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Abstract

A Principal owns a project consisting of several tasks. Tasks differ, both in their

innate success probabilities and their incremental benefits. Moreover, only special-

ists can perform these tasks. Subject to moral hazard and adverse selection, in

what order should the Principal commission the tasks and when should she termi-

nate the project? What investments into changing tasks’ characteristics yield the

highest marginal profit? These issues arise in diverse areas such as drug develop-

ment, sequencing proxy wars or job assignment. We show that, despite informational

constraints, a simple index – a task’s effective marginal contribution – determines

the optimal schedule/mechanism.
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1 Introduction

Many projects can be viewed as collections of risky tasks that must be performed by

specialists. A Principal determines the order in which the tasks will be attempted and

whether to continue on to the next stage contingent on the tasks completed successfully.

The tasks themselves differ in their characteristics, some are more likely to succeed if

attempted, others offer greater benefit to the project if they succeed. The specialists

undertaking their respective tasks largely care about their monetary transfers and their

privately known costs of effort. They do not necessarily share the Principal’s interest in

the project overall.

A typical example is drug development. It requires computer modeling, multiple

toxicology studies on animals, multiple clinical trials on humans, environmental risk as-

sessments, etc. An important trend is the outsourcing of these R&D tasks to academic

and private contract research organizations (CROs), largely driven by the use of increas-

ingly sophisticated technologies. Visiongain (2016), a prominent business intelligence

forecaster, estimates the drug discovery outsourcing market to be worth $68 billion by

2028, as compared to about 20 billion in 2016.1 As in most R&D projects, there is

some flexibility on the order in which these tasks are commissioned. (See Reyck and

Leus (2008) for an elaborate case study.) Moreover, a drug development project will be

terminated at any stage following the discovery of harmful side effects or the inefficacy of

the approach/product. These features are also characteristic to software development.2

Scheduling proxy wars is arguably another notable area with similar issues. Unlike

in conventional wars, a Principal, usually a foreign state, does not involve itself in active

combat against an enemy. Instead it equips its proxies with arms and ammunition,

provides technical knowhow, monetary incentives etc. The proxies are then expected

to act.3 Although proxy wars are relatively inexpensive compared to having “boots

1Similar or even higher estimates are presented in a range of online blogs on the Pharma industry,
see also for example Buvalio (2018) or Lynch (2019).

2Gassmann et al. (2004) (on pg. 119) explain that “If a drug candidate fails during the development
phase it is withdrawn entirely from further testing. Unlike in the automobile industry, drugs are not
modular products where a faulty stick shift can be replaced without throwing the entire car design away.
In pharmaceutical R&D, drug design cannot be changed.” Similarly, (Ready, 2011, p. 28) points out
that in software development practice “...it was all or nothing with our work. On numerous projects,
we would only make money if we got everything lined up in perfect fashion. If we got 95 percent done
... we would still be in the same state as if we had just sat and watched Matlock reruns on the USA
Network for the last ten months”.

3Notable recent examples of such intervention include the US support of the Contras in Nicaragua
and of the Mujaheddin in Afghanistan in the 1980s, the continuing Iran’s support of several movements
(from the Hezbollah to Houthi) especially since 2003, the involvement of the Russian backed “private
military companies” first in Donbass, then in Syria and now in Libya. In fact, Mumford (2013) forcefully
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on the ground”, they are not cheap, not in the least due to the changing loyalties and

commitments of the proxies. Hence when multiple conflicts are of concern to a Principal,

the corresponding proxy wars have to be scheduled in an optimal manner while providing

the right incentives to the proxies.4

Once the optimal schedule is settled, other questions of interest arise. Looking ahead,

the Principal may consider making ex-ante investments that change the characteristics

of the tasks. In the drug R&D example, the Principal may engage in costly lobbying to

redefine the meaning of a success for a task. Alternatively, she could invest into “drug

re-purposing” of the compounds resulting from successful tasks. This would increase the

incremental benefit of a successful task, without affecting the chances of success. What

is the return on a marginal investment in either of these parameters for a given task,

and between tasks? For example, is it better to improve the success probability of a

certain task or invest in another task with higher incremental benefit but lower success

probability?

The common elements in all of the above examples are agency problems in a pro-

duction process where the sequence of tasks is chosen by a Principal. It is difficult to

monitor the CROs (or the proxies) actions, hence the problem involves moral hazard. It

is also difficult to assess the CROs’ (or the proxies’) costs, hence the problem involves

adverse selection. We are the first to construct a model that includes all these elements.5

A task in our model also has the two features mentioned above – its success probability

and a measure of its essenatiality (based on its marginal contribution to the project).

One of our main findings is that if a task is more essential than another but the

latter is less risky, then in the optimal mechanism priority (on average) should be given

to the former. Moreover, if the Principal could make ex-ante investments to improve the

marginal contributions or the success probabilities of tasks, she should invest into the

success probability of the most essential task.

Our results may also be applied to optimal job assignment. (See Gibbons and Wald-

argues that proxy warfare has all but replaced conventional wars since the Cold War, echoing a prominent
sentiment on the obsolescence of major wars expressed earlier in Mueller (1989).

4The importance of sequencing the support to the proxies is evident. The debilitating effect of
the Portuguese Colonial Wars (effectively three simultaneous proxy wars in Angola, Guinea-Bissau and
Mozambique) on Portugal itself is well documented. Although an unprecedented $20 billion of US aid was
provided to the Mujaheddin in Afghanistan between 1979 and 1989, the aid was increased dramatically
in 1987, the same year the US aid to the Contras was severely limited after the Iran-Contra scandal.
(See Lynch (2013), Prevost (1987) and (Riedel, 2014, pp. ix–xi, 21–22, 93, 98–99, 105. Chapter 4)).

5Optimal scheduling has been extensively studied in the operations research literature as a one person
decision problem. Our model can be seen as introducing agency concerns to a particular version of the
model explored in Reyck and Leus (2008). More closely related literature is surveyed in the latter part
of the Introduction.

3



man (1999) for a survey.) That is, suppose that the tasks must be performed in a given

sequence or even that, as in Kremer (1993), the output at each stage is an intermedi-

ate good to be used as the input to the next stage. The Principal can assign workers

with varying abilities to these tasks. Kremer finds that workers with higher success

probability must be assigned to later tasks in the general equilibrium of a complete in-

formation economy. Reinterpreting our results confirms this to be the case even with

adverse selection and a profit maximizing Principal. (See Remark 2.)

More specifically, in our model, the Principal owns a project consisting of several

tasks. Each of these can only be attempted by an agent with specific skills. When

an agent is commissioned to undertake his task, he must take a costly action for the

task to succeed with a (fixed) positive probability. The success of a task is verifiable.

However, whether the agent has taken the costly action and the cost of that action to

the agent is her private information. Each successful task brings an incremental benefit

to the Principal, but the tasks also complement each other to deliver a sizeable boost

to the project’s value if all the tasks are completed successfully. Tasks, however, can

be undertaken in any order and the choice of the later tasks can be contingent on the

success or failure of the earlier tasks. Motivated by the drug development application

above, we focus on the environments where it is inefficient to continue with the remaining

scheduled tasks upon the failure of any task.

In Section 2.1 we introduce the notion of the effective marginal contribution (EMC)

of a task. Much like the famed Gittins Index or the reserve price in Weitzman (1979),

the EMC of a task is the index that depends on that task’s parameters alone. As it

turns out, virtually all of our analysis on optimal scheduling, regardless of whether an

agent’s cost of exerting effort is common-knowledge or his private information, involves

commissioning the tasks in decreasing order of their EMCs for the appropriately chosen

transfers.

If costs were common-knowledge, the expected transfer is equal to the agent’s cost.

The resulting optimal schedule has the following implications when the costs of all the

tasks are equal. In choosing between a pair of tasks with equal marginal benefits (equal

success probabilities), the task with the lower success probability (the higher marginal

benefit) must be commissioned earlier. More generally, we say that there is a trade off

between tasks i and j if the former has a higher success probability but the latter has a

greater marginal benefit. Then task j precedes task i in the optimal schedule.

When an agent’s cost of effort is his private information, the Principal must design a

mechanism that provides incentives both to reveal the information required for scheduling

and to take the costly actions. Mixed models of moral hazard and adverse selection are
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rarely tractable.6 Proposition 1, however, provides a complete characterization of the

optimal (Expected Profit Maximizing) mechanism here.

First, the agents simultaneously report their costs. Then, at each reported costs

profile, the tasks are scheduled in decreasing order of their EMCs, computed as though

the expected transfer to each agent is his virtual cost. The transfers required for incentive

compatibility are, of course, more involved than simply covering the agents’ virtual costs.

In fact, we design the transfers such that the Perfect Bayesian Equilibrium that delivers

the highest expected profit is also an ex-post equilibrium.7

Remarkably, each of our earlier statements on optimal scheduling with equal and

commonly known costs has a direct counterpart in the asymmetric information setting

when the agents’ costs are i.i.d. When comparing a pair of tasks with equal marginal ben-

efits (equal success probabilities), the task with the lower success probability (the higher

marginal benefit) has a higher ex-ante probability of being commissioned earlier. Simi-

larly, when there is a trade off between a pair of tasks, the task with a greater marginal

benefit has a higher ex-ante probability of being commissioned earlier, see Proposition 2

in Section 4.3.

Proofs of all our results rely on the expression for the optimal expected profit in

Proposition 1, which resembles the optimal revenue in typical auction-like IPV envi-

ronments. The resemblance is however superficial. Due to moral hazard, the transfers

depend not only on the reported but also on the true costs profile. The usual payoff

equivalence then does not apply. Nevertheless, the Envelope Theorem methods can be

used to derive the upper bound on optimal profit. The proof of Proposition 1 constructs

a mechanism that delivers that upper bound in ex-post equilibrium. See Section 4.2 for

more details.

Section 4.4 examines the incentives of the Principal to make ex-ante investments

that improve the success probabilities or the marginal benefits of the tasks. We show

that whenever a pair of tasks exhibits a trade off and the boost to the project’s value

that results from completing both tasks is large enough, the Principal benefits the most

from improving the success probability of the task with the higher marginal benefit. It

is worth emphasizing that all of our results under asymmetric information hold without

any special assumptions on the prior distribution of the costs, beyond the usual i.i.d.

Throughout we assume that the agent makes a binary effort choice. It is a typical

modeling choice in most of the cited literature even under pure moral hazard (and no

6Some notable exceptions are reviewed in Chapter 7 of Laffont and Martimort (2002).
7An agent prefers to reveal his cost and take the action when instructed regardless of the reports of

the others as long as the other agents take actions on their turn.
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adverse selection). Section 5 extends our results to the setting with continuous choice

of effort under pure moral hazard. Furthermore, incorporating adverse selection may be

possible along the lines of McAfee and McMillan (1986) and Laffont and Tirole (1987).

However, this extension has proved to be significantly more involved and warrants a

separate analysis.

Related Work

Optimal scheduling and stopping as a one person decision problem has been exten-

sively studied in Operations Research.8 In Economics, the literature on scheduling and

stopping decisions under uncertainty but without agency considerations originates from

Weitzman (1979). See Olszewski and Weber (2015) and Armstrong (2017) and the refer-

ences therein for recent progress in such settings. In contrast to that literature, the tasks

here are delegated to the agents, hence the Principal also has to optimize on the agency

costs. There are three strands in the Economics literature with asymmetric information

where an “allocation” is an ordering of agents as it is here.

Ordering of agents is also a key variable in the “queuing” problem, see the literature

that follows Mitra (2001) and Suijs (1996). In contrast to the Operations Research liter-

ature referred to earlier, these models incorporate adverse selection. A Principal allows

access to the resource to n agents, one at a time. An agent’s type is an n-dimensional

vector representing his cost of being served in each of the n possible positions. Queuing

literature is mainly concerned with identifying cost structures where first-best mecha-

nisms exist and with axiomatic characterization of particular mechanisms. The objective

of the Principal is different from ours, she needs to order the agents in a queue efficiently,

i.e., to minimize the aggregate waiting time. Moreover, the moral hazard constraints

in our model induce ex-post individual rationality considerations typically absent in the

queuing literature.

Optimal allocation of the slots on the list is a key issue in the search positions

auctions literature. (See e.g., Varian (2007) or Edelman et al. (2007).) The advertised

positions in the search results can be purchased at auctions run by the internet search

engines. Each position has a fixed “click through rate” while each advertiser is privately

8The literature on scheduling in environments where a job once started necessarily succeeds, i.e.,
deterministic scheduling, is vast. It is mostly algorithmic and seeks to minimize the project’s duration.
(See Li and Ierapetritou (2008)) Scheduling with a view of maximizing a discounted profit is surveyed
in Herroelen et al. (1997). The literature that incorporates uncertainty into a job’s success is also vast.
Herroelen and Leus (2005) surveys this literature, which again mostly focuses on minimizing the expected
duration of the project. Reyck and Leus (2008) is among the more recent studies where the objective is
to maximize the expected profit when the tasks are uncertain to succeed.
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informed of its “value per click”. The product of these two is the value of a position to

an advertiser. Assigning advertisers to positions is akin to choosing the stages at which

to commission different tasks. This similarity is, however, superficial, since even setting

aside the moral hazard considerations, the payoff structures here and in the positions

auctions problem are very different. Section 5 explains the differences between positions

auctions and task scheduling.

Task scheduling with only moral hazard is explored in Winter (2006).9 His focus is

on scheduling of R&D activities performed within an organization. Success or failure of

an individual task is observable but not verifiable. We address the complementary case

of outsourcing the tasks to the external firms. Thus, in our setting the success of an

individual task is verifiable.

Finally, there is a literature on procurement of a large project in pieces modelled

as a contracting problem with one agent under moral hazard or as sequential auctions.

In that literature, each piece (task) can be supplied by all the suppliers and the focus

is on optimal use information about the suppliers generated over time. In our model,

as each task requires job specific skills of a single agent, the primary sequencing is the

information it reveals on the project and not of the agents.

The rest of this paper is organized as follows. Section 2 sets up the model and

derives the optimal schedule when costs are common knowledge. Section 3 deals with

the pure moral hazard model. Section 4 contains our main results for the model with

moral hazard and adverse selection. Section 5 discusses the comparative statics and

alternative applications of our methods. Section 6 concludes and provides directions for

further research.

2 The Model

A Principal owns a project that consists of a set of tasks N = {1, . . . , n}. In the R&D

interpretation of our model, these tasks can be performed in any order by specialized

agents. Each task i has two parameters qi and ri. qi is the success probability of i’s task

provided i takes a costly hidden action. Without that action the task fails. Success of

9In Mylovanov and Schmitz (2008) three identical tasks are to be accomplished within two stages.
Unlike here or in Winter (2006) any agent can perform any task, but no agent can be allocated more
than two tasks in one stage. Schmitz (2005) studies benefits of integration vs. separation under moral
hazard with exogenously given order of the tasks. These are pure moral hazard models with complete
contracting. Gilbert and Riordan (1995) and Da Rocha and Angeles de Frutos (1999) study the benefits
of integration under adverse selection and perfect complementarity of the tasks. Severinov (2008) also
allows the tasks to be substitutes. In the last three papers both tasks are always attempted and which
one goes first is irrelevant.
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task i adds ri ≥ 0 to the value of the project. There is also an additional benefit of α > 0

if all the tasks are completed successfully (and the project itself is deemed a success).

In the alternative job-assignment interpretation of our model, the order of the tasks

is fixed but any agent can be assigned to any one of the tasks. qi and ri are then

interpreted as the productivity parameters of agent i. In particular, in the Kremer’s O-

ring theory of economic development, the production process consists of several stages

and the output of stage k is an input for stage k+ 1. This is equivalent to setting ri = 0

for all i, since the output of each stage is being used up in the next stage. Of course,

the benefit of α is achieved if all stages succeed. For concreteness, we proceed with

the R&D interpretation. However, the reader could easily change the emphasis to job

assignment by swapping the “optimal ordering of the tasks” with the “optimal ordering

of the agents”.

We assume throughout that the parameters q = (q1, . . . , qn), r = (r1, . . . , rn) and α

are common-knowledge.10 In the event that a subset S of tasks are successful, the value

of the project is

r(S) =

{ ∑
i∈S ri if S 6= N∑
i∈N ri + α otherwise.

Throughout, in comparing a pair of tasks we call the task with the higher success prob-

ability the easier task. At the same time, we call the task with the higher expected

benefit, qiri, the more essential task.11

Successes and failures of the tasks are verifiable but the Principal incurs costs to

induce agents to exert costly effort (to take the hidden action). The Principal can

commission the tasks in any order and her later decisions can be contingent on the

outcomes of earlier tasks. She may also terminate the project mid-way and realize the

partial profits accumulated so far. A question of interest is whether the Principal gives

priority to the easier or to the more essential tasks.

10 Here the outcome of a task is uncertain. Instead, we may assume that ri can be obtained for sure but
after a duration ti, and a discount factor 0 < δ < 1 captures the unit time cost. By setting qi = δti such
a model is equivalent to ours. Also, see Agastya et al. (2016) for a version of our model with complete
information and two tasks only, but allowing for correlation between tasks’ success probabilities.

11The rationale for describing a task with higher expected benefit as being more essential is as follows.
A natural a priori measure of a task’s essentiality is the marginal increment it brings to the project’s
expected value. That is, let ∆ denote the project’s expected value conditional on attempting all the
tasks and ∆−i the corresponding expected value conditional on attempting all the tasks but i. The
marginal benefit of task i is then defined as ∆ − ∆−i. Accordingly, we could say that task i more
essential than task j if ∆−j > ∆−i. With n = 2, ∆−i = qjrj , since only task j is being attempted. Then
task i is relatively more essential than j if qiri > qjrj . Importantly, this characterization of essentiality
generalizes to n > 2. See Lemma 0 in the Appendix.
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Admittedly assuming any sequence of tasks to be feasible is extreme. FDA, for

instance, requires four main stages in drug development – basic research, pre-clinical,

clinical and FDA review. Although these major phases cannot be swapped, there are

several tasks within and between these phases that are interchangeable. Hence, more

generally, we can consider an exogenously given “precedence network” that describes the

set of feasible schedules. Our results should apply to any given sequence of interchange-

able tasks within this precedence network.

Agents are risk neutral, and their reservation utilities are normalized to zero. If agent

i receives a transfer τi his payoff is τi − ci if he exerts effort and τi if he does not. The

Principal observes neither the effort choice of i nor his cost of exerting effort, denoted

by ci. This ci is i’s private information, distributed on an interval [c, c̄] according to

a continuous and regular cumulative distribution function F .12 An agent is motivated

solely by his transfer net of his cost. He does not directly care about the project’s

benefits, as those benefits accrue to the Principal.

As the agents’ actions are hidden, the Principal has to provide the right incen-

tives through transfers and schedule the tasks optimally to achieve the highest expected

profit.13 A careful description of his strategy as the choice of a mechanism is taken up

in later sections. Essentially, the agents are offered to play an extensive form game that

is contingent on the information elicited at the preliminary stage. The game form com-

prises of a schedule and a profile of transfers τ = (τ1, . . . , τn). A schedule itself consists

of i) the order in which the Principal makes a decision on the various tasks, described

by a mapping π : N −→ N and ii) a decision rule, denoted by λ, that specifies whether

to commission a given task as a function of the histories.

To be precise, given a schedule (π, λ) and a profile of transfers, the agents are offered

to play the following game denoted by g = (π, λ, τ ). At stage k,

1. The Principal commissions a subset of task(s) with π(i) = k as per her decision

rule λ.

2. The agents whose tasks are commissioned at this stage choose whether to exert

12The cumulative probability F corresponding to f is said to be regular if c+ F (c)
f(c)

is non-decreasing.
Regularity is a standard assumption and plays the same role here as elsewhere in mechanism design,
importantly, it ensures that local incentive compatibility implies global incentive compatibility.

13The formulation of an agent’s payoff from a task does not allow for any direct benefit either from the
completion of the task nor that of the project. One could easily include a benefit si to the agent upon
the success of his task. This would imply repeating the analysis by redefining the cost as ci := ci − qisi.
“Types” are then no longer distributed identically but this assumption, unlike independence, is invoked
only for Proposition 2. Including a benefit to an agent from the completion of the whole project would,
on the other hand, significantly alter the analysis. For our motivational examples, however, a preference
for a shared objective such as the project’s success appears unreasonable.

9



effort.

3. The tasks’ outcomes are realized. Agent i receives a transfer τi/qi if and only if

his task succeeds.

The decision rule λ can depend on the outcomes of tasks from previous stages as well

as on the information elicited in the preliminary stage. However, as we explain in the

next section, this potential complexity notwithstanding, the Principal’s expected profit

maximizing mechanism uses only two simple schedules. Here, we briefly motivate the

two key assumptions that make this model tractable.

First, the outcomes of individual tasks are verifiable. This assumption seems reason-

able, for example, in the case of outsourcing drug R&D. Each outsourced task implies

strict contractual obligations both ways between the Principal and the labs/contractors.

This allows for the later phases in the R&D to be contingent on the earlier outcomes.

Verifiability of task outcomes takes us outside the scope of the literature on moral hazard

in teams, where only the project’s overall success is verifiable.

Second, given our applications it is also natural to assume that a task does not

succeed “just by luck” when the agent exerts no effort. In a pure moral hazard model

with binary effort choices and verifiable outcomes the assumption that the task fails

for sure when the agent shirks is, in fact, without loss of generality. One could instead

assume that this task succeeds with a positive albeit lower probability even without

effort. The resulting incentive constraints would be equivalent to ours. The model

in this paper, however, combines moral hazard with adverse selection. In such mixed

models the incentive constraints limit the Principal’s choice of transfers in a non-trivial

manner that depends on the specification. We shall discuss this further in Section 5

following Proposition 4.14

2.1 Profits and the Effective Marginal Contribution Schedule

Now suppose g = (π, λ, τ ) (for an arbitrary λ) is played out when the true cost profile

is c = (c1, . . . , cn). The sequentially rational behavior of each agent i is to exert effort if

and only if

τi ≥ ci (1)

14Laffont and Martimort (2002) point out that mixed models with “false” moral hazard are tractable.
These are models in which there is a deterministic relation between an agent’s action and the variable
that the Principal observes. This is not the case here. Upon observing that a task has failed, the
Principal cannot conclude that the agent has shirked.
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We refer to these as the moral hazard constraints. Letting 1 and 0 denote an agent’s

effort choice, the sequentially rational choice of agent i is δ(τi, ci), where δ = 1 if τi ≥ ci
and δ = 0 otherwise. The schedule (π, λ) implies an ex-ante probability that task i is

commissioned under g. With a slight abuse of notation, let λi(g) denote this probability.

Then, if the true cost profile is c, the expected profit of the Principal from g is

P (g | c) =

n∑
i=1

λi(g)δ(τi, ci)(qiri − τi) + αλ0(g)

n∏
i=1

δ(τi, ci)qi, (2)

where λ0(g) denotes the probability that all the tasks are commissioned.

Under adverse selection, the Principal designs a mechanism that specifies g as a

function of the reported types. The Principal’s objective is to maximize the expectation

of (2) over c. Details are in the next two sections. Here, we shall propose two important

schedules that provide an upper bound on (2) for a given profile of transfers. The optimal

mechanism then reduces to a choice between these two schedules at each realized c.

Fix a profile of transfers τ = (τ1, . . . , τn) and define qiri−τi to be the (potential) profit

flow from task i. Under the first schedule, the Principal simultaneously commissions all

the tasks with non-negative profit flows in the first stage and stops the project. We

denote this schedule by π+
τ . In particular, if every task has a negative profit flow, then

π+
τ is simply the status-quo and will instead be denoted by s.

To describe the second schedule, we first introduce the notion of the effective marginal

contribution (EMC). The EMC of task i at τ is

ei(τi) =
qiri − τi
1− qi

.

The EMC of a given task can be interpreted as follows. Consider task i in isolation

and the transfers contingent on success and failure of task i that induce agent i to

exert effort. If we denote by τs the transfer paid upon success, the EMC of task i is

the value of the transfer in case of failure, say τf , that makes the Principal indifferent

between commissioning and not commissioning this task, that is, τf solves the equation

qiri − qiτs − (1− qi)τf = 0.

Definition 1 (τ -EMC schedule) Given τ = (τ1, . . . , τn), the τ -EMC schedule is as

follows:

1. First, commission all the tasks with non-negative profit flows.

2. Then, commission exactly one task with a negative profit flow in each stage in the
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non-ascending order of their effective marginal contributions, provided all the tasks

from previous stages were successful.

3. Otherwise, stop the project.

Let π∗τ denote the τ -EMC schedule.

Lemma 1 Given τ = (τ1, . . . , τn),

P (π, λ, τ | c) ≤ max{P (π∗τ , τ | c), P (π+
τ , τ | c)}.

for all schedules (π, λ) and for all c.

Some parts of the proof of the Lemma are immediate. For instance, observe that the

expression in (2) is a weighted sum of the profit flows of various tasks with non-negative

coefficients. It is therefore clear that the value of P (π, λ, τ | c) weakly increases by

unconditionally commissioning every task with a non-negative profit flow. Now, the

only reason for commissioning a task with a negative profit flow is to retain a positive

probability of achieving α. Note that if the moral hazard constraint is not met for even

one agent, α is unattainable as that agent’s task necessarily fails. Therefore, if τi < ci

for some i, it is (weakly) beneficial not to commission any of the tasks with a negative

profit flow, and P (π+
τ , τ | c) ≥ P (π, λ, τ | c).

Next, let us consider a c such that τi ≥ ci for all i. Every commissioned agent

exerts effort. Nonetheless, if a task fails, α is still unattainable and, as before, there is

no reason to commission a task with a negative profit flow. Therefore all tasks with a

non-negative profit flow must precede tasks with a negative profit flow. Moreover, even

if no task has failed, it is not optimal to commission a task i with a negative profit flow

simultaneously with another task j. Instead, the Principal should save on the negative

profit flow of task i by commissioning task j first and proceeding with task i only if the

former succeeds.

In view of the above, the Principal only needs to choose between π+
τ and the schedules

in which tasks with negative profit flows are commissioned only one at a time and only

if all prior tasks are successful. (Tasks with non-negative profit flows are of course

commissioned unconditionally). The τ -EMC schedule has these features. That tasks

should be commissioned in the non-ascending order of their EMCs (as in the τ -EMC

schedule) follows from a standard interchange argument. That is, pick any pair of tasks

i and j that occur at consecutive positions k = π(i) and k + 1 = π(j), and switch

their positions to obtain the schedule π′. The proof of Lemma 3 essentially verifies that
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sgn(P (g | c) − P (g′ | c)) = sgn(ei(τi) − ej(τj)). If at a given cost profile the prospect

of getting α outweighs the expected loss from completing the negative profit flow tasks

in the τ -EMC schedule, the optimal schedule is π∗τ . Otherwise, the optimal schedule is

π+
τ .

The EMC of a task is therefore an index of “precedence desirability” that depends

only on the characteristics of the task. This mirrors the famed Gittins index for multi-

armed bandit problems and the scheduling rule in Weitzman (1979).15 That a simple

index, the EMC, can be used to schedule the tasks optimally is noteworthy. In most

formulations of task-scheduling, even when posed as one person decision problem with

deterministic payoffs, the solution is NP-complete and requires heuristic arguments to

obtain approximate solutions. The simplicity of the characterization in Lemma 1 for the

optimal schedule is critical for studying scheduling in the agency framework.

3 Optimal Scheduling without Adverse Selection

This section considers the case where the agents’ costs profile c is also common-knowledge

along with q, r and α. Now, setting transfers τ = c is enough to ensure that moral

hazard constraints (1) hold for every i. Optimal schedule is then given by a simple

Corollary to Lemma 1.

Corollary 1 Suppose c is common-knowledge. The profit maximizing strategy for the

Principal is to offer the game form (π+
c , c) if P (π+

c , c | c) ≥ P (π∗c, c | c) and (π∗c, c)

otherwise.

Remark 1 (Priority of the essential tasks over the easier tasks) A pair of tasks

are said to exhibit a tradeoff if one is the easier but the other is the more essential task.

That is, tasks i and j exhibit a tradeoff if and only if

(qi − qj)(qiri − qjrj) < 0 (3)

In fact, when there is a tradeoff between i and j and say task j is the more essential

task, its higher mean benefit, i.e. qjrj > qiri is accompanied by a greater variance of

15In Weitzman (1979), tasks can be executed in any order and the process can stop at any time. The
Principal’s payoff is maxi{xi} over the tasks executed net of their combined cost. The reserve price of
task i is wi that solves Ei[max{xi − wi, 0}] = ci with ci being the cost and xi the benefit that results
from task i. It is optimal to execute the tasks in the descending order of their reserve prices. Weitzman’s
reserve price increases in the “marginal benefit” and decreases in the cost of the task. Since his Decision
Maker expects a positive profit from any task, the reserve prices are positive. In our setting the profit
flow from a task can be negative and hence the EMC of a task may a negative number.

13



its benefits (and profit flows), i.e. (1 − qj)qjrj > (1 − qi)qiri. In that sense the more

essential task is also the riskier task. A natural question is whether the more essential

or the easier tasks are given priority in the optimal schedule.

Of course, the answer also depends on the costs. However note that when a tradeoff

exists and both tasks receive an equal transfer, the EMC of the more essential task is

higher, i.e. ej(τ) > ei(τ). Since the c-EMC schedule is optimal when c is common-

knowledge, we then conclude:

Whenever there is a trade off between the tasks, and the more essential one

also costs less, the more essential task is commissioned earlier.

Moreover, suppose a task’s cost is drawn at random from [c, c̄] as per the original assump-

tion, and the Principal chooses the optimal schedule point-wise, subject to the moral

hazard constraints, at each c. In view of the above observation, the following answers

the question of priority in probabilistic terms:

Claim. Whenever a pair of tasks exhibits a tradeoff, the event where the more essential

task precedes the easier task has a higher ex-ante probability than the complementary

event where the easier task is given a priority.

Remarkably, as we show later in Proposition 2, the above Claim holds even under

adverse selection. A formal proof of the above claim is a direct analogue of the proof

of that proposition. We present below a simple geometric argument for the case of two

tasks.

Suppose there are only two tasks, n = 2. Let task 2 (task 1) be the more essential

(the easier) task. First consider the case where qiri < c for i = 1, 2. In this case the profit

flows of both tasks are negative when transfers are set equal to c at each realization.

Therefore, only three schedules can occur under the profit maximizing strategy as c

varies: the status-quo s, π1 and π2, where π1 means that the Principal first commissions

task 1 and then task 2 if and only if the earlier task is successful. Schedule π2 is defined

analogously. The regions in which each of these are optimal are depicted on the Panel

1, Figure 1. Noting that the profit from the status-quo is zero, the regions where π1, π2

and s are optimal are determined by the three lines `1, `2 and `e. `i is the locus of all

tuples (c1, c2) such that Pi(πi, c1, c2 | c) = 0 for i = 1, 2, while `e(c1) is the locus of all

the tuples with equal EMC, i.e., e1(c1) = e2(c1). P (π1, c | c) = P (π2, c | c) on this line.

Given the tradeoff, the following may be readily verified: i) `e(c1) has a slope (1 −
q2)/(1 − q1) > 1 with a positive y-intercept, ii) the line `1(c1) is flatter than the line

14
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Figure 1: Reports of agent 2 in {va, vb, vc} and the corresponding thresholds in agent
1’s types that determine his transfers.

`2(c1) and iii) all three lines have a common intersection. Therefore, the grey region

(where π2 is optimal) has greater area than the dotted region (where π1 is optimal).

A similar construction arises when qiri > c for some i. The case where this inequality

holds for both i is depicted on Panel 2, Figure 1. In comparison to Panel 1, three new

regions arise. Both tasks are commissioned unconditionally in region π+
1,2. Only task 1

(only task 2) is commissioned in the region (π+
1 ) (correspondingly π+

2 ).

4 Optimal Scheduling with Adverse Selection

4.1 Incomplete Information & Direct Revelation Games

We now return to the case where costs are private information. The Principal is now

subject to both moral hazard and adverse selection problems. We take a strategy for the

Principal to be a direct revelation game. Formally, a direct revelation game is denoted

by a pair of functions µ := 〈ψ, t〉 where ψ : [c, c̄]n −→ P ∪ {s} and t : [c, c̄]n −→ Rn+. In

stage 0, the Principal commits to a µ. In stage one, agents simultaneously report their

types. Given the reported ĉ = (ĉ1, . . . , ĉn), the game ends with the status-quo as the

outcome if ψ(ĉ) = s, otherwise the game proceeds to stage two. In this stage ĉ is made

public and the agents play g = (π, τ ) with π = ψ(ĉ) and τ = (t1(ĉ), . . . , tn(ĉ)).
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Most generally, to implement the desired outcome one could allow arbitrary extensive

forms in the Principal’s choice set. Restricting attention to direct revelation games is,

however, without loss of generality despite the multi-stage nature of the interaction

here. Conceivably, in addition to the communication with the Principal the agents may

exchange messages between themselves or obtain the information about the types of the

other agents by observing their actions. Such information, however, is not payoff relevant

as the allocation and the transfers depend only on the types reported in stage one and

the costs of the agents are known to them. The (conditional) message exchanges can

be incorporated into the agents strategies as in Myerson (1982) so that his Revelation

Principle fully applies here.16

Every µ induces a multi-stage game of incomplete information among the agents.

A strategy for agent i consists of a pair of functions (Ri, δi), where Ri(ci) is type ci’s

report in stage one and δi(ĉ | ci) ∈ {0, 1} denotes his effort choice in stage two. To

ensure sequential rationality, at each c, the effort choices must obey the moral hazard

constraints with respect to the transfers t(ĉ) if ĉ = (R1(c1), . . . , Rn(cn)) were reported

in stage one. The expected profit of the Principal at c would then be P (g | c), where

g = (ψ(ĉ), t(ĉ)). Let P (s | c) = 0 denote her profit when the game does not progress to

stage two. Then the equilibrium expected profit can be expressed as

Π(µ) = E[P (µ(ĉ) | c)].

The Principal’s objective is to maximize Π(µ) in the class of all direct revelation games

µ. A mechanism µ∗ is said to be optimal if it maximizes Π(·) across all direct revelation

games, and Π∗ = Π(µ∗) is the optimal profit.

In view of Lemma 1, at every cost profile in optimal mechanism, the schedule is either

π+
τ or the τ -EMC schedule for some transfer τ . To simplify the exposition, through the

rest of the paper we assume

qiri < c ∀ i = 1, . . . , n. (4)

This implies that the transfer required to induce effort on a task necessarily results in

a negative profit flow. Then π+ is just the status-quo. We emphasize that except for

inclusion of cumbersome expressions for incentive compatible transfers to the types with

positive profit flows, violation of (4) does not alter our analysis.

16Even though the Principal faces a dynamic problem, each agent has only one of piece information
and acts only once, therefore the Revelation Principle for models with adverse selection & moral hazard
in static environments is applicable here.
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4.2 Optimal Mechanism and Optimal Profit

For a given cost ci, define its corresponding virtual cost vi = ci + F (ci)
f(ci)

. Let v =

(v1, . . . , vn) denote the profile of the virtual costs for a given cost profile c = (c1, . . . , cn).

The following is the main result on optimal scheduling.

Proposition 1 In an optimal mechanism, for any cost realization c, either the v-EMC

schedule is implemented or the status-quo is retained. Moreover the optimal profit is

Π∗ = E[max{P (π∗v,v | c), 0}]. (5)

Proposition 1 says that to achieve Π∗ the Principal behaves at each c as if she faces

the agents with costs v and chooses the ex-post optimal v-EMC schedule or the status-

quo. This resembles the optimal allocation in typical auction-like IPV environments.

This simplicity is noteworthy, given the usual complexity that moral hazard brings to

models of adverse selection.17 In IPV environments with only adverse selection, the

allocation and the transfers depend only on the reported profile of types. This important

feature, in particular, leads to the well known payoff equivalence theorem.

Here, an allocation refers to both the task schedule and the required actions along

that schedule. These actions are subject to moral hazard. Therefore, whether the desired

allocation (which itself is contingent on the reported profile of types) is realized in stage

two also depends on the actual profile of types. In particular, the expected probability

that an agent exerts effort (and hence incurs the cost) depends both on his true type

and his report. A key step in the proof of Proposition 1 is to show that despite this, one

can bring the familiar Envelope Theorem methods to obtain a canonical representation

for the transfers. This enables us to obtain the RHS of (5) as an upper bound for the

optimal profit. To complete the proof, we construct an explicit direct revelation game,

G∗ which achieves the upper bound.

4.2.1 Optimal Direct Revelation Game for Two Tasks

In this section we illustrate the construction of the above game G∗ on the special case

of n = 2. The general case is presented in the Appendix. We can reprise the discussion

17The reason is subtle. In mixed models, the incentive constraints at the reporting stage must take
account of the agent’s incentives to exert effort when commissioned. Usually, the complication arises
from the fact that a high cost agent must be prevented from pretending to be a low cost agent at the
reporting stage while planning to shirk later, see e.g., Chakraborty et al. (2017). In our setting since the
task fails for sure without effort, such an incentive constraint is equivalent to an ex-post participation
constraint.
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leading to Panel 1, Figure 1, and appealing to Proposition 1, we depict the schedules

that are optimal in different states in Figure 2. Except for the fact that under adverse

selection the axis measure the virtual costs instead of the actual costs this Figure is

identical to the earlier Figure 1. The three lines `1, `2 and `e. `i are now the locus of all

tuples (v1, v2) such that Pi(πi, v1, v2 | c) = 0 for i = 1, 2, while `e(v1) is the locus of all

the tuples with equal EMC, i.e., e1(v1, v2) = e2(v1, v2).
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s

(c, c) v∗α
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vα

(v̄, v̄)

`e
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A
ge

n
t
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v
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Figure 2: Reports of agent 2 in {va, vb, vc} and the corresponding thresholds in agent
1’s types that determine his transfers.

To complete the description of G∗, we need to specify the transfers that elicit the

true costs in equilibrium. We shall use Figure 2 as a reference. For each report ĉ2 or

equivalently v̂2 of agent 2, partition agent 1’s reports into at most three regions where

the schedules π1, π2 and the status-quo are correspondingly optimal. For example, for

v̂2 = va, let cα and c∗α denote the costs corresponding to the thresholds vα and vα∗ .

These partition agent 1’s types into {[c, cα], [cα, c
∗
α], [c∗α, c̄]}.

As c1 increases, the position at which agent 1 acts in the optimal schedule changes

from position 1 to position 2, and then to the status-quo, with the switches occurring at

the threshold types cα and c∗α. Depending on which segment agent 1’s report ĉ1 belongs

to, his transfer is a constant τ1, τ2 or 0. The transfers are chosen to make the threshold
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types indifferent between their adjacent positions. That is (τ1 − cα) = q2(τ2 − cα) and

τ2 − c∗α = 0.

Type cα is indifferent between acting at position 1 and receiving transfer τ1 and acting

at position 2 and receiving a higher transfer τ2. Shifting to a later position implies lower

probability of being called into play which lowers the expected payoff. The types below

cα prefer the earlier position, the types above cα prefer the later position. Every type

below c∗α prefers being commissioned to staying idle. Therefore agent 1 benefits from

reporting her own cost truthfully regardless of whether the report of agent 2 is truthful

or not. The argument in the Appendix generalizes the above construction to the case of

n tasks and verifies that moral hazard constraints are also met.

Note that depending on v̂2, the partition may include only two segments. As can be

seen in Figure 2 for v̂2 = vb or v̂2 = vc, the corresponding partitions are {[c, cβ], [cβ, c̄]}
and {[c, cγ ], [cγ , c̄]} respectively where cβ and cγ denote the costs corresponding to agent

1’s virtual costs vβ and vγ .

4.3 Tradeoffs and Optimal Scheduling

Remark 1 in Section 3 describes how the trade off between the tasks is reflected in their

relative positions in the optimal schedule. In this Section we generalize this to the case

of asymmetric information. Since the costs are unknown, the question is which task has

a higher expected probability of precedence? That is, “on average” do we expect an easier

or a more essential task to be scheduled earlier?

The answer is fairly transparent if the project has exactly two tasks that exhibit a

tradeoff. Figure 2 is in fact drawn for case where task 1 is easier and task 2 is more

essential, i.e., q1 > q2 but q1r1 ≤ q2r2. Then the area under `2 is larger than the area

under `1 and `e is steeper than the 45 degree line.

With identically distributed costs this translates into a higher expected probability of

precedence for task 2. Indeed, for any profile (v1, v2) where π1 is the optimal schedule, in

a symmetric profile (v2, v1) the optimal schedule is π2. Given that the costs are identically

distributed, schedule π2, where the more essential task is commissioned first, is chosen

more often than schedule π1. This is an important observation that allows to predict

the properties of the optimal task schedule ex-ante, relying only on the characteristics of

the individual tasks – the more essential task on average precedes the easier task in the

case of a tradeoff. This makes formal an intuitive approach to a complex problem where

the key issues are attempted first. Their successful resolution makes the entire project
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viable, and opens the gate to the less essential tasks that are deferred until then.18

The following proposition is thus a generalization of Remark 1 to incomplete infor-

mation.

Proposition 2 Consider n tasks and suppose that task j is weakly more essential than

task i, but task i is easier. In the optimal mechanism, the event that task j precedes task

i is more likely than the event that task i precedes task j.

Note that the above argument involving only two tasks used the fact that in a flip of

the virtual costs from (v1, v2) to (v2, v1), the only contention is a switch from π1 to π2.

With n tasks there are many possible alternative schedules to consider and, in principle,

the probability that a given task is commissioned may increase or decrease. The key

observation used in the proof is that since at a cost profile c = (ci, cj , c−i ,j ) the tasks

are ordered by their EMC’s, the less essential task i can precede the more essential j

only if i is relatively cheaper. Then at a symmetric cost profile c′ = (cj , ci, c−i ,j ) task

j will have the cost advantage and will precede task i. The main difficulty in the proof

of Proposition 2 lies with establishing that whenever the status-quo is not optimal at

profile c it is also not optimal at c′.

Remark 2 Recall that in the O-ring production model alluded to at the beginning

of Section 2, ri = 0 for all i. With complete information, the EMC reduces to the

simple ratio −ci/(1− qi). Now, as in Kremer (1993) if costs are known and equal across

the agents, those with higher q’s are assigned to later stages. (See also Sobel (1992))

Proposition 1 and Proposition 2 would show the same to be true in expectation when

the costs are private information.

4.4 Ex-ante Investments in Technology

Before embarking on the project, the Principal could make ex-ante investments that will

increase qi or ri for some tasks to improve the expected value of the project. For example,

it is common to have tangible performance standards to determine if a task is a success.

In particular, suppose task i is deemed a success if the verifiable realization of a random

variable Xi exceeds an exogenously given performance standard, say x∗i . Assuming that

the distribution of Xi is Gi if the agent exerts effort then qi = (1−Gi(x∗i )). Assume

the standard cannot be met if the agent shirks. The Principal can either engage in costly

18For more detailed description of the stage-gate process see Cooper (1990).
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lobbying to reduce x∗i , or alternatively (at a cost) improve production standards leading

to an improvement in Gi. Either way, she seeks to increase qi.
19

Similarly, in anticipation of the project’s failure, the Principal could make early

investments into “drug re-purposing or drug re-profiling” of the compounds that resulted

from the successful tasks, see Oprea et al. (2011)). She could also develop alternative uses

for the outcomes within a successful project through advertisement and public relations

campaigns, etc. These amount to the Principal increasing ri at a cost.

Any ex-ante investments in either qi or ri increase the expected profit from the

optimal mechanism Π∗ = Π∗(q, r, α). The question, which of these instruments has the

highest marginal effect?

Proposition 3 Suppose n = 2 and the two tasks exhibit a tradeoff. When α is large

enough, i.e. if the tasks are sufficiently complementary, the highest marginal effect on

the expected profit is with respect to the success probability of the more essential task.

In other words, if the Principal can choose whether to spend the marginal dollar on

increasing the value of drugs by re-purposing, or engage in lobbying activities to lower

the threshold for success (i.e. lower x∗i ), she should do the latter.

5 Discussion

The tractability of our setup hinges on obtaining an index analogous to the EMC of a

task that depends only on the parameters of that task to create the optimal schedule.

Even abstracting from agency concerns altogether, the existence of such an index in the

one person decision problem requires that i) the task outcomes must be independently

distributed across tasks and ii) the value of the project essentially has one of two specifi-

cations: either it is a weighted sum of individual task outcomes (as it is here) or it is the

maximum of the task outcomes. The additive specification is related to the existence

of the well-known Gittins Index for multi-armed bandit problems, and the latter to the

celebrated “Pandora Box” model of Weitzman (1979)’s search for the best alternative.

Appendix B shows that our approach can be used to readily incorporate agency concerns

into Weitzman (1979) with binary outcomes.

19In environmental regulation, the task would be deemed a success if its total pollution does not
exceed a certain threshold. For example, production of electrical components requires insulation with
PCB materials that are known to have adverse effects on humans. Production may necessarily result in
a random fraction of defective items, each of which counts toward pollution. If the Principal is able to
influence Gi, then she can execute technological changes that reduce the fraction of the defective items.
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Mixed models of moral hazard and adverse selection do not usually yield closed form

solutions in contrast to ours. The binary structure of our setup (two outcomes and two

actions) contributes to the tractability here. A setting with continuous effort choices and

continuous outcomes requires a separate analysis. Retaining the assumption of binary

outcomes for any task, the model readily extends to the case of continuous effort choice

under pure moral hazard.

Scheduling under pure moral hazard and continuous effort choice. Indeed,

let qi(e) be the probability that task i succeeds if agent i’s effort is e ≥ 0 and ci is

his commonly known marginal cost of exerting effort. Agent i receives a transfer, say

τi, if and only if his task is a success.20 For simplicity, and without an essential loss

of generality, assume the counterpart of (4), i.e. qi(e)ri < ci for all i so that profit

flow of every task is negative. As before, it suffices to think of schedules denoted by a

permutation π of N with the interpretation that i is commissioned at stage π(i) only if

all the prior tasks are a success. Having chosen a schedule π, and a profile of transfers

τ = (τ1, . . . , τn), if the effort profile is e = (e1, . . . , en), then the probability that agent

i is commissioned is λi(π, τ | e) = Π
π(i)−1
`=1 qi(ei) and the resulting profit is

P (π, τ | e, c) =
n∑
i=1

λi(π, τ | e)qi(ei)(ri − τi) + α
n∏
i=1

qi(ei). (6)

Effort choices of course depend on the transfers. In fact, given τ , the resulting effort

ei = ei(τi), where

ei(τi) = argmaxe{τiqi(e)− cie} for each i. (7)

(Assume that qi is well-behaved so that this argmax is well-defined.) The Principal

maximizes the profit P (π, τ | e, c) with respect to the schedule and the transfers (π, τ )

subject to (7). Let (π∗, τ ∗) denote the optimal choice and e∗i = ei(τ
∗
i ) denote the induced

effort.

Proposition 4 The optimal schedule π∗ is the τ ∗-EMC schedule with qi = qi(e
∗
i ).

Incorporating adverse selection in the above analysis is not straightforward. In mixed

models, the incentive constraints at the reporting stage must take account of the agent’s

incentives to exert effort when commissioned. Usually, the complication arises from the

20Consequently, the expression for profit given in (6) is slightly different from (2), where a transfer of
τi/qi was assumed to be the payment conditional on the task’s success.
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fact that a high cost agent must be prevented from pretending to be a low cost agent

at the reporting stage while planning to shirk later. (For example see Chakraborty et

al. (2017).) With binary choices, assuming that the task fails for sure without effort,

such an incentive constraint is equivalent to an ex-post participation constraint. With

continuous effort choices, such simplification is not feasible.

Scheduling under pure adverse selection and positions auctions. With pure

adverse selection, our scheduling problem resembles but does not reduce to the problem

of “positions auctions”. Positions auctions have attracted a fair deal of attention recently,

especially given their application to the sales of the internet ads by search engines. (See

Varian (2007) or Edelman et al. (2007)) In these auctions, there is a given set of positions

j = 1, . . . , n with given “click-through” rates x1 > · · · > xn. That is, an ad placed in

the internet search position j yields xj “clicks” per unit of time. If this position is given

to advertiser i who values a click at vi and pays τi per click to the search engine, he

receives a payoff xj(vi − τi).21

In our scheduling problem agents also effectively bid for “positions”. When the

chosen schedule is π, and agent i is placed at position π(i) = j, his payoff is λi(π)(τi −
ci), which looks remarkably similar to the advertiser’s payoff in the positions auction.

However, unlike xj , λi(π) depends not only on the position j. Rather, λi(π), is given

by
∏π(i)−1
`=1 qπ(`) if the moral hazard constraints are met for every agent i′ commissioned

prior to agent i (i.e. prior to stage π(i)), and equals zero otherwise. In other words, the

“click-through” rate here is endogenous, its value for position j depends explicitly on

which agents are scheduled to act prior to stage j.22

In search positions auction the expected revenue is the only concern of the Principal.

Her objective is more involved here. By altering the schedule the Principal affects not

only the expected transfers she makes to the agents but also the expected value of

the project itself. Clearly, the positions auction problem does not nest the scheduling

problem studied here. Given that x1, . . . , xn can be an arbitrary non-increasing sequence

in the positions auction, our problem also does not nest the positions auctions problem.

21A similar preference for the (otherwise identical) object sold earlier also may appear in sequential
auctions, see e.g. Jeitschko (1999), where this preference is driven by the exogenous uncertainty over
whether the second object is available for sale.

22Due to this, the mechanism in Edelman et al. (2007), where the private information is revealed as
the allocation unfolds, cannot be used here. The Principal has to elicit the entire profile of the costs
before choosing the schedule. Athey and Ellison (2011) embed position auctions in consumer search
problems, which makes the value of a position endogenous, and yet independent of the schedule.
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6 Conclusion

The ability of the Principal to commit to a schedule, the additive structure of the

technology, private, independently drawn values and risk neutrality all contribute to a

highly tractable model of optimal scheduling, despite the presence of both moral hazard

and adverse selection. It would be of considerable interest to relax any subset of these

assumptions. However, the problem then becomes sufficiently different and complex to

warrant a separate analysis.

Given the (imperfect) complementarity of the tasks, it is natural to inquire whether

it is in the Principal’s interest to procure the “bundle” of services of a group of agents

instead of dealing with them individually. Such an inquiry would mirror the regula-

tory issues explored in Gilbert and Riordan (1995) but for the case of sequential pro-

duction processes. Their work effectively addresses this issue when tasks are perfect

complements. Our preliminary results is that bundling is superior for a class of cost

distributions.

Appendix

A Proofs

Lemma 0 below follow up on the discussion in Footnote 10.

Lemma 0. Task i is relatively more essential than task j if and only if qiri > qjrj.

Proof of Lemma 0. Pick any i and j. Q(S) =
∏
k∈S,`∈N\{i,j} qk(1−q`) is the probability

that exactly the tasks in S succeed when only the tasks in N \{i, j} have been attempted.

Also let r(S) =
∑

i∈S ri. The expected value from attempting N \ {i} tasks can be

expressed as

∆−i =
∑

S⊆N\{i,j}

Q(S)[qjr(S ∪ j) + (1− qj)r(S)]

=
∑

S⊆N\{i,j}

Q(S)qjrj +
∑

S⊆N\{i,j}

Q(S)r(S).

Therefore,

∆−j −∆−i =
∑

S⊆N\{i,j}

Q(S)[qiri − qjrj ]
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and ∆−j > ∆−i (hence ∆−∆−i > ∆−∆−j) if and only if qiri > qjrj . �

Proof of Lemma 1. Fix a transfer profile τ and partition the tasks into the set of

those with non-negative profit flows and its complement:

N+ = {i ∈ N | qiri − τi ≥ 0} and N− = N \N∗ (8)

From the discussion that follows Lemma 1, it suffices to consider the case where τi ≥ ci
for all i, and focus on πs such that all the tasks in N+ precede those in N− and no task

from the latter set is commissioned simultaneously with another task. That is, we need

to consider only those π such that i) π(i) < π(j), for all i ∈ N+ and all j ∈ N− and ii)

the restriction of π to N− is a permutation of N− . The decision rule λ commissions all

the tasks in N+ unconditionally, and those in N− only if every one of the tasks in the

preceding stages is a success. For any such schedule, the tasks are commissioned in the

game g = (π, λ, τ ) with probabilities

λi(g) = 1 ∀ i ∈ N+ and λi(g) =

π(i)−1∏
`=1

qπ(`) ∀i ∈ N−,

which in turn allows us to express the profit as

P (g | c) =
∑
i∈N+

(qiri − τi) +
∑
i∈N−

λi(g)(qiri − τi) + α
n∏
i=1

qi.

To complete the proof, we need to show that for all such schedules, P (g | c) ≤ P (π∗ | c).

Indeed, fix such a g = (π, λ, τ ) and a pair of tasks i, j ∈ N− at adjacent positions,

i.e. k = π(i) and k + 1 = π(j). Let π′ be the ordering of tasks obtained from π by

interchanging the positions of i and j. Since the initial choice of π and the choice of the

position k are arbitrary, it suffices to show that

sgn(P (π, τ | c)− P (π′, τ | c)) = sgn(ei(τi)− ej(τj)) (9)

to complete the proof. For each agent ` who is scheduled to act prior to i we have

λ`(π) = λ`(π
′) and for each agent m who is scheduled to act after j, we have λm(π) =

λm(π′). Hence,

P (π, τ | c)− P (π′, τ | c) = λi(π)(qiri − τi) + λj(π)(qjrj − τj)

−λj(π′)(qjrj − τj) + λi(π
′)(qiri − τi).
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Moreover, λi(π) = λj(π
′), since this is simply the probability that all the tasks scheduled

prior to k have succeeded. Further, λj(π) = qiλi(π) and λi(π
′) = qjλj(π

′) = qjλi(π).

Substituting in the above,

P (π, τ | c)− P (π′, τ | c) = λi(π)[(qiri − τi) + qi(qjrj − τj)− (qjrj − τj)− qj(qiri − τi)]

= λi(π)× [ei(τi)− ej(τj)]× (1− qi)(1− qj),

from which it is evident that (9) holds. �

Proof of Proposition 1 We begin with a few preliminary observations and prove

Lemma 2. Using this Lemma, we proceed in two steps. Step 1 shows that the RHS of

(5) is, in fact, an upper bound of Π(µ) for any direct revelation game µ. Step 2 then

exhibits a mechanism that achieves this upper bound in ex-post equilibrium.

Preliminaries.

Fix a direct revelation game µ. Suppose c is the true cost profile but the reported

profile is ĉ. If µ(ĉ) = s the game ends. Otherwise, agents are called to play according

to a given schedule π determined by µ(ĉ) and transfers (t1(ĉ), . . . , tn(ĉ)). Recall the

interpretation of these transfers – agent i receives a payment of ti(ĉ)/qi if and only if his

task is a success. Now, regardless of i’s posterior beliefs or his position in the schedule

π, the payoff of type ci is ti(ĉ) − ci if he exerts effort and zero otherwise. Therefore,

sequential rationality requires the stage two behavioral strategy profile (δ1, . . . , δn) to

satisfy

δi(ĉ | ci) = 1 ⇔ ti(ĉ) ≥ ci, ∀ĉ, ci and∀i (10)

in any Perfect Bayesian Equilibrium of µ, which are essentially the moral hazard con-

straints (1). Correspondingly, the probability that position k = π(i) is reached when the

reported profile is ĉ and the true profile of the others is c−i is given by

pi(ĉ | c−i) =

0 if ψ(ĉ) = s and

λi(π) if ψ(ĉ) = π,
(11)

for a non-trivial schedule π.

Now, appealing to the Revelation Principle, we need to only look for a Bayesian
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Equilibrium of the direct revelation game which induces truth telling, i.e. Ri(ci) = ci

for all ci. Consider the incentives of agent i to report her type truthfully given that all

the other agents choose truth-telling. Define

pi(ĉi | ci) = Ec−i [pi(ĉi, c−i | c−i)δi(ĉ | ci)]

and ti(ĉi | ci) = Ec−i [pi(ĉi, c−i | c−i)δi(ĉ | ci)ti(ĉi, c−i)].

Assume ĉj = cj for all the other agents. Then p(ĉi | ci) is the expected probability that

type ci of agent i exerts effort (and hence incurs the cost) if she reports her type as ĉi

in stage one. Similarly, ti(ĉi | ci) is this type’s expected transfer. The expected interim

payoff of type ci from (mis)reporting her type as ĉi may then be written compactly as

Ui(ĉi | ci) = ti(ĉi | ci)− p(ĉi | ci)ci. (12)

Let Ui(ci) = U(ci | ci) be type ci’s expected payoff from telling the truth, given all the

others also report truthfully. Mechanism µ is incentive compatible if and only if

Ui(ci) ≥ Ui(ĉi | ci) ∀ĉi, ci, ∀i. (13)

The Principal’s objective is then to maximize

Π(µ) = E[P (ψ(c), t(c)) | c)]

=

n∑
i=1

(Eci [pi(ci | ci)qiri]− Eci [ti(ci | ci)]) (14)

with respect to µ, subject to (13).

Lemma 2 In a Perfect Bayesian Equilibrium of a direct revelation game µ, the ex-ante

expected transfer of agent i is

Ec

[
pi(c | c−i)δi(c | ci)

(
ci +

F (ci)

f(ci)

)]
+ Ui(c̄i).

Lemma 2 is our analogue of the payoff equivalence. Incentive compatibility con-

straints implicit in any equilibrium behavior restrict the transfers once the schedule at

c, and hence pi(c | c−i), are fixed. At any c, the product piδi is the expected probability

that agent i is called into action, and the transfer to agent i is as if he is paid vi/qi if and

only if his task is a success. There is an important caveat to this analogy with payoff

equivalence in the auction-like problems in the IPV setting. Note that the probability
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pi(c | c−i)δi(c | ci) itself depends on the chosen transfers. So, Lemma 2 is a canonical

representation of the expected transfers rather than a claim of payoff equivalence.

Proof of Lemma 2. We first show that if µ is incentive compatible, then

U ′i(ci) = −pi(ci | ci).

Assuming that all agents other than i report truthfully, for each report ĉi of i, define

the random variables X = pi(ĉi, c−i | c−i) and Y = ti(ĉi, c−i) and let Gi(· | ĉi) be their

joint cumulative distribution function. Then,

Ui(ĉi | ci) =

∫ 1

0

∫ c̄

ci

x(y − ci)dG(x, y | ĉi).

By incentive compatibility, Ui(ci) is the value function of Ui(ĉi | ci). By the Envelope

Theorem,

U ′i(ci) =
∂

∂ci
Ui(ĉi | ci)

∣∣∣∣
ĉi=ci

= −
∫ 1

0
x

∫ c̄

ci

dG(x, y | ci)

= −Ec−i [pi(ci, c−i | c−i)δi(c | ci)] = −pi(ci | ci).

To complete the proof, we proceed along the lines of Myerson (1981), i.e., Ui(ci) is

reconstructed from its derivative and the resulting expression is used to express the

transfers using (12). After the usual change of the order of integration the ex-ante

expected transfers can be written as

E[ti(ci | ci)] = E

[
pi(ci | ci)

(
ci +

F (vi)

f(vi)

)]
+ Ui(c̄i), (15)

as claimed in the statement of the Lemma. �

Step 1 - The Upper Bound

We may now substitute for E[ti(ci | ci)] in (14) and re-express Π(µ) as

Π(µ) = E[Γ(c)]−
n∑
i=1

Ui(c̄i),
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where

Γ(c) =
n∑
i=1

pi(c | c−i)δi(c | ci)
(
qiri − ci −

F (ci)

f(ci)

)
+

(
n∏
i=1

δi(c | ci)qi

)
α.

Now, there are three cases to consider. First, ψ(c) = s, i.e. the status-quo is retained

at c, and Γ(c) = 0. Second, ψ(c) = π but the transfers are such that some of the moral

hazard constraints (10) violated, i.e. ti(c) < ci for some i. Then, the coefficient of α in

Γ(c) is zero, and by (4), Γ(c) ≤ 0. Finally, ψ(c) = π and ti(c) ≥ ci for all i, in which

case we have Γ(c) = P (π,v | c) ≤ P (π∗,v | c). The equality comes from the fact that

vi ≥ ci and hence (1) holds for all i, and the inequality from appealing to Lemma 1.

Therefore,

Π(µ) ≤ Ev[max{0, P (π∗v,v | c)}] = Π∗.

Step 2. Achieving the Upper Bound.

The Game G∗ . The allocation rule is the v-EMC schedule for each reported c. The

transfers are as follows. At a reported cost profile (ĉi, ĉ−i), there are no transfers if the

status-quo is retained. Otherwise, fixing ĉ−i, transfers for agent i in the corresponding v̂-

EMC schedule as ĉi varies are determined as follows. Let ek be the kth highest element

in the set {ej(v̂i) | j 6= i}. Without loss of generality ek 6= ek′ if k 6= k′. Introduce

k∗ so that agent i by reporting his lowest possible cost appears in position k∗, that is

ei (v) ∈ (ek∗−1, ek∗ ].
23 Introduce also K∗ so that agent i by reporting his highest possible

cost appears in position K∗, that is ei(v̄) ∈ (eK∗−1, eK∗ ].
24 Let L = K∗ − k∗.

Now, since F is regular, ei(v̂i) is strictly decreasing in ĉi. By varying ĉi, we obtain

a sequence of exactly L thresholds c = c0 < c1
i < · · · < cLi ≤ c̄, such that whenever

ĉi ∈ (c`−1
i , c`i ], the corresponding ei(v̂i) ∈ (ek∗+`−1, ek∗+`], hence i will be commissioned

at position k∗ + ` of the v̂-EMC schedule, for ` = 1, . . . , L.25

In the following let q` denote the success probability of task j such that ej(v̂j) = ek∗+`.

This is the success probability of the agent whom i “lets to go ahead” of himself in the

schedule by (mis)reporting his own type slightly above c`i . Define recursively,

τLi = c̄,

τ `i = q`τ
`+1
i + (1− q`)c`i , for ` = L− 1, . . . , 1.

23Ties are broken such that agent i appears earlier on the schedule.
24The case where such report “induces” the status-quo is treated similarly by setting τLi = 0.
25Note that k∗ and K∗ as well as each threshold c`i depend on ĉ−i, but we keep this implicit.
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Now define the transfer

ti(ĉi, ĉ−i) =


τ1
i if ĉi = c,

τ `i if ĉi ∈ (c`−1
i , c`i ] for ` = L, . . . , 1,

τLi if ĉi > cLi .

and

Truth telling is an Equilibrium in G∗. Here we will verify that G∗ admits a Perfect

Bayesian Equilibrium with Π∗ as the resulting expected payoff for the Principal. For

this, let G∗c be the direct revelation game G∗ where it is common-knowledge that the

cost profile is c. We will verify that for each agent to truthfully report his ci in the first

stage and obey the moral hazard constraints (10) in the second stage constitutes a SPE

of G∗c . As this will be true for every c, for the agents to report truthfully and obey (10)

will constitute a Perfect Bayesian Equilibrium in G∗ that is also an ex-post equilibrium.

In addition, at each c, the SPE outcome is the v-EMC schedule if P (π∗v,v | c) > 0 and

the status-quo otherwise. This ensures that Π∗ is the Principal’s payoff.

Observe that each τ `i is a convex combination of the threshold types c`i , . . . , c
L
i , c for

all ` except for τLi =c. Therefore, at every ĉ such that Pi(π
∗
v̂, v̂ | c) > 0,

ti(ĉi, ĉ−i) ≥ ĉi ∀ĉi ∈
[
c, cLi

]
, ∀i. (16)

Pick a profile c such that P (π∗v,v | c) > 0. Indeed, if every agent were to report the

truth in the first stage, then, by (16), each agent has an incentive to incur the cost in the

second stage and the v-EMC schedule is, in fact, obtained. The payoff of every agent is

positive (except perhaps for ci = cLi , in which case it is zero), hence none of them prefers

to induce the status-quo where the payoff is zero. We will now verify that agents also

prefer not to mis-report in the first stage to alter their position in the schedule.

For any (mis)report ĉi < cLi , by definition, P (π∗(v̂i,v−i)
, v̂i,v−i | c) > 0. So by (16)

tj(ĉi, c−i) ≥ cj for all j 6= i hence all these agents exert effort when asked to act. Given

this, each threshold type c`i , by construction, is indifferent between acting at position

k∗ + ` (of the schedule) with transfer τ `i and at position k∗ + ` + 1 with transfer τ `+1
i .

Moreover, since τ `i and c`i are independent of ĉi, by varying his report ĉi agent i can

change his payoff only by changing his position in the schedule.

Given the linearity of the payoffs in the costs, every type c′i < c`i strictly prefers acting

at position k∗+ ` to acting at position k∗+ `+ 1, whereas the opposite is true for a type

c′i > c`i . Since this holds for any `, agent i with ci ∈ (c`
′−1
i , c`

′
i ], for any `′ = 1, . . . , L,

prefers to act at position k∗ + `′, hence prefers to report truthfully.

Proof of Proposition 2. Recall that in the optimal mechanism, it is as if at each cost
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profile c, the v-EMC schedule π∗v is chosen, unless, of course, the status-quo is retained.

For any i, j let Ω(i, j) denote the set of all cost profiles in which some EMC schedule

(not the status-quo) is chosen, and i appears earlier than j. Now pick a pair i, j that

exhibit a tradeoff, i.e.

qi > qj and qiri ≤ qjrj , (17)

which means j is more essential than i but i is relatively easier.

Pick any c = (ci, cj , c−i,j) ∈ Ω(i, j) and let c′ be the cost profile obtained from c by

swapping the costs of i and j. That is, c′i = cj , c
′
j = ci and c′k = ck for all k 6= i, j. We

now make two claims both of which follow from (17).

First, we claim that if tasks i and j are scheduled for positions ` and m in the

v-EMC schedule (` < m), then at the v′-EMC schedule j must be scheduled no later

than position ` and i must be scheduled no earlier than position m. Hence comparing

c and c′, we could conclude that j is undertaken with as high probability at c′ as i was

undertaken at c. The second claim is that P (π∗v′ ,v
′ | c) > 0 so that

c ∈ Ω(i, j) =⇒ c′ ∈ Ω(j, i). (18)

These two claims and the observation that costs are symmetrically distributed complete

the proof.

We begin by observing that for any c ∈ Ω(i, j), the following inequalities are satisfied

for the corresponding v:

ei(vj) < ej(vj) ≤ ei(vi) < ej(vi) (19)

The first and the last inequality come from (17), i.e., when the costs are equal, the more

essential task also has the higher effective marginal contribution. The second inequality

is from the definition of Ω(i, j).

From (19) we see that at c′ the effective marginal contribution of task j, namely

ej(v
′
j) = ej(vi) is above that of task i at c. Similarly, the effective marginal contribution

of task i at c′, ei(v
′
i) = ei(vj), is below that of task j at c. The effective marginal

contributions of the other tasks are the same at c and c′. This proves the first claim

above on the v′-EMC schedule.

To prove the second claim, start with the original v-EMC schedule π∗v where π∗v(i) =

k1 and π∗v(j) = k2 where k2 > k1. Now consider the schedule π′ obtained by interchang-

ing the positions at which tasks i and j occur in π∗v. Note that π′(j) = k1, π′(i) = k2,
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v′i = vj , v
′
j = vi and π′(m) = π∗v(m), v′m = vm for all agents m 6= i, j. In words, (π∗v,v)

and (π′,v′) are identical except for the positions at which tasks i and j are commis-

sioned. These tasks are swapped without changing the transfers to the tasks at various

positions.

We claim, that

P (π∗v,v | c) < P (π′,v′ | c).

The proof is explicit. First compare the probabilities with which agentm is commissioned

in the two schedules π∗v and π′. These schedules are identical except for the interchange

of agents i and j between positions k1 and k2. Until position k1 neither i nor j could have

acted, and after position k2 both of them would have acted. Therefore, λm(π′) = λm(π∗v)

for all agents m such that π∗v(m) ≤ k1 or π∗v(m) ≥ k2 + 1. Since the agents acting at

positions k1 and k2 were interchanged, λj(π
′) = λi(π

∗
v) and λi(π

′) =
qj
qi
λj(π

∗
v). Moreover,

in both P (π∗v,v | c) and P (π′,v′ | c), the flow payoffs (qmrm − vm) are the same for all

m 6= i, j. These payoffs (qiri − vj) and (qjrj − vi) for i and j since π′ is implemented at

v′.

Bearing these facts in mind, and letting S = {m : k1 + 1 ≤ π∗(m) ≤ k2− 1}, we have

P (π∗v,v | c)− P (π′,v | c) = λi(π
∗
v)(qiri − vi)− λj(π′)(qjrj − vi)

+ λj(π
∗
v)(qjrj − vj)− λi(π′)(qiri − vj)

+
∑
m∈S

(λm(π∗v)− λm(π′))(qmrm − vm)

= λi(π
∗
v)(qiri − qjrj)

+ λj(π
∗
v)(qjrj − vj)−

qj
qi
λj(π

∗
v)(qiri − vj)

+

(
1− qj

qi

)∑
m∈S

λm(π∗v)(qmrm − vm)

Adding and subtracting qjrj within the parenthesis of the second last term and factoring
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appropriately gives us

P (π∗v,v | c)− P (π′,v | c) =

(
1− qj

qi

)
λi(π

∗
v)(qiri − qjrj)

+

(
1− qj

qi

)
λj(π

∗
v)(qjrj − vj)

+

(
1− qj

qi

)∑
m∈S

λm(π∗v)(qmrm − vm)

< 0

Since P (π∗v′ ,v
′ | c) ≥ P (π′,v′ | c) and P (π∗v,v | c) > 0 (since c ∈ Ω(i, j)), it follows

that c′ ∈ Ω(j, i) which completes the proof of the second claim, and the proposition. �

Proof of Proposition 3. In the v-EMC schedule the moral hazard constraints are

always met since the virtual cost exceeds the actual cost. Therefore, P (πi,v | c) =

qiAi − vi − qivj , where

Ai = ri + qj(rj + α) (20)

is the expected value of the project contingent on the success of the first task, namely

task i. While working through the rest of the proof, the reader may find it helpful to

refer to Figure 2, drawn for the case where task 2 is relatively more essential while task

1 is more likely to succeed.

LetG(v) denote the cumulative distribution of the valuation profiles v, obtained from

the prior distribution F (ci). Divide the space [c, c̄]2 into three regions Ωs,Ω1 and Ω2,

corresponding to the realizations of v where the status-quo, and the schedules beginning

with task 1 and correspondingly task 2 are optimal. The Principal’s expected payoff is

Π∗ =

∫
v∈Ω1

(q1(A1 − v2)− v1)dG(v) +

∫
v∈Ω2

(q2(A2 − v1)− v2)dG(v),

where A1 and A2 are the conditional expected values given by (20).

We will show that

∂Π∗

∂q2
= max

{
∂Π∗

∂q1
,
∂Π∗

∂q2
,
∂Π∗

∂r1
,
∂Π∗

∂r2

}
> 0 (21)

The regions where Ω1 and Ω2 are optimal, in fact, depend on (q1, q2, r1, r2). However,

the expected profit from either schedule is the same on the boundary between Ω1 and
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Ω2. Such expected profit is also 0 along the boundary between either Ω1 or Ω2 and Ωs.

Hence, only the direct effects (of changing (q1, q2, r1, r2) in the integrands) matter and

for i, j = 1, 2.

∂Π∗

∂qi
=

∫
v∈Ωi

(Ai − vj)dG(v) + qj(ri + α)Prob(Ωj).

When v ∈ Ωi, the optimal schedule starts with i, so that qi(Ai − vj) − vi ≥ 0. Hence

Ai − vj > 0 and ∂Π∗/∂qi > 0 for i = 1, 2.

Further,

∂Π∗

∂q2
− ∂Π∗

∂q1
=

∫
v∈Ω2

(A2 − v1 − q2(r1 + α))dG(v)

−
∫
v∈Ω1

(A1 − v2 − q2(r2 + α))dG(v)

As in the proof of Proposition 2, q1 > q2 and q2r2 ≥ q1r1 imply Ω′1 = {(v2, v1) | (v1, v2) ∈
Ω1} ⊂ Ω2. Therefore, given the i.i.d. of the costs,

∂Π∗

∂q2
− ∂Π∗

∂q1
=

∫
v∈Ω2\Ω′1

(A2 − v1 − q2(r1 + α))dG(v)

+

∫
v∈Ω1

[(A2 − v2 − q2(r1 + α))− (A1 − v2 − q1(r2 + α))]dG(v)

=

∫
v∈Ω2\Ω′1

(r2 + (q1 − q2)(r1 + α)− v1)dG(v)

+[A2 − q2(r1 + α)−A1 + q1(r2 + α)]P (Ω1)

The square bracket on the last line simplifies to (r2 − r1) + (q1 − q2)(r1 + r2 + 2α) > 0,

since the tradeoff implies r2 ≥ r1. The integrand in the second last line is also positive

for sufficiently large α given that q1 > q2. Hence ∂Π∗

∂q2
> ∂Π∗

∂q1
for sufficiently large α.

Next,

∂Π∗

∂rj
= qiqjProb(Ωi) + qjProb(Ωj).
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Hence,

∂Π∗

∂qi
− ∂Π∗

∂rj
=

∫
v∈Ωi

(Ai − vj)dG(v) + qj(ri + α)Prob(Ωj)− qiqjProb(Ωi)− qjProb(Ωj)

=

∫
v∈Ωi

(ri + qj(rj + α− qi)− vj)dG(v) + qj(ri + α− 1)Prob(Ωj),

which for sufficiently large α also implies ∂Π∗

∂qi
> ∂Π∗

∂rj
. Thus,

∂Π∗

∂q2
>
∂Π∗

∂q1
>
∂Π∗

∂r2
> 0

and
∂Π∗

∂q2
>
∂Π∗

∂r1
> 0

�

B Agency and the Pandora Box Problem

In our model, the value of a task is a random variable xi (∈ {0, ri}) and the Principal’s

benefit after commissioning a subset of tasks S, is
∑

i∈S xi. Perhaps the most celebrated

model of scheduling and stopping in Economics is Weitzman (1979). His is a one-person

decision problem where the corresponding benefit is maxi∈S{xi}. Our analysis of agency

concerns in task-scheduling can be easily ported to his setting.

We first recall, that when xi is either ri with probability qi and zero otherwise, for a

given τ = (τ1, . . . , τn) as given, the optimal scheduling and stopping rule is given by the

(Weitzman’s) index

wi(τi) =
qiri − τi

qi
.

wi(τi) essentially plays the role of our EMC ei(τi). Weitzman (1979) showed that for

a given τ , the optimal strategy consists of a scheduling rule and a stopping rule as

described below:

Scheduling Rule If a task is to be performed, it should be the task with the highest

Weitzman index wi(τi) if it is positive.

Stopping Rule Terminate the project whenever the maximum sampled reward from

the already attempted tasks exceeds the Weitzman index of all the remaining tasks.
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We shall call the above the τ -Weitzman rule and denote it by γ∗τ .

Now let us introduce the agency concerns into the above model of Weitzman. That

is, the outcome of task i is a success only if agent i with privately known cost ci exerts

effort. It should be fairly evident that there is nothing conceptually new in analyzing

this model via our approach. Indeed, proceeding analogously to the definition of P (g | c)

in Section 2, we can write P̂ (γ∗τ , τ | c) – the expected profit from following the γ∗τ rule

when transfers are given by τ but the true state is c. Since the payoffs of both the agents

and the Principal are quasi-linear in transfers, we may repeat every part of Proposition

1 almost ad verbatim to obtain its direct analogue:

Proposition 5 The highest expected profit for the Principal across all Perfect Bayesian

Equilibria of direct revelation games, is

Π∗ = E[max{P (γ∗v,v | c), 0}]. (22)

In particular at any cost realization c, the optimal scheduling-stopping strategy is the

v-Weitzman rule.
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