
t=1 eis1Xjt1{Djt = d′} − E eis1Xjt1{Djt = d′}

∣∣∣∣∣ϕxt|dt=d′(s/h)
∣∣ ∣∣ϕxt|dt=d′(s1)

∣∣ f(d′)
+

E
∣∣∣ 1
N(T−1)

∑N
j=1

∑T−1
t=1 eisXjt − E eisXjt

∣∣∣∣∣ϕxt|dt=d′(s/h)
∣∣

+
∥ϕxt∥∞ E

∣∣∣ 1
N(T−1)

∑N
j=1

∑T−1
t=1 eisXjt1{Djt = d′} − E eisXjt1{Djt = d′}

∣∣∣∣∣ϕxt|dt=d′(s/h)
∣∣2 f(d′) + hot(s1) + hot(s/h)

 ds1ds

= O

(
1

n1/2h2
∣∣ϕxt|dt=d′(1/h)

∣∣2
)

where the higher-order terms hot vanish faster than the leading terms uniformly as N → ∞

under Assumption 7 (b), since the empirical process

GN (s) :=
√
N

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

(Xj,t+1 − αd′)eisXjt1{Djt = d′} − E(Xj,t+1 − αd′)eisXjt1{Djt = d′}


for example converges uniformly as E

(
(Xj,t+1 − αd′)eisXjt1{Djt = d′}

)2 6 E(Xj,t+1 − αd′)2 is

invariant from s. On the other hand, the second term has the following asymptotic order.∣∣∣∣ 12π
∫

e−isx∗
ϕx∗

t |dt=d′(s)
ϕxt(s)

ϕxt|dt=d′(s)
ϕK(sh)ds− f(x∗)

∣∣∣∣
6

∣∣∣∣∫ f(x)h−1K

(
x− x∗

h

)
dx− f(x∗)

∣∣∣∣ = O
(
hk
)

where k is the Hölder exponent provided in Assumption 7 (d). Consequently, we obtain the

following asymptotic order for the absolute bias of f̂(x∗).

∣∣∣E f̂(x∗)− f(x∗)
∣∣∣ = O

(
1

n1/2h2
∣∣ϕxt|dt=d′(1/h)

∣∣2
)

+O
(
hk
)
.

Similarly, the absolute bias of ̂gd(x∗)f(x∗) is bounded by the following terms.

∣∣∣E ̂gd(x∗)f(x∗)− gd(x
∗)f(x∗)

∣∣∣
6

∣∣∣∣E ̂gd(x∗)f(x∗)− 1

2π

∫
e−isx∗

ϕx∗
t |dt=d′(s)

E[eisXjt1{Djt = d}]
ϕxt|dt=d′(s)

ϕK(sh)ds

∣∣∣∣+∣∣∣∣ 12π
∫

e−isx∗
ϕx∗

t |dt=d′(s)
E[eisXjt1{Djt = d}]

ϕxt|dt=d′(s)
ϕK(sh)ds− gd(x

∗)f(x∗)

∣∣∣∣
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The first term on the right-hand side has the following asymptotic order.

∣∣∣∣E f̂(x∗)− 1

2π

∫
e−isx∗

ϕx∗
t |dt=d′(s)

ϕxt(s)

ϕxt|dt=d′(s)
ϕK(sh)ds

∣∣∣∣
=

∣∣∣∣∣ 12π
∫

e−isx∗
ϕK(sh)

{
E

[
exp

(
i

∫ s

0

∑N
j=1

∑T−1
t=1 (Xj,t+1 − αd′)eis1Xjt1{Djt = d′}

γd′
∑N

j=1

∑T−1
t=1 eis1Xjt1{Djt = d′}

ds1

)
×∑N

j=1

∑T−1
t=1 eisXjt1{Djt = d}

∑N
j=1

∑T−1
t=1 1{Djt = d′}

N(T − 1)
∑N

j=1

∑T−1
t=1 eisXjt1{Djt = d′}

]
− ϕx∗

t |dt=d′(s)
E[eisXjt1{Djt = d}]

ϕxt|dt=d′(s)

}
ds

6
∥ϕK∥∞

∥∥ϕx∗
t |dt=d′

∥∥
∞

2πh

∫ 1

−1

∫ s/h

0∥∥ϕxt|dt=d

∥∥
∞ E

∣∣∣ 1
N(T−1)

∑N
j=1

∑T−1
t=1 (Xj,t+1 − αd′

)eis1Xjt1{Djt = d′} − E(Xj,t+1 − αd′
)eis1Xjt1{Djt = d′}

∣∣∣ f(d)∣∣ϕxt|dt=d′(s/h)
∣∣ ∣∣ϕxt|dt=d′(s1)

∣∣ |γd′ | f(d′)

+

∥∥ϕxt|dt=d

∥∥
∞

∥∥∥ϕ′
x∗
t |dt=d′

∥∥∥
∞

E
∣∣∣ 1
N(T−1)

∑N
j=1

∑T−1
t=1 eis1Xjt1{Djt = d′} − E eis1Xjt1{Djt = d′}

∣∣∣ f(d)∣∣ϕxt|dt=d′(s/h)
∣∣ ∣∣ϕxt|dt=d′(s1)

∣∣ f(d′)
+

E
∣∣∣ 1
N(T−1)

∑N
j=1

∑T−1
t=1 eisXjt − E eisXjt

∣∣∣∣∣ϕxt|dt=d′(s/h)
∣∣

+

∥∥ϕxt|dt=d

∥∥
∞ E

∣∣∣ 1
N(T−1)

∑N
j=1

∑T−1
t=1 eisXjt1{Djt = d′} − E eisXjt1{Djt = d′}

∣∣∣ f(d)∣∣ϕxt|dt=d′(s/h)
∣∣2 f(d′) + hot(s1) + hot(s/h)

 ds1ds

= O

(
1

n1/2h2
∣∣ϕxt|dt=d′(1/h)

∣∣2
)

where the higher-order terms hot vanish faster than the leading terms uniformly as N → ∞

under Assumption 7 (b). On the other hand, the second term has the following asymptotic

order.

∣∣∣∣ 12π
∫

e−isx∗
ϕx∗

t |dt=d′(s)
E[eisXjt1{Djt = d}]

ϕxt|dt=d′(s)
ϕK(sh)ds− gd(x

∗)f(x∗)

∣∣∣∣
6

∣∣∣∣∫ gd(x)f(x)h
−1K

(
x− x∗

h

)
dx− gd(x

∗)f(x∗)

∣∣∣∣ = O
(
hmin{k,l})

where k and l are the Hölder exponents provided in Assumption 7 (d) and (e), respectively.

Consequently, we obtain the following asymptotic order for the absolute bias of ̂gd(x∗)f(x∗).

∣∣∣E ̂gd(x∗)f(x∗)− gd(x
∗)f(x∗)

∣∣∣ = O

(
1

n1/2h2
∣∣ϕxt|dt=d′(1/h)

∣∣2
)

+O
(
hmin{k,l}) .
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Next, the variance of f̂(x∗) has the following asymptotic order.

1

4π2
E

(∫
e−isx∗

ϕK(sh)

[
exp

(
i

∫ s

0

∑N
j=1

∑T−1
t=1 (Xj,t+1 − αd′)eis1Xjt1{Djt = d′}

γd′
∑N

j=1

∑T−1
t=1 eis1Xjt1{Djt = d′}

ds1

)
×(

1

N(T − 1)

N∑
j=1

T−1∑
t=1

eisXjt

)( ∑N
j=1

∑T−1
t=1 1{Djt = d′}

γd′
∑N

j=1

∑T−1
t=1 eisXjt1{Djt = d′}

)
−

E exp

(
i

∫ s

0

∑N
j=1

∑T−1
t=1 (Xj,t+1 − αd′)eis1Xjt1{Djt = d′}

γd′
∑N

j=1

∑T−1
t=1 eis1Xjt1{Djt = d′}

ds1

)
×(

1

N(T − 1)

N∑
j=1

T−1∑
t=1

eisXjt

) ( ∑N
j=1

∑T−1
t=1 1{Djt = d′}

γd′
∑N

j=1

∑T−1
t=1 eisXjt1{Djt = d′}

)]
ds

)2

=
1

4π2
E

(∫ ∫
e−i(s+r)x∗

ϕK(sh)ϕK(rh)ϕx∗
t |dt=d′(s)ϕx∗

t |dt=d′(r)

∫ s

0

∫ r

0ϕxt(s)
(

1
N(T−1)

∑N
j=1

∑T−1
t=1 (Xj,t+1 − αd′

)eis1Xjt1{Djt = d′} − E(Xj,t+1 − αd′
)eis1Xjt1{Djt = d′}

)
ϕxt|dt=d′(s)ϕxt|dt=d′(s1)γd′f(d′)

−
ϕxt(s)ϕ

′
x∗
t |dt=d′(s1)

(
1

N(T−1)

∑N
j=1

∑T−1
t=1 eis1Xjt1{Djt = d′} − E eis1Xjt1{Djt = d′}

)
ϕxt|dt=d′(s)ϕxt|dt=d′(s1)f(d′)

+

1
N(T−1)

∑N
j=1

∑T−1
t=1 eisXjt − E eisXjt

ϕxt|dt=d′(s)

−
ϕxt(s)

(
1

N(T−1)

∑N
j=1

∑T−1
t=1 eisXjt1{Djt = d′} − E eisXjt1{Djt = d′}

)
ϕxt|dt=d′(s)2f(d′)

+ hot(s) + hot(s1)

×

ϕxt(r)
(

1
N(T−1)

∑N
j=1

∑T−1
t=1 (Xj,t+1 − αd′

)eir1Xjt1{Djt = d′} − E(Xj,t+1 − αd′
)eir1Xjt1{Djt = d′}

)
ϕxt|dt=d′(r)ϕxt|dt=d′(r1)γd′f(d′)

−
ϕxt(r)ϕ

′
x∗
t |dt=d′(r1)

(
1

N(T−1)

∑N
j=1

∑T−1
t=1 eir1Xjt1{Djt = d′} − E eir1Xjt1{Djt = d′}

)
ϕxt|dt=d′(r)ϕxt|dt=d′(r1)f(d′)

+

1
N(T−1)

∑N
j=1

∑T−1
t=1 eirXjt − E eirXjt

ϕxt|dt=d′(r)

−
ϕxt(r)

(
1

N(T−1)

∑N
j=1

∑T−1
t=1 eirXjt1{Djt = d′} − E eirXjt1{Djt = d′}

)
ϕxt|dt=d′(r)2f(d′)

+ hot(s) + hot(s1)

 dr1ds1drds

6
∥ϕK∥2∞

∥∥∥ϕx∗
t |dt=d′

∥∥∥2
∞

4π2

∫ 1

−1

∫ 1

−1

∫ s/h

0

∫ r/h

0
I(s, r, s1, r1, h)dr1ds1drds = O

(
1

Nh4
∣∣ϕxt|dt=d′(1/h)

∣∣4
)

where I(s, r, s1, r1, h) consists of the following ten terms and higher-order terms that vanish
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faster uniformly.

I1 =
∥ϕxt∥

2
∞∣∣ϕxt|dt=d′(s/h)

∣∣ · ∣∣ϕxt|dt=d′(s1)
∣∣ · ∣∣ϕxt|dt=d′(r/h)

∣∣ · ∣∣ϕxt|dt=d′(r1)
∣∣ · f(d′)2 · (γd′)2

×E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

(Xj,t+1 − αd′
)eis1Xjt1{Djt = d′} − E(Xj,t+1 − αd′

)eis1Xjt1{Djt = d′}

2


1/2

×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

(Xj,t+1 − αd′
)eir1Xjt1{Djt = d′} − E(Xj,t+1 − αd′

)eir1Xjt1{Djt = d′}

2


1/2

I2 =
∥ϕxt∥

2
∞

∥∥∥ϕ′
x∗
t |dt=d′

∥∥∥2
∞∣∣ϕxt|dt=d′(s/h)

∣∣ · ∣∣ϕxt|dt=d′(s1)
∣∣ · ∣∣ϕxt|dt=d′(r/h)

∣∣ · ∣∣ϕxt|dt=d′(r1)
∣∣ · f(d′)2 ×E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eis1Xjt1{Djt = d′} − E eis1Xjt1{Djt = d′}

2


1/2

×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eir1Xjt1{Djt = d′} − E eir1Xjt1{Djt = d′}

2


1/2

I3 =
1∣∣ϕxt|dt=d′(s/h)
∣∣ · ∣∣ϕxt|dt=d′(r/h)

∣∣ ·
E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eisXjt/h − E eisXjt/h

2


1/2

×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eirXjt/h − E eirXjt/h

2


1/2

I4 =
∥ϕxt∥

2
∞∣∣ϕxt|dt=d′(s/h)

∣∣2 · ∣∣ϕxt|dt=d′(r/h)
∣∣2 · f(d′)2 ×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eisXjt/h1{Djt = d′} − E eisXjt/h1{Djt = d′}

2


1/2

×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eirXjt/h1{Djt = d′} − E eirXjt/h1{Djt = d′}

2


1/2

I5 =
2 ∥ϕxt∥

2
∞

∥∥∥ϕ′
x∗
t |dt=d′

∥∥∥
∞∣∣ϕxt|dt=d′(s/h)

∣∣ · ∣∣ϕxt|dt=d′(s1)
∣∣ · ∣∣ϕxt|dt=d′(r/h)

∣∣ · ∣∣ϕxt|dt=d′(r1)
∣∣ · f(d′)2 · |γd′ |

×E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

(Xj,t+1 − αd′
)eis1Xjt1{Djt = d′} − E(Xj,t+1 − αd′

)eis1Xjt1{Djt = d′}

2


1/2

×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eir1Xjt1{Djt = d′} − E eir1Xjt1{Djt = d′}

2


1/2
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I6 =
2 ∥ϕxt∥∞∣∣ϕxt|dt=d′(s/h)

∣∣ · ∣∣ϕxt|dt=d′(s1)
∣∣ · ∣∣ϕxt|dt=d′(r/h)

∣∣ · f(d′) · |γd′ |
×E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

(Xj,t+1 − αd′
)eis1Xjt1{Djt = d′} − E(Xj,t+1 − αd′

)eis1Xjt1{Djt = d′}

2


1/2

×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eirXjt/h − E eirXjt/h

2


1/2

I7 =
2 ∥ϕxt∥

2
∞∣∣ϕxt|dt=d′(s/h)

∣∣ · ∣∣ϕxt|dt=d′(s1)
∣∣ · ∣∣ϕxt|dt=d′(r/h)

∣∣2 · f(d′)2 · |γd′ |
×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

(Xj,t+1 − αd′
)eis1Xjt1{Djt = d′} − E(Xj,t+1 − αd′

)eis1Xjt1{Djt = d′}

2


1/2

×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eirXjt/h1{Djt = d′} − E eirXjt/h1{Djt = d′}

2


1/2

I8 =
2 ∥ϕxt∥∞

∥∥∥ϕ′
x∗
t |dt=d′

∥∥∥
∞∣∣ϕxt|dt=d′(s/h)

∣∣ · ∣∣ϕxt|dt=d′(s1)
∣∣ · ∣∣ϕxt|dt=d′(r/h)

∣∣ · f(d′) ×E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eis1Xjt1{Djt = d′} − E eis1Xjt1{Djt = d′}

2


1/2

×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eirXjt/h − E eirXjt/h

2


1/2

I9 =
2 ∥ϕxt∥

2
∞

∥∥∥ϕ′
x∗
t |dt=d′

∥∥∥
∞∣∣ϕxt|dt=d′(s/h)

∣∣ · ∣∣ϕxt|dt=d′(s1)
∣∣ · ∣∣ϕxt|dt=d′(r/h)

∣∣2 · f(d′)2 ×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eis1Xjt1{Djt = d′} − E eis1Xjt1{Djt = d′}

2


1/2

×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eirXjt/h1{Djt = d′} − E eirXjt/h1{Djt = d′}

2


1/2

I10 =
2 ∥ϕxt∥∞∣∣ϕxt|dt=d′(s/h)
∣∣ · ∣∣ϕxt|dt=d′(r/h)

∣∣2 · f(d′) ·
E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eisXjt/h − E eisXjt/h

2


1/2

×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eirXjt/h1{Djt = d′} − E eirXjt/h1{Djt = d′}

2


1/2
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Similarly, the variance of ̂gd(x∗)f(x∗) has the following asymptotic order.

1

4π2
E

(∫
e−isx∗

ϕK(sh)

[
exp

(
i

∫ s

0

∑N
j=1

∑T−1
t=1 (Xj,t+1 − αd′)eis1Xjt1{Djt = d′}

γd′
∑N

j=1

∑T−1
t=1 eis1Xjt1{Djt = d′}

ds1

)
×(

1

N(T − 1)

N∑
j=1

T−1∑
t=1

eisXjt1{Djt = d}

)( ∑N
j=1

∑T−1
t=1 1{Djt = d′}

γd′
∑N

j=1

∑T−1
t=1 eisXjt1{Djt = d′}

)
−

E exp

(
i

∫ s

0

∑N
j=1

∑T−1
t=1 (Xj,t+1 − αd′)eis1Xjt1{Djt = d′}

γd′
∑N

j=1

∑T−1
t=1 eis1Xjt1{Djt = d′}

ds1

)
×(

1

N(T − 1)

N∑
j=1

T−1∑
t=1

eisXjt1{Djt = d}

) ( ∑N
j=1

∑T−1
t=1 1{Djt = d′}

γd′
∑N

j=1

∑T−1
t=1 eisXjt1{Djt = d′}

)]
ds

)2

=
1

4π2
E

(∫ ∫
e−i(s+r)x∗

ϕK(sh)ϕK(rh)ϕx∗
t |dt=d′(s)ϕx∗

t |dt=d′(r)

∫ s

0

∫ r

0ϕxt|dt=d(s)f(d)
(

1
N(T−1)

∑N
j=1

∑T−1
t=1 (Xj,t+1 − αd′

)eis1Xjt1{Djt = d′} − E(Xj,t+1 − αd′
)eis1Xjt1{Djt = d′}

)
ϕxt|dt=d′(s)ϕxt|dt=d′(s1)γd′f(d′)

−
ϕxt|dt=d(s)ϕ

′
x∗
t |dt=d′(s1)f(d)

(
1

N(T−1)

∑N
j=1

∑T−1
t=1 eis1Xjt1{Djt = d′} − E eis1Xjt1{Djt = d′}

)
ϕxt|dt=d′(s)ϕxt|dt=d′(s1)f(d′)

+

1
N(T−1)

∑N
j=1

∑T−1
t=1 eisXjt1{Djt = d} − E eisXjt1{Djt = d}

ϕxt|dt=d′(s)

−
ϕxt|dt=d(s)f(d)

(
1

N(T−1)

∑N
j=1

∑T−1
t=1 eisXjt1{Djt = d′} − E eisXjt1{Djt = d′}

)
ϕxt|dt=d′(s)2f(d′)

+ hot(s) + hot(s1)

×

ϕxt|dt=d(r)f(d)
(

1
N(T−1)

∑N
j=1

∑T−1
t=1 (Xj,t+1 − αd′

)eir1Xjt1{Djt = d′} − E(Xj,t+1 − αd′
)eir1Xjt1{Djt = d′}

)
ϕxt|dt=d′(r)ϕxt|dt=d′(r1)γd′f(d′)

−
ϕxt|dt=d(r)ϕ

′
x∗
t |dt=d′(r1)f(d)

(
1

N(T−1)

∑N
j=1

∑T−1
t=1 eir1Xjt1{Djt = d′} − E eir1Xjt1{Djt = d′}

)
ϕxt|dt=d′(r)ϕxt|dt=d′(r1)f(d′)

+

1
N(T−1)

∑N
j=1

∑T−1
t=1 eirXjt1{Djt = d} − E eirXjt1{Djt = d}

ϕxt|dt=d′(r)

−
ϕxt|dt=d(r)f(d)

(
1

N(T−1)

∑N
j=1

∑T−1
t=1 eirXjt1{Djt = d′} − E eirXjt1{Djt = d′}

)
ϕxt|dt=d′(r)2f(d′)

+ hot(s) + hot(s1)

 dr1ds1drds

6
∥ϕK∥2∞

∥∥∥ϕx∗
t |dt=d′

∥∥∥2
∞

4π2

∫ 1

−1

∫ 1

−1

∫ s/h

0

∫ r/h

0
J(s, r, s1, r1, h)dr1ds1drds = O

(
1

Nh4
∣∣ϕxt|dt=d′(1/h)

∣∣4
)

where J(s, r, s1, r1, h) consists of the following ten terms and higher-order terms that vanish
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faster uniformly.

J1 =

∥∥ϕxt|dt=d

∥∥2
∞ f(d)2∣∣ϕxt|dt=d′(s/h)

∣∣ · ∣∣ϕxt|dt=d′(s1)
∣∣ · ∣∣ϕxt|dt=d′(r/h)

∣∣ · ∣∣ϕxt|dt=d′(r1)
∣∣ · f(d′)2 · (γd′)2

×E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

(Xj,t+1 − αd′
)eis1Xjt1{Djt = d′} − E(Xj,t+1 − αd′

)eis1Xjt1{Djt = d′}

2


1/2

×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

(Xj,t+1 − αd′
)eir1Xjt1{Djt = d′} − E(Xj,t+1 − αd′

)eir1Xjt1{Djt = d′}

2


1/2

J2 =

∥∥ϕxt|dt=d

∥∥2
∞

∥∥∥ϕ′
x∗
t |dt=d′

∥∥∥2
∞

f(d)2∣∣ϕxt|dt=d′(s/h)
∣∣ · ∣∣ϕxt|dt=d′(s1)

∣∣ · ∣∣ϕxt|dt=d′(r/h)
∣∣ · ∣∣ϕxt|dt=d′(r1)

∣∣ · f(d′)2 ×E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eis1Xjt1{Djt = d′} − E eis1Xjt1{Djt = d′}

2


1/2

×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eir1Xjt1{Djt = d′} − E eir1Xjt1{Djt = d′}

2


1/2

J3 =
1∣∣ϕxt|dt=d′(s/h)
∣∣ · ∣∣ϕxt|dt=d′(r/h)

∣∣ ×E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eisXjt/h1{Djt = d} − E eisXjt/h1{Djt = d}

2


1/2

×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eirXjt/h1{Djt = d} − E eirXjt/h1{Djt = d}

2


1/2

J4 =

∥∥ϕxt|dt=d

∥∥2
∞ f(d)2∣∣ϕxt|dt=d′(s/h)

∣∣2 · ∣∣ϕxt|dt=d′(r/h)
∣∣2 · f(d′)2 ×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eisXjt/h1{Djt = d′} − E eisXjt/h1{Djt = d′}

2


1/2

×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eirXjt/h1{Djt = d′} − E eirXjt/h1{Djt = d′}

2


1/2
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J5 =
2
∥∥ϕxt|dt=d

∥∥2
∞

∥∥∥ϕ′
x∗
t |dt=d′

∥∥∥
∞

f(d)2∣∣ϕxt|dt=d′(s/h)
∣∣ · ∣∣ϕxt|dt=d′(s1)

∣∣ · ∣∣ϕxt|dt=d′(r/h)
∣∣ · ∣∣ϕxt|dt=d′(r1)

∣∣ · f(d′)2 · |γd′ |
×E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

(Xj,t+1 − αd′
)eis1Xjt1{Djt = d′} − E(Xj,t+1 − αd′

)eis1Xjt1{Djt = d′}

2


1/2

×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eir1Xjt1{Djt = d′} − E eir1Xjt1{Djt = d′}

2


1/2

J6 =
2
∥∥ϕxt|dt=d

∥∥
∞ f(d)∣∣ϕxt|dt=d′(s/h)

∣∣ · ∣∣ϕxt|dt=d′(s1)
∣∣ · ∣∣ϕxt|dt=d′(r/h)

∣∣ · f(d′) · |γd′ |
×E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

(Xj,t+1 − αd′
)eis1Xjt1{Djt = d′} − E(Xj,t+1 − αd′

)eis1Xjt1{Djt = d′}

2


1/2

×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eirXjt/h1{Djt = d} − E eirXjt/h1{Djt = d}

2


1/2

J7 =
2
∥∥ϕxt|dt=d

∥∥2
∞ f(d)2∣∣ϕxt|dt=d′(s/h)

∣∣ · ∣∣ϕxt|dt=d′(s1)
∣∣ · ∣∣ϕxt|dt=d′(r/h)

∣∣2 · f(d′)2 · |γd′ |
×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

(Xj,t+1 − αd′
)eis1Xjt1{Djt = d′} − E(Xj,t+1 − αd′

)eis1Xjt1{Djt = d′}

2


1/2

×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eirXjt/h1{Djt = d′} − E eirXjt/h1{Djt = d′}

2


1/2

J8 =
2
∥∥ϕxt|dt=d

∥∥
∞

∥∥∥ϕ′
x∗
t |dt=d′

∥∥∥
∞

f(d)∣∣ϕxt|dt=d′(s/h)
∣∣ · ∣∣ϕxt|dt=d′(s1)

∣∣ · ∣∣ϕxt|dt=d′(r/h)
∣∣ · f(d′) ×E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eis1Xjt1{Djt = d′} − E eis1Xjt1{Djt = d′}

2


1/2

×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eirXjt/h1{Djt = d} − E eirXjt/h1{Djt = d}

2


1/2
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J9 =
2
∥∥ϕxt|dt=d

∥∥2
∞

∥∥∥ϕ′
x∗
t |dt=d′

∥∥∥
∞

f(d)2∣∣ϕxt|dt=d′(s/h)
∣∣ · ∣∣ϕxt|dt=d′(s1)

∣∣ · ∣∣ϕxt|dt=d′(r/h)
∣∣2 · f(d′)2 ×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eis1Xjt1{Djt = d′} − E eis1Xjt1{Djt = d′}

2


1/2

×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eirXjt/h1{Djt = d′} − E eirXjt/h1{Djt = d′}

2


1/2

J10 =
2
∥∥ϕxt|dt=d

∥∥
∞ f(d)∣∣ϕxt|dt=d′(s/h)

∣∣ · ∣∣ϕxt|dt=d′(r/h)
∣∣2 · f(d′) ×E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eisXjt/h1{Djt = d} − E eisXjt/h1{Djt = d}

2


1/2

×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eirXjt/h1{Djt = d′} − E eirXjt/h1{Djt = d′}

2


1/2

Consequently, under Assumption 8 (i), the bandwidth parameter choice prescribed in part

(i) of the proposition yields(
E
[

̂gd(x∗)f(x∗)− gd(x
∗)f(x∗)

]2)1/2

= O
(
N

−min{k,l}
2(2+2q+min{k,l})

)
(
E
[
f̂(x∗)− f(x∗)

]2)1/2

= O
(
N

−k
2(2+2q+min{k,l})

)
.

Since the MSE of the CCP estimator is given by

1

f(x∗)2
MSE

(
̂gd(x∗)f(x∗)

)
+

gd(x
∗)2

f(x∗)2
MSE

(
f̂(x∗)

)
,

it follows that (
E
[
ĝd(x∗)− gd(x

∗)
]2)1/2

= O
(
N

−min{k,l}
2(2+2q+min{k,l})

)
and thus part (i) of the proposition holds.

Likewise, under Assumption 8 (ii), the bandwidth parameter choice prescribed in part (ii)

of the proposition yields(
E
[

̂gd(x∗)f(x∗)− gd(x
∗)f(x∗)

]2)1/2

= O
(
(logN)−min{k,l}/q) .(

E
[
f̂(x∗)− f(x∗)

]2)1/2

= O
(
(logN)−k/q

)
.
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It follows that (
E
[
ĝd(x∗)− gd(x

∗)
]2)1/2

= O
(
(logN)−min{k,l}/q)

and thus part (ii) of the proposition holds.

B.8 Monte Carlo Simulations

In this section, we evaluate finite sample performance of our estimator using artificial data

based on a benchmark structural model of the literature, that is reminiscent of Rust (1987).

We focus on a parsimonious version of the general model, where states consist only of the

unobserved variable x∗
t , hence suppressing wt from the baseline model.8 The transition rule for

the unobserved state variable x∗
t is defined by

x∗
t = 1.000 + 1.000 · x∗

t−1 + η0t if d = 0

x∗
t = 0.000 + 0.000 · x∗

t−1 + η1t if d = 1

where η0t and η1t are independently distributed according to the standard normal distribu-

tion, N(0, 1). In the context of Rust’ model, the true state x∗
t of the capital (e.g., mileage of

the engine) accumulates if continuation d = 0 is selected, while it is reset to zero if replace-

ment d = 1 is selected. The parameters of the state transition are summarized by the vector

8In this case, there arises a minor modification in our closed-form identifying formulas and estimators. First,

the random variable wt and the parameter βd become absent. Second, the transition rule for the observed state

wt becomes unnecessary. Third, most importantly, the estimator of (αd, γd) will be based on two equations

for two unknowns, where wt−1 is replaced by xt−2. Other than these points, the main procedure continues to

be the same. Also see Section B.6 where large sample properties of the estimator are studied in a similarly

simplified setup.
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(α0, γ0, α1, γ1) = (1.000, 1.000, 0.000, 0.000). The current utility is given by

1.000− 0.015 · x∗
t + ω0t if d = 0

0.000 · x∗
t + ω1t if d = 1

where ω0t and ω1t are independently distributed according to the Type I Extreme Value Distri-

bution. In the context of Rust’s model, continuation d = 0 incurs the marginal cost of 0.015 per

the true state x∗
t , whereas replacement incurs the fixed cost 1.000. The structural parameters

for the payoff are summarized by the vector θ = (θ00, θ
x
0 , θ

x
1)

′ = (1.000, −0.015, 0.000)′. The

rate of time preference is set to ρ = 0.9. Lastly, the proxy model is defined by

xt = x∗
t + εt

where εt ∼ N(0, 2). We thus let Var(εt) = 2 > 1 = Var(ηt) to assess how our method performs

under relatively large stochastic magnitudes of measurement errors.

With this setup, we present Monte Carlo simulation results for the closed-form estimator

of the structural parameters θ developed in Section B.4. The shaded rows, (III) and (VI), in

Table 4 provide a summary of MC-simulation results for our estimator. The other rows in Table

4 report MC-simulation results for alternative estimators for the purpose of comparison. The

results in row (I) are based on the traditional estimator and the assumption that the observed

proxy xt is mistakenly treated as the unobserved state variable x∗
t . The results in row (II)

are based on the traditional estimator and the metaphysical assumption that the unobserved

state variable x∗
t were observed. On the other hand, the results in row (III) are based on the

assumption that x∗
t is not observed, but the measurement error of xt is accounted for by our

closed-form estimator. All the results in these three rows are based on sampling with N = 100,

T = 10. Rows (IV), (V) and (VI) are analogous to rows (I), (II) and (III), respectively, except

that the sample size of N = 500 is used instead of N = 100. While the estimates θx1 are good
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Data True Interdecile Range Mean Bias
√
Var RMSE

(I) N = 100 & T = 10 θx0 1.000 [0.772, 1.066] 0.916 −0.084 0.104 0.133

xt treated wrongly as x∗
t θx1 −0.015 [−0.049, 0.021] −0.014 0.001 0.024 0.024

(II) N = 100 & T = 10 θx0 1.000 [0.837, 1.140] 0.982 −0.018 0.101 0.103

If x∗
t were observed θx1 −0.015 [−0.041, 0.007] −0.016 −0.001 0.017 0.018

(III) N = 100 & T = 10 θx0 1.000 [0.671, 1.414] 0.988 −0.012 0.418 0.417

Accounting for ME of x∗
t θx1 −0.015 [−0.098, 0.032] −0.024 −0.009 0.050 0.052

(IV) N = 500 & T = 10 θx0 1.000 [0.844, 0.981] 0.911 −0.089 0.045 0.100

xt treated wrongly as x∗
t θx1 −0.015 [−0.036,−0.006] −0.020 −0.005 0.010 0.014

(V) N = 500 & T = 10 θx0 1.000 [0.898, 1.046] 0.973 −0.027 0.050 0.057

If x∗
t were observed θx1 −0.015 [−0.030,−0.007] −0.019 −0.004 0.008 0.012

(VI) N = 500 & T = 10 θx0 1.000 [0.835, 1.160] 0.970 −0.030 0.220 0.222

Accounting for ME of x∗
t θx1 −0.015 [−0.042, 0.023] −0.014 0.001 0.027 0.027

Table 4: Summary statistics of the Monte Carlo simulated estimates of the structural parame-

ters. The interdecile range shows the 10-th and 90-th percentiles of Monte Carlo distributions.

All the other statistics are based on five-percent trimmed sample to suppress the effects of

outliers. The results are based on (I) sampling with N = 100 and T = 10 where xt is treated

wrongly as x∗
t , (II) sampling with N = 100 and T = 10 where x∗

t is assumed to be observed,

(III) sampling with N = 100 and T = 10 where the measurement error of unobserved x∗
t is

accounted. Results shown in rows (IV), (V) and (VI) are analogous to those in rows (I), (II) and

(III), respectively, except that the sample size of N = 500 is used. The shaded rows (III) and

(VI) indicate use of our closed-form estimators which can handle unobserved state variables.
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enough across all the six sets of experiments, the estimates of θx0 are substantially biased under

rows (I) and (IV), which fail to account for the measurement error. Furthermore, the interdecile

range of θx0 in row (IV) does not contain the true value. On the other hand, the MC-results of

our estimator shown in rows (III) and (VI) of Table 4 are much less biased, like those in rows

(II) and (V) of Table 4.

B.9 Extending the Proxy Model

The baseline model presented in Section 3.1 assumes classical measurement errors. To relax

this assumption, we may allow the relationship between the proxy and the unobserved state

variable to depend on the endogenous choice made in previous period. This generalization is

useful if the past action can affect the measurement nature of the proxy variable. For example,

when the choice dt leads to entry and exit status of a firm, what proxy measure we may obtain

for the unobserved productivity of the firm may differ depending whether the firm is in or out

of the market.

To allow the proxy model to depend on edogeneous actions, we modify Assumptions 2, 3, 4

and 5 as follows.

Assumption 2′. The Markov kernel can be decomposed as follows.

f
(
dt, wt, x

∗
t , xt|dt−1, wt−1, x

∗
t−1, xt−1

)
= f (dt|wt, x

∗
t ) f

(
wt|dt−1, wt−1, x

∗
t−1

)
f
(
x∗
t |dt−1, wt−1, x

∗
t−1

)
f (xt|dt−1, x

∗
t )

where the proxy model now depends on the endogenous choice dt−1 made in the last period.

Assumption 3′. The transition rule for the unobserved state variable and the state-proxy
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relation are semi-parametrically specified by

f
(
x∗
t |dt−1, wt−1, x

∗
t−1

)
: x∗

t = αd + βdwt−1 + γdx∗
t−1 + ηdt if dt−1 = d

f (xt|dt−1, x
∗
t ) : xt = δdx∗

t + εdt if dt−1 = d

where εt and ηdt have mean zero for each d, and satisfy

εdt ⊥⊥ ({dτ}τ , {x∗
τ}τ , {wτ}τ , {ετ}τ ̸=t) for all t

ηdt ⊥⊥ (dτ , x
∗
τ , wτ ) for all τ < t for all t.

where εt = (ε0t , ε
1
t , · · · , εd̄t ).

Assumption 4′. For each d, ((dt−1 = d) > 0 and the following matrix is nonsingular for each

of d′ = d and d′ = 0.
1 E[wt−1 | dt−1 = d, dt−2 = d′] E[xt−1 | dt−1 = d, dt−2 = d′]

E[wt−1 | dt−1 = d, dt−2 = d′] E[w2
t−1 | dt−1 = d, dt−2 = d′] E[xt−1wt−1 | dt−1 = d, dt−2 = d′]

E[wt | dt−1 = d, dt−2 = d′] E[wt−1wt | dt−1 = d, dt−2 = d′] E[xt−1wt | dt−1 = d, dt−2 = d′]



Assumption 5′. The random variables wt and x∗
t have bounded conditional first moments given

(dt, dt−1). The conditional characteristic functions of wt and x∗
t given (dt, dt−1) do not vanish on

the real line, and is absolutely integrable. The conditional characteristic function of (x∗
t−1, wt)

given (dt−1, dt−2, wt−1) and the conditional characteristic function of x∗
t given (wt, dt−1) are

absolutely integrable. Random variables εt and ηdt have bounded first moments and absolutely

integrable characteristic functions that do not vanish on the real line.

Because x∗
t is unit-less unobserved variable, there would be a continuum of observationally

equivalent set of (δ0, · · · , δd̄) and distributions of (ε0t , · · · , εd̄t ), unless we normalize δd for one

of the choices d. We therefore make the following assumption in addition to the baseline

assumptions.
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Assumption 9. WLOG, we normalize δ0 = 1.

Under this set of assumptions that are analogous to those we assumed for the baseline model

in Section 3.1, we obtain the following closed-form identification result analogous to Theorem

1.

Theorem 2 (Closed-Form Identification). If Assumptions 1, 2′, 3′, 4′, 5′, and 9 are sat-

isfied, then the four components f (dt|wt, x
∗
t ), f

(
wt|dt−1, wt−1, x

∗
t−1

)
, f

(
x∗
t |dt−1, wt−1, x

∗
t−1

)
,

f (xt|dt−1, x
∗
t ) of the Markov kernel f

(
dt, wt, x

∗
t , xt|dt−1, wt−1, x

∗
t−1, xt−1

)
are identified by closed-

form formulas.

A proof and a set of full closed-form identifying formulas are given in Section B.10. This

section demonstrated that, even if endogenous actions of firms, such as the decision of exit,

can potentially affect the measurement nature of proxy variables through market participation

status, we still obtain similar closed-form estimator with slight modifications.

B.10 Proof of Theorem 2

Proof. Similarly to the baseline case, our closed-form identification includes four steps.

Step 1: Closed-form identification of the transition rule f
(
x∗
t |dt−1, wt−1, x

∗
t−1

)
: First,

we show the identification of the parameters and the distributions in transition of x∗
t . Since

xt =
∑
d

1{dt−1 = d}[δdx∗
t + εdt ]

=
∑
d

1{dt−1 = d}[αdδd + βdδdwt−1 + γdδdx∗
t−1 + δdηdt + εdt ]

=
∑
d

∑
d′

1{dt−1 = d}1{dt−2 = d′}
[
αdδd + βdδdwt−1 + γd δ

d

δd′
xt−1 + δdηdt + εdt − γd δ

d

δd′
εd

′

t−1

]
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we obtain the following equalities for each d and d′:

E[xt | dt−1 = d, dt−2 = d′] = αdδd + βdδd E[wt−1 | dt−1 = d, dt−2 = d′]

+γd δ
d

δd′
E[xt−1 | dt−1 = d, dt−2 = d′]

E[xtwt−1 | dt−1 = d, dt−2 = d′] = αdδd E[wt−1 | dt−1 = d, dt−2 = d′]

+βdδd E[w2
t−1 | dt−1 = d, dt−2 = d′]

+γd δ
d

δd′
E[xt−1wt−1 | dt−1 = d, dt−2 = d′]

E[xtwt | dt−1 = d, dt−2 = d′] = αdδd E[wt | dt−1 = d, dt−2 = d′]

+βdδd E[wt−1wt | dt−1 = d, dt−2 = d′]

+γd δ
d

δd′
E[xt−1wt | dt−1 = d, dt−2 = d′]

by the independence and zero mean assumptions for ηdt and εdt . From these, we have the linear

equation
E[xt | dt−1 = d, dt−2 = d′]

E[xtwt−1 | dt−1 = d, dt−2 = d′]

E[xtwt | dt−1 = d, dt−2 = d′]

 =


1 E[wt−1 | dt−1 = d, dt−2 = d′] E[xt−1 | dt−1 = d, dt−2 = d′]

E[wt−1 | dt−1 = d, dt−2 = d′] E[w2
t−1 | dt−1 = d, dt−2 = d′] E[xt−1wt−1 | dt−1 = d, dt−2 = d′]

E[wt | dt−1 = d, dt−2 = d′] E[wt−1wt | dt−1 = d, dt−2 = d′] E[xt−1wt | dt−1 = d, dt−2 = d′]




αdδd

βdδd

γd δd

δd′


Provided that the matrix on the right-hand side is non-singular, we can identify the composite

parameters
(
αdδd, βdδd, γd δd

δd′

)
by

αdδd

βdδd

γd δd

δd′

 =


1 E[wt−1 | dt−1 = d, dt−2 = d′] E[xt−1 | dt−1 = d, dt−2 = d′]

E[wt−1 | dt−1 = d, dt−2 = d′] E[w2
t−1 | dt−1 = d, dt−2 = d′] E[xt−1wt−1 | dt−1 = d, dt−2 = d′]

E[wt | dt−1 = d, dt−2 = d′] E[wt−1wt | dt−1 = d, dt−2 = d′] E[xt−1wt | dt−1 = d, dt−2 = d′]



−1

×


E[xt | dt−1 = d, dt−2 = d′]

E[xtwt−1 | dt−1 = d, dt−2 = d′]

E[xtwt | dt−1 = d, dt−2 = d′]

 .
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Once the composite parameters γd δd

δ0
and γd = γd δd

δd
are identified by the above formula, we can

in turn identify

δd =
γd δd

δ0

γd δd

δd

for each d by the normalization assumption δ0 = 1. It in turn can be used to identify (αd, βd, γd)

for each d from the identified composite parameters
(
αdδd, βdδd, γd δd

δ0

)
by

(αd, βd, γd) =
1

δd

(
αdδd, βdδd, γd δ

d

δ0

)
.

Next, we show identification of f
(
εdt
)
and f

(
ηdt
)
for each d. Observe that

E [exp (is1xt−1 + is2xt) |dt−1 = d, dt−2 = d′]

= E
[
exp

(
is1

(
δd

′
x∗
t−1 + εd

′

t−1

)
+ is2

(
αdδd + βdδdwt−1 + γdδdx∗

t−1 + δdηdt + εdt
))

|dt−1 = d, dt−2 = d′
]

= E
[
exp

(
i
(
s1δ

d′x∗
t−1 + s2α

dδd + s2β
dδdwt−1 + s2γ

dδdx∗
t−1

))
|dt−1 = d, dt−2 = d′

]
×E

[
exp

(
is1ε

d′

t−1

)]
E
[
exp

(
is2
(
δdηdt + εdt

))]
follows for each pair (d, d′) from the independence assumptions for ηdt and εdt for each d. We

may then use the Kotlarski’s identity

[
∂

∂s2
ln E [exp (is1xt−1 + is2xt) |dt−1 = d, dt−2 = d′]

]
s2=0

=
E
[
i(αdδd + βdδdwt−1 + γdδdx∗

t−1) exp
(
is1δ

d′x∗
t−1

)
|dt−1 = d, dt−2 = d′

]
E
[
exp

(
is1δd

′x∗
t−1

)
|dt−1 = d, dt−2 = d′

]
= iαdδd + βdδd

E[iwt−1 exp(is1δ
d′x∗

t−1) | dt−1 = d, dt−2 = d′]

E[exp(is1δd
′x∗

t−1) | dt−1 = d, dt−2 = d′]

+γd δ
d

δd′
∂

∂s1
ln E

[
exp

(
is1δ

d′x∗
t−1

)
|dt−1 = d, dt−2 = d′

]
= iαdδd + βdδd

E[iwt−1 exp(is1xt−1) | dt−1 = d, dt−2 = d′]

E[exp(is1xt−1) | dt−1 = d, dt−2 = d′]

+γd δ
d

δd′
∂

∂s1
ln E

[
exp

(
is1δ

d′x∗
t−1

)
|dt−1 = d, dt−2 = d′

]
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Therefore,

E
[
exp

(
isδd

′
x∗
t−1

)
|dt−1 = d, dt−2 = d′

]
= exp

[∫ s

0

[
δd

′

γdδd
∂

∂s2
ln E [exp (is1xt−1 + is2xt) |dt−1 = d, dt−2 = d′]

]
s2=0

ds1

−
∫ s

0

iαdδd
′

γd
ds1 −

∫ s

0

βdδd
′

γd

E[iwt−1 exp(is1xt−1) | dt−1 = d, dt−2 = d′]

E[exp(is1xt−1) | dt−1 = d, dt−2 = d′]
ds1

]

= exp

∫ s

0

E
[
i( δ

d′

δd
xt − αdδd

′ − βdδd
′
wt−1) exp (is1xt−1) |dt−1 = d, dt−2 = d′

]
γd E [exp (is1xt−1) |dt−1 = d, dt−2 = d′]

ds1

 .

From the proxy model and the independence assumption for εt,

E [exp (isxt−1) |dt−1 = d, dt−2 = d′] = E
[
exp

(
isδd

′
x∗
t−1

)
|dt−1 = d, dt−2 = d′

]
E
[
exp

(
isεd

′

t−1

)]
.

We then obtain the following result using any d.

E
[
exp

(
isεd

′

t−1

)]
=

E [exp (isxt−1) |dt−1 = d, dt−2 = d′]

E
[
exp

(
isδd′x∗

t−1

)
|dt−1 = d, dt−2 = d′

]
=

E [exp (isxt−1) |dt−1 = d, dt−2 = d′]

exp

[∫ s

0

E

[
i( δ

d′

δd
xt−αdδd′−βdδd′wt−1) exp(is1xt−1)|dt−1=d,dt−2=d′

]
γd E[exp(is1xt−1)|dt−1=d,dt−2=d′]

ds1

] .

This argument holds for all t so that we can identify f
(
εdt
)
for each d with

E
[
exp

(
isεdt

)]
=

E [exp (isxt) |dt = d′, dt−1 = d]

exp

[∫ s

0

E
[
i( δd

δd
′ xt+1−αd′δd−βd′δdwt) exp(is1xt)|dt=d′,dt−1=d

]
γd′ E[exp(is1xt)|dt=d′,dt−1=d]

ds1

] . (B.9)

using any d′.

In order to identify f
(
ηdt
)
for each d, consider

E [exp (isxt) |dt−1 = d, dt−2 = d′] E

[
exp

(
isγd δ

d

δd′
εd

′

t−1

)]
= E

[
exp

(
is(αdδd + βdδdwt−1 + γd δ

d

δd′
xt−1)

)
|dt−1 = d, dt−2 = d′

]
×E

[
exp

(
isδdηdt

)]
E
[
exp

(
isεdt

)]
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by the independence assumptions for ηdt and εdt . Therefore,

E
[
exp

(
isδdηdt

)]
=

E [exp (isxt) |dt−1 = d, dt−2 = d′]

E
[
exp

(
is(αdδd + βdδdwt−1 + γd δd

δd
′ xt−1)

)
|dt−1 = d, dt−2 = d′

]
×
E
[
exp

(
isγd δd

δd′
εd

′
t−1

)]
E
[
exp

(
isεdt

)]
and the characteristic function of ηdt can be expressed by

E
[
exp

(
isηdt

)]
=

E
[
exp

(
is 1

δd
xt

)
|dt−1 = d, dt−2 = d′

]
E
[
exp

(
is(αd + βdwt−1 + γd 1

δd′
xt−1)

)
|dt−1 = d, dt−2 = d′

]
× 1

E
[
exp

(
is 1

δd
εdt
)]

E
[
exp

(
−isγd 1

δd
′ εd

′
t−1

)]
=

E
[
exp

(
is 1

δd
xt

)
|dt−1 = d, dt−2 = d′

]
E
[
exp

(
is(αd + βdwt−1 + γd 1

δd′
xt−1)

)
|dt−1 = d, dt−2 = d′

]

×
exp

[∫ s/δd

0

E
[
i( δd

δd
′ xt+1−αd′δd−βd′δdwt) exp(is1xt)|dt=d′,dt−1=d

]
γd′ E[exp(is1xt)|dt=d′,dt−1=d]

ds1

]
E
[
exp

(
is 1

δd
xt

)
|dt = d′, dt−1 = d

]
×

E
[
exp

(
isγd 1

δd′
xt−1

)
|dt−1 = d, dt−2 = d′

]
exp

[∫ sγd/δd
′

0

E

[
i( δ

d′

δd
xt−αdδd′−βdδd′wt−1) exp(is1xt−1)|dt−1=d,dt−2=d′

]
γd E[exp(is1xt)|dt−1=d,dt−2=d′]

ds1

]
by the formula (B.9). We can then identify fηdt by

fηdt (η) =
(
Fϕηdt

)
(η) for all η,

where the characteristic function ϕηdt
is given by

ϕηdt
(s) =

E
[
exp

(
is 1

δd
xt

)
|dt−1 = d, dt−2 = d′

]
E
[
exp

(
is(αd + βdwt−1 + γd 1

δd
′ xt−1)

)
|dt−1 = d, dt−2 = d′

]

×
exp

[∫ s/δd

0

E
[
i( δd

δd
′ xt+1−αd′δd−βd′δdwt) exp(is1xt)|dt=d′,dt−1=d

]
γd′ E[exp(is1xt)|dt=d′,dt−1=d]

ds1

]
E
[
exp

(
is 1

δd
xt

)
|dt = d′, dt−1 = d

]
×

E
[
exp

(
isγd 1

δd
′ xt−1

)
|dt−1 = d, dt−2 = d′

]
exp

[∫ sγd/δd
′

0

E

[
i( δ

d′

δd
xt−αdδd

′−βdδd
′
wt−1) exp(is1xt−1)|dt−1=d,dt−2=d′

]
γd E[exp(is1xt)|dt−1=d,dt−2=d′]

ds1

] .
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We can use this identified density in turn to identify the transition rule f
(
x∗
t |dt−1, wt−1, x

∗
t−1

)
with

f
(
x∗
t |dt−1, xt−1, x

∗
t−1

)
=
∑
d

1{dt−1 = d}fηdt
(
x∗
t − αd − βdwt−1 − γdx∗

t−1

)
.

In summary, we obtain the closed-form expression

f
(
x∗
t |dt−1, xt−1, x

∗
t−1

)
=

∑
d

1{dt−1 = d}
(
Fϕηdt

) (
x∗
t − αd − βdwt−1 − γdx∗

t−1

)
=

∑
d

1{dt−1 = d}
2π

∫
exp

(
−is(x∗

t − αd − βdwt−1 − γdx∗
t−1)

)
×

E
[
exp

(
is 1

δd
xt

)
|dt−1 = d, dt−2 = d′

]
E
[
exp

(
is(αd + βdwt−1 + γd 1

δd
′ xt−1)

)
|dt−1 = d, dt−2 = d′

] ×
exp

[∫ s/δd

0

E
[
i( δd

δd
′ xt+1−αd′δd−βd′δdwt) exp(is1xt)|dt=d′,dt−1=d

]
γd′ E[exp(is1xt)|dt=d′,dt−1=d]

ds1

]
E
[
exp

(
is 1

δd
xt

)
|dt = d′, dt−1 = d

] ×

E
[
exp

(
isγd 1

δd′
xt−1

)
|dt−1 = d, dt−2 = d′

]
exp

[∫ sγd/δd
′

0

E

[
i( δ

d′

δd
xt−αdδd

′−βdδd
′
wt−1) exp(is1xt−1)|dt−1=d,dt−2=d′

]
γd E[exp(is1xt)|dt−1=d,dt−2=d′]

ds1

]

using any d′. This completes Step 1.

Step 2: Closed-form identification of the proxy model f (xt | dt−1, x
∗
t ): Given (B.9), we

can write the density of εdt by

fεdt (ε) =
(
Fϕεdt

)
(ε) for all ε,

where the characteristic function ϕεdt
is defined by (B.9) as

ϕεdt
(s) =

E [exp (isxt) |dt = d′, dt−1 = d]

exp

[∫ s

0

E
[
i( δd

δd
′ xt+1−αd′δd−βd′δdwt) exp(is1xt)|dt=d′,dt−1=d

]
γd′ E[exp(is1xt)|dt=d′,dt−1=d]

ds1

] .
Provided this identified density of εdt , we nonparametrically identify the proxy model

f(xt | dt−1 = d, x∗
t ) = fεdt |dt−1=d(xt − δdx∗

t ) = fεdt (xt − δdx∗
t )
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by the independence assumption for εdt . In summary, we obtain the closed-form expression

f(xt | dt−1, x
∗
t ) =

∑
d

1{dt−1 = d}
(
Fϕεdt

)
(xt − δdx∗

t )

=
∑
d

1{dt−1 = d}
2π

∫
exp

(
−is(xt − δdx∗

t )
)
· E [exp (isxt) |dt = d′, dt−1 = d]

exp

[∫ s

0

E
[
i( δd

δd
′ xt+1−αd′δd−βd′δdwt) exp(is1xt)|dt=d′,dt−1=d

]
γd′ E[exp(is1xt)|dt=d′,dt−1=d]

ds1

]ds
using any d′. This completes Step 2.

Step 3: Closed-form identification of the transition rule f
(
wt|dt−1, wt−1, x

∗
t−1

)
: Con-

sider the joint density expressed by the convolution integral

f (xt−1, wt | dt−1, wt−1, dt−2 = d) =

∫
fεdt−1

(
xt−1 − δdx∗

t−1

)
f
(
x∗
t−1, wt | dt−1, wt−1, dt−2 = d

)
dx∗

t−1

We can thus obtain a closed-form expression of f
(
x∗
t−1, wt | dt−1, wt−1, dt−2

)
by the deconvolu-

tion. To see this, observe

E [exp (is1xt−1 + is2wt) |dt−1, wt−1, dt−2 = d]

= E
[
exp

(
is1δ

dx∗
t−1 + is1ε

d
t−1 + is2wt

)
|dt−1, wt−1, dt−2 = d

]
= E

[
exp

(
is1δ

dx∗
t−1 + is2wt

)
|dt−1, wt−1, dt−2 = d

]
E
[
exp

(
is1ε

d
t−1

)]
by the independence assumption for εdt , and so

E
[
exp

(
is1δ

dx∗
t−1 + is2wt

)
|dt−1, wt−1, dt−2 = d

]
=

E [exp (is1xt−1 + is2wt) |dt−1, wt−1, dt−2 = d]

E
[
exp

(
is1εdt−1

)]
= E [exp (is1xt−1 + is2wt) |dt−1, wt−1, dt−2 = d]

×
exp

[∫ s1
0

E
[
i( δd

δd
′ xt−αd′δd−βd′δdwt−1) exp(is′1xt−1)|dt−1=d′,dt−2=d

]
γd′ E[exp(is′1xt−1)|dt−1=d′,dt−2=d]

ds′1

]
E [exp (is1xt−1) |dt−1 = d′, dt−2 = d]
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follows with any choice of d′. Rescaling s1 yields

E
[
exp

(
is1x

∗
t−1 + is2wt

)
|dt−1, wt−1, dt−2 = d

]
= E

[
exp

(
is1

1

δd
xt−1 + is2wt

)
|dt−1, wt−1, dt−2 = d

]
×

exp

[∫ s1/δd

0

E
[
i( δd

δd
′ xt−αd′δd−βd′δdwt−1) exp(is′1xt−1)|dt−1=d′,dt−2=d

]
γd′ E[exp(is′1xt−1)|dt−1=d′,dt−2=d]

ds′1

]
E
[
exp

(
is1

1
δd
xt−1

)
|dt−1 = d′, dt−2 = d

] .

We can then express the conditional density as

f
(
x∗
t−1, wt|dt−1, wt−1, dt−2 = d

)
=
(
F2ϕx∗

t−1,wt|dt−1,wt−1,dt−2=d

)
(wt, x

∗
t−1)

where the characteristic function is defined by

ϕwt,x∗
t−1|dt−1,wt−1,dt−2=d(s1, s2) = E

[
exp

(
is1

1

δd
xt−1 + is2wt

)
|dt−1, wt−1, dt−2 = d

]
×

exp

[∫ s1/δd

0

E
[
i( δd

δd
′ xt−αd′δd−βd′δdwt−1) exp(is′1xt−1)|dt−1=d′,dt−2=d

]
γd′ E[exp(is′1xt−1)|dt−1=d′,dt−2=d]

ds′1

]
E
[
exp

(
is1

1
δd
xt−1

)
|dt−1 = d′, dt−2 = d

] .

Using this conditional density, we nonparametrically identify the transition rule

f
(
wt|dt−1, wt−1, x

∗
t−1

)
=

∑
d f
(
x∗
t−1, wt|dt−1, wt−1, dt−2 = d

)
Pr(dt−2 = d | dt−1, wt−1)∫ ∑

d f
(
x∗
t−1, wt|dt−1, wt−1, dt−2 = d

)
Pr(dt−2 = d | dt−1, wt−1)dwt

.
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In summary, we obtain the closed-form expression

f
(
wt|dt−1, wt−1, x

∗
t−1

)
=
∑
d

1{dt−1 = d} ×

∑
d′

(
F2ϕx∗

t−1,wt|dt−1=d,wt−1,dt−2=d′

)
(wt, x

∗
t−1) · Pr(dt−2 = d′ | dt−1 = d,wt−1)∫ ∑

d′

(
F2ϕx∗

t−1,wt|dt−1=d,wt−1,dt−2=d′

)
(wt, x∗t−1) · Pr(dt−2 = d′ | dt−1 = d,wt−1)dwt

=
∑
d

1{dt−1 = d}

{∑
d′

Pr(dt−2 = d′ | dt−1 = d,wt−1)

∫ ∫
exp

(
−is1wt − is2x

∗
t−1

)
×

E
[
exp

(
is1

1
δd

′ xt−1 + is2wt

)
|dt−1 = d,wt−1, dt−2 = d′

]
E
[
exp

(
is1

1
δd

′ xt−1

)
|dt−1 = d′′, dt−2 = d′

] ×

exp

∫ s1/δd
′

0

E
[
i( δd

′

δd′′
xt − αd′′δd

′ − βd′′δd
′
wt−1) exp (is

′
1xt−1) |dt−1 = d′′, dt−2 = d′

]
γd′′ E [exp (is′1xt−1) |dt−1 = d′′, dt−2 = d′]

ds′1

 ds1ds2


/

{∑
d′

∫
Pr(dt−2 = d′ | dt−1 = d,wt−1)

∫ ∫
exp

(
−is1wt − is2x

∗
t−1

)
×

E
[
exp

(
is1

1
δd′

xt−1 + is2wt

)
|dt−1 = d,wt−1, dt−2 = d′

]
E
[
exp

(
is1

1
δd

′ xt−1

)
|dt−1 = d′′, dt−2 = d′

] ×

exp

∫ s1/δd
′

0

E
[
i( δd

′

δd
′′ xt − αd′′δd

′ − βd′′δd
′
wt−1) exp (is

′
1xt−1) |dt−1 = d′′, dt−2 = d′

]
γd′′ E [exp (is′1xt−1) |dt−1 = d′′, dt−2 = d′]

ds′1

 ds1ds2dwt


using any d′ and d′′ This completes Step 3.

Step 4: Closed-form identification of the CCP f (dt|wt, x
∗
t ): Note that we have

E [1{dt = d} exp (isxt) |wt, dt−1 = d′] = E
[
1{dt = d} exp

(
isδd

′
x∗
t + isεd

′

t

)
|wt, dt−1 = d′

]
= E

[
1{dt = d} exp

(
isδd

′
x∗
t

)
|wt, dt−1 = d′

]
E
[
exp

(
isεd

′

t

)]
= E

[
E [1{dt = d}|wt, x

∗
t , dt−1 = d′] exp

(
isδd

′
x∗
t

)
|wt, dt−1 = d′

]
E
[
exp

(
isεd

′

t

)]
by the independence assumption for εd

′
t and the law of iterated expectations. Therefore,

E [1{dt = d} exp (isxt) |wt, dt−1 = d′]

E
[
exp

(
isεd

′
t

)]
= E

[
E [1{dt = d}|wt, x

∗
t , dt−1 = d′] exp

(
isδd

′
x∗
t

)
|wt, dt−1 = d′

]
=

∫
exp

(
isδd

′
x∗
t

)
E [1{dt = d}|wt, x

∗
t , dt−1 = d′] f (x∗

t |wt, dt−1 = d′) dx∗
t
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and rescaling s yields

E
[
1{dt = d} exp

(
is 1

δd
′ xt

)
|wt, dt−1 = d′

]
E
[
exp

(
is 1

δd′
εd

′
t

)]
=

∫
exp (isx∗

t ) E [1{dt = d}|wt, x
∗
t , dt−1 = d′] f (x∗

t |wt, dt−1 = d′) dx∗
t

This is the Fourier inversion of E [1{dt = d}|wt, x
∗
t , dt−1 = d′] f (x∗

t |wt, dt−1 = d′). On the other

hand, the Fourier inversion of f (x∗
t |wt, dt−1) can be found as

E [exp (isx∗
t ) |wt, dt−1 = d′] =

E
[
exp

(
is 1

δd′
xt

)
|wt, dt−1 = d′

]
E
[
exp

(
is 1

δd′
εd

′
t

)] .

Therefore, we find the closed-form expression for CCP f (dt|wt, x
∗
t ) as follows.

Pr (dt = d|wt, x
∗
t ) =

∑
d′

Pr (dt = d|wt, x
∗
t , dt−1 = d′) Pr (dt−1 = d′ | wt, x

∗
t )

=
∑
d′

E [1{dt = d}|wt, x
∗
t , dt−1 = d′] Pr (dt−1 = d′ | wt, x

∗
t )

=
∑
d′

E [1{dt = d}|wt, x
∗
t , dt−1 = d′] f (x∗

t |wt, dt−1 = d′)

f (x∗
t |wt, dt−1 = d′)

Pr (dt−1 = d′ | wt, x
∗
t )

=
∑
d′

(
Fϕ(d)x∗

t |wt(d′)

)
(x∗

t )(
Fϕx∗

t |wt(d′)

)
(x∗

t )
Pr (dt−1 = d′ | wt, x

∗
t )

where the characteristic functions are defined by

ϕ(d)x∗
t |wt(d′)(s) =

E
[
1{dt = d} exp

(
is 1

δd
′ xt

)
|wt, dt−1 = d′

]
E
[
exp

(
is 1

δd
′ εd

′
t

)]
= E

[
1{dt = d} exp

(
is

1

δd′
xt

)
|wt, dt−1 = d′

]

×
exp

[∫ s/δd
′

0

E

[
i( δd

′

δd
′′ xt+1−αd′′δd

′−βd′′δd
′
wt) exp(is1xt)|dt=d′′,dt−1=d′

]
γd′′ E[exp(is1xt)|dt=d′′,dt−1=d′]

ds1

]
E
[
exp

(
is 1

δd′
xt

)
|dt = d′, dt−1 = d′′

]
and

ϕx∗
t |wt(d′)(s) =

E
[
exp

(
is 1

δd′
xt

)
|wt

]
E
[
exp

(
is 1

δd′
εd

′
t

)]

=

E
[
exp

(
is 1

δd′
xt

)
|wt

]
· exp

[∫ s/δd
′

0

E

[
i( δd

′

δd
′′ xt+1−αd′′δd

′−βd′′δd
′
wt) exp(is1xt)|dt=d′′,dt−1=d′

]
γd′′ E[exp(is1xt)|dt=d′′,dt−1=d′]

ds1

]
E
[
exp

(
is 1

δd′
xt

)
|dt = d′, dt−1 = d′′

]
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by (B.9) using any d′′. In summary, we obtain the closed-form expression

Pr (dt = d|wt, x
∗
t ) =

∑
d′

(
Fϕ(d)x∗

t |wt(d′)

)
(x∗

t )(
Fϕx∗

t |wt(d′)

)
(x∗

t )
Pr (dt−1 = d′ | wt, x

∗
t )

=
∑
d′

Pr (dt−1 = d′ | wt, x
∗
t )

∫
exp (−isx∗

t )×

E

[
1{dt = d} exp

(
is

1

δd′
xt

)
|wt, dt−1 = d′

]
×

exp

[∫ s/δd
′

0

E

[
i( δd

′

δd
′′ xt+1−αd′′δd

′−βd′′δd
′
wt) exp(is1xt)|dt=d′′,dt−1=d′

]
γd′′ E[exp(is1xt)|dt=d′′,dt−1=d′]

ds1

]
E
[
exp

(
is 1

δd′
xt

)
|dt = d′, dt−1 = d′′

] ds

/
∫

exp (−isx∗
t ) · E

[
exp

(
is

1

δd′
xt

)
|wt

]
×

exp

[∫ s/δd
′

0

E

[
i( δd

′

δd
′′ xt+1−αd′′δd

′−βd′′δd
′
wt) exp(is1xt)|dt=d′′,dt−1=d′

]
γd′′ E[exp(is1xt)|dt=d′′,dt−1=d′]

ds1

]
E
[
exp

(
is 1

δd′
xt

)
|dt = d′, dt−1 = d′′

] ds.

This completes Step 4.
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