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1 Introduction

A large number of securities, including government, municipal, and corporate bonds; asset-

backed securities; federal funds; and various types of derivatives, are traded in decentralized

or “over-the-counter” (OTC) markets. A prevalent feature of OTC markets is intermedia-

tion: trades are intermediated by dealers who buy from and sell to customers, as well as

other dealers.1 Traditionally, the theoretical literature building off of the influential work

of Duffie et al. (2005, 2007) has rationalized extensive intermediation as a mechanical con-

sequence of the OTC markets’ decentralized nature (finding a counterparty to trade takes

time) and opaqueness (the trading parties negotiate the terms of trade privately). In recent

years, however, OTC markets have become far more transparent due to several regulatory

initiatives, as well as the growing use of electronic trading platforms allowing traders at

once to obtain quotes at which many dealers are willing to trade.2 Yet, intermediation re-

mains a key feature of OTC markets, as shown by the recent empirical evidence in Adrian

et al. (2017) and Bessembinder et al. (2020). This presents a challenge for the traditional

mechanism behind intermediation found in the theoretical literature.3

To address this challenge, we develop a fully decentralized search-theoretic model of

an OTC market with price transparency. In the model, heterogeneous asset owners post

1 The literature has proposed several definitions of intermediation. In this paper, we follow Hugonnier
et al. (2014, 2018) and say an agent acts as an intermediary if she is actively trying to buy the asset when
she does not have it and actively trying to sell it when she does. Empirical evidence for intermedation in
OTC markets abounds; see, among others, Duffie (2011) for an overview, Bessembinder and Maxwell (2008)
for the corporate bonds market, Afonso and Lagos (2014, 2015) for the federal funds market, and Li and
Schürhoff (2019) for the municipal bonds market.

2 These initiatives, which require require the timely public dissemination of post-trade price and volume
information, include the Municipal Securities Rulemaking Board (MSRB) for the municipal bonds market,
the Trade Reporting and Compliance Engine (TRACE) for the corporate bonds and securitized assets mar-
kets, as well as the recent MiFID II set of regulations mimicking TRACE for the European corporate bonds
markets. For evidence on electronic platforms, see Stafford (2016), Liu et al. (2018) and Vogel (2019).

3 A few recent papers highlight the importance of including additional heterogeneity in investors’ charac-
teristics for explaining the empirically observed “core-periphery” structure of many OTC markets. In all of
these papers, intermediation is a consequence of random meetings and ex post bargaining. See the literature
review section for a detailed comparison with our approach.
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publicly available prices at which they are willing to sell the asset and heterogeneous non-

owners choose to which price to direct their orders. Both asset prices and contact rates

between investors are endogenous and reflect investors’ heterogeneous liquidity needs. We

show that intermediation arises naturally in this framework where agents choose their trading

counterparties based on available prices.

The modeling environment follows the literature initiated by Duffie et al. (2005). The

economy is populated by infinitely-lived investors who are either owners or non-owners of a

single indivisible asset in fixed supply. Investors are heterogeneous in their valuation of the

asset; we assume there are finitely many valuations and refer to each as an investor’s type.

In addition, investors experience periodic preference shocks that change their type and this

creates incentives to trade. As in Duffie et al. (2005) and many others, we restrict agents

inventory holdings to either 0 or 1 units of the asset.

There are two major points of departure from Duffie et al. (2005): i) the asset market

is purely decentralized and ii) there is price transparency. The first departure allows us to

study the trading pattern of the asset market as an endogenous equilibrium outcome. In

this regard, we follow the approach of Hugonnier et al. (2014) and postulate that all trades

in the economy take place in bilateral meetings without the aid of a perfectly competitive

dealer market.4 In particular, the roles of agents as either customers (those who only buy or

sell the asset) or dealers (those who intermediate trades between other agents) are endoge-

nous in our model. The second departure, namely price transparency, allows us to study

whether the economy would feature intermediation when prices are publicly available. To

incorporate price transparency, we model search frictions using the competitive search pro-

tocol. Specifically, we follow Lester et al. (2015) and allow owners to post prices at which

they are willing to sell the asset. Non-owners observe all posted prices and choose to direct

4 Other papers that feature a purely decentralized OTC market with a similar modeling approach include
Afonso et al. (2014), Hugonnier et al. (2018), Üslü (2019) and Bethune et al. (2019).
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their search towards a specific price.

The competitive search equilibrium of our fully decentralized OTC market has several

novel features. To begin with, agents endogenously segment into different submarkets. We

refer to the collection of all asset owners who post a particular price and all non-owners who

direct their orders towards that same price as a submarket. Moreover, we refer to owners

and non-owners who participate in a submarket as call sellers and buyers, respectively. Even

though buyers observe prices, there are still frictions which preclude the immediate execution

of trades, due to various institutional, informational, and technological constraints.5 We

capture these frictions through the means of a matching function — the expected execution

time is an exponentially distributed random variable with mean governed by the queue length

on the market (the ratio of buyers to sellers).6 Since buyers observe all prices, they direct

their orders only to counterparties with whom they have gains from trade. Consequently, all

meetings result in trades. Thus, each submarket is characterized by a price and a contact

rate, both of which are endogenous objects. This is in sharp contrast to most of the existing

literature, which has modeled OTC markets through the means of random bilateral meetings

with exogenous contact rates.

In equilibrium, investors fully segment into different submarkets. That is, each submarket

contains only one type of seller and one type of buyer. This is because when sellers post

prices, they face a trade-off between posting high prices which attract orders at a low arrival

rate, or posting low prices which attract orders at a high arrival rate. This is a classic trade

off found in competitive search models; see Wright et al. (2019) for a comprehensive review.

We show that in equilibrium no two buyer-seller pairs of different type trade in the same

5 In practice, there are several reasons that contribute to the delay of order execution between traders.
Some of these include: informational asymmetries that may lead to collateral verification; institutional
constraints that may put limits on the volume and number of trades; and even technological constraints,
such as the speed with which computers and electronic platforms show and process order information.

6 This modeling approach is standard in the labor search literature. For papers in the OTC literature
that use the matching function, see Lagos and Rocheteau (2007, 2009) and Lester et al. (2015).
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submarket. Furthermore, we show that the equilibrium prices segment the market efficiently.

That is, the submarkets that open and the order execution speeds therein coincide with the

planner’s allocation. In this regard, we generalize the constrained efficiency result of Lester

et al. (2015) in a fully decentralized setting.

Prices also play an important role for how parties split the surplus of trade. When a low

valuation owner transfers the asset to a high valuation non-owner, this creates a net gain

in the combined utility flow of the two investors. This net gain is what we refer to as the

fundamental surplus. The trade surplus, however, has an additional component which is due

to investors’ capacity to act as intermediaries by selling the asset when they have it and

buying the asset when they do not have it, conditional on keeping the same asset valuation.

When a non-owner receives the asset, she can in turn post it for sale herself, which results in

potential gains from transferring the asset to a non-owner of even higher valuation. At the

same time, the owner who just sold the asset can direct a buy order on a different submarket.

While she waits for her order to be executed, she foregoes the utility flow from owning the

asset. This foregone utility together with the purchase price constitute the owner’s “cost”

of restocking her inventory. Both the non-owner’s option of reselling and the owner’s cost

of restocking affect the surplus of the trade: if the non-owner can sell the asset quickly at

a high price, this increases the surplus; if the owner can restock her inventory quickly at

a low price, this also increases the surplus. As a result, both the gains and the costs of

intermediation are shared between the two parties through the price.

The main result of this paper is that in our model, intermediation arises naturally, even

though agents can choose their trading counter-parties. Intuitively, low type owners have, in

principle, a stronger incentive to trade with higher valuation non-owners because this trade

creates large fundamental surplus. However, if the terms of trade are favorable enough, mid-

valuation non-owners can entice low valuation owners to trade with them, instead of with

high valuation non-owners. In particular, if the price is high enough, then the low valuation
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owners can extract all of the gains that a mid-valuation non-owner can receive from reselling

the asset to the high valuation non-owner. In this situation, the only cost of selling to a mid-

type non-owner vis-à-vis a high type one is an opportunity cost: waiting for an order from

a mid-valuation non-owner precludes from waiting for one from a high valuation non-owner.

Then, if the order arrival rate for mid-type non-owners is high enough, the owner will always

have an incentive to trade with them, since she trades quickly and extracts all of the surplus

— including all potential gains of trade the mid-valuation non-owner realizes from reselling

the asset to a high valuation non-owner. Symmetrically, high valuation non-owners have,

in principle, stronger incentive to buy from low valuation owners. However, if the terms of

trade are favourable enough, they may buy from mid-valuation owners instead. In particular,

if the price is set at the cost of restocking the owner’s inventory, the high type non-owner

extracts all of the surplus when trading with a mid-type owner. Then, if the order execution

speed is fast enough, she will trade with the mid-valuation owner instead of the low valuation

one. Whether or not such behavior arises in equilibrium depends on the functional form of

the matching function. We show that for a broad class of matching functions which satisfy

Inada-type conditions on the order arrival and execution rates, all investors — except for

those with the lowest and highest valuation of the asset — intermediate trades in equilibrium.

Our final contribution is to connect the search-theoretic framework for the study of OTC

markets with the sorting literature, recently reviewed in Chade et al. (2017). Specifically,

since our model features two-sided heterogeneity and agents who choose their counterpar-

ties, characterizing the equilibrium is a sorting problem. We are able to derive predictions

regarding whether agents with high asset valuations trade with agents with high (negative

assignment) or low valuations (positive assignment).7 To the best of our knowledge, we are

7 In the sorting literature, an assignment is referred to as positive (negative) if high valuation buyers
match with high (low) valuation sellers. In this context, the ordering of buyer and seller types is such
that the match surplus is increasing in both types. On the contrary, in our model the fundamental surplus
is decreasing in the seller’s valuation. As a result, for our purposes, what the literature has traditionally
referred to as a “high type seller” corresponds to an owner with low valuation of the asset.
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the first to derive sorting implications in an OTC framework. In contrast with the results

of Shi (2001) and Eeckhout and Kircher (2010a), we find that the equilibrium assignment

in our model is very often not strictly monotone, in the sense that a trader of a certain

valuation may match with traders of multiple valuations. There are two reasons our results

differ from the existing literature. First, whereas Shi (2001) assumes free entry of agents

in one side of the market, we follow the OTC literature and assume fixed masses of agents.

Second, whereas Eeckhout and Kircher (2010a) assume that agents’ valuations are drawn

from a twice continuously differentiable CDF, we use discrete distributions. Thus, in our

economy, when the relative mass of sellers (buyers) of a certain type is large enough they

can meet the asset demand (supply) of multiple types of buyers (sellers). This often results

in an imperfect assignment, which is ruled out in most papers in the sorting literature.8

Related Literature. This paper contributes to the fast growing search-theoretic liter-

ature on OTC markets initiated by Duffie et al. (2005, 2007); for recent surveys, see Lagos

et al. (2017) and Weill (2020). Most closely related to ours are the papers which feature a

fully decentralized asset market. Hugonnier et al. (2014) provide a general analysis of a fully

decentralized benchmark model with {0, 1} asset holdings, an arbitrary distribution of in-

vestor valuations, exogenous random meetings, and bilateral bargaining. Neklyudov (2019)

adds heterogeneity in contact rates to explain the observed heterogeneity in bid-ask spreads

across different dealers. Geromichalos and Herrenbrueck (2016a,b) merge a decentralized

OTC market with the Lagos and Wright (2005) framework. Afonso and Lagos (2015) and

Üslü (2019), building upon Lagos and Rocheteau (2009), analyze the case with unrestricted

asset holdings. In addition to unrestricted asset holdings, Üslü (2019) allows for rich hetero-

geneity in investors’ preferences, inventories, and contact rates. He finds that heterogeneity

in contact rates is the main driver of intermediation patterns. The major difference between

these pioneering contributions and our work is that intermediation in these papers is a me-

8 See Jerez (2014) for an exception.
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chanical consequence of random meetings and price opaqueness, whereas in our framework

intermediation is the result of price transparency and investors’ optimal choices of trading

counterparties.

A growing body of work aims to explain intermediation patterns by introducing additional

heterogeneity in the search-theoretic OTC framework with price opaqueness.9 Farboodi et al.

(2017a) consider heterogeneity in bargaining power, whereas Farboodi et al. (2017b) consider

heterogeneity in contact rates. In both papers, the structure proposed by Duffie et al. (2005)

emerges endogenously, with the agents with superior bargaining power or higher contact

rates acting as intermediaries. In Bethune et al. (2019), investors are heterogeneous in their

ability to learn the private valuation of the asset held by others (screening ability). This

results in heterogeneous informational rents and, consequently, agents who possess superior

screening ability emerge as intermediaries. In contrast to all these papers, ours features price

transparency and directed search, maintaining traditional differences in investor valuations

as the only source of heterogeneity. Our results imply that neither random search nor price

opaqueness, nor additional heterogeneity are necessary conditions for intermediation to arise

in this class of models.

Developing an alternative approach, Chang and Zhang (2018) build a bilateral matching

model that combines elements of the search-theoretic literature with network models of

OTC markets. In their model, agents choose whom to meet with, but cannot observe other

agents’ asset valuation prior to forming a match. As a result, not all meetings lead to trade,

and prices are determined only after matches are formed. They show that certain agents

endogenously emerge as intermediaries and form the core of the trading network. Our paper

shares a common insight with their work: when search is directed intermediation emerges

endogenously. However, we derive this result in the context of the workhorse search and

9 To be precise, these papers aim to explain the “core-periphery” structure found in many real-world
OTC markets, a research question outside the scope of this paper.
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matching environment initiated by Duffie et al. (2005). As a result, we show that one does

not have to resort to alternative ways of modeling frictions to obtain intermediation when

agents choose their trading counterparties.

Finally, our work is part of the voluminous literature on competitive search which has

followed the seminal contributions of Moen (1997), Acemoglu and Shimer (1999), and

Mortensen and Wright (2002). Within that strand of literature, the most closely related

papers to ours are the ones which feature two-sided heterogeneity such as Shi (2001), Shimer

(2005), Eeckhout and Kircher (2010a), and Jerez (2014). Competitive search has been widely

used in many applications, comprehensively surveyed in Wright et al. (2019). However, there

are relatively few applications of competitive search in the context of OTC markets. As men-

tioned above, Lester et al. (2015) provide a detailed analysis in the context of semi-centralized

model featuring a frictionless market for dealers. Since we consider a fully decentralized OTC

market, our paper extends their analysis of competitive search in OTC markets to include

the issues of intermediation and sorting. Armenter and Lester (2017) employ competitive

search in a two-period model of the federal funds market which has heterogeneity only in

one side of the market. Lastly, a series of papers use the tractability of competitive search

to analyze issues of asymmetric information in asset markets. These include Guerrieri et al.

(2010), Guerrieri and Shimer (2014, 2018), Chang (2017), Li (2019), and Williams (2019).

2 The Model

Agents, assets, and preferences. Time is continuous and runs forever. The economy

is populated by a unit measure of infinitely-lived, risk-neutral investors who discount the

future at rate r > 0. There is one durable asset in fixed supply A ∈ (0, 1) and one perishable

numéraire good with marginal utility normalized to one. Investors can hold either zero or

one unit of the asset, which is assumed to be indivisible. We refer to investors who have
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the asset as “owners” and investors who do not as “non-owners”. The instantaneous utility

flow investors receives from holding the asset is δi, where i ∈ {1, 2, ..., I} ≡ I indexes an

investor’s type with 1 < I < ∞, and δi > δj for i > j. Types change over time: each

investor receives i.i.d preference shocks according to a Poisson process with intensity γ.

Conditional on receiving a preference shock, the investor draws a new type j from some

discrete cumulative distribution function F (δj) with support I. We denote the probability

mass function of that distribution by f(δj). The measures of owners and non-owners type i

are o(δi) and n(δi) respectively.

Matching and trade. Investors interact in a purely decentralized market: all trades

takes place in bilateral meetings. The market features complete price transparency: each

owner posts (and commits to) a publicly available price at which she is willing to sell the

asset to a non-owner. Non-owners observe all available prices and direct their orders to at

most one of the available prices. In this regard we follow Moen (1997), Acemoglu and Shimer

(1999), and Eeckhout and Kircher (2010a) and model the market using a competitive search

protocol. Moreover, we assume the types of all agents are publicly observable. We refer to

the collection of all owners posting the same price and all non-owners willing to buy the asset

at this price as a “submarket”.10 Owners (non-owners) who participate in some submarket

we call sellers (buyers) on that submarket. Owners (non-owners) who do not participate in

any submarket, we refer to as idle.

In practice, it takes time to execute trades between investors because of frictions. For

example, there might be informational asymmetries (it takes time to verify collateral), in-

stitutional constraints (on the volume of trade), and technological limitations on the speed

of execution.11 We follow the previous literature on OTC markets and capture these delays

10 Moen (1997) and Mortensen and Wright (2002) assume that third-party market makers set up submar-
kets and promise a price and expected waiting time for transactions to any agents that show up. We follow
the formalization of Acemoglu and Shimer (1999) and Eeckhout and Kircher (2010a) in which sellers post
terms of trade and buyers self-select to different submarkets. These are all equivalent interpretations of the
competitive search protocol; see Wright et al. (2019).

11 For example, Hugonnier et al. (2018) point out that most trades on the inter-dealer municipal bond
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through search frictions, which prevent instantaneous trading between investors. The speed

with which counter-parties trade is endogenous in our model and depends on the queue

length (the ratio of buyers and sellers) at each submarket.12 In particular, we follow Lagos

and Rocheteau (2009) and Lester et al. (2015) assume that the number of trades is given by

a matching function.13

Formally, suppose there is a measure o(δi, p) of owners type i posting a particular price

p and a measure n(δj, p) of non-owners type j interested in acquiring a unit of the asset at this

price. Then, at each instant, the flow of trades executed is given bym
(∑

i o(δi, p),
∑

j n(δj, p)
)

,

a function which has constant returns-to-scale, is strictly increasing, strictly concave and

twice continuously differentiable with respect to its two arguments. As is standard, the

waiting time for an owner to sell her unit of the asset is an exponentially distributed random

variable with parameter λ(q(p)) ≡ m(
∑

i o(δi,p),
∑

j n(δj ,p))∑
i o(δi,p)

= m (1, q(p)), where q(p) ≡
∑

j n(δj ,p)∑
i o(δi,p)

is the queue length on the submarket. Symmetrically, the waiting time for a non-owner is

exponentially distributed with intensity λ(q(p))
q(p)

. The assumptions on the matching function

imply that λ(·) is continuous, strictly increasing, and strictly concave.

market are still being executed over the phone.
12 To be precise, the queue length equals the ratio of non-owners over owners along the equilibrium path.

Out of the equilibrium path, the queue length will be determined by a condition on investors’ beliefs; we
explain the condition precisely later in this Section 3.1.

13 This modeling technology has been used extensively in search models of the labor market; it is usually
referred to as the “matching function”. Here, we use it as a modeling device that uses the measures of
investors as inputs and gives the final flow of trades as output.
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3 Equilibrium

3.1 Value Functions and Equilibrium Definition

Owners. Let V1(δi, p) denote the expected lifetime payoff of an owner of type i who posts

a price p, expecting a queue length q(p):

rV1(δi, p) = δi + γ
∑
j

[V ∗1 (δj)− V1(δi, p)] f(δj) + λ(q(p)) [p− V1(δi, p) + V ∗0 (δi)] . (1)

Intuitively, the owner enjoys a utility flow δi from holding the asset until she i) receives a

preference shock or ii) sells the asset. At a rate γ, the owner draws a new preference type

j with probability f(δj). In this event, she obtains the maximum attainable utility of being

an owner of type j, denoted by V ∗1 (δj), and loses her current expected payoff, V1(δi, p). At

a rate λ(q(p)), she meets a non-owner who purchases the asset at price p. In this event, the

owner receives the price and the maximum attainable utility of being a non-owner of type i,

denoted by V ∗0 (δi), but loses her current expected payoff, V1(δi, p).

Non-owners. We can similarly characterize the value function for a non-owner with

type i who participates in submarket p. A non-owner who finds all posted prices too high

can choose to not participate in any market, i.e. she can choose the price of p = ∅. This

allows us to keep notation concise and denote the value function of non-owners who are

active buyers in some submarket and non-owners who are idle by V0(δi, p). In particular,

rV0(δi, p) = γ
∑
j

[V ∗0 (δj)− V0(δi, p)] f(δj) +
λ(q(p))

q(p)
[V ∗1 (δi)− p− V0(δi, p)] . (2)

Intuitively, a non-owner with type i does not enjoy a positive utility flow since she does not

own the asset. Two distinct events can affect her value function: i) the preference shock and

ii) meeting an owner. At rate γ, the non-owner draws a new preference type and this type is
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j with probability f(δj). In this event, she obtains the maximum attainable utility of being

a non-owner of type j, denoted by V ∗0 (δj), but loses her current expected payoff, V0(δi, p).

At rate λ(q(p))/q(p), she meets an owner and purchases the asset. In that case, she receives

the maximum attainable utility of being an owner of type δi, denoted by V ∗1 (δi), but loses

her current expected payoff, V0(δi, p). If the non-owner chooses the option of p = ∅, her

matching rate with an owner is 0, i.e. λ(q(∅))/q(∅) = 0.

The maximum utilities an investor can attain are formally defined as:

V ∗1 (δi) = supp∈P {V1(δi, p)} , (3)

V ∗0 (δi) = supp∈P {V0(δi, p)} , (4)

for owners and non-owners correspondingly, where P is the set of prices posted in equilibrium.

Out-of-equilibrium beliefs. So far, the value functions are only determined along the

equilibrium path, since the queue length, q(p), is well defined only for prices p ∈ P . We

follow Eeckhout and Kircher (2010a) and Jerez (2014) by imposing restrictions on beliefs

in the spirit of subgame perfection: we assume that owners expect a positive queue length

when posting a given price only if there is some non-owner who is willing to buy the asset

at that price. Moreover, owners expect the largest possible queue length for which they can

find such a non-owner type, i.e. they expect non-owners to queue in the submarket until it

is no longer profitable to do so. Formally, the queue length satisfies the following condition

for any price:

q(p) = sup

{
q′ ∈ R+ : ∃δ; V0(δ, p) ≥ max

p′∈P
V0(δ, p

′)

}
, (5)

or q(p) = 0, if the set is empty. This belief restriction defines queue lengths and value

functions on the entire domain of prices, not only along the equilibrium path.
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Laws of motion. The masses of owners and non-owners evolve due to preference shocks

and asset trading. In particular,

ȯ(δi) = γf(δi)
∑
j 6=i

o(δj)− γo(δi)
∑
j 6=i

f(δj)−
∑
p∈P

o(δi, p)λ(q(p)) +
∑
p∈P

n(δi, p)
λ(q(p))

q(p)
, (6)

ṅ(δi) = γf(δi)
∑
j 6=i

n(δj)− γn(δi)
∑
j 6=i

f(δj) +
∑
p∈P

o(δi, p)λ(q(p))−
∑
p∈P

n(δi, p)
λ(q(p))

q(p)
. (7)

At rate γ, owners of any given type are hit with a preference shock. Conditional on that

event, each agent draws type i with probability f(δi). Hence, the first term represents the

net flow of agents into o(δi) due to preference shocks. The second term captures the net flow

out due to preference shocks: each owner of type i receives a preference shock at rate γ and,

conditional on that event, her type changes with probability
∑

j 6=i f(δj). In each submarket

p there are o(δi, p) owners of type i selling the asset. Each of them executes a trade at rate

λ(q(p)). Once the trade is executed the owner transfers the asset to the non-owner and so

she becomes a non-owner of type i. Thus, the third term in equation (6) captures the flow of

agents out of o(δi) due to trade. Analogously, the last term captures the flow into owners of

type i due to non-owners of type i purchasing the asset. The law of motion for non-owners

is given by (7) and the intuition behind it is analogous.

Equilibrium definition. A steady state equilibrium is a set of value functions V ∗1 (δi)

and V ∗0 (δi), with i ∈ I, a set of prices P , a set of masses o(δi, p) and n(δi, p), with p ∈ P

and i ∈ I, and a queue length function q(·) : R+ → R+, such that owners choose prices that

maximize their values defined by (1), non-owners choose submarkets that maximize their

values defined by (2), the queue length function satisfies condition (5), equations (6) and

(7) hold with ȯ(δi) = ṅ(δi) = 0, for all i ∈ I, the accounting identities
∑

p∈P o(δi, p) = o(δi)

and
∑

p∈P n(δi, p) = n(δi) hold for all i ∈ I and the resource constraints
∑

i∈I o(δi) = A and∑
i∈I n(δi) = 1− A hold.

Value functions along the equilibrium path. The equilibrium payoff of each investor
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is determined by her own prices and submarket choices and by the distribution of price and

submarket choices in the economy, which in turn has to be consistent with the optimal choices

of individual investors. In equilibrium, an individual owner of type i takes the distributions

of investor masses o(δi, p) and n(δi, p) as given and, according to the equilibrium definition,

her pricing decision solves maxp V1(δi, p) (taking into account that her choice of price affects

the expected queue length, q). The owner can post a price that attracts a zero (q(p) = 0)

or positive (q(p) > 0) measure of non-owners. The response of non-owners to this seller’s

pricing decision is captured by (5), which holds by assumption outside the set of equilibrium

prices P and, by the equilibrium definition, inside P . Thus, the problem of an owner is

max
q,p
{λ(q) [p− V1(δi, p) + V ∗0 (δi)] : q = sup {q′ ∈ R+ : ∃δ; V0(δ, p) ≥ V ∗0 (δ)}} . (8)

It is easy to establish that, by continuity of V0(δi, p) in (8), any optimally set price leaves

the non-owners who queue up in this submarket their market utility V ∗0 (δ). As a result, the

owner’s i problem reduces to

max
q,p,j
{λ(q) [p− V1(δi, p) + V ∗0 (δi)] : V0(δj, p) = V ∗0 (δj)} . (9)

Variants of equation (9) are at the core of most competitive search models. Intuitively, in

equilibrium, owners optimally choose prices and non-owner type(s) they wish to attract,

such that non-owners receive exactly the utility they would get if they were to participate in

a different submarket.14 V ∗0 (δ) is an endogenous object but is taken as given by individual

investors. The existing literature has used this strategy of characterizing the equilibrium

(often referred to as market utility approach) extensively; see Wright et al. (2019) for a

recent review.

14 Notice that a submarket featuring a price and a queue length that do not satisfy the constraint in (9)
would attract zero non-owners, since it does not provide non-owners with their outside option.
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The Bellman equations along the equilibrium path read:

(r + γ)V ∗1 (δi) = δi + γV ∗1 + λ(q∗(δi)) [p∗(δi)−∆V ∗(δi)] , (10)

(r + γ)V ∗0 (δi) = γV ∗0 +
λ(q∗∗(δi))

q∗∗(δi)
[∆V ∗(δi)− p∗∗(δi)] , (11)

where V ∗1 =
∑

j V
∗
1 (δj)f(δj) and V ∗0 =

∑
j V
∗
0 (δj)f(δj) are the average maximum utilities

across investor types, p∗(δi) is an optimally chosen price posted by owner i that attracts

queue length q∗(δi) in equilibrium, p∗∗(δi) and q∗∗(δi) are the equilibrium price and queue

length in a submarket that non-owner i has optimally chosen to participate and ∆V ∗(δi) =

V ∗1 (δi) − V ∗0 (δi) is the reservation value of investor i (that is, the expected utility of owing

minus the expected utility of not owing the asset) along the equilibrium path.15

Reservation values along the equilibrium path. We can use the expressions for the

Bellman equations, (10) and (11), to express the reservation value of investor δi as

(r + γ)∆V ∗(δi) = δi + γ∆V ∗ + λ(q∗(δi)) [p∗(δi)−∆V ∗(δi)]−
λ(q∗∗(δi))

q∗∗(δi)
[∆V ∗(δi)− p∗∗(δi)] .

(12)

This expression highlights the dual role of investors (as buyers and sellers) in the market.

The first two terms capture the utility flow of owning the asset and the expected capital gain

(loss) from switching types. The last two terms capture the search options of the investor

when she is an owner and a non-owner. When she does not have the asset, the investor

can queue on the submarket p∗∗(δi) and, if matched, she purchases the asset in exchange

for the price. She then receives her reservation value and is now an owner who can exercise

her option to post the asset for sale. If the optimally chosen p∗(δi) attracts a positive queue

length, once the investor makes contact with a buyer, she receives the price but loses her

reservation value. Thus, she is now a non-owner and can again exercise her search option of

15 Of course, there may be more than one prices and more than one submarkets that maximize an owner’s
and a non-owner’s lifetime utility respectively.
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looking to buy the asset.

Following Hugonnier et al. (2014), we call this behavior intermediation. It is important to

stress that intermediation in our model is a choice. The sellers on submarket p∗∗(δi) choose

to post terms of trade such that they trade with an investor type i who then sells the asset

to buyers on submarket p∗(δi), even though sellers on market p∗∗(δi) can post terms of trade

that attract the non-owners on market p∗(δi). Similarly, non-owners on market p∗(δi) choose

to buy the asset from an investor type i rather than to queue directly on the market p∗∗(δi).

Thus, any intermediation that takes place in our economy is an outcome of investors’ optimal

choices regarding which type to direct their orders towards. In contrast, intermediation in

the benchmark theoretical model which features random search, Hugonnier et al. (2014), is

a mechanical consequence of the matching technology.16

Trade surplus along the equilibrium path. Whenever investors trade, this generates

a surplus. We denote it by S∗(δi, δj), where i, j are the types of the seller and buyer respec-

tively and the star superscript represents the value along the equilibrium path. If these two

agents trade, the buyer gains her reservation value, but transfers the price to the seller who

in turn loses her reservation value. Hence, S∗(δi, δj) = ∆V ∗(δj) −∆V ∗(δi). Using (12) the

surplus can be rewritten as

S∗(δi, δj) =
δj − δi
r + γ

+
λ(q∗(δj))

r + γ
[p∗(δj)−∆V ∗(δj)] +

λ(q∗∗(δi))

q∗∗(δi)(r + γ)
[∆V ∗(δi)− p∗∗(δi)]

− λ(q∗(δi))

r + γ
[p∗(δi)−∆V ∗(δi)]−

λ(q∗(δi))

q∗(δi)(r + γ)
[∆V ∗(δj)− p∗(δi)] . (13)

The above expression highlights how the option of acting as an intermediary affects the

16 In Hugonnier et al. (2014) investors with moderate valuations intermediate trades for investors with
extreme valuations, but this is an implication of random meetings taking place with an exogenous intensity.
Moderate types meet relatively frequently with both non-owners with higher types than their own and owners
with lower types than their own and, as a result, intermediate a large fraction of trades. In our model, low
types choose to search for and sell to moderate types and moderate types choose to search for and sell to
high types. Hence, intermediation is not a by-product of random exogenous meetings and asset misallocation
across investor types, but rather arises naturally as investors direct their search towards different prices.
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trade surplus. The first term of (13) captures the discounted difference in the utility flows

of the two investors. We call this the fundamental surplus. The next two terms capture

the potential benefit for the two investors if they do act as intermediaries. When the buyer

receives the asset she not only gains her flow value but also the option to post the asset

for sale on a different submarket p∗(δj). At the same time the owner i gains the option to

search for the asset her self and reacquire it at the price p∗∗(δi). Both of these options have

positive payoffs and so they increase the surplus of the match. If the buyer can sell the asset

at favourable terms quickly or if the seller can reacquire the asset quickly at a low price, this

increases the surplus of their match. The last two terms capture the loss of the investors’

outside option once they trade. Once the asset is transferred the owner can no longer post

it for sale and the buyer loses the option to search for the asset.

3.2 Equilibrium Characterization

Next, we proceed to characterize the equilibrium (we defer equilibrium existence to Section

3.5). The first set of equilibrium properties establishes that investors’ value functions and

reservation values are increasing in investor types, a result which is standard in the literature.

Lemma 1. For any i > j, the following inequalities hold: ∆V ∗(δi) > ∆V ∗(δj); V ∗0 (δi) ≥

V ∗0 (δj); V ∗1 (δi) > V ∗1 (δj). Furthermore, if some non-owners of type j are active in some

submarket, then V ∗0 (δi) > V ∗0 (δj).

Next, we can use equations (10) and (11), along with the constraint V0(δ, p) = V ∗0 (δ), to

express the owner’s problem (9) more compactly:

max
q,j
{λ(q)S(δi, δj)− q [(r + γ)V ∗0 (δj)− γV ∗0 ]} , (14)

where S(δi, δj) = ∆V ∗(δj) −∆V (δi, p). The first order condition with respect to the queue
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length results in an expression for the price of trade between i and j, familiar from the

competitive search literature:

p(δi, δj) = η(q)∆V ∗(δj) + [1− η(q)]∆V (δi, p), (15)

where η(q) ≡ omo

m
is the elasticity of the matching function with respect to the total measure

of owners in this submarket. In equilibrium, the price of the asset is a weighted average

of the two equilibrium reservation values and thus captures investors’ option to act as in-

termediaries. The reservation value of the buyer is higher if she can sell the asset quickly

at a favorable price, once she has acquired it. This increases the surplus of the match and

consequently the price. As a result some of the potential benefits the buyer receives by acting

as an intermediary are passed to the seller at the time of the trade. Similarly, if the seller

has to reacquire the asset, once she has sold it, at relatively high prices or slow speeds, the

expected “costs” or restocking her inventory are high. This decreases the match surplus and

the price. Thus, some of the expected costs of reacquiring the asset are passed to the buyer.

It is instructive to compare (15) with equation (4) of Hugonnier et al. (2014): they are

exactly the same, except the weights on ∆V ∗(δ) and ∆V (δi, p) are the bargaining powers

of owners and non-owners respectively instead of the matching function elasticity.17 In the

model of Hugonnier et al. (2014), the price of trade is the result of Nash bargaining between

owners and non-owners with different bargaining powers. In both models, the price is a

weighted sum of the reservation values of investors who trade, but the weights are different:

with Nash bargaining the weights are exogenous and equal to investors’ bargaining powers,

while with price posting the weights are endogenous and depend on the queue length of the

submarket in which the trade takes place. To better understand the implications of this

result, we use (15) to express the gains from a trade between owner δi and non-owner δ as

17 All search and matching models of OTC trading with ex post bargaining feature a version of this
equation; for example, it is equation (11) in Duffie et al. (2005).
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functions of the match surplus: p(δi, δ) − ∆V (δi, p) = η(q)S(δi, δ) and ∆V ∗(δ) − p(δi, δ) =

[1− η(q)]S(δi, δ). These expressions correspond to the Hosios (1990) condition for efficiency

in markets with search frictions. However, as discussed by Shi (2001) and Eeckhout and

Kircher (2010a), in environments with two-sided heterogeneity, equation (15) is necessary

but not sufficient for the equilibrium to be efficient.18 We show that the equilibrium in our

model is actually efficient in Section 3.5.

Our results on the price and surplus along the equilibrium path allow us to show that

in equilibrium agents will endogenously segment into different submarkets. That is, every

submarket features a unique pair of seller and buyer types. Intuitively, price competition

among sellers drives the price to the weighted sum of reservation utilities of owners and non-

owners that trade in the submarket. Hence, if there are two buyer types in a submarket, one

of them does not receive their market utility (since these are strictly increasing in investors’

types). This contradicts optimal behavior of non-owners. Symmetrically, when two sellers

of different types post the same price, there is a profitable deviation for one of them.

Proposition 1. Every submarket in equilibrium features only one type of owner and one

type of non-owner. Furthermore, if owner δi and non-owner δj trade in equilibrium, they

trade in only one submarket.

As a consequence, we can index submarkets by (δi, δj), where δi is the owner type and δj

is the non-owner type in this submarket. Accordingly, we write q(δi, δj) and p(δi, δj) for

submarket (δi, δj). We use the star superscript to denote variables along the equilibrium

path: q∗(δi, δj) and p∗(δi, δj).

We should emphasize that focusing on price posting instead of allowing owners to post

more complicated contracts is without any loss of generality, given the matching protocol

18 Condition (15) dictates how a given pair (δi, δ) should split the match surplus to achieve efficiency. It
does not specify which pairs (δi, δ) should trade in equilibrium. That is, with two-sided heterogeneity the
question of which pairs are formed in equilibrium is crucial for efficiency; this question is trivial in models
with homogeneous agents or with one-sided heterogeneity.
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we use. As shown by Eeckhout and Kircher (2010b), in the case of bilateral meetings it

is suboptimal for sellers to use more complicated mechanisms than price posting to attract

buyers. In the case of complete information, the following intuition for this result is straight-

forward. Consider an owner contemplating whether to post a single price that attracts only

non-owners δi versus a contract targeted towards non-owners δi and δj, with δi < δj, ac-

cording to which she transfers the asset to either δi or δj with order execution rates pi and

pj respectively. Since the surplus when matching with non-owners δi is greater, the owner

has greater return when she trades with type δi than δj. Hence, conditional on meeting a

non-owner, the owner receives greater returns in a submarket in which she offers the asset

to buyers of type δi only.19 For the owner to find posting a contract weakly better than a

single price, it must be the case that her order arrival rate is larger in the submarket with

both non-owners δi and δj than, in the market with non-owners δi only. But this means that

non-owners of type δi have a strictly lower order execution rates in the submarket where

both types of non-owners participate. Hence, non-owners δi would not show up to trade in

the submarket with both types of non-owners, which shows that posting a contract does not

make sellers better off.20

3.3 Intermediation

Having established that the equilibrium consists of a set of submarkets populated by pairs of

owners and non-owners, a natural next step is to look at the pattern of trade by examining

the set of submarkets which open in equilibrium.

Proposition 2. In equilibrium, no market (δi, δj) with i > j opens. Furthermore, if sub-

market (δi, δj) with i < j opens, then markets (δi, δi) and (δj, δj) do not open.

19 In any equilibrium the prices for all trades have to satisfy our equation (15). If they do not, then there
are profitable deviations for both buyers and sellers as a result of non-owners receiving their outside options
and owners competing for buyers.

20 The exact same argument applies if we consider contracts that attract more than two types of non-
owners or contracts that feature a lottery.
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As expected, pairs with negative surplus (i > j) do not trade in equilibrium. Moreover,

the only occasion in which zero-surplus pairs of investors (i = j) occurs is when this type

does not participate in any submarket with positive surplus. If there is no opportunity for

trades with positive surplus, investors are indifferent between non-participation and trading

with investors with the same valuation. In such a situation we assume that when owners are

indifferent between being idle and participating in some submarket, they post a price which

attracts a positive queue length. Given the off equilibrium beliefs, this implies that if there

are both owners and non-owners of some type i that do not participate in any market with

a positive surplus they participate in (δi, δi). Furthermore, the following corollary follows

immediately.

Corollary 1. If some owners (non-owners) of a given type δi are sellers (buyers) on some

submarket, then all owners (non-owners) of that type are sellers (buyers) on some submarket.

Proof. The proof is immediate from proposition 2. �

Of course in equilibrium not all submarkets with positive surplus necessarily open. In

general answering the question of which submarkets open depends on parameter values and

on the functional form of the matching function. Instead, we retain our general frame-

work and focus on participation, i.e. which owners are going to be active sellers and which

non-owners would be active buyers. This approach allows us to explore the existence of

intermediation in our model without making restrictive parametric assumptions.21

The potential benefit to investors from participating in a submarket is affected by their

reservation value. When a non-owner buys the asset she pays the price but receives her

reservation value. Since equilibrium reservation values are strictly increasing in the investor’s

type it follows that higher type non-owners have a stronger inventive to participate in some

submarket as compared to lower types. Similarly, when an owner sells the asset she loses her

21 As we show later in this section, the qualitative features of the equilibrium pattern of trade depend on
the asymptotic properties of the matching function.
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reservation value. As a consequence, the higher the type of the owner the lower her incentive

to participate in some submarket. The next proposition formalizes this intuition.

Proposition 3. In equilibrium, an owner type i is an active seller if and only if i ≤ s and

a non-owner type j is an active buyer if and only if j ≥ b, where s and b are some types

between 1 and I.

In equilibrium, all non-owners of high enough valuation are active buyers and all owners

of low enough valuation are active sellers. Intermediation would arise if s ≥ b. In that

situation, there would be some types of investors who are actively selling the asset when

they have it, and actively trying to acquire the asset when they do not have it. Whether or

not this is true, however, depends on the primitives of the model, and in particular, on the

properties of the matching function.

Intuitively, take some agents i, j, k with δi < δj < δk. Among these 3 types of agents,

the largest gains from trade are generated when an owner type i sells the asset to a non-

owner type k. For intermediation to occur, it must be the case that the owner type i and

non-owner type k both get favorable terms of trade when they trade with investors type j,

even though the surplus generated in these trades is relatively smaller. Thus, it must be

the case that i (k) extracts a large fraction of the surplus when she trades with non-owner

(owner) type j, or that she can execute a trade relatively fast. Otherwise, owner type i

(non-owner type k) would be better off trading with non-owners type k (owners type i). On

the other hand, investors type j always have an incentive to act as intermediaries. If they

do not intermediate, then they are either idle owners or idle non-owners. However, if they

are active, there is the chance to execute a positive surplus trade and extract some of that

surplus. Thus, intermediation in our model arises when there exist some intermediate types

j that can provide favorable enough terms of trade and fast order execution speeds when

they are both owners and non-owners.
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Next, we investigate the conditions under which a given non-owner type j accepts terms

of trade favourable to an owner type i < j so that j is not an idle non-owner. To this

end, consider some non-owner of type j and suppose that she is idle in equilibrium. Given

our previous results, this means that all non-owners type j are idle. This implies that

V ∗0 (δj) = γV ∗0 /(r + γ). Then consider a deviation by some owner type i < j. Given that

non-owners j are idle, the deviant can post a price that extracts all of the surplus and still

expect a positive queue length. Then the payoff of the deviant is given by

V1(δi|δj) =
δi + γV ∗1
r + γ

+
λ(q)

r + γ
S(δi, δj), (16)

where q is the anticipated queue length and V1(δi|δj) is the utility of the deviant and the trade

surplus is then given by S(δi, δj) = ∆V ∗(δj)−∆V (δi|δj), with ∆V (δi|δj) = V1(δi|δj)−V ∗0 (δi)

being the reservation value for the deviant seller. Using (16), we can express the surplus as

S(δi, δj) =
r + γ

r + γ + λ(q)

[
∆V ∗(δj) + V ∗0 (δi)−

δi + γV ∗1
r + γ

]

=
r + γ

r + γ + λ(q)

[
∆V ∗(δj)−∆V ∗(δi) +

λ(q∗(δi, δk))η(q∗(δi, δk))

r + γ
S∗(δi, δk)

]
, (17)

where the second line follows from plugging in the solution for the price, (15), into the

expression for the owner’s value function along the equilibrium path, (10), and k > j is

a non-owner type with whom owners type i trade in equilibrium.22 Then, the following

equation expresses the difference in the reservation values of the owner type i when she

22 By Proposition 2 if k is an active non-owner, then all non-owners with type higher than hers are active
as well. Thus, if j ≥ k the result that non-owners j are not idle in equilibrium would follow immediately.
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posts the deviation price and when she follows her equilibrium strategy:

∆V (δi|δj)−∆V ∗(δi) =
1

r + γ + λ(q)
[λ(q)S∗(δi, δj)− λ(q∗(δi, δk))η(q∗(δi, δk))S

∗(δi, δk)]

(18)

The left hand side of (18) is just another way of expressing V1(δi|δj) − V ∗1 (δi) and thus

captures the net benefit from deviating. On the right-hand side of the equation we see the

decomposition of this net benefit. It is a weighted average of two terms: (i) the payoff from

deviating and (ii) the opportunity cost. The benefit from deviating is that the owner has

the opportunity to trade with non-owner j. If this happens, she receives all of the surplus,

so her gain is S∗(δi, δj). The rate with which she receives an order is λ(q), so her expected

gain is λ(q)S∗(δi, δj). The opportunity cost of deviating is missing out on the search option

along the equilibrium path, which is the second term. In equilibrium, the owner trades with

a buyer type k and receives a fraction η(q∗(δi, δk)) of the surplus. This order arrives at the

rate λ(q∗(δi, δk)). Thus, while the owner i is waiting for an order from an investor type j, she

is missing out on a potential order from her equilibrium trading counter-party type k. As a

consequence, the owner type i would have an incentive to deviate when the fraction of the

surplus she receives along the equilibrium path is too low, or if deviating provides a quick

trading opportunity. Observe that given the out-of-equilibrium beliefs, the deviant expects

a queue length q = ∞, and so the order arrival rate would depend on the behavior of the

matching function in the limit. If it satisfies the Inada-type condition limq→∞ λ(q) =∞, then

the net benefit from deviating converges to S∗(δi, δj) > 0. Since this is a strictly profitable

deviation it must be that non-owners type j are not idle in equilibrium.

Intuitively, if λ(q) approaches infinity, the owner type i can transfer the asset to a non-

owner type j immediately. Once this happens, the asset is held by an agent with a higher

utility flow. The investor type j can then post the asset for sale, offering the same terms
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that investors i offer to non-owners type k in equilibrium. Thus, she executes the exact same

orders that the type i owner would execute in equilibrium, but she enjoys a higher utility

flow while waiting for an order. Since the deviant investor type i extracts all of the surplus,

she can post a price that transfers all of the potential gains of having a higher utility flow

while waiting for an order from non-owners type k. Thus, the deviant essentially trades her

reservation value for that of an investor type j. Moreover, since λ(q) → ∞, she can do the

exchange instantaneously and so there is no opportunity cost of posting the deviation price.

As a result, the deviant extracts all of the surplus from the trade with an investor type j

and receives an order immediately. Since this is true for all types i < j, it follows that no

non-owner type j ≥ 2 is idle in equilibrium.

Similarly, we can investigate the conditions under which a given owner type j can offer

favourable enough terms of trade to non-owners type k > j, so that the owner is not idle in

equilibrium. To this end, consider an idle owner who contemplates a deviation by posting a

price that is aimed at attracting some type k. The best chance she has of inducing a positive

queue length is if she posts a price that leaves all of the surplus to the buyer. Given such a

deviation, a non-owner type k who participates receives a utility given by

V0(δk|δj) =
γV ∗0
r + γ

+
λ(q)/q

r + γ
S(δj, δk), (19)

where q is the induced queue length. Analogously to the case when investor j was an idle

non-owner, the surplus from the trade is given by

S(δj, δk) =
r + γ

r + γ + λ(q)/q

[
∆V ∗(δk)−∆V ∗(δj) +

λ(q∗(δi, δk))[1− η(q∗(δi, δk))]

q∗(δi, δk)(r + γ)
S∗(δi, δk)

]
,

(20)

where i < j is an owner type with whom non-owners type k trade in equilibrium.23 Hence,

23 By Proposition 2, if i is an active owner, then so are all owners of type less than i. Thus, if j ≤ i, the
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the net benefit of participating in the submarket for a non-owner type k is

∆V ∗(δk)−∆V (δk|δj) =
1

r + γ + λ(q)/q

[
λ(q)

q
S∗(δj, δk)−

λ(q∗(δi, δk))

q∗(δi, δk)
[1− η(q∗(δi, δk))]S

∗(δi, δk)

]
.

(21)

The left-hand side of the expression is simply the net benefit from participating in the

deviation submarket, V0(δk|δj) − V ∗0 (δk). The right-hand side decomposes the net payoff:

the first term is the expected payoff from participating in the submarket, and the second

term is the opportunity cost of foregoing a potential order execution in the equilibrium

submarket. If the matching function satisfies the Inada-type condition limq→0 λ(q)/q = ∞,

then the net payoff from participating converges to S∗(δj, δk), which is strictly positive.

Hence, given the out-of-equilibrium beliefs, a continuity argument implies that the posted

deviation price will induce a positive queue length. Since the payoffs for both the owner type

j and the non-owner type k are continuous in the price, it follows that a deviation which

leaves a small enough fraction of the surplus to the deviant would still induce a positive

queue length. Since this is a strictly profitable deviation, it follows that owners type j will

not be idle in equilibrium. Since this deviation is profitable for all idle owners type j < k, it

follows that in equilibrium no owner type j ≤ I − 1 is idle.

Intuitively, the deviation price is just large enough so that the seller can cover her expected

costs of reacquiring the asset, which are given by her reservation value, ∆V ∗(δj). Thus, if

they queue on the submarket, non-owners type k can acquire the asset immediately at the

cost of ∆V ∗(δj). By doing so, they save on the utility cost of not having the asset and

searching for it on the submarket (δi, δk). Since reservation values are strictly increasing in

investors’ type, the utility loss from not having the asset is larger for investors type k than

it is for investors type j, i.e. ∆V ∗(δk) > ∆V ∗(δj). Hence, non-owners type k always have an

result that owners of type j are not idle in equilibrium would follow immediately.
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incentive to queue for the deviant’s price.

Proposition 4. If the matching function satisfies the Inada-type conditions limq→∞ λ(q) =

limq→0 λ(q)/q =∞, then δb = δ2 and δs = δI−1.

Proof. The proof is in the preceding text. �

It is clear from the preceding text that when the matching function does not satisfy the

Inada-type conditions, it is possible that no intermediation takes place. Intuitively, when

the expected waiting times for an order execution are bounded away from zero, the potential

intermediary may not be able to offer favourable enough terms of trade for any level of the

induced queue length on the deviation submarket. Another instance when our conclusion

may not hold is when there is a flow cost from participating in a submarket. In that case,

the potential intermediary may not be willing to offer favourable terms, because if she offers

very fast execution speeds for her trading counter-party, this implies very low matching rates

for her. In our benchmark case this is not a problem, because the potential intermediary is

idle in equilibrium and so suffers no opportunity cost by waiting a long time for an order

execution. With participation costs, however, high waiting times imply a high expected cost

of trading and she may prefer to stay idle. Finally, intermediation may not arise in the

frictionless limit of the model. As equilibrium trading delays go to zero, idle sellers (buyers)

of type j cannot induce a deviation by buyers of type k (sellers of type i) by offering strictly

faster trading speeds.

Given the insights from proposition 4, we can show that in equilibrium all types of

investors will participate in the market in some capacity, i.e. as either active buyers or

sellers. This result holds regardless of whether or not the matching function satisfies the

Inada-type conditions.

Corollary 2. In equilibrium, for any type i, either all owners are sellers on some submarket,

or all non-owners are buyers on some submarket, or both.

27



3.4 Sorting

So far, we have examined the extent of participation in the market and its relation to

intermediation. To highlight the linkage between intermediation and sorting, we impose

the Inada-type conditions from Proposition 4 on the matching function for the analysis in

this section. The next natural step is to understand which non-owner types buy from each

owner type. Given that the model features two-sided heterogeneity, this is equivalent to

asking: what is the sorting pattern in the model? Sorting has been the topic of an extensive

literature, recently surveyed in Chade et al. (2017). Since our model features frictions and

directed search, the contributions of Shi (2001), Eeckhout and Kircher (2010a) and Jerez

(2014) are particularly relevant.24

Following Eeckhout and Kircher (2010a), we define sorting in terms of the contributions

of owners and non-owners to the surplus function of the match. This is important because the

owners’ valuation of the asset enters the surplus function negatively, analogously to the cost

of production in a model of the product market. Moreover, and again following Eeckhout

and Kircher (2010a), we include only strictly monotone assignments in the definition of

assortative matching. Jerez (2014) refers to the strictly increasing assignment as “perfect

sorting”, a term we also use.

Definition: We call the equilibrium assignment positive assortative (PAM) if there exists

a strictly decreasing sorting function µ : I → I that assigns a non-owner type δ′ to every

owner type δ such that submarket (δ, δ′) opens in equilibrium. If µ is strictly increasing, we

call the assignment negative assortative (NAM).

Armed with this definition we can show the following result.

Lemma 2. Suppose the matching function satisfies limq→∞ λ(q) = limq→0 λ(q)/q = ∞ and

that I > 2. Then, PAM cannot be an equilibrium. Moreover, the only NAM equilibrium is

24 To the best of our knowledge, we are the first to draw a parallel between the sorting and OTC literatures.
This connection seems natural and we hope it will be pursued further in future research.
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a single chain which starts at owner type δ1 and ends at non-owner type δI . That is, all

possible submarkets of the type (δi, δi+1) open and no other submarket opens.

The perfect sorting requirement of PAM and NAM imposes a very strict structure regarding

trading pairs in equilibrium. In essence, PAM implies that some investor types will not

participate in the asset market and precludes intermediation. However, as we have seen,

near-complete investor participation and intermediation are essential features of the equi-

librium in our model. The only kind of strictly monotone assignment consistent with the

equilibrium of our model is the single chain of NAM. Generally, though, in models with

two-sided heterogeneity, a given non-owner type may, in principle, trade with more than one

owner types — and vice versa. That is, matching between types may well not be strictly

monotone. Jerez (2014) provides an example of such an assignment, and in our model, such

an imperfect assignment very often arises.25 This is in sharp contrast with Shi (2001) and

Eeckhout and Kircher (2010a), who focus on perfect/strictly monotone assignments.

There are two important model differences that explain why imperfect assignments are

ruled out in the equilibria of Shi (2001) and Eeckhout and Kircher (2010a), but may well

occur in our model. First, Shi (2001) assumes free entry of agents on one side of the market,

while we follow the OTC literature which usually assumes the masses of agents are fixed. In

Shi’s set up, one side of the market chooses and commits to a type before entering the market,

while free entry makes agents indifferent between types. If two different types of buyers

match with the same type of seller, it would be impossible to make these buyers indifferent

in equilibrium. In our model, however, there is no entry, and the same non-owner type may

buy from different owner types, as long as prices and queue lengths in different submarkets

25 Shimer (2005) provides a labor market example in which identical firms choose to gather applications
from different types of workers, an imperfect assignment which he calls “mismatch”. In the context of our
model, this assignment implies that different types of owners participate in the same submarket, which
cannot happen in equilibrium. The reason for this difference lies in the choice of matching function: Shimer
(2005) uses a many-to-one urn-ball matching function, while we use a one-to-one matching function, as do
Lester et al. (2015) and most of the other papers in the sorting literature with directed search.
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make the non-owner type indifferent. Second, Eeckhout and Kircher (2010a) assume that

agents’ types are drawn from a twice continuously differentiable CDF, whereas in our setting

the distribution is discrete. This is important, since when the mass of an investor type is large

enough, the probability of meeting these investors in the submarkets they participate grows.

This means that this investor type may be able to cover the demand/supply of multiple

types on the other side of the market, leading to an imperfect equilibrium assignment.

3.5 Equilibrium Existence and Constrained Efficiency

In this Section, we establish existence and constrained efficiency of the decentralized equi-

librium. To do so, we show that the equilibrium of the decentralized model coincides with

the solution to the planner’s problem. Setting up the planner’s problem is straightforward

but tedious, so we defer its full presentation to Appendix A. The planner’s objective is to

maximize the net present sum of the instantaneous payoffs of all owners. She accomplishes

this by assigning owners and non-owners as buyers and sellers in different submarkets. We

follow Eeckhout and Kircher (2010a) and restrict the planner to assigning a single owner and

a single non-owner type to each submarket. We assume further that if the planner finds it

optimal for owner type δi to trade with non-owner type δj, then all such trades take place in

a single market. Both of these assumptions are without loss of generality, since the matching

function has constant returns to scale and meetings within a submarket are random. The

planner essentially moves masses of owners and non-owners around different submarkets to

maximize the total surplus of potential matches. When considering these moves, the planner

is constrained by the matching function in each submarket, as well as the laws of motion

that determine the evolution of investor masses over time. Of course, the planner is also

constrained by the appropriate non-negativity and resource constraints.

Analyzing the planner’s problem allows us to derive two important results: first, the

solution to the planner’s problem coincides with the decentralized equilibrium. Second, a
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solution to the planner’s problem (and, as a result, a decentralized equilibrium) exists. This

is our Proposition 5 below. Although OTC search models with exogenous contact rates are

typically contrained efficient (see, e.g., Hugonnier et al. (2014) or Afonso and Lagos (2015)),

this does not trivially generalize in the case of endogenous contact rates. Specifically, Lagos

and Rocheteau (2007) and Lester et al. (2015) show that in a model with random search, ex

post bargaining and contact rates given by a matching function, the equilibrium is typically

inefficient, unless a version of the Hosios (1990) condition holds. The equilibrium is also

inefficient in the model of Farboodi et al. (2017b), in which contact rates are the result of ex-

ante identical agents choosing how much to invest in the quality of their search technology.

These inefficiencies arise due to externalities in the matching process and ex post bargaining

between investors. Following the directed search literature, we show that when owners post

prices and non-owners choose which price to search for, these externalities are internalized

through this pricing mechanism. In this sense, our Proposition 5 generalizes the results of

Lester et al. (2015) for a fully decentralized market.

Proposition 5. The decentralized equilibrium exists and it is constrained efficient.

4 Conclusion

In this paper, we have built a search-theoretic model of a fully decentralized OTC market

with complete price transparency. To capture price transparency, we use the competitive

search protocol: asset owners, who are heterogeneous with respect to their asset valuation,

post prices that are available to potential buyers; buyers, who are also heterogeneous in

their asset valuations, observe all prices and decide to which seller they will direct their

order. Investors self-segment into different submarkets, in which they trade the asset at

different prices. The speed of trade execution in each submarket is endogenous and depends

on the ratio of sellers to buyers willing to trade at the sellers’ posted price. Prices reflect the
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different valuations of investors and allocate the orders of buyers into different submarkets

efficiently. That is, the equilibrium of the asset market is constrained efficient, a typical

property of competitive search.

The main result of the paper is that in competitive search, equilibrium intermediation

emerges endogenously: some agents choose to act as dealers, selling the asset when they

have it and buying the asset when they do not have it. Moreover, intermediation in the

model is extensive: for a broad class of matching functions, all agents, except the lowest and

highest valuation ones, choose to intermediate trades. Since our model features a two-sided

market with heterogeneous agents choosing their preferred counterparty, characterizing the

trade pattern boils down to a sorting problem. In contrast with the sorting literature, we

find that imperfect assignments may occur naturally in our OTC framework.
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Duffie, D., Gârleanu, N., and Pedersen, L. H. (2005). Over-the-counter markets. Economet-
rica, 73(6):1815–1847.
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A Planner’s problem and model solution

The complete planner’s problem is presented below. All variables are functions of time, but

we do not make that explicit in the notation to keep it succinct.
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max
{o(δi,δj)}i,j∈I ,{n(δi,δj)}i,j∈I∈U

∫ ∞
0

exp(−rt)
∑
i

o(δi)δidt (22)

s.t.

˙o(δi) = γf(δi)
∑
k

o(δk)− γo(δi)
∑
k

f(δk) +
∑
k

m (o(δk, δi), n(δk, δi))

−
∑
j

m (o(δi, δj), n(δi, δj)) , ∀i
(23)

˙n(δj) = γf(δj)
∑
k

n(δk)− γn(δj)
∑
k

f(δk) +
∑
k

m (o(δj, δk), n(δj, δk))

−
∑
i

m (o(δi, δj), n(δi, δj)) , ∀j
(24)

o(δi)−
∑
j

o(δi, δj) ≥ 0, ∀i (25)

n(δj)−
∑
i

n(δi, δj) ≥ 0, ∀j (26)

o(δi, δj) ≥ 0, ∀i, j (27)

n(δi, δj) ≥ 0, ∀i, j (28)

lim
t→∞

o(δi) ≥ 0, lim
t→∞

n(δi) ≥ 0, ∀i (29)

o(δi), n(δi) given at time t = 0, ∀i (30)

where U = [0, 1]I×I×2 is the range over which the planner optimizes the masses of owners

and non-owners.

B Proofs

Lemma 1. For any i > j, the following inequalities hold: ∆V ∗(δi) > ∆V ∗(δj); V ∗0 (δi) ≥

V ∗0 (δj); V ∗1 (δi) > V ∗1 (δj). Furthermore, if some non-owners of type j are active in some
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submarket, then V ∗0 (δi) > V ∗0 (δj).

Proof. We prove the statements in the order the appear in the text. First, let (p
′
(δi), q

′
(δi))

be an optimal price and queue length for an owner type o(δi). Analogously, let (p
′′
(δi), q

′′
(δi))

be the price and queue length on a market that non-owner type n(δi) optimally chooses to

visit. Then,

(r + γ)V ∗1 (δi) = δi + γV ∗1 + λ(q
′
(δi))

[
p
′
(δi)−∆V ∗(δi)

]
, (31)

(r + γ)V ∗0 (δi) = γV ∗0 +
λ(q

′′
(δi))

q′′(δi)

[
∆V ∗(δi)− p

′′
(δi)
]
. (32)

Now, to the contrary, suppose that there exist some types δi, δj, with i > j, such that

∆V ∗(δi) ≤ ∆V ∗(δj). Then,

(r + γ)V ∗0 (δj) ≥ γV ∗0 +
λ(q

′′
(δi))

q′′(δi)

[
∆V ∗(δj)− p

′′
(δi)
]
≥

≥ γV ∗0 +
λ(q

′′
(δi))

q′′(δi)

[
∆V ∗(δi)− p

′′
(δi)
]

= (r + γ)V ∗0 (δi)

where the first inequality follows by the optimality of
(
p
′′
(δi), q

′′
(δi)
)

and the second one by

assumption. Hence, V ∗0 (δj) ≥ V ∗0 (δi). Furthermore, V ∗1 (δi) > V ∗1 (δj), since

(r + γ)V ∗1 (δi) ≥ δi + γV ∗1 + λ(q
′
(δj))

[
p
′
(δj)−∆V ∗(δj)

]
>

> δj + γV ∗1 + λ(q
′
(δj))

[
p
′
(δj)−∆V ∗(δj)

]
= (r + γ)V ∗1 (δj)

But this implies that ∆V ∗(δi) > ∆V ∗(δj) which is a contradiction.
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Next, to prove the second statement

(r + γ)V ∗0 (δi) ≥ γV ∗0 +
λ(q

′′
(δj))

q′′(δj)

[
∆V ∗(δi)− p

′′
(δj)
]
≥

≥ γV ∗0 +
λ(q

′′
(δj))

q′′(δj)

[
∆V ∗(δj)− p

′′
(δj)
]

= (r + γ)V ∗0 (δj)

The third statement follows, since ∆V ∗(δi) = V ∗1 (δi) − V ∗0 (δi) > V ∗1 (δj) − V ∗0 (δj) =

∆V ∗(δj). Hence, V ∗1 (δi)− V ∗1 (δj) > V ∗0 (δi)− V ∗0 (δj) ≥ 0 and V ∗1 (δi) > V ∗1 (δj).

�

Proposition 1. Every submarket in equilibrium features only one type of owner and one

type of non-owner. Furthermore, if owner δi and non-owner δj trade in equilibrium, they

trade in only one submarket.

Proof. Consider the owner’s problem given by (9). Use equations (10) and (11) along with

the constraint V0(δ, p) = V ∗0 (δ) to substitute out for the price. Then the owner’s problem

can be rewritten as

max
q,δ
{λ(q)S(δi, δ)− q [(r + γ)V ∗0 (δ)− γV ∗0 ]} (33)

where S(δi, δ) = ∆V ∗(δ) − V1(δi, p) + V ∗0 (δi) = ∆V ∗(δ) − ∆V (δi). Thus, each owner type

chooses which non-owner types she wishes to attract and at what queue length.

We proceed by introducing three lemmas. First, we show that if a particular owner type

δi wishes to attract any two distinct non-owner types δ′i and δ′′i , she will find it optimal to

do so in different submarkets. Second, we show that if an owner type δi wishes to attract

a particular non-owner type δ′i, there is a unique pay-off maximizing pair (p, q). Lastly, we

show that no two owner types find it optimal to post the same price in equilibrium.
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Lemma 3. If an owner type δi wishes to attract non-owners δ′i and δ′′i , with δ′i 6= δ′′i , she

finds it optimal to do so at different prices.

Proof. The first order condition with respect to the queue length is given by

λ′(q)S(δi, δ) = (r + γ)V ∗0 (δ)− γV ∗0 (34)

which is equivalent to

λ′(q)S(δi, δ) =
λ(q)

q
[∆V ∗(δ)− p] (35)

Hence, if ε(q) ≡ λ′(q)q
λ(q)

is the elasticity of the owner meeting rate λ(q) with respect to the

queue length, it follows that

p = [1− ε(q)]∆V ∗(δ) + ε(q) [V1(δi, p)− V ∗0 (δi)] (36)

Notice that there is a direct relationship between ε(q) and η(q): η(q) = 1 − ε(q), since

λ(q) = m(1, q). But by Lemma 1 the above can hold for at most one type of non-owner δ,

because ∆V ∗ is strictly increasing. This proves the lemma.

�

Lemma 4. All owners type δi wishing to attract non-owner type δ post the same price.

Proof. By equation (36), the price is determined uniquely by the reservation values of the

owner and non-owner which then implies that the price is determined by the queue length.

Thus, conditional on attracting non-owner type δ, if owner δi finds it optimal to induce a

unique queue length, the lemma is proven; i.e. we need to show that equation (34) has a

unique solution for q. Consider owner type δi who wishes to attract non-owner of type δ.

Substituting the first order condition for the price, (36), into the value functions for the
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owner and the non-owner, yields

(r + γ)V1(δi) = δi + γV ∗1 + λ(q) (1− ε(q))S(δi, δ), (37)

(r + γ)V0(δ) = γV ∗0 +
λ(q)

q
ε(q)S(δi, δ). (38)

Hence,

(r + γ)S(δi, δ) = (r + γ)∆V ∗(δ)− δi − γV ∗1 − λ(q) (1− ε(q))S(δi, δ) + (r + γ)V ∗0 (δi) (39)

⇒ S(δi, δ) =
(r + γ) [∆V ∗(δ) + V ∗0 (δi)]− δ − γV ∗1

r + γ + λ(q) (1− ε(q))
(40)

By the concavity of λ(q), the expression λ(q) (1− ε(q)) = λ(q)−λ′(q)q is strictly increasing.

Thus, both surplus and λ′(q) are strictly decreasing in q, which then proves the lemma.

�

Thus, lemmas 3 and 4 imply that the owner’s problem reduces to choosing an optimal

pair (q, p) subject to attracting a non-owner type δ and then choosing the non-owner type δ

which maximizes her payoff.

Lemma 5. No two owners δi and δj, with δi 6= δj, find it optimal to post the same price

given that this price attracts a positive queue length.

Proof. Suppose not. Then there exist two owners of type δi and δj, with δi 6= δj, that find it

optimal to post the same price p which attracts a positive queue length of non-owners, q. By

Lemma 3 each owner type has a particular non-owner type they wish to attract, say δ′i and

δ′j respectively. Since both owner types post the same price, the market is populated by both

types of owners and both types of non-owners. Thus owner type δi expects to trade with

positive probability with both non-owner types δ′i and δ′j. Now consider a deviation by an

owner type δi who wishes to attract δ′j on some submarket. By lemmas 3 and 4 the unique
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optimal price for such a deviation is pj 6= p, which induces a queue length qj 6= q. Since the

original submarket (p, q) was a feasible option, the deviant would find it strictly better to

trade with non-owner type δ′j on a submarket pj than on submarket p. Furthermore, market

p is populated by non-owner types δ′i and δ′j, so the payoff of owner δi on market p is the

same whether she trades with type δ′i or δ′j. Hence, owners type δi posting a price p with the

aim of attracting non-owners type δ′i have a strictly profitable deviation by posting a price

pj and attracting non-owner type δ′j. Hence, price p cannot be an optimally set price for

owner type δi. �

This concludes the proof of Proposition 1.

�

Proposition 2. In equilibrium, no market (δi, δj) with i > j opens. Furthermore, if sub-

market (δi, δj) with i < j opens, then markets (δi, δi) and (δj, δj) do not open.

Proof. First, we prove the statement for i > j. By Lemma 1 if i > j ⇒ ∆V ∗(δi) > ∆V ∗(δj).

Hence, S∗(δi, δj) = ∆V ∗(δj) − ∆V ∗(δi) < 0. This then contradicts the optimality of (p, q)

on that market since the owner would be strictly better off by posting a price that does not

attract any non-owners.

Second, we prove the statement for i < j. Since market (δi, δj) opens, it follows that

S∗(δi, δj) > 0. Suppose to the contrary that (δj, δj) opens. Then, V0(δi, δj) = V0(δj, δj) =

V ∗0 (δj). But since S∗(δj, δj) = 0, it follows that λ′ (q(δi, δj))S
∗(δi, δj) = 0 by equations

(11) and (36). But this is a contradiction since ∆V ∗(δj) > ∆V ∗(δi) by Lemma 1 and in

equilibrium q(δi, δj) = n(δi, δj)/o(δi, δj) <∞.

Analogously, suppose that market (δi, δi) opens. Thus, equations (10) and (36) imply

that [1− ε (q(δi, δi))]λ (q(δi, δi))S
∗(δi, δi) = [1− ε (q(δi, δj))]λ (q(δi, δj))S

∗(δi, δj), which is a

contradiction since S∗(δi, δi) = 0 and q(δi, δi) <∞ in equilibrium. �
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Proposition 3. In equilibrium, an owner type i is an active seller if and only if i ≤ s and

a non-owner type j is an active buyer if and only if j ≥ b, where s and b are some types

between 1 and I.

Proof. First we show that an owner type δi is an active seller if and only if δi ≤ δs. Since

there are potential gains from trade and there are no participation costs, it is easy to see

that at least one market would open in equilibrium. Then, let δs be the highest type among

any active sellers in equilibrium. We will show that any owner δi ≤ δs is an active seller as

well. Suppose to the contrary that there exists some owner type δi ≤ δs that is not an active

seller. Let δ′ denote a non-owner type that buys from the active seller type δs, then

(r + γ)V ∗1 (δs) = δs + γV ∗1 + λ(q(δs, δ
′)) [p(δs, δ

′)−∆V ∗(δs)] , (41)

(r + γ)V ∗1 (δi) = δi + γV ∗1 . (42)

Since p(δs, δ
′)−∆V ∗(δs) > 0 and ∆V ∗(δs) ≥ ∆V ∗(δi), this means that the owner type δi has

a strictly profitable deviation by posting the price p(δs, δ
′) and attracting length q(δs, δ

′).

Similarly, let δb be the lowest type among any active buyers in equilibrium. Suppose to

the contrary that some non-owner type δj ≥ δb is not an active buyer. If the non-owner δb

trades with some owner δ in equilibrium, then

(r + γ)V ∗0 (δb) = γV ∗1 +
λ(q(δ, δb))

q(δ, δb)
[∆V ∗(δb)− p(δ, δb)] , (43)

(r + γ)V ∗0 (δj) = γV ∗1 . (44)

Since ∆V ∗(δb) − p(δ, δb) > 0 and ∆V ∗(δj) ≥ V ∗(δb), the non-owner type δj has a strictly

profitable deviation by queuing on the market (δ, δs).

�

Corollary 2. In equilibrium, for any type i, either all owners are sellers on some submarket,
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or all non-owners are buyers on some submarket, or both.

Proof. Suppose to the contrary, that there exist some type j such that owners and non-

owners of this type are both idle in equilibrium. Given proposition 3, it must be the case

that 1 < j < I. Then, consider a market (δi, δk) which opens in equilibrium with 1 ≤ i < j <

k ≤ I. Then, the net benefit of a seller type i who considers deviating and posting a price

that attracts buyers type j, ∆V (δi|δj)−∆V ∗(δi), is given by equation (18). Since this is not a

profitable deviation, it must be the case that the net gain is non-positive. Furthermore, since

the deviation induces a queue length q = ∞ and the deviation payoff is strictly increasing

in q, at q = q∗(δi, δk) <∞ it follows that

1

r + γ + λ(q∗(δi, δk))
[λ(q∗(δi, δk))S

∗(δi, δj)− λ(q∗(δi, δk))η(q∗(δi, δk))S
∗(δi, δk)] < 0

⇒ S∗(δi, δj) < η(q∗(δi, δk))S
∗(δi, δk). (45)

Similarly, owners of type j are idle in equilibrium which implies that they cannot offer

favorable enough terms of trade to non-owners type k. Hence, posting a deviation price

which gives non-owners of type k the whole surplus leaves non-owners of type j with a non-

positive net benefit, ∆V ∗(δk)−∆V (δk|δj), for any positive queue length. Since q∗(δi, δk) > 0,

equation (21) implies that

S∗(δj, δk) < [1− η(q∗(δi, δk))]S
∗(δi, δk). (46)

But, then equations (45) and (46) imply that

S∗(δi, δk) = S∗(δi, δj) + S∗(δj, δk) < η(q∗(δi, δk))S
∗(δi, δk) + [1− η(q∗(δi, δk))]S

∗(δi, δk) = S∗(δi, δk),

(47)

which is clearly a contradiction.
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Lemma 2. Suppose the matching function satisfies limq→∞ λ(q) = limq→0 λ(q)/q = ∞ and

that I > 2. Then, PAM cannot be an equilibrium. Moreover, the only NAM equilibrium is

a single chain which starts at owner type δ1 and ends at non-owner type δI . That is, all

possible submarkets of the type (δi, δi+1) open and no other submarket opens.

Proof. Let us start with the PAM statement. Consider first the case that I = 3. Then

PAM implies that the only submarket which opens is (δ1, δ3). But then owner type δ2 is

an idle seller and this is a contradiction. Next, suppose that there are at least 4 types.

By Proposition 4 owner types δ1 and δ2 are active sellers and non-owner types δI and δI−1

are active buyers. Suppose to the contrary that the equilibrium assignment is PAM. Then,

submarkets (δ1, δI) and (δ2, δI−1) must open. But then, it follows that non-owner type δ2 is

an idle non-owner which is a contradiction.

We continue with the NAM statement. First, in any NAM equilibrium a submarket

(δi, δj) with j 6= i + 1 never opens. For j ≤ i the result is immediate from proposition 3.

Next suppose that some submarket (δi, δj) opens with j > i + 1. By Proposition 4 and

the definition of NAM, it must be the case that each owner type, except I, sells to exactly

one non-owner type and each non-owner type, except 1, buys from exactly one owner type.

Hence, there are exactly i − 1 submarkets where owners of type less than i participate. At

the same time, it must be the case that there are exactly j− 2 > i− 1 non-owner types with

valuations less than j that participate in these submarkets.But this is a contradiction.

Next, we need to show that all markets of the type (δi, δi+1) open. Suppose not, then

there exist some i such that the above submarket does not open. But we know that no owner

type j 6= i will sell to a non-owner type i+ 1 by the first part of the proof. Thus, i+ 1 must

be an idle buyer which is a contradiction. �
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Proposition 5. The decentralized equilibrium exists and it is constrained efficient.

Proof. Existence. First we show that a solution of the planner’s problem exists. To this

end, we will invoke Theorem 21 in Seierstad and Sydsaeter (1986) on p.406. To show that

our problem satisfies the conditions in the theorem, we translate our problem into their

notation and then show each of the 5 conditions hold. First, let x := ({o(δi)}i∈I , {n(δj)}j∈I)

be the vector of state variables, u := ({o(δi, δj)}i,j∈I , {n(δi, δj)}i,j∈I) be the vector of market

allocations, f0(x, u, t) := exp(−rt)
∑

i o(δi)δi be the maximand, f(x, u) be a vector function

such that for i ∈ [1, I], fi(x, u) is the right hand side of equation (23) for owner type i and

for j ∈ [I + 1, 2I], fj(x, u) is the right hand side of equation (24) for non-owner type j.

Similarly, define g(x, u) to be the left hand side of the constraints (25), (26).

Claim 1. The functions f0, f , and g are continuos and U is closed. This is obvious.

Claim 2. Define N(x, U, t) = {(f0(x, u, t) + γ̃, f(x, u)) : γ̃ ≤ 0, gi(x, u, t) ≥ 0,∀i, u ∈ U}.

We will show that this set is convex for all (x, t) ∈ R2I × [0,∞). Pick any (x, t) and observe

that the set N(x, U, t) is all pairs (f0(x, u, t) + γ̃, f(x, u)) induced by some γ̃ ≤ 0 and some

u ∈ U for which the constraints (25), (26) are satisfied. Then, let (f0(x, u
′, t) + γ̃′, f(x, u′))

and (f0(x, u
′′, t) + γ̃′, f(x, u′′)) be some elements of N(x, U, t) and let λ ∈ (0, 1). Then,

notice that λ(f0(x, u
′, t) + γ̃′) + (1 − λ)(f0(x, u

′′, t) + γ̃′) = f0(x, u
′, t) + λγ̃′ + (1 − λ)γ̃′′,

with λγ̃′ + (1− λ)γ̃′′ ≤ 0. Next, take any i, j ∈ I and observe that by the concavity of the

matching function,

λm (o′(δk, δi), n
′(δk, δi)) + (1− λ)m (o′′(δk, δi), n

′′(δk, δi)) ≤

m (λo′(δk, δi) + (1− λ)o′′(δk, δi), λn
′(δk, δi) + (1− λ)n′′(δk, δi)) . (48)

Then, by continuity and strict monotonicity ofm(·) there exists some tuple (õ(δi, δj), ñ(δi, δj)) ≤
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(λo′(δi, δj) + (1− λ)o′′(δi, δj), λn
′(δi, δj) + (1− λ)n′′(δi, δj)), such that

m(õ(δk, δi), ñ(δk, δi)) = λm (o′(δk, δi), n
′(δk, δi)) + (1− λ)m (o′′(δk, δi), n

′′(δk, δi)) . (49)

Then, let ũ be a tuple of market allocations such that (49) holds for all i, j ∈ I. It is easy

to see that ũ ∈ U and f(x, ũ, t) = λf(x, u′, t) + (1 − λ)f(x, u′′, t). Lastly, we need to show

that ũ is such that g(x, ũ, t) ≥ 0. But this clearly holds since

∑
j

õ(δi, δj) ≤
∑
j

[λo′(δi, δi) + (1− λ)o′′(δi, δi)] ≤ o(δi), ∀i (50)

∑
i

ñ(δi, δj) ≤
∑
i

[λn′(δi, δi) + (1− λ)n′′(δi, δi)] ≤ n(δj), ∀j (51)

Thus, ũ ∈ N(x, U, t), which proves the claim.

Claim 3. Let Γ = {(x, u, t) : g(x, u, t) ≥ 0, u ∈ U, t ∈ [0,∞)} and Γt = {x : (x, u, t) ∈ Γ

for some u ∈ U}. If xn ∈ Γt, vn ∈ N(xn, U, t), xn → x, vn → v, then x ∈ Γt and

v ∈ N(x, U, t). Observe that any tuple of state variables that satisfies the aggregate resource

constraints
∑

i o(δi) = A,
∑

j n(δj) = 1 − A is an element of Γt. Since all xn satisfy those,

so does x and hence x ∈ Γt. Next, let f(xn, un, t) be the vector induced by xn, vn. By

continuity of the matching function, f(xn, un, t) → f(x, u, t), where f(x, u, t) is the vector

induced by x, v. Next, it is easy to see that f0(xn, t)→ f0(x, t). Thus, all we are left to do

to prove the claim is to show that u ∈ U and that g(x, u, t) ≥ 0. Since U is closed the former

holds. Since g(xn, un, t) ≥ 0 for all n, then the latter holds as well. Thus, v ∈ N(x, U, t).

Claim 4. For each p 6= 0 there exist locally integrable functions ϕp(t) and ψp(t) such that

for all (x, u, t) ∈ Γ, f0(x, u, t)+p ·f(x, u, t) ≤ ϕp(t)+ψp(t)||x|| and there exists a constant M

such that ||x(t0)|| ≤ M for all admissible x and f0(x, u, t) ≤ γ̂(t) for all (x, u, t) ∈ Γ. Then,

it is easy to see that
∑

i δi > exp(−rt)
∑

i o(δi)δi, since o(δi) ≤ A < 1. Next, observe that
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for i ∈ [1, I] and j ∈ [I + 1, 2I],

fi(x, u, t) ≤ γf(δi)A+
∑
k

m(o(δk, δi), n(δk, δi) ≤ γA+ Im(1, 1) ≤ γ + Im(1, 1),

(52)

fj(x, u, t) ≤ γf(δj−I)(1− A) +
∑
k

m(o(δj−I , δk), n(δj−I , δk) ≤ γ(1− A) + Im(1, 1) ≤ γ + Im(1, 1).

(53)

Then, let ϕp(t) =
∑

i δi+p·M(1,1), where M(1,1) is a vector of length 2I whose elements are

γ+Im(1, 1). Then, set ψp(t) = 0 and observe that by construction f0(x, u, t)+p ·f(x, u, t) ≤

ϕp(t) + ψp(t)||x||, with both ϕp(t) and ψp(t) both locally integrable. Next, observe that

there is a unit mass of agents in the economy and so 1 ≥ ||x||. If γ̂(t) =
∑

i δi, clearly

γ̂(t) ≥ f0(x, u, t), for all (x, u, t) ∈ Γ. This proves the claim.

Claim 5. There exist integrable functions vi(t) defined on [0,∞) such that for all admis-

sible tuples (x, u), for all t, fi(x, u) ≤ vi(t). Take vi(t) = γ + Im(1, 1). From the preceding

claim, it follows that fi(x, u) ≤ vi(t) for all t. Lastly, vi(t) is integrable, so the claim holds.

Together claims 1 through 5 establish that our problem satisfies the conditions outlined

in Theorem 21 on page 406 from S&S. Thus, an optimal tuple (x, u) exists.

Characterizing Planner’s Allocation. Define the Hamiltonian for the original plan-

ner’s problem by

H ≡
∑
i

o(δi)δi

+
∑
i

λ̃i

[
γf(δi)

∑
k

o(δk)− γo(δi) +
∑
k

m (o(δk, δi), n(δk, δi))−
∑
j

m (o(δi, δj), n(δi, δj))

]

+
∑
j

hj

[
γf(δj)

∑
k

n(δk)− γn(δj) +
∑
k

m (o(δj, δk), n(δj, δk))−
∑
i

m (o(δi, δj), n(δi, δj))

]
,

(54)
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where λ̃i is the co-state associated with law of motion for o(δi) and hj is the co-state as-

sociated with the low of motion for n(δj). Thus, the Lagrangian of the problem is given

by

L ≡H +
∑
i

µi

(
o(δi)−

∑
j

o(δi, δj)

)
+
∑
j

νj

(
n(δj)−

∑
i

n(δi, δj)

)

+
∑
i

∑
j

õijo(δi, δj) +
∑
i

∑
j

ñijn(δi, δj), (55)

where µi, νj, õij, ñij are the associated Lagrange multipliers. Then, the first order conditions

for optimality are given by

∂L

∂o(δi)
= rλ̃i − ˙̃λi, ∀i (56)

∂L

∂n(δj)
= rhj − ḣj, ∀j (57)

∂L

∂o(δi, δj)
= 0, ∀i, j (58)

∂L

∂n(δi, δj)
= 0, ∀i, j (59)

µi

(
o(δi)−

∑
j

o(δi, δj)

)
= 0, ∀i (60)

νj

(
n(δj)−

∑
i

n(δi, δj)

)
= 0, ∀j (61)

õijo(δi, δj) = 0, ∀i, j (62)

ñijn(δi, δj) = 0, ∀i, j (63)

lim
t→∞

exp(−rt)λ̃io(δi) = 0, ∀i (64)

lim
t→∞

exp(−rt)hjn(δj) = 0, ∀j (65)
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We can reduce the first four first order conditions to the following system

(r + γ)λ̃i =δi + γEλ̃+ µi + ˙̃λ, (66)

(r + γ)hj =γEh+ νj + ḣ, (67)

µi =λ(q(δi, δj))η(q(δi, δj))
[
λ̃j − hj − (λ̃i − hi)

]
+ õ(δi, δj), (68)

νj =
λ(q(δi, δj))

q(δi, δj)
[1− η(q(δi, δj))]

[
λ̃j − hj − (λ̃i − hi)

]
+ ñ(δi, δj), (69)

where Eλ̃ and Eh are the average λ̃i and hj. Then, noting that in steady state the values of

λ̃i and hj are constant, it follows that we can reduce the system above to

(r + γ)λ̃i =δi + γEλ̃+ λ(q(δi, δj))η(q(δi, δj))
[
λ̃j − hj − (λ̃i − hi)

]
+ õ(δi, δj), (70)

(r + γ)hj =γEh+
λ(q(δi, δj))

q(δi, δj)
[1− η(q(δi, δj))]

[
λ̃j − hj − (λ̃i − hi)

]
+ ñ(δi, δj). (71)

With appropriate relabeling, these conditions are exactly the same as the Bellman equations

along the decentralized equilibrium, (10) and (11), when õ(δi, δj) = ñ(δi, δj) = 0. But, the

multipliers are zero if and only if the planner assigns positive measures of owners and non-

owners on this market. That is, the planner’s conditions coincide with the decentralized ones

along the equilibrium path of trade only when the planner assigns positive measures on that

market. If there are no owners assigned on that market, this means that õ(δi, δj) > 0 and so

the value of an owner participating in that market is not large enough to yield her optimal

value, i.e. the owner can do better (is more socially beneficial) if she is on a different market.

Analogously for non-owners: if ñ(δi, δj) > 0 there are no non-owners on that market and the

socially optimal value hj is higher than any potential payoff that the non-owner might earn

from participating that market, i.e. the non-owner cannot be compensated with her market

utility from participating in the market. Thus, the decentralized equilibrium is efficient.

Sufficiency of the First Order Conditions. Next, observe that the maximand as
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well as constraints are continuously differentiable. Let A(t) be the set of all tuples of owners,

o(δi, δj) and non-owners, n(δi, δj), assigned to each market such that constraints (25), (26),

(27), (28) are satisfied given the masses of owners, o(δi), and non-owners, n(δj), at time t.

Thus, it is easy to see that this set is convex for all t. Let x̂(t) be a tuple of owner masses,

o(δi), non-owner masses, n(δj), and owner and non-owner market participation assignments,

o(δi, δj), n(δi, δj) such that the constraints of the problem and the first order conditions are

satisfied. Given the resulting co-states λ̂i and hj, define Ĥ to be the maximized Hamil-

tonian, i.e. Ĥ ≡ maxo(δi,δj),o(δi,δj)∈A(t)H. Since any tuple of owner and non-owner market

assignments which is an element of arg maxo(δi,δj),o(δi,δj)∈A(t)H is independent of the state

variables o(δi), n(δj), it is easy to see that the resulting maximized Hamiltonian is linear

in the state variables and as a consequence jointly concave in them. Hence, by Arrow’s

sufficiency theorem x̂(t) is a global maximum.

�
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