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We axiomatize subjective probabilities on finite domains without requiring rich-
ness in the outcome space or restrictions on risk preference using Event Exchange-
ability (Chew and Sagi, 2006), which has been implicit in the prior literature (Sav-
age, 1954; Machina and Schmeidler, 1992; Grant, 1995). In three successively stronger
theorems, we characterize a probability representation of the exchangeability re-
lation, followed by characterizing a unique subjective probability, and finally en-
dowing this subjective probability with the property of reduction consistency—
acts inducing the same lottery are indifferent. This subjective probability can serve
as foundation to derive expected utility and rank linear utility by imposing the
sure-thing principle and its comonotonic variant. Moreover, our finite-domain set-
ting reveals a novel possibility of state dependence arising from our subjective
probability not being reduction consistent. Our axiomatic treatment can be further
adapted to smaller collections of events and deliver small worlds probabilistic so-
phistication.

KEYWORDS: Subjective Probability, Finite State Spaces, Exchangeability, Prob-
abilistic Sophistication, State Dependence, Source Preference.

1. INTRODUCTION

At the heart of decision making under uncertainty lies the concept of subjective
probability. This has been an active direction of research since Ramsey (1926), de Finetti
(1937), and Savage (1954) who derive subjective probability in conjunction with an un-
derlying expected utility preference structure. The proliferation in the 1980s1 of non-
expected utility models has led to the question of how to disentangle the decision
maker’s belief represented by subjective probability from the underlying risk prefer-
ence. Such a separation is first attempted by Machina and Schmeidler (1992). They
characterize a “probabilistically sophisticated non-expected utility maximizer” whose
preference over acts is represented by a utility functional over the corresponding act-
induced lotteries through her subjective probability, requiring only the utility func-
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tional to be continuous and monotone in the sense of stochastic dominance. This is
weakened subsequently in Grant (1995) which partially relaxes monotonicity. A decade
later, Chew and Sagi (2006) demonstrate how monotonicity and continuity can both be
dispensed with by employing the notion of event exchangeability—two disjoint events
are exchangeable if the decision maker is indifferent to exchanging their assigned out-
comes regardless of how outcomes are assigned to other events. Event exchangeability
provides a basic criterion for probability-based choice behavior, i.e., exchangeable events
have the same subjective probability.

Significantly, research in the aforementioned literature tends to rely on a source of
uncertainty that is infinitely divisible. At the same time, the development of subjective
probability in finite state spaces has not evolved towards satisfactorily decoupling sub-
jective probability from risk preference. Existing work typically requires some richness
in the outcome space and accompanying restrictions on the underlying risk preference
(Nakamura, 1990; Gul, 1992; Chew and Karni, 1994). Our primary contribution, adopt-
ing the exchangeability-based approach, is to provide a parsimonious framework for
identifying subjective probability in finite state spaces with minimal requirements on
both the outcome space and risk preference.

There is no dearth of problems involving decision making on a finite uncertainty
domain without a rich outcome space. Which candidate will be elected in a primary?
How many job offers will I receive in the next month? Will s(he) call tonight? No-
tice that the identification of the subjective probability in the aforementioned works
typically requires an infinite enrichment with either irrelevant outcomes or unrelated
states. In this regard, the following observation of Davidson and Suppes (1954) about
the works of Ramsey (1926), de Finetti (1937), and Savage (1954) seems pertinent also
for the other models of decision making discussed in the preceding paragraphs:

While these theories may be satisfactory for normative purposes, from an empirical point of
view they share the following disadvantage: for verification, and therefore for the derivation of
measures, they require an infinite number of choices, yet no one can ever compare an infinite list
of alternatives.

Consider Ellsberg’s (1961) two-urn problem, which serves as a running example
throughout this paper. This problem demonstrates a pattern of decision making that
is not compatible with probability-based behavior; accordingly, we first illustrate how
one of the characteristic properties of such behavior fails. Urn 1 contains 50 red and 50
black balls, while Urn 2 contains 100 red and black balls in total with unknown propor-
tions. The state space is given by drawing one ball from each urn: S = {rr, rb, br, bb},
where the letter indicates the color of the ball (Red or Black) and its position the urn.
For instance, rb is the state in which a red ball is drawn from Urn 1 and a black ball
is drawn from Urn 2. The event R1 = {rr, rb} corresponds to drawing a red ball from
the first urn; B1 = {br, bb} to drawing a black ball from the first urn; R2 = {rr, br} to
drawing a red ball from the second urn; and B2 = {rb, bb} to drawing a black ball from
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the second urn. The commonly observed choice pattern of indifference between betting
on R1 and B1 suggests that the two are exchangeable. Likewise, R2 can be viewed as
exchangeable with B2. This can be depicted using a payoff matrix with outcomes x and
y in which the two row events are exchangeable, as are the two column events:

R2 B2 R2 B2
R1 x x ∼ R1 y y
B1 y y B1 x x

R2 B2 R2 B2
R1 x y ∼ R1 y x
B1 x y B1 y x

Consider the two families of exchangeable events F1 = {R1, R2} and F2 = {B1, B2}.
The collection of surplus state(s) in F1 relative to F2, i.e., state(s) whose number of
appearances in the first family exceeds the number in the second family, consists only
of rr, which appears twice more in F1. Likewise, the surplus states in F2 relative to F1
consist of bb, which appears twice more in F2. For any probability p such that{

p(R1) = p(rr) + p(rb) = p(br) + p(bb) = p(B1)

p(R2) = p(rr) + p(br) = p(rb) + p(bb) = p(B2)
,

it must be the case that p(rr) = p(bb).
The prevailing choice pattern exhibited in experiments is that individuals prefer a

bet of x > 0 on R1 to a bet on B2, as depicted below.

R2 B2 R2 B2
R1 x x � R1 0 x
B1 0 0 B1 0 x

In the above strict preference ordering, the two bets differ from each other by exchang-
ing their outcomes on rr and bb. This is at odds with probability-based choice due to a
violation of rr and bb being exchangeable with each other.

Our axiomatic treatment relies heavily on exchangeable families: same-sized (finitely
indexed) families of events for which any pair of events with the same index are ex-
changeable, e.g., F1 and F2 in Ellsberg’s two-urn example. The use of exchangeable
families admits greater scope for investigating exchangeability in a finite setting, be-
cause a family of events can contain many instances of a particular state while each
member event is limited to containing only one instance.

To characterize an exchangeability relation having a probability representation, the
first condition we impose is Strong Event Non-satiation, which strengthens the cor-
responding axiom in Chew and Sagi (2006). Strong Event Non-satiation states that
for any pair of exchangeable families, if there are no surplus states in the first fam-
ily relative to the second, then any surplus states in the second family must be payoff
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irrelevant. The second axiom, termed Cancellation, is new. For any pair of exchange-
able families, suppose that every surplus state in the first family relative to the second
family appears k times more in the first family, and every surplus state in the second
family relative to the first family also appears k times more in the second family. Can-
cellation requires these two collections of surplus states to be exchangeable, e.g., {rr}
and {bb} to be exchangeable in Ellsberg’s two-urn example. It is apparent that both
Strong Event Non-satiation and Cancellation hold whenever the exchangeability rela-
tion has a probability representation. Far more nuanced and challenging to prove is the
converse, a message delivered by Theorem 1 in this paper.

To arrive at an exchangeability-based likelihood comparison among events, Chew
and Sagi (2006) consider an event to be at least as likely as another event whenever the
former event contains a subevent that is exchangeable with the latter. In the presence
of atoms, this definition is not generally applicable, because an atom can be strictly
more likely than some other event, yet contain no subevents save for the empty set. To
encompass likelihood comparisons between atoms, we can apply the idea behind the
Cancellation axiom. For a pair of exchangeable families, let the first family be aug-
mented with some extra events. Now, suppose that every surplus state in the first
augmented family relative to the second family appears k times more, and every sur-
plus state in the second family relative to the first augmented family also appears k
times more. Relying on the idea of Cancellation, the collection of surplus states from
the first augmented family would be more likely than the collection of surplus states
from the second family. In our Theorem 2, a unique subjective probability follows from
adding completeness of the extended comparative likelihood relation to Strong Event
Non-satiation and Cancellation, encompassing all exchangeability relation from which
a subjective probability can be identified on finite domains.

Our basic result in Theorem 2 sets up a parsimonious framework to axiomatize, suc-
cessively, standard risk preferences, probabilistic sophistication and source preference.
The existence of subjective probability leaves open the possibility that it could help sim-
plify preference over acts to preference over their corresponding act-induced lotteries
as in the case of decision making under risk. Should this be the case, we say that the de-
cision maker exhibits lottery-based choice and that her subjective probability is reduction
consistent. In the framework of Theorem 2 augmented by continuity and monotonicity,
the sure-thing principle (STP) (Savage, 1954) and its comonotonic counterpart (Chew
and Wakker, 1996) deliver lottery-based choice from the corresponding expected util-
ity and rank linear utility (Green and Jullien, 1988; Segal, 1989) representations. It is
worth noting that rank linear utility subsumes rank dependent utility (Quiggin, 1982)
and cumulative prospect theory (Tversky and Kahneman, 1992) as special cases.

Relying on the structural assumption of atomlessness, Savage (1954), Machina and
Schmeidler (1992), and Grant (1995) all make use of a step showing the subjective prob-
ability to be the unique representation of an underlying exchangeability relation in
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their demonstration of reduction consistency. In this regard, our atomic setting reveals
a novel possibility in which subjective probability may not be reduction consistent,
pointing to the presence of state dependence. To arrive at lottery-based choice, we im-
pose an additional axiom called Exchangeability Independence. Suppose the decision
maker is indifferent between two acts inducing the same lottery under the uniquely
identified subjective probability in Theorem 2. Exchangeability Independence requires
indifference to be unaffected when a common outcome in both acts assigned to a pair of
equally likely events is replaced with a new common outcome. From Exchangeability
Independence, it emerges that all acts are treated as lotteries (Theorem 4).

We further adapt the reduction consistent subjective probability in Theorem 4 to
model source preference in terms a “small world” in the decision theory literature (see,
e.g., Savage 1954; Chew and Sagi 2008; Abdellaoui et al. 2011). Individuals who violate
Cancellation in Ellsberg’s two-urn problem exhibit a form of small worlds probability-
based choice. The observation that Ri and Bi (i = 1, 2) are exchangeable pins down
each of their subjective probabilities to 0.5 in both urns. In other words, the decision
maker exhibits probability-based choice when making decisions in the finite space cor-
responding to each of the two urns. Probability-based choice fails only when the state
space is enriched to incorporate both urns concurrently. This example illustrates the
usefulness of our approach in the absence of global probability-based choice and points
to an account of ambiguity aversion in terms of comparative risk aversion across the
two sources of uncertainty.

The next section lays the groundwork for our exchangeability-based approach. Sec-
tion 3 provides a characterization of exchangeability relation possessing probability
representation with Strong Event Non-satiation and Cancellation on a finite domain.
Section 4 characterizes a unique representing probability as the subjective probabil-
ity with a Completeness axiom on the extended comparative likelihood based on ex-
changeability relation. Section 5 offers characterizations of standard models of decision
making under risk within our framework. This is followed by a characterization in Sec-
tion 6 of lottery-based choice via the addition of a new Exchangeability Independence
axiom. In Section 7, we adapt the result of Section 6 to develop a result, which parallels
Chew and Sagi (2008), concerning lottery-based choice on homogeneous domains of
events in order to capture the idea of source preference. Finally, Section 8 summarizes
our findings. Proofs are relegated to the Appendix.

2. PRELIMINARIES

Let the state space S be a finite set, X an arbitrary outcome space, and F the collec-
tion of all acts, i.e., functions from S to X. If E is a subset of S, f Eg is the act that pays
f (s) in s ∈ E and g(s) in s ∈ Ec. Likewise, for two disjoint subsets E and F of S, the act
f EgFh pays f (s) in s ∈ E, g(s) in s ∈ F and h(s) in s ∈ Ec ∩ Fc. We identify x ∈ X with
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the constant act that pays x in every state of the world.
The decision maker’s preference for acts is represented by a complete and transitive

preference relation < over F , with the corresponding indifference relation ∼ and strict
preference � being its symmetric and asymmetric parts, respectively. In addition, we
require that preference not be degenerate, i.e., there exist x, y ∈ X such that x � y. We
say that an event E is null if f Eh ∼ gEh for any f , g, h ∈ F . Non-degeneracy implies
that the whole state space S is not null.

We say that p : S → [0, 1] is a probability on S if ∑s∈S p(s) = 1. For a subset E of
S, define p(E) = ∑s∈E p(s). The collection of lotteries with outcomes in X (probability
distributions on X with finite support) is denoted by ∆(X). For a given probability p,
an act f in F induces a lottery in ∆(X) with ` f = {(x, px) : x ∈ f (S) and px > 0}where
px = p( f−1(x)).

We use the event exchangeability relation in Chew and Sagi (2006), stated below, as
a basis for equal likelihood.

DEFINITION 1: Two disjoint events E and F are said to be exchangeable, denoted as
E ≈ F, whenever xEyF f ∼ xFyE f for any x, y ∈ X and any f ∈ F .

For our main purpose of identifying subjective probability from the decision maker’s
preference, ≈ serves the purpose of the symmetric part of her yet-to-be-known quali-
tative probability (de Finetti, 1937). The following properties of ≈, summarized in the
proposition below, are inherited from our assumptions over < and used throughout
the paper.

PROPOSITION 1: Suppose that < is a complete, transitive, and non-degenerate preference
relation. Then,

(i) ∅ ≈ ∅.
(ii) It is not the case that ∅ ≈ S.

(iii) E ≈ F if and only if F ≈ E.
(iv) For any pairwise disjoint events E, F, E′, F′ such that E ≈ F and E′ ≈ F′, we have

E ∪ E′ ≈ F ∪ F′.

We first seek probabilities that are compatible with ≈.

DEFINITION 2: We say that p is a probability representing ≈ if for any pair of disjoint
events E and F, E ≈ F if and only if p(E) = p(F).

Definition 2 describes a form of probability-based choice in which the decision maker
is willing to exchange outcomes assigned to equally likely events according to p. Re-
call that Ellsberg’s two-urn problem is not compatible with probability-based choice
as discussed in the Introduction. At the other extreme, consider a setting in which no
two non-null events are exchangeable. In this case, it seems vacuous to represent ≈
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because it can be represented by any probability that assigns zero to null events, but
for which no two non-null events have the same probability. It is evident that the value
of a probability representing ≈ arises from having adequate pairs of events for which
exchangeability holds. Should the exchangeability relation be sufficiently rich to pin
down a unique probability representation of ≈, it would be the natural candidate for
the decision maker’s subjective probability.

DEFINITION 3: We say that p is a subjective probability if it is the unique probability
representing ≈.

Our goal is to flesh out the necessary and sufficient conditions for the existence of a
probability representation of ≈, and then to investigate its uniqueness, and then apply
it to characterize expected utility along with rank linear utility, probabilistic sophisti-
cation, and source preference.

3. PROBABILITY REPRESENTATION OF EVENT EXCHANGEABILITY

An advantage of working with an infinitely divisible state space is that, under ap-
propriate conditions on <, one can add or subtract events (using the set union and
set difference operations) at will until exchangeability is achieved. To obtain an anal-
ogous degree of flexibility in a finite state space, we work with families of events that
contain a finite number of events. The families {E1, . . . , Em}, {E1, . . . , Em, e, . . . , e︸ ︷︷ ︸

k

} and

{E1, . . . , Em, e1, . . . , el} will be abbreviated as {Ei}, {Ei, e(k)} and {Ei, ej} when it is un-
likely to cause confusion. Previously, the axioms in Chew and Sagi (2006) are stated in
terms of set unions and set differences. Our strategy is to develop similarly phrased
axioms, applied to families of events, which can contain multiple copies of the same
event and accommodate addition and subtraction at will.

We begin with an extension of set difference to an operation between families of sets.
The family difference between {Ei} and {Fj}, denoted as {Ei} 
 {Fj}, consists of states
whose occurrence in {Ei} exceeds that in {Fj}. Formally, when {Ei} and {Fj} are of the
equal size m, it is defined by

{Ei} 
 {Fj} = {s ∈ S : ∀σ, s ∈
m⋃

i=1

Ei\Fσ(i)}

where σ is a permutation of {1, . . . , m}. When two families of events are of unequal size,
we can augment the smaller family with some repetitions of ∅ to arrive at two fami-
lies of equal size and then apply the previous definition. Note that when each family
consists of a single event, family difference reduces to the set difference operation.
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We say that {Ei}
{Fj} = e is of order k if {Ei}
{Fj, e(k−1)} = e and {Ei}
{Fj, e(k)} =
∅. Applying this definition to Ellsberg’s two-urn problem discussed in the Introduc-
tion yields that the two singleton events, {rr} = {R1, R2} 
 {B1, B2} and {bb} =
{B1, B2} 
 {R1, R2}, are both of order 2.

The following proposition draws on two characteristic properties of a probability—
non-negativity and additivity.

PROPOSITION 2: Let p be a probability over S, and {Ei}m
i=1 and {Fi}m

i=1 be two families of
events.

(i) Suppose that p(Ei) ≥ p(Fi) for any i = 1, . . . , m and {Ei} 
 {Fi} = ∅, then p(Ei) =
p(Fi) and p({Fi} 
 {Ei}) = 0.

(ii) Suppose that p(Ei) ≥ p(Fi) for any i = 1, . . . , m and {Ei} 
 {Fi} and {Fi} 
 {Ei} are
of the same order, then p({Ei} 
 {Fi}) ≥ p({Fi} 
 {Ei}). In addition, if p(Ei) > p(Fi)
for some i, then p({Ei} 
 {Fi}) > p({Fi} 
 {Ei}).

We define two families {Ei}m
i=1 and {Fi}m

i=1 comprising pairwise exchangeable events,
i.e., Ei ≈ Fi (1 ≤ i ≤ m), to be exchangeable families, denoted by {Ei} ≈ {Fi}. As we may
surmise from Proposition 2, the two axioms – Strong Event Non-satiation and Cancella-
tion – introduced below, each stated in terms of event families, are necessary properties
of a probability representation of ≈.

AXIOM E* (Strong Event Non-satiation): For any {Ei} ≈ {Fi}, {Ei} 
 {Fi} = ∅ im-
plies that {Fi} 
 {Ei} is null.

If {Ei}
 {Fi} = ∅, then there are no surplus states in {Ei} relative to {Fi}. If {Ei} ≈
{Fi}, then Axiom E* requires surplus states in {Fi} relative to {Ei} to be null. This
mimics the thinking behind Event Non-satiation from Chew and Sagi (2006), which is
restated below.

AXIOM E (Event Non-satiation): For any pairwise disjoint E, F, e, if E ≈ F and e is
non-null, then no subset of E is exchangeable with F ∪ e.

To see that Strong Event Non-satiation implies Event Non-satiation, consider the
case where the latter fails, i.e., when E ≈ F and e′ ≈ e ∪ E for some e′ ⊆ F where
E, F, e are pairwise disjoint and e is non-null. Let {Ei} be the family {e′, E} and {Fi}
be the family {e ∪ E, F}. Then Strong Event Non-satiation also fails since {Ei} ≈ {Fi},
{Ei} 
 {Fi} = ∅ and e ⊆ {Fi} 
 {Ei} is not null.

AXIOM CN (Cancellation): For any {Ei} ≈ {Fi}, if {Ei} 
 {Fi} and {Fi} 
 {Ei} are of
the same order, then {Ei} 
 {Fi} ≈ {Fi} 
 {Ei}.

Suppose that the differences between the two families, {Ei} and {Fi}, are of the same
order, say k. Then, the surplus states in {Ei} relative to {Fi} correspond to k copies of
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the event {Ei} 
 {Fi}, while the surplus states in {Fi} relative to {Ei} correspond to k
copies of {Fi} 
 {Ei}. Cancellation requires these “residual” events to be exchangeable
whenever they are generated by exchangeable families. As discussed in the Introduc-
tion, the observed choice in Ellsberg’s two-urn problem typically violates Cancellation.
Specifically, the residual events {rr} and {bb} are not exchangeable despite their com-
ing from family differences of the same order (i.e., two) from the exchangeable families
{R1, R2} and {B1, B2}.

Our first main result is stated below.

THEOREM 1: There exists a probability representing≈ if and only if Cancellation and Strong
Event Non-satiation hold.

The non-uniqueness of probability representation points to the possibility of adopt-
ing additional criteria for selecting a probability representation or further shrinking its
possible range, evoking criteria such as monotonicity or maxmin from the multiple-
prior literature originating from Gilboa and Schmeidler (1989). Although Cancellation
and Strong Event Non-satiation do not pin down the decision maker’s subjective prob-
ability, they nonetheless serve to constrain subjective likelihood and provide a way of
testing probability-based choice behavior.

4. CHARACTERIZING SUBJECTIVE PROBABILITY

Chew and Sagi (2006) offer the following definition of an exchangeability-based
comparative likelihood <c.

DEFINITION 4: E <c F if there exists e ⊆ E\F such that e ≈ F\E.

Completeness of <c over finite state spaces will result in a uniform subjective prob-
ability. To see why it is the case, notice that for any two non-null singleton events, com-
pleteness of <c requires them be exchangeable.2 In a similar vein, to arrive at a Com-
pleteness axiom which accommodates a non-uniform subjective probability over finite
state space, we begin with a generalization of Definition 4 using families of events.

DEFINITION 5: E <∗ F if there exist {Ei} ≈ {Fi} and a family of events {ej}l
j=1 such

that E\F = {Ei, ej} 
 {Fi} and F\E = {Fi} 
 {Ei, ej} are of the same order.

We refer to an event ej in the above definition as an excess event. To see how Definition
5 generalizes Definition 4, let e be a subset of E\F that is exchangeable with F\E (so

2By assuming that <c is complete, we only need Event Non-satiation rather than Strong Event Non-
satiation for existence of subjective probability, and Cancellation is implied.
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that E <c F in Definition 4). Define {Ei} to contain only e and {Fi} to contain only
F\E. Then, {Ei} ≈ {Fi}. Let e1 be the (single) excess event (E\F)\e. Note that {e, e1} 

{F\E} = E\F is of order one. Note further that {F\E} 
 {e, e1} = F\E is also of order
one. Thus a ranking of events under <c of Definition 4 implies the same ranking under
<∗ F of Definition 5.

The Cancellation Axiom and Definition 5 only apply when residual events from
family differences are of the same order. To see that this is essential, consider a uniform
state space S = {s1, s2, s3} (i.e., all atoms are exchangeable). Let {Ei} = {{s1}, {s1}}
and {Fi} = {{s2}, {s3}}. Clearly, {Ei} and {Fi} are exchangeable families. Letting ∅ be
a single excess event, note that {s1} = {Ei,∅}
 {Fi} is of order two, and that {s2, s3} =
{Fi} 
 {Ei,∅} is of order one. Thus, the Cancellation Axiom and Definition 5 do not
apply. This is sensible because it should not be the case that {s1} ≈ {s2, s3} or that
{s1} <∗ {s2, s3}.

The following example of subjective probability shows how Definition 5 can deliver
a complete comparative likelihood when Definition 4 does not.

EXAMPLE 1: Consider an urn containing balls of four different colors: purple (pl), red
(r), orange (o) and teal (t). States correspond to the color of a ball drawn, S = {pl, r, o, t}.
Suppose that a decision maker’s rankings of acts yield {pl, r} ≈ {o}, {pl, o} ≈ {t} and
{pl, t} ≈ {r, o}. There is a unique probability representation of the decision maker’s
exchangeability relation, p = 〈 1

10 , 2
10 , 3

10 , 4
10〉. It should be clear, however, that <c cannot

capture all of the likelihood relationships implied by the representing probability, p.
For instance, <c does not order pl and r. By contrast, to verify that {r} <∗ {pl}, let
{Ei} = {{r, o}, {t}} and {Fi} = {{pl, t}, {pl, o}} be the exchangeable families in Defi-
nition 5, and e1 = {r} be the excess event. Observe that {Ei, e1}
 {Fi} = {r} is of order
two, as is {Fi} 
 {Ei, e1} = {pl}. The ranking of any other two pairs of events via <∗

can similarly be established and shown to be consistent with the ranking according to
the representing probability, p.

The next result establishes the relationship between <∗ and probability representa-
tions of ≈ whose existence is guaranteed under Theorem 1.

PROPOSITION 3: Suppose that ≈ has a probability representation. Then, E <∗ F if and only
if p(E) ≥ p(F) for any probability p representing ≈.

The important message delivered by Proposition 3 is that a pair of events for which
the decision maker’s likelihood comparison can be determined is one on which all
probabilities representing ≈ agree. As with the exchangeability relation, <∗ is, in gen-
eral, an incomplete binary relation over events. This proposition also helps relate <∗

to the literature on incomplete qualitative probability, denoted by <l (Nehring, 2009;
Alon and Lehrer, 2014). There are differences between <∗ and <l that are rooted in the
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nature of the corresponding representing probabilities. Typically, if E and F cannot be
ranked by <l, then there are different representing probabilities p1, p2 and p3 such that
p1(E) < p1(F), p2(E) > p2(F), and p3(E) = p3(F). By contrast, for any representa-
tion p of ≈ used to define <∗, p(E) = p(F) implies that E ≈ F, so that E and F are
necessarily in the symmetric part of <∗.

Proposition 3 also establishes that a (unique) subjective probability implies the com-
pleteness of <∗.

AXIOM C* (Extended Completeness): <∗ is complete.

The converse to the above yields the second key result of this paper.

THEOREM 2: There exists a subjective probability if and only if Cancellation, Strong Event
Non-satiation, and Extended Completeness hold.

Under the axioms of Cancellation, Strong Event Non-satiation, and Extended Com-
pleteness, the derived <∗ is a qualitative probability in the sense of de Finetti (1937)
whose representation on a finite algebra has been a longstanding topic in the litera-
ture (Kraft et al., 1959; Scott, 1964; Fishburn and Roberts, 1989). Theorem 2 embodies
the most encompassing construction of a finite comparative likelihood relation which
accommodates all exchangeability relations possessing a unique probability represen-
tation. It is nothworthy that our construction does not rely on the decision maker’s
preference over sure outcomes.3

5. CHARACTERIZING STANDARD MODELS

Building on Theorem 2, we now illustrate how lottery-based choice can arise from
incorporating the STP and its comonotonic variant to obtain expected utility and rank
linear utility (Green and Jullien, 1988; Segal, 1989), which contains rank dependent
utility (Quiggin, 1982) and cumulative prospect theory (Tversky and Kahneman, 1992).
We further show that a corresponding weakening of the STP to indifference sets is not
sufficient to deliver a finite-state axiomatization of betweenness utility (Chew, 1983,
1989; Dekel, 1986) with non-uniform probabilities. In the next section, we show directly
how lottery-based choice can arise from adding a new Exchangeability Independence
axiom to Theorem 2. There is no loss of continuity in skipping the present section.

Consistent with common assumptions used in the literature, we begin by imposing
continuity and monotonicity for the case where the outcome set is the real line. We
further assume that there are N ≥ 3 non-null states.

3Note that the constructions of comparative likelihood in Savage (1954), based on P4, and Machina
and Schmeidler (1992), based on P4*, both utilize strict preference between sure outcomes.
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AXIOM CT: < is continuous, i.e., { f ∈ F : f < h} and {g ∈ F : h < g} are both closed
for all h ∈ F .

AXIOM M: < is monotone, i.e., x > y implies that xE f � yE f when E is not null.

Continuity and monotonicity give rise to an overall representation of the decision
maker’s preference ordering by a continuous and monotone utility function U : F →
R. We next consider two versions of the STP (the first of which is the standard state-
ment).

AXIOM S (Sure-thing Principle): f Eh < gEh implies that f Eh′ < gEh′ for any event
E ⊆ S and any f , g, h, h′ ∈ F .

To relate our framework to the literature on rank dependent preference, we adopt a
weakening of the STP to comonotonic acts as in Chew and Wakker (1996). We say that
two acts f and g are comonotonic if there do not exist si, sj ∈ S such that f (si) ≥ f (sj)
and g(si) < g(sj).

AXIOM SC (Comonotonic Sure-thing Principle): f Eh < gEh implies that f Eh′ < gEh′

for any event E ⊆ S and any pairwise comonotonic f Eh, gEh, f Eh′, and gEh′.

In their unifying axiomatization of expected utility, rank linear utility, and between-
ness utility for decision making under risk, Chew and Epstein (1989) observe that the
independence axiom and its comonotonic and betweenness variants deliver additive
separability of the utility function on the corresponding domains. This motivates the
following theorem which builds on the result of Theorem 2.

THEOREM 3: Under the hypotheses of Theorem 2 and supposing that there are at least three
non-null states,

(i) < on F satisfies continuity, monotonicity, and the STP if and only if it has an EU repre-
sentation.4

(ii) < on F satisfies continuity, monotonicity, and the Comonotonic STP if and only if it has
a rank linear utility (RLU) representation.5

Furthermore, the EU and RLU representations above are with respect to the subjective prob-
ability identified in Theorem 2.

4A function U : F → R is an expected utility (EU) representation of < if there exist a probability p
and v : R→ R that is continuous and strictly increasing, such that U( f ) = ∑N

i=1 p(si)v( f (si)).
5Consider a Savage act f written in the form of {x1, A1; . . . ; xM, AM} where {Ai} is a partition

of S and f (Ak) = xk with xi ≥ xj if i < j. We say W : R × [0, 1] → R is an outcome-dependent
probability transformation if (i) W(0, ·) = 0 and W(·, 0) = 0, (ii) W(x, 1) 6= 0 for all x 6= 0 and (iii)
V(·, p, q) = W(·, p)−W(·, q) is strictly increasing if p > q. We then define U : F → R to be an RLU
representation of < if there exist a probability p and an outcome-dependent probability transformation
W that is continuous in the first argument, such that U( f ) = ∑M

i=1 V(xi, p(∪i
k=1 Ak), p(∪i−1

k=1 Ak)).
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Notwithstanding the results above, it is tempting to apply Theorem 2 together with
a weakening of the STP to indifference sets and attempt a finite-state axiomatization of
betweenness utility. This however is not to be. Consider a decision maker whose con-
tinuous, differentiable, and strictly increasing certainty equivalent c of an act (x1, x2, x3)
on a state space with three states is implicitly defined by the following equation:

F(x1 − c) + F(x2 − c) + G(x3 − c) = 0

where F(x) = x/2 and G(x) =

{
x + x2, x ≥ 0

1/2−
√

1/4− x, x < 0
.

Notice that this certainty equivalent function is additively separable and is therefore
consistent with restricting the STP to indifference sets. It is easy to see that the decision
maker considers the first two states equally likely and to check that (x, x, y) ∼ (y, y, x)
for all x, y ∈ R. Applying Theorem 2, we can identify a non-uniform subjective proba-
bility given by (1

4 , 1
4 , 1

2). This example serves to show that characterizing betweenness
preference in a finite state space setting will require more structure than might have
been anticipated.

6. CHARACTERIZING LOTTERY-BASED CHOICE

Complementing the development in the preceding section, we show how we can
characterize lottery-based choice without relying on the auxiliary axioms of continuity,
monotonicity, and the STP or its comonotonic variant. We begin with a formal defi-
nition of the quintessential property of subjective probability delivering lottery-based
choice.

DEFINITION 6: We say that a probability p is reduction consistent if f ∼ g whenever
` f = `g under p.

Arising from a reduction consistent subjective probability, lottery-based choice co-
incides with Grant’s (1995) definition of probabilistic sophistication, which he distills
from the behavior of a “probabilistic sophisticated non-expected utility maximizer”
studied in Machina and Schmeidler (1992).6 In both papers and also Savage (1954),
an essential step in their characterizations of lottery-based choice is in demonstrating
that the subjective probability p identified from the different systems of axioms satis-
fies Definition 3, i.e., p is the unique representation of an underlying exchangeability

6In Machina and Schmeidler (1992), a decision maker is a probabilistic sophisticated non-expected
utility maximizer if there are a continuous and monotonic non-expected utility preference functional
V and a probability measure p such that her preference over acts can be represented by V over their
induced lotteries. It is clear that such a decision maker would be indifferent between two acts that induce
the same lottery because they are indistinguishable in terms of V.
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relation. Should p be atomless or uniformly atomic, it can be shown that it is necessar-
ily reduction consistent. However, the validity of this procedure for finite domains is
limited to the case of a small number of states according to the proposition below.

PROPOSITION 4: If a state space has less than six states, a probability representing ≈ is
necessarily reduction consistent.

According to Proposition 4, probability-based behavior involving small numbers of
states are inherently lottery based. The following example shows that this may not be
the case when the state space has more than five states.

EXAMPLE 2: Consider a decision maker whose complete and transitive preference
over acts on state space S = {s1, ..., s6} admits an exchangeability relation that satisfies
Strong Event Non-satiation, Cancellation, and Extended Completeness. Suppose that
the decision maker’s exchangeability relation contains the following instances: {s3} ≈
{s4}, {s5} ≈ {s1, s2}, {s6} ≈ {s1, s4}, and {s3, s4} ≈ {s1, s6} ≈ {s2, s5}. This is sufficient
to identify a unique subjective probability p = 〈 2

24 , 3
24 , 4

24 , 4
24 , 5

24 , 6
24〉 on S. Consider the

following two acts f and g, both inducing the same lottery 8
24 δx +

7
24 δy +

9
24 δz:

s1 s2 s3 s4 s5 s6
f x y y z z x
g y z x x y z

One cannot find a sequence of acts h0, h1, · · · , hm such that f = h0, g = hm, and
hi+1 differs from hi by exchanging outcomes on a pair of exchangeable events. Thus,
indifference between f and g cannot be established without an additional assumptions
on <.

We identify a property, called Exchangeability Independence, which when added to
Theorem 2 delivers reduction consistency for the subjective probability. We say that f
and g induce exchangeable partitions if f−1(x)\g−1(x) ≈ g−1(x)\ f−1(x) for all x ∈ X.

AXIOM EI (Exchangeability Independence): For any acts f , g ∈ F , and events E, F ⊆
S, if f and g induce exchangeable partitions, f ∼ g, f (E) = g(F), and E\F ≈ F\E, then
xE f ∼ xFg for any x ∈ X.

Consider the following acts f ′ and g′ in the setting of Example 2.

s1 s2 s3 s4 s5 s6
f ′ x y y x x x
g′ y x x x y x
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The indifference between f ′ and g′ follows from observing that {s1, s5} ≈ {s2, s3}. Ex-
changeability Independence rules out the possibility that replacing the common out-
come x with z on exchangeable events {s4, s5} and {s2, s6}, respectively, will lead to a
strict preference between f and g.

We are now ready to present our final main result.

THEOREM 4: There exists a reduction consistent subjective probability if and only if Strong
Event Non-satiation, Cancellation, Extended Completeness, and Exchangeability Independence
hold.

It seems useful to relate Theorem 4 to the state dependence literature (see, e.g., Karni
1993). Consider the following behavioral property stated in terms of subjective proba-
bility and the exchangeability relation jointly: If a pair of events have the same subjec-
tive probability, then they are exchangeable with each other. This property, known as
Event Independence in Grant (1995), is implied by our definition of subjective proba-
bility (Definition 3) being the unique representation of an underlying exchangeability
relation.7 This observation helps resolve a longstanding issue concerning the unique-
ness of subjective probability in SEU in the presence of state dependent utility func-
tions (see, e.g., Karni 2014), which is recently discussed in Chew and Wang (2020) and
Karni (2020) for non-expected utility preferences.8 Although Event Independence al-
ready conveys some flavor of state independence, it needs to work in tandem with
Exchangeability Independence, as revealed by Example 2 and Theorem 4, to capture
the overall picture of state independence more fully.

7. CHARACTERIZING SOURCE PREFERENCE

We next develop a result, which parallels Chew and Sagi (2008), concerning lottery-
based choice on small worlds—domains of events capturing sources of uncertainty
revealed in the decision maker’s own preference. We say that a collection of events
A ⊆ 2S with A =

⋃A is an algebra if A ∈ A, E ∈ A implies that A\E ∈ A, and
E, F ∈ A implies that E ∩ F ∈ A.9

7Event Independence is related to State Neutrality in Ok and Savochkin’s (2020) study of when a
decision maker fully yields to the power of suggestion through her preference over acts with suggested
priors.

8As observed earlier, the characterizations of state-independent subjective probability p in the proba-
bilistic sophistication literature rely on a step in their proofs which involve p representing an underlying
exchangeability relation. This naturally differentiates it from an alternative notion of subjective proba-
bility q in the presence of state dependent utility functions, e.g., ∑n

i=1 p(si)u( f (si)) = ∑n
i=1 q(si)usi ( f (si))

with state-dependent utilities usi (·) given by [p(si)/q(si)]u(·)
9Chew and Sagi (2008) consider subjective probability on λ-systems. As a direct application of our

previous results, we have made simplifying assumptions using algebras.



16 CHEW, SAGI, AND WANG

DEFINITION 7: A ⊆ 2S is a homogeneous collection if it satisfies the following:
(i) A is an algebra.

(ii) ≈ satisfies Strong Event Non-satiation and Cancellation on A.
(iii) <∗ defined with events in A is complete on A.10

To proceed, we re-introduce several definitions in the preceding analysis with minor
modifications to adapt to the involvement of sources of uncertainty. A probability p on
an algebraAwith A =

⋃A is a function from A to [0, 1] such that p(A) = ∑s∈A p(s) =
1. An act f is adapted to A if f−1(x) ∩ A ∈ A for all x ∈ X and induces a lottery
`A

f = {(x, px) : x ∈ f (A) and px > 0} where px = p( f−1(x) ∩ A). Two acts f and g,
which are both adapted to A, induce exchangeable partitions ( f−1(x) ∩ A)\(g−1(x) ∩
A) ≈ (g−1(x) ∩ A)\( f−1(x) ∩ A) for all x ∈ X.

DEFINITION 8: We say that a probability p on A is a subjective probability if it is the
unique probability such that for all E, F ∈ A, p(E) ≥ p(F) if and only if E <∗ F.
Furthermore, we say that a subjective probability p on A is reduction consistent if `A

f =

`A
g implies that f Ah ∼ gAh for all f , g adapted to A and all h ∈ F .

Following Theorem 2, we can demonstrate the existence of subjective probability
p on a homogeneous collection A. To show that p is reduction consistent, we need a
version of Exchangeability Independence for small worlds.

AXIOM EI* (Adapted Exchangeability Independence): For any acts f , g ∈ F that are
adapted to A, any act h ∈ F , and events E, F ∈ A, if f and g induce exchangeable
partitions on A, f Ah ∼ gAh, f (E) = g(F), and E\F ≈ F\E, then xE f (A\E)h′ ∼
xFg(A\F)h′ for any x ∈ X and h′ ∈ F .

Our characterization of small worlds probabilistic sophistication is provided in the
following corollary to Theorem 4.

COROLLARY: Under Adapted Exchangeability Independence, if A is a homogeneous collec-
tion, then there exists a reduction consistent subjective probability on A.

In light of the corollary, Ellsberg’s two-urn example provides two homogeneous
collections—each generated by a single urn with an even-chance subjective probability.
The commonly observed ambiguity averse behavior favoring bets on the first source
(with known proportion) may be interpreted in terms of greater aversion to risks aris-

10In applying Definition 5, both the exchangeable families and the excess events are in A.
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ing from the second source (with unknown proportion). Such a source-based account
applies naturally to the study of Chew et al. (2012).11 They find that 40.4% of 325 sub-
jects in Beijing favor a bet on whether the city’s temperature is an odd or an even
number paying RMB 11 rather than the corresponding bet on Tokyo’s temperature
paying RMB 13. As suggested in Fox and Tversky (1995), a preference for the familiar
may underpin the equity home bias puzzle in international equity markets (Feldstein
and Horioka, 1980; French and Poterba, 1991) which is replicated subsequently in the
domestic U.S. equity market (Coval and Moskowitz, 2001; Huberman, 2001).

With this corollary, consider the following example, which injects the thinking be-
hind Ellsberg’s (1961) three-color problem into Example 1 through ambiguity in the
teal-colored balls.

EXAMPLE 3: In an urn containing 150 colored balls, 15 of them are purple (pl), 30 are
red (r), 45 are orange (o), and 60 are teal (t). Should a t ball be drawn, it may be closer to
blue (b) or green (g) upon further scrutiny, but the proportion of b versus g is unknown.
The overall state space is given by {pl, r, o, tb, tg}, where tb (tg) refers to the state of
drawing t followed by finding out that it is closer to b (g). The event of drawing a teal
ball t is given by {tb, tg}. When betting on {pl, r, o, t}, the decision maker exhibits the
same pattern of exchangeability as in Example 1. Yet, when the betting involves tb or
tg, she prefers to bet on t rather than {r, tb} (or {r, tg}). At the same time, the decision
maker is indifferent to exchanging outcomes associated with tb and tg. Consequently,
tb and tg are exchangeable while r and tb (or tg) are not.

The choice behavior in the above example reveals that the decision maker does not
exhibit lottery-based choice in the whole state space.12 Here, we can identify two ho-
mogeneous collections in which the decision maker exhibits lottery-based choice indi-
vidually. One of them is generated by {pl, r, o, t} and the other by {tb, tg}. In line with
the stylized behavior associated with Ellsberg’s three-color problem, we anticipate a
tendency to favor betting on r than tb (or tg) in our five-color example. As with Ells-
berg’s two-urn problem, this preference can be explained by the decision maker being
less averse to risks arising from {pl, r, o, t} than those from {tb, tg}.

11This is motivated by Fox and Tversky’s (1995) finding of familiarity preference in which UC Berke-
ley undergraduate subjects assign on average higher willingness-to-pay for betting on San Francisco
temperature being below 60 ◦F than betting on Istanbul temperature being above 60 ◦F, even though
willingness-to-pay is higher for betting above than betting below for both cities.

12Let the two exchangeable families {Ei} and {Fi} be given by {{pl, r}, {tb}, {r, o}} and
{{o}, {tg}, {pl, t}}, respectively. Violation of the Cancellation axiom follows from the non-
exchangeability between r = {Ei} 
 {Fi} and tg = {Fi} 
 {Ei} as they are both of order two.
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8. SUMMARY

Our main contribution in this paper is to provide a parsimonious framework for
identifying subjective probability in finite state spaces with minimal requirements on
both the outcome space and risk preference. We offer successively stronger definitions
of a probability representing an underlying event exchangeability relation ≈. We first
characterize in Theorem 1 the exchangeability relation ≈ that have a probability rep-
resentation using a strengthening of Event Non-satiation in Chew and Sagi (2006) to-
gether with a new axiom of Cancellation which is unmasked in our finite-state set-
ting. We then identify, in Theorem 2, a unique probability representing ≈ as subjec-
tive probability by incorporating completeness of an extended comparative likelihood
which captures all exchangeability relations on finite domains from which a subjective
probability can be identified. In Theorem 3 which additionally assumes continuity and
monotonicity, we use the axioms of STP and comonotonic STP to axiomatize expected
utility and rank linear utility on finite domains in a Savagian setting, delivering inter
alia a reduction consistent subjective probability.

Intriguingly, the finite-state subjective probability characterized in Theorem 2 can
exhibit state dependence in harboring the possibility that acts inducing the same lot-
tery may not be indifferent. This prompts us to develop the Exchangeability Indepen-
dence axiom which when added to Theorem 2 delivers state-independent lottery-based
choice in Theorem 4 through a reduction consistent subjective probability. Along with
the Cancellation axiom, note that Exchangeability Independence exemplifies an ad-
ditional axiom that is masked by the commonly imposed structural assumptions of
atomlessness or uniformity of atoms on the subjective probability. As observed in the
preceding paragraph, Theorem 2 also yields lottery-based choice through the resulting
utility representations in Theorem 3. Finally, Theorem 4 is adapted to smaller families
of homogeneous events, giving rise to small worlds probabilistic sophistication (Chew
and Sagi, 2008) through which we can account for the phenomena of ambiguity aver-
sion and familiarity preference.
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PROOFS

We first prove propositions 1 and 2. We then introduce a vector representation of the exchangeability
relation to facilitate the development of a proof of our last main result—Theorem 4—via a number of
intermediate results including Theorem 1, Theorem 2, and Proposition 3. The proofs of Theorem 3 and
Proposition 4 are given at the end. The proof of the corollary is omitted as a direct application of Theorem
4 to an algebra of events.

PROOF OF PROPOSITION 1: Property (i) follows from reflexivity of <, because f = x∅y∅ f = y∅x∅ f
and f ∼ f for all x, y ∈ X and f ∈ F . Property (ii) follows from the non-degeneracy of <, i.e., there exist
x, y ∈ X such that xSy � ySx. Property (iii) follows from the symmetry of∼, given that xEyF f ∼ yExF f
is equivalent to xFyE f ∼ yFxE f for all x, y ∈ X and f ∈ F . Property (iv) follows from the transitivity of
<, because x(E ∪ E′)y(F ∪ F′) f = xExE′yFyF′ f ∼ yExE′xFyF′ f ∼ yEyE′xFxF′ f = y(E ∪ E′)x(F ∪ F′) f
for any x, y ∈ X and f ∈ F .

Q.E.D.

PROOF OF PROPOSITION 2: Let {e1, . . . , en} be the partition of the state space generating the same al-
gebra as is generated by {Ei} ∪ {Fi}. We have ∑m

i=1 p(Ei) = ∑n
i=1 ai p(ei) and ∑m

i=1 p(Fi) = ∑n
i=1 bi p(ei),

where ai and bi denote the number of events containing ei in {Ei} and {Fi}, respectively. If {Ei}
 {Fi} =
∅, then ai ≤ bi for all 1 ≤ i ≤ n, which in turn implies that ∑m

i=1 p(Ei) ≤ ∑m
i=1 p(Fi). Because, by hy-

pothesis, p(Ei) ≥ p(Fi) for any 1 ≤ i ≤ m, it must be that p(Ei) = p(Fi) for all 1 ≤ i ≤ m, and ai = bi
for all 1 ≤ i ≤ n. Consequently, p({Fi} 
 {Ei}) = ∑n

i=1(bi − ai)
+p(ei) = 0, where (x)+ denotes the

non-negative part of x. This establishes Proposition 2(i).
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To establish part (ii), we use the partition described above to write

0 ≤ (<)
m

∑
i=1

(
p(Ei)− p(Fi)

)
=

n

∑
i=1

(ai − bi)p(ei)

=
n

∑
i=1

(
(ai − bi)

+ − (bi − ai)
+
)

p(ei) = p
(
{Ei} 
 {Fi}

)
− p

(
{Fi} 
 {Ei}

)
.

Q.E.D.

Henceforth, for a general element α of Rn, we write α ≥ 0 if αi ≥ 0 for all i, α � 0 if αi > 0 for
all i, and α > 0 if α ≥ 0 and α 6= 0; |α| is the vector of absolute values of the components of α and
∑ α is the sum of the components of α. In the following lemmas and proofs, a finite collection of vectors
A = {α1, . . . , αm} can be identified as column vectors in a matrix.

We now introduce indicator vectors for events and a corresponding representation for the exchange-
ability relation ≈ using N-dimensional vectors in K = {−1, 0, 1}N . For any fixed index of the states
S = {s1, . . . , sN}, an event E ⊆ S can be identified by a subset IE of {1, . . . , N} such that E = {si}i∈IE .
We represent E in K using the vector δE ∈ K, whose i-th coordinate is defined to be 1 when i ∈ IE, and
0 otherwise. The vector in K representing a singleton event, {si}, is denoted by δi. The relation, E ≈ F,
also has a vector representation: ε = δE − δF ∈ K. In particular, ∅ ≈ ∅ is represented by 0 = 〈0, . . . 0〉,
meaning that E ≈ ∅ is represented by δE.

Define E ≡ {ε | E ≈ F, where E, F ⊆ S} to be the subset of K consisting of all vectors representing
exchangeable events. By definition, E contains 0 and the reflexivity of ≈ implies that ε ∈ E iff −ε ∈ E .
After fixing an index for S, a probability p can be identified as a N-dimensional vector p = 〈p1, . . . pN〉
such that pi ≥ 0 and ∑N

i=1 pi = 1. If p(E) = p(F) for E ≈ F, we have εT p = 0 for the vector ε representing
E ≈ F. Using this notation, Theorem 1 reduces to the statement that there exists p > 0 in RN such that
for any v ∈ K, vT p = 0 iff v ∈ E . We now derive a series of results that are useful in proving Theorem 1.

LEMMA 1: The Cancellation Axiom holds if and only if for any finite sequence ε1, · · · , εm ∈ E , whenever
∑m

i=1 εi/k is an element of K for some positive integer k, then ∑m
i=1 εi/k is also in E .

PROOF: Assume that Cancellation holds and fix some finite sequence ε1, · · · , εm ∈ E such that ∑m
i=1 εi/k

is an element ofK for k, a positive integer. By definition, each εi represents a pair of exchangeable events,
Ei and Fi. Let {Ei} ≈ {Fi} be the pair of exchangeable families of events defined by ε1, · · · , εm. Because
∑m

i=1 εi/k ∈ K, {Ei} 
 {Fi} and {Fi} 
 {Ei} are of the same order k. By Cancellation, {Ei} 
 {Fi} ≈
{Fi} 
 {Ei}, and this implies that ∑m

i=1 εi/k ∈ E .
To prove necessity, consider any pair of exchangeable families {Ei} ≈ {Fi}, and let εi represent

Ei ≈ Fi. If both {Ei} 
 {Fi} and {Fi} 
 {Ei} are of the same order k, then ∑m
i=1 εi/k ∈ K. If ∑m

i=1 εi/k is in
E whenever it is in K, then {Ei} 
 {Fi} ≈ {Fi} 
 {Ei}, and Cancellation holds. Q.E.D.

LEMMA 2: Strong Event Non-satiation holds if and only if for any finite sequence ε1, · · · , εm ∈ E , if ∑m
i=1 εi ≥

0, then δj ≤ ∑m
i=1 εi implies that δj ∈ E for any 1 ≤ j ≤ N (i.e., δj is null).

PROOF: Assume that Strong Event Non-satiation holds and that ∑m
i=1 εi ≥ 0 for a finite sequence

ε1, · · · , εm ∈ E . Let {Ei} ≈ {Fi} be the pair of exchangeable families of events represented by ε1, · · · , εm.
Note that ∑m

i=1 εi ≥ 0 implies that there is no state that appears in the family {Fi}more times than in the
family {Ei}. Hence, {Fi} 
 {Ei} = ∅, and by Strong Event Non-satiation, {Ei} 
 {Fi} is null. In particu-
lar, any singleton subevent {sj} of {Ei} 
 {Fi} is also null and therefore exchangeable with ∅. Note that
δj ≤ ∑m

i=1 εi iff {sj} ∈ {Ei} 
 {Fi}. Consequently, δj ∈ E for all δj ≤ ∑m
i=1 εi.
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To establish necessity, let εi represent Ei ≈ Fi for any {Ei} ≈ {Fi} such that {Fi} 
 {Ei} = ∅. The
latter implies that ∑m

i=1 εi ≥ 0 because there are no excess states in {Fi} relative to {Ei}. If, for any
1 ≤ j ≤ N, δj ∈ E whenever δj ≤ ∑m

i=1 εi, then any singleton event sj ∈ {Ei} 
 {Fi} is a null event.
Because {Ei} 
 {Fi} is the union of a finite collection of pairwise disjoint null events, it too is null.

Q.E.D.

In the following, for any q ∈ Rn \ {0} and a ∈ R, we use [αTq = a] ⊂ Rn to denote the hyperplane
{α ∈ Rn : αTq = a}. A hyperplane [αTq = a] strongly separates the sets B and C if there exists a real
number, c 6= 0, such that αTq < a− c for all α ∈ B and αTq > a + c for all α ∈ C.

LEMMA 3: Suppose that the closed convex cone C generated by a finite subset D ⊆ Rn, satisfying 0 /∈ D, is
pointed,13 then for any β /∈ C the set Q = {q ∈ Rn : βTq < 0 and ∀α ∈ D, αTq > 0} is not empty and has
internal points.14

PROOF: Because D is finite, it should be clear that Q has internal points as long as it is not empty. It
remains to prove that Q is non-empty. Because β /∈ C, it can be strictly separated from C by some q,
i.e., αTq ≥ 0 for all α ∈ C and βTq < 0. Index elements of D using 1 ≤ i ≤ |D|. For any αi ∈ D, we
have −αi /∈ C, otherwise C would not be pointed. Let −αi and C be strictly separated by qi. Notice that
αT

i qi > 0 and that αT
Dqi ≥ 0 for all αD ∈ D. Define q∗ = q + 1

|D| ∑
|D|
i=1 biqi where 0 < bi < |βTq/βTqi|.

Then βTq∗ < 0 and αT
Dq∗ > 0 for all αD ∈ D.

Q.E.D.

LEMMA 4: Suppose that A is a finite subset of Rn and Q is a subset of Rn that has internal points, then for any
β /∈ A, there exists q ∈ Q such that A ∩ [αTq = βTq] = ∅.

PROOF: Note that A ∩ [αTq = βTq] = ∅ if and only if (α− β)T q 6= 0 for all α ∈ A. Let A − β be
the collection of vectors of the form α− β where α ∈ A. Abusing notation, we also use A− β to refer
to the n × |A| matrix whose |A| columns are the vectors in A − β, identified up to a permutation of
the columns. Then, we can write that A ∩ [αTq = βTq] = ∅ if and only if |(A− β)Tq| � 0. Note that,
because β /∈ A, A− β has no column vector equal to 0.

If rank(A) = 1 then, because Q has internal points and A − β 6= 0, there is some q ∈ Q such that
(A − β)Tq 6= 0. Proceeding inductively, assume that the result holds when rank(A) = m and write
B̂ = (C d), where C has m ≥ 1 non-zero columns and d is a single non-zero column vector in Rn. Let
q′ ∈ Q be an internal point solution to |CTq| � 0. We construct a solution to |B̂Tq| � 0 of the form
q′ + bd ∈ Q for a sufficiently small scalar b ≥ 0. Let max(|CTd|) be the maximum of the absolute values
of the components of CTd, and min(|CTq′|) be the minimum of the absolute values of the components

of CTq′. Then, |CT(q′ + bd)| � 0 for any b < min(|CTq′ |)
max(|CTd|) when max(|CTd|) > 0, and for any finite b in the

case of max(|CTd|) = 0. That is, we have shown that CT(q′ + bd) 6= 0 for every b in some positive finite
interval I. Because dTd > 0, it cannot be that dT(q′ + bd) is zero for all b ∈ I. Thus, because q′ is internal,
there is some b ∈ I such that q = (q′ + bd) is in Q and |B̂Tq| � 0. This establishes that, for any rank(A),
we can find q ∈ Q such that |(A− β)Tq| � 0. Q.E.D.

13A closed convex cone C is pointed if C ∩ (−C) = {0}.
14A point q is an internal point of a subset Q of Rn if for any q′ ∈ Rn, there exists b0 > 0 such that

q + bq′ ∈ Q for all 0 < b ≤ b0.
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Let A = K\E , B be the subspace generated by E , and C be the convex cone generated by D =
{δ1, . . . , δN}\E . The set A corresponds to the vector representation of pairs of events that are not ex-
changeable, while the set D corresponds to the non-null states in S. The following results relating A, C,
and D are useful.

LEMMA 5: For A, B, C, D, we have the following:

(i) D ⊆ A

(ii) C is a pointed convex cone

(iii) Cancellation implies that A ∩ B = ∅

(iv) Strong Event Non-satiation implies that B ∩ C = {0}

PROOF: Results (i) and (ii) are immediate. To establish A ∩ B = ∅, we first show that E = B ∩ K. Let
0 ≤ i ≤ |E| index the vectors in E , each of which is denoted as εi. If ε ∈ B∩K, then ε = ∑

|E |
i=1 µiεi, where

the µi’s can be assumed to be rational numbers because ε and all of the εi’s are integer-valued vectors.
By choosing k to be the common denominator of the µi’s, one can find a finite collection of vectors in
E , denoted {εi}m

i=1 such that ∑
|E |
i=1 µiεi = ∑m

j=1 εj/k.15 By Lemma 1, Cancellation implies that ε ∈ E and
thus B ∩ K ⊆ E . Equality of the two sets follows from the fact that E generates B and E ⊆ K, meaning
that E ⊆ B ∩ K. Now note that E = B ∩ K = B ∩

(
E ∪ A

)
. Because E and A are disjoint and E ⊆ B, it

must be that B ∩ A = ∅, which proves part (iii).
Next, we prove part (iv), that Strong Event Non-satiation implies that B∩C = {0}. Let Ê be a N×M

matrix of rank M whose columns span B. Then, any element of B can be written as Êu for some u ∈ RM.
Correspondingly, for any v ∈ C, v ≥ 0 and its ith component must be zero whenever si is null. We can
write B∩C = {v ∈ C | Êu = v, u ∈ RM}. Suppose that v ∈ B∩C \ {0} has L > 0 non-zero components.
The solution to Êu = v can be written as

ÊPu = vP ∈ RL

ÊZu = 0 ∈ RN−L,

where vP corresponds to the strictly positive elements of v, ÊP is the submatrix of Ê with rows corre-
sponding to vP, and ÊZ is the matrix containing the remaining rows of Ê . Because ÊZ is a rational matrix,
by Corollary 2 of Kraft et al. (1959), the solution space for ÊZu = 0 has a rational basis.16 Because u is in
this span, one can find uQ ∈ QM in the same span and arbitrarily close to u so that ÊP(u− uQ) is arbitrar-
ily close to zero. This implies that if B ∩ C \ {0} is non-empty, then so too is QM ∩ B ∩ C \ {0}. For any
u in the latter set, one can write ∑M

i=1 ui ε̂i = v > 0 with v ∈ C, and where ε̂i ∈ E denotes the ith column
of Ê . Because v > 0 and C is a cone, one can rescale both the ui’s and v by a sufficiently large integer to
guarantee that each ui is an integer and that δj ≤ v for some non-null sj. As shown in proving part (iii),
one can find a finite collection of vectors in E , denoted {εi}m

i=1, such that δj ≤ ∑M
i=1 ui ε̂i = ∑m

i=1 εi (where
the ui’s have been appropriately rescaled). By Strong Event Non-satiation and Lemma 2, this implies
that sj is null—a contradiction. Thus B ∩ C = {0}. Q.E.D.

15The collection {εi}m
i=1 may contain repeated terms.

16The corollary says that, if the coefficients of a finite system of homogeneous linear equalities and
inequalities are in Q, then if it has solutions in RM, it has solutions in QM.
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PROOF OF THEOREM 1: Let λ1, . . . , λM be the basis for B, and {λi}N
i=M+1 be its orthogonal extension to

a basis of RN . Let T be a square matrix with columns λ1, . . . , λN and define T−1
[M+1,N]

=
(

0 IN−M

)
T−1,

where
(

0 IN−M

)
is the (N−M)×N matrix with zeros in the first M columns and the (M−N)-identity

matrix in the remaining columns. For any x ∈ RN , T−1
[M+1,N]

x is the vector of coefficients of λM+1, . . . , λN

in the {λi}N
i=1-basis representation of x. By construction, T−1

[M+1,N]
maps α ∈ RN to 0 if and only if α ∈ B.

Define A′ = T−1
[M+1,N]

(A), D′ = T−1
[M+1,N]

(D), and C′ = T−1
[M+1,N]

(C). Because C is the convex cone
generated by D, C′ is a convex cone generated by D′. Observe that Lemma 5 (iii) implies that 0 /∈ A′

and, by Lemma 5 (i), we have 0 /∈ D′.
We now demonstrate that C′ is pointed. Otherwise, there exist c1, c2 ∈ C \ {0} such that T−1

[M+1,N]
c2 =

−γT−1
[M+1,N]

c1 6= {0} for some γ > 0. Note that T−1
[M+1,N]

(c2 + γc1) = {0} implies that c2 + γc1 ∈ B,
while the convexity of C implies that c2 + γc1 ∈ C. Lemma 5 (iv) therefore implies that c2 + γc1 = {0},
which means that C is not a pointed cone, thus contradicting Lemma 5 (ii).

D′ is finite, does not contain {0}, and generates C′ (a pointed cone). The application of Lemma 3 to
any β /∈ C′ therefore implies that the collection Q = {q ∈ RN−M | δTq > 0 ∀δ ∈ D′} is non-empty
and has internal points. Moreover, because A′ is finite and 0 /∈ A′, Lemma 4 implies that there exists
q∗ ∈ Q defining a hyperplane through 0 that is disjoint from A′. Define q∗N = (0, (q∗)T)T ∈ RN as q∗

with zeros for the first M coordinates. Then, p =
(T−1)Tq∗N

∑(T−1)Tq∗N
is a probability representing ≈. To see this,

first recall that, for any ε ∈ E ⊂ B, the last N −M components of T−1ε are zero (by definition). Thus,

by construction, εT p =
(T−1ε)Tq∗N
∑(T−1)Tq∗N

= 0. This means that exchangeable events have an equal probability

under p. Likewise, because A′ is disjoint from the hyperplane defined by q∗, αT p 6= 0 for any α ∈ A.
In other words, non-exchangeable events have distinct probabilities under p. Finally, because q∗ ∈ Q,
D′ is non-empty and does not contain zero, we have δT

i p ∝ (T−1δi)
Tq∗N ≥ 0 for all δi and the inequality

is strict for any δi ∈ D (corresponding to a non-null state, si). Thus, p is a probability representing ≈.
Q.E.D.

PROOF OF PROPOSITION 3: If E < ∗cF, it should be clear that p(E) ≥ p(F) for all representations of ≈.
To demonstrate the converse, let A′, C′, D′, and T−1

[M+1,N]
be defined as in the proof of Theorem 1.

For any two events, E and F, if β = T−1
[M+1,N]

(δE − δF) /∈ C′, then Lemma 3 implies that we can find a
set Q with internal points such that each q ∈ Q strictly separates D′ and β. One can then use Lemma
4 and follow the proof of Theorem 1 to construct a probability, p, representing ≈ using some q∗ ∈
RN−M ∈ Q and implying that p(E) < p(F). Thus, p(E) ≥ p(F) for all representations of ≈ implies that
T−1
[M+1,N]

(δE − δF) ∈ C′. The latter inclusion is equivalent to writing δE − δF = b + c, where b ∈ B and
c ∈ C.

Let T̂ be an N × N matrix of column vectors, {λ̂i}N
i=1, forming a basis for RN and where the first M

columns are in E while the remaining columns are in D. Define ζ = T̂−1(δE − δF) and note that ζ is
in QN .17 Letting {ui}M

i=1 be the first M elements of ζ and {vj}N−M
j=1 be the remaining N − M elements,

(δE − δF) = T̂ζ = ∑N
i=1 ζiλ̂i =

1
wGCD

∑N
i=1(wGCDζi)λ̂i, where wGCD is the greatest common denominator

of elements of ζ. Because λ̂i ∈ E if i ≤ M and otherwise λ̂i ∈ D, and noting that each wGCDζi is an

17By definition, T̂ has rational elements. Thus, T̂−1 has rational elements because matrix inversion
corresponds to a finite sequence of arithmetic operations on elements of T̂.
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integer, one can write

δE − δF =
1

wGCD

( m

∑
i=1

εi +
l

∑
i=1

νi

)
,

where {εi} and {νi} are collections (allowing repetition) in E and D, respectively. Because, by definition,
each εi = δEi − δFi corresponds to a pair of exchangeable events, Ei ≈ Fi, one can construct the m-
member exchangeable families {Ei}m

i=1 and {Fi}m
i=1. Identifying νi with its associated state, si, one can

define {ei}l
i=1 = {si}l

i=1. This pins down {Ei}, {Fi}, and {ei}l
i=1 in Definition 5. It should be clear that

the positive (resp. negative) projection of
(

∑m
i=1 εi + ∑l

i=1 νi

)
corresponds to δE\F (resp. δF\E). Thus

{Ei, ej} 
 {Fi} = E\F, {Fi} 
 {Ei, ej} = F\E, and both family differences are of the order wGCD. Under
Definition 5, this implies that E <∗ F.

Q.E.D.

PROOF OF THEOREM 2: Suppose that Cancellation, Strong Event Non-satiation, and Extended Com-
pleteness hold. By Theorem 1, there exists a probability representing ≈. Let p and p′ be two distinct
probabilities representing ≈. Define η̄ = maxsi∈D

p(si)
p′(si)

, E = argmaxsi∈D
p(si)
p′(si)

, η = minsi∈D
p(si)
p′(si)

and

F = argminsi∈D
p(si)
p′(si)

. Because p 6= p′, it must be that E∩ F = ∅ and η < 1 < η̄. For any ε ∈ (0, 1), define

pε =
p− (1− ε)ηp′

∑i
(

p(si)− (1− ε)ηp′(si)
) , p′ε =

p′ − (1− ε) 1
η̄ p

∑i
(

p′(si)− (1− ε) 1
η̄ p(si)

) .

Note that pε and p′ε are probabilities that represent ≈. Moreover, by construction, one can find some ε
such that pε(F) < pε(E) and p′ε(E) < p′ε(F). Proposition 3 implies that E and F are not comparable via
<∗, which is inconsistent with Extended Completeness. The probability representing ≈ must therefore
be unique.

When a representation, p, of≈ exists, Theorem 1 implies Cancellation and Strong Event Non-satiation.
If p is unique, Extended Completeness of <∗ is a trivial application of Proposition 3.

Q.E.D.

PROOF OF THEOREM 4: Suppose that p is the unique probability representing≈ and that it is reduction
consistent. Theorem 2 implies Cancellation, Strong Event Non-satiation, and Extended Completeness.
Exchangeability Independence is satisfied because every indifference relation hypothesized in the state-
ment of the axiom is a trivial consequence of reduction consistency.

To prove the converse, note first that Cancellation, Strong Event Non-satiation, and Extended Com-
pleteness imply the existence of a unique representing probability, p. To complete the proof, we need
only show that p is reduction consistent.

We say that two m-partitions of the state space, {Ei}m
i=1 and {Fi}m

i=1, are exchangeable whenever
either Ei ≈ Fi or Ei = Fi for all 1 ≤ i ≤ m. For any exchangeable m-partitions, {Ei} and {Fi}, if
x1E1 · · · xm−1Em−1xj ∼ x1F1 · · · xm−1Fm−1xj for every x1, . . . , xm−1 ∈ X and j arbitrary in {1, · · · , m− 1},
then Exchangeability Independence implies that x1E1 · · · xm−1Em−1y ∼ x1F1 · · · xm−1Fm−1y for every
y ∈ X. We will use this observation to complete the proof.

First consider all two-outcome acts, f = xEy and g = xFy such that E ∼∗ F, and thus p(E) = p(F).
Note that one can write f = x(E \ F)y(F \ E)x and g = x(F \ E)y(E \ F)x. Because p(E \ F) = p(F \ E), it
must be that E \ F ≈ F \ E, which yields f ∼ g. Note that this holds for any (x, y) ∈ X2. Proceed now by
induction and consider any m-outcome acts (m ≥ 3), f and g, that induce the same lottery under p. Note
that one can write f = x1E1 · · · xm−1Em−1xm with Ei = f−1(xi) for some distinct (x1, . . . , xm) ∈ Xm.
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Likewise, write g = x1F1 · · · xm−1Fm−1xm with Fi = g−1(xi). Because f and g induce the same lottery,
p(Ei) = p(Fi), which by Proposition 3 implies that Ei ∼∗ Fi for each i ∈ {1, . . . , m}. Under the induction
hypothesis, which we confirmed in the two-outcome case, any m − 1 outcome acts of the form xiEm f
and xiFmg are indifferently ranked, for any (x1, . . . , xm−1) ∈ Xm−1. Exchangeability Independence then
implies that f ∼ g.

Q.E.D.

PROOF OF THEOREM 3: The verification of the necessity of our axioms is straightforward. Note that
the existence of either representation implies that p is reduction consistent. It remains to demonstrate
that the STP and the comonotonic STP imply an EU and RLU representation respectively.
Case 1: Sure-thing principle (STP)

According to Debreu (1960), under the STP, there exists vi such that preference is represented by
U(x) = ∑N

i=1 vi(xi). By subtracting U(0) from the representation, we can without loss of generality,
assume that vi(0) = 0 for each i. For a pair of disjoint events E and F with equal probabilities and a pair
of outcomes x and y, E ≈ F implies that

∑
si∈E

vi(x) + ∑
si∈F

vi(y) = ∑
si∈F

vi(x) + ∑
si∈E

vi(y)(1)

Because this equation holds for all pairs of outcomes, it must be that ∑si∈E vi(x)−∑si∈F vi(x) = 0 for
all x ∈ R. From the proofs of Theorems 1 and 2, we know that rank E is N − 1, meaning that, for each
outcome x, there are N − 1 independent equations like Equation (1) in the N unknowns vi(x). Because
these equations are identical to those determining p, the unique probability representation for≈, it must
be that vi(x) = piv(x) for some v(x), which in turn must be continuous and monotonic. This establishes
the existence of an EU representation.
Case 2: Comonotonic STP

Each permutation n of {1, . . . , N} defines a comonotonic cone Fn = {x ∈ RN : xni ≥ xnj if i < j}. To
proceed, we say that a permutation concentrates on event E if sni , snj ∈ E implies that snk ∈ E for all k
such that i < k < j. Suppose that n concentrates on E with snk ∈ E and snk−1 /∈ E, we say A = {sni}i<k is
the event preceding E in n.

Chew and Wakker (1996) have shown that there exists a unifying vn,i satisfying vn,i(0) = 0 for all n
and i such that U(x) = ∑N

i=1 vn,i(xni ) if x ∈ Fn. This implies that ∑sni∈E vn,i(·) = ∑smi∈E vm,i(·) for n and
m such that both n and m concentrate on E and A = B where A precedes E in n and B precedes E in m.

Now, suppose that p(A) = p(B) and denote D = A ∩ B, E = A\B and F = B\A. It is then the case
that E ≈ F. Consider the following two acts, f = {D, w; E, x; F, y; (A∪B)c, z} and g = {D, w; F, x; E, y; (A∪
B)c, z}, where w > x > y > z. They are indifferent because of exchangeability, which implies that the
following equation,

∑
si∈E

vi,n(x) + ∑
si∈F

vi,n(y) = ∑
si∈F

vi,m(x) + ∑
si∈E

vi,m(y)

,
holds for all n and m such that they both concentrate on E, F, and E ∪ F, such that E ∪D precedes F in n
and F ∪ D precedes E in m.

Because this equation holds for all pairs of outcomes, we can derive that ∑si∈E vi,n(x)−∑si∈F vi,m(x) =
0 for all x ∈ R and all n and m that concentrate on E and F, respectively, and the same event D precedes
E and F in n and m, respectively. This gives ∑si∈A vi,n(·) = ∑si∈B vi,m(·) for all p(A) = p(B), n and
n concentrate A and B, respectively, and A and B have no preceding events in n and m. Notice that
W(·, A) = ∑sni∈A vn,i(·) if n concentrates on A and A has no preceding event and this establishes the
existence of an RLU representation.
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Q.E.D.

PROOF OF PROPOSITION 4: Consider a state space S with n states. Suppose that there are two acts f
and g, both inducing the same lottery under a probability representation p of exchangeability relation
≈.

Case (i): f and g have two distinct outcomes x, y. It follows that f ∼ g because E = {s ∈ S : f (s) =
x, g(s) = y} ≈ F = {s ∈ S : f (s) = y, g(s) = x}.

Case (ii): There are n distinct outcomes. Let T = {s ∈ S : f (s) 6= g(s)}, then p(s) = p(t) for all
s, t ∈ T. It follows that p is uniform on T and further that f ∼ g.

Case (iii): f and g have n− 1 distinct outcomes. Let x be the outcome assigned by f on two distinct
states s1 and s2. Without loss of generality, consider four sub-cases: (i) g(s1) = g(s2) = x; (ii) g(s1) =
g(s2) = y for another outcome y; (iii) g(s1) = x and g(s2) = y for another outcome y; (iv) g(s) = y and
g(s2) = z for two different outcomes y and z. For each sub-case, f ∼ g follows from the same reasoning
as that used in Case (ii).

Combining all three cases, the only remaining possibility for a probability representation of ≈ to not
satisfy reduction consistency is when f and g both have three outcomes on a state space with five states.
We omit further details in the demonstration that this possibility cannot arise.

Q.E.D.


