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Abstract

We study a dynamic model of price competition with differentiated products in which
new generations of consumers acquire information about available products from their
friends of previous generations. The social network, which links consumers across gen-
erations, affects the evolution of consumers’awareness of products and firms’ long-term
(steady-state) market shares. Focusing on steady-state equilibria, we examine how the
structure of the social network - including connectivity and homophily - influences market
shares, pricing, and welfare.
Key Words: Learning from friends; Social network; Price competition; Differentiated

products; Steady state
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1 Introduction

In markets with differentiated products, consumers are often not fully aware of all available

products. One important channel through which consumers learn about available products is

by learning from friends who have previously purchased one of the products. This process of

learning from friends, or “word of mouth,”greatly affects consumers’purchasing behavior as

shown by empirical evidence.1 Given the importance of learning from friends, it is natural

to study how the linking pattern among friends, or the structure of social networks, affects

competition between firms and the resulting social welfare.

Campbell (2019) provides the first model addressing the above question. Specifically, in

his model there are two symmetric firms selling differentiated products and two generations
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1For empirical evidence regarding the effect of “word of mouth,”see Keaveney (1995) on banking, Chevalier

and Mayzlin (2006) on book sales, Chintagunta et al. (2010) on entertainment, and Luca (2016) on restaurant
choices.
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of consumers, with the new generation learning from the old generation about the available

products, and the linking pattern between the two generations described by a social network.

His model is essentially a static one for the following reasons. First, the purchasing behavior

(and information status) of the old generation is exogenously given. Second, firms compete

only for the new generation of consumers once.

This paper extends Campbell (2019) into a truly dynamic setting. In particular, there

is a sequence of generations of consumers, and the linking pattern between each adjacent

generations is described by a social network. The purchasing behavior and information status

of each generation are endogenously determined. For each generation of consumers, they

make purchasing decisions given their information status; and then their purchasing decisions,

through the social network, affect the information status of the next generation, and so forth.

The structure of the social network is important in that it influences the joint evolution of

consumers’information status and purchasing behavior. Incorporating this dynamic learning

process not only makes the model more relevant to real-world situations, but also leads to

predictions that are significantly different from those in Campbell (2019).

Our model has two long-lived firms located at the opposite ends on a Hotelling line and

competing in prices. We allow the two firms to be asymmetric, say one firm has quality

advantage. Each generation of consumers is uniformly distributed on the Hotelling line and

lives for one period only. Each consumer has a unit demand, and a necessary condition for a

consumer to buy a product is that he is aware of that product. For each generation, a fixed

proportion of consumers is exogenously fully informed (aware of both firms’products). For

the remaining (endogenous) consumers, they learn about the existence of products from their

friends of the previous generation: an endogenous consumer becomes aware of a product if

he has a friend of the previous generation who purchased that product.2 As a result, some

endogenous consumers are partially informed (aware of one product only). The number of

friends a consumer has is governed by the structure of the social network. In the basic model,

we focus on the case of random connections, in which the location of each friend is uniformly

drawn at random. We then extend the model to the case of homophily, under which friends

are more likely to have similar locations.

The structure of the network determines how the purchasing behavior of one generation

translates into the distribution of information status of the next generation, which in turn

determines the purchasing behavior of that generation. We focus on steady-state (long-term)

market shares: once reached, they no longer change across generations of consumers. Firms

set prices at the very beginning, which remain fixed in all later periods. Firms’prices induce

steady-state market shares through learning from friends, and we assume that firms’objectives

2We assume that each consumer has at least one friend and thus is aware of at least one product.
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are to maximize their steady-state (long-term) profits.

We show that the structure of the network affects firms’pricing decisions in a non-trivial

way through the dynamic social learning process. In our model, the firms compete not only

for the fully informed consumers in the current period, but also for the partially informed

consumers in future periods. By setting a lower price and expanding its full-information market

share, through dynamic social learning, a firm gains more partially informed consumers who

are aware of its product only in future periods. Due to this channel, competition is intensified

compared to the Hotelling benchmark. Moreover, the intensity of competition crucially depends

on how sensitive the steady-state demand is to the full-information market share, which in turn

depends on the structure of the social network.

In the basic model with random connections, our main goal is to study the impact of network

connectivity (the number of friends consumers have). We start with symmetric firms. Our

first main result is that the intensity of competition is non-monotonic in network connectivity.

In particular, under the least connected network (the single-friend network under which each

consumer has exactly one friend) and the most connected network (the infinite-friend network

under which each consumer has an infinite number of friends), the equilibrium price is the

highest and coincides with that in the Hotelling benchmark. Under any other generic network,

the equilibrium price is lower. Furthermore, among the k-friend networks (each consumer

has exactly k friends), the price is the lowest under the two-friend network and increases in

k for k ≥ 2. For general networks, again the equilibrium price is non-monotonic in network

connectivity.

The intuition for the above non-monotonicity result is that an increase in network connec-

tivity induces two effects. First, as the network becomes more connected or each consumer has

more friends, more consumers become fully informed and there are fewer partially informed

consumers. Consequently, the competition for the partially informed consumers in future pe-

riods is softened and the steady-state demand becomes less sensitive to the full-information

market share. We refer to this as the volume effect of network connectivity. On the other

hand, network connectivity also has the following ratio effect. As the network becomes more

connected, for the same increase in a firm’s full-information market share (from the equal split

in equilibrium), among the partially informed consumers the ratio of the consumers who are

informed of the product of the firm in question only to those who are informed of the other

firm’s product only increases. This ratio effect tends to make the steady-state demand more

sensitive to the full-information market share and intensifies competition. These two effects

work in opposite directions, giving rise to the non-monotonicity of the intensity of competition

in network connectivity.

We also find that an increase in the proportion of exogenously fully informed consumers
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leads to a higher equilibrium price. The underlying reason is that, with a larger proportion

of exogenously fully informed consumers, there are fewer partially informed consumers in the

future to compete for, which softens competition. This is a surprising result as it is the

opposite to the prediction in standard models, where more fully informed consumers intensifies

competition and lowers prices. The reason behind different predictions is that in standard

models firms compete for fully informed consumers only, while in our dynamic model firms

also compete for partially informed consumers due to dynamic learning.

As to total welfare, while higher network connectivity always improves total welfare, its

effect on consumer surplus is non-monotonic. Intuitively, as the network becomes more con-

nected, each consumer gets “more”information, and thus more consumers are fully informed

and fewer consumers buy “wrong” (less preferred) products, which reduces the total trans-

portation cost incurred. This information effect improves total welfare and consumer surplus.

However, network connectivity also affects the equilibrium price, which in turn affects consumer

surplus. Since the equilibrium price is non-monotonic in network connectivity, consumer sur-

plus is also non-monotonic. In particular, under sparsely-connected networks, the equilibrium

price decreases in connectivity, which benefits consumers; thus consumer surplus is increas-

ing in connectivity. However, under relatively well-connected networks, the equilibrium price

increases in connectivity, which hurts consumers. Under such networks, we find that the pric-

ing effect dominates the information effect, so that overall consumer surplus is decreasing in

network connectivity.

Next we consider asymmetric firms with firm 1 having an advantage. Under the single-

friend network or the infinite-friend network, the equilibrium outcome coincides with that of the

Hotelling benchmark. Under other generic networks, compared to the Hotelling benchmark,

in equilibrium firm 1 has a larger market share and firm 2 has a smaller market share and a

lower price. The underlying reason is that with a full-information market share bigger than

1/2, firm 1 can gain additional partially informed consumers through the dynamic learning

process, which also forces firm 2 to reduce its price. Similar to the results in the symmetric

case, with asymmetric firms the market share, prices and consumer welfare in equilibrium are

all non-monotonic in network connectivity.

Finally, we study the extended model with homophily. When the two firms are symmetric,

under generic networks we find that the equilibrium price is monotonically increasing in the

degree of homophily; that is, homophily softens competition. The reason behind this result

is the information effect: with homophily consumers are more likely to be aware of “right”

(preferred) products, since their friends are more likely to have similar tastes and thus have

bought “right” products; in other words, the “quality” of information received from friends

improves. This means that, even if a firm cuts price and expands its full-information market
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share, it will induce fewer partially informed consumers to “wrongly”buy its product. There-

fore, a higher degree of homophily softens the competition for partially informed consumers

and raises price. As to social welfare, we show that total welfare increases in the degree of

homophily, since homophily improves the quality of information that consumers receive from

their friends (more likely to be aware of their preferred products). However, since the pricing

effect works against the information effect, consumer surplus could decrease in the degree of

homophily, which is indeed the case when the degree of homophily is not too large. When the

two firms are asymmetric, we show that homophily dampens the advantage of the advantaged

firm: firm 1’s equilibrium market share is decreasing in the degree of homophily. The underly-

ing reason for this result is again that homophily dampens the dynamic learning effect among

partially informed consumers.

Related Literature As mentioned earlier, the closest paper to ours is Campbell (2019).

Our paper differs from Campbell (2019) in making the model truly dynamic and incorporating

the case of asymmetric firms. As a result, we derive a set of different and richer predictions.

Specifically, in Campbell (2019) with random connections, a more connected network always

intensifies competition and improves total welfare and consumer welfare. With the dynamic

learning process, firms in our model also compete for partially informed consumers in the

future by affecting the full-information market share, a feature absent in Campbell (2019).

This feature makes prices and consumer welfare non-monotonic in network connectivity in

our model. With homophily, Campbell (2019) predicts that a higher degree of homophily

does not affect the equilibrium price, because the purchasing decisions of the old generation

are exogenously given in his model; moreover, homophily always increases total welfare and

consumer welfare. In contrast, due to the presence of the dynamic learning process, our model

predicts that a higher degree of homophily softens competition; and as a result, consumer

surplus can decrease in the degree of homophily. Different from Campbell’s (2019) sole focus

on symmetric firms, our model also generates rich predictions on how asymmetry between

firms affects various results.

More broadly, our paper is related to several strands of literature in industrial organization

that study settings in which some consumers are not fully informed about available products or

prices. One strand of literature studies consumers’search for product information (e.g., Varian,

1980; Wolinsky, 1986; Stahl, 1989). Another strand considers firms’advertising strategies in

informing consumers about their products (Butters, 1977; see Bagwell, 2007, for an excellent

survey). In terms of modeling, Grossman and Shapiro (1984) is particularly related. In their

model, two firms compete with each other on a Hotelling line, and firms need to send costly

advertisements to consumers in order to make them informed about their products. Their
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focus is on firms’advertising strategy and its impact on pricing and welfare.

There is a large literature on learning through word of mouth. For instance, Smallwood and

Conlisk (1979) consider a model in which new consumers, when selecting a new product, sample

the products used by the existing consumers in the population and mimic their choices; and

they study how firms’current market shares affect long-run adoption among consumers. Ellison

and Fudenberg (1995) and Banerjee and Fudenberg (2004) study how word-of-mouth learning

affects agents’choice between alternatives with stochastic payoffs in non-market environments.

Rob and Fishman (2005) analyze firms’reputation dynamics in a competitive setting in which

consumers learn about product qualities through word of mouth. Bergemann and Valimaki

(2006) study a dynamic pricing model in which a new experience good is introduced and

consumers can learn from earlier buyers about the quality of the good. Galeotti (2010) develops

a model in which consumers get informed about products by choosing between two options:

search directly by themselves or ask their friends. He shows how the relative costs of the two

options determine pricing and welfare in equilibrium. Kovac and Schmidt (2014) characterize

market share dynamics in a Bertrand model with homogeneous products in which firms play

mixed pricing strategies and consumers learn about firms’prices from friends. Overall, in this

literature how the structure of the social network affects the market outcomes received little

attention.

Two recent papers explicitly model social networks with word-of-mouth learning. Specifi-

cally, Goyal and Kearns (2012) study a setting in which two firms compete in seeding a network

before diffusion begins through social learning. Bimpikis et al. (2016) investigate how firms’

targeted advertising strategies depend on the structure of the social network, through which

the information about the availability of products is diffused. Different from these papers,

our paper focuses on how the network structure affects competition and welfare in a Bertrand

model with differentiated products.

The rest of the paper is organized as follows. Section 2 sets up the model. The basic

model with random connections is analyzed in Section 3. Section 4 studies the extension with

homophily and Section 5 contains concluding remarks. All the proofs are relegated into the

Appendix.

2 Model

Time is discrete and denoted as T , and the horizon is infinite. There are two infinitely lived

firms, firms 1 and 2, competing with each other in a Hotelling model; they are located at the two

end points (firm 1 at location 0). In each period, there is a new generation of consumers active

in the market, and they exit the market after one period. We index consumers by generation T .

Each generation of consumers is of measure 1, and they are uniformly distributed on [0, 1], with
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a consumer’s location indexed by x ∈ [0, 1]. Each consumer has a unit demand. A consumer

at location x gets utility V + ∆ − tx from buying firm 1’s product, and V − t(1 − x) from

buying firm 2’s product. Here t is the per-unit transportation cost, and ∆ ≥ 0 represents firm

1’s advantage over firm 2. The marginal cost of each firm is normalized to 0. We assume V is

large enough so that each consumer will buy exactly one product, and the question is which

one. Finally, we assume that ∆ < t, which ensures that both firms are active in the market.

Next we introduce consumers’ information status. For each generation T , a λ ∈ (0, 1)

proportion of consumers, independent of location x, are aware of both products through an

exogenous process (for instance, through consumer search or firms’advertising campaigns).3

The remaining 1−λ proportion of consumers, which we call endogenous consumers, are initially
unaware of either products. They learn about the existence of a product from their friends of

the previous generation T−1 (old consumers who already purchased). The pattern of the social

connections or friendship network is described by a distribution {pk}, where pk is a consumer’s
probability of having k friends of the old generation. We assume that p0 = 0, which means

that each consumer has at least one friend, thus is informed of at least one product. By having

a friend of the old generation, a new consumer becomes informed of the product purchased by

that friend in the last period (but not the other product). If a new consumer has two friends of

the old generation who purchased different products, then the new consumer becomes aware of

both products (i.e., fully informed). If all friends of a new consumer bought the same product,

say product 1, then the new consumer is aware of product 1 only.

In the basic model, we will focus on the case of random connections. That is, the friends of

a new consumer are uniformly drawn at random in terms of locations, independent of the new

consumer’s own location. We then study homophily in an extension, in which case a consumer

and her friends are more likely to have similar locations. Denote ψT (x) as the probability

that a consumer of generation T at location x buys from firm 1, and ψT as the proportion of

consumers of generation T who buy product 1. That is, firm 1’s market share is ψT and that

of firm 2 is 1− ψT in period T .
Firms know the structure of the network, but does not observe the locations of individual

consumers. In the very beginning (say period 0), firms set prices P1 and P2 simultaneously,

which remain fixed in all later periods. Given the friendship network across generations,

consumers’information status about the products and the market share ψT , in general, will

evolve across periods through learning from friends. We will focus on the steady-state (or

long-term) market share, which satisfies ψT+1 = ψT ≡ ψ. In short, given P1 and P2, through

learning from friends the market share will eventually reach a steady state. We assume that

3A positive fraction of exogenously fully informed consumers is needed to ensure that the steady-state market
shares are non-degenerate (both firms have positive market shares). See footnote 5 for details.
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each firm’s objective is to maximize its steady-state profit.4

Our model is closely related to Campbell (2019), with two main differences. First, Campbell

(2019) considers symmetric firms (∆ = 0) only, while we also consider asymmetric firms.

Second and more importantly, in Campbell (2019) firms compete with each other in one period

only, and the information status of the old-generation consumers is exogenously given. In

contrast, in our model firms compete over time and the information status of each generation

is endogenously derived. In terms of the technical analysis of the steady state, our model is

also related to Campbell et al. (2019), which study how the structure of the social media

network affects the prevalence of different types of media content. They also focus on steady

state, under which the frequency that each type of message is forwarded remains unchanged

over time. However, the research questions that our paper addresses are very different from

their paper’s.

To facilitate later comparisons, here we compute the equilibrium outcome in the standard

Hotelling model (λ = 1 in our setting) as a benchmark. Using superscript H to denote the

Hotelling outcomes, the equilibrium prices are PH1 = t+ ∆
3 and P

H
2 = t−∆

3 , and the equilibrium

market share of firm 1 is x̂H = 1
2 + ∆

6t .

3 Random Connections

In this section we study the case of random connections. First observe that for each generation,

a consumer’s information status can be one of the following: fully informed, aware of product

1 only, or aware of product 2 only. With random connections, a consumer’s information status

is independent of her location x. Our first step is to derive the steady state market share as

a function of P1 and P2. For this purpose, we need to trace the distribution of consumers’

information status across periods. Let φF,T be the proportion of consumers of generation T

who are fully informed, and φi,T , i = 1, 2, be the proportion of consumers of generation T who

are aware of product i only.

Define x̂ as the cutoff consumer (in terms of location) who is fully informed and indifferent

between product 1 and 2. Since consumers live for one period only, this x̂ coincides with the

cutoff in the Hotelling model:

x̂ =
1

2
+
P2 − P1 + ∆

2t
. (1)

Since firm 1 has an advantage with ∆ ≥ 0, in equilibrium, x̂ ∈ [1/2, 1). Note that x̂ is also

firm 1’s market share if all consumers were fully informed. Given ψT , x̂, and λ, we have the

4One justification for this assumption is that firms are very patient (do not discount future). When firms are
not very patient, this assumption is still reasonable if, given any P1 and P2, the steady state is reached rather
quickly. In this case, firms have incentives to set the steady-state equilibrium prices in the very beginning, if
there are non-negligible costs of price adjustment.
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following transition equations:

φ1,T+1 = (1− λ)
∑
k

pkψ
k
T , φ2,T+1 = (1− λ)

∑
k

pk(1− ψT )k,

φF,T+1 = 1− φ1,T+1 − φ2,T+1 = λ+ (1− λ)[1−
∑
k

pk[ψ
k
T + (1− ψT )k],

ψT+1 = φ1,T+1 + x̂φF,T+1.

In the first (second) equation, the consumers in generation T + 1 who are informed of

product 1 (2) only must be someone: (i) who are not exogenously fully informed, and (ii)

whose friends of generation T all bought product 1 (2) only. In the third equation, the fully

informed consumers in generation T +1 include consumers who are exogenously fully informed

and endogenous consumers whose friends of generation T bought different products. In the

last equation, the fraction of consumers buying product 1 in generation T + 1 consists of two

groups: consumers who are aware of product 1 only, and the fully informed consumers who

prefer product 1.

Combining the above equations, we have the following transition equation, which specifies

ψT+1 as a function of ψT :

ψT+1 = x̂+ (1− λ)
∑
k

pk[(1− x̂)(ψT )k − x̂(1− ψT )k] ≡ H(ψT ). (2)

The three terms of H(ψT ) in (2) can be interpreted as follows. The first term x̂ is firm 1’s

full-information market share. The second term is the fraction of consumers who “wrongly”

bought product 1 (they prefer firm 2’s product but are informed of product 1 only); firm 1

gains this portion of market share relative to the full-information benchmark. Similarly, the

third term is the fraction of consumers who “wrongly”bought product 2; and firm 1 loses this

portion of market share relative to the full-information benchmark. Taken together the second

and third terms, it represents firm 1’s net gain of market share among the partially informed

consumers relative to the full-information benchmark.

In the steady state, ψT+1 = ψT ≡ ψ; that is, ψ = H(ψ). By (2), the steady-state equation

can be explicitly written as

ψ = x̂+ (1− λ)
∑
k

pk[(1− x̂)ψk − x̂(1− ψ)k] ≡ H(ψ). (3)

Note that P1 and P2 affect the steady-state market share ψ only through their effects on x̂.

The next lemma shows that x̂ induces a unique steady-state market share ψ.

Lemma 1 Given x̂ ∈ [1/2, 1), λ, and {pk}, there is a unique steady-state ψ, which is globally
stable and satisfies ψ ∈ [x̂, 1). Moreover, the steady-state ψ is strictly increasing in x̂.
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The result that ψ ≥ x̂ is intuitive. To see this, suppose firm 1’s market share equals

x̂ ≥ 1/2. Then, due to learning from friends, there will be (weakly) more consumers who

wrongly purchase product 1 than those who wrongly purchase product 2, since firm 1 has a

larger full-information market share. This indicates that firm 1’s steady-state market share ψ

would be (weakly) bigger than x̂.

The relationship between ψ and x̂ depends on the network structure {pk}. To make the
relationship more transparent, we will pay special attention to regular networks under which

{pk} is degenerate. In particular, we define a k-friend network as a regular network under
which every consumer has exactly k friends (pk = 1 for some k ≥ 1). Among k-friend networks

there are two extreme networks. The first one is the single-friend network, under which each

consumer has exactly one friend (p1 = 1). The second one is the infinite-friend network, under

which each consumer has infinitely many friends (k →∞). We use the term generic networks

for networks other than the single-friend network and the infinite-friend network.5 The next

lemma sheds some light on the relationship between ψ and x̂ under different networks.

Lemma 2 (i) Under the single-friend network or the infinite-friend network, ψ = x̂. (ii)

Under generic networks, ψ > x̂ if x̂ > 1/2. (iii) Under k-friend networks, fixing x̂ ∈ (1/2, 1),

ψ strictly decreases in k if k ≥ 2.

Lemma 2 holds the key in understanding later results. The result regarding the infinite-

friend network is quite intuitive: under this network, all consumers in each generation are fully

informed, and therefore the steady-state market share ψ equals to the full-information one,

x̂. Under the single-friend network, when ψ = x̂, the fraction of endogenous consumers who

wrongly buy product 1 exactly equals to those who wrongly buy product 2, both of which are

(1 − x̂)x̂. Thus firm 1’s steady-state market share is x̂.6 For k-friend networks with k ≥ 2,

as k increases (the network becomes more connected), the total number of partially informed

consumers ((1−λ)[ψk+(1−ψ)k]) decreases, but the ratio of the number of consumers informed

of product 1 only to those informed of product 2 only, ( ψ
1−ψ )k, increases because ψ > x̂ > 1/2.

The first effect tends to decrease firm 1’s steady-state market share, and the second effect

works in the opposite direction. It turns out that when k ≥ 2, the first effect dominates,

and firm 1’s net gain of market share among the partially informed consumers decreases in k.

Therefore, among k-friend networks, the two-friend network leads to the biggest steady-state

market share for firm 1.
5Under any generic network, if λ = 0, then by (3) it can be verified that ψ = 1 whenever x̂ ∈ ( 1

2
, 1).

6Specifically, for k-friend networks,

H(x̂)− x̂ = (1− λ)(1− x̂)x̂[x̂k−1 − (1− x̂)k−1].
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We are also interested in the curvature of ψ(x̂), as it will be useful for establishing the

existence and uniqueness of equilibrium.

Lemma 3 (i) For any {pk}, d2ψ
dx̂2
|x̂=1/2 = 0 and limλ→1

d2ψ
dx̂2

= 0. (ii) Under well-connected

networks (pk = 0 for all k ≤ k and k is large), d
2ψ
dx̂2
→ 0. (iii) Under sparsely-linked networks

(pk = 0 for k ≥ 4, or each consumer has at most 3 friends), d2ψ
dx̂2
≥ 0 when x̂ ≤ 1/2 and

d2ψ
dx̂2
≤ 0 when x̂ ≥ 1/2. (iv) Under any generic network {pk}, if λ is big enough, then d2ψ

dx̂2
≥ 0

when x̂ ≤ 1/2 and d2ψ
dx̂2
≤ 0 when x̂ ≥ 1/2.

Lemma 3 specifies a set of suffi cient conditions for ψ(x̂) to be convex when x̂ ≤ 1/2 and

concave when x̂ ≥ 1/2.7 Note that the curvature of ψ(x̂) only depends on {pk} and λ. In the
remaining of this section we will focus on the set of {pk} and λ such that ψ(x̂) satisfies the

above convexity/concavity property.

Now we are ready to characterize steady-state equilibria. Firm 1’s and firm 2’s profits in

steady state are π1(P1, P2) = P1ψ(x̂) and π2(P1, P2) = P2[1 − ψ(x̂)], respectively. Each firm

i chooses Pi, given Pj , to maximizes its steady state profit. The first-order conditions yield

(with P ei being the equilibrium prices)

P e1 =
2tψ
dψ
dx̂

and P e2 =
2t(1− ψ)

dψ
dx̂

, (4)

where, by (3),
dψ

dx̂
=

1− (1− λ)
∑

k pk[(ψ)k + (1− ψ)k]

1− (1− λ)
∑

k kpk[(1− x̂)(ψ)k−1 + x̂(1− ψ)k−1]
. (5)

Notice that dψ/dx̂ > 0 (by Lemma 1) captures the sensitivity of ψ to x̂ and largely deter-

mines the intensity of competition. Combining (1), (4), and (5), we have the following pricing

equation:

x̂ =
1

2
+

∆

2t
− (2ψ − 1)

1− (1− λ)
∑

k kpk[(1− x̂)(ψ)k−1 + x̂(1− ψ)k−1]

1− (1− λ)
∑

k pk[(ψ)k + (1− ψ)k]
. (6)

Equations (3) and (6), with two unknowns (x̂ and ψ), jointly determine steady-state equilibria.

Denote (x̂e, ψe) as an equilibrium pair of (x̂, ψ).8

Proposition 1 There is a unique candidate equilibrium (satisfying the steady-state equation

and the first-order conditions), which satisfies x̂e ∈ [1
2 ,

1
2 + ∆

2t ]. If ∆ = 0, the candidate equi-

librium is symmetric with x̂e = ψe = 1/2. The candidate equilibrium is an equilibrium under

either of the following conditions: (i) {pk} is the single-friend network or a well-connected
network; (ii) λ is relatively large.

7For part (iv) to hold, λ could be relatively small. For example, when λ = 1/4, ψ(x̂) has the desired
convexity/concavity property under the network p1 = p2 = p3 = 1/3, and under the network p1 = p2 = p3 =
p4 = p5 = 1/5.

8From (x̂e, ψe), we can recover the equilibrium prices P e1 and P
e
2 based on (4) and (5).
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The conditions (i) and (ii) specified in Proposition 1 are suffi cient conditions under which

the second-order conditions are satisfied globally. Intuitively, under both conditions in the

limit the model converges to the Hotelling benchmark. These two conditions are far from

being necessary. Even when λ is relatively small so that the second-order conditions are not

satisfied globally, each firm’s profit function could still be single-peaked, meaning that the

candidate equilibrium satisfying the first-order conditions is indeed the equilibrium.9

3.1 Symmetric firms

We first consider symmetric firms with ∆ = 0. Since Campbell (2019) focuses solely on

symmetric firms, the comparison in this subsection will reveal clearly how introducing steady

state (or long-term) demand affects results. With ∆ = 0, the equilibrium is symmetric with

x̂e = ψe = 1/2, P e1 = P e2 ≡ P e = t/(dψdx̂ |x̂=1/2), and (5) becomes

dψ

dx̂
|x̂=1/2 =

1− (1− λ)
∑

k pk(
1
2)k−1

1− (1− λ)
∑

k kpk(
1
2)k−1

. (7)

The expression of the equilibrium price reveals that the intensity of competition depends on

the sensitivity of ψ to x̂, evaluated at x̂e.

To examine how the network structure affects the equilibrium price, we define connectivity

in terms of first-order stochastic dominance (FOSD): a network {p′′k} is more connected than
{p′k} if {p′′k} FOSD {p′k}.

Proposition 2 With symmetric firms, the equilibrium price is not monotonic in network con-

nectivity. In particular, the following results hold. (i) Under either the single-friend network or

the infinite-friend network, P e = t, but under any other generic network, P e < t. (ii) Among

the k-friend networks, the equilibrium price is the lowest under the 2-friend network; when k

increases from 1 to 2, the equilibrium price decreases; for k ≥ 2, the equilibrium price strictly

increases in k.

The non-monotonicity result in Proposition 2 can be understood in light of part (iii) of

Lemma 2. In more general terms, we can decompose the net effect of network connectivity

on dψ/dx̂ into two effects: the volume effect and the ratio effect. Specifically, as the network

becomes more connected, more consumers are fully informed and the fraction of partially

informed consumers decreases. This volume effect tends to reduce the sensitivity of ψ to x̂

9For instance, consider the following examples. Network 1 has p1 = p2 = p3 = 1/3 and network 2 has
p2 = p3 = p4 = p5 = 1/4. The other parameter values are λ = 1/4, t = 1, and ∆ can be either 0 or 1/4. For
each case, we plot firm i’s profit function πi(Pi, Pje) (the other firm’s price is fixed at the equilibrium price Pje).
In all cases (four cases in total), each firm’s profit function is single-peaked at Pie, though the profit function is
convex in Pi when Pi is large.
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and soften competition, as there are fewer partially informed consumers to compete for. On

the other hand, a more connected network means that, for the same (non-equilibrium) market

share ψ > 1/2, the ratio of the number of consumers informed of product 1 only to those

informed of product 2 only will increase.10 This means that firm 1 can get a bigger market

share among the partially informed consumers through dynamic social learning. This ratio

effect tends to increase the sensitivity of ψ to x̂ and intensify competition. Since the volume

effect and the ratio effect work in opposite directions, the equilibrium price is not monotonic in

network connectivity. Among the k-friend networks, it turns out that the ratio effect dominates

when k increases from 1 to 2, and the volume effect dominates when k ≥ 2.

Proposition 2 is qualitatively different from the corresponding result in Campbell (2019),

where the equilibrium price monotonically decreases as the friendship network becomes more

connected. The main reason for the difference is that in Campbell’s (2019) one-period model,

firms compete for fully informed consumers only. As the network becomes more connected,

since the fraction of fully informed consumers increases, competition intensifies and the price

decreases. In contrast, in our model firms are competing not only for fully informed consumers

in the current period, but also for partially informed consumers in future periods. A bigger

market share of firm i today (achieved by setting a lower price), through the friendship network,

will lead to more (fewer) partially informed consumers who are informed of product i (j) only

in the next period, which translates to an even bigger market share in the future. This dynamic

channel is absent in Campbell (2019).

To capture more precisely the dynamic learning effect, in the symmetric equilibrium we

compute the sensitivity of firm 1’s current period demand to its price, |∂Q1∂P1
|, and the sensitivity

of firm 1’s steady-state (long-run) demand to its price, | ∂ψ∂P1 |. In particular,

|∂Q1

∂P1
| =

1− (1− λ)
∑

k pk(
1
2)k−1

2t
,

where the numerator is precisely the fraction of fully informed consumers, as in the current

period only those consumers are sensitive to prices. Using (7), we have

| ∂ψ
∂P1
| =

|∂Q1∂P1
|

1− (1− λ)
∑

k kpk(
1
2)k−1

> |∂Q1

∂P1
|.

Observe that the long-run demand is more sensitive to price than the current-period demand is,

and the difference between the two sensitivities exactly captures the dynamic learning effect.

This also suggests that using the sensitivity of current-period demand to price in empirical

studies to fit firms’behaviors could be misleading. In the real world, what firms try to maximize

is more likely to be long-run profits rather than short-run profits, and thus the sensitivity of

10As mentioned earlier, under k-friend networks this ratio is ( ψ
1−ψ )k, which is increasing in k when ψ > 1/2.
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long-run demand to price is a more appropriate measure. In other words, using the sensitivity

of current-period demand would underestimate the sensitivity of the (long-run) demand that

firms actually care about. Our model also provides a justification for firms’seemingly puzzling

overemphasis on current market shares over the current profits.11 This is because, due to the

dynamic learning effect, a firm’s current market share also affects the evolution of its future

market share and thus its long-run profits.12

Proposition 3 Suppose firms are symmetric and networks are generic. (i) If {p′′k} FOSD
{p′k} and p′′1 = p′1, then the equilibrium price is higher under {p′′k} than under {p′k}. (ii) The
equilibrium price is increasing in λ, the fraction of exogenously fully informed consumers.

For generic (non-regular) networks, the relationship between network connectivity and

equilibrium price follows a pattern similar to the one under regular (the k-friend) networks.

Part (i) of Proposition 3 shows that, if a FOSD change in connectivity does not reduce p1 (thus

puts more probabilities on higher number of links), then it softens competition and increases

the equilibrium price. However, if a FOSD change reduces p1, then it may intensify competition

and reduce prices (see Example 1). For the same reason, the equilibrium price is not monotonic

with respect to changes of mean-preserving spread (see Example 2).13

Part (ii) of Proposition 3 is a surprising result. In standard models of price competition

(such as the search models of Varian (1980) and Stahl (1989)), an increase in the fraction of

exogenously fully informed consumers typically intensifies competition and reduces prices. By

contrast, in our model the result is the opposite. The underlying reason, as mentioned earlier,

is that firms in our model also compete for partially informed consumers of future generations

through the dynamic social learning. When λ increases, there are fewer partially informed

consumers to compete for, or the steady-state demand becomes less sensitive to prices. As a

result, competition is softened and prices increase.

Example 1 (FOSD). Let λ = 1/4, {p′k} = {p′1 = p′2 = 1/2}, and {p′′k} = {p′′1 = p′′2 = p′′3 =

1/3}. Note that {p′′k} FOSD {p′k}. The values of
dψ
dx̂ |x̂=1/2 under {p′k} and {p′′k} are 7/4 and

9/5, respectively, leading to a lower equilibrium price under {p′′k}.
11According to Farris et al. (2010), 67% of senior marketing managers and executives regard market share as

an essential performance indicator in itself. Anecdotal evidence also suggests that many business leaders target
market share (instead of profit) when setting business strategies (Edeling and Himme (2018)).
12Our explanation is different from Bendle and Vandenbosch (2014), which explains why competitor orien-

tation can persist and even thrive based on evolutionary games. Our explanation is also consistent with the
empirical finding that the market share-financial performance elasticity is larger in industries where learning
from friends plays an important role, such as service industries in emerging markets and B2C industries, as
documented in Edeling and Himme (2018).
13 In Campbell (2019), a mean-preserving spread in {pk} always softens competition and increases prices.
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Example 2 (Mean-preserving spread). Let λ = 1/4, {pk}A = {p2 = 1}, and {pk}B = {p1 =

p2 = p3 = 1/3}, {pk}C = {p4 = 1}, and {pk}D = {p3 = p5 = 1/2}. Note that {pk}B is a

mean-preserving spread of {pk}A, and {pk}D is also a mean-preserving spread of {pk}C . The
values of dψdx̂ |x̂=1/2 under {pk}A and {pk}B are 5/2 and 9/5, respectively; thus the equilibrium

price is higher under {pk}B than under {pk}A. The values of dψdx̂ |x̂=1/2 under {pk}C and {pk}D
are 1.45 and 1.47, respectively; thus the equilibrium price is lower under {pk}D than under

{pk}C .

Next we consider the impact of network connectivity on social welfare. Denote the total

welfare and consumer surplus in the steady-state equilibrium as W and CS, respectively. In

particular,

W = V − 2{ t
4

[
1

2
− (1− λ)

∑
k

pk(
1

2
)k+1] +

3

4
t(1− λ)

∑
k

pk(
1

2
)k+1}

= V − t

4
− t(1− λ)

∑
k

pk(
1

2
)k+1. (8)

Total welfareW equals to V minus the total transportation costs incurred. The latter includes

the transportation costs incurred by the consumers who bought their right products, which is

captured by the first term in the braces; among these consumers the average transportation

costs per consumer is t/4. The second term in the braces is the total transportation costs

incurred by the consumers who bought wrong products; among these consumers, the average

transportation costs per consumer is 3t/4. As to consumer surplus, CS = W − P e, which by
(8) can be written as

CS = V − t

4
− t

1− (1− λ)
∑

k kpk(
1
2)k−1

1− (1− λ)
∑

k pk(
1
2)k−1

− t(1− λ)
∑
k

pk(
1

2
)k+1. (9)

Proposition 4 With symmetric firms, total welfare W is increasing in the connectivity of

{pk}. However, consumer surplus CS is not monotonic as the connectivity of {pk} increases.
In particular, among the k-friend networks, (i) CS is higher under the two-friend network than

under the single-friend network; (ii) when k ≥ 3, CS is decreasing in k; (iii) when k increases

from 2 to 3, CS decreases if λ ≤
√

113− 10 ' 0.63, and increases otherwise.

The result that total welfare always increases in network connectivity is easy to understand.

As the network becomes more connected, more consumers are fully informed and thus fewer

consumers buy wrong products, which reduces the total transportation costs and increases

total welfare. As to consumer surplus, besides the information effect mentioned above, there

is also a pricing effect as the equilibrium price changes with network connectivity. Since the

pricing effect is not monotonic, the overall effect of network connectivity on consumer surplus
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Figure 1: Comparative Statics

is not monotonic either. Among the k-friend networks, as k changes from 1 to 2, the price

decreases; thus the pricing effect and the information effect work in the same direction and

CS increases. With k ≥ 2, the price is increasing in k, which means that the pricing effect

and the information effect work in opposite directions. It turns out that when k ≥ 3 the

pricing effect always dominates so that CS is decreasing in k. Intuitively, when the network is

already relatively well connected, the fraction of consumers who buy wrong products is already

small. Thus a further increase in connectivity only leads to a small decrease in the number

of consumers buying wrong products, and hence the information effect is small. On the other

hand, a price increase induced by an increase in connectivity hurts all consumers. Therefore,

the pricing effect dominates when k is relatively large.

Comparing our predictions and those of Campbell (2019), while the result regarding total

welfare is the same, the predictions on consumer surplus are quite different, as the pricing effects

across two models are qualitatively different. In particular, Campbell (2019) predicts that

consumer surplus always increases in connectivity, while our model predicts that it increases in

connectivity when the network is sparsely connected, but decreases in connectivity otherwise.

To see the magnitude of the effect of network connectivity on the equilibrium price, social

welfare and consumer surplus, consider the following examples. We define networks {pk} with
pk−1 = pk = pk+1 = 1/3 as networks with three-point distributions, which is indexed by k.

With t = 1, λ = 1/4, and V = 2, Figure 1 illustrates how the equilibrium price and welfare

change with k among the k-friend networks and networks with three-point distributions. For

the k-friend networks, the price reduction and the increase in CS between the single-friend

network and the two-friend network are significant. When k is between 2 and 6, as k increases

the price increases considerably and CS decreases considerably. When k is bigger than 7, both
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the price increase and CS reduction become relatively insignificant as k increases. This example

shows that, among not very well connected regular networks, an increase in connectivity could

have quantitatively significant impacts on both price and welfare. A similar pattern holds

under the networks with three-point distributions, though the changes in price and CS become

smaller (relative to the regular networks) as k increases. Overall, the two examples indicate

that the dynamic learning effect is quantitatively important under not very well connected

networks.

3.2 Asymmetric firms

Next we consider asymmetric firms with 0 < ∆ ≤ t. In this scenario, firms charge different

prices and have different market shares in equilibrium.

Proposition 5 (i) The single-friend network and the infinite-friend network lead to the same
equilibrium prices and market shares, which coincide with those in the standard Hotelling model.

That is,

P e1 = PH1 = t+
∆

3
, P e2 = PH2 = t− ∆

3
, and ψe = x̂H =

1

2
+

∆

6t
.

(ii) Under generic networks, dψedx̂ |x̂e > 1. Moreover, compared to the Hotelling benchmark, the

equilibrium market share of firm 1 (2) is higher (lower), and firm 2’s equilibrium price is lower:

ψe > x̂H , and P e2 < PH2 . (iii) Under the k-friend networks with k ≥ 2 and ∆ not being too

large so that ψe is not too far away from 1/2, ψe decreases in k.

Proposition 5 shows that under generic networks, relative to the Hotelling benchmark,

with learning from friends competition is more intense (reflected in dψe
dx̂ |x̂e > 1 and a lower

equilibrium price for firm 2), the equilibrium market share of the advantaged firm is larger,

and for the less advantaged firm its price, market share, and hence profit are all lower. The

underlying reason is again the dynamic learning across generations. With asymmetric firms,

the full-information market share of firm 1 is strictly bigger than 1/2. Through learning

from friends, firm 1 can gain additional market share among partially informed consumers.

To counter the reduced market share due to the dynamic learning, firm 2 reduces its price.

Proposition 5 also indicates that the market share and prices are not monotonic in network

connectivity: the two extreme networks with the lowest and highest connectivity have the same

market share and prices, while for all other networks the market share ψe is higher and P
e
2 is

lower. Part (iii) implies that, among the k-friend networks with k ≥ 2 and when two firms are

not too asymmetric, an increase in connectivity reduces the equilibrium market share of the

advantaged firm (the intuition will be provided shortly).

We would like to examine how connectivity affects the equilibrium market share and prices

under more general networks. However, since both x̂e and ψe vary with the network structure,
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Figure 2: Prices and Market Share - the k-Friend Networks

it is hard to carry out analytical analysis.14 Therefore, we resort to numerical simulations.

With t = 1 and λ = 1/4, Figure 2 (3) illustrates how the equilibrium market share and prices

change as k varies under the k-friend networks (networks with three-point distribution). In

both figures, ∆ = 1/3 in panel (a) and ∆ = 2/3 in panel (b). First observe that in Figure

2 both panels exhibit the same pattern. As k increases from 1 to 2, firm 1’s market share

increases considerably and both firms’prices decrease sharply. When k ≥ 2, as k increases

firm 1’s market share decreases and both firms’prices increase. Both panels in Figure 3 exhibit

a similar pattern, though the changes become less sensitive to k. The underlying reason for

this pattern can be found in part (iii) of Lemma 2. In particular, when k ≥ 2, a further

increase in k reduces firm 1’s market share ψ for any given x̂. This effect tends to reduce ψe as

k increases.15 Note that the qualitative relationship between prices and k is the same as in the

case with symmetric firms. Broadly speaking, the general pattern is that if the initial network

is already relatively well connected, then a further increase in connectivity would decrease firm

1’s market share and soften competition, as the dynamic learning effect is dampened.

14 In particular, both equations (3) and (6) are highly nonlinear and contain higher order polynomials.
15The effect of endogenous adjustment in x̂, caused by the price adjustments, on ψ is secondary, since the

two prices adjust in the same direction as shown in the figure.
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Figure 3: Prices and Market Share - Networks with Three-point Distributions

Finally, we examine the impact of network connectivity on total welfare W and consumer

surplus CS. In particular,

W = V + ∆ψe − t[
x̂e
2
ψe +

(1− x̂e)
2

(1− ψe)]

− t
2

(1− λ)
∑
k

pk[(1− x̂e)ψek + x̂e(1− ψe)k], (10)

CS = W − P e1ψe − P e2 (1− ψe).

The last term in (10) is the additional transportation costs incurred by the consumers who

buy wrong products. Again, we use numerical simulations to conduct analysis.

Using the same parameter values as in Figure 2, Figure 4 plots W and CS as k increases

among the k-friend networks. Both panels exhibit the same pattern. As k increases from

1 to 2, both W and CS increase. When k ≥ 2, as k increases CS monotonically decreases

(since both firms’prices increase). Interestingly, as k increases W increases slightly initially,

but when k ≥ 6 W decreases slightly in k. This result is qualitatively different from the one

under symmetric firms, where W is always increasing in k. The underlying reason is that

with asymmetric firms, firm 1 (the advantaged firm) charges a higher price than firm 2 in

equilibrium, which leads to a distortion in product allocation (a lower market share of firm

1 relative to the first best) and loss in total welfare.16 When k increases, firm 1’s market

share advantage due to the dynamic learning effect is reduced, which means that the product

misallocation due to price difference increases. This effect tends to reduce total welfare. When

16Effi ciency in product allocation requires P1 = P2 as in the Hotelling model.
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Figure 4: Welfare - the k-Friend Networks

k is relatively large, this effect can dominate the information effect (which tends to increase

total welfare as k increases), and make total welfare decreasing in k.

With the same parameter values as Figure 3, Figure 5 examines the impact of network

connectivity on welfare among networks with three-point distributions. The pattern is almost

the same as the one under the k-friend networks. This suggests that the pattern identified

earlier is relatively robust.

4 Homophily

A prevalent feature of social networks is homophily. That is, individuals tend to have friends

who are similar to themselves.17 In our context, homophily is reflected in the pattern that

consumers at similar locations in the product space are more likely to be friends. We use

parameter α ∈ [0, 1] to capture the degree of homophily. In particular, for each consumer at

location x, with probability 1− α a friend is drawn uniformly at random from location [0, 1],

and with probability α a friend is drawn from location [x − δ, x + δ], with δ ≥ 0. With this

setup, a bigger α implies a higher degree of homophily. The purpose of this section is to study

the impact of homophily on pricing and welfare.

With homophily, consumers become more likely to be aware of their preferred products,

as their friends are more likely to have bought their preferred products. In order to trace

the evolution of consumers’information status and purchasing behavior, we need to separate

consumers into two types (groups). For a given x̂, denote L type consumers as those with x ≤ x̂
17See McPherson, Smith-Lovin, and Cook (2001).
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Figure 5: Welfare - Networks with Three-point Distributions

(who buy product 1 if fully informed), and R type consumers as those with x > x̂ (who buy

product 2 if fully informed). Type L consumers and type R consumers differ in information

received in the ex ante sense, as their friends’purchasing behaviors are different statistically.

In order to make the analysis tractable, we further assume that δ → 0. With δ → 0, the same

process governs all L type consumers’information status and purchasing behaviors,18 and the

same holds among all R type consumers.

To proceed, we first introduce notations. Denote ψL,T (ψR,T ) as the the proportions of L

(R) type consumers of generation T who buy product 1, ψT = x̂ψL,T + (1 − x̂)ψR,T as the

market share of firm 1 in period T (which is also the probability that a random consumer of

generation T buys product 1), and φjh,T as the proportion of type h (h = L,R) consumers of

generation T who are informed of product j only. The transition equations (across generations)

are listed below.

φ1R,T+1 = (1− λ)
∑
k

pk[(1− α)ψT + αψR,T ]k,

φ2L,T+1 = (1− λ)
∑
k

pk[1− (1− α)ψT − αψL,T ]k,

ψL,T+1 = 1− φ2L,T+1, ψR,T+1 = φ1R,T+1.

In the first equation, (1 − α)ψT + αψR,T is the probability that a type R consumer’s (of

generation T + 1) friend (of generation T ) buys product 1, and this consumer is informed

18 If δ > 0 and does not converge to 0, then the information received (in the ex ante sense) among L (or
R) type consumers depends on their locations. For instance, a type L consumer located very close to x̂ would
receive information that is statistically different from a type L located close to 0, as the former’s neighbors
include some type R consumers. This feature would make the analysis intractable.
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of product 1 only if all his generation T friends bought product 1. Similarly, in the second

equation, 1 − (1 − α)ψT − αψL,T is the probability that a type L consumer’s (of generation
T + 1) friend (of generation T ) buys product 2, and this consumer is informed of product 2

only if all his generation T friends bought product 2. The above consumers in generation T +1

are informed of “wrong”products only, and thus will buy “wrong”products, as indicated by

the third and fourth equations.

Let ψL, ψR, and ψ be the steady-state market shares of firm 1. The steady-state conditions

require ψL,T+1 = ψL,T ≡ ψL and ψR,T+1 = ψR,T ≡ ψR. Using the above equations, we have

the following steady-state equations:

1− (1− λ)
∑
k

pk[1− (1− α)ψ − αψL]k = ψL, (11)

(1− λ)
∑
k

pk[(1− α)ψ + αψR]k = ψR, (12)

x̂ψL + (1− x̂)ψR = ψ. (13)

The above system consists of three equations with three unknowns, ψ, ψL and ψR. We can

solve these three endogenous variables as a function of x̂. Equations (11), (12), and (13) can

also be combined as

ψ = x̂+ (1− λ)
∑
k

pk{(1− x̂)[(1− α)ψ + αψR]k − x̂[1− (1− α)ψ − αψL]k}. (14)

As indicated by (14), ψ equals the full-information market share x̂ plus the fraction of con-

sumers “wrongly”bought product 1 minus the fraction of consumers “wrongly”bought product

2. When α = 0 (no homophily), (14) boils down to (3) in Section 3. The next three lemmas

present useful properties regarding the steady-state market shares for a fixed x̂.

Lemma 4 Fix ψ ∈ [1/2, 1). (i) There is a unique ψL satisfying (11) and a unique ψR sat-

isfying (12), with 0 < ψR < ψ < ψL < 1. (ii) Both ψL and ψR are increasing in ψ; ψL is

increasing in α and ψR is decreasing in α. (iii) ψR ≥ 1− ψL.

Observe that ψR is the probability that a type R consumer “wrongly”buy product 1, and

1 − ψL is the probability that a type L consumer “wrongly” buy product 2. As the degree
of homophily α increases, the probability that each type of consumers are informed of wrong

products only decreases, and thus both ψR and 1−ψL decrease (as shown in part (ii) of Lemma
4). The reason for ψR ≥ 1−ψL (as in part (iii)) is that the market share of firm 1, ψ, is weakly
larger than 1/2. Due to the component of random connection, it means that the probability

that a type L consumer is aware of product 1 is weakly higher than the probability that a

type R consumer is aware of product 2. As a result, compared to a type L consumer, a type

R consumer is more likely to buy the wrong product.
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Lemma 5 Fix x̂ ∈ [1/2, 1). (i) There is a unique steady-state ψ (and ψL and ψR as well),

which satisfies ψ ∈ [x̂, 1). (ii) ψR < ψ < ψL and ψ strictly increases in x̂.

By Lemma 5, a given full-information market share x̂ induces a unique steady-state market

share ψ. The next lemma shows how network connectivity and the degree of homophily affect

ψ.

Lemma 6 Fix x̂ ∈ [1/2, 1). (i) Under the single-friend network or the infinite-friend network,

or any other generic network but with α = 1, ψ = x̂. (ii) Suppose x̂ ∈ (1/2, 1). Under any

generic network with α < 1, ψ > x̂ and ψ decreases in α.

The most revealing result in Lemma 6 is that, under generic networks, firm 1’s steady-state

market share ψ decreases in the degree of homophily α. To understand the intuition, let us

consider two polar cases: random connection and extreme homophily (α = 1). Under random

connection, each consumer is more likely to be aware of product 1 than product 2 due to the

nature of random connection and the fact that x̂ > 1/2. Then there are more R type consumers

wrongly buying product 1 than L type consumers wrongly buying product 2, resulting in ψ

being bigger than x̂. However, in the case of extreme homophily, there is no consumers buying

wrong products, because every friend of a L (R) type consumer is of L (R) type, and thus

every consumer is aware of the right product in steady state. As a result, the steady-state

market share ψ = x̂. The general case (α ∈ (0, 1)) is just a combination of the above two

polar cases. As α increases, each type of consumers become more likely to be aware of their

preferred products, and thus there are fewer consumers buying wrong products. This means

that x̂ (> 1/2) translates into a smaller additional market share for firm 1 among partially

informed consumers, i.e., ψ decreases.

Figure 6 illustrates the relationship between α and the shape of the ψ(x̂) curve. In the

figure, λ = 1/4, p1 = p2 = p3 = 1/3 in network 1 and p2 = p3 = p4 = p5 = 1/4 in network 2.

Under both networks, the ψ(x̂) curve becomes more straight as α increases.

Similar to the basic model of random connections, we need to characterize the curvature

of ψ(x̂). Let zL ≡ 1 − (1 − α)ψ − αψL (and zR ≡ (1 − α)ψ + αψR) be the probability that a

type L (R) consumer receives “wrong”information from a friend.

Lemma 7 (i) Under any generic network {pk}, d2ψ
dx̂2
|x̂=1/2 = 0 and limλ→1

d2ψ
dx̂2

= 0 for any

α ∈ [0, 1], and limα→1
d2ψ
dx̂2

= 0. (ii) For any α ∈ [0, 1], under well-connected networks (pk = 0

for all k ≤ k and k is large), d2ψ
dx̂2
→ 0, and under the single-friend network, d2ψ

dx̂2
= 0. (iii)

Under any generic network, if λ is big enough or if α is small enough, then d2ψ
dx̂2
≥ 0 when

x̂ ≤ 1/2 and d2ψ
dx̂2
≤ 0 when x̂ ≥ 1/2.
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Figure 6: The ψ(x̂) Curve as α Changes

Lemma 7 specifies a set of suffi cient conditions for ψ(x̂) to be convex when x̂ ≤ 1/2 and

concave when x̂ ≥ 1/2.19 In the remaining of this section we will focus on the set of {pk}, λ
and α such that ψ(x̂) satisfies the above convexity/concavity property.

Next we endogenize x̂ and characterize steady-state equilibria. The pricing equations (first-

order conditions) have the same form as in the case of random connections:

P1 =
2tψ
dψ
dx̂

, P2 =
2t(1− ψ)

dψ
dx̂

,

x̂ =
1

2
+

∆

2t
− 2ψ − 1

dψ
dx̂

, (15)

where by (11), (12) and (13),

dψ

dx̂
=

ψL − ψR
1− [x̂∂ψL∂ψ + (1− x̂)∂ψR∂ψ ]

=
1− (1− λ)[

∑
k pk(z

k
L + zkR)]

1− (1− λ)(1− α)[x̂
∑
k kpkz

k−1
L

1−(1−λ)α
∑
k kpkz

k−1
L

+ (1− x̂)
∑
k kpkz

k−1
R

1−(1−λ)α
∑
k kpkz

k−1
R

]
. (16)

By Lemma 5, dψ
dx̂ is strictly positive. Equations (15) and (11)-(13) jointly determine the

equilibrium pair of (x̂, ψ), which we denote as (x̂e, ψe).

Proposition 6 There is a unique candidate equilibrium (satisfying the steady-state equations

and the first-order conditions), which satisfies x̂e ∈ [1
2 ,

1
2+ ∆

2t ], and if ∆ = 0 then it is symmetric:

19For part (iii) to hold, λ could be relatively small and α could be of intermediate values. For instance, in
the two examples of Figure 6, λ = 1/4 and α = 1

3
or 2

3
, but ψ(x̂) always has the desired convexity/concavity

property.
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x̂e = ψe = 1/2. The candidate equilibrium is an equilibrium under either of the following

conditions: (i) {pk} is the single-friend network or a well-connected network; (ii) λ or α is
relatively large.

Similar to Proposition 1, conditions (i) and (ii) specified in Proposition 6 are suffi cient

conditions under which the second-order conditions are satisfied globally. Intuitively, under

either condition in the limit the model converges to the Hotelling benchmark. Again, these

two conditions are far from being necessary. Even when λ is relatively small and α is relatively

small so that the second-order conditions are not satisfied globally, each firm’s profit function

could still be single-peaked, meaning that the candidate equilibrium satisfying the first-order

conditions is indeed the equilibrium.20

4.1 Symmetric firms

With symmetric firms (∆ = 0), Proposition 6 shows that the unique equilibrium is symmetric,

with ψe = x̂e = 1/2, and P e1 = P e2 ≡ P e = t/(dψdx̂ |x̂=1/2). Moreover, by (11) and (12),

ψL = 1− ψR, and zL = zR. Then (16) can be simplified as:

dψ

dx̂
|x̂=1/2 =

(1− 2ψR){1− (1− λ)α
∑

k kpk[(1− α)/2 + αψR]k−1}
1− (1− λ)

∑
k kpk[(1− α)/2 + αψR]k−1

. (17)

The next proposition characterizes the impact of homophily on the equilibrium price.

Proposition 7 Suppose the two firms are symmetric. (i) If {pk} is the single-friend network
or the infinite-friend network, then P e = t for any α. (ii) Under any other generic network,

the equilibrium price Pe < t (unless α = 1) and is monotonically increasing in the degree of

homophily α.

Proposition 7 shows that homophily softens competition and increases the equilibrium

price.21 This result differs significantly from the one in Campbell (2019), where the degree of

homophily does not affect the equilibrium price. The underlying reason for the difference is

again the dynamic learning effect, which is absent in Campbell’s (2019) model. The intuition

for our result is already indicated in Lemma 6. As the degree of homophily α increases, each

type of consumers (L or R) is more likely to be informed of their preferred products, and

overall there are fewer consumers buying wrong products. This means that, if a firm cuts its

20With ∆ = 0, in each of the four examples in Figure 6, each firm’s profit function is single-peaked in its own
price when the other firm’s price is fixed at its candidate equilibrium price.
21The impact of homophily is not restricted to market competition. Galeotti and Mattozi (2011) study how

homophily among voters affects politicians’ choice of policy platforms. Golub and Jackson (2012) show that
homophily slows down the speed of social learning in a population initially endowed with heterogeneous opinions.
Campbell et al. (2019) find that homophily in the social media network will increase political polarization.
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price and thus expands its full-information market share x̂ above 1/2, it can only induce fewer

partially informed consumers to wrongly buy its product. As a result, the dynamic learning

effect is dampened, and the steady-state market share becomes closer and less sensitive to the

full-information market share x̂, which softens competition and increases the price.

Next we examine the impact of homophily on welfare. Similar to earlier analysis, total wel-

fare W equals the gains from trade minus the total transportation costs incurred. Specifically,

W = V − 2[
t

4

1

2
ψL +

3t

4

1

2
ψR] = V − t

4
− t

2
ψR. (18)

The second equality follows from the fact that ψL = 1 − ψR. In the expression of (18), t/4
is the total transportation costs if all consumers buy right products, ψR is the fraction of

consumers who buy “wrong” products, and on average each of these consumers suffers an

additional transportation costs of t/2. Similarly, consumer surplus CS can be written as

CS = W − P e = V − t

4
− t

2
ψR − t/(

dψ

dx̂
|x̂=1/2). (19)

Proposition 8 Suppose the two firms are symmetric. (i) Total welfare W is increasing in

α. (ii) Under the single-friend network or the infinite-friend network, consumer surplus CS is

increasing in α. (iii) Under any other generic network {pk}, if p1 ≤ p2, then CS is decreasing

in α for α ≤ 1/2; if p1 = 0, then CS is decreasing in α for α ≤ 3/4.

The result that homophily improves total welfare is intuitive. As the degree of homophily

increases, consumers are more likely to be informed of their preferred products and thus fewer

consumers buy wrong products, which decreases the total transportation costs and increases

total welfare. As to consumer surplus, besides the information effect mentioned above, which

always benefits consumers, there is a pricing effect which works in the opposite direction. In

particular, homophily increases the price and thus hurts consumers. Part (iii) of Proposition 8

shows that the overall effect of homophily on consumer welfare is negative if α is not too large.

The pricing effect tends to dominate, because an increase in α only prevents an additional

fraction of consumers from buying wrong products, but the resulting increase in price hurts

all consumers. Notice that this result is qualitatively different from Campbell (2019), in which

homophily always improves consumer welfare. This is because the pricing effect of homophily

is absent in his model.

In fact, numerical examples suggest that the overall effect of homophily on consumer welfare

could be negative for the entire domain of α. Using the same networks as before with t = 1

and λ = 1/4, Figure 7 plots how the equilibrium price, total welfare, and consumer surplus

change as α varies. Under both networks, consumer surplus is monotonically decreasing in α

for any α.
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Figure 7: Homophily and Welfare with Symmetric Firms

4.2 Asymmetric firms

In this subsection, we consider asymmetric firms with 0 < ∆ ≤ t, and focus on how the degree
of homophily affects the equilibrium prices, market shares and welfare.

Proposition 9 (i) Under the single-friend network or the infinite-friend network, the equi-
librium prices and market shares are the same as those in the standard Hotelling model for

any α. (ii) Consider other generic networks, and suppose that ∆ is not too large so that ψe
is not too far away from 1/2. The equilibrium market share of firm 1, ψe, is decreasing in α.

Moreover, if α < 1, then dψ
dx̂ |x̂e > 1, ψe > x̂H = 1

2 + ∆
6t , and P

e
2 < PH2 = t− ∆

3 .

The most illuminating result in Proposition 9 is that, when the two firms are not too

asymmetric, an increase in the degree of homophily reduces the equilibrium market share of

the advantaged firm. In some sense, it implies that homophily dampens the advantage of

the advantaged firm. The underlying intuition for this result is the same as that for part

(ii) of Lemma 6: homophily dampens the dynamic learning effect. That is, as the degree of

homophily α increases, there are fewer consumers buying wrong products, which means that

the same x̂ > 1/2 would translate into a smaller additional market share among partially

informed consumers for firm 1.

What happens when ∆ is relatively large? Numerical examples show that the result in part

(ii) of Proposition 9 is still robust. Using the same networks and parameter values as before

and with ∆ = 2/3, Figure 8 plots how the equilibrium market share and prices change with

α. The figure illustrates that the result in part (ii) of Proposition 9 holds globally: for the

whole domain of α, firm 1’s equilibrium market share is decreasing in α. In addition, Figure

8 demonstrates that both firms’prices are increasing in α, the same pattern as in the case
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Figure 8: The Impact of Homophily on Prices and Market Share

Figure 9: Homophily and Welfare with Asymmetric Firms

with symmetric firms. Overall, the conclusion is that an increase in the degree of homophily

α softens competition and dampens firm 1’s advantage.

Next we examine the impact of homophily on total welfare W and consumer surplus CS.

In particular, it can be calculated that

W = V + ∆[x̂ψL + (1− x̂)ψR]− t

2
+ tx̂(1− x̂)(ψL − ψR),

CS = W − P e1ψe − P e2 (1− ψe).

With the same parameter values as in Figure 8, Figure 9 plots W and CS as α changes.

The same pattern emerges under both networks: as α increases, total welfare W increases but

consumer surplus CS decreases. Note that this pattern is the same as the one with symmetric

firms, for the same underlying reason. As α increases, the competition between firms is softened
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and prices increase. The negative impact of this pricing effect dominates the positive impact

of the information effect, overall making consumers worse off.

5 Conclusion and Discussion

We study a dynamic model of price competition with differentiated products. Each generation

of consumers learns about available products from their friends of the previous generation. The

social network, which links consumers across generations, affects the evolution of consumers’

awareness of products and firms’long-term market shares. Focusing on steady-state equilibria,

we examine how the structure of the social network influences market shares, prices, and

welfare. In our model, due to the dynamic learning process, firms also compete for partially

informed consumers in future periods. As a result, competition is more intense compared to

the Hotelling benchmark.

In the basic model with random connections, we find that the intensity of competition is

non-monotonic in network connectivity. In particular, under relatively well connected networks,

a further increase in network connectivity softens competition. As a result, while total welfare

is increasing in network connectivity, consumer surplus is non-monotonic since the impact

of network connectivity on equilibrium price is not monotonic. With asymmetric firms, the

advantage of the advantaged firm is amplified by the dynamic learning process, leading to a

bigger market share for the advantaged firm and a smaller market share and a lower price for

the other firm relative to the Hotelling benchmark. In an extension with homophily, we find

that an increase in the degree of homophily dampens the advantage of the advantaged firm and

softens competition. Again, consumer welfare is non-monotonic in the degree of homophily.

In our model, the friends of each new generation of consumers are of the previous generation

only. At the expense of technical complications, we can extend the model to settings in which

the friends of each new generation are from previous generations. For instance, generation T

consumers could be friends with the T−1 and T−2 generations. However, extending our model

to these settings will not qualitatively change our results, because firms are still competing for

partially informed consumers in future periods due to the dynamic learning process. In these

new settings, compared to our basic model, the steady state will be reached more slowly,

since market shares in earlier periods will have more persistent impact on the demand in later

periods. As a result, we conjecture that the steady-state demand will be more sensitive to the

full-information market share and prices, which leads to more intense competition.
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Appendix

Proof of Lemma 1.
Proof. We first show that, given x̂, there is a steady-state ψ, at which the H(ψ) curve crosses

the 45-degree line. By (3), it is clear that H(ψ) is continuous in ψ. Moreover,

lim
ψ→0

H(ψ) = λx̂ > 0, lim
ψ→1

H(ψ) = 1− λ(1− x̂) < 1.

Therefore, there exists a ψ ∈ (0, 1) satisfying ψ = H(ψ).

For the uniqueness of ψ, it suffi ces to show that ∂3H
∂ψ3
≥ 0 for all ψ within (0, 1), which

implies that H(ψ) crosses the 45-degree line at most once within domain (0, 1). By (3),

∂3H

∂ψ3 ∝
∑
k≥3

pkk(k − 1)(k − 2)[(1− x̂)ψk−3 + x̂(1− ψ)k−3] ≥ 0.

Thus ψ is unique.

Next, based on (3),

H(x̂) = x̂+ (1− λ)x̂(1− x̂)
∑
k

pk[x̂
k−1 − (1− x̂)k−1] ≥ x̂.

The inequality follows from the fact that x̂k−1−(1− x̂)k−1 ≥ 0 when x̂ ≥ 1/2. Combining with

the earlier result that limψ→1H(ψ) < 1, we conclude that the unique ψ must be within [x̂, 1).

Moreover, H(x̂) ≥ x̂ means that the H(ψ) curve crosses the 45-degree line from above. This

property further implies that the steady-state ψ is globally stable, as ψT+1 = H(ψT ) > ψT

when ψT < ψ and ψT+1 = H(ψT ) < ψT for ψT > ψ.

Finally, to show the monotonicity of ψ in x̂, let x̂2 > x̂1 ≥ 1/2, and ψj be the corresponding

steady-state ψ with x̂j . That is, ψj = H(x̂j , ψj). By (3), we have

∂H

∂x̂
= 1− (1− λ)

∑
k

pk[(ψ)k + (1− ψ)k] > 0,

since the term of summation is less than 1. This implies that H(x̂2, ψ1) > H(x̂1, ψ1) = ψ1.

Now consider the case with x̂2. The fact that H(x̂2, ψ1) > ψ1 implies that at ψ1 the H(ψ)

curve lies above the 45-degree line. Because the H(ψ) curve crosses the 45-degree line from

above, we must have ψ2 > ψ1.

Proof of Lemma 2.
Proof. Based on (3),

H(x̂) = x̂+ (1− λ)x̂(1− x̂)
∑
k

pk[x̂
k−1 − (1− x̂)k−1]. (20)
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Part (i). Under the single-friend network, (20) becomes H(x̂) = x̂ with p1 = 1, and thus

ψ = x̂. Under the infinite-friend network, when k →∞, both
∑

k pkx̂
k−1 and

∑
k pk(1− x̂)k−1

go to 0. Therefore, again H(x̂) = x̂ and ψ = x̂.

Part (ii). Consider any generic network. In (20),
∑

k pk[x̂
k−1 − (1 − x̂)k−1] > 0 when

x̂ > 1/2 and pk > 0 for some finite k ≥ 2, which implies that H(x̂) > x̂. It means that ψ > x̂,

because ψ is unique given x̂ and the H(ψ) curve crosses the 45-degree line from above.

Part (iii). Under the k-friend network, the steady-state equation (3) is written as

ψ = x̂+ (1− λ)[(1− x̂)(ψ)k − x̂(1− ψ)k] ≡ H(ψ, k). (21)

Fixing x̂, denote ψk as the solution to (21). For k ≥ 2, to show that ψk+1 < ψk, it is suffi cient

that H(ψk, k + 1) < ψk; that is, under the (k + 1)-friend network, H(ψk) lies below the 45-

degree line (recall that at ψk+1, the H(ψ, k + 1) curve crosses the 45 degree line from above

by Lemma 1).

H(ψk, k + 1) = x̂+ (1− λ)[(1− x̂)(ψk)
k+1 − x̂(1− ψk)k+1]

= x̂+ (1− λ)[(1− x̂)(ψk)
k − x̂(1− ψk)k]

−(1− λ)ψk(1− ψk)[(1− x̂)(ψk)
k−1 − x̂(1− ψk)k−1]

< x̂+ (1− λ)[(1− x̂)(ψk)
k − x̂(1− ψk)k] = H(ψk, k) = ψk.

The inequality holds for k ≥ 2 because (1− x̂)(ψk)
k−1 − x̂(1− ψk)k−1 > 0 with ψk > x̂ > 1/2

based on part (ii).

Proof of Lemma 3.
Proof. Part (i). We can calculate the second-order derivative as follows:

d2ψ

dx̂2
=
dψ

dx̂
(1−λ)

dψ
dx̂

∑
k k(k − 1)pk[(1− x̂)ψk−2 − x̂(1− ψ)k−2]− 2

∑
k kpk[ψ

k−1 − (1− ψ)k−1]

1− (1− λ)
∑

k kpk[(1− x̂)ψk−1 + x̂(1− ψ)k−1]
.

(22)

When x̂ = 1/2, ψ = 1/2. It can be readily verified that the numerator of the fraction in

the RHS of (22) is 0. Therefore, d
2ψ
dx̂2
|x̂=1/2 = 0.

Part (ii). Under well-connected networks, ψ ' x. And thus d2ψ
dx̂2
' 0.

For the rest of the proof, it is easier to work with x̂ as a function of ψ. By the steady-state

equation (3), we have:

x̂ =
ψ − (1− λ)

∑
pkψ

k

1− (1− λ)
∑
pk[ψ

k + (1− ψ)k]
≡ A(ψ)

A(ψ) +A(1− ψ)
, (23)

where

A(ψ) = ψ − (1− λ)
∑

pkψ
k, and

A(1− ψ) = 1− ψ − (1− λ)
∑

pk(1− ψ)k.
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In order to show that ψ(x̂) is convex (concave) in x̂ when x̂ < 1/2 (x̂ > 1/2), it is enough

to show that the inverse function, x̂(ψ), is concave (convex) in ψ when ψ < 1/2 (ψ > 1/2).

Taking various derivatives, we get

A′(ψ) = 1− (1− λ)
∑

pkkψ
k−1,

A′(1− ψ) = −1 + (1− λ)
∑

pkk(1− ψ)k−1,

A′′(ψ) = −(1− λ)
∑
k≥2

pkk(k − 1)ψk−2 ≤ 0,

A′′(1− ψ) = −(1− λ)
∑
k≥2

pkk(k − 1)(1− ψ)k−2 ≤ 0,

dx̂

dψ
=

A′(ψ)A(1− ψ)−A(ψ)A′(1− ψ)

[A(ψ) +A(1− ψ)]2
> 0, since

dψ

dx̂
> 0.

Note that A′(ψ)A(1− ψ)− A(ψ)A′(1− ψ) > 0 since dx̂
dψ > 0. For the second-order derivative,

we have

d2x̂

dψ2 =
(1− λ)

[A(ψ) +A(1− ψ)]3
{[A(ψ) +A(1− ψ)]

∑
k≥2

pkk(k − 1)[(1− ψ)k−2A(ψ)− ψk−2A(1− ψ)]

+2[A′(ψ)A(1− ψ)−A(ψ)A′(1− ψ)]
∑

pkk[ψk−1 − (1− ψ)k−1]}. (24)

Part (iii). For the single-friend network, from (24) it can be verified that d2x̂
dψ2

= 0 for any

ψ ∈ [0, 1]. For the two-friend network, by (24) we have

d2x̂

dψ2 ∝ {2λ[A(ψ) +A(1− ψ)] + 4[A′(ψ)A(1− ψ)−A(ψ)A′(1− ψ)]}(2ψ − 1).

Since the term in the braces is strictly positive, d2x̂
dψ2

has the same sign as 2ψ − 1, which is

strictly positive when ψ > 1/2 and strictly negative when ψ < 1/2.

For the 3-friend network, by (24) we have

d2x̂

dψ2 ∝ [A(ψ) +A(1− ψ)− 3(1− λ)ψ(1− ψ)][1− (1− λ)ψ(1− ψ)](2ψ − 1).

Define the term in the first bracket as c3(ψ), and it is enough to show that c3(ψ) > 0. In

particular,

c3(ψ) = [1− (1− λ)(ψ3 + (1− ψ)3)− 3(1− λ)ψ(1− ψ)]

= λ
[
ψ3 + (1− ψ)3 + 3ψ(1− ψ)

]
> 0,

where the equality uses the fact that ψ3 + (1− ψ)3 + 3ψ(1− ψ) = 1.

For any sparsely-linked network, the relevant terms are just combinations of those under

the k-friend networks with k ≤ 3. Therefore, the result also holds.
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Part (iv). For any generic network, by (24), we have limλ→1
d2x̂
dψ2

= 0 for any ψ.

Now consider k-friend networks with k ≥ 4, under which

d2x̂

dψ2 ∝ −(k − 1)[(1− ψ)ψk−2 − ψ(1− ψ)k−2 + (1− λ)ψk−2(1− ψ)k−2(2ψ − 1)]

× A(ψ) +A(1− ψ)

[A(ψ) +A(1− ψ)]− k(1− λ)[ψk−1A(1− ψ) + (1− ψ)k−1A(ψ)]
+ 2[ψk−1 − (1− ψ)k−1].

Collecting the above terms without coeffi cient (1− λ), we have

ψk−2[(k + 1)ψ − (k − 1)] + (1− ψ)k−2[(k + 1)ψ − 2] ≡ ck(ψ).

For the 4-friend and 5-friend networks, we have, respectively,

c4(ψ) = ψ2(5ψ − 3) + (1− ψ)2(5ψ − 2),

c5(ψ) = ψ3[6ψ − 4] + (1− ψ)3[6ψ − 2],

which are positive if and only if ψ ≥ 1/2 (the term is 0 when ψ = 1/2, and its derivative is

positive). Therefore, for both networks, if λ is large enough, then d2x̂
dψ2

is positive when ψ > 1/2

and negative when ψ < 1/2. For k-friend networks with k being large, we have ck(ψ)→ 0 for

any ψ ∈ (0, 1), or the result weakly holds.

To summarize, for any generic network, if λ is large enough, then d2x̂
dψ2
≥ 0 when ψ > 1/2

and d2x̂
dψ2
≤ 0 when ψ < 1/2.

Proof of Proposition 1.
Proof. We first show that a candidate equilibrium exists. With x̂ being the horizontal axis and
ψ the vertical axis, the steady-state equation (3) defines a SS-curve and the pricing equation (6)

defines a PE-curve. A candidate equilibrium is an intersection of these two curves. It is obvious

that both curves are continuous. By (3), when x̂ = 1/2, we have ψ = 1/2. Thus (1
2 ,

1
2) is the

starting point of the SS-curve. By (6), when x̂ = 1/2, we have ψ ≥ 1/2, because dψ
dx̂ > 0 by

Lemma 1. Therefore, the starting point of the PE-curve is weakly above that of the SS-curve.

Next consider x̂ = 1
2 + ∆

2t . By Lemma 2 on the SS-curve we have ψ(x̂ = 1
2 + ∆

2t) ≥ x̂ = 1
2 + ∆

2t .

By (6), ψ(x̂ = 1
2 + ∆

2t) = 1/2 on the PE-curve, because dψ
dx̂ > 0. Therefore, at x̂ = 1

2 + ∆
2t ,

the PE-curve is weakly below the SS-curve. By continuity, the two curves must intersect at

some x̂ ∈ [1
2 ,

1
2 + ∆

2t ], which is a candidate equilibrium x̂e. Since x̂e ∈ [1
2 ,

1
2 + ∆

2t ], we must have

x̂e = 1/2 when ∆ = 0, which implies that ψe = 1/2 as well.

Next we show the uniqueness of candidate equilibrium. The pricing equation (6) can be

more compactly written as

x̂ =
1

2
+

∆

2t
− (2ψ − 1)

dx̂

dψ
. (25)
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The derivative of the RHS of (25) with respect to ψ equals to

−[(2ψ − 1)
d2x̂

dψ2 + 2
dx̂

dψ
],

which is strictly negative. To see this, by Lemma 3, d
2x̂
dψ2
≤ 0 when ψ ≤ 1/2, and d2x̂

dψ2
≥ 0 when

ψ ≥ 1/2. Therefore, (2ψ − 1) ∂
2x̂
∂ψ2
≥ 0 for any ψ ∈ [0, 1]. Together with the fact that dx̂

dψ > 0,

we have the desired result. In addition, the partial derivative of the RHS of (6) with respect

to x̂ is negative. This means that the PE-curve is downward sloping. Note that the SS-curve

is upward sloping because dψ
dx̂ > 0. Thus, the two curves can have only one intersection; that

is, the candidate equilibrium is unique.

Finally, we show the suffi ciency of the first-order conditions by checking the second-order

conditions. We will only prove the result for firm 1, as firm 2’s situation is similar. In particular,

∂2π1

∂P 2
1

∝ −2
dψ

dx̂
+
P1

2t

d2ψ

dx̂2
.

Since dψdx̂ > 0, and by Lemma 3, d
2ψ
dx̂2
≤ 0 when ψ ≥ 1/2, we have ∂

2π1
∂P 21

< 0 when ψ ≥ 1/2. When

ψ ≤ 1/2 (P1 is relatively large), since
d2ψ
dx̂2
≥ 0 by Lemma 3, the sign of ∂

2π1
∂P 21

is indeterminate.

To ensure ∂2π1
∂P 21
≤ 0, |d

2ψ
dx̂2
| has to be small enough. By Lemma 3, limλ→1

d2ψ
dx̂2

= 0 and d2ψ
dx̂2
→ 0

under either well-connected networks or the single-friend network. Therefore, the second-order

condition ∂2π1
∂P 21
≤ 0 is satisfied if either λ is large enough or the network is either well-connected

or the single-friend one.

Proof of Proposition 2.
Proof. Part (i). By (7), dψdx̂ = 1 under both the single-friend network and the infinite-friend

network. Then P e = t immediately follows. Now consider any generic network, with pl > 0

for some finite l ≥ 2. Under these networks, it is obvious that∑
k

kpk(
1

2
)k−1 >

∑
k

pk(
1

2
)k−1.

By (7), this implies that dψ
dx̂ |x̂=1/2 > 1. Therefore, P e < t.

Part (ii). Under the k-friend networks, by (7) we have

[
dψ

dx̂
(k + 1)− dψ

dx̂
(k)]|x̂=1/2 ∝ (2− k)(

1

2
)k − (1− λ)(

1

2
)2k−1,

which is positive if k = 1, but is negative for any k ≥ 2. The statement in the proposition

immediately follows.

Proof of Proposition 3.
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Proof. Part (i). It is suffi cient to show that [dψdx̂ (p′k) −
dψ
dx̂ (p′′k)]|x̂=1/2 > 0. By (7), [dψdx̂ (p′k) −

dψ
dx̂ (p′′k)]|x̂=1/2 has the same sign as∑
k

(k− 1)(p′k − p′′k)(
1

2
)k−1 + (1− λ)[

∑
k

p′k(
1

2
)k−1

∑
k

kp
′′
k(

1

2
)k−1−

∑
k

p′′k(
1

2
)k−1

∑
k

kp
′
k(

1

2
)k−1].

Since (1
2)k−1 is decreasing in k and {p′′k} FOSD {p′k}, A ≡

∑
k p
′′
k(

1
2)k−1 <

∑
k p
′
k(

1
2)k−1 ≡ B.

The term (k − 1)(1
2)k−1 is constant when k changes from 2 to 3, and decreases in k for k ≥ 3.

Since {p′′k} FOSD {p′k} and p′′1 = p′1, relative to {p′k}, {p′′k} puts higher probabilities on k ≥ 3.

Therefore, Z ≡
∑

k(k−1)(p′k−p′′k)(1
2)k−1 > 0. Similarly, C ≡

∑
k kp

′′
k(1

2)k−1 <
∑

k kp
′
k(

1
2)k−1 ≡

D, because the term k(1
2)k−1 is constant when k changes from 1 to 2, and is decreasing in k

for k ≥ 2. Note that A, B, C, and D are all smaller than 1. Moreover,

(A+D)− (B + C) =
∑
k

(k − 1)(p′k − p′′k)(
1

2
)k−1 = Z > 0.

Using more compact notations, we have

[
dψ

dx̂
(p′k)−

dψ

dx̂
(p′′k)]|x̂=1/2 ∝ Z + (1− λ)(BC −AD).

If BC ≥ AD, then we get the desired result that [dψdx̂ (p′k) −
dψ
dx̂ (p′′k)]|x̂=1/2 > 0. Next consider

the case that BC < AD. In particular,

Z + (1− λ)(BC −AD) > Z +BC −AD > B(C + Z)−AD > 0.

The first inequality holds since BC < AD. The second inequality uses the fact that B < 1.

The last inequality holds because B + C + Z = A + D, A < B < D, and A < C + Z < D.

Therefore, again [dψdx̂ (p′k)−
dψ
dx̂ (p′′k)]|x̂=1/2 > 0.

Part (ii). By (7),
∂(dψdx̂ |x̂=1/2)

∂λ
∝
∑
k

(1− k)pk(
1

2
)k−1,

which is negative if there is a finite k ≥ 2 such that pk > 0. Therefore, the equilibrium price

increases in λ.

Proof of Proposition 4.
Proof. Since (1

2)k+1 is decreasing k, a FOSD change in {pk} reduces
∑

k pk(
1
2)k+1. By (8),

this implies that W increases.

Next consider consumer surplus CS. For the k-friend networks, we can compute the dif-

ference in CS as k increases by 1 based on equation (9):

CS(k)− CS(k + 1) ∝ (
1

2
)k+2[(4k − 9) + 11(1− λ)(

1

2
)k − (1− λ)2(

1

2
)2k−1]. (26)
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It can be verified that (26) is negative when k = 1. Therefore, CS(k = 2) > CS(k = 1). This

proves part (i). For part (ii), it can be verified that (26) is positive when k ≥ 3. Therefore,

CS is decreasing in k when k ≥ 3. Finally, for part (iii), when k = 2 the term in the bracket

in (26) becomes

−1 +
11

4
(1− λ)− (1− λ)2

8
,

which is positive if λ ≤
√

113 − 10 ' 0.63 and negative otherwise. The result immediately

follows.

Proof of Proposition 5.
Proof. Part (i). By Lemma 2, under either network, ψ = x̂, and thus dψ

dx̂ = 1 at any x̂. Then

the pricing equation (6) becomes x̂e = 1
2 + ∆

2t − (2x̂e − 1), which yields x̂e = 1
2 + ∆

6t = ψe. By

(4), we get the desired expressions for P e1 and P
e
2 , which are the same as those in the Hotelling

benchmark.

Part (ii). We first prove dψe
dx̂ |x̂e > 1. Define r ≡ 1

dψe
dx̂
|x̂e
. It is enough to show that r < 1.

Suppose to the contrary, r ≥ 1. But by (5), r ≥ 1 implies that
∑

k pkDk ≤ 0, where

Dk ≡ k[(1− x̂e)(ψe)k−1 + x̂e(1− ψe)k−1]− [(ψe)
k + (1− ψe)k].

Since x̂e < ψe and ψe > 1/2,

Dk > k(1− ψe)ψe[(ψe)k−2 + (1− ψe)k−2]− [(ψe)
k + (1− ψe)k] ≡ dk. (27)

It can be verified that d1 = 0; and given any k ≥ 2, for dk to be less than 0, it is necessary

that ψe >
3
4 . That is, if ψe ≤

3
4 , then dk ≥ 0 for all k and thus

∑
k pkDk > 0. Therefore, r ≥ 1

implies that ψe >
3
4 .

Now we are ready to derive a contradiction. Given that r ≥ 1 and ψe >
3
4 ≥

1
2 + ∆

4t (since

∆ ≤ t), by (6), we have x̂e < 1
2 + ∆

2t −
∆
2t = 1

2 . But, by (3), x̂e < 1/2 implies that ψe <
1
2 . This

is a contradiction. Therefore, it must be the case that r < 1.

Next we show that ψe >
1
2 + ∆

6t . Suppose ψe ≤
1
2 + ∆

6t . Given that r < 1, by (6) we have

x̂e >
1
2 + ∆

2t −
∆
3t = 1

2 + ∆
6t . That is, x̂e > ψe. But this contradicts the result in Lemma 2 that

x̂e < ψe. Therefore, in equilibrium ψe >
1
2 + ∆

6t must hold.

Finally, recall that P e2 = 2t(1−ψe)
dψe
dx̂
|x̂e
. Given that ψe >

1
2 + ∆

6t and
dψe
dx̂ |x̂e > 1, P e2 < t− ∆

3 .

Part (iii). Denote dx̂k
dψ as the derivative under the k-friend network. We first show that dx̂kdψ

is increasing in k when ψ is greater than but close to 1/2. By earlier results, we have

dx̂k
dψ

=
1

1− (1− λ)[ψk + (1− ψ)k]
−(1−λ)

kψ(1− ψ)[ψk−2 + (1− ψ)k−2 − (1− λ)ψk−2(1− ψ)k−2]

[1− (1− λ)[ψk + (1− ψ)k]]2
.
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Letting

R ≡ 1− (1− λ)[ψk+1 + (1− ψ)k+1]

1− (1− λ)[ψk + (1− ψ)k]
≥ 1,

and taking the difference, we get

dx̂k+1

dψ
− dx̂k
dψ

∝ kR[ψk−2 + (1− ψ)k−2 − (1− λ)ψk−2(1− ψ)k−2]− [ψk−1 + (1− ψ)k−1]

−k + 1

R
[ψk−1 + (1− ψ)k−1 − (1− λ)ψk−1(1− ψ)k−1].

When ψ = 1/2 and k = 2, we have

dx̂3

dψ
− dx̂2

dψ
∝ 1

2
(1− λ) > 0.

When ψ = 1/2 and k ≥ 3, we have

dx̂k+1

dψ
− dx̂k
dψ

∝ 2k[1− (1− λ)(
1

2
)k]− 1− (k + 1)[1− (1− λ)(

1

2
)k−1]

≥ k − 2 > 0.

By continuity, we conclude that dx̂k+1
dψ − dx̂k

dψ > 0 when ψ is close to 1/2.

Now consider k′ > k, and index the equilibrium variables by subscripts k and k′. We want

to show ψe.k′ < ψe,k. Suppose the opposite, ψe.k′ ≥ ψe,k, holds. By part (iii) of Lemma 2,

the inequality means that x̂e,k′ > x̂e,k, since under the k′-friend network the same x̂ leads to a

smaller ψ than under the k-friend network. Under both networks, in equilibrium we have

x̂e =
1

2
+

∆

2
− (2ψe − 1)

dx̂

dψ
|ψe . (28)

Regarding the derivative, we have dx̂k
dψ |ψe,k <

dx̂k′
dψ |ψe,k ≤

dx̂k′
dψ |ψe,k′ . The first inequality holds

because dx̂k
dψ is increasing in k, and the second inequality holds because x̂ is convex in ψ when

ψ ≥ 1/2 and ψe,k′ ≥ ψe,k ≥ 1/2. Therefore, we have

(2ψe,k − 1)
dx̂k
dψ
|ψe,k < (2ψe,k′ − 1)

dx̂k′

dψ
|ψe,k′ .

Thus the RHS of (28) is smaller under the k′-friend network than under the k-friend network.

However, x̂e,k′ > x̂e,k means that the LHS of (28) is larger under the k′-friend network. This

is a contradiction.

Proof of Lemma 4.
Proof. Parts (i) and (ii). The proof is similar to that of Lemma 1. Define the LHS of

(11) and (12) as HL(ψL) and HR(ψR), respectively. Note that both HL(·) and HR(·) are
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continuous functions. Given ψ, the steady-state ψL satisfies ψL = HL(ψL) and ψR satisfies

ψR = HR(ψR). We first show that for any given ψ, there is a unique ψL ∈ (ψ, 1). It can be

verified that HL(ψ) = 1 − (1 − λ)
∑

k pk(1 − ψ)k ≥ 1 − (1 − λ)(1 − ψ) > ψ, and HL(1) =

1 − (1 − λ)
∑

k pk[(1 − α)(1 − ψ)]k < 1. Thus the continuity of HL(·) implies the existence
of a ψL ∈ (ψ, 1) which satisfies ψL = HL(ψL). To show the uniqueness, it is suffi cient that
∂3HL
∂ψ3

> 0, which implies that the HL-curve crosses the 45 degree line at most once. It is

straightforward to check that ∂3HL
∂ψ3

> 0 holds, thus we have the uniqueness of ψL.

Next we show that ψL is increasing in ψ. Notice that HL(ψ) > ψ also implies that the

HL-curve crosses the 45 degree line from above. As ψ increases, the HL-curve shifts up, which

means that ψL increases, or
∂ψL
∂ψ > 0. To show that ψL is increasing in α, consider α

′′ > α′,

and denote the corresponding steady-state ψL as ψ
′
L and ψ

′′
L, respectively. Since ψ

′
L > ψ and

α′′ > α′, by (11) we have ψ′L = HL(ψ′L, α
′) < HL(ψ′L, α

′′). Given that the HL-curve crosses

the 45 degree line from above, ψ′′L > ψ′L must hold.

Following similar steps, we can show the results regarding ψR. First, HR(0) > 0 and

HR(ψ) = (1 − λ)
∑

k pkψ
k < ψ. Second, ∂

3HR
∂ψ3

> 0. These properties ensure a unique ψR ∈
(0, ψ) satisfying ψR = HR(ψR), and that the HR-curve crosses the 45 degree line from above.

As ψ increases, the HR-curve shifts up, which means that ψR increases, or
∂ψR
∂ψ > 0. Finally,

consider α′′ > α′. Since ψ′R < ψ, by (12) α′′ > α′ implies that ψ′R = HR(ψ′R, α
′) > HR(ψ′R, α

′′).

Given that the HR-curve crosses the 45 degree line from above, ψ′′R < ψ′R must hold.

Part (iii). Denote φL ≡ 1− ψL. By (11) and (12), we have

φL = (1− λ)
∑
k

pk[φL + (1− α)(1− ψ − φL)]k, (29)

ψR = (1− λ)
∑
k

pk[ψR + (1− α)(ψ − ψR)]k. (30)

Define the RHS of (29) as GL(φL), and thus GL(φL) = φL. Recall that the RHS of (30) is

HR(ψR). Since ψ ≥ 1/2, comparing (29) and (30), we have HR(y) ≥ GL(y) for any y ≤ ψ.

Therefore, φL = GL(φL) ≤ HR(φL). The fact that φL ≤ HR(φL) implies that ψR ≥ φL =

1− ψL, since the HR-curve crosses the 45 degree line from above.

Proof of Lemma 5.
Proof. Part (i). Denote ψL(ψ) and ψR(ψ) as the functions of the steady-state ψL and

ψR when ψ changes. Then H(ψL(ψ), ψR(ψ)) ≡ x̂ψL(ψ) + (1 − x̂)ψR(ψ), and the steady-

state ψ satisfies ψ = H(ψL(ψ), ψR(ψ)). For the existence of a steady state, it suffi ces to

show that (a) H(ψL(ψ), ψR(ψ)) is continuous, (b) limψ→0H(ψL(ψ), ψR(ψ)) ≥ 0, and (c)

limψ→1H(ψL(ψ), ψR(ψ)) ≤ 1. Note that (a) holds since both ψL(ψ) and ψR(ψ) are con-

tinuous, and both (b) and (c) are satisfied since, by (11) and (12), ψL ∈ [0, 1] and ψR ∈ [0, 1].
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Therefore, the existence of a steady-state ψ is ensured. For the uniqueness of ψ, it is enough

to show that (d) d3

dψ3
H(ψL(ψ), ψR(ψ)) ≥ 0, which implies that H(ψL(ψ), ψR(ψ)) crosses the

45-degree line at most once. Actually, combined with (b) and (c), property (d) also implies

that the H(ψ) curve crosses the 45-degree line from above at the steady-state ψ.

To show property (d), it is enough to show that ∂3ψL
∂ψ3

≥ 0 and ∂3ψR
∂ψ3

≥ 0, because
d3

dψ3
H(ψL(ψ), ψR(ψ)) = x̂∂

3ψL
∂ψ3

+ (1 − x̂)∂
3ψR
∂ψ3

. For that purpose, define f(z) ≡
∑

k pkz
k,

zL ≡ 1− (1−α)ψ−αψL, and zR ≡ (1−α)ψ+αψR. It can be readily verified that
∂n

∂zn f(z) ≥ 0

for all n. Moreover, ∂zL∂ψ = −(1 − α + α∂ψL∂ψ ) and ∂zR
∂ψ = (1 − α + α∂ψR∂ψ ). Differentiating (11)

with respect to ψ yields
∂ψL
∂ψ

=
(1− λ)(1− α)f ′(zL)

1− (1− λ)αf ′(zL)
.

The numerator of the above expression is positive. By Lemma 4, ∂ψL∂ψ > 0. Thus the denomina-

tor, 1−(1−λ)αf ′(zL), is also positive. That ∂ψL∂ψ > 0 also implies that ∂zL∂ψ < 0. Differentiating

(11) repeatedly, we get

∂2ψL
∂ψ2 =

−(1− λ)f ′′(zL)(∂zL∂ψ )2

1− (1− λ)αf ′(zL)
,

∂3ψL
∂ψ3 =

(1− λ)[−f ′′′(zL)(∂zL∂ψ )3 + 3αf ′′(zL)∂zL∂ψ
∂2ψL
∂ψ2

]

1− (1− λ)αf ′(zL)
.

Note that ∂2ψL
∂ψ2

< 0, since the numerator is negative. On the other hand, ∂
3ψL
∂ψ3

> 0, because

the numerator is positive since ∂zL
∂ψ < 0 and ∂2ψL

∂ψ2
< 0.

Similarly, regarding ψR we have

∂ψR
∂ψ

=
(1− λ)(1− α)f ′(zR)

1− (1− λ)αf ′(zR)
> 0,

∂2ψR
∂ψ2 =

(1− λ)f ′′(zR)(∂zR∂ψ )2

1− (1− λ)αf ′(zR)
,

∂3ψR
∂ψ3 =

(1− λ)[f ′′′(zR)(∂zR∂ψ )3 + 3αf ′′(zR)∂zR∂ψ
∂2ψR
∂ψ2

]

1− (1− λ)αf ′(zR)
.

The fact that ∂ψR
∂ψ > 0 implies that 1 − (1 − λ)αf ′(zR) > 0 and ∂zR

∂ψ > 0. Then it is straight-

forward to check that ∂
2ψR
∂ψ2

> 0 and ∂3ψR
∂ψ3

> 0. This completes the proof that the steady-state

ψ is unique.

Next, we show that ψ ≥ x̂. By (13),

H(ψ) = x̂+ [(1− x̂)ψR(ψ)− x̂(1− ψL(ψ))].

By earlier results, it suffi ces to show H(x̂) ≥ x̂, which is equivalent to (1 − x̂)ψR(x̂) − x̂(1 −
ψL(x̂)) ≥ 0. Somewhat abusing the notations, let zL = 1 − (1 − α)x̂ − αψL and zR =
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(1 − α)x̂ + αψR. When ψ = x̂, (11) becomes 1 − ψL = (1 − λ)
∑

k pkz
k
L and (12) becomes

ψR = (1− λ)
∑

k pkz
k
R. By Lemma 4, 1− ψL ≤ ψR when ψ = x̂ ≥ 1/2, thus we have zL ≤ zR.

Note that

(1− x̂)zR − x̂zL = α[(1− x̂)ψR(x̂)− x̂(1− ψL(x̂))].

Thus it suffi ces to show that (1− x̂)zR − x̂zL ≥ 0 or 1−x̂
x̂

zR
zL
− 1 ≥ 0. Again by (11) and (12),

(1− x̂)zR − x̂zL = α(1− λ)
∑
k

pk[(1− x̂)zR
k − x̂zLk],

which leads to
1− x̂
x̂

zR
zL
− 1 = α(1− λ)

∑
k

pkz
k−1
L [

1− x̂
x̂

(
zR
zL

)k − 1]. (31)

Now suppose 1−x̂
x̂

zR
zL
− 1 < 0. Since zL ≤ zR, 1−x̂

x̂ ( zRzL )k − 1 ≥ 1−x̂
x̂

zR
zL
− 1 for all k. Given that

α(1− λ)zk−1
L < 1 for all k and the LHS of (31) is strictly negative, for each k, the term in the

RHS of (31) is either positive or strictly less negative than the LHS. Thus, (31) cannot hold

with equality, leading to a contradiction. Therefore, we must have 1−x̂
x̂

zR
zL
− 1 ≥ 0.

Part (ii). The result that ψR < ψ < ψL directly follows from Lemma 4. Finally, to show

that ψ is increasing in x̂, consider any x̂′ > x̂′′ ≥ 1/2, and denote the corresponding steady-

state ψ as ψ′S and ψ′′S , respectively. Note that H(ψ′′S ; x̂′′) = x̂′′ψL(ψ′′S) + (1 − x̂′′)ψR(ψ′′S),

and ψL(ψ′′S) > ψR(ψ′′S) by Lemma 4. Therefore, H(ψ′′S ; x̂′) = x̂′ψL(ψ′′S) + (1 − x̂′)ψR(ψ′′S) >

H(ψ′′S ; x̂′′) = ψ′′S . Combined with the fact that the H(ψ) curve crosses the 45-degree line from

above, this implies ψ′S > ψ′′S . This proves that ψ strictly increases in x̂.

Proof of Lemma 6.
Proof. Part (i). First consider the single-friend network. With p1 = 1, (14) becomes

ψ − x̂ =
(1− λ)(1− α)

1− (1− λ)α
(ψ − x̂),

which implies that ψ = x̂.

Under the infinite-friend network, by (11) and (12), we have ψL = 1 and ψR = 0. Then

ψ = x̂ based on (13). Finally, consider the case of any generic network with α = 1. By (11)

and (12), again we have ψL = 1 and ψR = 0. Therefore, ψ = x̂.

Part (ii). To show ψ > x̂, we follow similar steps as in the proof of part (ii) of Lemma 5,

where the weak inequality is proved. With a generic network and x̂ > 1/2, following part (iii)

of Lemma 4, we can show that ψR > 1− ψL if ψ > 1/2, which leads to zR
zL
> 1. Then in part

(ii) of Lemma 5, 1−x̂
x̂ ( zRzL )k − 1 > 1−x̂

x̂
zR
zL
− 1 for all k. Now suppose 1−x̂

x̂
zR
zL
− 1 = 0. Then

1−x̂
x̂ ( zRzL )k − 1 > 0 for all k ≥ 2. Therefore, the RHS of (31) is strictly positive, contradicting

the equality. Therefore, H(x̂) > x̂ and ψ > x̂.
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Finally, we show that ψ decreases in α. By (11) and (12),

∂ψL
∂α

= −(1− λ)f ′(zL)[−(1− α)
∂ψ

∂α
+ ψ − ψL − α

∂ψL
∂α

]

=
(1− λ)f ′(zL)

1− α(1− λ)f ′(zL)
[(1− α)

∂ψ

∂α
− ψ + ψL]

=
∂ψL
∂ψ

∂ψ

∂α
+

(1− λ)f ′(zL)

1− α(1− λ)f ′(zL)
(1− x̂)(ψL − ψR).

The last equality follows from ψL − ψ = (1− x̂)(ψL − ψR). Similarly,

∂ψR
∂α

= (1− λ)f ′(zR)[(1− α)
∂ψ

∂α
− ψ + ψR + α

∂ψR
∂α

]

=
(1− λ)f ′(zR)

1− α(1− λ)f ′(zR)
[(1− α)

∂ψ

∂α
− ψ + ψR]

=
∂ψR
∂ψ

∂ψ

∂α
− (1− λ)f ′(zR)

1− α(1− λ)f ′(zR)
x̂(ψL − ψR).

The last equality follows from ψR − ψ = −x̂(ψL − ψR). Combine the above results,

∂ψ

∂α
= x̂

∂ψL
∂α

+ (1− x̂)
∂ψR
∂α

= [x̂
∂ψL
∂ψ

+ (1− x̂)
∂ψR
∂ψ

]
∂ψ

∂α

+x̂(1− x̂)(1− λ)(ψL − ψR)[
f ′(zL)

1− α(1− λ)f ′(zL)
− f ′(zR)

1− α(1− λ)f ′(zR)
]

∝
f ′(zL)

1−α(1−λ)f ′(zL) −
f ′(zR)

1−α(1−λ)f ′(zR)

1− [x̂∂ψL∂ψ + (1− x̂)∂ψR∂ψ ]
, because ψL > ψR

∝ f ′(zL)

1− α(1− λ)f ′(z∗L)
− f ′(zR)

1− α(1− λ)f ′(z∗R)
, because

∂ψ

∂x̂
> 0

< 0.

The last inequality holds because f ′(z) is increasing in z and zL < zR, as shown earlier.

Proof of Lemma 7.
Proof. Parts (i) and (ii). We can compute

d2ψ

dx̂2
=

ψL − ψR
[1− [x̂∂ψL∂ψ + (1− x̂)∂ψR∂ψ ]]2

{2(
∂ψL
∂ψ
− ∂ψR

∂ψ
) + [x̂

∂2ψL
∂ψ2 + (1− x̂)

∂2ψR
∂ψ2 ]

dψ

dx̂
}

∝ (1− λ)(1− α){ 2f ′(zL)

1− (1− λ)αf ′(zL)
− 2f ′(zR)

1− (1− λ)αf ′(zR)

+(1− α)[(1− x̂)
f ′′(zR)

[1− (1− λ)αf ′(zR)]3
− x̂ f ′′(zL)

[1− (1− λ)αf ′(zL)]3
]
dψ

dx̂
}.

41



When x̂ = 1/2, ψ = 1/2, ψR = 1 − ψL, and zL = zR, and thus
d2ψ
dx̂2
|x̂=1/2 = 0. It is also

easy to see that limλ→1
d2ψ
dx̂2

= 0 for any α ∈ [0, 1] , and that limα→1
d2ψ
dx̂2

= 0.

Under well-connected networks, f ′(z) → 0 and f ′′(z) → 0 for any z ∈ [0, 1). Therefore,
d2ψ
dx̂2
→ 0. Under the single-friend network, ψ = x̂. Therefore, again d2ψ

dx̂2
= 0.

Part (iii). When α = 0, we know from Lemma 3 that d2ψ
dx̂2
≥ 0 when x̂ ≤ 1/2 and d2ψ

dx̂2
≤ 0

when x̂ ≥ 1/2. By continuity, the property continues to hold when α is small.

Regarding the result when λ is large, it is suffi cient to show that d2x̂
dψ2
≥ 0 when x̂ ≥ 1/2

and d2x̂
dψ2
≤ 0 when x̂ ≤ 1/2. By (13), x̂ = ψ−ψR

ψL−ψR
. Then

d2x̂

dψ2 =

2(∂ψL∂ψ −
∂ψR
∂ψ )[(ψL − ψ)∂ψR∂ψ + (ψ − ψR)∂ψL∂ψ − (ψL − ψR)]

−(ψL − ψR)[(ψL − ψ)
∂ψ2R
∂ψ2

+ (ψ − ψR)∂
2ψL
∂ψ2

]

(ψL − ψR)3
. (32)

Because ψL > ψR according to Lemma 5, the sign of
d2x̂
dψ2

is the same as that of the numerator

in (32).

We first consider k-friend networks (k ≥ 2). We can calculate that

∂ψL
∂ψ

=
(1− λ)(1− α)kzk−1

L

1− α(1− λ)kzk−1
L

,
∂ψR
∂ψ

=
(1− λ)(1− α)kzk−1

R

1− α(1− λ)kzk−1
R

,

∂2ψL
∂ψ2 =

−(1− λ)(1− α)k(k − 1)zk−2
L [(1− α) + α∂ψL∂ψ ]

[1− α(1− λ)kzk−1
L ]2

,

∂2ψR
∂ψ2 =

(1− λ)(1− α)k(k − 1)zk−2
R [(1− α) + α∂ψR∂ψ ]

[1− α(1− λ)kzk−1
R ]2

.

Using the above results, the numerator in (32) has the same sign as Ω, where

Ω =2[(ψL − ψR)− (ψL − ψ)
∂ψR
∂ψ
− (ψ − ψR)

∂ψL
∂ψ

](zk−1
R − zk−1

L )

+ (k − 1)(ψL − ψR)[−(ψL − ψ)zk−2
R

1− α(1− λ)kzk−1
L

1− α(1− λ)kzk−1
R

((1− α) + α
∂ψR
∂ψ

)

+ (ψ − ψR)zk−2
L

1− α(1− λ)kzk−1
R

1− α(1− λ)kzk−1
L

((1− α) + α
∂ψL
∂ψ

)].

When λ → 1, we have ψL → 1, ψR → 0, zL → (1 − α)(1 − ψ), zR → (1 − α)ψ, ∂ψR∂ψ → 0

and ∂ψL
∂ψ → 0. Then

Ω→ (1− α)k−1
[
2(ψk−1 − (1− ψ)k−1) + (k − 1)(−(1− ψ)ψk−2 + ψ(1− ψ)k−2)

]
. (33)
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When k = 2 or k = 3, by (33) Ω ∝ 2ψ−1. When k = 4, Ω ∝ (2ψ−1)(2ψ2−ψ(1−ψ)+2(1−ψ)2),

and when k = 5, Ω ∝ (ψ2 − (1 − ψ)2)(2ψ − 1)2. In each case, Ω is strictly negative when

ψ < 1/2 and strictly positive when ψ > 1/2. Moreover, Ω goes to 0 when k is large. Therefore,

the concavity/convexity property holds for k-friend networks. Since any generic network is a

weighted combination of k-friend networks, we conclude that the concavity/convexity property

holds for generic networks if λ is large enough.

Proof of Proposition 6.
Proof. We first show the existence of candidate equilibrium for ∆ ∈ [0, t]. With x̂ being the

horizontal axis and ψ the vertical axis, an equilibrium is an intersection of the SS-curve defined

by the steady-state equations (11)-(13) and the PE-curve defined by the pricing equation (15).

Both curves are continuous. We can verify that (1
2 ,

1
2) is the starting point of the SS-curve. For

the PE-curve, based on (15) and the fact that dψ
∂x̂ > 0, ψ ≥ 1/2 when x̂ = 1/2. Therefore, the

starting point of the PE-curve is weakly above the SS-curve. Now consider the ending point

at x̂ = 1
2 + ∆

2t . By lemma 5, on the SS-curve ψ(1
2 + ∆

2t) ≥
1
2 + ∆

2t . In addition, by the pricing

equation (15), on the PE-curve ψ = 1
2 when x̂ = 1

2 + ∆
2t , since

dψ
dx̂ > 0. Therefore, the PE-curve

is weakly below the SS-curve at the ending point. By continuity, the two curves must intersect

at some x̂ ∈ [1
2 ,

1
2 + ∆

2t ], which is a candidate equilibrium x̂e. Since x̂e ∈ [1
2 ,

1
2 + ∆

2t ], we must

have x̂e = 1/2 when ∆ = 0, which implies that ψe = 1/2 as well.

Next, the uniqueness of candidate equilibrium follows from the same proof as in Proposition

1. That the PE-curve is downward sloping follows from the pricing equation (15) and Lemma

7. The SS-curve is upward sloping by Lemma 5. Thus, the two curves can only have one

intersection and the candidate equilibrium is unique.

Finally, following an argument similar to the proof of Proposition 1, by Lemma 7 the

second-order conditions are satisfied if either λ or α is large enough, or the network is well-

connected or the single-friend network. Thus, the suffi ciency of the first-order conditions is

guaranteed.

Proof of Proposition 7.
Proof. Part (i). Following part (i) of Lemma 6, under both networks ψ = x̂. And thus dψdx̂ = 1

at any x̂. The results immediately follow.

Part (ii). It is suffi cient to show that dψdx̂ |x̂= 1
2
is decreasing in α. Let z ≡ (1−λ)

∑
k kpk[(1−

α)/2 + αψR]k−1. Then (17) can be written compactly as

dψ

dx̂
|x̂= 1

2
= (1− 2ψR)

1− αz
1− z . (34)

By definition,

∂z

∂α
= (1− λ)

∑
k

k(k − 1)pk[(1− α)/2 + αψR]k−2(ψR −
1

2
+ α

∂ψR
∂α

) < 0,
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since by Lemma 4, ψR < ψ = 1
2 and

∂ψR
∂α < 0. Now differentiating (34) with respect to α, we

get

∂2ψ

∂x̂∂α
|x̂= 1

2
∝ −2

∂ψR
∂α

(1− αz)(1− z) + (1− 2ψR)[−z(1− z) + (1− α)
∂z

∂α
]

= −2z(ψR −
1

2
)(1− z) + (1− 2ψR)[−z(1− z) + (1− α)

∂z

∂α
]

= (1− 2ψR)(1− α)
∂z

∂α
< 0.

In the first equality above we used the result that ∂ψR
∂α =

z(ψR− 1
2

)

1−αz , which can be derived from

(12). Therefore, dψdx̂ |x̂= 1
2
is decreasing in α.

Proof of Proposition 8.
Proof. Part (i). Because ψR strictly decreases in α (Lemma 4), by (18) W strictly increases

in α.

Part (ii). By Proposition 7, under the extreme networks dψ
dx̂ = 1 for all α. The result

immediately follows part (i).

Part (iii). Using the notations and results in the proof of Proposition 7, and let y ≡
(1− α)/2 + αψR, from (19) we compute

∂CS

∂α
∝ (ψR −

1

2
)(1− αz)∂ψR

∂α
+

1− z
ψR − 1

2

∂ψR
∂α

+
−z(1− z) + (1− α) ∂z∂α

1− αz

∝ (ψR −
1

2
)2(1− αz)z + (1− α)(1− λ)

∑
k

pkk(k − 1)yk−2(ψR −
1

2
+ α

∂ψR
∂α

)

∝ 1

2
(1− 2ψR)(1− αz)2z − (1− α)(1− λ)

∑
k

pkk(k − 1)yk−2. (35)

In the derivation we used the fact that ψR < 1/2.

To determine the sign of (35), define z′ as follows and recall z:

z′ ≡ (1− λ)
∑
k

pkk(k − 1)yk−2 = (1− λ)[2p2 + 6p3y + ...],

z = (1− λ)[p1 + 2p2y + 3p3y
2 + ...].

Note that y < 1/2 because ψR < 1/2. Suppose p2 ≥ p1. Since y < 1/2, z
′−z

1−λ ≥ 2p2(1−y)−p1 >

p2−p1 ≥ 0; that is, z′ ≥ z. Then (35) is less than 1
2z
′− (1−α)z′, which is negative if α ≤ 1/2.

Next consider the case that p1 = 0. Now y ≤ 1/2 implies that z′ ≥ 2z. Then (35) is less than
1
2z
′ − 2(1− α)z′, which is negative if α ≤ 3/4.

Proof of Proposition 9.
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Proof. Part (i). By part (i) of Lemma 6, ψ = x̂. Thus dψdx̂ = 1 at any x̂. Therefore, the market

share equation and the pricing equation are the same as those in the standard Hotelling model,

which implies the same equilibrium market share and prices.

Part (ii). We first show that dψ
dx̂ is decreasing in α for x̂ close to 1/2. By the steady-state

equations, we compute the relevant derivatives:

∂ψ

∂α
=

x̂(1−x̂)
1−α (ψL − ψR)(∂ψL∂ψ −

∂ψR
∂ψ )

1− [x̂∂ψL∂ψ + (1− x̂)∂ψR∂ψ ]
,

∂2ψ

∂x̂∂α
∝ (1− 2x̂)(ψL − ψR)(

∂ψL
∂ψ
− ∂ψR

∂ψ
) + x̂(1− x̂)

dψ

dx̂
×

{(∂ψL
∂ψ
− ∂ψR

∂ψ
)2(1 +

1− [x̂∂ψL∂x̂ + (1− x̂)∂ψR∂x̂ ]

1− [x̂∂ψL∂ψ + (1− x̂)∂ψR∂ψ ]
) + (ψL − ψR)(

∂2ψL
∂ψ2 −

∂2ψR
∂ψ2 )

+(
∂ψL
∂ψ
− ∂ψR

∂ψ
)
1− [x̂∂ψL∂x̂ + (1− x̂)∂ψR∂x̂ ]

1− [x̂∂ψL∂ψ + (1− x̂)∂ψR∂ψ ]
[x̂
∂2ψL
∂ψ2 + (1− x̂)

∂2ψR
∂ψ2 ]

dψ

dx̂
}. (36)

When x̂ = 1/2, we have ψ = 1/2, ψR = 1− ψL, zL = zR, and
∂ψL
∂ψ −

∂ψR
∂ψ = 0. Therefore, (36)

becomes

∂2ψ

∂x̂∂α
|x̂= 1

2
∝ (

∂2ψL
∂ψ2 −

∂2ψR
∂ψ2 )|x̂= 1

2
= −[

(1− λ)f ′′(zL)(∂zL∂ψ )2

1− (1− λ)αf ′(zL)
+

(1− λ)f ′′(zR)(∂zR∂ψ )2

1− (1− λ)αf ′(zR)
] < 0.

This means that dψ
dx̂ is decreasing in α when x̂ = 1/2. By continuity, the result also holds for

x̂ greater than but not too far away from 1/2.

Next we prove that ψe is decreasing in α. Specifically, consider α
′ > α, and index the

endogenous variables by subscripts α and α′. We want to show that ψe,α′ < ψe,α. Suppose the

opposite, ψe,α′ ≥ ψe,α, holds. By part (ii) of Lemma 6, this means that x̂e,α′ > x̂e,α, because

the same x̂ leads to a smaller ψ under a larger α. By equation (15), the following equation

holds for both α and α′ in equilibrium:

x̂e =
1

2
+

∆

2
− (2ψe − 1)

dψ
dx̂ |x̂e

. (37)

Note that
dψα
dx̂
|x̂e,α >

dψα′

dx̂
|x̂e,α >

dψα′

dx̂
|x̂e,α′ .

The first inequality holds because ∂2ψ
∂x̂∂α < 0, and the second inequality holds because ψ is

concave in x̂ when x̂ ≥ 1/2 and x̂e,α′ > x̂e,α. Therefore, we have

(2ψe,α − 1)
dψα
dx̂ |x̂e,α

<
(2ψe,α′ − 1)
dψα′
dx̂ |x̂e,α′

.
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Now compare equation (37) under α and α′. Relative to those under α, the LHS is bigger

under α′, but the RHS is smaller under α′. This contradicts the fact that equation (37) holds

under both α and α′.

Finally, we show that dψ
dx̂ |x̂e > 1 when α < 1. Since ∂2ψ

∂x̂∂α < 0, we have

dψα
dx̂
|x̂e,α >

dψα=1

dx̂
|x̂e,α = 1,

where the equality follows from part (i). The rest of the results can be proved by the same

argument as in the proof of part (ii) of Proposition 5.
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