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Abstract

We develop a novel method of constructing confidence bands for nonparametric

regression functions under shape constraints. This method can be implemented via a

linear programming, and it is thus computationally appealing. We illustrate a usage

of our proposed method with an application to the regression kink design (RKD).

Econometric analyses based on the RKD often suffer from wide confidence intervals due

to slow convergence rates of nonparametric derivative estimators. We demonstrate that

economic models and structures motivate shape restrictions, which in turn contribute

to shrinking the confidence interval for an analysis of the causal effects of unemployment

insurance benefits on unemployment durations.
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1 Introduction

Nonparametric inference under shape restrictions is often computationally demanding. For

instance, inference based on test inversion would require a grid search over a high-dimensional

sieve parameter space. In this paper, we propose a computationally attractive method for

nonparametric inference about regression functions under shape restrictions. Notably, our

method can be implemented via a linear programming, despite the complicated nature of

nonparametric inference under shape restrictions.

In many applications, economic structures often motivate shape restrictions, and such

restrictions may contribute to delivering more informative statistical inference about the

economic structure and causal effects. We highlight a case in point in the context of the re-

gression kink design (RKD; Nielsen, Sørensen, and Taber, 2010; Card, Lee, Pei, and Weber,

2015; Dong, 2016). Estimation and inference in the RKD rely on derivative estimators of

nonparametric regression functions, which typically suffer from slow convergence rates and

thus may lead to wide confidence intervals. On the other hand, there are often natural and

economically motivated restrictions in the levels and slopes of the regression function to the

left and/or right of the kink location, and they can contribute to shrinking the lengths of

the confidence interval. In the context of the regression discontinuity design, Armstrong

(2015) and Babii and Kumar (2019) suggest usage of shape restrictions with related motiva-

tions. The benefits of shape restrictions may well be even greater for the RKD than for the

regression discontinuity design due to the slower convergence rates of the RKD estimators.

We are far from the first to study the problem of nonparametric inference under shape re-

strictions. Dümbgen (2003), Cai, Low, and Xia (2013), Armstrong (2015), Chernozhukov, Newey, and Santos

(2015b), Horowitz and Lee (2017), Chen, Chernozhukov, Fernández-Val, Kostyshak, and Luo

(2018), Freyberger and Reeves (2018), Mogstad, Santos, and Torgovitsky (2018), Fang and Seo

(2019), and Zhu (2020), among others, propose various approaches to nonparametric infer-

ence under shape restrictions. See Chetverikov, Santos, and Shaikh (2018) and the journal

issue edited by Samworth and Sen (2018) for a comprehensive review of the related literature.

We advance the frontier of this literature by providing a computationally attractive approach.

Specifically, we provide a novel method of constructing confidence bands/regions/intervals
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whose boundaries can be fully characterized as solutions to linear programs.

This paper is closely related to Freyberger and Horowitz (2015), who have considered a

linear programming approach to inference under shape restrictions. Specifically, they propose

a linear programming approach to inference about linear functionals of finite-dimensional

parameters, where the parameter values are the values of the regression function evaluated

at finite support points.1 On the other hand, as acknowledged in Freyberger and Horowitz

(2015), “[t]he use of shape restrictions with continuously distributed variables is beyond the

scope of” their paper. We contribute to this literature by accommodating (discretely or

continuously) infinite-dimensional parameters. This extended framework allows for analysis

of nonparametric regressions with infinitely supported (discrete or continuous) regressors,

which are relevant to many applications including the regression discontinuity and kink

designs among others.

Our proposed inference procedure works as follows. First, we use the sieve approximation

(cf. Chen, 2007) of the nonparametric regression function. We then construct a supremum

test statistic as a linear function of the sieve parameters, compute its critical value by ap-

plying Chernozhukov, Chetverikov, and Kato (2017a), and then translate their relation into

an inequality constraint. Subject to this inequality constraint, together with the additional

linear-in-sieve-parameter inequality constraints stemming from shape restrictions, we find

the lower (respectively, upper) bound of the confidence band/interval by the minimizing

(respectively, maximizing) the sieve representation with respect to the sieve parameters.

In the final step, we inflate the bounds by a sieve approximation error bound similarly

to Armstrong and Kolesár (2018, 2020), Noack and Rothe (2019), Schennach (2020), and

Kato, Sasaki, and Ura (2021).

The rest of this paper is organized as follows. Section 2 presents the model and an

overview of the proposed procedure. Section 3 presents the size control. Section 4 describes

the procedure when we are interested in a finite-dimensional linear feature of the regres-

sion function. Section 5 presents an application of the RKD, with detailed implementation

procedures tailored to this application. In an empirical application, we demonstrate that

1Fang, Santos, Shaikh, and Torgovitsky (2020) also propose a linear programming approach to inference
for a growing number of linear systems, although their focus is different from nonparametric regression
functions under shape restrictions as in this paper.
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shape restrictions can shrink the lengths of the confidence interval. Section 6 concludes.

Mathematical proofs and simulation analysis are collected in the appendix.

Throughout this paper, we assume that a data set {(Yi, X
T
i ) : i = 1, . . . , n} consists of

i.i.d. random vectors following the law of (Y,XT ), where Y is a real-value random variable

and X is a finite-dimensional random variable with the support X ⊂ R
dimX . Let En denote

the sample mean, that is, En[f(Y,X
T )] ≡ 1

n

∑n
i=1 f(Yi, X

T
i ) for any measurable function f .

2 Inference Method

In this paper, we are interested in a linear feature of the unknown mean regression function

g0(x) ≡ E[Y | X = x], so that the parameter of interest can be written as

θ0 ≡ A0g0

for a known linear operator A0. We assume this parameter θ0 to be a function from some set

W0 into R, which allows θ0 to be a scalar, a vector, or a function from X into R. For example,

when A0 is the identity function, the parameter of interest is the conditional mean function

g0 itself. Other examples for θ0 include g0(x) for a given point x, the integral
∫
g0(x)dµ(x),

and the derivative ∂g0(x)/∂xj , among others. In Section 4, we discuss how we can tailor the

procedure to the case when θ0 is finite dimensional.

The objective of this paper is to construct a confidence region for θ0 under the shape

restrictions

[A1g0](w1) ≤ 0 for every w1 ∈ W1 (1)

for a known linear operator A1.
2 We are going to construct a confidence region CRθ for θ0

satisfying the following two properties: (i) the boundaries of CRθ are the set of solutions

to linear programming problems; and (ii) CRθ controls the asymptotic size under the shape

restriction.

We approximate g0 by a linear combination of k functions p1, . . . , pk on X .3 These k

2In this paper, the shape restriction does not have any improvement in the identification analysis, because
g0 is identified over X and therefore θ0 is identified.

3Recall that X is the support of X . We assume k ≥ 2, which guarantees log k ≥ 0.
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functions are denoted by

p1:k ≡ (p1, . . . , pk)
T .

We can consider the linear regression of Y on p1:k(X), and the population coefficient vector

for this regression is

β̄ ≡ E[p1:k(X)p1:k(X)T ]−1E [p1:k(X)Y ] .

With these definitions and notations, we make the following assumption about error bounds

for the approximation of g0 by pT1:kβ̄.

Assumption 1 (Approximation error bounds). There exist known functions δ0 and δ1 such

that

∣∣[A0(g0 − pT1:kβ̄)](w0)
∣∣ ≤ δ0(w0) for all w0 ∈ W0; and (2)

∣∣[A1(g0 − pT1:kβ̄)](w1)
∣∣ ≤ δ1(w1) for all w1 ∈ W1. (3)

This assumptions plays the role of restricting the function class where g0 resides, similarly

to Kato et al. (2021) in the spirit of the honest inference approach (Armstrong and Kolesár,

2018, 2020) and the bias bound approach (Schennach, 2020).4

For a generic value β ∈ R
k, we can implement a hypothesis testing for the null hypothesis

H0 : β̄ = β against the alternative hypothesisH1 : β̄ 6= β as follows. In this hypothesis testing

problem, we aim to detect a violation of the null hypothesis

H0 : E[p1:k(X)(Y − p1:k(X)Tβ)] = 0,

which is equivalent to β̄ = β under the invertibility of E[p1:k(X)p1:k(X)T ]. We can estimate

the left hand side of the above equation by En[p1:k(X)(Y − p1:k(X)Tβ)] and its asymptotic

4We allow k, δ0 and δ1 to be a function of n. We do not require k → ∞ as n → ∞ but it is allowed.
In Assumption 1, we bound the biases coming from the approximation of g0 by pT

1:kβ̄ by known δ0 and δ1.
Without accounting for such approximation bounds, conventional methods would set δ0 → 0 and δ1 → 0 as
n → 0 in light of that the bias asymptotically vanishes with undersmoothing. That said, by Assumption 1,
we take this honest or bias bound approach in this paper for the sake of generality, with the special case of
undersmoothing leading to the conventional approach in particular.
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variance (under H0) by En[ω̂ω̂
T ], where

ω̂ ≡ p1:k(X)(Y − p1:k(X)TEn

[
p1:k(X)p1:k(X)T

]−1
En [p1:k(X)Y ]).

Note that ω̂ estimates ω ≡ p1:k(X)(Y − p1:k(X)T β̄). With these estimates, we consider the

test statistic
∥∥En[ω̂ω̂

T ]−1/2En[p1:k(X)(Y − p1:k(X)Tβ)]
∥∥
∞
.

To obtain a critical value, we apply the multiplier bootstrap by calculating the (1 − α)

quantile, denoted by cv, of
∥∥En[ω̂ω̂

T ]−1/2En[ηω̂]
∥∥
∞

conditional on the data set, where η1, . . . , ηn are independent Rademacher multiplier random

variables that are independent of the data. Note that the critical value cv does not depend

on a specific value of β, which enables us to construct a confidence region characterized by

linear inequalities for β.

We can construct a confidence region for θ0 based on the test inversion. Using the test

statistic and the critical value, we can define a confidence region for θ0, denoted by CRθ.

Namely, CRθ is the set of θ satisfying the following linear constraints for some β ∈ R
k:

∥∥En[ω̂ω̂
T ]−1/2En[p1:k(X)(Y − p1:k(X)Tβ)]

∥∥
∞

≤ cv, (4)

|[A0p
T
1:k](w0)β − θ(w0)| ≤ δ0(w0) for every w0 ∈ W0, and (5)

[A1p
T
1:k](w1)β ≤ δ1(w1) for every w1 ∈ W1, (6)

where [A0p
T
1:k](w1)β ≡ [A0(p

T
1:kβ)](w1) and [A1p

T
1:k](w1)β ≡ [A1(p

T
1:kβ)](w1).

In the definition of CRθ, we have three types of linear constraints. First, (4) comes from

the hypothesis test for H0 : β̄ = β. Second, (5) controls the approximation error between

A0p
T
1:kβ̄ and θ0 under (2) in Assumption 1. Third, (6) uses the knowledge that the shape

restriction (1) holds for true g0, together with (3) in Assumption 1. This confidence region

could be more informative than that without the shape-restriction inequalities in (6).

For every value w0 ∈ W0, the following theorem states that the projection of CRθ to
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θ0(w0) can be computed by solving two linear programming problems. A proof is provided

in Appendix 1.

Theorem 1. Under Assumption 1, for every w0 ∈ W0, the projection of CRθ to θ0(w0) is

equal to the closed interval


 min

β

s.t. (4)&(6)

[A0p
T
1:k](w0)β − δ0(w0), max

β

s.t. (4)&(6)

[A0p
T
1:k](w0)β + δ0(w0)


 .

Therefore, the boundary points are the solutions to linear programs.

3 Size Control

For the asymptotic size control, we are going to impose the following assumptions. Let b > 0,

q ∈ [4,∞), ν ∈ (2,∞) be some constants and let Bn ≥ 1 denote a sequence of finite constants

that may possibly diverge to infinity. Consider the following assumption.

Assumption 2. (a) The eigenvalues of E[ωωT ] and E[p1:k(X)p1:k(X)T ] are bounded above

and bounded below away from 0 uniformly over n. (b) (i) E[Y 2] < ∞. (ii) E[|(E[ωωT ]−1/2)jω|2] ≥
b, E[|(E[ωωT ]−1/2)jω|2+κ] ≤ Bκ

n and E[‖E[ωωT ]−1/2ω‖q∞] ≤ Bq
n for every j = 1, . . . , k

and each κ = 1, 2.5 (iii) B2
n log

7(nk)/n = o(1) and B2
n log

3(nk)/n1−2/q = o(1). (c) (i)

supx∈X E[|Y − g0(X)|ν |X = x] = O(1). (ii) For every k, there are finite constants ck and ℓk

such that E[(g0(X)−p1:k(X)T β̄)2]1/2 ≤ ck and that supx∈X |g0(x)−p1:k(x)
T β̄| ≤ ℓkck. (iii) Let

ξk ≡ supx∈X ‖p1:k(x)‖2 and ξLk ≡ supx,x′∈X : x 6=x′ ‖p1:k(x)/‖p1:k(x)‖2 − p1:k(x
′)/‖p1:k(x′)‖2‖2/‖x− x′‖2.

Then ξ
2ν/(ν−2)
k log k/n = O(1), log ξLk = O(log k), and log ξk = O(log k). (iv) n−1ξ2k log k =

o(1), ℓkck = O(1), and (n−1ξ2k)
1/2
{
n1/ν(log k)1/2 +

√
k
}
= O(1).

Assumption 2 (a) implies Condition A.2 in Assumption Belloni, Chernozhukov, Chetverikov, and Kato

(2015). It imposes a restriction to rule out overly strong co-linearity among p1, . . . , pk. As-

sumptions 2 (b)-(ii) and 2 (b)-(iii) correspond to Conditions (M.1), (M.2) and (E.2) in

Chernozhukov et al. (2017a). It requires that the polynomial moments of the maximal com-

ponent of normalized ω will not be growing too fast, as well as it imposes conditions that

5(E[ωωT ]−1/2)j denotes the j-th row of a square matrix E[ωωT ]−1/2.
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dictate how fast the number of basis functions can grow. The maximum is allowed to be

growing at a rate of O(na) for some a between zero and one. Assumption 2 (c) covers Con-

ditions A.3-A.5 in Belloni et al. (2015) as well as rate conditions in the statement of their

Theorem 4.6. Assumption 2 (c)-(i) requires the residual to have a finite ν-th moment for

some ν > 2. Assumptions 2 (c)-(ii) and 2 (c)-(iii) impose bounds on the approximation er-

rors of g0 using p1, . . . , pk, as well as restrictions on the size of basis functions, measured by

the Euclidean norm and the Lipschitz constant. Assumption 2 (c)-(iv) imposes some more

constraints on the relative growth rates of the approximation errors, the size and number of

basis functions. Notice that it does not require the approximation errors to be diminishing

asymptotically, and hence does not require undersmoothing.

The following theorem states the asymptotic size control for CRθ as a confidence region

for θ0. A proof is provided in Appendix 2.

Theorem 2. If Assumptions 1 and 2 are satisfied, then

lim inf
n→∞

P (θ0 ∈ CRθ) ≥ 1− α.

With some additional notations and rate conditions, it is possible to strengthen the

statement of Theorem 2 to hold uniformly over a set of data generating processes. This is

due to the fact that key theoretical building blocks in the proof of Theorem 2 – i.e. the

anti-concentration inequality in Chernozhukov, Chetverikov, and Kato (2015a), the high-

dimensional central limit theorem of Chernozhukov, Chetverikov, and Kato (2018), and Rudel-

son’s concentration inequality (Belloni et al., 2015, Lemma 6.2) – all provide non-asymptotic

bounds with constants only depending on a few key features of the model such as b, q and ν.

4 Inference Method for Finite Dimensional θ0

When the parameter of interest θ0 is finite dimensional, we can directly test A0[p
T
1:kβ̄] = θ

for a generic value of θ, instead of testing β̄ = β as in Section 2. In the current section, we

describe the inference procedure when θ0 is a finite-dimensional column vector.

For a generic value θ, we consider the null hypothesis H0 : A0,kβ̄ = θ and the alternative
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hypothesis H1 : A0,kβ̄ 6= θ, where A0,k is the matrix defined by A0,kβ = A0[p
T
1:kβ] for every

k × 1 vector β. Based on the definition of β̄, we aim to measure the violation of the null

hypothesis

H0 : A0,kE[p1:k(X)p1:k(X)T ]−1E [p1:k(X)Y ] = θ.

We can estimate the left hand side by A0,kEn

[
p1:k(X)p1:k(X)T

]−1
En [p1:k(X)Y ] and its the

asymptotic variance under H0 by

V̂ ≡ A0,kEn

[
p1:k(X)p1:k(X)T

]−1
En[ω̂ω̂

T ]En

[
p1:k(X)p1:k(X)T

]−1
AT

0,k.

With these estimators, we consider the test statistic

∥∥∥V̂ −1/2(A0,kEn

[
p1:k(X)p1:k(X)T

]−1
En [p1:k(X)Y ]− θ)

∥∥∥
∞
.

To obtain its critical value, we apply the multiplier bootstrap and compute the (1 − α)

quantile, denoted by ĉv, of

∥∥∥V̂ −1/2A0,kEn

[
p1:k(X)p1:k(X)T

]−1
En[ηω̂]

∥∥∥
∞

conditional on the data set, where η1, . . . , ηn are independent Rademacher multiplier random

variables that are independent of the data.

A confidence region for θ0 can be constructed based on the test inversion. In this setup,

we can construct a confidence region for θ0, ĈRθ, by collecting all θ’s satisfying the following

linear constraints for some β ∈ R
k:

∥∥∥V̂ −1/2(A0,kEn

[
p1:k(X)p1:k(X)T

]−1
En [p1:k(X)Y ]−A0,kβ)

∥∥∥
∞

≤ ĉv, (7)

|[A0p
T
1:k](w0)− θ(w0)| ≤ δ0(w0) for every w0 ∈ W0, and

[A1p
T
1:k](w1)β ≤ δ1(w1) for every w1 ∈ W1. (8)

For every value w0 ∈ W0, we can compute the projection of ĈRθ to θ0(w0) by solving
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two linear programming problems w.r.t. β:

minimize [A0,kβ](w0)− δ0(w0) over β subject to (7) & (8),

and

maximize [A0,kβ](w0) + δ0(w0) over β subject to (7) & (8).

In other words, the projection is the closed interval


 min

β

s.t. (7)&(8)

[A0,kβ](w0)− δ0(w0), max
β

s.t. (7)&(8)

[A0,kβ](w0) + δ0(w0)


 .

Formal theoretical properties of the the confidence interval constructed by this procedure

follow from analogous arguments to those in Sections 2 and 3. In the application presented

in the following section, the parameter θ0 of interest is a scalar (and finite dimensional in

particular) and we therefore adopt this approach to constructing its confidence interval.

5 Application to Regression Kink Design

In this section, we present an application of our proposed method to the regression kink

design (RKD). Since the regression kink design is based on estimates of slopes as opposed to

levels, statistical inference based on nonparametric estimates often entails slow convergence

rates and thus wide confidence intervals. To mitigate this adverse feature of the regression

kink design, we propose to impose shape restrictions that are motivated by the underlying

economic structures.

To introduce the RKD, consider the structure

Y = Y (T,X, U) and T = T (X),

where Y denotes the outcome variable, T denotes the treatment variable, X denotes the

running variable, and U denotes the random vector of unobserved characteristics. A re-

searcher is often interested in the partial effect ∂Y (T,X, U)/∂T of the treatment variable
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on the outcome variable. Since the unobserved characteristics U are generally correlated

with the running variable X and thus with the treatment T = T (X), one would need to

exploit exogenous variations in the treatment variable in order to identify this partial effect.

If the treatment policy function T (·) exhibits a ‘kink’ at a known point x̄, then this shape

restriction can be exploited to induce local exogenous variations in the treatment variable T

as well, so that the partial effect of interest may be identified. This approach of the so-called

regression kink design (RKD) was proposed by Nielsen et al. (2010) and Card et al. (2015)

– see Dong (2016) for the case of a binary treatment, and see Chiang and Sasaki (2019) and

Chen, Chiang, and Sasaki (2020) for heterogeneous treatment effects.

Suppose that a researcher is interested in conducting inference for the average partial

effect h1(x̄) ≡ E [∂Y (T,X, U)/∂T |X = x̄] at the kink point x̄. Under regularity conditions,

we can obtain the following decomposition of the derivative g′0(X) of g0(x) = E[Y |X = x]:

g′0(x) = E

[
∂Y (T,X, U)

∂T

∣∣∣∣X = x

]

︸ ︷︷ ︸
Partial Effect of Interest: h1(x)

·T ′(x) + E

[
∂Y (T,X, U)

∂X

∣∣∣∣X = x

]

︸ ︷︷ ︸
Direct Effect of X: h2(x)

+ E

[
Y · ∂ log fU |X(U |X)

∂X

∣∣∣∣X = x

]

︸ ︷︷ ︸
Endogenous Effect: h3(x)

. (9)

If T ′(·) is discontinuous (i.e., T (·) is kinked) at x̄ while each of h1, h2 and h3 is continuous

at x̄, then this decomposition implies that the partial effect of interest at x̄ can be identified

by

h1(x̄) =
limx↓x̄ g

′
0(x)− limx↑x̄ g

′
0(x)

limx↓x̄ T ′(x)− limx↑x̄ T ′(x)
,

cf. Nielsen et al. (2010); Card et al. (2015). We can represent the parameter of interest via

h1(x̄) = A0g0, using a linear operator A0 defined by

A0g =
limx↓x̄ g

′(x)− limx↑x̄ g
′(x)

limx↓x̄ T ′(x)− limx↑x̄ T ′(x)
. (10)

Even though g0 is unknown, the operator A0 is known since T (·) is a known function. In

this case, W0 = {x̄}, and the parameter of interest θ0 = A0g0 is a scalar.

Although θ0 is nonparametrically estimable, an estimator based on slopes of nonpara-
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metric regression functions usually suffers from slow rates of convergence, and thus it may

not provide an informative confidence interval. If an economic structure motivates shape

restrictions, then imposing such restrictions may conceivably contribute to shrinking the

length of the confidence interval. With this motivation, in Section 5.1, we demonstrate how

shape restrictions help in conducting statistical inference in the analysis of of unemployment

insurance (UI).

5.1 Causal Effects of UI Benefits on Unemployment Duration

Unemployment insurance (UI) benefits play important roles in supporting consumption

smoothing under the risk of unemployment. A potential drawback of the UI benefits is

the moral hazard effects, that is, the UI benefits may discourage unemployed workers from

looking for jobs, leading to elongated unemployment durations and thus economic ineffi-

ciency. Identifying and estimating these moral hazard effects have been of research interest

in labor economics. Landais (2015) suggests to exploit the non-smooth UI benefit sched-

ule as detailed below, and thus to use the regression kink design to identify the effects of

UI benefits on the duration of unemployment. Applying this identification strategy to the

data of the Continuous Wage and Benefit History Project (cf. Moffitt, 1985), Landais (2015)

finds that there are positive effects of the UI benefit amounts on the duration of unemploy-

ment, even after controlling for unobserved source of endogenous selection of the duration

that may be correlated with the pre-unemployment income and thus the benefit amount.

Chiang and Sasaki (2019) further investigate heterogeneous effects of the UI benefit amount

on the duration by using the quantile regression kink design.

Landais (2015) considers the following empirical framework of assessing the welfare effects

of unemployment benefits. The outcome Y of interest is the duration of unemployment.

Upon becoming unemployed, an individual can apply for UI and receives a weekly benefit

amount of T = T (X), where X is the highest quarterly earning in the last four completed

calendar quarters prior to the date of the UI claim. The partial effect ∂Y (T,X, U)/∂T

measures the moral hazard effect of the UI benefits on the duration of unemployment in this

setting. Since the unobserved characteristics U contain cognitive and non-cognitive skills of

the individual, such as attitudes toward work, that are generally correlated with the labor
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income X received prior to the unemployment, one would need exogenous variations in the

treatment variable in order to identify this moral hazard effect.

As in Landais (2015), we can exploit the fact that the UI benefits policy T (·) exhibits a
kinked shape. In particular, the UI schedule in the state of Louisiana is linear in X with a

constant t ≡ 1/25 of proportionality up to a fixed ceiling tmax. (Note that the unit of X is

U.S. dollars per quarter, whereas the unit of T (X) is U.S. dollars per week. Therefore, this

constant of proportionality implies that the UI benefit amount is approximately a half of the

prior earnings.) The maximum UI benefit amount is t̄ = $183 during the period between

September 1981 and September 1982, and t̄ = $205 during the period between September

1982 and December 1983. In short, the UI benefits policy takes the form of

T (x) =




t · x if x < tmax/t

tmax if x ≥ tmax/t,

and T is thus kinked at x̄ = tmax/t. Individuals can continue to receive the benefits deter-

mined by this formula as far as they remain unemployed up to the maximum duration of 28

weeks.

We construct a data set by following the data construction in Landais (2015) and

Chiang and Sasaki (2019). We focus on the observations in Louisiana. The sample size of

the original data is 9,008 for the period between September 1981 and September 1982, and

16,463 for the period between September 1982 and December 1983. Since we are interested

in the information around the kink location x̄, for simplicity, we focus on the (sub-)sample

of the observations in the interval X ∈ [x̄ − 5000, x̄ + 5000]. The resultant sample size is

8,677 for the period between September 1981 and September 1982, and the resultant sample

size is 15,763 for the period between September 1982 and December 1983.

In this empirical application, we can consider a few shape restrictions on the unknown

conditional mean function g0(x) = E[Y | X = x]. First of all, to impose the continuity of g0

at x̄, we can use the shape restriction

lim
x↓x̄

g0(x) = lim
x↑x̄

g0(x). (11)
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This restriction is not redundant when we use difference sieves for the left of x̄ and the right

of x̄. Moreover, it may be reasonable to assume that h2 and h3 are both non-increasing.

Specifically, the direct effect h2 is non-increasing if formerly higher-income earner can find

the next job more quickly than formerly lower-income earners on average. The endogenous

effect h3 is non-increasing if individuals with higher abilities can find the next job more

quickly than those with lower abilities on average. Since T (·) is a constant function to the

right of the kink location in this application, this assumption together with the decomposition

(9) implies that the reduced form g0 is non-increasing to the right of the kink location x̄.

This consideration leads to the slope restriction

g′0(x) ≤ for every x > x̄. (12)

In the notations in Section 2, we can summarize the shape restrictions (11) and (12) as

[A1g0](w1) ≤ 0 for every w1 ∈ W1, (13)

where W1 = {−2,−1} ∪ {w1 : w1 > x̄} and

[A1g](w1) =





limx↓x̄ g(x)− limx↑x̄ g(x) if w1 = −2

limx↑x̄ g(x)− limx↓x̄ g(x) if w1 = −1

g′(w1) if w1 > x̄.

Now, we outline the concrete implementation procedure to exploit these shape restrictions

(13), for inference about the causal parameter θ0 = A0g0 defined in (10). For every even

natural number k, we use the basis functions

p1:k = (ℓL,0, ℓR,0, · · · , ℓL,k/2−1, ℓR,k/2−1),

where
(
ℓL,0, ℓL,1, · · · , ℓL,k/2−1

)
are the first k/2 terms of an orthonormal basis for L2([x̄ −

5000, x̄]) and
(
ℓR,0, ℓR,1, · · · , ℓR,k/2−1

)
are the first k/2 terms of an orthonormal basis for

L2([x̄, x̄ + 5000]). We use the shifted Legendre bases in the empirical application in this

14



subsection as well as in the simulation studies in Section C. We follow Section 4 to construct

the (1 − α)-level confidence interval for θ0 subject to the shape constraint (13), where we

restrict W1 = {−2,−1} ∪ {ξ1, . . . , ξl} with 99 equally spaced grid points {ξ1, . . . , ξl} ⊂
(x̄, x̄+5000). The following algorithm provides a step-by-step procedure of the construction.

Algorithm.

1. For every observation i = 1, . . . , n, construct the vector

ω̂i = p1:k(Xi)
(
Yi − p1:k(Xi)

TEn

[
p1:k(X)p1:k(X)T

]−1
En [p1:k(X)Y ]

)
.

2. Construct the four matrices:

A0,k =
(

− limx↑x̄ ℓ
′
L,0(x) limx↓x̄ ℓ

′
R,0(x) · · · − limx↑x̄ ℓ

′
L,k/2−1(x) limx↓x̄ ℓ

′
R,k/2−1(x)

)
,

B0 =
A0,kEn

[
p1:k(X)p1:k(X)T

]−1
En[p1:k(X)Y ]√

A0,kEn [p1:k(X)p1:k(X)T ]−1
En[ω̂ω̂T ]En [p1:k(X)p1:k(X)T ]−1

AT
0,k

,

B1 =
A0,k√

A0,kEn [p1:k(X)p1:k(X)T ]
−1

En[ω̂ω̂T ]En [p1:k(X)p1:k(X)T ]
−1

AT
0,k

, and

B2 =




− limx↑x̄ ℓL,0(x) limx↓x̄ ℓR,0(x) · · · − limx↑x̄ ℓL,k/2−1(x) limx↓x̄ ℓR,k/2−1(x)

limx↑x̄ ℓL,0(x) − limx↓x̄ ℓR,0(x) · · · limx↑x̄ ℓL,k/2−1(x) − limx↓x̄ ℓR,k/2−1(x)

0 ℓ′R,0(ξ1) · · · 0 ℓ′R,k/2−1(ξ1)
.
.
.

.

.

.
.
.
.

.

.

.

0 ℓ′R,0(ξl) · · · 0 ℓ′R,k/2−1(ξl)




.

3. Generate M independent samples {ηm,1, · · · , ηm,n}m=1,...,M of Rademacher random vari-

ables independently from data, and compute ĉv by the (1− α)-quantile of





∣∣∣A0,kEn

[
p1:k(X)p1:k(X)T

]−1
En[ηmω̂]

∣∣∣
√

A0,kEn [p1:k(X)p1:k(X)T ]−1En[ω̂ω̂T ]En [p1:k(X)p1:k(X)T ]−1AT
0,k





m=1,...,M

.
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4. Solve the linear programs

min
β

A0,kβ − δ0 max
β

A0,kβ + δ0

s.t. B1β ≤ B0 + cv s.t. B1β ≤ B0 + ĉv

B1β ≥ B0 − cv B1β ≥ B0 − ĉv

B2β ≤ δ1 B2β ≤ δ1.

The solutions to these two linear programs are the boundary points of the (1−α)-level

confidence interval for θ0.

Table 1 summarizes the results for the statistical inference about the marginal effects of UI

benefits on unemployment duration in Louisiana, based on the above algorithm. Displayed

are the 95% confidence intervals and their lengths for each of the period between September

1981 and September 1982 (top panel) and the period between September 1982 and December

1983 (bottom panel). We use the largest sieve dimension k = 12 among those that were used

in our simulation studies presented in Appendix C. (The shape restrictions do not bind for

the cases of k = 4 or k = 8. It is possibly because the current sample sizes are much larger

than those used in our simulation studies.) For the UI benefit amount T (X), we use two

alternative measures. One is the amount of UI benefits claimed (left half of each panel) and

the other is the amount of UI benefits actually paid (right half of each panel) by following

the prior work. That said, these two alternative measures provide almost the same results,

and therefore our discussions below apply to the results based on both of the two measures.

The reported confidence intervals contain the point estimates reported in the prior work

by Landais (2015). That said, the econometric specifications are different, and results are

thus hard to compare. Our results based on no shape restriction are effectively what we

would get from the standard method with running the fifth-degree polynomial regressions

on each side of the left and right of x. In contrast, Landais (2015) uses the polynomials

of degree one, i.e., the linear specification, for the main estimation results reported in his

Table 2. Due to the greater flexibility of our econometric specification, our method naturally

incurs wider confidence intervals, but we demonstrate that shape restrictions will contribute
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September 1981 – September 1982 UI Claimed UI Paid
Sieve Dimension: k = 12 95% CI Length 95% CI Length

No Shape Restriction [-0.023, 0.044] 0.067 [-0.030, 0.040] 0.070
Shape Restrictions (13) [0.000, 0.044] 0.044 [0.000, 0.040] 0.040

September 1982 – December 1983 UI Claimed UI Paid
Sieve Dimension: k = 12 95% CI Length 95% CI Length

No Shape Restriction [0.002, 0.048] 0.046 [0.002, 0.047] 0.045
Shape Restrictions (13) [0.002, 0.048] 0.046 [0.002, 0.047] 0.045

Table 1: 95% confidence intervals of the marginal effect of UI benefit amount on unemploy-
ment duration for Louisiana, 1981–1983.

to providing more informative results.

Our confidence interval includes the zero for the period between September 1981 and

September 1982 (the first panel of Figure 1) if no shape restriction is imposed, i.e., if the

conventional approach is taken. However, in this panel (for the period between September

1981 and September 198), shape restrictions (13) shrink the confidence intervals. (Although

these shrunken confidence intervals have their lower bounds approximately 0.000, note that

we do not directly impose a sign restriction on the causal effects per se, in the shape re-

strictions (13). See our discussions above (13) for motivations of these shape restrictions.)

On the other hand, the confidence intervals are already informative for the period between

September 1981 and September 1982 even without any shape restriction, and imposing shape

restrictions (13) therefore will not contribute to shrinking the confidence intervals. These

results thus demonstrate one case in which shape restrictions contribute to enhancing the

informativeness of statistical inference, and another case in which they do not.

6 Conclusion

Nonparametric inference under shape restrictions can demand high computational burdens,

e.g., a grid search over a high-dimensional sieve parameter space. In this paper, we pro-

vide a novel method of constructing confidence bands/intervals for nonparametric regression

functions under shape constraints. The proposed method can be implemented via a linear

programming, and it thus relieves the conventional computationally burdens. A usage of
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this new method is illustrated with an application to the regression kink design. Inference in

the regression kink design often suffers from wide confidence intervals due to the slow con-

vergence rates of nonparametric derivative estimators. If economic models and structures

motivate shape restrictions, then these restrictions may contribute to shrinking the confi-

dence interval. We demonstrate this point with real data for an analysis of the causal effects

of unemployment insurance benefits on unemployment durations. Specifically, for analysis

of the effects of unemployment insurance benefits on the unemployment duration, the shape

restrictions motivated by non-increasing direct effects and non-increasing endogenous effects

drastically shrink the confidence interval of causal effects.
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Appendix

A Proofs for the Results in the Main Text

A.1 Proof of Theorem 1

Proof. First, we are going to show that the projection of CRθ to θ0(w0) is included in the

interval defined in Theorem 1. Let θ be any element of CRθ. Then [A0,kβ](w0) − δ0(w0) ≤
θ(w0) ≤ [A0,kβ](w0) + δ0(w0) for some β ∈ R

k such that (4) and (6). It implies θ(w0) is

included in the interval.

Then, we are going to show that the interval is included in the projection of CRθ to

θ0(w0). Let c be any element of the interval defined in Theorem 1. There is β such that

|[A0,kβ](w0) − c| ≤ δ0(w0) and that β satisfies (4) and (6). Define θ(w̃0) by setting it to

[A0,kβ](w̃0) for w̃0 6= w0 and to c for w0. Then this θ satisfies (5) with θ(w0) = c. It implies

c is included in the projection of CRθ to θ0(w0).

A.2 Proof of Theorem 2

We first state four lemmas that play important roles in the proof of Theorem 2. Their proofs

are delegated to Appendix B.

Lemma 1. Under Assumptions 2 (a) and 2 (b), there exist k-dimensional centered Gaussian

random vectors Z and Z∗ such that

sup
t

∣∣∣P (‖Z‖∞ ≤ t)− P

(∥∥∥En[E[ωωT ]
−1/2

ω]
∥∥∥
∞

≤ t
)∣∣∣ = o(1),

sup
t

∣∣∣P (‖Z∗‖∞ ≤ t)− P

(∥∥∥En[E[ωωT ]
−1/2

ηω]
∥∥∥
∞

≤ t
)∣∣∣ = o(1),

and E[ZZT ] = E[Z∗(Z∗)T ].

Lemma 2. Under Assumptions 2 (a) and 2 (b), we have

max {‖En[(η + 1)ω]‖2 , ‖En[ω]‖2} = OP

(√
ξ2k
n

)
.
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Lemma 3. Under Assumptions 2 (a) and 2 (c), we have

∥∥En[ηp1:k(X)p1:k(X)T ]
∥∥
2
= OP

(√
ξ2k log k

n

)
.

Lemma 4. Under Assumptions 2 (a) and 2 (c), we have

∥∥∥En[ω̂ω̂
T ]−1/2 −E[ωωT ]

−1/2
∥∥∥
2
= OP

(
(n1/ν ∨ ℓkck)

√
ξ2k log k

n

)
.

Proof of Theorem 2. First, we are going to show that
∥∥En[ω̂ω̂

T ]−1/2En[ω]
∥∥
∞

≤ cv implies

θ0 ∈ CRθ. By Assumption 1 for A1, we have

[A1p
T
1:k](w1)β̄ ≤ [A1g0](w1) + |[A1(g0 − pT1:kβ̄)](w1)| ≤ δ1(w1)

for every w1 ∈ W1. By Assumption 1 for A0, we have

[A0p
T
1:k](w0)β − δ0(w0) ≤ θ0(w0) ≤ [A0p

T
1:k](w0)β + δ0(w0)

for every w0 ∈ W0. Together with
∥∥En[ω̂ω̂

T ]−1/2En[ω]
∥∥
∞

≤ cv, we have θ0 ∈ CRθ.

The rest of the proof is going to establish

lim inf
n→∞

P
(∥∥En[ω̂ω̂

T ]−1/2En[ω]
∥∥
∞

≤ cv
)
≥ 1− α.

We now invoke Lemma 1 under Assumptions 2 (a) and 2 (b). Observe that as the Gaussian

random vectors Z and Z∗ are centered and share a common covariance matrix, we have
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P (‖Z‖∞ ≤ t) = P (‖Z∗‖∞ ≤ t). Hence it holds that

P
(∥∥En[ω̂ω̂

T ]−1/2En[ω]
∥∥
∞

≤ cv
)

≥ P
(∥∥En[ω̂ω̂

T ]−1/2En[ηω̂]
∥∥
∞

≤ cv
)

− sup
t

∣∣∣P (‖Z∗‖∞ ≤ t)− P

(∥∥∥E[ωωT ]
−1/2

En[ηω]
∥∥∥
∞

≤ t
)∣∣∣

− sup
t

∣∣∣P
(∥∥∥E[ωωT ]

−1/2
En[ηω]

∥∥∥
∞

≤ t
)
− P

(∥∥En[ω̂ω̂
T ]−1/2En[ηω̂]

∥∥
∞

≤ t
)∣∣∣

− sup
t

∣∣∣P (‖Z‖∞ ≤ t)− P

(∥∥∥E[ωωT ]
−1/2

En[ω]
∥∥∥
∞

≤ t
)∣∣∣

− sup
t

∣∣∣P
(∥∥∥E[ωωT ]

−1/2
En[ω]

∥∥∥
∞

≤ t
)
− P

(∥∥En[ω̂ω̂
T ]−1/2En[ω]

∥∥
∞

≤ t
)∣∣∣ .

Following its definition, P
(∥∥En[ω̂ω̂

T ]−1/2En[ηω̂]
∥∥
∞

≤ cv
)
= 1 − α. By Lemma 1, it suffices

to show

sup
t

∣∣∣P
(∥∥∥E[ωωT ]

−1/2
En[ω]

∥∥∥
∞

≤ t
)
− P

(∥∥En[ω̂ω̂
T ]−1/2En[ω]

∥∥
∞

≤ t
)∣∣∣ = o(1) (14)

and

sup
t

∣∣∣P
(∥∥∥E[ωωT ]

−1/2
En[ηω]

∥∥∥
∞

≤ t
)
− P

(∥∥En[ω̂ω̂
T ]−1/2En[ηω̂]

∥∥
∞

≤ t
)∣∣∣ = o(1). (15)

We can bound the first probability as follows:

sup
t

∣∣∣P
(∥∥∥E[ωωT ]

−1/2
En[ω]

∥∥∥
∞

≤ t
)
− P

(∥∥En[ω̂ω̂
T ]−1/2En[ω]

∥∥
∞

≤ t
)∣∣∣

≤ sup
t

P

(∣∣∣
∥∥∥E[ωωT ]

−1/2
En[ω]

∥∥∥
∞
− t
∣∣∣ ≤ 1/(

√
n log k)

)

+P

(∣∣∣
∥∥∥E[ωωT ]

−1/2
En[ω]

∥∥∥
∞
−
∥∥En[ω̂ω̂

T ]−1/2En[ω]
∥∥
∞

∣∣∣ > 1/(
√
n log k)

)

≤ sup
t

P
(
|‖Z‖∞ − t| ≤ 1/(

√
n log k)

)

+2 sup
t

∣∣∣P (‖Z‖∞ ≤ t)− P

(∥∥∥En[E[ωωT ]
−1/2

ω]
∥∥∥
∞

≤ t
)∣∣∣

+P

(∣∣∣
∥∥∥E[ωωT ]

−1/2
En[ω]

∥∥∥
∞
−
∥∥En[ω̂ω̂

T ]−1/2En[ω]
∥∥
∞

∣∣∣ > 1/(
√
n log k)

)

≤ o(1) + P

(∣∣∣
∥∥∥E[ωωT ]

−1/2
En[ω]

∥∥∥
∞
−
∥∥En[ω̂ω̂

T ]−1/2En[ω]
∥∥
∞

∣∣∣ > 1/(
√
n log k)

)
, (16)
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where the last inequality uses Lemma 1 and an anti-concentration argument, which implies

that

sup
t

P
(
|‖Z‖∞ − t| ≤ 1/(

√
n log k)

)
= o(1).

To see how the anti-concentration argument works, observe that

sup
t

P
(
|‖Z‖∞ − t| ≤ 1/(

√
n log k)

)

≤ sup
z∈Rk

P
(
z < Z ≤ z + 1/(

√
n log k)

)
+ sup

z∈Rk

P
(
z − 1/(

√
n log k) ≤ Z ≤ z

)
.

Then the Nazarov’s anti-concentration inequality (Lemma A.1 in Chernozhukov, Chetverikov, and Kato

(2017b)) implies that the first term on the right hand side

sup
z∈Rk

P
(
z < Z ≤ z + 1/(

√
n log k)

)
≤ C(n log k)−1/2 = o(1),

where C is a constant that depends only on b from Assumption 2 (b). The second term

on the right hand side above follows a similar argument. Now, for the remaining term in

Equation (16), note that

∣∣∣
∥∥∥E[ωωT ]

−1/2
En[ω]

∥∥∥
∞
−
∥∥En[ω̂ω̂

T ]−1/2En[ω]
∥∥
∞

∣∣∣ ≤
∥∥∥(En[ω̂ω̂

T ]−1/2 −E[ωωT ]
−1/2

)En[ω]
∥∥∥
∞

≤
∥∥∥En[ω̂ω̂

T ]−1/2 − E[ωωT ]
−1/2

∥∥∥
2
‖En[ω]‖2

=OP

(
(n1/ν ∨ ℓkck)

√
ξ4k log k

n2

)
= oP (1)

follows from Lemma 2, Lemma 4, and Assumption 2 (c)-(iv). This verifies Equation (14).

We next show Equation (15). In a similar way to Equation (16), we can bound

sup
t

∣∣∣P
(∥∥∥E[ωωT ]

−1/2
En[ηω]

∥∥∥
∞

≤ t
)
− P

(∥∥En[ω̂ω̂
T ]−1/2En[ηω̂]

∥∥
∞

≤ t
)∣∣∣

≤ o(1) + P

(∣∣∣
∥∥∥E[ωωT ]

−1/2
En[ηω]

∥∥∥
∞
−
∥∥En[ω̂ω̂

T ]−1/2En[ηω̂]
∥∥
∞

∣∣∣ > 1/(
√
n log k)

)
.
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Note that

∣∣∣
∥∥∥E[ωωT ]

−1/2
En[ηω]

∥∥∥
∞
−
∥∥En[ω̂ω̂

T ]−1/2En[ηω̂]
∥∥
∞

∣∣∣

≤
∥∥∥(En[ω̂ω̂

T ]−1/2 − E[ωωT ]
−1/2

)En[ηω]
∥∥∥
∞
+
∥∥∥(En[ω̂ω̂

T ]−1/2 − E[ωωT ]
−1/2

)En[ω]
∥∥∥
∞

+
∥∥∥(En[ω̂ω̂

T ]−1/2 − E[ωωT ]
−1/2

)En[η(ω̂ − ω)]
∥∥∥
∞
+
∥∥∥E[ωωT ]

−1/2
En[η(ω̂ − ω)]

∥∥∥
∞

≤
∥∥∥En[ω̂ω̂

T ]−1/2 − E[ωωT ]
−1/2

∥∥∥
2
‖En[ηω]‖2 +

∥∥∥En[ω̂ω̂
T ]−1/2 −E[ωωT ]

−1/2
∥∥∥
2
‖En[ω]‖2

+
(∥∥∥(En[ω̂ω̂

T ]−1/2 −E[ωωT ]
−1/2

)
∥∥∥
2
+
∥∥∥E[ωωT ]

−1/2
∥∥∥
2

)
‖En[η(ω̂ − ω)]‖2

≤ OP

(
(n1/ν ∨ ℓkck)

√
ξ4k log k

n2

)
+OP (1) ‖En[η(ω̂ − ω)]‖2

= o(1)

follows from Lemma 2, Lemma 3, Lemma 4, and the fact that with probability 1− o(1),

‖En[η(ω̂ − ω)]‖2 =
∥∥∥(En[ηp1:k(X)p1:k(X)T ])En

[
p1:k(X)p1:k(X)T

]−1
En[ω]

∥∥∥
2

=
∥∥En[ηp1:k(X)p1:k(X)T ]

∥∥
2
‖En

[
p1:k(X)p1:k(X)T

]−1 ‖2 ‖En[ω]‖2

= O

(√
ξ4k log k

n2

)

= o(1).

Note that we have used ‖En

[
p1:k(X)p1:k(X)T

]−1 ‖2 = OP (1). To see this, observe that

‖En

[
p1:k(X)p1:k(X)T

]
− E[p1:k(X)p1:k(X)T ]‖ = oP (1) following Lemma 6.2 in Belloni et al.

(2015) under Assumption 2 (c)-(iv) . Therefore, all eigenvalues of En

[
p1:k(X)p1:k(X)T

]
are

bounded away from zero with probability approaching one following the same argument in

the proof of Lemma 4. This verifies Equation (15).

B Proofs for the Auxiliary Lemmas

This Section contains the proofs of the lemmas in Appendix A.2.
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B.1 Proof of Lemma 1

Proof. Observe that E[ω] = 0. The first uniform convergence in probability follows from

Proposition 2.1 in Chernozhukov et al. (2017a) under their Conditions (M.1), (M.2), and

(E.2), that are implied by our Assumption 2 (b). The second follows from the same propo-

sition in Chernozhukov et al. (2017a) – note that Conditions (M.1), (M.2), and (E.2) and the

independence between η and the data imply E[(η(E[ωωT ]−1/2)jω)
2] ≥ b, E[|η(E[ωωT ]−1/2)jω|2+κ] ≤

Bκ
n, and E[‖ηE[ωωT ]−1/2ω‖q∞] ≤ Bq

n. Finally, the statement on covariance equality is implied

by the first two statements, Proposition 2.1 in Chernozhukov et al. (2017a) and the equality

E[E[ωωT ]−1/2ω(E[ωωT ]−1/2ω)T ] = E[η2E[ωωT ]−1/2ω(E[ωωT ]−1/2ω)T ].

B.2 Proof of Lemma 2

Proof. By Jensen’s inequality, we have

E[‖En[ω]‖2] = E[(En[ω]
TEn[ω])

1/2]

≤ (E[En[ω]
TEn[ω]])

1/2

=

√
1

n
E[ωTω]1/2

E[‖En[(η + 1)ω]‖2] = E[(En[(η + 1)ω]TEn[(η + 1)ω])1/2]

≤ (E[En[(η + 1)ω]TEn[(η + 1)ω]])1/2

=

√
1

n
(E[(η + 1)2ωTω])1/2

=

√
1

n
(E[ωTω])1/2.

Note that we used the independence between η and the data. We can further bound

E[ωTω]1/2 =
(
E[‖p1:k(X)‖22(Y − p1:k(X)TQ−1E [p1:k(X)Y ])2]

)1/2

=
(
E[‖p1:k(X)‖22(Y − p1:k(X)T β̄)2]

)1/2

≤ ξk
(
E[(Y − p1:k(X)T β̄)2]

)1/2

≤ ξk
(
E[Y 2]

)1/2
.
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Therefore, the statement of the lemma follows.

B.3 Proof of Lemma 3

Proof. By the second statement of Lemma 6.1 in Belloni et al. (2015), we have

E[
∥∥En[ηp1:k(X)p1:k(X)T ]

∥∥
2
| {Yi, Xi}] = O

(√
log k

n

∥∥∥
(
En[(p1:k(X)p1:k(X)T )2]

)1/2∥∥∥
2

)
.

We can further bound the norm part by

∥∥∥
(
En[(p1:k(X)p1:k(X)T )2]

)1/2∥∥∥
2

=
∥∥∥
(
En[(p1:k(X)(p1:k(X)Tp1:k(X))p1:k(X)T ]

)1/2∥∥∥
2

≤ ξk‖En

[
p1:k(X)p1:k(X)T

]1/2 ‖2.

By Belloni et al. (2015, Theorem 4.6), we have ‖En

[
p1:k(X)p1:k(X)T

]1/2 ‖2 = OP (1) under

Assumption 2 (c).

B.4 Proof of Lemma 4

Proof. By Lemma A.2 of Belloni et al. (2015), we can bound

∥∥∥En[ω̂ω̂
T ]−1/2 − E[ωωT ]

−1/2
∥∥∥
2
≤
∥∥∥En[ω̂ω̂

T ]−1 − E[ωωT ]
−1
∥∥∥
2

∥∥E[ωωT ]
∥∥1/2
2

.

Observe that by Jensen’s inequality, {E[max1≤i≤n |Yi − g0(Xi)|2]}1/2 = O(n1/ν) under As-

sumption 2 (c)-(i) Applying Theorem 4.6 in Belloni et al. (2015), we have

∥∥En[ω̂ω̂
T ]− E[ωωT ]

∥∥
2
= OP

(
(n1/ν ∨ ℓkck)

√
ξ2k log k

n

)

under Assumptions 2 (a) and 2 (c). Notice that
∥∥∥E[ωωT ]

−1
∥∥∥
2
= O(1) and

∥∥E[ωωT ]
∥∥
2
=

O(1). We now claim that ‖En[ω̂ω̂
T ]−1‖2 = OP (1). In fact, all eigenvalues of En[ω̂ω̂

T ]

are bounded away from zero. To see this, assume without loss of generality E[ωωT ] =

I. Suppose that at least one of eigenvalues of En[ω̂ω̂
T ] is strictly smaller than 1/2, then

there exists a vector a ∈ R
k on the unit sphere such that a′En[ω̂ω̂

T ]a < 1/2 and thus
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‖En[ω̂ω̂
T ]−E[ωωT ]‖2 ≥ |aT (En[ω̂ω̂

T ]−E[ωωT ])a| = |aTEn[ω̂ω̂
T ]a−1| > 1/2, a contradiction.

This implies that all eigenvalues of En[ω̂ω̂
T ]−1 are bounded from above and thus the claim.

Hence, we have

∥∥∥En[ω̂ω̂
T ]−1 − E[ωωT ]

−1
∥∥∥
2
≤ ‖En[ω̂ω̂

T ]−1‖2
∥∥En[ω̂ω̂

T ]− E[ωωT ]
∥∥
2
‖E[ωωT ]−1‖2,

which, combined with the above bound, yields

∥∥∥En[ω̂ω̂
T ]−1/2 −E[ωωT ]

−1/2
∥∥∥
2
= OP

(
(n1/ν ∨ ℓkck)

√
ξ2k log k

n

)
.

Therefore, the statement of the lemma follows.

C Simulation Analysis

In this section, we use Monte Carlo simulations to check whether the proposed method works

as the theory claims. Consider the following data generating process.

Y (t, x, u) = 0.5t− 0.1x+ u

T (x) =




0.5x if x < 0

0 if x ≥ 0

We design this policy schedule T to mimic the actual policy schedule that we use in our

empirical analysis in Section 5.1. Allowing for the endogeneity of X , we generate (X,U) from

the bivariate normal distribution with E[X ] = E[U ] = 0, V ar(X) = 1.00, Cov(X,U) = 0.10

and V ar(U) = 0.10. In this data generating process, the true partial effect is h1(0) = 0.5.

We experiment with three different sample sizes n = 1000, 2000 and 4000. We implement

the algorithm in Section 5.1 with the kink location at 0 and the subsample with X ∈ [−1, 1].

The number of multiplier bootstrap iterations is set to M = 2500. We experiment with

k ∈ {4, 8, 12} and set δ0 = δ1 = 0.01 throughout. Each set of simulations is based on 10,000

Monte Carlo iterations.

26



Sieve Average Length Coverage
Dimension Sample Size n 1000 2000 4000 1000 2000 4000

k=4
No Shape Restriction 0.656 0.470 0.338 0.948 0.947 0.949

Shape Restrictions (13) 0.647 0.470 0.338 0.948 0.947 0.949

k=8
No Shape Restriction 6.039 4.283 3.037 0.950 0.950 0.948

Shape Restrictions (13) 3.519 2.646 2.020 0.950 0.950 0.948

k=12
No Shape Restriction 20.675 14.679 10.406 0.942 0.941 0.942

Shape Restrictions (13) 10.819 7.879 5.690 0.942 0.941 0.942

Table 2: Average lengths and coverage frequencies of the 95% confidence intervals under
alternative shape restrictions. All the results are based on 10,000 Monte Carlo iterations.

Table 2 summarizes average lengths and coverage frequencies of the 95% confidence in-

tervals under alternative shape restrictions across the three different sample sizes, n = 1000,

2000 and 4000. First, note that the lengths decrease as the sample size n increases for each

sieve dimension k and for each set of shape restrictions. Second, observe that the coverage

frequencies are quite close to the nominal probability 95% for each sieve dimension k and for

each set of shape restrictions. Third, when the sieve dimension takes k ∈ {8, 12}, the shape

restriction (13) contributes to shrinking the average lengths without sacrificing the cover-

age frequencies. These results imply that shape restrictions contribute to more informative

statistical inference.
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