
Learning with Limited Memory:

Bayesianism vs Heuristics∗

Kalyan Chatterjee

Penn State University

Tai-Wei Hu†

University of Bristol

May 18, 2021

Abstract

Bayesian analysis is considered the optimal way of processing information. However, it

often leads to problems for decision-makers with constrained cognitive capacity. Modelling

such constrained capacity by finite automata, we answer two questions in the context of

Wald’s (1947) sequential analysis, namely in what environments is optimal Bayesian analysis

possible even with constraints; also, when it is not possible what simplifications in the

analysis enable us to obtain a satisfactory outcome. We identify two features of the simplified

analysis: information stickiness (ignoring information) and rule stickiness (ignoring small

differences in the environment).
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1 Introduction

Bayesian inference is generally considered as the optimal way to process information in

economic models. Even Tversky and Kahneman (1974), who examine systematic devia-

tions from Bayesian conclusions, consider such deviations as biases or “mistakes.” However,

Bayesian analysis can be too complicated to pursue successfully due to cognitive limitations.

For example, a court in England ruled out its use because it would introduce complications

of a computational nature and prevent proper consideration of important factors.1 Indeed,

Simon (1956) suggests that “a great deal can be learned about rational decision making by

taking into account, at the outset, the limitations upon the capacities and complexity of the

organism, and by taking account of the fact that the environments to which it must adapt

possess properties that permit further simplification of its choice mechanisms.”

Following Simon’s suggestion, we examine Bayesian inference by imposing limitations on

the decision-maker’s capacity for information processing. We ask two questions. First, in

what environments can Bayesian learning be implemented by a boundedly-rational decision-

maker with a finite capacity to process information? Second, what are the characteristics of

the second-best procedures when Bayesian learning is infeasible? The aim of the first ques-

tion is to identify “simple” environments where Bayesian inference is appropriate for both

normative use and descriptive modelling. The goal of the second question is to distinguish

biases arising from constrained optimality against genuine “mistakes.” To match the finite

ability we impose on the decision-maker, we consider a classical model of Bayesian inference

that features an (essentially) finite stopping time.

Specifically, we study the Wald (1947) sequential sampling problem of hypothesis testing.

The decision-maker aims at matching her action with the unknown state of nature, either

High (H) or Low (L), based on a sequence of informative signals. The decision-maker has

to decide either to acquire more information, which is costly due to discounting, or to take

a terminal decision. For an unconstrained decision-maker, it is optimal to follow Bayes rule

to update beliefs and to take the terminal action only when she is sufficiently convinced of

the true state of nature. A positive cost of information acquisition implies that the learning

stops within finite time almost surely under the optimal rule.

We model imperfect information processing by restricting the decision-maker to use

strategies that can be implemented by a finite automaton.2 This consists of finitely many

1The judge in R v Adams [1996], Royal Court of Justice, summarised that, “Quite apart from these
general objections, as the present case graphically demonstrates, to introduce Bayes theorem, or any similar
method, into a criminal trial plunges the jury into inappropriate and unnecessary realms of theory and
complexity deflecting them from their proper task.”

2This modelling approach has been recently carefully evaluated by Oprea (2020), and is supported by
Banovetz and Oprea (2020) with experimental evidence.
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mental states, and a transition rule taking the process from a given state to another depend-

ing on the signal received in that period. The mental states are partitioned into updating

states and action states. The process unfolds as the decision-maker starts with an initial

state based on her prior belief, and, after observing a signal, decides which mental state

to go to (a decision that might involve randomized transition to several states). An action

state corresponds to a terminal action, and reaching one ends the process. This restriction

induces two properties. First, it limits the decision-maker’s capacity to store information.

Second, it limits her computational ability to update complicated posterior beliefs, as the

finiteness of the set of mental states implies a limited capacity to distinguish close numbers.

Main results

Most of our results can be illustrated with two signals, h and `, that move the posterior

toward states of nature H and L, respectively. We first identify two classes of “simple”

information structures (environments in Simon’s terminology) where Bayesian learning can

be implemented by (deterministic) finite automata. The first class consists of “models of

breakthroughs,” where one of the signals, say `, fully reveals state of nature L. The second

class consists of information structures where the log likelihood-ratios of the signals are

rational proportions of one another. Outside these two classes, however, we show that

Bayesian learning is generically infeasible, despite the finite nature of the Wald problem.

Our main results characterize the constrained optimal rule for a given memory constraint,

where the decision-maker is constrained to finite automata with no more than K updating

states. Our results highlight two behavioural biases under constrained optimality. The

first bias features lack of response to new information. In our framework this means that

informative signals do not trigger transition in mental states, or information stickiness. The

second implication is lack of flexibility to adopt new rules to changes in the information

structures, or rule stickiness. This second implication reveals the heuristic nature of the

constrained optimal rule induced by bounded rationality—a simple rule is optimal for a

range of complex environments.

Our first main result shows that information stickiness is a prominent feature in the

models of breakthroughs whenever the memory constraint binds. In this class of models,

since an `-signal fully reveals L, it leads to immediate action; in contrast, receiving an h

would gradually increase the posterior on H until it reaches the threshold for the other action.

A finite automaton can implement this rule if equipped with enough memory capacity, with

updating states ranked according to the corresponding posterior on H and an h-signal leading

to the next updating state until it is optimal to take the terminal action. However, for a

given number of updating states, K, the constraint becomes binding if the discount factor
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is above a threshold. When it is binding, we fully characterize the constrained optimal rule,

which involves randomization in every period in which an h-signal is observed.

This result implies that constrained optimal rules feature information stickiness. Indeed,

randomization implies that all updating states are sticky: an informative signal (h) may not

trigger a transition, which results in inaccurate inferences and observable deviations from

standard Bayesian learning. Intuitively, the limited number of updating states prevents

the decision-maker from optimal learning, but randomization substitutes additional mental

states by delaying transition. In fact, randomization can be a very efficient substitute for

memory when the discount factor is high, and we show that a small automaton (with one

updating state only) using optimal randomization can guarantee a payoff arbitrarily close

to the first-best for sufficiently high discount factors. Moreover, this small randomized

automaton does better than a deterministic automaton with several more states. The key

insight here is that randomization is an effective substitute for complexity when limited

information storage capacity is pronounced.

Our second main result features optimal heuristics that process information by simple

cancellation rules, implying rule stickiness. In a symmetric situation, an h-signal moves the

posterior on H higher and an ` moves it lower but they are of similar strength. When the

strengths are exactly the same, a deterministic finite automaton can implement the uncon-

strained optimal rule: with updating states ranked according their corresponding posterior

on H, an h-signal pushes the updating state to the higher one while an `-signal pushes to

the lower one. Now, if the strengths of the two signals are not exactly the same but close,

the updating process becomes very complicated and no finite automaton can implement the

unconstrained optimal rule. Our main finding here is that when the relative strength of the

two signals is similar but is complex, the optimal finite automaton is deterministic and treats

the strengths of the two signals as exactly the same. In fact, we show that it is optimal to

stick to this simple cancellation rule even when larger automata are available.

We extend this rule-stickiness result to other simple cancellation rules. If the log likelihood-

ratio of one signal is a rational multiple of the other, then a similar cancellation idea still

works. For example, one high signal may cancel two low signals. If the cancellation is not

exact, we can use “approximate”probabilities to cancel out likelihood ratios that are close to

each other in a specific sense, and we extend the above rule-stickiness result to environments

near any signal structures that feature rational ratios. What constitutes a simple rule de-

pends on the underlying constraint, but a common key feature is that given the constraint,

the same heuristic rule is optimal for a range of complex environments. We also provide a

numerical example to illustrate that the range can be fairly wide.

The identified heuristic rule is reminiscent of Benjamin Franklin’s “decisional balance
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sheet,”where he suggests listing pros and cons for a given choice and cancelling a pro with a

con if they are approximately of the same importance, or a pro with two cons if the weights

match.3 With multiple signals, one with a low enough likelihood ratio (a small signal) is

ignored in the approximation, even though Bayesian analysis would take it into account,

and hence information stickiness also occurs. These results then demonstrate the optimality

of using imprecise or qualitative probabilities as heuristics to guide the behaviour, as our

decision-maker behaves as if she faces a simple environment where signals can be cancelled

with one another according to a simple rule, but in fact the precise inference in the true

environment requires complex computations.

Finally, our results speak to the less-is-more effect in psychology. Parpart, Jones and

Love (2018) note, for example, that we often “ignore a great deal of information in the

input data. One puzzle is why (such) heuristics can outperform full-information models,

such as linear regression, which make full use of the available information. These ‘less-is-

more’ effects, in which a relatively simpler model outperforms a more complex model, are

prevalent throughout cognitive science.”In the model of breakthroughs, a small stochastic

finite automaton out-performs large deterministic ones; in the more symmetric case, simple

cancellation rules outperform more complicated rules. Both results show the optimality of

simple rules implementable with small finite automata. However, constrained optimal rules

also feature biased beliefs in a formal sense. To describe such biases, we need to put our

model in the context of some previous literature, to which we turn next.

Methodological contributions and related literature

Piccione and Rubinstein (1997) pioneered the concept of modified multi-self consistency to

describe (biased) beliefs for games with imperfect recall, or imperfect memory. We extend

that concept in our context, which states that optimal transitions in a finite automaton of a

given size satisfies a form of “sequential rationality,” and characterize the corresponding “be-

liefs” associated with each updating state. This approach is also shared by Wilson (2014),4

who studies bounded memory in a model where the time horizon is exogenously determined

(albeit stochastically). Hence, the learning problem in Wilson (2014) is infinite in nature

and the unconstrained optimum is never implementable by finite automata. Wilson (2014)

also obtains information stickiness as a prominent feature of the constrained optimal rule,

and the beliefs are always biased.

In contrast, there are two classes of environments where unconstrained optimal rules can

3A copy of Franklin’s letter to Joseph Priestley is at https://founders.archives.gov/documents/Franklin/01-
19-02-0200

4See also Kocer (2010).
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be implemented by (deterministic) finite automata in our framework. In these benchmark

cases, the beliefs with respect to the modified multi-self consistency in fact coincide with the

ones obtained by Bayes’ rule. Once we deviate from these simple environments, however,

constrained optimal rules feature biased beliefs. In the model of breakthroughs, the bias

comes from randomization. In the class where the decisional balance sheet is optimal, the

constrained optimal rule is deterministic, but beliefs are biased because the heuristic rule

applies wrong cancellation rules, despite its constrained optimality.

However, these beliefs, together with modified multiself consistency, allow for a novel

technique to obtain our results. For the model of breakthroughs, it allows us to fully char-

acterize the constrained optimal rule for any given number of updating states. To our

knowledge, this is the first result with a closed-form solution for any constraint in a class of

information structures. For the rule-stickiness result, we need to demonstrate the optimality

of a deterministic rule, and the difficulty is to rule out any deviation by randomization. The

modified multiself consistency provides a necessary condition to rule them out: randomiza-

tion is optimal only if the decision-maker is indifferent (according to the associated beliefs)

between two updating states. Thus, to demonstrate that randomization plays no role when

the relative strengths of the signals are close to a rational proportion, we show that the

optimal finite automaton always features strict preference for transition in the benchmark

simple environment and remains so in nearby environments. To our knowledge, ours is the

first to show this heuristic feature of the constrained optimal rule, and this can only happen

when the constrained optimal rule is deterministic.

This paper is also related to a growing literature that introduces frictions in information

processing to explain behavioural biases. Salant (2011) rationalizes another well-known

heuristic rule, the satisficing criterion, with state-complexity in a model with finite automata.

Compte and Postlewaite (2012) explore heuristics and how these lead to numerical beliefs,

focusing on an explanation of beliefs that takes into account only extreme evidence, much

like the example in Wilson (2014)’s framework with high discount factors. In contrast, our

heuristics are based on qualitative probabilities. Another friction in the literature is bounded

recall, a special case of a finite state automaton.5 In this strand of work, Jehiel and Steiner

(2019) consider an inference problem with endogenous termination, but focus mainly on

the case with memory of one where the decision-maker takes an observation and decides

to act or to discard the observation and take another one. The main result is a necessary

5Kuhn (1953) already discusses memory in extensive form games with the notion of (im)perfect recall,
and Piccione and Rubinstein (1997) point out the benefit of randomization under imperfect recall. More
recently, people have studied bounded recall in repeated games, e.g., Barlo, Carmona and Sabourian (2009)
on folk theorems with a memory of one and later more general bounded recall. There are also models that
use finite automata in repeated games where randomization occurs in equilibrium, e.g., Ben Porath (1993).
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condition for optimal randomization called “second-thought freeness,”which is similar to the

indifference condition implied by multi-self consistency. In contrast, we tackle the optimality

of randomization under a general complexity constraint, and the relationship of the optimal

complexity of an automaton to the discount factor.

2 The model

The model is based on the classical sequential hypothesis testing problem of Wald (1947).

Consider a decision-maker (DM) who faces a decision problem as follows. There are two

states of nature, θ ∈ Θ = {H,L}, and the prior probability over θ = H is P0(H) = π0 and

over θ = L is P0(L) = 1 − π0. The DM has to choose from two actions, a ∈ A = {aH , aL},
to match the state of nature, with the utility function

u(aH , H) = uH(> 0), u(aH , L) = 0, (1)

u(aL, L) = uL(> 0), u(aL, H) = 0. (2)

The state of nature, however, is not observable to the DM. Instead, the DM can observe a

sequence of signals, and the sequence is i.i.d. conditional on the state. The set of possible

realizations at each date is denoted by signal x from a finite set X, which are i.i.d., conditional

on θ, across time. Conditional on state of nature θ, x ∈ X occurs with probability µθx.

Learning, however, is costly, and the DM discounts the future with discount factor δ ∈ (0, 1).

Thus, if the DM takes an action in period 0 without seeing any signals, then her payoff is

not discounted. Otherwise, she can choose to see one signal at period 1 (continue), and if

she makes a decision in the end at period 1, her payoff is discounted by δ. Of course, she

can choose to continue in period 2 as well, and so on. For learning to have some value, we

assume

µHx /µ
L
x > 1 > µHx′/µ

L
x′ for some x, x′ ∈ X. (3)

Let X∗ =
⋃∞
t=0 X

t denote the set of all partial histories of signal realizations, and let ∅
denote the empty history. A typical non-empty partial history is denoted by x = (x1, ..., xt),

where xs ∈ X, s = 1, .., t. We use x ⊆ y to denote the fact that x is an initial segment

of y (strict inequality means the two are not equal). A decision rule is then a function

f : X∗ → {aH , aL, c}, where c denotes continue. With no loss of generality, we assume that

if f(x) 6= c, then f(x) = f(y) for all y ⊂ x such that f(y) 6= c and f(x) = f(z) for all

z such that x ⊆ z. Given a decision rule and a prior P0, the associated expected payoff is
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given by

U(f) =
∑
θ∈Θ

P0(θ)

 ∑
x∈Xt,t=0,1,2,..

{[
t∏

s=1

µθxs

]
δtuθ : f(x) = aθ; f(y) = c for all y ⊂ x

} . (4)

Note that if f(∅) 6= c, then the DM’s payoff is not discounted. The following proposition

characterizes the optimal decision rules when there is no memory constraint. We use π to

denote a generic posterior after some observations of signals.

Proposition 2.1. Assume (3). There are two thresholds, π̄ and π such that the optimal

decision rule is to take aH for posteriors π > π̄, take aL for π < π, and take c for π ∈
(π, π̄). Moreover, the threshold π̄ strictly increases with δ while π strictly decreases, with

limδ→1 π̄(δ) = 1 and limδ→1 π(δ) = 0.

To calculate the posterior, it is in fact more convenient to work with log likelihood-ratios.

For any posterior, π ∈ (0, 1), as probability over H, define

rπ ≡ ln[π/(1− π)].

Then, for any given interim posterior π, the log likelihood-ratio of the posterior, denoted by

π′, after the partial history of signal realizations, x = (x1, ..., xt) is then

rπ′ = rπ +
t∑

s=1

rxs = rπ + rx, (5)

where rx =
∑t

s=1 rxs , and rx ≡ ln(µHx /µ
L
x ) for each x ∈ X. Thus, rx is the sum of the log

likelihood-ratios of signals from the partial history x.

3 Finite automata and multi-self consistency

To model bounded rationality, we focus on decision rules that can be implemented with fi-

nite automata. We consider two classes of finite automata: deterministic ones and stochastic

ones. Note that since the unconstrained optimal rule identified in Proposition 2.1 involves

no randomization, we only need to consider the first class to determine whether the uncon-

strained optimal rule can be implemented by a finite automaton. The second class, however,

is relevant when Bayesian learning is infeasible.

Given the set of signals, X, a deterministic finite-state automaton, abbreviated as DFSA,

M = (Q, τ, qo), consists of the following objects: a finite set of updating states Q, a transition
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function τ : Q×X → Q∪{qH , qL}, where qθ /∈ Q is an action state, corresponding to taking

action aθ, θ = H,L (and the game is terminated whenever an action state is reached),

and an initial state qo ∈ Q ∪ {qH , qL}. Given M , we can extend the transition function

τ to all partial histories (x1, ..., xt) ∈ X∗ by introducing another function λM that maps

partial histories in X∗ to Q ∪ {qH , qL}, with the obvious restriction that once it maps to

an action state the function stops there, defined by induction as follows: λM(∅) = qo; given

λM(x1, ..., xt−1) = qt−1 ∈ Q,

λM(x1, ..., xt) = τ(qt−1, xt). (6)

We say that a decision rule f can be implemented with the DFSA M if for all x ∈ X∗,

λM(x) ∈ Q whenever f(x) = c; (7)

λM(x) = qθ whenever f(x) = aθ and this is the first time along x for this to happen.

We focus on the DM with a constraint on the number of updating states in the finite

automaton. In particular, we assume that only finite automata with fewer than K updating

states are feasible. When the constraint, K, is binding, the insight from the literature is

that randomization can be optimal (e.g., Hellman and Cover (1971) and Wilson (2014), in a

different context). Accordingly, we introduce stochastic finite-state automata (SFSA), and

allow for randomization in the finite automata used to implement the decision rules. We use

τ(q, x; q′) to denote the transition probability, from updating state q ∈ Q to q′ ∈ Q∪{qH , qL},
after receiving signal x.6 Note that DFSA is also a SFSA.

We first characterize the optimal SFSA for a given K by some necessary conditions. The

key state variable in the unconstrained optimal rule in Proposition 2.1 is the posterior belief

that is updated according to the signals received. Following the methodology in Wilson

(2014), our necessary conditions also characterize a “belief” for each updating state in the

optimal SFSA, based on modified multi-self consistency according to Piccione and Rubinstein

(1997).

Consider an optimal SFSA,M , under the constraint |Q| ≤ K. We begin with implications

of optimality for action states. Given a state of nature θ and the action state qθ, the expected

payoff accumulated from qθ conditional on θ (adding together discounted payoffs for all paths

6It is without loss of generality to assume that no randomization occurs when taking the final action, a
result noted in Kalai and Solan (2003).
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from the initial state to qθ) is then given by P(qθ|θ)uθ, where for any q ∈ Q ∪ {qH , qL},

P(q|θ) = 1q=qo + δ
∑
x1∈X

µθx1
τ(qo, x1; q) + δ2

∑
x1,x2∈X,q1∈Q

µθx1
τ(qo, x1; q1)µθx2

τ(q1, x2; q)

+ δ3
∑

x1,x2,x3∈X,q1,q2∈Q

µθx1
τ(qo, x1; q1)µθx2

τ(q1, x2; q2)µθx3
τ(q2, x3; q) + · · ·

(8)

and where for any q ∈ Q, 1qo=q = 1 if q = qo and = 0 otherwise. When q = qθ, the

quantity P(qθ|θ) has a natural interpretation: if δ were equal to one, then it would be the

total probability that the SFSA M reaches qθ; but since δ < 1, the time when M reaches

qθ and takes action aθ matters for the expected payoffs and in P(qθ|θ) they are discounted

accordingly. If M is optimal and if P(qθ|θ) > 0, then it follows that, for θ′ 6= θ,

P0(θ)P(qθ|θ)uθ ≥ P0(θ′)P(qθ|θ′)uθ
′
, (9)

for otherwise one can use action aθ
′

at qθ to obtain higher expected payoffs. Now, (9) is

a form of “sequential rationality,” which states that conditional upon reaching the action

state qθ, the action chosen must be optimal according to some beliefs. In this case the log

likelihood-ratio of such belief at qθ would be given by

r(qθ) ≡ ln

[
P0(H)P(qθ|H)

P0(L)P(qθ|L)

]
= rπ0 + ln

[
P(qθ|H)

P(qθ|L)

]
. (10)

Our concept of modified multi-self consistency then extends this form of “sequential ra-

tionality” to updating states. For those states, the sequential rationality is about transitions,

which happen after receiving new signals and hence we need to extend the formulation of

“beliefs” to include signals. In particular, for each q ∈ Q, define

r(q) = rπ0 + ln

[
P(q|H)

P(q|L)

]
and r(q, x) = rπ0 + ln

[
P(q|H)

P(q|L)

]
+ rx. (11)

Hence, in r(q) we use the analogous formula to Bayes’ rule to include the information con-

tained by signal x. For later purposes, we also use πq to denote the “belief” of H at up-

dating state q, that is, r(q) = ln[πq/(1 − πq)], and similarly πq,x is such that r(q, x) =

ln[πq,x/(1− πq,x)]. To formulate the analogous notion of “sequential rationality” for transi-

tions from updating states, we also need to calculate the continuation value for each updating

state. These continuation values are determined by the simultaneous equations:

Vq(θ) = δ
∑
q′,x

τ(q, x; q′)µθxVq′(θ), (12)
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while for action state qθ, it is Vqθ(θ) = uθ and Vqθ(θ
′) = 0 for θ′ 6= θ.

Now we are ready to define modified multi-self consistency.

Definition 3.1. A SFSA M satisfies modified multi-self consistency under P0 if

1. for each updating state q ∈ Q with
∑

θ P0(θ)P(q|θ) > 0, each signal x, and any

q′ ∈ Q ∪ {qH , qL} such that τ(q, x; q′) > 0,

πq,xVq′(H) + (1− πq,x)Vq′(L) ≥ πq,xVq′′(H) + (1− πq,x)Vq′′(L) for all q′′ ∈ Q; (13)

2. for action states,

πqHu
H ≥ (1− πqH )uL and (1− πqL)uL ≥ πqLu

H . (14)

Clearly, (14) follows immediately from (9) and (10), and (13) extends (14) to updating

states but takes signals into account according to (11). Now we are ready to give a full

characterization of optimal SFSA. We say that two updating states q and q′ are equivalent if

Vq(θ) = Vq′(θ) for both θ = H,L. Then, we can keep the same ex ante payoff by eliminating

one of them.

Theorem 3.1. Any optimal SFSA under the constraint |Q| ≤ K satisfies modified multi-self

consistency. Moreover, suppose that M is an optimal SFSA without equivalent states among

those with |Q| ≤ K. We rank the updating states in M according to

r(q1) ≤ r(q2) ≤ · · · ≤ r(qK),

with the convention that if r(qi) = r(qi+1), then Vqi(H) ≤ Vqi+1
(H). Let ∆V θ

i,j ≡ Vqi(θ) −
Vqj(θ), with the convention that Vq0(θ) = VqL(θ) and VqK+1

(θ) = VqH (θ), and let r̄i =

ln
(
∆V L

i,i+1/∆V
H
i+1,i

)
. Then, for any q ∈ Q,

τ(q, x; qi) > 0 only if r(q, x) ∈ [r̄i−1, r̄i], (15)

where r̄−1 = −∞ and r̄K+1 =∞, and τ(q, x; qi) = 1 if r(q, x) ∈ (r̄i−1, r̄i).

Theorem 3.1 gives a structural characterization of the optimal SFSA similar to Proposi-

tion 2.1 in the following sense. If we let r̄H ≡ r̄K+1 and let rL ≡ r̄0, then Theorem 3.1 states

that τ(q, x; qH) > 0 only if r(q, x) ≥ r̄H and τ(q, x; qH) = 1 if the inequality is strict, that is,

it is optimal to take action aH whenever the “posterior” log likelihood-ratio r(q, x) is above a
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threshold. Similarly, taking action aL is optimal whenever such posterior is below rL. How-

ever, different from Proposition 2.1, the posteriors are not necessarily updated according to

Bayes’ rule. In fact, from the proof we know that r(qi) ∈ [r̄i−1, r̄i] for all updating states qi

in an optimal SFSA M , and the thresholds r̄i’s are constructed from the optimality condi-

tion (13) and (14). An important implication is that, if τ(q, x; qi) > 0 and τ(q, x; qj) > 0

for i < j in the optimal M , then it must be the case that r(q, x) = r̄i = r̄j−1, that is,

randomization in transition can occur only if there is indifference according to the beliefs.

Wilson (2014) also has a similar characterization result. However, a crucial difference is that

in our framework there exist “simple” environments where the unconstrained optimal rule is

implementable and the beliefs given by (11) in fact coincide with Bayesian learning, but in

Wilson (2014)’s framework the unconstrained optimal rule is never implementable by SFSA

and beliefs are always biased.7 The following proposition gives sufficient conditions for this

to happen. Recall the function λM given by (6) for a given DFSA M .

Proposition 3.1. Suppose that the DFSA M satisfies the following conditions:

(O1) If λM(x) = λM(y) = q ∈ Q, then

rπ0 + rx = rπ0 + ry. (16)

(O2) If (a) rπ0 + rx ≥ rπ̄ or (b) rπ0 + rx ≤ rπ and this does not hold for any y ⊂ x, then

λM(x) = qH in case (a) holds or qL in case (b) holds.

Then, M implements the unconstrained optimum. Moreover, for each q ∈ Q, r(q) is com-

puted according to (16) using any partial history x such that λM(x) = q, that is,

r(q) = rπ0 + rx. (17)

Moreover, if the optimal DFSA is unique, r̄i−1 < r(qi) < r̄i for all updating states qi.

The sufficient conditions (O1) and (O2) in Proposition 3.1 ensure that M implements the

unconstrained optimal rule; indeed, it follows immediately that under M , an action is taken if

and only if the posterior has crossed the upper bound π̄ or the lower bound π for the first time.

Equation (17), however, is less obvious. The key observation leading to this result is the fol-

lowing. The likelihood ratio, πq/(1−πq), is equal to the ratio [P0(H)P(q|H)]/[P0(L)P(q|L)]

7Indeed, beliefs in Wilson (2014) are also given by expressions to similar to P(q|θ). However, a crucial
difference is that the sum

∑
q∈Q P(q|θ) is endogenously determined by the transition to the action states in

our model, while the analogous sum in Wilson (2014) is equal to a constant for any SFSA—reflecting the
fact that the stopping time is exogenously determined there. The endogenous stopping time is almost surely
finite in our model, which allows for such simple environments and unbiased beliefs to exist.
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by (11). But by (8), the term P(q|θ) is the discounted sum over the probabilities that q is

reached. More precisely, for each partial history x such that λM(x) = q, let P(x|θ) denote

its probability under state of nature θ. If x has length n, then it enters the sum P(q|θ) by

δnP(x|θ). Now, (O1) implies that the ratio [P0(H)P(x|H)]/[P0(L)P(x|L)] is constant for all

x such that λM(x) = q, which coincides with the ratio according to Bayes’ rule. As a result,

we can cancel δn’s and obtain the desired result.

When X = {h, `} with rh > 0 > r`, there are two classes of information structures

under which we have a DFSA M that satisfies the sufficient conditions, (O1) and (O2), in

Proposition 3.1. The two classes are

(I1) r` = −∞;

(I2) |rh|/|r`| is a rational number.

We give detailed analyses of how to achieve the unconstrained optimal rule by DFSA in

the next two sections, but here we give two impossibility results stating that that these

two classes of information structures are essentially the only ones where finite automata can

implement Bayesian learning.

Theorem 3.2. Suppose that X = {h, `} and rh > 0 > r` with rh < +∞.

1. Given a prior π0 ∈ (0, 1) and given K, for δ sufficiently high, the unconstrained optimal

decision rule cannot be implemented by a DFSA with |Q| ≤ K.

2. Suppose that

rπ < rπ0 + r`, rπ0 + 2rh < rπ̄. (18)

Then, generically in µHh the optimal decision rule cannot be implemented by a DFSA.

Theorem 3.2 (1) states that in any non-trivial information structure, the constraint K

will eventually be binding as δ converges to one. This is because the threshold π̄ converges

to one as δ converges to one. For any prior π0 < 1, it requires arbitrarily many h’s to

reach π̄, and this would then require many updating states. This demonstrates that the

unconstrained optimal rule is complex as it requires large information-storage capacity. As

we will see in Section 4 below, this result will be particularly pronounced in class (I1) and

constrained optimal rule will feature information stickiness.

Theorem 3.2 (2), in contrast, shows that any generic information structure is complex in

that no finite automaton can implement Bayesian learning, as long as δ is above a minimum

threshold according to (18) to avoid trivial cases. Genericity is needed to exclude information

structures in class (I2). Specifically, we show that whenever the ratio |rh|/|r`| is a normal
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number, i.e., for any finite patterns of the form t1t2 · · · tn, where n ∈ N and t1, ..., tn ∈
{0, 1, .., 9}, we can find a segment that coincides with that pattern in its decimal expansion,

no DFSA can implement the unconstrained optimum. Since normality is a generic property,8

almost all information structures are too complex to implement Bayesian learning by finite

automata. While the proof is technical in nature, the intuition for Theorem 3.2 (2) is the

following. When the relative likelihood ratio of the two signals is a complicated number,

the computation of posteriors exactly according to Bayes rule requires many updating states

to place many different sequences of signals into different categories. When the ratio is a

normal number, these computations that are relevant for final actions turn out to require an

unbounded number of categories.

As we will see in Section 5 below, we use information structures in class (I2) as benchmark

cases to study constrained optimal rules when this computational aspect of complexity is

pronounced as in Theorem 3.2 (2). We show there when the underlying environment is too

complex in this sense, the constrained DM optimally simplifies the environment to act as if

it is one that can be implemented by a DFSA, a rule-stickiness result.

4 Model of breakthroughs and information stickiness

Here we consider information structures in class (I1), which also have been used in the

literature to model “breakthroughs.”9 In this model, one signal is much more informative

than the other. In particular, one signal, say the signal `, is fully revealing, and hence

represents the “breakthrough.” Accordingly, here we assume that for some µ ∈ (0, 1),

µHh = 1, µL` = µ. (19)

This implies that rh > 0 and r` = −∞, and the h-signal increases the posterior on H.

We first consider the unconstrained optimal rule. One convenient feature of this model

is that it is optimal to take aL whenever the signal ` is received, as the posterior on L

immediately jumps to one. Hence, the threshold π̄ can be determined in closed-form:

π̄uH = δ[π̄uH + (1− π̄)µuL]. (20)

To understand (20), note that when π is slightly below the threshold π̄, the optimal rule

dictates the DM to take aH if signal h is received next period and to take aL if ` is, and these

8The notion of genericity here is that the set of real numbers that are not normal has Lebesgue measure
zero, a fact proved by Borel (1909).

9See, for example, the one used by Che and Mierendorff (2019).
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are the payoffs on the right-side of (20). At the threshold π̄ the DM is indifferent between

this and taking aH immediately, whose payoffs are on the left-side of (20). The lower bound,

π, is determined by comparing the optional value by accumulating h-signals against that by

taking aL immediately.

Of course, the thresholds are meaningful only if it is optimal to wait for at least one more

period, which requires δ to be sufficiently high. We use δb0 to denote such a threshold for

the discount factor. For δ < δb0, the optimal choice is to take the action immediately: aH if

π0 > πo and aL if π0 < πo, where

πo = uL/(uH + uL). (21)

We focus on the case where π0 ≥ πo, and the unconstrained optimum is characterized by the

number of h-signals before taking aH (of course, whenever an ` is received aL is taken). The

other case is similar but the optimum also requires comparison against taking aL immediately.

That case adds no significant insight but makes the analysis more complicated, and we

discuss it at the end. The following lemma characterizes the optimal decision rule for the

unconstrained optimum under π0 ≥ πo.

Lemma 4.1. Let π0 ∈ [πo, 1) be given. There exists a sequence δb0 < δb1 < .... < δbN < ...

(which depends on π0) such that for any N ≥ 1 and any δ ∈ (δbN−1, δ
b
N), the unconstrained

optimum is achievable by a DFSA with N updating states but not by one with fewer. For

δ < δb0, it is optimal to take aH immediately.

The sequence is constructed as follows, using the result from Proposition 2.1 that π̄

strictly increases with δ and converges to one with δ. Since π0 ≥ πo, δb0 is the lowest δ ≥ δo

such that π0 ≥ π̄(δ). Similarly, δbN is the lowest δ such that rπ0 +Nrh = rπ̄(δ) for N ≥ 1. For

δ < δb0, it is optimal to take aH immediately. For δ ∈ ∆b
N ≡ (δbN−1, δ

b
N), the unconstrained

optimum is implementable with the following DFSA, denoted by M b,N , where b stands for

breakthrough and N ≥ 1 stands for the number of updating states:

Q = {q1, q2, ..., qN} and qo = q1; (22)

τ(qj, h) = qj+1 for j = 1, ..., N − 1, and τ(qN , h) = qH ; (23)

τ(qj, `) = qL for all j = 1, ..., N. (24)

According to (22), M b,N has N updating states that start from q1. According to (24), the

transition is such that it goes to the terminal state qL that takes action aL upon receiving

the signal `. Finally, according to (23), upon receiving h, the state goes up by one until the

highest one, qN , which goes to qH if another h comes. A graphical representation of M b,N
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Figure 1: M b,N with N = 3

with N = 3 can be found in Figure 1.

Constrained optimal rule

Now we turn to constrained optimality. Let π0 be a given prior and letK be a given constraint

on the number of updating states. Lemma 4.1 implies that if δ ≤ δbK , then the unconstrained

optimum is implementable. For δ > δbK , however, the constraint K is binding. As in the

unconstrained case, it is optimal to take aL whenever ` is received. Indeed, r` = −∞ implies

that r(q, `) = −∞ as well for any updating state q by (11). Since Vq(L) < uL = VqL(L)

for any q 6= qL due to discounting, Theorem 3.1 implies that it is optimal to transit to

qL whenever ` is received. One can show that in this case the optimal deterministic finite

automaton with |Q| ≤ K is M b,K . But can randomization deliver a better payoff? Since it

is optimal to transit to qL whenever ` is received, randomization can only occur when h is

received. For this to happen at some updating state q, Theorem 3.1 implies there must be

two updating states, q′ and q′′, which have the same expected continuation values according

to the belief r(q, h) given by (11).

Now, Proposition 3.1 allows us to verify this necessary condition when δ is close to

the boundary, δbK . Indeed, since M b,K satisfies the sufficient conditions (O1) and (O2),

Proposition 3.1 implies that we can use Bayes’ rule to compute the beliefs when δ is close to

δbK , at least as an approximation. At the boundary δ = δbK , indifference occurs at qK , where

πqK ,h = π̄, and the expected continuation value according to this belief from qK coincides

with that from qH . This follows from the fact that at π̄, the DM is indifferent between waiting

for exactly one more period, a strategy corresponding to qK , and taking aH , corresponding

to qH . For δ < δbK , r(qK , h) > r̄K and hence taking aH is strictly preferred; for higher δ’s we

have the opposite inequality and hence waiting is strictly better but constrained by K. An

induction argument then shows that we have the same indifference at qi for all = 1, ..., K−1

as well—r(qi, h) = r̄i at δbK . This suggests that randomizing between qi and qi+1 at qi when
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Figure 2: M b,3(α1, α2, α3) with K = 3

receiving h can be optimal, as in the following SFSA, denoted by M b,K(α1, ..., αK):

Q = {q1, q2, ..., qK} and qo = q1;

τ(qj, h; qj) = αj = 1− τ(qj, h; qj+1) forj = 1, ..., K − 1;

τ(qK , h; qK) = αK = 1− τ(qK , h; qH);

τ(qj, `; qL) = 1 for all j = 1, ..., K.

Compared to (22)-(24), there is randomization when αi ∈ (0, 1) for some i ∈ {1, ..., K}, and

M b,K = M b,K(0, ..., 0). See Figure 2 for a graphical representation.

The following theorem shows that it is in fact optimal to have αi > 0 for all i in

M b,K(α1, ..., αK) whenever the constraint is binding.

Theorem 4.1. Let π0 ∈ [πo, 1) and let memory constraint K ≥ 1 be given.

1. If δ ≤ δbK, the unconstrained optimum is implementable.

2. If δ > δbK, then the optimal SFSA takes the form M b,K(α1, ..., αK) with optimal α1 =

α2 = .... = αK = α ∈ (0, 1).

Theorem 4.1 (1) follows immediately from Lemma 4.1. To prove Theorem 4.1 (2), we

need two steps: first we show that any optimal SFSA takes the form M b,K(α1, ..., αK), and

then we prove that optimal α1 = .... = αK = α for some α > 0. The main insight to

achieve the first step is to observe that we can use backward induction to solve for the

optimal SFSA in this model: once qi is reached, the values of qj with j < i do not matter for

optimality of transitions among higher updating states. Then we use Theorem 3.1 to show

that randomization can only occur between adjacent updating states and show by induction

that optimal transition always takes the form as in M b,K(α1, ..., αK). For the second step,

we show that optimal α is strictly positive whenever δ > δbK by considering the first-order

condition at α = 0. We also show that the ex ante payoff is symmetric in (α1, ..., αK) and
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the optimal (α1, ..., αK) is symmetric as well. When α1 = ... = αK = α, we also use M b,K(α)

to denote M b,K(α1, ..., αK). Theorem 4.1 then shows that randomization is necessary for

optimality whenever the memory constraint is binding in the model of breakthroughs. To

our knowledge this is the first result that fully characterizes constrained optimal rule for any

K for a class of information structures, as well as when randomization is optimal.

This result illustrates information stickiness. Indeed, in M b,K(α), each updating state is

sticky, as with probability α there will be no transition when receiving h-signal. This also

shows that randomization is an efficient substitute for memory capacity. Indeed, whenever

δ > δbK , the unconstrained DM prefers to keep learning after K high signals, but the con-

strained DM cannot do that without being stuck with perpetual waiting under the high state

of nature. Randomization allows for a stochastic horizon for indecision, and we have demon-

strated the value of randomization to relax the memory constraint.10 Finally, whenever the

DM is constrained, the posterior according to (11) coincides with the one obtained by Bayes’

rule only when breakthrough occurs. When the DM takes action aH , then randomization is

used in all updating states up to the current one, and beliefs given by (11) are biased.

We conclude this section with some comments about the case where π0 < πo. When δ

is low and hence π0 is either below or only slightly above π, the expected payoff from the

unconstrained optimum is not too different from the expected payoff by taking aL imme-

diately. If the memory constraint is binding (i.e., K < (rπ̄ − rπ0)/rh), the payoff from the

best SFSA with no more than K updating states is bounded away from the payoff from the

unconstrained optimum. As a result, for such cases no SFSA with no more than K states can

do better than taking aL immediately. However, as δ gets larger, it becomes more efficient to

use randomization, and we can show that the optimal SFSA requires strict randomization.

This last result, in fact, is proved with a very small SFSA, which demonstrates the efficiency

of using randomization in this context, a result we turn to next.

Efficiency of randomization

Theorem 4.1 shows that randomization is always useful whenever the DM is constrained,

and this happens especially when the cost of information acquisition vanishes or when δ goes

to one and when µHh = 1. The following result shows a more radical result for large δ’s and

high µHh ’s: a small SFSA can be very efficient.

Theorem 4.2. Let π0 ∈ (0, 1) be given. For any given ε, there exists δ̄ < 1 such that for

all δ > δ̄ and all µHh ≥ δ, the expected payoff from M b,1(α∗) with optimal α∗ is within ε

compared against the unconstrained optimum.

10See also the example in Hellman and Cover (1971), which is in the context of their (different) problem.
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The payoff under the constrained optimum as δ goes to one approaches π0u
H + (1 −

π0)uL, the payoff under full information. As a corollary, Theorem 4.2 implies that, for

any given K, for sufficiently high δ, M b,1(α∗) delivers a strictly better payoff than any

DFSA with no greater than K updating states, including M b,K . Among SFSA, however,

since M b,1(α∗) only uses one updating state, one can do better with more states and with

randomization. Nevertheless, Theorem 4.2 shows that with randomization the value of the

additional updating states diminishes as δ goes to one. Note that the result generalizes to

more than two signals in a straightforward manner.

5 Rule stickiness and qualitative probabilities

Now we turn to information structures where no single signal fully reveals the state of

nature. In this case, the optimal rule would depend on the relative strength of the signals.

We begin with the conceptually simplest case with two signals that are of similar strengths,

and then move to the general case. Our main results demonstrate the heuristic nature of

the constrained optimal rule in these environments, where the decision-maker employs the

same simple rule for a range of log likelihood ratios of the underlying signals.

5.1 Nearly symmetric case

Theorem 3.2 implies that generically the unconstrained optimum cannot be implemented by

any DFSA. To approach the constrained optimal decision rule for a given upper bound of

updating states, K, we begin with X = {h, `} and the extreme case where the signals are

completely symmetric: for some µ ∈ (0, 1),

µHh = µ = µL` . (25)

As we will see below, this knife-edge case will help us study the constrained optimal rule for

the more general case where µHh and µL` can be different but close.

The unconstrained case

For any given π0, we can derive the DFSA that implements the unconstrained optimal

rule from Proposition 2.1, which states that the threshold π̄ strictly increases with δ. By

symmetry, we may only consider the case where π0 ≥ πo, where πo is given by (21). To derive

the memory size needed to implement the unconstrained optimum, we derive thresholds on

the discount factors. First, consider the threshold below which taking immediate action is
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Figure 3: M s,(N−1) with N = 5

optimal: the threshold δ0 is the unique solution to π0 = π̄(δ). If δ < δ0, π0 > π̄ and taking

aH immediately is optimal, and the optimal DFSA only needs one action state, qH .

For δ higher, the optimal DFSA is determined by the number, N(δ), given by

N =

⌈
rπ̄(δ) − rπ0

rh

⌉
+

⌈
rπ(δ) − rπ0

r`

⌉
, (26)

that is, N(δ) is the sum of the number of h-signals needed to cross π̄ from π0 (the first term)

and the number of ` -signals needed to cross π from π0 (the second term). To implement the

unconstrained optimum, from the initial state qo corresponding to π0, we need
⌈
rπ̄(δ)−rπ0

rh

⌉
−1

other updating states before reaching qH , and
⌈
rπ(δ)−rπ0

r`

⌉
− 1 before reaching qL. This leads

to N − 1 updating states in total. The corresponding DFSA, denoted by M s,(N−1), with

qo = qk and k ≡
⌈
rπ(δ)−rπ0

r`

⌉
, is given by:

Q = {q1, ..., qN−1}; τ(q1, `) = qL, τ(qN−1, h) = qH ;

τ(qi, h) = qi+1 for all i = 1, .., N − 2; τ(qi+1, `) = qi for all i = 2, .., N − 1.

The superscript s in M s,(N−1) refers to “symmetric,” or “similar”, whose meaning will become

clear later. The N − 1 updating states are ranked: when receiving a high signal, the states

transit up until aH is taken; when receiving a low signal, the states transit down until aL

is taken. A graphical description of the situation in terms of prior and the thresholds for

N = 5 and k = 2 and the corresponding optimal DFSA, M s,(N−1) with N = 5 and qo = q2,

can be found in Figure 3. The following lemma fully characterizes the optimal DFSA that

implements the unconstrained optimal rule.

Lemma 5.1. Let π0 be given. There exists a threshold δ0(π0) below which the optimal rule
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is to take one of the actions immediately. For any δ > δ0, there exists a number N ≥ 2 such

that the unconstrained optimal rule is implementable by M s,N−1 with qo = qk and k solving

rπ − kr` ≤ rπ0 ≤ rπ̄ − (N − k)rh, (27)

but it is not implementable by any DFSA with fewer than N − 1 updating states. Moreover,

N(δ) weakly increases with δ and goes to infinity as δ goes to one.

The number N in Lemma 5.1 is given by (26), and since π̄(δ) strictly increases and π(δ)

strictly decreases with δ, N(δ) weakly increases with δ. For each N ≥ 2, define

∆s
N = int ({δ ∈ (δ0, 1) : N(δ) = N}) , (28)

the interior of the set of δ’s such that N(δ) = N . Note that ∆s
N takes the form (δsN , δ̄

s
N) if

non-empty, and ∆s
N may be empty for some N ’s. Since symmetry implies that

rπ̄(δ) + rπ(δ) = 2rπo for all δ < 1,

with πo given by (21), when δ increases slightly from δ0, it may require more than one `-

signals to cross π, depending on how far π0 is from πo. This implies that ∆s
N = ∅ for all

N < N0 ≡ limδ↓δ0 N(δ). As δ increases, both
rπ̄(δ)−rπ0

rh
and

rπ(δ)−rπ0

r`
increase in (26), but

the increase leads to an increase in N if one of them, or both, has an increment of exactly

one. If rπ0 6= rπo + Mrh/2 for any M ∈ N, then N increases by one once at a time after

N0 and hence ∆s
N is nonempty and δ̄sN = δsN+1 for any N ≥ N0. Otherwise, N increases by

two each time δ hits the boundary, and ∆s
N is nonempty if and only if N −N0 is even, and

δ̄sN = δsN+2 when ∆s
N 6= ∅. Finally, since µHh = µL` and hence rh + r` = 0, the DFSA M s,N−1

with qo = qk according to (27) satisfies the conditions (O1) and (O2) for δ ∈ ∆s
N , and hence

it implements the unconstrained optimum by Proposition 3.1. Lemma 5.1 shows that one

cannot use a smaller DFSA to implement the unconstrained optimum. Its proof requires a

characterization of decision rules implementable by a DFSA of a given size, a well known

result called Myhill-Nerode Theorem (see Theorem 6.1 in the Appendix).

Constrained optimal rule

Now we study the constrained case. We analyse this by perturbing two parameters, µHh and

δ, for a given π0 > πo and δ ∈ ∆s
N . First consider perturbation in µHh under the memory

constraint K ≥ N − 1. Since δ ∈ ∆s
N , when µHh is exactly equal to µ, the constraint is not

binding. However, Theorem 3.2 implies that, if N > 4 and 2 < k < N − 1, then generically
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the unconstrained optimum cannot be implemented by any DFSA if we disturb µHh even

slightly. As we shall see later, in fact, for any N > 2, the number of updating states required

for the unconstrained optimum is of the order of 1/|µHh −µ|. Thus, when µHh deviates from µ,

the constraint K becomes binding in the sense that the unconstrained optimum is no longer

implementable with K updating states.

What would the optimal SFSA constrained by K updating states be like? To answer this

question, we appeal to Theorem 3.1 and look for potential indifference. When µHh is close to

µ, we only need to consider local deviations from M s,N−1 for possible optimal randomization.

However, different from the model of breakthroughs, there is no indifference at the limit case

where µHh = µ, which suggests that no randomization is needed for optimality for small

perturbation over µHh . To see this, Proposition 3.1 implies that r(qi) coincides with the

posterior at qi according to Bayes’ rule when µHh = µ. Hence, πqk = π0 as qo = qk, and

πqiVqi(H) + (1− πqi)Vqi(L) > πqiVqj(H) + (1− πqi)Vqj(L) for all j 6= i. (29)

This follows immediately from the fact that πqiVqi(H)+(1−πqi)Vqi(L) is the expected payoff

of the unconstrained optimum when the prior is πqi , and M s,N−1 with qo = qi implements

that optimal value but not M s,N−1 with qo = qj for any j 6= i. Since for each i < N − 1,

πqi,h = πqi+1
, (29) implies that it is strictly optimal to transit to qi+1 from qi when receiving

signal h according to (13). A symmetric argument holds for receiving signal `.

Now we consider the extreme state, qN−1. Upon receiving signal h, M s,N−1 dictates a

transition to qH . This transition is also strictly optimal, since for all j = 1, ..., N − 1,

πqN−1,hu
H > πqN−1,hVqj(H) + (1− πqN−1,h)Vqj(L). (30)

We note that (30) holds even at the boundary case when δ = δ̄sN . Indeed, by (O2),

r(qN−1, h) ≥ rπ̄, and hence the left-side of (30) gives the optimal value under the uncon-

strained optimum for prior equal to πqN−1,h, while the right-side is the expected payoff from

M s,N−1 with qo = qj under that prior, which is suboptimal. In particular, at the boundary

δ = δ̄sN and hence r(qN−1, h) = rπ̄, a DM with belief equal to πqN−1,h = π̄ is indifferent be-

tween taking uH immediately and waiting. However, the crucial observation is that waiting

here can be implemented only by M s,N with qo = qN but not by M s,N−1, as it takes N

`-signals to cross π instead of N − 1, as in M s,N−1 with qo = qN−1. A symmetric argument

also holds if at the boundary we have r(q1, `) = rπ.

Theorem 5.1. Let π0 be given and let N > N0. Suppose that |Q| is constrained by K ≥
N − 1. Let k satisfy (27).
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Figure 4: Optimal SFSA as |rh|/|r`| increases

(1) Suppose that δ ∈ ∆s
N . There exist µ < µ < µ such that for all µHh ∈ [µ, µ], M s,N−1 is

the optimal SFSA with qo = qk.

(2) Suppose that K = N − 1 and µHh = µ. Then, there exists ε > 0 such that for all

δ ∈ (δsN , δ̄
s
N + ε), M s,N−1 is the optimal SFSA with qo = qk.

According to Theorem 5.1 (1), even when K is large compared to N − 1, M s,N−1 is still

optimal whenever µHh lies within a range around µ for a given δ ∈ ∆s
N . Theorem 5.1 (2)

extends this result to higher δ’s, but in this case K = N − 1. Clearly, for higher δ’s a

bigger automaton will be useful. Thus, when the two signals have similar strengths, neither

randomization nor bigger automata (up to a given size) are useful. Instead, it is optimal for

the DM to simply cancel one h-signal by one ` and consider only the difference. However,

how different µHh can be from µ for the same rule to remain optimal depends on K and δ.

To illustrate the range in Theorem 5.1 (1), consider the following numerical example:

π0 = 0.56, µ` = 0.7, uH = uL = 1, and δ = 0.914 ∈ ∆s
3 = (0.890, 0.937). Theorem 5.1

(1) implies that M s,2 is optimal with qo = q2, when holding r` constant, for a range of

rh’s that are close to |r`|. Now, holding r` fixed, we change |rh|/|r`| from one to two. It

turns out that there is only one transition where randomization can occur in the optimal

SFSA, τ(q1, h; qH), whose optimal value is depicted in Figure 4, and other optimal transitions

remain deterministic and are the same as those in M s,2. The range for M s,2 to be optimal

is fairly large, including all information structures with |rh|/|r`| ∈ [1, 1.65]. Randomization

only occurs for a small range, from |rh|/|r`| = 1.65 to 1.85, and the DM is treating one

h-signal as cancelling out one `-signal for lower ratios and treating one h-signal as cancelling

out two `-signals for higher ratios. Even for the range where randomization is optimal, it is

randomizing between the two approximations.

Theorem 5.1 then shows that the same simple rule, M s,N−1, is optimal for a range of

parameters, and hence proves rule stickiness. It also demonstrates the optimality of approx-
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imate probabilities: when µHh 6= µ but not too far from it, the optimal SFSA behaves as if

µHh and µL` are equal. This result provides a foundation for the use of qualitative probabili-

ties, and the optimal rule corresponds to the decisional balance sheet attributed to Benjamin

Franklin, according to which the decision maker should list “pros” and “cons” of different

options and balance them with certain weights. This method is simple and optimal given the

constraint, but it is biased: the corresponding beliefs πqi ’s are biased in M s,N−1 whenever

µHh 6= µ. However, unlike the model of breakthroughs, here the bias comes from the fact

that one h-signal does not cancel one ` under Bayes rule, that is, M s,N−1 employs a wrong

cancellation rule whenever µHh 6= µ. Moreover, Theorem 5.1 also illustrates the “less-is-more”

effect, as M s,N−1 performs better than any other SFSA with states no more than a given

size for a range of information structures.

The main difficulty to prove Theorem 5.1 is to demonstrate that any deviations, especially

those involving randomizations, fromM s,N−1 cannot improve ex ante payoff. Even for modest

N , this potentially requires going through a long list by checking 2N possible configurations

(the set of updating states for which randomization can be optimal), each involving multi-

dimensional optimization. We overcome this difficulty by appealing to Theorem 3.1, using the

inequalities (29) and (30). Indeed, condition (13) requires the DM to be indifferent between

the updating states that have positive probabilities to transit to. The strict inequalities

in (29) and (30) ensure that the indifference condition (13) cannot be satisfied by local

deviations. Finally, we also need to show that there are no other global deviations, which

we do in the proof with an argument appealing to continuity and the uniqueness of the

unconstrained optimal rule when µHh = µ. This technique is also applicable to more general

settings where the relative strengths other than one-for-one, a topic we turn to next.

5.2 General relative strengths

Here we generalize Theorem 5.1 to the case where |rh|/|r`| is a general rational number, for

example, two. The idea is that when the DM has a sufficiently large number of updating

states, she can implement decision rules that are more complicated than cancelling one high

signal by one low, but by using cancellations that are closer to the true relative strengths

of the two signals. However, how close it can be will depend on the constraint, and will be

approximated by the closest rational number that the DM can afford. First we characterize

the unconstrained optimal rule when |rh|/|r`| is a general rational number.

Consider an information structure where |rh|/|r`| = Mh/M`, where Mh and M` are two

mutually prime natural numbers, and, with no loss of generality, we assume that Mh < M`.
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For expositional purposes we only consider δ’s such that

rπ̄ − rπ > rh − r`. (31)

This assumption avoids tedious discussions of different cases. Nevertheless, the main results

still hold for lower values of δ.

As in the symmetric case, we compute the number of updating states needed in the

optimal DFSA by tracing all possible posteriors generated by realizations of signals before

reaching a decision. For any partial history x, rx = mrh + nr`, where m is the number of

h-signals and n is the number of `-signals in x. Now, if we take

rc =
|rh|
Mh

=
|r`|
M`

, (32)

then, by Bezout’s identity, rx is always a multiple of rc, and we may think of an imaginary

signal with log likelihood ratio equal to rc as a signal that serves as the “common divisor,”

so that one h-signal is worth of Mh “common” signals while one `-signal is worth of −M`

“common” signals. Now, let

Kh =

⌈
rπ̄ − rπ0

rc

⌉
and K` =

⌈
rπ0 − rπ

rc

⌉
. (33)

Hence, from π0 it takes Kh “common” signals to cross π̄ and it takes K` “common” signals

to cross π. Thus, from the initial state qo corresponding to π0, we need Kh − 1 updating

states to the right to cover all possible posteriors before qH , and K` − 1 updating states to

the left. Then, the optimal DFSA requires N − 1 updating states, where N = Kh +K`: one

initial state, Kh−1 updating states to the right, and K`−1 updating states to the left. The

corresponding DFSA, denoted by M (Mh,M`),N−1, is given by:

Q = {q1, ..., qN−1};

τ(qi, h) = qi+Mh
, for i = 1, ..., N − 1−Mh; τ(qi, h) = qH , for i = N −Mh, ..., N − 1;

τ(qi, `) = qi−M`
, for i = M` + 1, ..., N − 1; τ(qi, `) = qL, for i = 1, ...,M`.

(34)

The initial state is qo = qK` . The following lemma generalizes Lemma 5.1.

Lemma 5.2. Suppose that |rh|/|r`| = Mh/M`, Mh and M` mutually prime. For any δ satis-

fying (31), there exists N = N(δ) such that the unconstrained optimum can be implemented

by the DFSA M (Mh,M`),N−1, but not with any SFSA with fewer than N − 1 updating states.

Moreover, N(δ) weakly increases with δ and goes to infinity as δ goes to one.
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As in the symmetric case, for each N ≥ 2, define

∆
(Mh,M`)
N = int ({δ ∈ (δ0, 1) : N(δ) = N}) , (35)

the interior of the set of δ’s such that N(δ) = N , where δ0 is the threshold above which

(31) holds. We only consider N ≥ N0 ≡ limδ↓δ0 N(δ). Note that ∆
(Mh,M`)
N takes the form

(δ
(Mh,M`)
N , δ̄

(Mh,M`)
N ), and, generically in π0, ∆

(Mh,M`)
N 6= ∅ for all N ≥ N0.

Now, for δ ∈ ∆
(Mh,M`)
N , M (Mh,M`),N−1 satisfies (O1) and (O2) in Proposition 3.1, and hence

the beliefs πqi are pinned down by Bayes’ rule. This also implies that analogous conditions

to (29) and (30) hold as well, following similar reasoning. Note that for M (Mh,M`),N−1, the

extreme states include the rightmost Mh updating states and leftmost M` updating states.

Nevertheless, a similar argument for (30) also holds for those extreme states. As a result,

when we perturb µHh so that |rh|/|r`| is not exactly Mh/M` but close and hence N − 1

updating states cannot implement the unconstrained optimum, we expect M (Mh,M`),N−1 to

still be the optimal SFSA whenever the constraint K ≥ N − 1 is binding. The following

theorem generalizes Theorem 5.1. Here, we perturb the parameter µHh from its benchmark

value µo, under which |rh|/|r`| = Mh/M`.

Theorem 5.2. Let π0 and µHh = µo, µL` be given such that |rh|/|r`| = Mh/M`, Mh,M`

mutually prime, and let N ≥ N0. Suppose that |Q| is constrained by K ≥ N − 1. Let K`

satisfy (33).

(1) Suppose that δ ∈ ∆
(Mh,M`)
N . There exist µ < µo < µ such that the optimal SFSA is

M (Mh,M`),N−1 with qo = qK` for all µHh ∈ [µ, µ].

(2) Suppose that K = N − 1 and µHh = µo. Then, there exists ε > 0 such that for all

δ ∈ (δ
(Mh,M`)
N , δ̄

(Mh,M`)
N + ε), the optimal SFSA M (Mh,M`),N−1 with qo = qK`.

According to (33), the size of the optimal SFSA depends on two features: first, the size

of the grid determined by the product of Mh and M`, and the number of steps required

from the prior to reach the thresholds for decision. Theorem 5.2 implies that the following

heuristic is optimal: for a relatively simple rational number, Mh/M`, that is close to the

ratio |rh|/|r`| according to those two aspects, the heuristic would have M` h-signals cancel

Mh `-signals. The symmetric case is the special case with Mh = M` = 1. This then extends

the rule-stickiness result and the principle of probability approximation to the general case.

Moreover, as in Theorem 5.1, Theorem 5.2 also implies the “less-is-more” effect, as the

optimality is against a given size K which can be larger than N − 1.

Here we remark that all these results can be generalized to more than two signals. For-

mally, consider a general finite X with µθx > 0 for all x > 0 and both θ = H,L. If |rx|/|ry|
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is a rational number for all x, y ∈ X, then we can find a DFSA that implements the un-

constrained optimum and an analogous result to Theorem 5.2 holds as well, that is, rule

stickiness still holds. This implies that signals of similar strengths will be treated as exactly

the same if they change the posterior in the same direction, and exactly cancel one another

if they change the posterior in opposite directions, and all this extends to other approximate

rational proportions as well.

One specific implication is that “small” signals, in terms of informativeness, will be

ignored. Again this follows from Theorem 3.1 and the fact that rqi ∈ [r̄i−1, r̄i], which implies

that, for a transition to occur from qi when receiving a signal x, rx has to be sufficiently large

in absolute values to cross the threshold r̄i−1 or r̄i. This suggests that, in contrast to the

unconstrained optimal rule, the optimal SFSA under constraint |Q| ≤ K will not respond

to small signals with likelihood ratios close to one, as the following corollary shows.

Corollary 5.1. Fix an information structure, (µ̄Hx , µ̄
L
x )x∈X , satisfying (3) but ry = 0 for

some fixed y ∈ X (that is, µ̄Hy = µ̄Ly ). Suppose that in all optimal SFSA under the constraint

|Q| ≤ K and under (µ̄Hx , µ̄
L
x )x∈X , r̄i−1 < r(qi) < r̄i for all updating state qi. Then, there

exists some ε > 0 such that for all information structures perturbing the original one with

maxx∈X,θ=H,L |µθx − µ̄θx| ≤ ε (and hence ry in the perturbed structure is close to zero), the

optimal SFSA ignores y, i.e., τ(q, y; q) = 1 for all q ∈ Q.

The condition r̄i−1 < r(qi) < r̄i is satisfied in all the optimal DFSA we have identified in

this section, and hence if we add small signals in all such environments, they will be ignored

optimally. In fact, it is also satisfied by M b,K(α) when it is the optimal SFSA in the model

of breakthrough. Corollary 5.1 can then be interpreted as both an information-stickiness

result and a rule-stickiness result: the DM treats the signal y as if in a simple world where

y contains no information at all and hence does not respond to it, even though in reality it

is informative.

6 Concluding remarks

We set out to evaluate the Bayesian paradigm by imposing a limited ability to process

information in a problem that features finite learning. We identified two simple environ-

ments where Bayesian learning is feasible. First, when the information structure features

very asymmetric strengths between the two signals. Second, when the strengths of signals

relate to one another in rational proportions. Generically, however, we encounter complex

environments where simple rules according to finite automata cannot implement Bayesian

learning.
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We also identified two prominent features of constrained optimal rules. First, in the model

of breakthroughs, randomization is optimal whenever the memory constraint binds and the

DM optimally ignores informative signals from time to time, an information-stickiness result.

Second, in the more general case, it is optimal to use approximate probabilities without

randomization, and a simple rule that cancels signals according to their approximate relative

strengths is optimal for a range of parameters, a rule-stickiness result that justifies the use

of heuristics, or rules-of-thumb. In both cases, the DM’s beliefs are biased whenever the

information structures depart from simple environments where the unconstrained optimum

can be implemented, despite their optimality. Thus, heuristic rules can be both optimal and

biased for boundedly rational agents.

Finally, our rule-stickiness results imply that bounded rational agents use simple models

to derive optimal solutions, even though the reality (that is, the actual environment) can be

far more complex. This echoes Simon (1959)’s discussion of economic models in relation to

human cognition; he argues that “In actual fact the perceived world is fantastically different

from the ‘real’ world. The difference involves both omissions and distortions, and arise in

both perception and inference [...] The decision-maker’s model of the world is only a minute

fraction of all the relevant characteristics of the real environment.” We formalized these

concepts in a model with limited capacity for information processing. This formalization

would allow for future investigation beyond individual decision-making. Indeed, although

the biases we identified are features of constrained optimal rules, an agent with memory

constraints is still vulnerable to exploitation from a sophisticated principal. Our results

have identified novel sources of apparently behavioral biases in the economic agents’ belief

formation, and their full implications for wider economic interactions remain to be explored.
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Appendix: Proofs

Here we present all the proofs, except for two proofs which use techniques similar to the lit-

erature (Proposition 2.1 and Theorem 3.1) and one that is very technical in nature (Theorem

3.2), which can be found in the Online Appendix.

Proof of Proposition 3.1

We prove (17) here. Given π0, we can rewrite the likelihood ration πq/(1− πq) as

πq
1− πq

=
π0P(q|H)

(1− π0)P(q|L)
.

Now, consider the term in (8) that begins with δn for some n ≥ 0. Let x be such that

λM(x) = q with |x| = n. Then, that nth term is equal to the sum of δn
∏n

i=1 µ
θ
xi

from all

such x’s. Moreover, (O1) implies that

π0

∏n
i=1 µ

H
xi

(1− π0)
∏n

i=1 µ
L
xi

remains constant for all such x and for all n. Thus, we have

er(q) =
π0P(q|H)

(1− π0)P(q|L)
=

π0

∏n
i=1 µ

H
xi

(1− π0)
∏n

i=1 µ
L
xi

,

for any such x, and this implies (17). �

30



Proof of Lemma 4.1

First, from (20) we can derive π̄(δ):

π̄

1− π̄
=

(
δµ

1− δ

)
uL

uH
=

(
δµ

1− δ

)
πo

1− πo
. (36)

Thus, δ ≥ δo, the threshold below which taking an action immediately is optimal, if and

only if π̄ ≥ πo, which is equivalent to δ ≥ 1/(1 + µ) ≡ δo. Now we compute the sequence

{δbN}∞N=0 for the given prior π0. Let π̄0 = π0, and, for each N ≥ 1, define π̄N as the unique

solution to

π̄N
1− π̄N

=

(
π0

1− π0

)(
1

1− µ

)N
, (37)

that is, rπ̄N = rπ0 + Nrh—it requires exactly N h-signals to reach π̄N from π0. Note that

π̄N strictly increases with N and is always within (π0, 1). By (36), π̄(δ) strictly increases

with δ and converges to one as δ does. Thus, for each N ≥ 0, there is a unique δbN such

that π̄(δbN) = π̄N . Then, for δ ≤ δo, π̄ ≤ πo ≤ π0, and hence the optimal rule takes

aH immediately. For δ ∈ (δbN−1, δ
b
N), it takes exactly N h-signals to cross π̄, and it is

straightforward to verify that M b,N implements the optimal rule. The result that M b,n for

n < N does not implement the optimal rule follows from the proof of Theorem 4.1 below. �

Proof of Theorem 4.1

Part (1) follows immediately from Lemma 4.1; we prove part (2). Suppose that δ > δbK . As

argued, it is optimal to take aL immediately after an `-signal. We first show that any optimal

SFSA takes the form of M b,K(α1, ..., αK), and we may assume that there are no redundant

states. By Theorem 3.1, we can rank the updating states q1, ..., qK so that r(q1) ≤ r(q2) ≤
.... ≤ r(qK). Since receiving h can only trigger a transition to go up or to stay, Vqi(θ) only

depends on Vqj(θ) for j > i, while r(qi) only depends on transitions from qj with j < i.

Thus, we can take r(qi) as the prior and look for the optimal SFSA with K − i updating

states, and use the necessary conditions in Theorem 3.1 to characterize the optimal SFSA.

This allows for an induction argument starting from i = K and then working backwards.

We first show by induction that the optimal SFSA the transitions from qi, ..., qK take the

form M b,K−i+1(αi, ..., αK) (part (a)), and then we show that the optimal SFSA has α1 =

α2 = ... = αK = α ∈ (0, 1) (part (b)).

(a) For i = K this is immediate, as the only possible transition is either staying in qK or

going to qH after seeing an h-signal. Suppose that it holds for i+ 1 ≤ K, and in the optimal
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SFSA the transitions from qi+1, ..., qK take the form M b,K−i(αi+1, ..., αK). Below in (b) we

prove that it is optimal to have αi+1 = .... = αK . This, by a simple computation from the

corresponding value functions, implies that for all j = i + 1, ..., K − 1, r̄j+1 − r̄j is constant

and

0 < r̄j+1 − r̄j ≤ rh, with equality iff αi+1 = 0 = ... = αK , (38)

that is, r̄j+1 − r̄j = rh iff it is the DFSA M b,K−i. Moreover, we have r(qi+1) < r̄i+1:

otherwise, r(qi+1) = r̄i+1 and hence r(qi+1, h) = r̄i+1 + rh > r̄i+1, that is, αi+1 = 0 and, by

(38), this implies that the transitions follow the DFSA M b,K−i and, furthermore, r(qi+1, h) =

r̄i+1 + rh = r̄i+2. This last equality also implies that from qi+1 following signal h there is

indifference between moving to qi+2 and qi+3, implying that there is a redundant updating

state. This concludes that r(qi+1) < r̄i+1.

Now, r(qi+1) < r̄i+1 implies, by (38), that r(qi+1) + rh < r̄i+2. Since r(qi) ≤ r(qi+1)

and r(qi, h) = r(qi) + rh ≤ r(qi+1) + rh < r̄i+2, by Theorem 3.1, from qi and an h-signal,

randomization can only occur between qi and qi+1, or between qi+1 and qi+2, but not both.

Now we show that if the latter happens, then we can eliminate qi+1 without affecting the

ex ante expected payoff and there is a redundant state; as a result, only the former matters

and hence the optimal SFSA takes the form M b,K−i+1(αi, ..., αK) from qi on. To see this,

suppose, by contradiction, that the optimal SFSA randomizes between qi+1 and qi+2 from

qi after h. This implies that r(qi) < r(qi+1), and that, by Theorem 3.1, r(qi, h) = r̄i+1,

which in turn implies that r(qi+1, h) > r(qi, h) = r̄i+1. By Theorem 3.1 the last inequality

implies that αi+1 = 0, and by the symmetry noted above, in M b,K−i(αi+1, ..., αK) we have

αi+1 = ... = αK = 0. That is, we have a deterministic scheme from qi+1 on. Moreover, this

also implies that at prior r(qi), M
b,K−i and M b,K−i−1 give exactly the same payoff, and hence

qi+1 is a redundant state.

(b) Now we show that the optimal M b,K(α1, ..., αK) features α1 = .... = αK = α for any

prior, and whenever δ > δbK , α ∈ (0, 1). To do so, we first compute the continuation values

in M b,K(α1, ..., αK):

Vq1(H) =
δK−2

[∏K−2
j=1 (1− αj)

]
uH∏K−2

j=1 (1− δαj)
,

Vq1(L) = δµuL

{∑
j

Aj +
∑
i<j

CAiAj +
∑
i<j<k

C2AiAjAk + ...+ CK−3A1 · · ·AK−2

}
,

where Aj = 1/[1−δ(1−µ)αj] for each j = 1, ..., K−2 and C = δ(1−µ)−1. Now, since both

Vq1(H) and Vq1(L) are symmetric in (α1, ..., αK) and strictly supermodular, for any prior the
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optimum must happen under a symmetric solution; indeed, by symmetry, any permutation

of the optimal solution is also optimal, but by Theorem 2.7.5 in Topkis (1998), the optimal

solutions form a chain and hence the optimal solution cannot be asymmetric. Hence, optimal

α1 = · · · = αK = α. Under this symmetric solution, the expected payoff from M b,K(α) for a

given π0 is

FK(α) ≡ π0Vq1(H) + (1− π0)Vq1(L) (39)

= π0
δK(1− α)KuH

(1− δα)K
+ (1− π0)

δµuL

1− δ(1− µ)

{
1−

[
δ(1− µ)(1− α)

1− δ(1− µ)α

]K}
.

It is straightforward to verify that maxα∈[0,1] FK(α) has a unique maximizer; indeed,

F ′K(α) = π0K
(−δK)(1− δ)(1− α)K−1uH

(1− δα)K−1

+ (1− π0)K

[
δ(1− µ)(1− α)

1− δ(1− µ)α

]K−1
δ2µ(1− µ)uL

[1− δ(1− µ)α]2
,

and it has at most one zero between [0, 1]. Since π0 ≥ πo, FK(1) < (1 − π0)uL ≤ π0u
H <

FK(0). Moreover, F ′K(0) > 0 if and only if

(1− π0)δµ(1− µ)KuL > π0(1− δ)uH , (40)

which, by (36) and (37), is equivalent to δ > δbK . This proves that optimal α > 0. Clearly,

α = 1 is never optimal. Note that this also implies that we need all K updating states. �

Proof of Theorem 4.2

Note that we assume µHh ≥ δ but can be strictly smaller than 1, and we use the notation

µL` = µ. Consider M b,1(α). Given π0, the expected payoff is (note that the values differ from

(39) only because µHh < 1 here)

F (α;µHh , δ) = π0
δ(1− α)µHh u

H

1− δµHh α
+ (1− π0)

δµuL

1− δ(1− µ)α
. (41)

Now, take α = 1−
√

1− δ. We claim that

lim
δ→1

F (α;µHh , δ) = π0u
H + (1− π0)uL,

uniformly across all µHh ≥ δ. This proves the result by taking appropriate δ̄.
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Now we prove the claim. First, since α = 1−
√

1− δ, limδ→1 α = 1,

lim
δ→1

δµ

1− δ(1− µ)α
= lim

δ→1

δµ

1− δα + δµα
= 1.

Thus, by (41), we only need to show that

lim
δ→1

δ(1− α)µHh
1− δµHh α

= 1.

Since α = 1−
√

1− δ, this is equivalent to

lim
δ→1

δ
√

1− δµHh
1− δµHh [1−

√
1− δ]

= 1.

Now,

δ
√

1− δµHh
1− δµHh [1−

√
1− δ]

− 1 =
δµHh

1−δµHh√
1−δ + δµHh

− 1 = −
1−δµHh√

1−δ
1−δµHh√

1−δ + δµHh

.

Now, we show that if µHh ≥ δ, then (1 − δµHh )/
√

1− δ converges to zero uniformly as δ

converges to one. To see this, since µHh ≥ δ, we have

1− δµHh√
1− δ

≤ 1− δ2

√
1− δ

=
√

1− δ(1 + δ),

which converges to zero across all µHh ≥ δ as δ converges to one. Note that we can consider

infµHh ≥δ µ
H
h as a function of δ. This converges to 1 as δ → 1. Formally, limδ→1 infµHh ≥δ µ

H
h = 1.

�

Before the proof of Lemma 5.1, we present a result from the computer science litera-

ture that gives a characterization of the set of all decision rules that can be implemented

by a DFSA with |Q| ≤ K. This results is essentially the celebrated Myhill-Nerode The-

orem (Nerode (1958)), but we need some adjustment to fit our purposes. First define an

equivalence relation, R ⊂ X∗ ×X∗, to be right-invariant if for all x,y, z ∈ X∗,

xRy ⇐⇒ (x ◦ z)R(y ◦ z),

where ◦ denotes concatenation. Given a decision rule f , Lfθ denotes the set of partial

histories under which action aθ is taken, θ = H,L. The following is a simple extension of

the standard Myhill-Nerode Theorem. A DFSA M is non-redundant if each updating and
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each action state can be reached by some partial history of signal realizations.

Theorem 6.1 (Myhill-Nerode Theorem). The rule f can be implementable by a non-redundant

DFSA with K updating states iff there is a right-invariant equivalence relation R that induces

K + 2 equivalence classes such that Lfθ is one of those equivalence classes for both θ = H,L.

We give the proof for self-containment in the Online Appendix. The equivalence classes

correspond to the updating and the action states in the corresponding DFSA, and the equiv-

alence classes that make up Lfθ consist of those action states where action aθ is taken, for

both θ = H,L. Thus, the DFSA gives a finite partition of partial histories that captures the

finiteness of the DM’s memory capacity. The right-invariance condition captures the fact

that if the DFSA enters the same updating state after two different partial histories, then it

will end up in the same updating or action state (although not necessarily the same as the

original one) after any consecutive partial history. The number of equivalence classes gener-

ated in this way has a one-to-one correspondence to the number of updating and updating

states in the DFSA.

Proof for Lemma 5.1

Let δ > δ0 be given, and let N = N(δ) be given by (26). To show that M s,N−1 with qo = qk

with k satisfying (27) implements the unconstrained optimum, by Proposition 3.1, we only

need to show (O1) and (O2). To show (O1), note that λMs,N−1(x) = qi, 1 ≤ i ≤ N − 1, if

and only if there are (k − i) more `-signals than h for i < k, and if and only if there are

(i− k) more h-signals than ` for i ≥ k. (O1) then follows from rh + r` = 0. Similarly, (O2)

follows from (27).

Now we show that any DFSA with less than N − 1 updating states cannot implement

the unconstrained optimum. By Theorem 6.1, we only need to show that for any right-

invariant equivalence relation such that, taking f as the optimal rule, LfH and LfL are among

its equivalence classes, it has at least N + 1 equivalence classes. To do so, consider the

histories x0 = ∅, xi consisting of i h-signals for i = 1, ..., N − k, and yj consisting of j

`-signals for j = 1, ..., k. For any two histories from the list, say, xi and xi
′

with i > i′,

we can use the partial history xi,i
′

consisting of N − i h-signals as the witness in the sense

that xi ◦ xi,i
′

leads to action aH while xi
′ ◦ xi,i

′
leads to waiting under the optimal rule. For

any other combinations we can use similar witness histories. This shows that each has to

be in a distinct equivalence class. Finally, this also shows that M s,N−1 with qo = qk is the

unique DFSA that implements the unconstrained optimum among all DFSA with N − 1

updating states, as each of the histories from {x0,x1, ...,xN−k,y1, ...,yk} corresponding to

one (updating or action) state in any optimal DFSA. �
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Proof of Theorem 5.1

Note that by Lemma 5.1 and Proposition 3.1, when µHh = µ and when δ ∈ ∆s
N ,

r(qi) = rπ0 + (i− k)rh,

for all i = 1, ..., N − 1. Since the proof of Lemma 5.1 also showed that M s,N−1 is the unique

DFSA with no more than N − 1 updating states, (29) and (30) follow immediately. Note

that they also hold for δ = δ̄sN .

Proof of (1) Let δ ∈ ∆s
N and K ≥ N − 1 be given. We have shown that for the given K,

M s,N−1 (with qo = qk that satisfies (27)) achieves the unconstrained optimum when µHh = µ

and the optimal rule is unique by Proposition 2.1. Thus, for any SFSA M with no more

than K updating states, the expected payoff from M , denoted by WM , is no greater than

WMs,N−1 , and it is equal if and only if it follows the same transition as in M s,N−1 except for

adding “replicate” updating states as the unconstrained optimal rule is unique. By replicate

state we mean for any qi in M s,N−1, we can add qci to it so that τ ′(qci , x; q′) = τ(qi, x; q′) or

to the replicate of q′ for all q′, and τ ′(q′, x; qci ) > 0 if and only if τ(q′, x; qci ) > 0. A small

extension of the proof of Proposition 3.1 shows that the beliefs associated with the replicate

state remains the same as the corresponding states in M s,N−1, and hence (29) and (30) also

hold under the alternative SFSA with such “replicate” states. Since the continuation values

and the beliefs r(qi) are continuous in both the transition probabilities and parameter values,

there exist ε1 > 0 such that the inequalities (29) and (30) are maintained strictly for any

SFSA M with transitions different from those in M s,N−1 or its replica by no more than ε1

and any µHh ∈ [µ − ε1, µ + ε1]. Now, any such SFSA other than M s,N−1 or its replica has

strict randomization somewhere other than the replicate states, and hence its optimality is

excluded by Theorem 3.1 due to the strict inequalities, (29) and (30). Finally, for such ε1,

consider the set of SFSA M such that some of the transitions in M differ from M s,N−1 or

its replicate by at least ε1, a set we denoted by Dε1 . This set is compact, and, when µHh = µ,

WMs,N−1 > maxM∈Dε1 WM . Now, by continuity again, there exists ε2 ∈ (0, ε1] such that for

any µHh ∈ [µ− ε2, µ+ ε2], the inequality still holds.

Proof of (2) The proof follows exactly the same kind of argument as (1), except for taking

deviations upwards from δ̄sN . Note that K = N−1 guarantees that M s,N−1 is unique optimal

DFSA, even at δ = δ̄sN . �
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Proof of Lemma 5.2

Let δ > δ0 be given and hence (31) is satisfied, and let N = N(δ) = Kh +K` with (Kh, K`)

given by (33). To show that M (Mh,M`),N−1 with qo = qK` implements the unconstrained

optimum, by Proposition 3.1, we only need to show (O1) and (O2). To show (O1), note that

λMs,N−1(x) = qi, 1 ≤ i ≤ N − 1, if and only if there are (k − i) less “common” signals for

i < k, and if and only if there are (i−k) more common signals for i ≥ k, where one common

signal stands for log likelihood ratio of rc = rh/Mh = −r`/M` and hence one h-signal counts

for Mh common signals and one ` counts for −M` common signals. Similarly, (O2) follows

from (27). Now we show that any DFSA with fewer than N − 1 updating states cannot

implement the unconstrained optimum. By Theorem 6.1, we only need to show that for any

right-invariant equivalence relation such that, taking f as the optimal rule, LfH and LfL are

among its equivalence classes, it has at least N + 1 equivalence classes. This then follows

from the following two claims:

Claim (1) For each i = 1, ..., N − 1, there exists a partial history xi such that

rπ0 + rxi = r(qi), (42)

and such that for any y ⊂ xi, rπ0 + ry ∈ (rπ, rπ̄). Let x0 be the one where action aL is taken

and xN be the one where action aH is taken.

Claim (2) Each xi must be in a different equivalence class.

Proof of (1) First, note that for any partial history x, rx has the form

rx = (nhMh − n`M`)rc. (43)

Now, we give Claim (1a): for any (nh, n`) such that

−K` < nhMh − n`M` < Kh, (44)

there exists a partial history x such that (43) holds and that for any y ⊂ x, rπ0 +ry ∈ (rπ, rπ̄).

Clearly, x has nh h-signals and n` `-signals. We construct the order backwards to ensure the

sub-histories never reach the boundaries. In particular, we construct a sequence {(nth, nt`)}
inductively as follows. First, n1

` ≤ n` and n1
h are determined by

nhMh − n1
`M` < Kh ≤ nhMh − (n1

` − 1)M`,

n1
hMh − n1

`M` > −K` ≥ (n1
h − 1)Mh − n1

`M`.
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Given (nth, n
t
`), (nt+1

h , nt+1
` ) are determined by

nthMh − nt+1
` M` < Kh ≤ nthMh − (nt+1

` − 1)M`, and (45)

nt+1
h Mh − nt+1

` M` > −K` ≥ (nt+1
h − 1)Mh − nt+1

` M`. (46)

We claim that nt+1
` < nt` and nt+1

h < nth. This follows because

M`n
t+1
` ≤ nthMh +M` −Kh ≤Mh +M` +M`n

t
` −Kh −K` < M`n

t
`,

where the first inequality follows from (45), the second from (46) but with t instead of t+ 1,

and the last from (31); similarly,

Mhn
t+1
h ≤ nt+1

` M` −K` ≤Mh +M` +Mhn
t
h −Kh −K` < Mhn

t
h,

where the first inequality follows from (46), the second from (45), and the last from (31).

Since nh and n` are both finite, the sequence ends with zero. This proves Claim (1a).

To construct xi, we give Claim (1b): for each i, we can find (mi
h,m

i
`) ∈ N2

+ such that

rπ0 + (mi
hMh −mi

`M`)rc = r(qi). (47)

Given this, we can then use Claim (1a) to construct xi to satisfy (42). Note that by (O1)

any solution to (47) satisfies (44) with (nh, n`) = (mi
h,m

i
`). Since Mh and M` are mutually

prime, by Bezout’s identity, there are integers n∗h and n∗` such that n∗hMh + n∗`M` = 1 and

hence for any k ∈ Z,

mi
h = (n∗h + kM`)

r(qi)− rπ0

rc
and mi

` = (n∗` − kMh)
r(qi)− rπ0

rc

solves (47). Note that r(qi)− rπ0 is a multiple of rc. To ensure that the solution is positive,

we only need to find appropriate k.

Proof of (2) Let xi and xj be constructed from (1), with i < j. Now, following the same

arguments as in (1), by taking π0 = πqi+1
as the prior, we can construct a partial history y

such that rπqi+1
+ ry = rπq1 but never reaches π̄ or π along the way, and hence rπqi + ry ≤ rπ.

By construction, if we start from π0, we will end up with πqi following xi, and hence starting

from π0 following xi ◦ y the posterior never reaches π̄, but for some y′ ⊂ y, xi ◦ y′ crosses

π for the first time. Since j > i, following xj ◦ y the posterior never reaches π, but it may

reaches π̄ before the end. If it does, let y′′ be the shortest partial history so that xj ◦ y′′

reaches π̄. Otherwise, let y′′ = y. In both cases, we have identified a partial history (the
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intersection of y′ and y′′) that separates xi and xj into different equivalence classes. �

Proof of Theorem 5.2

The proof follows the same outline as that of Theorem 5.1; that is, we show that all the

transitions feature strict preferences, and local optimality is then guaranteed by continuity

and Theorem 3.1. Global optimality follows essentially the same arguments as those in

Theorem 5.1 and is omitted. Note that, as in the symmetric case, by Lemma 5.2 and

Proposition 3.1, when |rh|/|r`| = Mh/M` and when δ ∈ ∆
(Mh,M`)
N ,

r(qi) = rπ0 + (i−K`)rc,

for all i = 1, ..., N − 1, and hence πqK` = π0 as qo = qK` . Since the proof of Lemma 5.2 also

showed that M (Mh,M`),N−1 is the unique DFSA with no more than N − 1 updating states, it

follows that

πqiVqi(H) + (1− πqi)Vqi(L) > πqiVqj(H) + (1− πqi)Vqj(L) for all j 6= i, (48)

πqN−1,cu
H > πqN−1,cVqj(H) + (1− πqN−1,c)Vqj(L), (49)

where πqN−1,c is the analogous posterior at qN−1 if it were to receive a “common” signal. As

in the symmetric case, (48) follows immediately from the fact that πqiVqi(H)+(1−πqi)Vqi(L)

is the expected payoff of the unconstrained optimum when the prior is πqi , and M (Mh,M`),N−1

with qo = qi implements that optimal value but not M (Mh,M`),N−1 with qo = qj for any j 6= i.

Since for each i < N −Mh, r(qi, h) = r(qi+Mh
), (48) implies that it is strictly optimal to

transit to qi+Mh
(when i+Mh > N − 1, to qH) from qi when receiving signal h according to

(13). A symmetric argument holds for receiving signal `. Now consider (49). By (O2) and

δ ∈ ∆
(Mh,M`)
N , r(qN−1, c) > rπ̄, and hence the left-side of (49) gives the optimal value under

the unconstrained optimum for prior equal to πqN−1,c, while the right-side is the expected

payoff from M (Mh,M`),N−1 with qo = qj under that prior, which is suboptimal. In particular,

even at the boundary δ = δ̄
(Mh,M`)
N and hence r(qN−1, c) = rπ̄ (and so r(qN−Mh

, h) = rπ̄), the

DM at that prior is indifferent between taking uH immediately and waiting, but the latter

is followed by the rule implemented by M (Mh,M`),N+2 with qo = qN , as it takes N common

signals to across π instead of N − 1. �
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Proof of Corollary 5.1

Let ε̄ be small such that

r̄i−1 + ε̄ < r(qi) < r̄i − ε̄ (50)

for all updating states qi under (µ̄Hx , µ̄
L
x )x∈X . Since r̄i and ρ(q) are continuous in (µHx , µ

L
x )x∈X ,

for ε small, r̄i does not change by more than ε̄/2 when maxx∈X,θ=H,L |µ̄θx − µ̄θx| < ε and

|ry| < ε̄/2 under (µHx , µ
L
x )x∈X . It then follows from (50) that r̄i−1 < r(qi, y) = r(qi) + ry < r̄i,

and Theorem 3.1 implies that τ(qi, y; qi) = 1 for all updating state qi. �
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A Online Appendix: Missing Proofs

Proof of Proposition 2.1

Let V ∗(π; δ) denote the optimal continuation value when the posterior (after receiving the

signal) is π and the discount factor is δ ∈ (0, 1). The existence of V ∗ follows from standard

arguments. Define {V ∗n }∞n=1 with V ∗n : [0, 1]× [0, 1]→ R by

V ∗1 (π; δ) = max{πuH , (1− π)uL},

for n ≥ 1, V ∗n+1(π; δ) = max

{
πuH , (1− π)uL, δ

∑
x∈X

[πµHx + (1− π)(1− µLx )]V ∗n (πx; δ)

}
,

where πx satisfies rπx = rπ + rx for each x ∈ X. Then, V ∗n converges to V ∗ uniformly. We

only consider sufficiently high δ’s such that waiting for one period is optimal at least for

some π’s. A straightforward induction argument shows that V ∗n (π; δ) increases with δ for all

n, and hence V ∗(π; δ) also increases with δ, and satisfies

V ∗(π; δ) = max

{
πuH , (1− π)uL, δ

∑
x∈X

[πµHx + (1− π)(1− µLx )]V ∗(πx; δ)

}
. (51)

We claim that V ∗ is convex in π. Fix some δ. Let λ ∈ (0, 1) and π1, π2 be given, and let

f ∗1 be the optimal decision rule under π1 and f ∗2 under π2. For any decision rule f ,

U(f |λπ1 + (1− λ)π2) = λU(f |π1) + (1− λ)U(f |π2)

≤ λU(f ∗1 |π1) + (1− λ)U(f ∗2 |π2) = λV ∗(π1; δ) + (1− λ)V ∗(π2; δ),

where U(f |π) is the expected utility from rule f when the prior is such that P0(H) = π, the

first equality follows from (4) as the payoff is linear in π, and the inequality follows from the

optimality of f ∗1 and f ∗2 . This then implies that V ∗ is convex in π.

Now, for each δ ∈ (0, 1), let

Π̄(δ) ≡ {π ∈ [0, 1] : V ∗(π, δ) = πuH}.

Clearly V ∗(π; δ) ≤ πuH + (1− π)uL for all π, and hence 1 ∈ Π̄(δ) for any δ < 1. Moreover,

(51) also implies that Π̄(δ) includes π close to 1 as well. Since V ∗(π; δ) ≥ πuH , as taking aH

is always an option, convexity of V ∗ implies that Π̄(δ) is a convex set and hence an closed
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interval. Now, for πo defined by (21), it is straightforward to verify that

V ∗(π; δ) > πuH for π ≤ πo and V ∗(π; δ) > (1− π)uL for π ≥ πo.

Hence, if we let π̄ = min Π̄(δ), then π̄ > πo. Now, π̄ is determined by F (π; δ) = 0 with

F (π; δ) = πuH − δ

∑
x∈XH

πµHx u
H +

∑
x∈X−XH

[πµHx + (1− π)µLx ]V ∗(πx; δ)

 ,

where XH consists of signals such that rx > 0, and the first term is the expected payoff from

taking aH while second term from waiting when π is close to π̄; note that V ∗(πx; δ) = πxuH

when π ≥ π̄ and rx > 0. Now, we claim that, whenever F is differentiable w.r.t. π, we

have ∂
∂π
F > 0 and hence π̄ is uniquely determined. For any x ∈ X − XH , whenever V ∗ is

differentiable w.r.t. π at πx,

∂

∂π
{[πµHx + (1− π)µLx ]V ∗(πx; δ)} = (µHx − µLx )V ∗(πx; δ) +

(
πxµLx
π

)
∂

∂π
V ∗(πx; δ)

≤ (µHx − µLx )πxuH +

(
πxµLx
π

)
uH =

πx

π
[πµHx + (1− π)µLx ]uH = µHx u

H ,

where the inequality follows from the fact that rx ≤ 0 (since x ∈ X − XH) and hence

(µHx − µL) ≤ 0 and that V ∗(π`; δ) ≥ π`uH , ∂
∂π
V ∗(π`; δ) ≤ uH as V ∗ is convex in π. Thus,

∂

∂π
F ≥ uH − δ

 ∑
x∈XH

µHx +
∑

x∈X−XH

µHx

uH = (1− δ)uH > 0,

since δ < 1. Since F is almost everywhere differentiable, it is then strictly increasing in π.

This then shows that π̄ is uniquely determined by F (π; δ) = 0, and for π > π̄, taking aH

is strictly better. Finally, since F (π; δ) strictly decreases δ as V ∗ increases with δ, it also

follows that π̄ strictly increases with δ.

Proof of Theorem 3.1

Proof of multiself-consistency. The proof follows the idea in Piccione and Rubinstein (1997).

Let M be an optimal SFSA. We assume that qo ∈ Q, which is the only interesting case. For

any states q, q′ ∈ Q∪ {qH , qL}, define the set Wq,q′ =
⋃∞
n=1 W

n
q,q′ , where for each n = 1, 2, ...,

W n
q,q′ = {w = (q, x1; q1, x2; ....; qn−1, xn; q′) : xi ∈ X, qi ∈ Q}, that is, the set of possible state
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transitions from q to q′. Given a state of nature θ and w ∈ W n
q,q′ , define

Pθ(w) = δn ×
n∏
i=1

µθxiτ(qi−1, xi; qi),

where q0 = q and qn = q′. The expected payoff from the SFSA is then

V =
∑
θ=H,L

P0(θ)
∑

w∈Wqo,qθ

Pθ(w)uθ. (52)

Note that we have shown (14) in the text. We now prove (13).

Suppose, by contradiction, that τ(q, x; q′) > 0 and that for some q′′ 6= q′,

πq,xVq′(H) + (1− πq,x)Vq′(L) < πq,xVq′′(H) + (1− πq,x)Vq′′(L) (53)

We denote p′ = τ(q, x; q′) and p′′ = τ(q, x; q′′). Now, fix all other transition probabilities

other than p′ and p′′, each term Pθ(w) in V given by (52) is a polynomial of (p′, p′′) and,

since δ < 1, V is differentiable w.r.t. (p′, p′′). Since M is optimal and p′ = τ(q, x; q′) > 0,

the FOCs require that ∂
∂p′
V ≥ ∂

∂p′′
V . However, we show below that (53) implies that

∂

∂p′′
V >

∂

∂p′
V, (54)

a contradiction to the optimality of M . To prove (54), first note that

∂

∂p′
V =

∑
θ=H,L

P0(θ)
∑

w∈Wqo,qθ
(q,x;q′)

ϕ(q,x;q′)(w)
Pθ(w)

p′
uθ, (55)

where Wqo,qθ(q, x; q′) = {w ∈ Wqo,qθ : (q, x, q′) occurs in w} and ϕ(q,x;q′)(w) is the number of

repetitions of (q, x; q′) within w.

Now, we show that ∂
∂p′
V is proportional to πq,xVq′(H) + (1 − πq,x)Vq′(L) by multiplying
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the latter by
∑

θ=H,L P0(θ)P(q|θ)µθx, a quantity independent of q′ and q′′:[ ∑
θ=H,L

P0(θ)P(q|θ)µθx

]
[πq,xVq′(H) + (1− πq,x)Vq′(L)]

=
∑
θ=H,L

P0(θ)P(q|θ)µθxVq′(θ) =
∑
θ

P0(θ)

 ∑
wq∈Wqo,q

Pθ(wq)

µθx
 ∑

wq′∈Wq′,qθ

Pθ(wq′)

uθ
=

∑
θ

P0(θ)

 ∑
wq∈Wqo,q ,wq′∈Wq′,qθ

Pθ[(wq, x; w′q)]

τ(q, x; q′)

uθ

=
∑
θ

P0(θ)

 ∑
w∈Wqo,qθ

ϕ(q,x;q′)(w)
Pθ(w)

p′

uθ =
∂

∂p′
V,

where the first equality follows from (11), the last follows from (55) and the second last

follows from p′ = τ(q, x; q′) and the fact that for any wq ∈ Wqo,q and any wq′ ∈ Wq′,qθ ,

(wq, x; wq′) ∈ Wqo,qθ(q, x; q′) and that each w ∈ Wqo,qθ(q, x; q′) is counted ϕ(q,x;q′)(w) times

in that list. We have analogous expression for ∂
∂p′′

V , and hence (53) implies (54).

Proof of (15) First, we claim that, for all q, q′ ∈ Q,

πqVq(H) + (1− πq)Vq(L) ≥ πqVq′(H) + (1− πq)Vq′(L) for all q′ ∈ Q. (56)

To see this, for any x and any q1, q2, q3 ∈ Q∪{qH , qL} such that τ(q, x; q1) > 0 and τ(q, x; q2) >

0, by modified multi-self consistency and (11),∑
θ=H,L

P0(θ)P(q|θ)µθxVq1(θ) =
∑
θ=H,L

P0(θ)P(q|θ)µθxVq2(θ) ≥
∑
θ=H,L

P0(θ)P(q|θ)µθxVq3(θ). (57)

Thus,

πqVq(H) + (1− πq)Vq(L)

= πqδ
∑

x∈X,q′′∈Q∪{qH ,qL}

µHx τ(q, x; q′′)Vq′′(H) + (1− πq)δ
∑

x∈X,q′′∈Q∪{qH ,qL}

µLxτ(q, x; q′′)Vq′′(L)

=
∑
x∈X

δ ∑
q′′∈Q∪{qH ,qL}

∑
θ=H,L P0(θ)P(q|θ)µθxVq′′(θ)∑

θ′=H,L P0(θ′)P(q|θ′)
τ(q, x; q′′)


≥

∑
x∈X

δ ∑
q′′∈Q∪{qH ,qL}

∑
θ=H,L P0(θ)P(q|θ)µθxVq′′(θ)∑

θ′=H,L P0(θ′)P(q|θ′)
τ(q′, x; q′′)

 = πqVq′(H) + (1− πq)Vq′(L),
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where the first equality follows from the recursive equation for Vq(θ) for each θ = H,L,

the second follows from (11), the inequality, which holds term by term for each x, follows

from (57): any term with q′′ in the numerator of the expression above the inequality with

τ(q, x; q′′) > 0 has the same value and that value is no less than any corresponding term with

τ(q′, x; q′′) > 0 below, and the last equality follows from the recursive equation for Vq′(θ).

Now, we claim that ∆V H
i,j < 0 and ∆V L

i,j > 0 for all i < j, and ∆V L
j,k/∆V

H
k,j ≥ ∆V L

i,j/∆V
H
j,i

for all i < j < k. To see this, let i < j be given. If i = 0 or j = K + 1, this follows from the

fact that Vqθ(θ) = uθ, and Vq(θ) ≤ δuθ for all q ∈ Q. Otherwise, by (56),

πqj∆V
H
j,i + (1− πqj)∆V L

j,i ≥ 0, and πqi∆V
H
i,j + (1− πqi)∆V L

i,j ≥ 0. (58)

Since there are no equivalent states, either ∆V H
i,j > 0 or ∆V H

i,j < 0. By our convention it

must be ∆V H
j,i > 0. By the second inequality in (58), ∆V L

i,j ≥ 0. Now, if this last inequality

is an equality, then we can replace all the transition to qi to transition to qj and obtain

a higher ex ante payoff, which is a contradiction to the optimality of the SFSA. Now, let

i < j < k. Again, by (56), we have

πqj∆V
H
j,i + (1− πqj)∆V L

j,i ≥ 0, and πqj∆V
H
j,k + (1− πqj)∆V L

j,k ≥ 0, (59)

and hence
∆V L

i,j

∆V H
j,i

≤
πqj

1− πqj
≤

∆V L
j,k

∆V H
k,j

.

Finally, we show (15). Let q ∈ Q be given. By (13), τ(q, x; qi) > 0 only if

πq,xVqi(H) + (1− πq,x)Vqi(L) ≥ πq,xVqj(H) + (1− πq,x)Vqj(L)

for both j = i− 1 and j = i+ 1. This then implies (15). Conversely, it is straightforward to

verify that if (15) holds, then

πq,xVqi(H) + (1− πq,x)Vqi(L) ≥ πq,xVqj(H) + (1− πq,x)Vqj(L)

for any j = 0, ..., K + 1, where q0 = qL and qK+1 = qH . Note that we need the fact that r̄i

increases with i for this, and we have proved this earlier. Moreover, if r(q, x) ∈ (r̄i−1, r̄i),

then the above inequality is strict for any j 6= i and hence τ(q, x; qi) = 1.
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Proof of Theorem 6.1

(if part) Let R be a right-invariant equivalence relation with K + 2 equivalence classes,

I1, ..., IK , IH , IL, where LfH = IH and LfH = IL. Define M as follows. Let Q = {q1, ..., qK},
with qi corresponding to Ii. Define τ as follows. For any updating state qi ∈ Q and for any

x ∈ X, let τ(qi, y) = qj if y ∈ Ii and y ◦ x ∈ Ij, where j = 1, ..., K and j = H,L. This is

well-defined because R is right-invariant: if y,y′ ∈ Ii, then yRy′, but this also implies that

(y ◦x)R(y′ ◦x) and hence j is uniquely determined. Let qo be the internal state qi such that

∅ ∈ Ii. Finally, M implements the rule f since x ∈ Lfθ if and only if λM(x) = qθ under M

by construction.

(only if part) Let M be a DFSA that implements f with |Q| = K. We extend τ so

that τ(qθ, x) = qθ for θ = H,L and x ∈ X, and hence extending λM accordingly. Define

R ⊂ X∗ ×X∗ by

xRy ⇐⇒ λM(x) = λM(y).

We use [q] to denote the equivalence class such that x ∈ [q] if and only if λM(x) = q. R is

right-invariant. If x,y ∈ [q], then λM(x) = λM(y) = q and hence λM(x ◦ z) = λM(y ◦ z) for

any z, which in turn implies that (x ◦ z)R(y ◦ z). Moreover, non-redundancy of M implies

that R has exactly K + 2 equivalence classes. Finally, Lfθ = [qθ] and hence is one of the

equivalence classes from R.

Proof of Theorem 3.2

(1) By Proposition 2.1, π̄ converges to one or π converges to zero as δ converges to one. Since

rh < +∞ or r` > −∞, say the former is true, for any given π, it takes at least K ′ > K + 3

good signals to reach π̄ for δ sufficiently large. We now show that under the optimal decision

rule, denoted by f , the sets LfH and LfL cannot be written as some unions of equivalence

classes from a right-invariant relation with K + 2 equivalence classes. Now, consider the

partial histories xk, k = 1, ..., K + 3, where xk consists of k h-signals. We claim that each

partial history has to be of a distinct equivalence class. To do so, for any k > k′, we only

need to show that there is a witness partial history yk,k
′

such that xk ◦ yk,k
′

while xk
′ ◦ yk,k

′

leads to another. Take yk,k
′
= xK

′−k′ . Then, xk
′ ◦xK

′−k′ leads to action aH while xk ◦xK
′−k′

leads to action c (continue) under the optimal rule f . One can append yk
′k with sufficiently

many `-signals in the end so that xk ◦ yk,k
′

leads to action aL.

(2) Suppose, by contradiction, that there is a DFSA that implements the optimal decision

rule, f ∗, with K states for some finite K. By the Theorem 6.1, there exists a right-invariant

equivalence relation R with K equivalence classes over X∗ such that the set Lf
∗

θ is a union

of some of those classes for both θ = H,L. To show that this cannot be the case, we need to
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show that for any right-invariance equivalence relation R such that Lf
∗

H and Lf
∗

L are unions

of its equivalence classes has infinitely many equivalence classes. To this end, we construct

an infinite sequence of partial histories, {x1,x2, ...,xn, ...}, xn ∈ X∗ for each n, and each

represents such an equivalence class. For any n 6= n′, to show that xn and xn
′

belong to

different equivalence classes, we construct a witness history, denoted by yn,n
′
, such that

xn ◦ yn,n
′

and xn
′ ◦ yn,n

′
dictate different actions under the optimal policy.

To simplify notation, we normalize rh = ρ and r` = −1. This is with no loss of generality

as we can think of these numbers in terms of multiples of r`. Generically, ρ is a normal

number, that is, for any finite sequence j1j2 · · · jl ∈ {0, 1, ..., 9}l, we can locate the sequence

somewhere in its decimal expansion.

We construct our sequence of partial histories, {x1,x2, ...xn, ...}, as follows: first, let

x1 = (h) and, for n > 1, let

xn = xn−1 ◦ (`, h, ..., h︸ ︷︷ ︸
(kn−kn−1) h’s

),

where kn is the largest integer such that knρ − (n − 1) ≤ ρ. Note that for all n, any initial

segment y ⊂ xn satisfies

ry ∈ (−1, ρ). (60)

Moreover, for each n,

rxn = knρ− (n− 1) ∈ (0, ρ). (61)

Since rπ̄ − rπ > rh = ρ and rπ − rπ > 2|r`| = 2, it is optimal to wait along the whole

sequence following the partial history xn. Note also that since ρ is a normal number and

hence irrational, rxn 6= rxn′ for all n 6= n′.

Now, we show that for any two partial histories xn and xn
′
, we can find a witness history

yn,n
′
such that it is optimal to wait following xn◦yn,n′ (and hence optimal to take aL following

xn ◦yn,n′ followed by sufficiently many `’s) but optimal to take aH following xn
′ ◦yn,n′ . Note

that (60) and (61) imply that it is optimal to wait following xn for all n.

Without loss of generality we may assume rxn < rxn′ . Let k̄ be the unique integer that

satisfies

rxn + k̄ρ < rπ̄ − rπ ≤ rxn + (k̄ + 1)ρ.

By (61) we know that k̄ ≥ 1. Hence, along the partial history xn followed by k̄ high signals,

it is optimal to wait. We consider two cases.

First, suppose that rxn′ + k̄ρ > rπ̄ − rπ, i.e., along the partial history xn
′

followed by k̄

high signals, it is optimal to take aH . In this case, take yn,n
′

to be k̄ high signals satisfies
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the requirement.

Second, suppose that rxn′ + k̄ρ ≤ rπ̄ − rπ, i.e., along the partial history xn
′

followed by

k̄ high signals, it is also optimal to wait. Then, set

ε1 = (rπ̄ − rπ)− (rxn′ + k̄ρ) < (rπ̄ − rπ)− (rxn + k̄ρ) = ε2. (62)

It then follows that ε1 ≥ 0 as rxn′ + k̄ρ ≤ rπ̄ − rπ and ε2 ≤ ρ as rπ̄ − rπ ≤ rxn′ + (k̄+ 1)ρ. To

construct the witness partial history yn,n
′

in this case, we need the following lemma, whose

proof is given at the end and makes use of normality of ρ.

Lemma A.1. For given ε1 < ε2 ∈ [0, ρ], there exists a partial history z such that

ε1 < rz < ε2. (63)

Moreover, for any initial segment y ⊂ z, −1 < ry < ρ.

By Lemma A.1, we can find z with rz ∈ (ε1, ε2) w.r.t. ε1 and ε2 given by (62), and, for

any initial segment y ⊂ z, −1 < ry < ρ. Thus, by (60) and (61), along the partial history

xn ◦ z or xn
′ ◦ z, it is optimal to wait all along. Now, let yn,n

′
be equal to z followed by k̄

high signals, and hence

rxn◦yn,n′ = rxn + rz + k̄ρ < rxn + ε2 + k̄ρ ≤ rπ̄ − rπ,

where the first inequality follows from rz < ε2 and the second from (62). Hence, it is optimal

to wait following the partial history xn ◦ yn,n
′
. In contrast,

rxn′◦yn,n′ = rxn + rz + k̄ρ > rxn′ + ε1 + k̄ρ ≥ rπ̄ − rπ,

where the first inequality follows from rz > ε1 and the second from (62). Hence, it is optimal

to take aH following the partial history xn
′ ◦yn,n′ , and yn,n

′
is a valid witness partial history.

Proof of Lemma A.1

Let n be the largest integer for which ε2 − ε1 < 10−n. Then, if

ε1 = 0.j1j2 · · · jnjn+1 · · · < 0.j1j2 · · · jn(jn+1 + 1) ≤ ε2,

by normality, for some k,

ρ = 0.i1 · · · ik j1j2 · · · jnjn+1 · · · > 0.i1 · · · ik j1j2 · · · jnjn+1.
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Now, for N1 = 10k and M1 = i1 · · · ik, N1ρ−M1 ∈ (ε1, ε2). We shall then define z inductively,

but from the end to the beginning. At the end, z has N1 h and M1 `, and we construct

it by an increasing sequence {nhi , n`i}, where nhi is the number of h’s and n`i number of `’s

in its initial segment of length i. Thus, we begin with nhN1+M1
= N1 and n`N1+M1

= M1.

We construct this sequence through another sequence, {N2, N3, ..}, defined inductively as

follows. First, let N2 be the smallest integer such that N2ρ −M1 > −1. Inductively, Nk is

the smallest integer such that

Nkρ− [M1 − (k − 2)] = Nkρ−M1 + (k − 2) > −1. (64)

Note that this is a decreasing sequence, and that

0 < Nkρ− [M1 − (k − 1)] = Nkρ−M1 + (k − 1) < ρ. (65)

The inequality on the left follows directly from (64), and the right follows from a proof by

contradiction: if Nkρ−M1 + (k− 1) ≥ ρ, then (Nk− 1)ρ−M1 + (k− 1) ≥ 0, a contradiction

to the fact that N2 is the smallest integer for (64) to hold. Moreover, since ρ < 1, it also

follows that Nk is strictly decreasing in k, and since N1 is finite, it ends in finite time.

Now we construct the sequence {nhi , n`i} by induction, but backwards. First, for i =

N1 +M1 to N2 +M1 + 1,

(nhi−1, n
`
i−1) = (nhi − 1, n`i−1) = (nhi − 1,M1).

That is, we decrease the number of h’s by one but keep the number of `’s constant. Then,

we move the number of `’s by one:

(nhN2+M1−1, n
`
N2+M1−1) = (nhN2+M1

,M1 − 1) = (N2,M1 − 1).

Inductively, for i = Nk +M1 − k to Nk+1 +M1 − (k + 1),

(nhi−1, n
`
i−1) = (nhi − 1, n`i−1) = (nhi − 1,M1 − k).

It then follows directly from (64) and (65) that for all i,

nhi ρ− n`i ∈ (−1, ρ), (66)

that is, for all initial segment y ⊂ z, ry ∈ (−1, ρ).
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