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Abstract

This paper analyzes several different biases that emerge from the (possibly) low-
precision nonparametric ingredient in a semiparametric model. We show that both the
variance part and the bias part of the nonparametric ingredient can lead to some biases
in the semiparametric estimator, under conditions weaker than typically required in the
literature. We then propose two bias-robust inference procedures, based on multi-scale
jackknife and analytical bias correction, respectively. We also extend our framework
to the case where the semiparametric estimator is constructed by some discontinuous
functionals of the nonparametric ingredient. The simulation study shows that both
bias-correction methods have good finite-sample performance.

JEL classification: C13, C14.
Keywords: Semiparametric two-step estimation, nonparametric estimator, bias,

robust inference, multi-scale jackknife, analytical bias correction.

1 Introduction

Recently, increasing attention has been drawn to the interplay between the asymptotic
properties of semiparametric estimators and their nonparametric ingredients that could
have relatively low precision (e.g., the nonparametric ingredient can have a slower-than-
n1{4 convergence rate), which may render the previously established asymptotic results
invalid. Significant progress has been made by one branch of literature (Cattaneo
et al., 2010, 2013, 2014; Calonico et al., 2014; Cattaneo and Jansson, 2018) about
“small bandwidth asymptotics” for kernel-based semiparametric estimators and establishes
bootstrap inference procedure robust to a bias that has non-negligible impacts when
the bandwidth is “small.” Another branch of literature (Ichimura and Newey, 2017;
Chernozhukov et al., 2017, 2018a,c,b) has creatively introduced an influence function to
the GMM semiparametric two-step estimator, to ensure local robustness to the first-step
nonparametric ingredient, a property which, as pointed out by (Cattaneo and Jansson,
2018), can be interpreted as “large bandwidth asymptotics” in the case of kernel-based
semiparametric estimators.
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Motivated by these new results, this paper proposes a general framework to analyze
the impacts of several different biases that emerge from the low-precision nonparametric
ingredient, including kernel and sieve estimators, on the distributional approximations of
the associated semiparametric estimator. We generalize the framework used by (Andrews,
1994), (Newey, 1994), and (Newey and McFadden, 1994), by allowing the nonparametric
ingredient to have a convergence rate slower than what is required by the original papers
(i.e., a faster-than-n1{4 convergence rate). In short, we consider the case where the key
Condition (2.8) in (Andrews, 1994) fails to hold. More specifically, we first replace the
linear approximation (Assumption 5.1 in (Newey, 1994) and Condition (i) of Theorem 8.1 in
(Newey and McFadden, 1994)) in the last two cited papers by a quadratic one. Although this
requires a higher-order differentiability condition, it enables us to account for a nonlinear
bias, which may appear when the nonparametric ingredient converges slower than n1{4.
Second, we also relax a restriction jointly implied by the stochastic equicontinuity condition
and the mean-square continuity condition (Assumptions 5.2 and 5.3 in (Newey, 1994), and
Conditions (ii) and (iii) of Theorem 8.1 in (Newey and McFadden, 1994)), to account for
another “linear” bias (see Remarks 2.6 and 2.10 below). Both biases can have non-negligible
(in the sense of not being oPpn

´1{2q) impacts on the distributional approximation of the
semiparametric estimator.

As for the sources of the above biases, recall the well-known bias-variance tradeoff in
the nonparametric literature. Our analysis shows that the nonlinear bias is related to
the variance part of the nonparametric ingredient, while the other bias comes from the
nonparametric bias. Theoretically speaking, it is possible to impose certain restriction(s)
on the tuning parameter of the nonparametric ingredient so that one bias becomes oPpn

´1{2q

(e.g., under- or over-smoothing in the kernel case), just like the above-cited recent literature.
However, it is often hard to verify such restriction(s) in practice. Besides, even though one
bias could be oPpn

´1{2q in an asymptotic sense, its effects may not be sufficiently small to
be negligible in finite or small samples. Therefore, we do not impose such restriction(s) and
allow the possibility that either one or both of them could be larger than oPpn

´1{2q. By doing
so, our distributional approximation will be robust to a larger range of values of the tuning
parameter. When specialized to the kernel-based case, this is equivalent to establishing
asymptotic results without distinguishing small and large bandwidths. Consequently, the
finite sample performance of the corresponding inference procedures will be less sensitive
to the choice of the tuning parameter.

In addition to the above two biases that appear in general cases, our analysis also
indicates that there can be another special bias for the kernel-based semiparametric
estimators. We refer to it as the “singularity bias,” which, in our view, is the same as
the “leave-in bias” studied by (Cattaneo and Jansson, 2018). In the cited paper, the “leave-
in bias” highlights the fundamental difference between the asymptotic separability condition
and the stochastic equicontinuity condition therein (see Remark 2.6 for more discussions).
Since the framework we adopted is somewhat different, we discuss the “singularity bias”
mainly from the perspectives of U-statistics and V-statistics. If we use the same empirical
measure to construct the nonparametric and the semiparametric estimators, then the first-
order term in our quadratic approximation is a V-statistic. In contrast, if we either
use the “leave-one-out” version of the empirical measure to construct the nonparametric
estimator, or use a smoothed measure to construct the semiparametric estimator, then the
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first-order term becomes a U-statistic. Typically, the difference between a V-statistic and
its corresponding U-statistic is very small, often of order OPpn

´1q. However, the special
structure (we believe it is the convolution structure that matters here) of the kernel-based
nonparametric estimator can lead to a potentially much larger difference, yielding this
special bias. As a comparison, there is no such bias in the sieve-based case.

The second main result of this paper is that we propose two different inference procedures
that are robust to the aforementioned biases. The first one is the multi-scale jackknife (MSJ)
method, which utilizes the tuning parameter of the nonparametric ingredient in the role of
sample size as in the original jackknife method introduced by (Quenouille, 1949). Similar
ideas have been adopted by, for example, (Schucany and Sommers, 1977), (Bierens, 1987),
(Powell et al., 1989), and (Li et al., 2019). Theoretically speaking, this method can remove
all aforementioned biases, provided that an appropriate weighting scheme is chosen. In the
kernel-based case, this method can automatically remove the “singularity bias,” for that it
has the same order as the nonlinear bias. If one knows the orders of other smaller biases,
one can use more scales to remove these biases as well (refer to the simulation results).
The second one is the analytical-based bias correction (ABC) method. It requires a twice
Fréchet differentiable assumption (so that one can get the analytical form of the nonlinear
bias) and some consistent estimators of both the variance part and the bias part of the
nonparametric ingredient. Provided that some other regularity conditions are satisfied, this
method can remove or reduce those biases (the remaining bias, if any, will be negligible at
a root-n rate).

Last but not least, we show that our framework can be extended to the family
of semiparametric estimators that are constructed from discontinuous functionals of the
nonparametric ingredients. The requirement is that those discontinuous functionals must
have smooth projections, which can be well approximated by quadratic functionals of the
nonparametric ingredients. Under certain regularity conditions, the multi-scale jackknife
method can yield valid and robust inference. However, the analytical bias correction in
this case is more involved, for that one needs to take into account the estimation error
and/or bias associated with the unknown smooth projection. Hence, we leave this to future
exploration.

The rest of this paper is organized as follows. Section 2 discusses several key properties
of a general class of semiparametric estimators and present our first main result, i.e., a
distributional approximation that accounts for various biases. In Section 3, we present two
inference procedures that are robust to those biases and provide some sufficient conditions to
extend the results from the class of twice differentiable functionals to certain discontinuous
functionals. Section 4 demonstrates the finite sample performance of the two inference
procedures through some simulation results. Section 5 concludes.

2 Asymptotically Linear Semiparametric Estimators

Throughout this paper, any random sequence that is oPpn
´1{2q will be referred to as “root-n

negligible.” We will use C to denote some finite positive number, the value of which may
change from line to line. Denote by }} the Euclidean norm.
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2.1 Asymptotic linearity

Let θ0 P Θ be a finite-dimensional parameter of interest, where Θ is a subset of some
Euclidean space. Suppose that the identification of θ0 depends on an unknown function
γ0 P Γ, where Γ represents certain infinite-dimensional functional space. Let z1, ¨ ¨ ¨ , zn be
an i.i.d. copies of a random vector z P Rdz . We shall use x to denote a real vector in Rdz .
Suppose that we can sequentially construct two consistent estimators γ̂n and θ̂n from this
sample.

Let P and Pn be the true probability measure and the empirical probability measure,
respectively. For any signed measure Q, let Qf :“

ş

fdQ for any function f . Then for any
functional g of pz, θ, γq, define

Gpθ, γq :“ Pg “ Ergpz, θ, γqs and pGnpθ, γq :“ Png “
1

n

n
ÿ

i“1

gpzi, θ, γq.

Here the notation gpzi, θ, γq is to stress that the moment function is evaluated at the sample
point zi under the empirical measure. The functional g can directly and/or indirectly (i.e.,
through γ) depend on zi.

Assumption 2.1 (AL—Asymptotic Linearity in g). Assume that the estimator θ̂n is
asymptotically linear. That is,

θ̂n ´ θ0 “ Jn pGnpθ0, γ̂nq ` oPpn
´1{2q “

1

n

n
ÿ

i“1

Jngpzi, θ0, γ̂nq ` oPpn
´1{2q, (2.1)

where Jn
P
ÝÑ J0 for some non-random, finite and non-degenerate J0 (when it is a matrix,

all of its eigenvalues are finite and bounded below from zero), and the functional g satisfies
that Gpθ0, γ0q “ Ergpz, θ0, γ0qs “ 0, which uniquely determines θ0.

Remark 2.2. Another way to formulate pGn is to use an estimated probability measure,
which is absolutely continuous with respect to the Lebesgue measure. Denote such a measure
by PAC

n . For instance, it can be obtained by using a kernel-based method. Now consider
the case of estimating the average density θ0 “ Erγ0pzqs, which implies that gpz, θ, γq “
γpzq ´ θ. We can then have two different formulations for θ̂n ´ θ0: one for the average
density estimator θ̂ADn :

θ̂ADn ´ θ0 “ pGnpθ0, γ̂nq “ Png “
1

n

n
ÿ

i“1

`

γ̂npziq ´ θ0

˘

,

and the other one for the integrated squared density estimator θ̂ISDn (recall that x is a real
vector):

θ̂ISDn ´ θ0 “ pGnpθ0, γ̂nq “ PAC
n g “

ż

γ̂2
npxqdx´ θ0.

In both cases, Jn “ J0 “ I.
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Remark 2.3. The requirement on J0 excludes the possibility of weak identification of θ.
This may seem to be restrictive. However, we are going to extend the classic theory in a
different direction.

As pointed out by (Andrews and Mikusheva, 2016), the empirical process theory typically
implies that the root-n re-scaled sample moment function converges in distribution to the
sum of three parts (refer to Equation (1) therein): a mean function, which may allow for
various types of identification; a mean-zero Gaussian process, which establishes the central
limit theorem; and a residual term, which is typically assumed to be negligible at the root-n
rate. While we assume the mean function gives strong identification of θ, we are going to
relax the assumption on the residual term and allow it to be non-negligible at the root-n
rate.

We note that Jngpzi, θ0, γ̂nq gives the influence of a single observation in the leading term
of the estimation error θ̂n ´ θ0. In this sense, it can be viewed as the influence function,
following (Hampel, 1974). (Ichimura and Newey, 2017) adopt a very similar definition of
asymptotic linearity in their equation (2.1). The only difference is that we introduce the
term Jn, in order to focus on the more essential part g of the influence function. As pointed
out by (Ichimura and Newey, 2017), under sufficient regularity conditions, almost all root-n
consistent semiparametric estimators satisfy Assumption 2.1.

Example (GMM Semiparametric Estimator). Consider a GMM-type estimator θ̂n:

θ̂n :“ arg max
θPΘ

´
1

2
pGnpθ, γ̂nq

ᵀWn
pGnpθ, γ̂nq,

where Wn
P
ÝÑ W0, representing the weighting matrix and its limit. Suppose that g is

first-order differentiable at θ0, then one can readily get

Jn “ rBθ pGnpθ0, γ̂nq
ᵀWnBθ pGnpθ0, γ̂nqs

´1Bθ pGnpθ0, γ̂nq
ᵀWn,

J0 “ rBθGpθ0, γ0q
ᵀW0BθGpθ0, γ0qs

´1BθGpθ0, γ0q
ᵀW0.

We have Jn
P
ÝÑ J0, if Bθgpθ0, γq is continuous with respect to γ in a neighborhood of γ0.

The above example shows a subtle difference in the definition of asymptotic linearity
between this paper and those in (Ichimura and Newey, 2017) and (Cattaneo and Jansson,
2018). In this paper, the term Jn can be random, hence can be different from J0 in a
non-trivial way. However, in the GMM examples of the two cited papers, the authors set
Jn ” J0 (cf. (2.2) in (Ichimura and Newey, 2017) and the discussion following Condition
AL in (Cattaneo and Jansson, 2018)). It is easy to see that if the following condition holds

pJn ´ J0q pGnpθ0, γ̂nq “ oPpn
´1{2q, (2.2)

then the above definition can be modified to be exactly the same as the two cited papers.
A sufficient condition for (2.2) is pGnpθ0, γ̂nq “ OPpn

´1{2q, which indeed holds in a lots of
applications. This sufficient condition may not hold in the current paper, since we are going
to consider the general case where pGnpθ0, γ̂nq could have some bias(es) that can be larger
than OPpn

´1{2q in order. However, eventually, we will make sure that Condition (2.2) is
satisfied (see Lemma 2.13 for details).
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2.2 Quadratic approximation of pGnpθ0, γ̂nq

To begin with, we have the following decomposition (recall that Gpθ0, γ0q “ 0)

pGnpθ0, γ̂nq “ pGnpθ0, γ̂nq ´ pGnpθ0, γ0q ` pGnpθ0, γ0q ´Gpθ0, γ0q.

The first difference is the impact of replacing γ0 by its estimator in the empirical moment
condition, while the second one is the difference between a sample average and its
expectation, to which we can apply the central limit theorem (CLT) for i.i.d. random
variables.

We introduce the following assumption on g, in order to get a more detailed evaluation
of the first term.

Assumption 2.4 (Quadraticity). Suppose that the following (stochastic) quadratic approx-
imation of the functional g holds around pθ0, γ0q for sufficiently large n:

gpzi, θ0, γ̂nq “ gpzi, θ0, γ0q ` g
1
γpzi, θ0, γ0, γ̂n ´ γ0q `

1

2
g 2γγpzi, θ0, γ0, γ̂n ´ γ0, γ̂n ´ γ0q

` gRpzi, θ0, γ0, γ̂n ´ γ0q,

where g 1γpzi, θ0, γ0, ¨q is a linear functional, g 2γγpzi, θ0, γ0, ¨, ¨q is a bi-linear functional and
symmetric in its two inputs (the subscript γ indicates that these functionals are from the
expansion with respect to γ, not z or θ), and the functional gR captures the remainder
of this expansion. We assume that Er}g1γpzi, θ0, γ0, γ ´ γ0q}s ď C Er}γpziq ´ γpziq}s,
Er}g2γγpzi, θ0, γ0, γ ´ γ0, γ ´ γ0q}s ď C Er}γpziq ´ γpziq}

2s, and Er}gRpzi, θ0, γ0, γ ´ γ0q}s ď

C Er}γpziq ´ γ0pziq}
3s for γ sufficiently close to γ0 and some finite number C.

Compared to Assumption 5.1 (Linearization) in (Newey, 1994) and Condition (i) of
Theorem 8.1 in (Newey and McFadden, 1994), the above assumption requires a second-
order, instead of first-order, differentiability of g with respect to γ, which could be a random
function, such as γ̂n. However, the two cited papers both require that }γ̂npziq ´ γ0pziq}

2 “

oPpn
´1{2q. In other words, the nonparametric estimator γ̂n must have a faster-than-n1{4

convergence rate (i.e., r ą 1{4 and s ą 1{4 in Assumption 2.12 below). Yet, as to be shown
later, we just need }γ̂npziq ´ γ0pziq}

3 “ oPpn
´1{2q, which only requires a faster-than-n1{6

convergence rate for γ̂n. With this slower convergence rate, we may have some non-root-n-
negligible biases.

Define the following terms using the empirical measure Pn:

pG 1n,γpθ0, γ0, ηq :“
1

n

n
ÿ

i“1

g 1γpzi, θ0, γ0, ηq,

pG 2n,γγpθ0, γ0, η, φq :“
1

n

n
ÿ

i“1

g 2γγpzi, θ0, γ0, η, φq.

The quadraticity assumption implies that, for sufficiently large n, we have

pGnpθ0, γ̂nq “ pGnpθ0, γ0q ` pG 1n,γpθ0, γ0, γ̂n ´ γ0q `
1

2
pG 2n,γγpθ0, γ0, γ̂n ´ γ0, γ̂n ´ γ0q
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` pGn,Rpθ0, γ0, γ̂n ´ γ0q,

where pGn,Rpθ0, γ0, γ̂n ´ γ0q “
1
n

řn
i“1 gRpzi, θ0, γ0, γ̂n ´ γ0q.

Remark 2.5. In the case where we use the measure PAC
n , instead of Pn, to construct

pG, we apply Assumption 2.4 to an equivalent functional g̃, which will be evaluated at a
real vector x, defined as follows. Let L be the Lebesgue measure, ν0 be the true density
function of z, which may or may not be part of γ0, and ν̂n “ dPAC

n {dL. Then we have
Pg “ Ergs “ Lrgp¨, θ0, γ0qν0p¨qs and PAC

n g “ Lpgp¨, θ0, γ̂nqν̂np¨qq. Hence, we set g̃pθ, γ, νq :“
Lrgp¨, θ, γqνp¨qs. In the special case where ν0 is part of γ0, we can write g̃pθ, γ, νq as g̃pθ, γq.
In the end, we suppose that Assumption 2.4 holds true for the functional g̃ with respect to
pγ, νq around pγ0, ν0q.

Throughout this paper, we assume that γ̂n is a consistent estimator of the unknown
function γ0. Yet, such a nonparametric estimator is often biased, leading to the well-known
bias-variance tradeoff in the nonparametric literature. In the semiparametric literature,
it is often assumed that the nonparametric bias is sufficiently small so that this bias is
root-n negligible, causing no problems for the associated semiparametric estimator (that
is, G 1γpθ0, γ0, γ̂n ´ γ0q :“ Er pG 1n,γpθ0, γ0, γ̂n ´ γ0qs “ oPpn

´1{2q). Since we aim at relaxing
such an assumption, we are going to separate the bias part from the variance part. The
idea is to introduce a function γ̄n such that G 1γpθ0, γ0, γ̂n ´ γ̄nq :“ Er pG 1n,γpθ0, γ0, γ̂n ´ γ̄nqs

is identically zero or at least oPpn
´1{2q, no matter how one chooses the tuning parameter.

Then we obtain a more detailed decomposition:

pGnpθ0, γ̂nq “ pGnpθ0, γ0q ` pG 1n,γpθ0, γ0, γ̂n ´ γ̄nq ` pG 1n,γpθ0, γ0, γ̄n ´ γ0q

`
1

2
pG 2n,γγpθ0, γ0, γ̂n ´ γ̄n, γ̂n ´ γ̄nq ` pG 2n,γγpθ0, γ0, γ̂n ´ γ̄n, γ̄n ´ γ0q

`
1

2
pG 2n,γγpθ0, γ0, γ̄n ´ γ0, γ̄n ´ γ0q ` pGn,Rpθ0, γ0, γ̂n ´ γ0q.

(2.3)

Here, we would expect to establish a central limit theorem for the sum of the first two
terms. The third and fourth terms are the two main biases that we are going to analyze.
Intuitively, we may defined γ̄n as γ̄n :“ Erγ̂ns. However, this may not necessarily lead to the
desired result. Instead, we are going to use the definition γ̄npziq :“ Erγ̂npziq|zis, especially
when there is a “singularity bias.”

2.3 V-statistic and U-statistic

To begin with, consider the case where we also use the empirical measure Pn to construct γ̂n.
Without much loss of generality, suppose that there exists some function ψ such that γ̂np¨q “
Pnψp¨q “ 1

n

řn
j“1 ψp¨, zjq ((Newey and McFadden, 1994) adopt a similar representation in

Section 8 therein). Moreover, it is reasonable to assume that g 1γpzi, θ0, γ0, γ̂nq can be reduced
to g 1γ

`

zi, θ0, γ0, γ̂npziq
˘

. Consequently, the linearity of g 1γpz, θ0, γ0, ¨q implies that

pG 1n,γpθ0, γ0, γ̂nq “
1

n

n
ÿ

i“1

g 1γ
`

zi, θ0, γ0, γ̂npziq
˘
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“
1

n

n
ÿ

i“1

g 1γ
`

zi, θ0, γ0,
1

n

n
ÿ

i“1

ψpzi, zjq
˘

“
1

n2

n
ÿ

i,j“1

g 1γ
`

zi, θ0, γ0, ψpzi, zjq
˘

“
1

n2

n
ÿ

i“1

g 1γ
`

zi, θ0, γ0, ψpzi, ziq
˘

`
1

n2

ÿ

i‰j

g 1γ
`

zi, θ0, γ0, ψpzi, zjq
˘

,

where the sum
ř

i‰j is taken over 1 ď i, j ď n with i ‰ j.

It is then clear that pG 1n,γpθ0, γ0, γ̂nq is a V-statistic in this case. Typically, the difference
between a V-statistic and its corresponding U-statistic is rather small, often of order
OPp1{nq. However, as to be shown in the following example of the kernel density estimator, it
sometimes can be larger than OPp1{nq, or even OPpn

´1{2q. The following example highlights
the potentially “large” difference between V- and U-statistics, when the nonparametric
ingredient has sufficiently low precision.

Example (Kernel Density Estimator). Suppose that γ0 is the density function of each
zi. Le K be a kernel function with order m and Khp¨q :“ Kp¨{hq{hdz . The kernel density
estimator γ̂n at a real vector x P Rdz and at a sampling point zi are given by

γ̂npxq “
1

n

n
ÿ

i“1

Khpx´ ziq and γ̂npziq “
Kp0q

nhdz
`

1

n

n
ÿ

j“1
i‰j

Khpzi ´ zjq,

respectively. In this case, we have ψpx, yq “ Khpx ´ yq (note that the kernel method is
closely related to convolution). In the expression of γ̂npziq, the term ψpzi, ziq “ Khpzi´ziq “
Kp0q{pnhdzq is non-random. This shows a difference between γ̂npxq and γ̂npziq, which is
quite important when 1{pnhdzq is not opn´1{2q. It is easy to see that pG 1n,γpθ0, γ0, γ̂nq becomes

1

nhdz
1

n

n
ÿ

i“1

g 1γ
`

zi, θ0, γ0,Kp0q
˘

`
1

n2

ÿ

i‰j

g 1γ
`

zi, θ0, γ0,Khpzi ´ zjq
˘

.

In general, the first term is of order OPp1{pnh
dzqq, which may not be root-n negligible. Since

it is from Khpzi ´ ziq, which behaves differently from Khpzi ´ zjq with j ‰ i, we refer to it
as the “singularity bias” (or maybe “non-smoothing bias”).

On the other hand, we have γ̄npxq “ Erγ̂npxqs “
ş

Kpuqγ0px ´ huqdu. The plug-in
definition then leads to γ̄npziq “

ş

Kpuqγ0pzi ´ huqdu. According to the Law of Iterated
Expectation, we readily get

G 1γpθ0, γ0, γ̂n ´ γ̄nq “
1

nhdz
E
“

pG 1n,γ
`

θ0, γ0,Kp0q
˘‰

`Op
1

n
q “ O

` 1

nhdz

˘

.

The sufficient and necessary condition for this term to be root-n negligible is n1{4 “

op
?
nhdzq, which is equivalent to a faster-than-n1{4 convergence rate for the kernel density

estimator γ̂n. Since we aim at relaxing this requirement, the above plug-in definition of γ̄n
does not suit our purpose.

To address this problem, we can modify the definition of γ̄n at sample points tziu
n
i“1,

which are more important when we use the empirical measure Pn to construct pGn. More
specifically, we define (γ̄npxq remains the same as above for any real vector x)

γ̄npziq :“ Erγ̂npziq|zis “
1

nhdz
Kp0q `

n´ 1

n

ż

Kpuqγ0pzi ´ huqdu,
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With this modified γ̄n, we move the “singularity bias” to pG 1n,γpθ0, γ0, γ̄n ´ γ0q. One can

check that G 1γpθ0, γ0, γ̂n ´ γ̄nq “ Er pG 1n,γpθ0, γ0, γ̂n ´ γ̄nqs “ 0.

With the modified definition of γ̄n, we readily get

pG 1n,γpθ0, γ0, γ̂n ´ γ̄nq “
1

npn´ 1q

ÿ

i‰j

g 1γ
`

zi, θ0, γ0, φpzi, zjq
˘

ˆ
`

1´
1

n

˘

,

where φpzi, zjq :“ ψpzi, zjq ´ Erψpzi, zjq|zis. Its difference with the associated U-statistic
is at most OPpn

´1q, which is always root-n negligible. However, in this case, we may still
have the “singularity bias” in pG 1n,γpθ0, γ0, γ̄n ´ γ0q, if γ̂n is a kernel-based estimator.

Example (Sieve Estimator). Let z “ pY,Xᵀqᵀ. Consider a conditional mean model
for Y and X: γ0pz, θq “ ErρpY, θq|Xs. Following the notation used by (Chen, 2007),
we denote by tp0jpXq, j “ 1, 2, ¨ ¨ ¨ , km,nu a sequence of known basis functions in the
space of square integrable functions. Let pkm,npXq “ pp01pXq, ¨ ¨ ¨ , p0km,npXqq

ᵀ and
P “ ppkm,npX1q, ¨ ¨ ¨ , p

km,npXnqq
ᵀ. Then the sieve estimator of γ0 is given by

γ̂npzi, θq “
1

n

n
ÿ

j“1

ρpYj , θqp
km,npXjq

ᵀ
`

P ᵀP q`pkm,npXiq “
1

n

n
ÿ

j“1

ψpzi, zjq,

where pP ᵀP q` is the Moore-Penrose inverse of P ᵀP . In this case, ψpzi, ziq does not lead to
a “singularity bias.”

The above two examples show that only the kernel-based estimator may suffer from the
“singularity bias” problem. In certain cases, such as the average density estimator to be
discussed in the next subsection, it might be desirable to remove this bias in advance. As
implied by the example of the sieve estimator, one way to get rid of this bias is to use a
global nonparametric estimator. Besides, there are two alternative solutions. However, we
stress that it is not always necessary to remove the “singularity bias” in advance (see the
discussions in Section 3.1).

One (possible) solution is to use the measure PAC
n , instead of Pn, to construct pGn. For

simplicity, recall the integrated density estimator θ̂ISDn . In this case, the linear functional

pG 1n,γpθ0, γ0, γ̂nq “ 2

ż

γ0pxqγ̂npxqdx “
2

n

n
ÿ

i“1

ż

γ0pxqψpx, ziqdx

is a U-statistic of degree 1. In general, even when ν0 is not part of γ0 (recall Remark 2.5),
the above functional is still a U-statistic, hence is not subject to the “singularity bias.”
Hence, we don’t have to make any adjustment to γ̄n, as we do not evaluate γ̂n at the sample
points. However, as to be shown in the next subsection, this solution increases the level of
nonlinearity, hence may bring additional nonlinear bias.

Another solution is to replace the above V-statistic by its corresponding U-statistic.
In other words, we can use the “leave-one-out” empirical measure PLOO

n to construct the
nonparametric estimator γ̂n. That is, let γ̂npziq :“ PLOO

n ψpzi, ¨q “
1

n´1

řn
j“1,j‰i ψpzi, zjq. It

is then obvious that

pG 1n,γpθ0, γ0, γ̂nq “
1

npn´ 1q

ÿ

i‰j

g 1γ
`

zi, θ0, γ0, ψpzi, zjq
˘

9



is a U-statistic of degree 2, following the terminology of (Hoeffding, 1948). It then follows
that γ̂npziq ´ γ̄npzjq “

1
n´1

řn
j“1,j‰i φpzi, zjq and

pG 1n,γpθ0, γ0, γ̂n ´ γ̄nq “
1

npn´ 1q

ÿ

i‰j

g 1γ
`

zi, θ0, γ0, φpzi, zjq
˘

.

That is, the term pG 1n,γpθ0, γ0, γ̂n ´ γ̄nq is also a U-statistic of degree 2. In addition, there is

no “singularity bias” in pG 1n,γpθ0, γ0, γ̄n ´ γ0q. Moreover, this will not bring any additional
nonlinear biases. Hence, we recommend this method whenever it is feasible.

Remark 2.6 (Stochastic Equicontinuity Condition). (Cattaneo and Jansson, 2018) have
insightfully observed that, in the kernel-based case, the “singularity bias” is a key in
understanding the difference between the stochastic equicontinuity (SE) condition and the
asymptotic separability (AS) condition. We note that the AS condition in the cited paper
may involve quadratic terms. Below, we offer a different perspective that is only based on
the first-order term in the approximation of g.

The stochastic equicontinuity condition given in Assumption 5.2 in (Newey, 1994) or
Condition (ii) in (Newey and McFadden, 1994) (the formulation given by (Andrews, 1994)
is a bit different. So we defer the discussion to Remark 2.11) can be written as

1

n

n
ÿ

i“1

´

g 1γpzi, θ0, γ0, γ̂n ´ γ0q ´

ż

g 1γpz, θ0, γ0, γ̂n ´ γ0qdF0

¯

“ oPpn
´1{2q, (2.4)

where F0 is the true distribution function of z. The integral does not involve the “singularity
bias” because one evaluates the functional g1n,γ at a real vector x, not a sample point zi,
when calculating the integral. Therefore, when γ̂n is the original kernel density estimator,
the “singularity bias” only appears in the first term. The sample average of the “singularity
bias” is of order OPp

1
nhdz

q (if g only depends on zi through γ, this becomes Op 1
nhdz

q, which

is not oPpn
´1{2q when γ̂n does not have a faster-than-n1{4 converges rate.

If one uses the “leave-one-out” kernel estimator or a sieve estimator, then there is no
“singularity bias” (this might also be achieved by replacing the input z in the integrand by zi).
Hence, it might be possible that the above SE condition also holds true with a low precision
γ̂n. However, as to be shown in Remark 2.10, the mean-square continuity condition will fail
in such case, when the convergence rate of γ̂n is relatively slow.

As a summary of the above discussion, no matter how we construct pGn and γ̂n, we
can always find γ̄n such that pG 1n,γpθ0, γn, γ̂n ´ γ̄nq is a U-statistic, or its difference with a
U-statistic is always root-n negligible. Given such a suitable γ̄n, we are ready to introduce
the following assumption on the asymptotic behavior of the sum of the first two terms in
(2.3).

Assumption 2.7 (AN—Asymptotic Normality). For some non-random and positive
definite Σg, we have

?
n
`

pGnpθ0, γ0q ` pG 1n,γpθ0, γ0, γ̂n ´ γ̄nq
˘ L
ÝÑ N p0,Σgq.

10



Remark 2.8. The first two terms in (2.3) have been intensively studied in the literature,
mostly under the assumption that all biases are root-n negligible. Recall that

pGnpθ0, γ0q ` pG 1n,γpθ0, γ0, γ̂n ´ γ̄nq “
1

n

n
ÿ

i“1

`

gpzi, θ0, γ0q ` g
1
γpzi, θ0, γ0, γ̂n ´ γ̄nq

˘

.

The functionals gpz, θ0, γ0q and g 1γpz, θ0, γ0, γ̂n ´ γ̄nq are respectively very similar to, for
instance, mpz, h0q and Dpz, h´ h0q studied by (Newey, 1994), or gpz, γ0q and Gpz, γ ´ γ0q

analyzed by (Newey and McFadden, 1994). Note that when all biases are root-n negligible,
the terms h ´ h0 and γ ´ γ0 in the cited papers behave essentially the same as γ̂n ´ γ̄n in
the current paper.

The previous discussion suggests that both pGnpθ0, γ0q and pG 1n,γpθ0, γ0, γ̂n ´ γ̄nq can
be essentially viewed as U-statistics. Hence, although Assumption 2.7 is a high-level
assumption, it is a direct result from the well-established theory on U-statistic (see, e.g.,
(Hoeffding, 1948), (Korolyuk and Borovskich, 1994), and (Borovskikh, 1996)) in most if
not all cases. Therefore, we would expect it to be true under quite general conditions. In
particular, it may also hold true for weakly dependent observations. Refer to (Dehling,
2006) and the references therein for more details.

Remark 2.9. When γ̂np¨q “ Pnψp¨q “ 1
n

řn
j“1 ψp¨, zjq, let ψgpzi, zjq – g1γpzi, θ0, γ0, ψpzi, zjqq

and φgpzi, zjq – ψgpzi, zjq ´ Erψgpzi, zjq|zis.
According to the previous discussions, the term pG 1n,γpθ0, γ0, γ̂n ´ γ̄nq is (approximately)

a U-statistic:

Un “
1

npn´ 1q

n
ÿ

i,j“1
j‰i

g1γpzi, θ0, γ0, φpzi, zjqq “
2

npn´ 1q

n
ÿ

i“1

ÿ

jąi

1

2
rφgpzi, zjq ` φgpzj , ziqs.

Its projection pUn is given by

pUn “
1

n

n
ÿ

i“1

´

Erψgpzj , ziq|zis ´ Erψgpzj , ziqs
¯

, where j ‰ i.

The U-statistic projection theory implies that
?
npUn ´ pUnq

P
ÝÑ 0. On the other hand,

the statistic pUn is a sum of i.i.d. random variables with zero mean. Hence, the asymptotic
normality of pG 1n,γpθ0, γ0, γ̂n ´ γ̄nq can be established. If we also know its correlation with
pGnpθ0, γ0q, then Assumption 2.7 readily follows.

Consider the average density example, in which gpz, θ, γq “ γpzq ´ θ. It can be shown
that

?
n pGnpθ0, γ0q “

1
?
n

n
ÿ

i“1

rγ0pziq ´ θ0s,

?
n pG 1n,γpθ0, γ0, γ̂n ´ γ̄nq “

1
?
n

n
ÿ

i“1

rγ0pziq ´ θ0s ` oPp1q.

11



Hence, Assumption 2.7 holds with Σg “ 4Varrγ0pzqs. As a comparison, if γ0 were known,

then we would be able to estimate θ0 by pGnpθ0, γ0q, the asymptotic variance of which is
Varrγ0pzqs. This shows the efficiency loss due to not knowing γ0.

It is worth mentioning that the main advantage of this U-statistic perspective is that
the asymptotic normality result with a root-n rate can be established (provided that the
U-statistic is not degenerate), regardless of the convergence rate of γ̂n ´ γ̄n, which has no
(asymptotic) biases by construction. Hence, if we can correct for those biases, then we
can have asymptotic normality result for θ̂n even in the case of having a low precision
nonparametric ingredient.

2.4 Possibly non-root-n-negligible biases

Most previous asymptotic results for semiparametric two-step estimators, e.g., (Andrews,
1994), (Newey, 1994), (Newey and McFadden, 1994), (Chen, 2007), and (Ichimura and
Todd, 2007), impose certain conditions so that all the biases are root-n negligible. Recent
literature (recall the cited papers in the beginning of introduction) has started to relax
such an assumption, so that some biases may have non-trivial impacts on the asymptotic
distribution of θ̂n.

Intuitively, one would expect the following two terms dominate the last three terms in
the decomposition (2.3):

BANB
n :“ pG 1n,γpθ0, γ0, γ̄n ´ γ0q and BNL

n :“
1

2
pG 2n,γγpθ0, γ0, γ̂n ´ γ̄n, γ̂n ´ γ̄nq.

The term BANB
n represents the sample average of the nonparametric bias(es), while BNL

n is a
nonlinear bias.

Remark 2.10 (Mean-square Continuity Condition). Together with the stochastic equicon-
tinuity condition (refer to Remark 2.6 for the equivalent formulation in the current context),
Assumption 5.3 in (Newey, 1994) and Condition (iii) of Theorem 8.1 in (Newey and
McFadden, 1994) imply that there exists αpzq (or δpzq in the latter paper) such that
pG 1n,γpθ0, γ0, γ̂n ´ γ0q “

1
n

řn
i“1 αpziq ` oPpn

´1{2q (we modified the original expression to
adapt to the current context) and Erαpzqs “ 0.

It is easy to see that αpzq ” g 1γpz, θ0, γ0, γ̂n ´ γ̄nq satisfies the second requirement (this
can also be verified from a comparison of the asymptotic variances in the cited papers and in
Assumption 2.7). Then the first condition essentially requires BANB

n “ pG 1n,γpθ0, γ0, γ̄n´γ0q “

oPpn
´1{2q. However, we are going to relax this restriction and allow BANB

n , which may or
may not include the “singularity bias,” to be non-root-n-negligible. Following the discussion
in Remark 2.6, even though it might be possible to reformulate the original stochastic
equicontinuity condition in the two above-cited papers to make it hold true, the mean-square
continuity condition will not hold in the current setting.

Remark 2.11 (Condition (2.8) in (Andrews, 1994)). A main result that (Andrews, 1994)
intended to derive from the SE condition is (2.8) therein. Using the notation of the current
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paper, it can be written as:

pGnpθ0, γ̂nq ´ pGnpθ0, γ0q “ oPpn
´1{2q.

However, both BANB
n and BNL

n , two components of the left hand side difference, can be non-
root-n-negligible, when the precision of γ̂n is low.

Different from the previous discussion about asymptotic normality, the analysis of the
above possibly non-root-n-negligible biases critically hinges on the order of γ̂n ´ γ̄n and/or
γ̄n ´ γ0. Therefore, given a suitably defined γ̄n, we introduce the following high-level
assumption on the asymptotic behavior of the nonparametric estimator γ̂n.

Assumption 2.12 (Bias Order). Suppose that BNL “ ErBNL
n s “ Opn´2rq and BANB “

ErBANB
n s “ Opn´sq, where r, s ą 0 such that

}BANB
n ´ BANB} “ oPpn

´1{2q and }BNL
n ´ BNL} “ oPpn

´1{2q.

Here, we allow 2r and/or s to be smaller than or equal to 1{2.

Typically, the above rates should depend on the tuning parameter of the nonparametric
estimator γ̂n. Since it is a common practice to set the tuning parameter as a function of n
eventually, we express all the rates in the above assumption in terms of a power of n, for
convenience.

Compared with the previous requirement that both BNL
n and BANB

n are oPpn
´1{2q,

Assumption 2.12 is much weaker. It requires no more than splitting each (asymptotically
negligible) bias into two components: one is oPpn

´1{2q, while the other is not. In this sense,
it should be satisfied under very general conditions. For example, when γ̂npziq ´ γ̄npziq “

1
n´1

ř

j‰i φpzi, zjq as above, we can obtain

pG 2n,γγ
`

θ0, γ0, γ̂n ´ γ̄n, γ̂n ´ γ̄n
˘

“
1

n´ 1
Un,1 `

n´ 2

n´ 1
Un,2,

where Un,1 and Un,2 are two U-statistics:

Un,1 “
1

npn´ 1q

ÿ

i‰j

g2γγpzi, θ0, γ0, φpzi, zjq, φpzi, zjqq,

Un,2 “
1

npn´ 1qpn´ 2q

ÿ

i‰j‰l

g2γγpzi, θ0, γ0, φpzi, zjq, φpzi, zlqq.

By using the U-statistic theory (refer to the appendix for details), we can show that

BNL “
1

n´ 1
ErUn,1s, VarpUn,1q ď

C

n

´

E
`

Erψpzi, zjq2|zis2
˘

` E
`

Erψpzi, zjq2|zjs2
˘

¯

,

ErUn,2s “ 0, VarpUn,2q ď
C

n2
E
`

ψpzi, zjq
2ψpzi, zlq

2
˘

.
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Hence, the first condition of Assumption 2.12 holds if the assumptions of Lemma A.1 are
true. As for the second one, note that BANB

n is the average of a sequence of i.i.d. random
variables with negligible variance:

BANB
n :“ pG 1n,γpθ0, γ0, γ̄n ´ γ0q “

1

n

n
ÿ

i“1

g1γpzi, θ0, γ0, γ̄npziq ´ γ0pziqq.

Let BANB “ Erg1γpzi, θ0, γ0, γ̄npziq ´ γ0pziqqs. We then have

}BANB} ď Er}g1γpzi, θ0, γ0, γ̄npziq ´ γ0pziqq}s ď C Er}γ̄npziq ´ γ0pziq}s,

VarpBANB
n q “

1

n
Var

`

g1γpzi, θ0, γ0, γ̄npziq ´ γ0pziqq
˘

ď
C

n
Var

`

γ̄npziq ´ γ0pziq
˘

.

Hence, the desired result readily follows.

Example (Kernel Density Estimator Continued). Suppose γ̂n is the “leave-one-out”
estimator. We have ψpzi, zjq “ Khpzi ´ zjq. It then follows that (refer to the appendix for
detailed calculation)

1

n´ 1
Erψpzi, zjq2s “

1

pn´ 1qhdz

ż

K2puqγ0pxqγ0px´ huqdudx “ O
´ 1

nhdz

¯

,

E
`

Erψpzi, zjq2|zis2
˘

“ E
`

Erψpzi, zjq2|zjs2
˘

“ O
´ 1

h2dz

¯

,

E
“

Erψpzi, zjqψpzi, zlq|zj , zls2
‰

“ O
´ 1

hdz

¯

.

Hence, the corresponding conditions given in (A.1) only require that

nhdz “ n2r Ñ8.

Note that the convergence rate of γ̂n ´ γ̄n is given by
?
nhdz. Hence, the above condition

merely requires that γ̂n ´ γ̄n converges to zero.
On the other hand, we have

γ̄npziq ´ γ0pziq “

ż

Kpuqrγ0pzi ´ huq ´ γ0pziqsdu.

It the easy to see that the second last condition given in (A.1) is satisfied with hm “ n´s,
where m is the order of the kernel K. The last condition in (A.1) only requires that the
nonparametric bias γ̄n ´ γ0 is asymptotically negligible.

To briefly sum up, in the kernel density case, the conditions in (A.1) essentially requires
γ̂n to be a consistent nonparametric estimator of γ0.

For the (leave-one-out) average density estimator θ̂ADn “ 1
n

řn
i“1 γ̂npziq. We have BNL

n “ 0
and

BANB
n “

1

n

n
ÿ

i“1

rγ̄npziq ´ γ0pziqs “
1

n

n
ÿ

i“1

ż

R
Kpuqrγ0pzi ´ huq ´ γ0pziqsdu “ OPph

mq,

BANB “

ż

R

ż

R
Kpuqrγ0px´ huq ´ γ0pxqsγ0pxqdudx “ Ophmq.
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For the integrated squared density estimator θ̂ISDn “
ş

γ̂2
npxqdx, we have

BNL
n “

ż

R
rγ̂npxq ´ γ̄npxqs

2dx “ O
` 1

nhdz

˘

,

BANB
n “ 2

ż

R
γ0pxqrγ̄npxq ´ γ0pxqsdx “ Ophmq.

and

BNL “
1

nhdz

ż

R

´

γ0pxq

ż

R
Kpuq2du

¯

dx “ O
´ 1

nhdz

¯

,

BANB “

ż

R

ż

R
Kpuqrγ0px´ huq ´ γ0pxqsγ0pxqdudx “ Ophmq.

Refer to the appendix for an example with the Nadaraya–Watson estimator.

As mentioned in the previous subsection, there is no “singularity bias” (even with the
kernel-based method) when we use the smooth measure PAC

n (recall Remark 2.2) in the
construction of pGn (this gives the integrated square density estimator in the above example).
However, it may bring an additional nonlinear bias, when the alternative estimator is linear
in γ̂n. Besides, we note that the nonlinear bias (when it exists) and the “singularity bias”
are of the same order. Hence, they can be corrected simultaneously by using the multi-scale
jackknife method (see Section 3.1).

To make both biases shrink faster than the root-n rate, we need both r ą 1{4 and s ą
1{2, which are consistent with the prevalent requirement of a faster-than-n1{4 convergence
rate for the nonparametric estimator. Some complications may arise if we have more than
one source of bias in γ̄n´γ0, like in the average density example. Once these conditions are
satisfied, one can use some well-established empirical process results, such as the stochastic
equicontinuity condition (Andrews, 1994; Newey, 1994). However, if r ď 1{4 or s ď 1{2,
then either BNL

n or BANB
n will not be oPpn

´1{2q. In such cases, such bias(es) will have some
non-trivial impact(s) on the asymptotic behavior of θ̂n.

Example (Kernel Density Estimator Continued). In view of the above discussion,
no matter we use the original kernel density estimator or its “leave-one-out” version, the
necessary and sufficient condition for both BNL

n and BANB
n to be root-n negligible is 1{p2mq ă

κ ă 1{p2dzq, which requires dz ă m, i.e., the dimension of the random vector should be
smaller than the order of the kernel. If this condition fails, then at least one of the two biases
will not be asymptotically negligible at the root-n rate. To some extent, this observation
also reflects the curse of dimensionality: if dz ě m, then there is no way to make both biases
root-n negligible. In fact, when dz ą m, if the bandwidth satisfies 1{p2dzq ă κ ă 1{p2mq,
then neither BNL

n nor BANB
n is root-n negligible. Motivated by this possibility, we are going

to keep both biases in our analysis. This observation also indicates that our bias correction
methods may help ameliorate the curse of dimensionality.

The following lemma gives the sufficient conditions for the remaining terms in (2.3), as
well as the impact of Jn ´ J0 on θ̂n, to be root-n negligible,
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Lemma 2.13. Suppose that Assumptions 2.4 (about g) and 2.12 both hold true. Addition-
ally, assume that Jn ´ J0 “ OP

`

pGnpθ0, γ̂nq
˘

.
We have the following conclusions: (i) if s`2r ą 1{2 and r ą 1{8, then pJn´J0qBNL

n “

oPpn
´1{2q; (ii) if s ` 2r ą 1{2 and s ą 1{4, then pJn ´ J0qBANB

n “ oPpn
´1{2q; (iii) if

1
n

řn
i“1 Er}γ̂npziq ´ γ0pziq}

3s ď Cn´3pr^sq for some finite number C, s ą 1{4 and r ą 1{6,
then

pGnpθ0, γ̂nq ´ pGnpθ0, γ0q ´ pG 1n,γpθ0, γ0, γ̂n ´ γ̄nq ´ BNL ´ BANB “ oPpn
´1{2q.

The assumption Jn ´ J0 “ OP
`

pGnpθ0, γ̂nq
˘

is to accommodate the possibility that

Jn ´ J0 may depend on or be related to pGnpθ0, γ̂nq, which complicates the proof a bit. In
general, the above lemma will also hold if one assumes Jn ´ J0 “ OPpn

´ιq, and then let
ι` 2r ą 1{2 in part (i), and ι` s ą 1{2 in part (ii). The same conclusions can be verified
rather straightforwardly. In such case, the parameter ι is essentially equivalent to 1{ρ in
Lemma 1 of (Cattaneo and Jansson, 2018).

As discussed above, most previous papers on semiparametric estimators require both
BNL
n and BANB

n to be root-n negligible. Although recent works relax this requirement, they
often require one of BNL

n and BANB
n is root-n negligible. For instance, Theorem 2 of (Cattaneo

and Jansson, 2018) effectively require the bias BANB
n to be root-n negligible (small bandwidth

asymptotics), while (Chernozhukov et al., 2018b) implicitly assume the nonlinear bias BNL
n

is root-n negligible (large bandwidth asymptotics).
However, it is often not easy to check whether such restrictions hold or not in practice.

Moreover, recall the previous example of the kernel density estimator. It is possible that
both biases are non-root-n-negligible. In view of these results, we keep both BNL

n and BANB
n

in our analysis. In a different setup with the non-stationary underlying process and in-fill
asymptotics, (Yang, 2020) adopts a similar approach. The following theorem gives the first
main result of this paper.

Theorem 2.14 (Asymptotic Normality for θ̂n). Suppose that Assumptions 2.1 to 2.7 hold
true. Assume that Jn ´ J0 “ OP

`

pGnpθ0, γ̂nq
˘

. If s ą 1{4 and r ą 1{6, then we have

?
n
`

θ̂n ´ θ0 ´ JnBNL ´ JnBANB
˘ L
ÝÑ N

`

0,Σθ

˘

,

where Σθ “ J0 Σg J ᵀ
0 with Σg given in Assumption 2.7.

The conditions s ą 1{4 and r ą 1{6 only require a faster-than-n1{6 convergence rate for
the nonparametric estimator γ̂n, consistent with the conclusion of (Cattaneo and Jansson,
2018) in the kernel-based case. This is a weaker condition than the typical requirement of a
faster-than-n1{4 convergence rate (see those cited papers at the beginning of this subsection).

Besides, we also note that the above central limit theorem (CLT) is infeasible, for that
the two biases are evaluated at pθ0, γ0q, both of which are unknown. In the next section,
we are going to discuss how to correct for these biases and conduct robust inference.

Remark 2.15. It might happen that the bias BANB
n is identically zero. For example, in

the continuous-time setting (with in-fill asymptotics), (Yang, 2020) has shown that, when
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estimating integrated volatility functionals, the counterpart of BANB
n , which is the first-order

effect of the nonparametric bias, is canceled by the discretization error. In the cited paper,
what left is the counterpart of the following second-order effect of the nonparametric bias:

1

2
pG 2n,γγpθ0, γ0, γ̄n ´ γ0, γ̄n ´ γ0q “

L
ÿ

l“1

OPpn
´2slq.

In such case, then one can replace the first-order effect by the above second-order one and
replace s by 2s in Lemma 2.13 and Theorem 2.14.

3 Bias-Robust Inference

(Cattaneo and Jansson, 2018) propose a bootstrap-based inference procedure that is robust
to the nonlinear bias. We believe that if the bootstrap version of all the above assumptions
hold, then the corresponding inference should also be robust to the average nonparametric
bias. Since it has been proposed in the literature, we will not discuss it here.

In this section, we are going to discuss two alternative methods to conduct inference
that is robust to the possibly non-root-n-negligible bias(es). At the end of this section, we
will also discuss an extension of our framework to the case where θ̂n is constructed as the
sample average of some discontinuous functionals of γ̂n.

For simplicity, we illustrate the ideas using kernel-based estimators. The linear sieve
case would be characterized in a similar manner. Yet, the nonlinear sieve case may require
extra non-trivial efforts.

3.1 Multi-scale jackknife

The original jackknife estimator, first introduced by (Quenouille, 1949), is essentially a
linear combination of estimators computed from samples with different sizes, for that the
biases in many estimators depend on the sample size. While in the current context, the
biases depend on the tuning parameter. Thus, it is natural to utilize the tuning parameter
in the role of the sample size (see, e.g., (Schucany and Sommers, 1977), (Bierens, 1987),
and (Powell et al., 1989) among others). However, there is only one bias in these papers.
In the context of in-fill asymptotics, (Li et al., 2019) has developed a multi-scale jackknife
(MSJ) estimator to correct for various biases for integrated volatility functionals.

In this subsection, we are going to show that MSJ can remove various biases in
the current context, provided that we have some knowledge about the structure of the
nonparametric estimator, i.e., knowing how the rates in Assumption 2.12 depend on the
tuning parameter.

In the kernel-based case, the semiparametric estimator θ̂n depends on the bandwidth h.
Let Q be a finite positive integer. Then consider a sequence of estimators tθ̂nphqqu

Q
q“1 and

a sequence of real numbers twqu
Q
q“1. For example, define the following three-scale jackknife

(3SJ) estimator:

θ̂wn “
3
ÿ

q“1

wq θ̂nphqq,
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where

3
ÿ

q“1

wq “ 1,
3
ÿ

q“1

wqh
m
q “ opn´1{2q,

3
ÿ

q“1

wq

nhdzq
“ opn´1{2q. (3.1)

In practice, for example, we can choose hq “ ηqh, where tηqu
Q
q“1 is a sequence of positive

numbers. In the above three-scale case, the weights twqu
3
q“1 are solved as

¨

˝

w1

w2

w3

˛

‚“

¨

˝

1 1 1
ηm1 ηm2 ηm3
η´dz1 η´dz2 η´dz3

˛

‚

´1 ¨

˝

1
0
0

˛

‚.

Moreover, one can choose a larger Q to remove/reduce more biases. For instance, in the
kernel case, the smoothing bias may also have components that are OPph

m`1q, OPph
m`2q,

or of even higher orders (for symmetric kernels, the odd-order terms will be zero).
We consider the general case where we have the smoothing bias BANB

n,1 , the “singularity
bias” BANB

n,2 and the nonlinear bias BNL
n . The reason is that the “singularity bias” may be

unavoidable when estimating the asymptotic variance using the bootstrap method. Recall
that BANB

n,2 and BNL
n are of the same order when both exist. The key is to show that, under

condition (3.1), the following three terms

rBANB
n,1 “

Q
ÿ

q“1

wq BANB
n,1 phqq,

rBANB
n,2 “

Q
ÿ

q“1

wq BANB
n,2 phqq,

rBNL
n “

Q
ÿ

q“1

wq BNL
n phqq.

are all root-n negligible. Then the following CLT readily follows.

Theorem 3.1 (Multi-scale jackknife). Suppose that all assumptions of Theorem 2.14 hold
true and that γ̂nphqq is a kernel-based nonparametric estimator depending on the bandwidth
hq, where q “ 1, ¨ ¨ ¨ , Q for some finite Q. In addition, assume hq Ñ 0, n2h3dz

q Ñ 8,
nh4m

q Ñ 0, and that the general version of condition (3.1) is satisfied. Then we have

?
n
`

θ̂wn ´ θ0

˘ L
ÝÑ N p0,Σw

θ q.

The asymptotic variance is given by Σw
θ :“ J0 Σw

g J
ᵀ
0 and Σw

g is the asymptotic variance of
the following (exact or approximate) U-statistic

pGpθ0, γ0q ` pG 1n,γ
`

θ0, γ0, γ̂
w
n ´ γ̄

w
n

˘

,

where γ̂wn “
řQ
q“1wqγ̂nphqq and γ̄wn “

řQ
q“1wqγ̄phqq.

Suppose that the following column vector

?
n
´

pGpθ0, γ0q ` pGn
`

θ0, γ0, γ̂nphqq ´ γ̄nphqq
˘

¯ᵀ

q“1,¨¨¨ ,Q

converges in distribution to N p0,ΣQ
g q, then we have Σw

θ “ J0wΣQ
g wᵀJ ᵀ

0 .
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For illustration purpose, consider the case where hq9n
´κ for all q “ 1, ¨ ¨ ¨ , Q. Then

we have r “ p1 ´ κdzq{2, s1 “ κm and s2 “ 2r (if there is “singularity bias”) for the
kernel-based estimators. The requirements r ą 1{6 and s ą 1{4 in Theorem 2.14 are
equivalent to n2h3dz

q Ñ 8 and nh4m
q Ñ 0 (the conditions in the above theorem). To

put it differently, we need κ P p1{p4mq, 2{p3dzqq. This set is non-empty if and only if
3dz ă 8m, which is weaker than dz ă m (recall the previous discussion on the curse of
dimensionality). As a comparison, we note that r ą 1{4 ô κ ă 1{p2dzq ô nh2dz

q Ñ 8 and
s1 ą 1{2 ô κ ą 1{p2mq ô nh2m

q .

Intuitively, the statistics t pGpθ0, γ0q` pGn
`

θ0, γ0, γ̂nphqq´γ̄nphqq
˘

u
Q
q“1 are constructed from

the same sample, hence are “highly” correlated. It would be reasonable to expect that, in
some cases, their correlations are approximately one. If so, then the matrix ΣQ

g becomes
Σg1Q (assuming Σg is a scalar for illustration purpose), where 1Q is a Q-by-Q matrix with
all the elements being one. Then the asymptotic variance Σw

θ “ J0Σgw1Qw
ᵀJ ᵀ

0 “ Σθ (note

that w1Qw
ᵀ “ p

řQ
q“1wqq

2 “ 1). That is to say, when these estimators are approximately
perfectly correlated, there is no efficiency loss by using the MSJ estimator.

In some cases, it may not be very easy to find the analytical form of the functional
g 1γpθ0, γ0, ¨q or its variance. Hence, it may not always be possible to estimate Σw

g directly.
In such cases, one can use the following algorithm to estimate the asymptotic variance Σw

θ .

Algorithm 1 (Bootstrap variance estimator). The procedure consists of the following steps:
(1) Draw a bootstrap sample tz˚i u

n
i“1 and calculate θ̂w˚n . (2) Repeat Step (1) a large number

of times, say P , and get tθ̂w˚n,pu
P
p“1. (3) Compute Σw˚

θ as the sample variance-covariance of

tθ̂w˚n,pu
P
p“1.

Theorem 3.2 (Bootstrap variance). Suppose that the assumptions of Theorem 3.1 hold
true. In addition, assume that g˚ ” g, g ˚1γ ” g 1γ, and both gpθ, γq and g 1γpθ, γ, ¨q are Lipschitz

continuous with respect to θ and γ in a neighborhood of pθ0, γ0q. Then Σw˚
θ

P
ÝÑ Σw

θ .

Since the “singularity bias” can always be removed together with the nonlinear bias,
the bootstrap estimator θ̂w˚n will have no such bias, even if the re-sampled data may include
several replicates of the same observation.

If certain bias(es) is/are root-n negligible, then some of the requirements in Condition
(3.1) will not be binding, which can then be simplified. For instance, if the smoothing bias
is root-n negligible, i.e., hmq “ opn´1{2q for q “ 1, 2, then we only need

2
ÿ

q“1

wq “ 1 and
2
ÿ

q“1

wq

nhdzq
“ opn´1{2q.

On the other hand, if the nonlinear bias and the “singularity bias” are root-n negligible,
i.e., h´dzq “ opn1{2q for q “ 1, 2, then we only need

2
ÿ

q“1

wq “ 1 and
2
ÿ

q“1

wqh
m
q “ opn´1{2q.
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In these two cases, the two-scale jackknife (2SJ) estimators are asymptotically normal with
a root-n rate.

3.2 Analytical bias correction

The analytical bias correction method requires more assumptions on the semiparametric
model. The idea is to introduce some sufficient conditions so that we can construct
consistent estimators of the average nonparametric bias BANB and the nonlinear bias BNL.

Suppose that the functional g is twice Fréchet differentiable with respect to γ around
γ0. Consider the general case where γ is a matrix-valued function, with the row and column
numbers being rγ and cγ , respectively. Define the following matrix representation of the
partial derivative (Kollo and von Rosen, 2006):

´

B

Bvecpγq

¯ᵀ
“

B

Brvecpγqsᵀ
“

´

B

Bγ11
, ¨ ¨ ¨ ,

B

Bγrγ1
, ¨ ¨ ¨ ,

B

Bγ1cγ

, ¨ ¨ ¨ ,
B

Bγrγcγ

¯

.

Let Dγg “ Bg
Brvecpγqsᵀ and D2

γγg “
B

Bvecpγq b
Bg

Brvecpγqsᵀ . Assume that

g 1γpz, θ0, γ0, γ ´ γ0q “ Dγgpz, θ0, γ0q vec
`

γpzq ´ γ0pzq
˘

,

g 2γγpz, θ0, γ0, γ ´ γ0q “
“

vec
`

γpzq ´ γ0pzq
˘b2

b Idg
‰ᵀ

vec
`

D2
γγgpz, θ0, γ0q

˘

.

Under these assumptions, the two biases can be written as

BANB
n “

1

n

n
ÿ

i“1

Dγgpzi, θ0, γ0q vec
`

γ̄npziq ´ γ0pziq
˘

,

BNL
n “

1

n

n
ÿ

i“1

“

vec
`

γ̂npziq ´ γ̄npziq
˘b2

b Idg
‰ᵀ

vec
`

D2
γγgpzi, θ0, γ0q

˘

.

Suppose that nrvec
`

γ̂npxq ´ γ̄npxq
˘ L
ÝÑ N p0, V pxqq for any x P Rdz . Then, when

Assumption 2.12 holds true, we would expect that BNL
n ´BNL “ oPpn

´1{2q with the following
BNL:

BNL :“ E
´

“

vec
`

V pzq
˘

b Idg
‰ᵀ

vec
`

D2
γγgpz, θ0, γ0q

˘

¯

.

Suppose that we have a consistent estimator pVnp¨q of the asymptotic variance V p¨q. It then
follows that we can estimate BNL by

pB NL
n “

1

n1`2r

n
ÿ

i“1

“

vec
`

pVnpziq
˘

b Idg
‰ᵀ

vec
`

D2
γγgpzi, θ̂n, γ̂nq

˘

. (3.2)

On the other hand, suppose that there exists a (point-wise) consistent estimator ˆ̄γn of
γ̄n. Then we can estimate BANB by

pB ANB
n “ pG 1n,γpθ̂n, γ̂n, ˆ̄γn ´ γ̂nq “

1

n

n
ÿ

i“1

Dγgpzi, θ̂n, γ̂nq vec
`

ˆ̄γnpziq ´ γ̂npziq
˘

. (3.3)

For simplicity, we assume that there is no “singularity bias” in BANB
n , since it can be easily

removed using the methods discussed in Section 2.3.
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Assumption 3.3. Suppose that Assumption 2.12 holds with real numbers r and s. Assume
that the functional g is twice Fréchet differentiable with respect to γ around γ0, with
E
`›

›D2
γγgpz, θ0, γ0q

›

›

2˘
ă 8 and

E
`

}Dγgpz, θ0, γ0q ´ Dγgpz, θ̂n, γ̂nq}2
˘

“ Opn´2pr^sqq,

for sufficiently large n.

Moreover, there exist pVn and ˆ̄γn such that ˆ̄γn´ γ̄n
P
ÝÑ 0, E

`

}ˆ̄γnpzq´ γ̂npzq}
2
˘

“ opn´2tq,
and

E
`
›

›n2rvec
`

γ̂npzq ´ γ̄npzq
˘b2

´ vec
`

pVnpzq
˘
›

›

2˘
“ opn´2vq,

where t and v are some positive real numbers.

Assumption 3.3 is a strengthened version of the combination of Assumptions 2.4 and
2.12. The twice Fréchet differentiable condition implies the quadratic approximation in
Assumption 2.4, with a more detailed structure on the first- and second-order derivatives.
In addition, Assumption 3.3 also imposes certain conditions on the estimators of V and γ̄n
in Assumption 2.12.

Theorem 3.4 (Analytical bias correction). Suppose that Assumptions 2.1 and 3.3 hold
true. Define ¯̄γnpziq :“ Erˆ̄γnpziq|zis. Assume that s ą 1{4, r ą 1{6, t ` r ^ s ą 1{2,
v ` 2r ą 1{2, and

?
n
´

pGnpθ0, γ0q ` pG 1n,γpθ0, γ0, 2γ̂n ´ ˆ̄γn ´ 2γ̄n ` ¯̄γnq
¯

L
ÝÑ N p0, rΣgq, (3.4)

pG 1n,γpθ0, γ0, 2γ̄n ´ ¯̄γn ´ γ0q “ oPpn
´1{2q. (3.5)

Then we have

?
n
`

θ̂n ´ θ0 ´ Jn pB NL
n ´ Jn pB ANB

n

˘ L
ÝÑ N

`

0,J0
rΣg J ᵀ

0

˘

.

where pB NL
n and pB ANB

n are given by and (3.3), respectively.

A possible choice for ˆ̄γn is γ̂n, which then yields ¯̄γn ” γ̄n. In this case, condition 3.4
reduces to Assumption 2.7. Condition 3.5 is then equivalent to BANB

n “ oPpn
´1{2q. That is

to say, when we couldn’t estimate BANB
n , we can obtain an analytical-based inference only if

BANB
n is root-n negligible.

In some cases, it is possible to have an estimator ˆ̄γn different from γ̂n. Then Condition
3.5 requires that this estimator can reduce the average nonparametric bias to the extent
that the remaining bias becomes root-n negligible. Conditions 3.5 and 3.4 together imply
that

pGnpθ0, γ0q ` pG 1n,γpθ0, γ0, 2γ̂n ´ ˆ̄γn ´ γ0q
L
ÝÑ N p0, rΣgq.

That is, the asymptotic variance is determined by the updated estimator 2γ̂n ´ ˆ̄γn. We
expect that, in most cases, the left hand side can be written as a U-statistic. Then the
above asymptotic normality result shall be satisfied under very general conditions.
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Example (Kernel density estimator continued). Let γ̂n be the “leave-one-out” kernel
density estimator. In this case, V pxq “ γ0pxq

ş

K2puqdu, which can be easily estimated.
Recall that γ̄np¨q “

ş

Kpuqγ0p¨ ´ huqdu. It then follows that

ˆ̄γnp¨q “

ż

Kpuqγ̂np¨ ´ huqdu, ¯̄γnp¨q “

ż ż

KpuqKpvqγ0p¨ ´ hu´ hvqdudv.

The updated estimator becomes

2γ̂npziq ´ ˆ̄γnpziq “
1

n´ 1

ÿ

j‰i

´

2Khpzi ´ zjq ´

ż

Khpzi ´ xqKhpx´ zjqdx
¯

“
1

n´ 1

ÿ

j‰i

´

2Khpzi ´ zjq ´

ż

Khpzi ´ zj ´ yqKhpyqdy
¯

“
1

n´ 1

ÿ

j‰i

K̃hpzi ´ zjq,

where K̃hpuq “
1
hdz

K̃pu{hq and K̃puq “ 2Kpuq ´
ş

Kpu ´ vqKpvqdv is the twicing kernel
studied by (Stuetzle and Mittal, 1979) and (Newey et al., 2004).

According to (Newey et al., 2004), the twicing kernel enjoys a small bias property,
which makes Condition (3.5) less stringent than requiring that BANB

n is root-n negligible.
For instance, if γ0 is at least 2m times differentiable and the order of K is m, then
pG 1n,γpθ0, γ0, 2γ̄n ´ ¯̄γn ´ γ0q “ OPph

2mq “ OPpn
´2κmq. Hence, Condition (3.5) only requires

κ ą 1{p4mq (cf. κ ą 1{p2mq for BANB
n to be root-n negligible). If Condition (2.4) in (Newey

et al., 2004) is satisfied with some function ν, then the requirement that γ0 is at least 2m
times differentiable can be replaced by both ν and γ0 are at least m times differentiable.

The limitation of the analytical bias correction method is that it requires explicit
expressions of Dγg, which is the influence function (refer to (Ichimura and Newey, 2017) for
more discussions on the calculation of the influence function), and D2

γγg. In some cases, it
can be very challenging to compute these derivatives. However, when they are available in
analytical forms, the computation cost is lower than the multi-scale jackknife method, for
that one only needs to conduct the estimation with one bandwidth.

3.3 Extension to discontinuous functionals

In many applications, the semiparametric estimator is a sample average of some discontinu-
ous functional of the first-step nonparametric estimator. In this subsection, we are going to
demonstrate that our framework can be extended to such case if there exists a sufficiently
smooth projection of the discontinuous functional.

Assumption 3.5 (ALQP—Asymptotic Linearity in ǧ with a Quadratic Projection).
Assume that the semiparametric estimator θ̌n is asymptotically linear in a discontinuous
functional ǧ:

θ̌n ´ θ0 “ Jn qGnpθ0, γ̂nq ` oPpn
´1{2q “

1

n

n
ÿ

i“1

Jn ǧpzi, θ0, γ̂nq ` oPpn
´1{2q,

where Jn
P
ÝÑ J0 for some non-random and non-zero J0, and the functional ǧ satisfies that

qGpθ0, γ0q “ Erǧpz, θ0, γ0qs “ 0.

22



Moreover, there exists a continuous functional g satisfying Assumption 2.4 and Erǧpzi, θ, γqs “
Ergpzi, θ, γqs, @i “ 1, ¨ ¨ ¨ , n, in an open set containing pθ0, γ0q.

Intuitively, the functional g is a smooth projection of ǧ on some sub-σ-algebra of the
σ-algebra generated by the sample. Let θ̂n be the corresponding estimator defined by g.
Under Assumption 3.5 and those conditions of Lemma 2.13, we obtain

θ̌n ´ θ0 “ pθ̌n ´ θ̂nq ` pθ̂n ´ θ0q

“Jn
´

qGnpθ0, γ̂nq ´ pGnpθ0, γ̂nq ` pGnpθ0, γ0q ` pG 1n,γpθ0, γ0, γ̂n ´ γ̄nq ` BANB
n ` BNL

n

¯

` oPpn
´1{2q.

The property of g implies that Er qGnpθ0, γ̂nq ´ pGnpθ0, γ̂nqs “ 0. That is, the difference
qGnpθ0, γ̂nq ´ pGnpθ0, γ̂nq does not contain any biases. Intuitively, it is the sample average of
the difference between ǧ and its smooth projection g. Hence, it is reasonable to expect that
this difference is asymptotically normal, under certain regularity conditions.

Assumption 3.6 (AN1—Asymptotic Normality). Suppose that there exists a non-random
and positive definite qΣg such that

qGnpθ0, γ̂nq ´ pGnpθ0, γ̂nq ` pGnpθ0, γ0q ` pG 1n,γpθ0, γ0, γ̂n ´ γ̄nq
L
ÝÑ N p0, qΣgq.

Example (Hit Rates). Consider the hit rates example discussed by (Chen et al., 2003).
Let z “ py, xᵀqᵀ, where y is a scalar dependent variable and x P Rdx is a continuous
covariate with density γ0. The parameter of interest is θ0 “ Er1py ě γ0pxqqs “ E

“

1 ´
Fy|x

`

γ0pxq|x
˘‰

, where Fy|x is the conditional distribution of y given x. Consider a kernel-
based semiparametric estimator

θ̌n “
1

n

n
ÿ

i“1

1
`

yi ě γ̂npxiq
˘

, γ̂pxiq “
1

n

ÿ

j‰i

Khpzi ´ zjq.

Let ǧpz, θ, γq “ 1
`

y ě γpxq
˘

´ θ and gpz, θ, γq “ Erǧpz, θ, γq|xs “ 1´ Fy|x
`

γpxq|x
˘

´ θ. Let
Xn be the σ-algebra generated by txiu

n
i“1. Then we have

qGnpθ0, γ̂nq ´ pGnpθ0, γ̂nq “
1

n

n
ÿ

i“1

´

1
`

yi ě γ̂npxq
˘

´ 1` Fy|x
`

γ̂npxiq|Xn
˘

¯

.

The asymptotic normality of the above difference is a direct result of the central limit
theory in the i.i.d. case. If we further know the correlation between this difference and
pGnpθ0, γ0q ` pG 1n,γpθ0, γ0, γ̂n ´ γ̄nq, as well as the variance of the latter, we will be able to

find qΣg.

Theorem 3.7 (A Summary Theorem for θ̌n). (i) Suppose that Assumptions 2.12, 3.5, and
3.6 hold true. Assume that Jn ´ J0 “ OP

`

pGnpθ0, γ̂nq
˘

. If s ą 1{4 and r ą 1{6, then we
have

?
n
`

θ̌n ´ θ0 ´ JnBNL ´ JnBANB
˘ L
ÝÑ N p0,J0

qΣg J ᵀ
0 q.
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(ii) The assumptions of part (i) and Theorem 3.1 are all true. Then
?
npθ̌wn ´ θ0q

L
ÝÑ

N p0, qΣw
θ q with qΣw

θ :“ J0
qΣw
g J

ᵀ
0 , where qΣw

g is the asymptotic variance of

?
n
´

Q
ÿ

q“1

wq
`

qGnpθ0, γ̂nphqqq ´ pGnpθ0, γ̂nphqqq
˘

` pGnpθ0, γ0q ` pG 1n,γpθ0, γ0, γ̂
w
n ´ γ̄

w
n q

¯

.

The counterpart of Theorem 3.4 seems to be more complicated, for that the smooth
projection g may be unknown, as shown in the hit rates example. In such case, we also
need to account for the errors and biases that arise from the estimation of g, g 1γ and g 2γγ .
Hence, we leave this to future exploration.

4 Simulation Study

We have conducted a Monte Carlo experiment to investigate the finite-sample performance
of the multi-scale jackknife (MSJ) method and the analytical bias correction (ABC) method.
We considered three different estimators: (1) the average density (AD) estimator, (2) the
integrated squared density (ISD) estimator, and (3) the density-weighted average derivative
(DWAD) estimator.

In the first two cases, we considered a one-dimensional mixed normal density given by

γ0pxq “ αφpx;µ1, σ
2
1q ` p1´ αqφpx;µ2, σ

2
2q,

where µ1 “ ´2, σ2
1 “ 0.5, µ2 “ 1, σ2

2 “ 1, and α “ 0.4. The true parameter of interest
θ0 “ Epγ0pXqq is given by

θ0 “
α2

a

4σ2
1π
`
p1´ αq2
a

4σ2
2π

` 2
αp1´ αq

a

2πpσ2
1 ` σ

2
2q

exp
´

´
1

2

pµ1 ´ µ2q
2

σ2
1 ` σ

2
2

¯

“ 0.0796.

In the last case, we are interested in estimating

θ0 “ E
`

γ0pXq BXEpY |Xq
˘

“ ´2EpBXγ0pXqY q,

where γ0p¨q is the density of X. We considered a linear model

yi “ xᵀi β ` εi, xi „ N p0, Idq, εi „ N p0, 1q.

For simplicity, we let β “ 1d, a d-dimensional vector with all the elements being one, and
focus on estimating θ01.

We employed a Gaussian kernel in all cases. So the order of the kernel is m “ 2 across
all cases. We considered three different sample sizes: n “ 50, 100, and 200. In each case,
we conducted 1,000 simulations. To save space, we only report the results with n “ 100.
Refer to the online supplement for more results.

Figure 1 shows the decomposition of mean squared error (MSE) for various AD
estimators, at different bandwidth values. From left to right, it presents the result for the
raw estimator without any bias correction, the analytical bias-corrected (ABC) estimator,
and the two-scale jackknife (2SJ) estimator (with η “ p1, 5{4q), respectively.
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Figure 1: AD: Decomposition of Mean Squared Error

Since the raw estimator is linear in the kernel function, there is no nonlinear bias BNL
n .

As shown in the figure, the bias starts to increase with the bandwidth h when h ą 0.1
for the raw estimator. While for the other two estimators, this only occurs approximately
when h ą 0.25. In other words, both ABC and 2SJ successfully removed the bias for a
substantially large range of bandwidths. For larger values of h, although there is still bias
left in the ABC and 2SJ estimators, it has been largely reduced. Consequently, the inference
based on either ABC or 2SJ will be much less sensitive to the choice of bandwidth.
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Figure 2: AD: Empirical Coverage Rates of Confidence Intervals

For any given bandwidth value, the variance parts of the ABC and 2SJ estimators are
larger than that of the raw one. We think these are due to some finite sample effects.
As shown by (Newey et al., 2004), the variance of the twicing-kernel-based semiparametric
estimator only depends on the true function(s), not the kernel (cf. the notation following
(2.2) therein). This implies that the asymptotic variances of the ABC and the raw estimators
should be the same. However, the kernel may have some impacts on the finite-sample
variance. While for the 2SJ estimator, it is probably because its two components are not
perfectly correlated in such a finite sample. However, the increases are not that large.
Hence, the ABC and 2SJ estimators can achieve slightly smaller minimum values for the
MSE.
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Figure 2 shows the empirical coverage rates for the 95% confidence intervals (CIs)
associated with the raw, ABC, and 2SJ estimators. The x-axis is the bandwidth. The
coverage rates are about two percentage points higher than the nominal level when h is
small. This might be a result of slightly overestimating the asymptotic variance when h
is very small. Not surprisingly, the coverage rates decrease, as bias increases (in absolute
value). Since the ABC and 2SJ estimators can remove/reduce bias, their corresponding
coverage-rate curves have much slower decreasing rates. More importantly, the curves are
nearly flat and very close to the nominal level around the region r0.2, 0.25s. According to
Figure 1, this is a region where the bias remains very close to zero. Besides, since h is not
very small in this region, the variance estimators become more precise, compared to the
cases with very small bandwidth values.
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Figure 3: ISD: Decomposition of Mean Squared Error
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Figure 4: ISD: Empirical Coverage Rates of Confidence Intervals

Figure 3 presents the MSE decomposition results for various ISD estimators. In this
case, both the two biases are non-zero. The nonlinear bias BNL

n is positive, while the
average nonparametric bias BANB

n is negative. This explains why there is a point where
the overall bias is zero. Once deviating from this point, the overall bias increases rapidly in
magnitude. The ABC method can substantially reduce both biases. One can construct 2SJ
to remove/reduce either the nonlinear bias or the average nonparametric bias. However,
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we found that 3SJ, which is the counterpart to ABC in this scenario, can only effectively
remove the nonlinear bias. Hence, we tried higher-scale jackknife and found that 5SJ has a
much better performance (we set η “ p3{5, 4{5, 1, 6{5, 7{5q).

According to Figure 4, the coverage rates of the raw estimator are quite sensitive to
the bandwidth, which is consistent with the MSE decomposition result. For the ABC and
5SJ estimators, the coverage rates are more robust to the bandwidth, especially in the
latter case. This is not surprising, for that 5SJ can remove/reduce more biases by design.
Generally speaking, the coverage rates are higher than the nominal level when the overall
bias level is relatively small. One possible explanation is that although the true asymptotic
variance of the ISD estimator is the same as that of the AD estimator, we employed a
more nonlinear estimator, which may be subject to more sources of finite-sample biases, to
estimate it in the ISD case.
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Figure 5: DWAD: Decomposition of Mean Squared Error
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Figure 6: DWAD: Empirical Coverage Rates of Confidence Intervals

For the DWAD estimator, we present the results with d “ 3, which is larger than
the order of the Gaussian kernel (m “ 2). The general patterns are the same as above.
In this case, the MSE gains for the ABC and 2SJ estimators are more noticeable. When
constructing the confidence intervals, we used the variance estimator proposed by (Cattaneo
et al., 2014) (Case (b) of Theorem 2 therein), while the one considered by (Powell et al.,
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1989) leads to over-coverage. The under-coverage of the CI based on the raw estimator is
mainly due to the bias. In other cases, the coverage rates are pretty close to the nominal
level, when the remaining biases are small. In particular, since the five-scale jackknife
estimator successively removes bias for a large range of bandwidth, its CI continues to have
good coverage rates across all the bandwidths considered in the simulation.

5 Conclusion

This paper extends the classic framework on semiparametric two-step models, which is
developed by (Andrews, 1994), (Newey, 1994), and (Newey and McFadden, 1994), to allow
for possibly low-precision nonparametric estimator. We have shown that there are two (or
even more) different types of biases in the semiparametric estimator, when its nonparametric
ingredient has a slower-than-n1{4 convergence rate. We also have proposed two different
methods to correct for these biases: one is multi-scale jackknife, the other is analytical-based
bias correction. Our simulation study suggests that these bias-correction methods work
quite well in finite samples for various kernel-based semiparametric two-step estimators.
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